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ABSTRACT

In this paper, the problem of temporal aggregation in production planning is addressed. A single facility
with multiple part types is considered. The planning horizon consists of a sequence of elementary time
periods, and the demand for all part types is assumed to be known over these periods. The production
planning problem consists of minimizing the holding and backlogging cost for all part types. Due to usual
errors in demand forecasting, and due to the large size of the linear programming problem commonly
encountered in such problems, there is a need for aggregating the production variables over the time
horizon (typically, from weekly to monthly) to result in a hierarchical structure. We consider a two-level
hierarchy composing a sub-problem at each level, and we propose an iterative technique which solves
these sub-problems in sequence. A posteriori bounds are developed, which are useful in evaluating the
performance of the iterative algorithm. Quick lower and upper bounds of the original problem are also
developed. Finally, numerical results for numerous test cases are presented.
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1 Introduction

Multi-product production planning is a simple problem to formulate, but a difficult problem to solve
optimally. It consists of deciding the quantities of products to manufacture in a given sequence of
elementary periods in order to optimize given criteria. Constraints such as capacity limitations have to be
taken into account. This problem is further complicated by the uncertainty and fluctuations of demand
forecasts. Two distinct approaches to production planning have been adopted in the past: (i) the monolithic
approach, wherein the entire problem is formulated as a large LP (linear programming) problem, and (ii)
the hierarchical approach, which partitions the global problem into a series of sub-problems that are solved
sequentially. The advantage of using the hierarchical approach is the reduction in the complexity of the
problem, as well as the gradual absorption of random events; for other advantages of hierarchical
approaches see Dempster, Fisher et al. 1981. Hierarchical approaches have been suggested in the literature
by Hax and Meal (1975), Bitran and Hax (1977, 1981), Graves (1982), Aardal e al. (1990), Tsubone et
al. (1991), that consider production planning at different levels of the management hierarchy; they consider
different criteria and cost structures. For instance, Nagi (1991) and Meier (1989) consider minimizing the
losses due to holding and backlogging inventory costs.

The issue in hierarchical decompositions is how can one develop hierarchical models that provide good
approximations to the respective monolithic problems. In multi-layer structures related to hierarchical
management systems, the controller is decomposed into algorithms operating at different time intervals. All
the layers of the controller directly affect the process but the higher ones control its slower aspects only:
they intervene less frequently, they have longer optimization horizons, and are based on more aggregate
models. In this paper, we address the problem of temporal aggregation that results in the hierarchical
design process while going from a lower level of the hierarchy to the next higher level; this is due to their
need to be operating at different time scales. On the other hand, we also need to consider the temporal
disaggregation that results in the computation of a production plan from top to bottom; there is a gradual
refining of the production plan along time as we go from higher levels to the lowest level.

We consider the production planning problem of determining the production levels of parts to be
produced in a single facility over a given horizon which is discretized into elementary periods, given the
demand requirements. The objective is to minimize the inventory holding and backlogging costs. A two-
level hierarchy is constructed, the high level, which plans production for aggregate product entities over
sub-periods (aggregate elementary time periods) composing a long horizon, and the low level, which
disaggregates the high level production plan to that of detailed product entities over detailed elementary
time periods composing a shorter horizon. The difficulty in employing this approach is that there is loss of
detailed inventory information (eg. inventory cost information) at the high level, hence, this could result in
significant loss of optimality. Thus, the inventory information at the low level is incorporated at the high
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level in the form of "weights"; this is a standard practice while considering aggregate problems. However,
good values for these weights can only be obtained once the detailed level problem is solved. Hence, we
develop iterative schemes that solve the two problems iteratively, to converge to a good solution. This
two-level structure can be employed between any two levels of a general n-level hierarchy. While the
aggregation of parts is performed in the manner suggested by Nagi (1991), the aggregation of elementary
periods into sub-periods of equal duration, and the corresponding disaggregation of production levels,
constitute the major contribution of this work. The performance evaluation of this scheme is presented,
and a number of error bounds are developed to further assess the "goodness" of this scheme.

This paper is organized as follows. In section 2, the literature survey is presented. In section 3, we
describe the problem and formulate it. In section 4, we detail the aggregation scheme used and the design
of a two-level hierarchy to solve the problem presented in the section 3. In section 5, an iterative algorithm
employed to solve the problem is presented. Section 6 is devoted to the proof of convergence of the
aforementioned algorithm. Section 7 describes another iterative algorithm that provides near optimal
solutions, and is based on modifications to the constraints of the LP problems of the previous algorithm.
Section 8 consist of the formulation of a posteriori error bounds for the proposed
aggregation/disaggregation scheme and quick bounds (both upper and lower). Numerical results are

presented in section 9. Finally, conclusions of this temporal aggregation methodology are drawn in section
10.

2 Literature Survey

Many techniques are used for forming hierarchical planning models, and for assessing their
effectiveness with respect to recovering the optimal solution of the original problem. Rogers et al. (1991)
identified three major components of the aggregate model, which are: (i) aggregation analysis, (ii)
disaggregation analysis and (iii) error analysis - methods of determining the resulting error that may be
introduced by employing aggregate models and disaggregate solutions. These three main elements of
aggregation/disaggregation and their components are discussed throughout this paper. In this section, we
present literature surveyed in the areas of hierarchical production planning systems, temporal aggregation,
iterative procedures to aggregate problems and error analysis.

2.1 Hierarchical Production Planning Systems

Hax and Meal (1975) performed some pioneering work in the area of hierarchical production planning.
They considered a multi-plant firm with four decision layers. The highest layer model performs a static
(one time) distribution of products to individual plants. The next three decision layers are intended for the
management of a single plant. The concept of a rolling horizon is employed, in order to perform repetitive
open-loop optimizations. Bitran and Hax (1977), and Bitran et al. (1981) further refined Hax and Meal
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hierarchical production planning methodology for a single stage production system. Bitran et al. (1982)
extended the methodology to a two-stage process. These models considered three layers of aggregation for
products: (i) items, (ii) families, and (iii) types. Graves (1982), adopts a different approach to the problem
and introduces feedback between decision layers. Based on the product aggregation scheme of Hax and
Meal, the problem is formulated as a monolithic mixed integer program, which is decomposed by
Lagrangean relaxation. The best values of the Lagrangean multipliers are determined by an iterative
procedure which may be interpreted as a feedback mechanism in the Hax-Meal framework. Aardal and
Larsson (1990) present another hybrid approach to the mixed integer problem suggested by Graves
(1982): the Hax and Meal model and its extensions are based on a typical cost structure, and the proposed
aggregation schemes are relevant to only a particular class of production systems. The model does not take
into account randomness in demand, capacity or any other production variables.

Axsater (1981), Mizrach (1985), Hillion, Meier and Proth (1987), Meier (1989) and Nagi (1991)
address a double aggregation scheme over products and machines, where at the top layer the entities of
relevance are machine sub-systems and part families. This class of literature does not address temporal
aggregation issues in their formulations. Other related work in the area of hierarchical production planning
is as follows: Mohanty and Kulkarni (1987) present a heuristic approach to the hierarchical production
planning problem which performs better for a certain category of objective functions. Tsubone et al.
(1991) present a new design of a two-stage hierarchical model by analyzing the relationship between the
production planning rules and the role of the buffer inventory level in terms of system performance.
Boskma (1982) perform simulation studies, and Axsater et al. (1984) present empirical evidence in
support of hierarchical production planning.

Consistency between decisions made at different levels is typically ensured by taking into account the
optimal solution obtained at a given level when computing the optimal solution at the next lower level.
However, sometimes the disaggregation is infeasible, i.e. top level constraints may yield an empty feasible
set at a lower level. Gabby (1975), Saad (1990) and Erschler et al. (1986) derive necessary and sufficient
conditions for the consistent disaggregation of the Hax and Meal model. The sub-optimality issues have
been addressed by Dempster, Fisher ez al. (1981). Krajewski and Ritzman (1977) provide a survey of the
problems and research in the area of the infeasibilities of disaggregation.

2.2 Temporal Aggregation

To clarify the term, an example of temporal aggregation in a two level hierarchical production planning
structure is shown in Figure 2.1. The high level plans monthly production for all product entities over the
entire planning horizon (for example - fifteen months), and the low level disaggregates the monthly results

to a weekly plan for the product entities for the first month.
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There exists very little literature on the temporal aspect of aggregation in hierarchical production
planning systems. Abraham et al. (1985) have suggested the need of temporal aggregation in production
planning and control of manufacturing systems, and Nagi (1991) has indicated the need for a temporal
aggregation scheme, where similar input variables (product demand) are aggregated on a time scale. So

far, to our knowledge, a general temporal aggregation scheme for production planning systems has not
been addressed in the literature.

In view of the lack of literature on the temporal aspect of aggregation in production planning systems,
we sought out some information by reviewing the application of the temporal aggregation in other problem
domains. These applications are detailed below.

Engles, Larson et al. (1976) consider the hydro and thermal generation scheduling problem using an
iterative dynamic programming procedure. The output of the monolithic problem is the hourly resource
allocation for a scheduling horizon of at least one year. A two-layer hierarchical structure is considered; the
high layer which schedules all resources weekly over one year, and the lower layer which disaggregates
the weekly results to schedule the resources hourly for one week. These low and high layer horizons are
selected because the demand is characterised by weekly cycles and the maintainence of resources and the
decisions of acquiring a new resource are made yearly. The technique of successive approximations is
used, whereby each resource is rescheduled at the low layer, and then the high layer problem is solved.
Since the objective function is convex, the iterative procedure converges to the optimum. However, this
procedure is problem specific, and cannot be applied or extended easily to general hierarchical production
planning problems.

Monts (1991) proposes a temporal aggregation scheme to evaluate the marginal energy cost ($/mega
watt-hour). The horizon for analyzing the given hourly marginal cost was set to one year. Due to the
temporal structure of the marginal costs, aggregation along a time scale was performed according to the
type of season (Winter, Spring, Summer or Fall) and the day type (weekday or weekend). This
aggregation of the hourly marginal cost is not static in nature, and depends on the variance of the hourly
marginal cost over a day. Both, two-layer and three-layer aggregation schemes are proposed, based on the
hourly marginal cost variation. Monts’s scheme is also problem specific, and does not always lead to the
optimal solution.

Wei and Mehta (1980) addressed the information loss due to temporal aggregation in a dynamic system
where the influence of an input variable on an output variable is distributed over several time periods.
These models are known as distributed lag models. A proper time scale for the temporal aggregation is
proposed, based on the time horizon of the aggregated information required. A Monte Carlo study on
some commonly used forecasting least square estimators was presented, and the information loss in terms
of the prediction of the input variables was examined.
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Cunningham et al. (1992) examine the effect of temporal aggregation on money and interest rates.
Aggregation was performed based on time averaging of the input variables, which was observed to cause a
significant magnitude change in the output variables. Rossana et al. (1992) consider the modeling of real

wages of the manufacturing industry, and present the effect of temporal aggregation on the output
variables.

2.3  Iterative Aggregation Procedures

Dudkin et al. (1987) study in detail several iterative procedures for solving systems of equations of
both constrained and unconstrained optimization models. These models were developed for large-scale
economic planning models. At each iteration, the low level executes the decisions that differ from the high
level plans, if doing so benefits the low level, i.e., the high level decisions are not obligatory to follow at
the low level. Numerous two level iterative algorithms are discussed, along with proofs and rates of
convergence for some simple cases.

Zipkin (1977, 1980a, b) explores the effect of aggregating variables in large linear problems. He
employed an iterative technique to improve solutions obtained by given aggregation/ disaggregation
problems. An arbitrary partitioning of the original set of variables of a large linear problem is performed
and the columns of each group are replaced by their weighted averages. The aggregate problem is solved,
and the solution obtained is disaggregated to yield a feasible solution to the original problem. New weights
are then computed from the disaggregate solution, and the aggregate problem is solved again. Weak
convergence of this iterative procedure to the optimal solution is proven assuming no degeneracy and
including a successive approximation technique at the last step of the algorithm. The problem of
degeneracy is also discussed.

Nagi (1991) has proposed an iterative procedure for the production planning problem where
aggregation is performed for parts with similar cost attributes. The principle of Nagi’s algorithm is similar
to that of Zipkin's disaggregation procedure. The proof of convergence has been provided for this
procedure. Along similar lines, we are adopting iterative aggregation procedures for the temporal
aggregation case, where we assume values of weights at the high level, and then improve these values by
iteratively solving the LP problems.

2.4  Error Analysis

While employing a hierarchical approach, the information loss due to aggregation/disaggregation
procedure can lead to sub-optimality. Error analysis helps in assessing this error and verifying the
applicability of a particular aggregation scheme. In general, two types of error bounds are often associated
with the aggregation/disaggregation procedure. These bounds are (Rogers et al., 1991):
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(i) a priori error bounds - these error bounds are estimated after an aggregate model has been
formulated but not solved; a priori analysis is comparable to the worst case analyses for heuristics.

(ii) a posteriori error bounds - these error bounds are estimated after an aggregate model has been
formulated and solved; a posteriori analysis is comparable to linear programming relaxation or Lagrangean
relaxation methods.

The goodness of the bounds can be studied by employing monolithic models of reasonable sizes, and
comparing the actual error with these error bounds. Typically, a priori bounds are much looser than a
posteriori bounds. Zipkin (1977, 1980b) proposes a posteriori bounds for large linear
aggregation/disaggregation optimization problems. Zipkin provides a tighter bound, compared to one
given by Whitt (1978, 1979). However, Zipkin’s bounds need additional information about the upper
bound of the weighted sum of the optimal variables in a particular subset of the partition. Zipkin’s a
posteriori bound also needs the dual solution of the aggregate problem. In this paper, Zipkin’s a posteriori
bound estimation method for LP problems is used to evaluate the a posteriori bound of the proposed
temporal aggregation model.

3 Problem Description and Formulation

3.1  Problem Description

We consider a unique facility. The set P = {p;,p,,...,p,} represents n part types to be manufactured.
Let t; represent the processing time of one unit of part type p; i = 1,2,...,n. Set-up times are not
considered. We consider a planning horizon H composed of Z sub-periods which are in turn divided into z
elementary periods each; these elementary periods are of duration A each. It is assumed that the duration of
A is much larger than the processing times of parts, i.e. t; << A; i = 1,2,...,n. Let dy, X and s;; represent
respectively the number of units of part type p; required at the end of the k-th elementary period, the
planned production for part type p; during the k-th elementary period and the inventory of part type p; at
the end of the k-th elementary period after satisfying the demand, i = 1,2,...,n; k = 1,2,...,Zz.

We consider the minimization of the total inventory holding and backlogging costs as our criterion. Let
w;" represent the cost associated with holding one unit of part type p; in stock for one elementary period.
Similarly, let w;” represent the cost associated with backlogging one unit of part type p; by one elementary
period; i = 1,2,...,n.
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3.2 Problem Formulation

The production planning problem consists of determining the production x;, in order to minimize the
total inventory holding and backlogging costs.

The problem can be formally stated as the following linear programming problem:

Zz n
(Problem P1) Minimize: kE—:l igl fisin) (3.2.1)
where:
filsp) = wi [sid "+ wi'l - sud s i=12,...nandk=12,...,Zz (3.2.2)
[]" =Max(0,} ;
k ”
Sik = Si0 + ):1 Xja - Dixs i=12,...nandk=12,....27z (3.2.3)
a=
k
Dy = agldia ; i=12,...,n,and k=12,..7z (3.2.4)
Subject to:

n -
X SA; k=12,...,72z (3.2.5)
1=
Xix20; i=12,...n,andk=12,..,7z (3.2.6)

fi(y) is the cost function for part type p, and inventory level y. Here, we have considered holding and
backlogging costs in the cost function (3.2.2). s;y denotes the initial inventory of part p; (3.2.3). Dyx
represents the cumulative demand of the part type p; till the end of k-th elementary period (3.2.4). We can
equivalently formulate problem P1 with zero initial inventory and a corresponding effective demand (sce
Nagi, 1991). Thus, from here on, without loss of generality, we shall assume that the initial inventory is
zero for all part types, with demands being transformed in order to take into account the initial inventories.

The inventory relation can then be written as follows:
k

Sik = X Xja~ Diks (3.2.3)
a=1

Constraint (3.2.5) represents the capacity lilits over each elementary period. Constraint (3.2.6) implies
the non-negativity of production.

We can transform the LP problem P1 to an equivalent problem where the parts have unity processing
times and the other variables and constants are transformed appropriately as follows:
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1

Xik = Xk X §; (3.2.7)
D' = Dy Xtj; (3.2.8)
witO= wi Oy (3.2.9)

The new equivalent LP problem, whose criterion value will be the same as in the original problem, can
then be formulated as follows:

Zz n k k
Minimize: 3 3 Wi X [T X}a-Dy " +wi x D - 3 x5 1 (3.2.10)
k=1 i=1 a=1 a=1
Subject to:
n
'zlx'ik <A; k=12,...,7Zz (3.2.11)
1=
x'ixk20; i=12,....n,and k = 1,2,...,Zz (3.2.12)

This LP problem is solved for x'y and the x; variables can easily be obtained from equations (3.2.7-

3.2.9) above. From here on we will use only the equivalent problem in our formulations.

4 Hierarchical Approach

The hierarchical approach is based on grouping parts into part families and elementary periods into sub-
periods. Aggregation of parts into part families is performed in a way that parts are grouped in a family if
they have the same holding costs, and the same backlogging costs. This aggregation scheme is defined as
"perfect aggregation" in Nagi (1991). The set of N part families is represented by F = {f1,f2.....fN]}; note
that, N < n. Two parts p; and pj €f,,re{l,2,.. N}, iff:

. + +
(1) Wi =Wj

(11) Wi-= Wj
Under this aggregation scheme, vr+ represents the cost associated with holding one unit of family type

f; in stock for one elementary period and v, represents the cost associated with backlogging one unit of

family type f; by one elementary period; r = 1,2,...,N. We can relate these new parameters as follows:

v = w{'(’), if jip;  f;

We also define a function a(i), where i = 1,2,...,n, which represents the family fag) to which part type
p; has been assigned; also a(i) e {1,2,...,N}. Similarly, for time periods, we define a function b(k), where
k = 1,2,...,Zz, which represents the sub-period to which the k-th elementary period belongs; also b(k)
€{1,2,...,Z}. Note that b(k) = [k/z1 where [*1 denotes the smallest integer greater than or equal to e.

The two levels of the hierarchy are constructed as follows: (i) the high level that plans production for
part families in sub-periods, and (ii) the low level that computes the disaggregation of the high level



temporal aggregation in production planning

solution to determine the production plan for parts types in elementary periods. The form of the objective
function are the same at the high and the low level. The disaggregation is performed over a short term
horizon, z (z < H), in a manner that the high level constraints are respected and the value of the objective
function does not increase over z. Production planning is usually performed on a rolling horizon basis.
That is, although the high level solution is computed over H, only a part of it (over z) is implemented,
followed by a recomputation of the plan after z. This is done in order to incorporate the future
demands/forecasts progressively.

An iterative algorithm is developed which solves the high and the low level problems at each iteration.
The convergence of this algorithm is proved in section 6.

4.1 High Level Problem

The high level problem consists of production planning for part families on sub-periods over the entire
planning horizon (H). Let X, denote the production planned for part family f; during the x-th sub-period;
r=12,.,N; x = 1,2,...,Z. The production planning problem is to determine the production X such
that the backlogging and holding costs for families, still computed at the end of each elementary period, are
minimized.

The inventory of the part family f; at the end of the k-th elementary period, after satisfying the demand
of the part types corresponding to this family, is denoted by 0.

For the first sub-period we define g;; as the ratio of the cumulative production of part type p; till the k-
th elementary period, to the production of the part family f,;) over the entire sub-period. These ratios or
weights are defined in order to take into account low level information at the high level. Thus g is defined
for only elementary periods in the first sub-period as follows:

[k
leis”
S§= . ~
8ik =Y X ; if Xaiy17 > 0 4.11)
L 0; otherwise

Notation ‘~’ stands for the previous iteration, i.e., x;s~ means the low level production obtained in the
previous iteration, and X, ~ means the high level production of part family a(i) for the first sub-period,
obtained in the previous iteration. For the first iteration, initial values of gjx can be assumed or computed
according to the procedure detailed in section J.
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For the subsequent sub-periods (i.e., ¥ = 2,3,...,Z) production of part families is divided equally
among all elementary periods composing that sub-period (i.e., for k=(x-1)z+1,...,xz). This is referred to
as linear production of part families within these sub-periods.

The high level problem can be formally stated as the following linear programming problem:

Z zK N
(Problem P2) Minimize: ¥ 3 Y Olog) (4.1.2)

k=1 k=z(k-1)+1 =

where:
& (o4) = v, x[ox]" +v, x[-04]; r=12,.,N (4.1.3)
O = Xrl X 2 gik - Z Dik 5 k=12,..,2 (414)
ipiefe  ipef;
b(k)-1 -(b(K)-
Ok = 2 Xpet+ X X [g-—@-(—l—zq—l—)—z] - 3 Dy k=z+l,z42,..,72 (4.1.5)
x=1 ilpie fr
Subject to:
N
X SzA; K=23,..,2 (4.1.6)
r=1
N
2 Xn( Zgx— X8ik1)<A; k=12,...z 4.1.7)
=1 ipefe  ipef;
Xn20; r=12,...N,and x = 1,2,...,Z (4.1.8)

The cost function for part family f, in the k-th elementary period is represented by ®,(y), where y is its
inventory level. The objective function that represents the minimization of the inventory holding and
backlogging costs for the part families over the entire horizon is represented in (4.1.2). The relation
(4.1.2) defines the cost function for part families. Relation (4.1.4) provides the inventory level of part
families for the first z elementary periods, i.e., elementary periods belonging to first sub-period. Relation
(4.1.5) provides the inventory level of part families for the elementary periods with k > z.

Constraint (4.1.6) represents the capacity limits in each sub-period. Constraint (4.1.7) ensures that the
solution of the high level guarantees that the set of feasible solutions at the low level is non-empty (see

section 6 for the proof of convergence) and (4.1.8) implies the non-negativity of production for part
families.
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4.2 Low Level Problem

The low level problem consists of production planning for part types on elementary periods of the first
sub-period. It determines the production volume x; for part type p; from the aggregate high level solution
Xa(j)1 in order to minimize the backlogging and holdings costs of all part types over the first sub-period.

The low level problem can be formally stated as the following linear programming problem:

z n
(Problem P3) Minimize: kzl .21 £i(s;) (4.2.1)
=1 1=
Subject to:
z
Xi=3 Y X r=12,...,N (4.2.2)
=l ipef,
n “
.21 Xixk SA; k=12,...,z (4.2.3)
1=
z ) .
g Xik = Diz + 0 (Xa(i)l -y Djz) 5 Vi l(Xa(i)l -' Y Djz) >0 4.2.4)
k=1 JIPs€ fagi P fag)
X203 i=12,...n,andk =1.2,....z (4.2.5)

Constraint (4.2.2) ensures that the high level production plan for part families is respected. Constraint
(4.2.3) reflects the capacity limits over each elementary period. Constraint (4.2.4) ensures that the surplus
production of part-families at the end of the first sub-period is assigned to individual part types according
to the ratios ;. The ratios «; are determined according to either the expected long-term future demand or
the demand in the subsequent elementary period(s) (if known), because, this surplus is intended to cater
for the future demand. Note that

>o=1; VilX - ZDj)>0. (4.2.6)
ilpe f, jpie faq)

We do not specify such ratios for part families which are backlogged at the end of first sub-period
because the decision to split this deficit among the part types does not affect the cost function for f1_1turc
periods. At this point, we also show that constraint (4.2.2) is redundant for Vr | (X;; - X Dj,) > 0.

i'piE faq)
Consider constraint (4.2.4) summed over parts belonging to the same part family:

z
3 kgl k= XD+ X(@&Xa@mi- XDg))
ipEfaw PEfaqy € fag) SIps€ fag)

After simplifying we obtain:

11
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Z
z X xge= Xa(i)
ipe fag)

The above constraint is the same as (4.2.2) which makes it redundant for Vri(X;; - 3 Dj;) > 0.

5

JIpjE fagi)

Iterative Algorithm

In this section, we present an algorithm which solves problems P2 and P3 iteratively to obtain the
production levels of part types for the elementary periods (k = 1,2,...,z). We initialize the weights g;; by
solving the low level problem (P3) without constraints (4.2.2) and (4.2.4). Production of part families in
the first sub-period (X;;) is estimated by adding the production of all part types in the part family for the
first z elementary periods. The high level is then solved, assuming the weights obtained from relation
(4.1.1). The production of part families in the first sub-period is then disaggregated at the low level. The
new weights are then computed, and the two levels are solved again. The process is repeated until
convergence is achieved. The algorithm is detailed as follows:

Algorithm 1

Step 1.

Step
Step

Step
Step
Step
Step
Step
Step

Step

Step

Step

2.
3.

R SR A L

10.

11.

12.

Estimate the effective demand from the forecasted demand pattern.

Transform the original problem to the equivalent LP problem with unity processing time.
Aggregate part types into part families based on the aggregation scheme described in section 4,
and determine cost attributes.

Compute the cumulative demand Dy (equation 3.2.4).

Solve the low level problem (P3) for x;; without constraints (4.2.2) and (4.2.4).

Estimate the production of part families from the relation 4.2.2.

Initialize the iteration number c; ¢ = 0.

c=c+1.

Initialize the weights g;; € from the production of part types and part families using the relation
(4.1.1); where gy represents the weights in iteration c.

Solve the high level problem (P2) for the production of part families in the sub-periods, using
the current value of the weights g;; C. ’
Disaggregate part family production over the first sub-period, by solving the low level problem
(P3) to determine x;i=1,..,nand k = 1,...,z.

Check for the reduction of the high level criterion value, with respect to the high level criterion
value of the previous iteration. If the reduction is greater than a user specified € (€ > 0 and
sufficiently small), then go back to step 8. Otherwise, STOP; the production values of the part
types obtained at the last iteration is the solution to the problem.

12
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6 Convergence

In this section the convergence of the iterative algorithm 1 presented in section 5 is proved.

Let P2° and P3€ represent respectively the high level and low level problems at iteration c. Let C($, 8)
represent the criterion value corresponding to the feasible solution s of problem ¢. Consider the division
of the criterion value C(P2°, s) into two parts: (i) C1(P2°, s), which represents the part of criterion value
corresponding to the first sub-period (i.e. k=1), and (i) Co(P2°, s), which represents the part of criterion
value corresponding to sub-periods k = 2,3,...,Z. Note that C(P2°,s) = C1(P2°%, s) + C2(P2°, ). Let
X% = (X,C;r=12,.,Nand k¥ = 1,2,...,Z) in an N x Z solution vector of problem P2°, Let x® = (xS; i
=1,2,...,n and k = 1,2,...,z) in an n x z solution vector of problem P3°.

We show that the solution of each problem P2¢ and P3° guarantees that the set of feasible solutions for
the subsequent problem (i.e., P3° and pactly respectively is non-empty. We also determine,
corresponding to the optimal solution: (i) X*C of P2C, a feasible solution x° of P3° such that C1(P2°,
X*€) = C(P3°, x°), and (ii) x*° of P3C, a feasible solution X°*! of P2°*1 such that C(P3°, x*°) =
CI(P2C+1 , XC+1).

Property 1.

According to the result of (Nagi, 1991), in the perfect aggregation case, a property of the optimal

solution of P1 is such that for any part type pj and elementary period k:

o if S*ik 20 = S*jk' 20 Vil PjE fa(i)

b if S*ik <0 = S*Jk <0 VJI pJE fa(i)

Furthermore, it is proved that:

o ifo*y 20 = s*jk 20 Vil pje fr

o ifo*g <0 = sk <0 Vil pje fr
Lemma 1. The optimal solution of problem P3° and the new weights computed thereof, gatL,
guarantee that the set of feasible solutions of problem p2ctlys non-empty.

Let x*3€ (i = 1,2,...,n; k = 1,2,...,2) be the optimal solution of P3¢. Then, according to (4.1.1):

"
) 1"*isc
cotloe 32 . if X*.,0.C> 0 (6.1)
gix X*a(i)lc a(i)l
0 ; otherwise

\
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We show that the set of feasible solutions of P2€*1 is non-empty by verifying that X*,.C (r =
1,2,...,N and x = 1,2,...,Z) is a feasible solution of problem P2°+1 with the new weights gy S+1.

Constraints (4.1.6) and (4.1.8) are verified, as they are satisfied by the solution of problem P2€. We now
verify constraint (4.1.7) as follows:

N
Y IX*%C(aactl- gyt sA; k=122
r=1 ilpje fr
By substituting for g; c+1 and gj.1yc+! from (6.1) we have:
k . k-1 .
. C . C
N . C(SE X is sélx is )
X > X - <A
r=1 ilpiE fr rl X*rlc X*rlc
After simplifying, we obtain:
N
S Tx*c<A (6.2)
=1 iipie f,

The constraint (6.2) above is equivalent to the constraint (4.2.3) of problem P3¢ which was verified
because X*ik (i=1,2,...,nand k = 1,2,...,2) is an optimal solutions of problem P3¢,

q.e.d.

Remark 1. The criterion value obtained for the optimal solution of P3% equals the criterion value

corresponding 1o the first sub-period of problem P2°%1 with solution X*¢; i.e. C(P3C, x*¢) =
C1(P2¢+1 x*c).

C(P3C, x*c) can be represented using (4.2.1) as:
z n

kzl .Zl wiT[s*4C]" + w;T - s¥3 €17 where s*C = E]i x*12€ - D s
=] 1= a=
which can be rewritten as:
z N N . i .
Z & L T
sLr= ilpie fr

Due to the definition of attributes in the aggregation scheme of section 4:
z N
P> LZHD Y o MR Yl B (6.3)
=Ir=l ey, iipe f
The inventory of part families is defined as follows (see also (3.2.3), (6.1) and 4.1.4)):
0.t = 3 s*,c r=12,.N,andk=12,...z
ilpiE f r

According to property 1
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[Crkc+1]+=' )Y T oalH = 3 [s*ul*
ilpie fr ilpie f
which implies that (6.3) equals
z N
DD AT s AT A
=1 r=1

This shows that C(P3, x*c) = C{(P2°*], X*c)
Lemma 2. The optimal solution of problem P2° guarantees that the set of feasible solutions of problem
P3Cis non-empty.

Let X*.,.° (r = 1,2,...,N and x = 1,2,...,Z) be the optimal solution of problem P2¢; X* ¢ (r =
1,2,...,N) is of relevance to P3°. We want to show that the set of feasible solutions of P3¢ is non-empty
by constructing one such feasible solution. This is performed by a two step procedure.

Step 1.

Temporal disaggregation of X*,lc (r = 1,2,...,N) to determine production levels of families using the
weights ¥ gi© (r=1,2,...,.N and k = 1,2,...,2).
ilpie f;

Let Y4 represent the cumulative production of family f; till the k-th elementary period, and is defined

as follows:

k
Yal= 3 Ixp%=X*1¢ I guc r=12,..Nandk = 1,2,...,z (6.4)

=l ipie f, ilpie f;
At this step, we want to show the xikc i=1,2,..,nandk =1,2,..,z) to be obtained from (6.4) (see
step 2) satisfy constraint (4.2.3).

n
2 X <A
i=1

According to (6.4) and after simplifying, we obtain
N

2 X*( Tgx- 2 8ign)SA

= ilpief, ilpEf;

which is equivalent to the constraint (4.1.7) of problem P2°.

Step 2.
Disaggregation of the production levels of family Y, to determine production levels of parts using

(4.2.4) and property 1.
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In order to satisfy (4.2.4) we add a fictitious demand, d;, to d;,, Vp;, for which X*a(i)l > X Dj,.
: ilpje Fagy
dip=0; (X"yq1-  EDj) (6.5)
Jipje fag)
We then apply the disaggregation algorithm of (Nagi,1991) to determine x; (Vilp;e fr; k = 1,2,...,2
andr = 1,2,...,N). The basic idea of algorithm is as follows (for details see algorithm 2 of appendix A):

We consider one family at a time. For a family f,, we consider elementary periods k = 1,2,...,z in
sequence and examine 6", =Y, 0- ¥ Djy: if

jipEfr
(@) 6*x€> 0
we define:
. b
Min -
hy = b {S.t. O'*rkc -y Y dip < O} (6.6)

a=k+1 ilpiE fr
That is, hyy is the first elementary period after k, where the inventory of the family f, can be entirely
consumed if no further production is performed. We solve the following problem to determine x;";

Vilp;e f,.

) xikc = rkC - Yr(k-l)c ; (6.7
ilpie fr
Sik” = Sig-1) + Xik - i 203 pie fr (6.8)

h

dip - 53520 ilpie f (6.9)

b=§+1lb k PiIr

a

Y dp-sp°<0; ilpi€ frand a = k+1,...,h-1 (6.10)
b=k+1
Xxo20; ilpe f; (6.11)

(b) 6*,¢<0

we solve the following problem to determine x;%; ilp;e fr

T X" = Y© - Yegey©s (6.12)
ilpie fy
Sik” = Sige-1) + Xik - dix” <03 ilpie f; (6.13)
xS 20 ilp;e f; (6.14)

The disaggregation problems described in (a) and (b) are solved using the algorithm 2 described in
appendix A. The solution x;,° is a feasible solution of P3€ because: (i) (6.4), or (6.7) and (6.12) verify
(4.2.2), (ii) step 1 verifies (4.2.3), (iii) (6.5) causes (4.2.4) to be satisfied, and (iv) (6.11) and (6.14)
verify (4.2.5).

16
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17
g.e.d.

Remark 2. The criterion value corresponding to the first sub-period obtained for the optimal solution of
P2C equals the criterion value of problem P3€ and solution x° provided by the previous algorithm.

That is, C1(P2°, X*c) = C(P3°, x°).

C1(P2°, X*¢) can be represented using (4.1.2), (4.1.3) and (4.1.4) as:
L
kgl ‘El ve [0 T +v [-07 g

The inventory of part families is defined by:

o*4 b= T s r=12,..N,andk = 1,2,...

ilpie fr
According to property 1, i.e. (6.8) and (6.13)
5T = T sl PR LIS Y S
ilpie f; ilpie fr
which implies that (6.15) equals
z N + + - +
k): 21 vi X sl +ve I [sicl
==l ipes, ilpe fr

Due to the definition of attributes in the aggregation scheme of section 4:

z n
&1 3 Wi lsaT vl T

which equals C(P3°, xc).

Theorem 1. The iterative scheme proposed in algorithm I converges.

(6.15)

Since the optimal solution of problem P2° guarantees a non-empty set of feasible solutions to problem
P3¢ (lemma 2), and we determine one solution x€ such that C1(P2°, X*¢) = C(P3°, xC), this implies that
C(P3¢, x*c) < C1(P2C, X*¢). Furthermore, the optimal solution of problem P3° guarantees a non-empty

set of feasible solutions to problem P2°*! (lemma 1), and we determine one solution X¢+1 = X*C such
that C(P3, x*¢) = C;(P2°*1, Xc+1). We also note that Cp(P2°, X*c) = Cp(P2°*1, Xc+1). This leads

to C(P2°+1, X*c+1) < C(P2€, X*¢). Since the high level criterion is bounded, the algorithm converges.

g.e.d.
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7 New Iterative Algorithm

The algorithm presented in section 5, was applied to 60 test cases (for details on problem generation,
refer to section 9). It was observed that the algorithm converged to a feasible solution in all cases. The
results indicated that the percentage deviation of the solution obtained by the algorithm 1 from the optimal
ranged between 25% to 0%, with a concentration at around 15%. The mean number of iterations 1o
convergence for these test cases was 3.9, and the maximal number of iterations was found to be 11. The
reason for this sub-optimality was attributed to the fact that the weights g;, obtained from an iteration at the
low level, impose a restriction at the high level, i.e., the high level solution has to strictly follow these
weights (due to (4.1.4) and (4.1.7)). While in-turn, the low level is constrained in approaching the optimal
value of weights due to the aggregate high level solution, i.c. constraint (4.2.2). Thus, the iterative
algorithm presented in section 5 converges to a local optimum in a rather constrained manner.

With this motivation in mind, a new algorithm is proposed in this section. We impose a relaxation on
the capacity constraint (4.1.7) at the high level. Let Uy (k = 1,2,...,z) represent the number of time units
by which the capacity constraint is violated in the k-th elementary period. At the high level, we also define
a penalizing factor W which represents the penalty for utilizing one unit of extra capacity. Therefore, the

penalty for violating capacities of the elementary period belonging to the first sub-period is defined by
z

Wx }ElUk. The penalizing factor W tends to infinity as the number of iterations tends to infinity.
k=

Alongside, at the low level, we impose a relaxation on the requirement that production of a given family be
met with strict equality at the low level (i.e. constraint (4.2.2)). Let L. (r = 1,2,...,N) represent the
penalty for the violation of the production level of family f; at the low level. At the low level, W represents

the penalty for violating the high level production level for a family by one unit. Therefore, the penalty for
N

violating the high level solution over all families is defined by Wx ¥ L. Once again the penalizing factor
r=1

W tends to infinity as the number of iterations tends to infinity. Observe that a very high value of
penalizing factor W forces the high level problem to strictly follow the capacity constraint and the low level
problem to strictly obey the high level production. This implies that the relaxation on (4.1.4) for the high
level and (4.2.2) for the low level decreases with the number of iterations, finally leading them to be strict
condtraints. The relaxed high and low level problems, and the new algorithm are presented in the
following sections. The numerical results presented in section 9 demonstrate the performance of this
algorithm.

18
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7.1 New High Level Problem
The problem can be stated as the following linear programming problem:
Z N zK
(Problem P4) Minimize: ¥ Y Y Oloh) + Wx z Uk (7.1.1)
k=1 T=1 k=z(xc-1)+1 k=1

Subject to:

(4.1.3) through (4.1.6) ; (4.1.8) and

( E Yy Xll(glk gik-1) ) -A) < Uy k=12,...,z (7.1.2)

=lief;

The objective function (7.1.1) minimizes: (i) the inventory holding and backlogging for part families
over the entire horizon, and (ii) the penalty for violating capacities of the elementary periods belonging to
the first sub-period. Constraint (7.1.2) provides the value Uy for capacity violation during the k-th
elementary period (k = 1,2,...,2).

7.2 New Low Level Problem

The problem can be stated as the following linear programming problem:

Z n N
(Problem P5) Minimize: 3 3 fi(sy) + WxY L, (7.2.1)
k=1 i=1 =1
Subject to:
(4.2.3) ; (4.2.5) and
z
(X- 3 Y xx )<L r=12...N (7.2.2)
=l ipef
Z Vs
(X X xx-Xp)<L r=12,..,N (7.2.3)
=l i f
E Xik = Dlz + O ( 2 2 Xik - 2 DJZ) Vi |(Xa(i)1 -y DJZ) >0 (7.2.4)
Vipief,  ilpje fag) ipiE fag)

The objective function (7.2.1) minimizes: (i) the inventory holding and backlogging costs for the part

types in the elementary periods of the first sub-period, and (ii) the penalty for violating the aggregate

production levels of part families. Constraints (7.2.2) and (7.2.3) provide the value L, for the violation of

the high level production for part-family f, at the low level (r = 1,2,...,N). Constraint (7.2.4) ensures that
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the surplus production of part-families at the end of the first sub-period is assigned to individual part types
according to the ratios ;.

7.3  New Iterative Algorithm

The new algorithm can be represented as follows:

Algorithm 3

Step 1-4. Same as step 1-4 in algorithm 1.

Step 5. Solve the low level problem (P35) for xy without constraints (4.2.5), (7.2.2), (7.2.3) and
(7.2.4).

Step 6. Same as step 6 in algorithm 1.

Step 7. Initialize penalizing "W' ; W = 0.
Initialize the iteration number 'c' ; ¢c=0

Step 8.  c=c+1.
W =W + O(Average Holding/Backlogging Cost); O(¢) implies order of ».

Step 9. Initialize the weights g;© from the production of part types and part families using the relation
(4.1.1).

Step 10. Solve the high level problem (P4) for the production of part families in the sub-periods, using
the current value of the weights g;; €.

Step 11. Disaggregate part family production over the first sub-period by solving the low level problem
(PS).

Step 12. Same as step 12 in algorithm 1.

8 Error Bounds

In this section, we estimate the a posteriori error bounds while employing temporal aggregation. In
addition, quick error bounds, both lower and upper are estimated for a given problem instance. All these
error bounds take as a reference the optimal solution of a monolithic datum problem. (appendix B). The
monolithic datum problem (PB) is one which is defined over entire horizon H: (i) the production variables
corresponding to the elementary periods of the first sub-period are detailed, and (ii) production variables of
the subsequent sub-periods are aggregate (along time); production over elementary periods corresponding
to a sub-period is determined by dividing the aggregate production equally among these periods. The
optimal solution of the monolithic datum problem is the best solution the iterative schemes (based on our
hierarchical structure) can obtain.Such a demonstration is essential when a monolithic approach cannot be
employed, since we can estimate the error introduced by the temporal aggregation agfter solving the
problem by estimating the a posteriori error bounds. Similarly, when the optimal solution of the monolithic
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problem is unavailable, quick estimation of the upper and the lower bounds of the monolithic solution can
be utilized for evaluating the performance of the hierarchical solution.

8.1 A Posteriori Bound

Based on the work of Zipkin (1977), we summarize in this section, the a posteriori bound for the
general column aggregation scheme of any LP problem. Consider a linear programming problem:

Max 2
X g’lcl Xi;
Subject to:
n
.Elaij x; S bj; j=1.2,m
1=
xiZ O; i= 1,2,...,71

Let 2 = {S;: k = 1,2,...,K} be a partition of {1,2,..,n}. The aggregate problem obtained can be
formulated as follows:

K
Max
X, k§ CrXi

Subject to:

K
kglAijk < by j=12,..m

X, 20; k= 12,..K

Let, the dual solution of the aggregate problem be represented by U; and the a posteriori bound be

represented by €,. The a posteriori bound for the above mentioned aggregation can then be written as
follows (Zipkin 1977):

Max
€a = z ([ e, C6i- zU,Ak,H Pe): [1" =Max(0.°)

where the variable p; is such that :(i) p; is non-negative, Vk, and (ii) py satisfy the relation (8.1.1)
below, where x,-* is the optimal solution to the original LP problem.
Sx* <pis k= 1.2,...K (8.1.1)
ie Sy :
Using the above result, the a posteriori bound is estimated for the temporal aggregation scheme
proposed in this paper. The numerical results presented in section 9 demonstrate the performance of this
analysis.
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8.2  Quick Bounds

In this section, we present the upper and the lower bounds of the monolithic datum problem (PB). The
motivation of this analysis is to obtain the quick estimation of the upper and the lower bounds in the event
that the optimal solution of the monolithic problem is unavailable. The hierarchical solution can then be
compared with this range of values to assess performance.

8.2.1 Quick Lower Bound

In this section, we estimate the lower bound of the problem (PB). This lower bound is based on the
boundary relaxation of production, similar to that developed by the Harhalakis er al. (1992). We consider
each sub-period separately. For each sub-period x, we perform the optimal allocation of the resource for
the all part types due at the end of that sub-period. For the first sub-period (i.e., x = 1), we solve for
production of part types over elementary periods. For the consecutive sub-periods (i.e., k =2, 3 ,..., Z)
linear production of part types is considered over each sub-period. We plan the production of all part types
on the sub-period while assuming that the sub-period is bordered on either side by periods of infinite
duration other than the first sub-period. For the first sub-period, we assume only the (z+1)th period of
infinite duration. The detailed algorithm of the quick lower bound procedure is presented in Algorithm 4 of
appendix A.

8.2.2 Quick Upper Bound

In this section, we estimate the upper bound of the problem (PB). We consider each part type
separately. The higher cost among the unit holding and backlogging cost is considered as the unique
penalty weight for each part type, and parts are prioritized according to non-increasing values of these
weights. For each part type i, we perform the optimal allocation of the resource for the entire horizon - the
resource for the part type with the higher priority being allocated first. The optimal allocation is performed
assuming the production of the part types to be linear for sub-periods greater than unity. It can be very
easily proven that the solution (production for all part types) for which the quick upper bound is estimated
is a feasible solution to the original problem. Hence the quick upper bound is always greater than or equal
to the optimal criterion value of the original problem. The detailed algorithm of the quick upper bound
procedure is presented in Algorithm 5 of appendix A.

9 Numerical Results

This section is devoted to the performance evaluation of algorithm 3 presented in section 7, the a
posteriori bound, and the quick upper and lower bounds. The algorithm was applied to three problem sets
with ninety-six test cases each. The number of part types considered were either eight or twelve; for the
eight part case, four part families composed of three, two, two and one part types respectively were
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considered, and for the twelve part case, six part families composed of three, three, two, two, one and one
part types respectively were considered. The holding and backlogging costs of part types were generated at
random, assuming a uniform distribution. The holding and backlogging costs for these three problem sets
are presented in Table 9.1. The first set corresponds to the case where the holding and backlogging costs

are of equal order. The second and third sets correspond to the cases where the holding costs are generally
greater or lesser than the backlogging costs respectively.

PROBLEM HOLDING BACKLOGGING
SET COSTS COSTS
[1] U(10,20) U(10,20)
[2] U(5,50) U(1,10)
(3] U(1,10) U(5,50)

Table 9.1 Holding and backlogging costs for three problem sets

Parts demand was assumed to be cyclic (sinusoidal) with varying amplitudes, and variation on the basic
cyclic pattern was superimposed (see Figure 9.1). For each example, planning problems of varying
degrees of difficulty were constructed as follows: (i) the number of sub-periods Z, (ii) the ratio of the
capacity available over a horizon to the average capacity required (workload) over the horizon, denoted by
CA, (iii) the ratio of the amplitude of cyclicity of a part’s demand, to its average demand over the entire
horizon, denoted by AMP, and (iii) the ratio of the variation in a part’s demand to its average demand over
the entire horizon, denoted by VAR. The details of these parameters are presented in Table 9.2. Finally,

for each set of parameters, random demand streams were generated assuming uniform distributions on
VAR.

N [Z, z, A CA AMP VAR

8; 12 {12, 4, 60]; [15,4,60];1 1.02; 1.06; 1.10 0.6; 0.8 0.2; 0.3
[8,5,32]; [12,5,32]
le 9.2: Param 1 n for each lem

Thus, overall, 288 problems were attempted. The programs were coded in C, and the LP problems
were solved by XMP (1981) subroutines on the SUN/SPARC station.

Figure 9.2 presents the performance evaluation of the iterative algorithm (presented in section 7) with
respect to the monolithic datum solution. The results indicate that the iterative approach was less than 2%
sub-optimal in 97% of the test cases, and the iterative solution was 0.4% sub-optimal on an average. The
mean number of iterations until convergence was achieved for these 288 test cases was 5.4, and the
maximal number of iterations was found to be 11.
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Figure 9.3 presents the performance evaluation of the a posteriori error bound with respect to the
monolithic datum solution. A posteriori bounds were about 20% lower than the monolithic datum solution
in 52.3% of the test cases on an average. The performance of the bound deteriorated with higher CA (high
unutilized capacity) and smaller values of AMP. Due to the high value of p; variables (section 7.2), the a
posteriori error bound was lower than the monolithic datum solution by 80-100% in 35.7% of the test
cases. On an average, the posteriori bounds were 41.2% lower than the monolithic datum solution.

Figure 9.4 presents the performance evaluation of the quick upper bounds (presented in section 7) with
respect to the monolithic datum solution. Quick upper bounds were around 25% higher than the monolithic
solution in 4.2% of the test cases. The performance of these bounds deteriorated with a larger difference
between holding and backlogging costs, larger Z, lower CA (tighter capacity requirement) and larger
values of AMP. On an average, the quick upper bounds were 175.7% higher than the iterative solution.

Figure 9.5 presents the performance evaluation of the quick lower bounds (presented in section 7) with
respect to the monolithic datum solution. Quick lower bounds were around 25% lower than the monolithic
solution in 14.3% of the test cases. The performance of these bounds deteriorated with lower CA and
larger values of AMP. The quick lower bounds perform better for the problem set [2] (when holding costs
are generally greater than the backlogging costs) in comparison to problem sets [1] and [3]. On an average,
the quick lower bounds were 61.4% lower than the iterative solution.

A summary of the performance of the bounds with respect to the problem parameters is presented in

Table 9.3 and the numerical results for twenty-eight problems in problem set [1] are presented in Table
9.4.

24

Bounds increase n increase Z increase CA increase AMP| increase Vég.=
Quick upper worsen worsen improve worsen no effect
bound
Quick lower worsen worsen improve worsen no effect
bound
A posteriori no effect no effect worsen improve no effect
bound

Table 9.3: Performance evaluation of bounds with respect to problem parameters

10 Conclusion

This paper focuses on temporal aggregation which is an essential element in hierarchical production
planning due to the different time-scales of decisions and the different horizons over which these are taken.
We assume that the need to aggregate a certain number of elementary time periods into larger sub-periods
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has been determined by the characteristics of the specific problem. Such characteristics include the time-
scales of decisions and their cyclicity (see e.g., Engles , Larson ez al., 1976). Given this requirement, we
develop the theory behind the development of a two-level hierarchical structure: (i) the aggregate high level
that plans for production over sub-periods, and (ii) the detailed low level that disaggregates the high level
plan. These problems are formulated as appropriate LP problems (as is the monolithic formulation of most
production planning problems), and we develop iterative algorithms that provide a consistent and near-
optimal solution. Error analysis is performed and lower and upper bounds of the problem instance are
developed to assess the quality of solution obtained for the problem at hand. Numerical results confirm the
applicability of this approach to solve large and complex problems with minimal loss of optimality. More

importantly, the hierarchical scheme based on temporal and part aggregation permits the computation of

aggregate as well as detailed production plans when detailed demand/forecast information is not known (or
considered necessary) at high management levels with long planning horizons.

Employing the ideas proposed for a specific problem of minimizing holding and backlogging costs, we
hope that other problems at different tactical levels of production planning can also be addressed. Future
work should aim at addressing problems with multiple decisions and controls; capacity planning by hiring
and overtime decisions are such areas which can be attempted directly. Finally, the accurate determination
of the aggregation of elementary time periods into sub-periods for a general N-level hierarchy
corresponding to a complex problem of multiple time-scales is another important focal area.
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Appendix A

Algorithm 2

Forr=1to Ndo
V blpy, € £, dy, = dy, +0p 0,°

Forr=1toNdo
Fork=1tozdo

Case 6* 3> 0
V blpy € fp, xpi€ = dpk /* Produce immediate demand */
remainder = Grkc - Y kac
blpy € f;

For j=k+1 to h do

If] < hrk

V blpy € i, Chj = dbj
else

V blpy, € f;, select ey such that 0 < ey,; < dyy, and % ep; S remainder;

V blpy € fr, xpk® = xpkC + €pjs dpj =dpj - €p;  /* Produce some later demand */
remainder = remainder - E €bj

Case 0% 43¢ <0
V blpy, € f, select xpy such that 0 < xy; < dyy, and %‘, Xpk = Yrk - Yi(k-1)

Ifk<z

V blpy € fr, dpk+1 = dpk+1 + dbk - Xpk°
End.

Algorithm 4

Notation:
yir= Number of units of part type p; required at the end of a period, prior to the sub-period under
consideration.
yi1= Number of units of part type p; required at the end of a period after the sub-period under
consideration.

T;x = Number of units of part type p; required at the end of sub-period x.
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A.. = Duration of periods prior to and after the sub-period under consideration; (A,, >> A).
QLB = Quick lower bound for the k-th sub-period.

Forx=1toZdo
Solve the LP problem LB ()
zZ

Quick lower bound = ¥ QLB
k=1

END.

The LP problem LB () is formulated as follows (for x = 1):

n n z Zz
Minimize: '21 fi(y;p) + QLB + _21 filyir + leis+ Yil - Zldis)
1= 1= S= S=

Where:
Z n k k
QLB =k§1 izl fi(yie + S§=31Xis - SE 1dis)
Subject to:
Yif € Aos i=12,...,n
Xik SA; i=12,...nandk=12,...,z
Vil S A i=12,...,n
vie20; k=1.2,...,2
Xix20; k=12,..,zand k =1,2,..,z
Yit20; k=12,.,2

The LP problem LB () is formulated as follows (for x = 2,3,...,Z):

n n Kz
Minimize: 3, fi(yir) + QLB+ ¥ fi(yie+Tictyit - X djg)
=1 =1 =(k-1)z+1
Where:
Kz n k T. k
QLB,= ¥ I fiyg+ T 3F-  Zdig)
k=(c-Dz+1 Bl so(k-1)z+1]  s=(x-1)z+1
Subject to:
¥if < Aess i=12,...n

TicSzxA; i=12,...,n
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¥i1 S Ao i=12,...,n
yig2 03 k=12,..,2
Tix20; i=1.2,..,n
yi120; k=1.2,...,z

Algorithm 5

Notation:
Cjx = Capacity available when solving the LP problem for the part type p; in the k-th elementary period.
T;x = Number of units of part type p; required at the end of sub-period K.
QUB; = Quick upper bound when solving the LP problem for the part type p;.

+ -\ s . .

Sort Vw; = max (w; , w; ) in non-increasing order

Rearrange indices of w; in increasing order, i.e. wy,w»,...,W are now in non-increasing order
Fori=1tondo

if(i=1)
Fork=1toZzdo
Ck=A
else

Fork=1toZzdo

Cik = Cg-1)k - X(-1)k
Solve the LP problem UB;()

n
Quick upper bound = ,ElQUBi
i=

END.

The LP problem UB,( ) is formulated as follows:

zZ k 7z z k Tins
Minimize: QUBi = Z fi( 2 Xig~ le) + 2 fi( Z Xis + Z ——b(’)'lz - le)
k=1 s=1 k=z+1 s=1 s=z+1
Subject to:
xix < Cik s k=1,2,..72z
Tib) <z %X Cik; k=12,...7z
Tib(k) >20; k = z+1,z+2,...,2z

X =0; k=12,...,z
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Appendix B

In this appendix, we present a linear programming problem. The criterion of the LP problem is the
minimization of the inventory for all part types, at the end of each elementary period. The production of a
part type in the sub-period, is assumed to be linear, for sub-periods greater than unity. Production of the
part type p; at the end of sub-period x is represented by Tj,. The problem can be formally stated as the
following linear programming problem:

Z n Z zK n
(Problem PB) Minimize: 3 3 fisj)+ X Y, Y fi(sip) (B.1)
k=1i=1 k=2 k=z(k-D+1 =1
Where:
k k
Sik = X Xis - X diss for(k <z) (B.2)
s=1 s=1
z k T. k
Sk = TXg Y =X - Ydig;  fork >2) (B.3)
s=1 s=z+1 Z s=1
Subject to:
n
ingiK <zA; K =23,..Z (B.4)
n
.21 Xik SA; k=12,..,2 (B.5)
1=
X203 i=12,...n,andk=12,...,z (B.6)
Tic20; i=12,...nand x =2,3,...,Z B.7)

Constraint (B.4) represents the capacity limits in each elementary period in the first sub-period.
Constraint (B.5) represents the capacity limits in each sub-period. (B.6) implies the non-negativity of
production of part types over each elementary periods and (B.7) implies the non-negativity of production
of part types over each sub-period. .
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Fig. 2.1: Temporal aggregation in a two level hierarchical structure
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Fig. 9.1: Typical demand for a part type
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Fig. 9.5: Performance evaluation of the quick lower bound
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