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In this Thesis we demonstrate the whole path until the manipulation and

the planning of the Baxter Robot. We start by analyzing the kinematic anal-

ysis of a six degrees of freedom robot. We build our analysis starting from

the Denavit-Hartenberg method. We proceed with the kinematic equations

of the robot and with the inverse kinematics as well as with a kinematic

simulation of its movement with matlab. In order to reach our final goal

we continue with the kinematic and dynamic analysis of the Baxter robot.

We again state the Denavit-Hartenberg matrix, but this time we continue by

building the dynamic model of the Baxter robot through the Euler-Lagrange

equations. Moving on, we explore planning algorithms. The knowledge of

which will help us in order to finally be able to formulate our path planner

for the Baxter robot. We experiment ourselves by implementing four plan-



ning algorithms in different path planning problems. We construct the RRT

and the RRT* algorithms in Python and we process them in different plan-

ning problems. Moving on, we also implement a planning problem in which

Q-Learning and Sarsa algorithms are being used. We demonstrate how those

two planning and learning algorithms work in our specified problem and we

compare our results. Having knowledge on dynamic and kinematic robotic

analysis and planning and motion planning algorithms we then experiment

ourselves with the Baxter simulator on Gazebo. Also we plan the Baxter

robot with Moveit!, getting familiar with the use of ROS as well as with

the software. We add obstacles in our world and we plan our Baxter robot

measuring its speed. We finally build a different plan algorithm RRT† by

focusing on searching for a secure and realizable path plan starting from the

lower dimension space and then adding degrees of freedom to our Baxter

robot. Concluding, we have built the desired steps for someone in order

to build up the required knowledge to deal with robots and artificial intelli-

gence planning.
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Chapter 1: Introduction

Robotics main idea is based on the fact that machines could assist humans or re-

place them in professional situations too risky for them and optimally to perform tasks

autonomously.

1.1 History and Motivation

First thing one needs to know when it comes to robotics, is what is the true meaning

of robotics. To understand that we should investigate the semantics of the word. So, robot

is a word first introduced to the world by the Czech novelist Karel Capek at 1920, and the

translation in Czech means worker or servant. Therefore robots should be in the use for

serving the humans. Actually one can find laws under which robots are obliged to function

in the real world, as they exist. The official definition of what a robot is, was settled in 1980

from the Robot Institute of America (RIA) and stands for:

”A robot is a reprogrammable, multifunctional manipulator designed to move material,

parts, tools, or specialized devices through variable programmed motions for the perfor-

mance of a variety of tasks.”
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The key components of a robot are the sensors, the power conversion units, the actua-

tors, the controllers, the user interface and the linkage base [20],[18], [6]. Nowadays there

are a variety of robots in a variety of work sectors. We meet robots in the industry, in space,

in hazardous environments, in medicine,in military, and of course at our homes.

1.2 The Baxter robot

Baxter robot [1] is a humanoid robot. Humanoid robots are those whose body shape

resemble the human body. As a humanoid robot Baxter can execute a variety of tasks and

of course it can be used in human-robot collaborations (HRC). This means that either the

required knowledge of how to perform a task is being provided to the robot suppse as a

specified algorithm, or with the use of computer vision the humans demonstrate the execu-

tion of a task while the robot observes and meanwhile extracts the important aspects and

afterwards imitates the human. As an anthropomorphic robot Baxter has two arms each

of which has seven degrees of freedom. In the following parts, when we say manipulator,

it refers to the arm of Baxter. The Baxter robot is useful for experimenting with the con-

trols at every joint of the robot and of course for human robot interaction as it is armed

with buttons and knobs that make this interaction easier. Baxter supports also computer

vision applications and also its arm is useful for planning and manipulating. We will focus

on the dynamic modeling of the Baxter robot with particular focus on the Newton-Euler

formulation. Also, we will be planning the Baxter’s arm. A remarkarble and popular soft-

ware library and toolbox that is used for planning the Baxter robot is called Moveit! as

we will see later on. Nowadays Baxter, despite its high cost it continues to be widely used
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especially for research purposes.

Figure 1.1: The Baxter robot

1.3 Software

Multiple computer programs and softwares have been used throughout this thesis as-

signment. Following is a short description of this software and the area of utilization.

Mathematica

Mathematica is a modern technical computing system which is really useful when it

comes to mathematical computations. Of course it is also used in a variety of areas such

as machine learning, algebra, geometry and many more. It uses its own kind of ”language”
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which is user friendly, and that is the main reason that we used it in many of our mathemat-

ical calculations.

Matlab

Matlab [17] is a software simulator and also a numerical computing environment like

Mathematica. It is developed by Mathworks and mostly used for performing computa-

tionally tasks much faster compared to traditional program languages. Although Matlab

is intended primarily for numerical computing, an additional package called Simulink is

especially used for multidomain simulation and Model-Based Design for dynamic and em-

bedded systems. A great advantage of high-level language is that allows interfacing with

programs written in Python, C, C++ and more. Of course Matlab offers access to sym-

bolic computing abilities, to matrix manipulations, algorithmic implementations as well as

plotting functions and data. We used Matlab for simulating one of our robotic arm motions.

Python

Python is a high-level programming language which can be used for a wide variety of

applications. Python is open source making it free to use. The advantage of Python is that

it has a user friendly syntax and still can power some really complex applications. Having

learned C as a first base programming language, Python is a logical step, because Python is

written in C. Nowadays Python is considered to be one of the most widely used program-

ming languages. This actually makes Python the first choice when it comes up to which
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programming language should be used in order to implement a solution to a problem or a

standalone application. This happens also because there is already a strong documentation,

tutorials, guides and examples that one can find useful on the web.

C, C++

C is one of the most basic programming languages which supports structured program-

ming. C was originally developed and used to re-implement the Unix system. It has become

one of the most powerful and widely used programming languages of all time. It forms the

core of the modern languages like C++.

C is a very basic language making all the knowledge you acquire in C transferable to

the future languages. The main reason one should use it is because it allows you direct

control over hardware.

Lastly, program execution in C is fast because the language is compiled and turned into

machine code. Programs in C are very closely related to Matlab making the transition easy.

C++ is a highly portable programming language, which is object-oriented and includes

classes, data abstraction and encapsulation. It has imperative and generic programming

features and also provides features for a low-level manipulation. C++ is powerful fast and

efficient. Both C and C++ where developed at Bell labs and C++ can be considered as an

extension of C which provides more high-level features for program organization.

ROS
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The Robot Operating System (ROS) is not an actual operating system, but a flexible

framework that provides the functionality of an operating system for writing robot software.

We can say it is a collection of software frameworks specialized for robot software devel-

opment. Therefore ROS can be integrated with real-time code, but still is not considered

to be an OS. ROS services provide design for heterogeneous clustering, like package man-

agement and low-level device control. Also the main ROS client libraries are C++(roscpp)

and Python(rospy) and those are geared towards a Unix-like system. ROS client library im-

plementations such as roscpp and rospy packages contain application-related code which

uses one or more ROS client libraries.

Gazebo

Gazebo [4] is a set of ROS packages used for a robot simulator in a 3-dimensional world.

In our case we used Gazebo for simulating the Baxter robot. With the use of Gazebo you

can simulate the interaction of the robot with objects as well as study and experiment with

the controls of the robot.

MoveIt!

MoveIt! [25] is an open source software for manipulation. Nowadays for robotics it is

the state of the art software for robot manipulation, incorporating the latest advances in mo-

tion planning and 3D perception. Moreover includes kinematics, controls and navigation.

It provides a great platform for developing advanced robotics applications and evaluating
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new robot designs as well as planning and executing path planning algorithms. For the

aforementioned reasons we used it for our work.

1.4 Background Theory

1.4.1 End effector

In robotics, the end effector is the final action element on the robot, meaning the last link

or the device at the end of a robotic arm which is designed to interact with the environment.

The end effector’s nature depends on the application of the robot. Additionally, in our work

whenever we mention the end effector, we always refer to the gripper.

1.4.2 The Tool Frame - TCP

To define the Tool Frame, we first need a reference point in the world coordinate system,

and in our case is indicated by the coordinate system of our end effector. Let Ω be the space

that contains all the homogeneous matrices. Then :

A : SE(3)⇒Ω

T (R, t) =

 R t

0T 1


where SE(3) is the Euclidean group which is used for the kinematics of our robot.

SO(3) is the group of all rotations about the origin of the three-dimensional Euclidean
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space R3. R = (x y z) is the rotation matrix R ∈ SO(3) and t = (tx, ty, tz) ∈ℜ3 the position

vector and x,y,z are the orthogonal basis vectors.

1.4.3 Kinematic chains

In robotics, the separate rigid bodies that are called links, are connected with each other

via joints and this way they form a so called kinematic chain. There are 2 kind of joints

in robotics: the revolute ones and the prismatic ones [6]. A prismatic joint allows the two

attached links to have a linear motion. A revolute joint allows a relative motion between

the two connected links. Each joint has a single degree of freedom and is often represented

by the single joint variable qi. Below in Figure 1.2 are presented those two types of joints.

Figure 1.2: A symbolic representation of the two types of robotic joints

1.4.4 Jacobian Matrix computation

The Jacobian matrix is often used in the kinematics and the dynamics of robotic sys-

tems and is really important to robotics and control theory. It relates differences between
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two different representations of a system, meaning from joint to configuration space, while

representing an approximation in the context of finite differences. If we assume that we

have a really simple kinematic chain with one degree of freedom, meaning with only two

links, then the current position of our robotic arm can either be described from the orien-

tation and the position of our robots final action element or from a set of joint angles. We

usually denote the position of our robot’s final action element with x and the joint angles

with q. Now what Jacobian does is that it relates the movement of x as a consequence

of the movement of the elements of q. The Jacobian is the matrix which includes all the

first-order partial derivatives of our vector-valued function, meaning :

J = ϑx
ϑq ⇒

and by using the mathematical chain rule for partial derivatives we get:

ẋ = J · q̇

1.4.5 The Inertia Tensor

The moment of inertia is the value that determines the resistance that an object has

regarding rotation changes. It is also known as rotational inertia. Basically it depends on the

object’s mass distribution as well as the axis chosen. If the mass distribution of our object

is symmetric with respect to the attached frame, then the inertia tensor is diagonal(cross

products of inertia are identically zero). If the rotation axis is not given, then one can

generalize the scalar moment of inertia to a 3×3 matrix which will be the moment of

inertia about an arbitrary axis. This matrix is the inertia tensor matrix [6]. If we let the

mass density of an object to be represented as a function of position p(x,y,z), then the
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inertia tensor is a frame attached to the center of mass of an object and is computed as:

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



where the diagonal elements Ixx, Iyy, Izz are the principal moments of inertia and the

off-diagonal terms are the cross products of inertia, with:.

Ixx =
∫ ∫ ∫

(y2 + z2)p(x,y,z)dxdydz

Iyy =
∫ ∫ ∫

(x2 + z2)p(x,y,z)dxdydz

Izz =
∫ ∫ ∫

(x2 + y2)p(x,y,z)dxdydz

Ixy = Iyx

=
∫ ∫ ∫

xyp(x,y,z)dxdydz

Iyz = Izy

=
∫ ∫ ∫

yzp(x,y,z)dxdydz

Izx = Ixz

=
∫ ∫ ∫

zxp(x,y,z)dxdydz
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Chapter 2: A six degrees of freedom robotic kinematic analysis and simu-

lation

2.1 The KR 360 FORTEC

Specification of the movement of a robot so that our robot’s end-effector achieve the

desired task is known as motion planning. We will be dealing with motion planning in this

section and in the following ones. We simulated the kinematics of the KR 360 FORTEC

robotic arm. The KR 360 FORTEC is a robot with six axis, meaning six degrees of free-

dom. This robot is being manufactured by KUKA and is an industrial robot particularly

suited to handle heavy assemblies. We are not interested in the robot itself, we just used it

to demonstrate a kinematic robotic simulation via Matlab, following our kinematic analysis

on it. Here we have to mention also that all degrees of freedom are still modeled in this

thesis. Also some definitions and some parameters are modified to better suit our complete

model. The KR 360 FORTEC robot is being presented in Figure 2.1:
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Figure 2.1: The KR 360 FORTEC from both sides

2.2 Theoretical Analysis

We begin our forward kinematic analysis of our robot with the calculation of the Denavit-

Hartenberg parameter array of the robotic arm, with the use of the Figure 2.2 and Figure 2.3

of our robot:

12



Figure 2.2: Direction of the rotations of the Robotic Arms of our robot(The six degrees of freedom)

Figure 2.3: Design of the lengths of our robot joints
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Initially we will describe the geometrical structure of the robot with the Denavit-Hartenbeg

table, the initial idea of which is based on the use of 4 parameters for the relative placement

of the frame (i) towards the frame (i-1). Those are the angle α , the transpositions a and d

and the angle θ . More specifically, d is the offset along previous z to the common normal,

θ is the angle about previous z, from the old x to the new x, a is the length along the previ-

ous x to the common normal and α is the angle about the common normal, from old z axis

to the new z axis.

D-H Parameters of the Baxter Robot

Link θ d(mm) a(mm) α(rad)

1 θ1 815 350 +π

2

2 θ2 +
π

2 0 850 0

3 θ3 0 145 +π

2

4 θ4 G 0 −π

2

5 θ5 0 0 +π

2

6 θ6 170+100 0 0

The pose of the tool center point coordinate system or TCP is computed by the forward

kinematics T (q) of our six degrees of freedom robot in a configuration q.In general the

TCP is defined as the coordinate system Abase
TCP, where base defines the robot arm coordinate

system T (q) can be computed from the following equation:

T (q) = ABase
TCP = ABase

0 ·A1
2(q1)...An−1

n (q(n−1)) ·An
TCP (2.1)
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where all the link transformation matrices Ai−1
i are being computed using the link’s DH-

parameters.

In our case according to the above parameters we calculated the following matrices

which were used for the finding of the kinematic equation.

T (q) = A0
1(q1) ·A1

2(q2) ·A2
3(q3) ·A3

4(q4) ·A4
5(q5) ·A5

6(q6) (2.2)

The matrix Ai−1
i represents the position and the orientation of the frame i in relation

with the frame i-1. The first three columns of the Ai−1
i matrix contain the directional cosine

of the frame i, whereas the 4th column represents the position of our start coordinate frame

O0.

Below are our computations (Our calculations were made with the use of Mathematica)

for all the Ai−1
i matrices for each one of the rotors of our robot:

A0
1(q1) = Tra(z,815) · Rot(z,θ1) · Tra(x,350) · Rot(x,90)

=



1 0 0 0

0 1 0 0

0 0 1 815

0 0 0 1


·



cosθ1 −sinθ1 0 0

sinθ1 cosθ1 0 0

0 0 1 0

0 0 0 1


·



1 0 0 350

0 1 0 0

0 0 1 0

0 0 0 1


·



1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1


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Therefore:

A0
1(q1) =



cosθ1 0 sinθ1 350

sinθ1 0 −cosθ1 0

0 1 0 815

0 0 0 1


(2.3)

Likewise we compute the rest Ai−1
i matrices for i = 2,3,4,5,6 and we get the following

results:

A1
2(q2) = Rot(z,θ2 + 90) · Tra(x,850)

A1
2(q2) =



sinθ2 −cosθ2 0 850

cosθ2 −sinθ2 0 0

0 0 1 0

0 0 0 1


(2.4)

Moving on from joint 2 to 3 we get:

A2
3(q3) = Rot(z,θ3) · Tra(x,145) · Rot(x,90)

A2
3(q3) =



cosθ3 0 sinθ3 145

sinθ3 0 cosθ3 0

0 0 1 0

0 0 0 1


(2.5)

From joint 3 to 4 we have:

A3
4(q4) = Tra(z,G) · Rot(z,θ4) · Rot(x,−90)
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A3
4(q4) =



cosθ4 0 −sinθ4 0

sinθ4 0 cosθ4 0

0 −1 0 G

0 0 0 1


(2.6)

where G is a constant.

From rotors 4 to 5 we get:

A4
5(q5) = Rot(z,θ5) · Rot(x,90)

A4
5(q5) =



cosθ5 0 −sinθ5 0

sinθ5 0 cosθ5 0

0 −1 0 0

0 0 0 1


(2.7)

Finally from joint 5 to our final rotor 6 or E (we symbolize it as E because it is our end

effector, meaning the device at the end of our robotic arm), we get:

A5
6(q6) = Tra(z,270) · Rot(z,q6)

A5
6(q6) =



cosθ6 sinθ6 0 0

sinθ6 cosθ6 0 0

0 0 1 270

0 0 0 1


(2.8)

After having calculated all our coordinate transformation matrices, we then calculate

the coordinate frames with reference to O0 of our robot. Moving on, we calculate the ori-
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entation of our final action element, or else our end effector with respect to the base of our

robot. Based on the eq. (2.1) we will have:

A0
2(q1,q2) = A0

1(q1) · A1
2(q2)

A0
3(q1,q2,q3) = A0

2(q1,q2) · A2
3(q3)

A0
4(q1,q2,q3,q4) = A0

3(q1,q2,q3) · A3
4(q4)

A0
5(q1,q2,q3,q4,q5) = A0

4(q1,q2,q3,q4) · A4
5(q5)

A0
6(q1,q2,q3,q4,q5,q6) = A0

5(q1,q2,q3,q4,q5) · A5
6(q6)

Ending up to:

A0
6 = A0

E =



−cosθ1sin(θ2 +θ3 +θ5) −sinθ1 cosθ1cos(θ2 +θ3 +θ5) A

−sinθ1sin(θ2 +θ3 +θ5) cosθ1 0 B

cos(θ2 +θ3 +θ5) 0 sin(θ2 +θ3 +θ5) C

0 0 0 1


(2.9)

where,

A = 350cosθ1 − 850cosθ1sinθ2 − 145cosθ1sin(θ2 + θ3) + 820cosθ1cos(θ2 + θ3)
+ 270cosθ1cos(θ2 + θ3 + θ5)

B = 350sinθ1 − 850sinθ1sinθ2 − 145sinθ1sin(θ2 + θ3) + 820sinθ1cos(θ2 + θ3)
+ 270sinθ1cos(θ2 + θ3 + θ5)

C = 815 + 850cosθ2 + 145cos(θ2 + θ3) + 820(θ2 + θ3) + 270sin(θ2 + θ3 + θ5)

In our above calculations we used the well known trigonometric identities:

i.)cos(θ2 + pi/2) =−sin(θ2)
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ii.)sin(θ2 + pi/2) = cos(θ2)

iii.)cosθ1cosθ2− sinθ1θ2 = cos(θ1 +θ2)

iv.)cos(θ1 +θ2)cosθ3− sin(θ1 +θ2)sinθ3 = cos(θ1 +θ2 +θ3)

v.)sinθ1cosθ2 + sinθ2cosθ2 = sin(θ1 +θ2)

vi.)sin(θ1 +θ2)cosθ3 + sinθ3cos(θ1 +θ2) = sin(θ1 +θ2 +θ3)

2.3 Forward differential model

Starting our theoretical approach we assume dxE the 3×1 infinitely small transpose

vector, meaning dxE = [dx dy dz]T and dφE the 3×1 infinite small rotating vector of

our end effector towards our coordinate system Ooxoyozo base. If we symbolize:

d p =

 dxE

dφE

 (2.10)

Then if we divide both members of the equation by dt, we get:

ṗ =

 vE

ωE

 (2.11)

where vE and ωE stand for the linear and the angular velocity respectively. If J is the

Jacobian matrix of the partial derivatives of the dxE and dφE with respect to the variables of

the joints, which represents the differential relationship between the joints displacements
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and our end effector [28], we then have:

ṗ = J · q̇ (2.12)

where q̇ = [q̇1, q̇2, q̇3, q̇4, q̇5, q̇6]
T is the 6×1 vector of the velocity of our joints. Unfold-

ing the eq. (2.12) it becomes:



vEx

vEy

vEz

ωEx

ωEy

ωEz



= J ·



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6



(2.13)

The first three rows of our Jacobian matrix correspond to the linear velocity vE and the

last three to the angular velocity ωE of our end effector. Every column of our Jacobian

matrix represents the linear and the angular velocity that is caused due to each joint. If JLi

and JAi are the 3×1 vectors of our Jacobian matrix that correspond to our linear and angular

velocities correspondingly, then our Jacobian matrix will be of the form:

J =

 JL1 JL2 JL3 JL4 JL5 JL6

JA1 JA2 JA3 JA4 JA5 AL6

 (2.14)
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Therefore the linear velocity of our end effector will be:

vE = JL1 · q̇1 + JL2 · q̇2 + · · ·JL6 · q̇6 (2.15)

If the joint i is prismatic it will effect the linear velocity of our end effector towards the

direction of the joint axis. If bi−1 is the unitary vector along the axis of the joint i and ḋi

the scalar linear velocity of the prismatic joint (we symbolize it that way, because of our

Denavit-Hartenberg matrix symbolization) then following [28]:

JLi · q̇i = bi−1 · ḋi (2.16)

The above equation gives us the solution to the answer to the question what is the linear

velocity of the end effector, when the joint is prismatic. Now if the joint is a revolute one,

then it rotates the whole system of our robot joints starting from itself i up until to the final

action element of the robot with angular velocity:

ωi = bi−1 · θ̇i (2.17)

In fact this angular velocity causes a corresponding linear velocity to the end effector.

Let ri−1,E the vector of the position of the end effector from the point Oi−1, then the linear

velocity of the end effector which is caused from the angular velocity of the ωi will be:

JLi · q̇i = ωi× ri−1,E = (bi−1× ri−1,E) · θ̇i (2.18)
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The above equation gives us the linear velocity of the end effector if our joint is a

revolute one.

Working in the same direction the angular velocity of our end effector will be:

ωE = JA1 · q̇1 + JA2 · q̇2 + · · ·JA6 · q̇6 (2.19)

In this case of course it is obvious that if the joint is a prismatic one it can not cause any

angular velocity to the end effector. Hence:

JAi · q̇i = 0 (2.20)

In the case of a revolute joint, then the angular velocity that is being caused to our

gripper at the end of our robotic arm is:

JAi · q̇i = ωi = bi−1 · θ̇i (2.21)

Concluding all the above, the columns of our Jacobian matrix are given by:

 JLi

JAi

=

 bi−1

0

 (2.22)
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for a prismatic joint, and:

 JLi

JAi

=

 bi−1× ri−1,E

bi−i

 (2.23)

for a revolute joint.

As we said before bi−1 is the unitary vector along the axis of the joint i and ri−1,E is the

vector from Oi−1 to OE . Both bi−1 and ri−1,E are functions of the transposition of the

joints and can be computed through coordinate transformations. The direction of the i−1

axis with regard to frame i− 1 is presented with~b = [0 0 1]T because the axis has the

direction of the zi−1 axis. ~b can be transformed to a well defined vector related to the base

frame with the help of the 3×3 rotation matrices of our robot system Ri−1
i (qi) (This Ri−1

i

3×3 matrix is the rotation matrix inside the Ai−1
i matrix that we have already calculated)

[28]. Therefore:

bi−1 = R0
1(q1) · · · · · Ri−2

i−1(qi−1) ·~b

= R0
i−1(q1, ...,qi−1) ·~b (2.24)

The position vector ri−1,E can be computed with the help of the Ai−1
i (qi) matrices and

will be:

ri−1,E = A0
n(q1, ...,qi−1) ·~r−A0

i−1(q1, ...,qi−1) (2.25)

where~r = [0 0 0 1]T

Therefore in order to achieve our initial goal which was to compute the Jacobian matrix,
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we have to compute the bi−1 and the ri−1,E for all i’s. Based on the eq. (2.25) we start our

calculations for the ri−1,E for i = 1,2, · · ·6. Beginning with i=1 we have:

[
r0,E

]
=


A1

B1

C1

 (2.26)

where,

A1 = 350cosθ1 − 850cosθ1sinθ2 − 145cosθ1sin(θ2 + θ3) + 820cosθ1cos(θ2 + θ3)
+ 270cosθ1cos(θ2 + θ3 + θ5)

B1 = 350sinθ1 − 850sinθ1sinθ2 − 145sinθ1sin(θ2 + θ3) + 820sinθ1cos(θ2 + θ3)
+ 270sinθ1cos(θ2 + θ3 + θ5)

C1 = 815 + 850cosθ2 + 145cos(θ2 + θ3) + 820(θ2 + θ3) + 270sin(θ2 + θ3 + θ5)

For i=2 we get:

[
r1,E

]
=


A2

B2

C2

 (2.27)

where,

A2 = −850cosθ1sinθ2 − 145cosθ1sin(θ2 + θ3) + 820cosθ1cos(θ2 + θ3)
+ 270cosθ1cos(θ2 + θ3 + θ5)

B2 = −850sinθ1sinθ2 − 145sinθ1sin(θ2 + θ3) + 820sinθ1cos(θ2 + θ3)
+ 270sinθ1cos(θ2 + θ3 + θ5)

C2 = 850cosθ2 + 145cos(θ2 + θ3) + 820(θ2 + θ3) + 270sin(θ2 + θ3 + θ5)
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For i=3 we have:

[
r2,E

]
=


A3

B3

C3

 (2.28)

where,

A3 = −145cosθ1sin(θ2 + θ3) + 820cosθ1cos(θ2 + θ3) + 270cosθ1cos(θ2 + θ3 + θ5)

B3 = −145sinθ1sin(θ2 + θ3) + 820sinθ1cos(θ2 + θ3) + 270sinθ1cos(θ2 + θ3 + θ5)

C3 = 145cos(θ2 + θ3) + 820(θ2 + θ3) + 270sin(θ2 + θ3 + θ5)

For i=4 we compute:

[
r3,E

]
=


820cosθ1cos(θ2 +θ3)+270cosθ1cos(θ2 +θ3 +θ5)

820sinθ1cos(θ2 +θ3)+270sinθ1cos(θ2 +θ3 +θ5)

820(θ2 +θ3)+270sin(θ2 +θ3 +θ5)

 (2.29)

For i=5 we get:

[
r4,E

]
=


270cosθ1cos(θ2 +θ3 +θ5)

270sinθ1cos(θ2 +θ3 +θ5)

270sin(θ2 +θ3 +θ5)

 (2.30)
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Finally for i=6 it is:

[
r5,E

]
=


270cosθ1cos(θ2 +θ3 +θ5)

270sinθ1cos(θ2 +θ3 +θ5)

270sin(θ2 +θ3 +θ5)

 (2.31)

Moving on, from eq. (2.24) we then calculate our bi−1 ∀ i = 1,2 · · ·6. For i=1:

[
b0

]
=


0

0

1

 (2.32)

For i=2:

[
b1

]
=


sinθ1

−cosθ1

0

 (2.33)

For i=3:

[
b2

]
=


sinθ1

−cosθ1

0

 (2.34)
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For i=4:

[
b3

]
=


cosθ1cos(θ2 +θ3)

sinθ1cos(θ2 +θ3)

sin(θ2 +θ3)

 (2.35)

For i=5:

[
b4

]
=


sinθ1

−cosθ1

0

 (2.36)

Finally for i=6:

[
b5

]
=


cosθ1cos(θ2 +θ3 +θ5)

sinθ1cos(θ2 +θ3 +θ5)

sin(θ2 +θ3 +θ5)

 (2.37)

Based on the above mathematical analysis from the equation eq. (2.22) we have, we

calculate the 3×1 vectors of our Jacobian matrix which correspond to the angular velocities

of our robot’s end effector and those are the JAi matrices.

JA1 = b0 =

[
b0

]
=


0

0

1

 (2.38)
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and

JA2 = b1 =

[
b2

]
=


sinθ1

−cosθ1

0

 (2.39)

and

JA3 = b2 =

[
b2

]
=


sinθ1

−cosθ1

0

 (2.40)

and

JA4 = b3 =

[
b2

]
=


sinθ1

−cosθ1

0

 (2.41)

and

JA5 = b4 =

[
b2

]
=


sinθ1

−cosθ1

0

 (2.42)
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and finally

JAE = b5 =

[
b2

]
=


sinθ1

−cosθ1

0

 (2.43)

Now based on eq. (2.23) we calculate the 3×1 vectors of our Jacobian matrix which

correspond to the linear velocities of our robot’s end effector and those are the JLi matrices.

For i = 1 we have:

[
JL1

]
= b0× r0,E =


AL1

BL1

0

 (2.44)

where,
AL1 = −350sinθ1 − 820sinθ1cos(θ2 + θ3)− 270sinθ1cos(θ2 + θ3 + θ5)

+ 850sinθ1sinθ2 + 145sinθ1sin(θ2 + θ3)

BL1 = 350cosθ1 + 820cosθ1cos(θ2 + θ3) + 270cosθ1cos(θ2 + θ3 + θ5)
− 850cosθ1sinθ2 − 145cosθ1sin(θ2 + θ3)

For i = 2 we have:

[
JL2

]
= b1× r1,E =


AL2

BL2

CL2

 (2.45)

where,
AL2 = −850cosθ1cosθ2 − 145cosθ1cos(θ2 + θ3)

− 820cosθ1sin(θ2 + θ)3− 270cosθ1sin(θ2 + θ3 + θ5)
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BL2 = −850cosθ2sinsθ1 − 145cos(θ2 + θ3)sinθ1 − 820sinθ1sin(θ2 + θ3)
− 270sinθ1sins(θ2 + θ3 + θ5)

CL2 = 820cos(θ2 + θ3) + 270cos(θ2 + θ3 + θ5)− 850sinθ2 − 145sin(θ2 + θ3

For i = 3 we have:

[
JL3

]
= b2× r2,E =


AL3

BL3

CL3

 (2.46)

where

AL2 = −145cosθ1cos(θ2 + θ3)− 820cosθ1sin(θ2 + θ3)− 270cosθ1sin(θ2 + θ3 + θ5)

BL2 = −145cos(θ2 + θ3)sinθ1 − 820sinθ1sin(θ2 + θ3)− 270sinθ1sin(θ2 + θ3 + θ5))

CL2 = 820cos(θ2 + θ3) + 270cos(θ2 + θ3 + θ5 − 145sinθ2 + θ3

For i = 4 we have:

[
JL4

]
= b3× r3,E =


270sinθ1sinθ5

−270cosθ1sinθ5

0

 (2.47)

For i = 5 we have:

[
JL5

]
= b4× r4,E =


−270cosθ1sin(θ2 +θ3 +θ5)

−270sinθ1sin(θ2 +θ3 +θ5)

270cos(θ2 +θ3 +θ5)

 (2.48)
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For i = 6 we have:

[
JL6

]
= b5× r5,E =


0

0

0

 (2.49)

Now that we have calculated all the JLi and JAi matrices, from the eq. (2.38), eq. (2.39),

eq. (2.40), eq. (2.41), eq. (2.42), eq. (2.43) and eq. (2.44),eq. (2.45),eq. (2.46),eq. (2.47),eq. (2.48)

and eq. (2.49) we form our final form of our Jacobian from the equation eq. (2.14).

For the convenience of our simulation and our calculations, we consider the first joint

as stable (meaning q1 = 0 stable), and therefore we have the updated Jacobian matrix with

cos(θ1) = 1 and sin(θ1) = 0.

2.4 Inverse kinematics

In robotics, the inverse kinematics calculation is the exact opposite of the forward kine-

matics calculation in terms of the end result, meaning we want to calculate the displacement

of the joints (that is for i = 1,2, · · ·6) which result the end effector to be in a desired posi-

tion and orientation. In other words, inverse kinematics determine the joint parameters that

provide a desired position for our robot’s end-effector with the use of kinematic equations.

Specification of the movement of a robot so that our end-effector achieves the desired task

is known as motion planning, with which we will also be dealing in this thesis. In order to

compute the exact qi’s for all i’s we need to solve the eq. (2.13), where J is the Jacobian that

we calcualted. In our simulation, in order to simplify our calculations and our simulation
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we suppose that the joint 4 and 6 are fixed and therefore do not affect in any way our end

effector [28].

From overview of the eq. (2.9), if we compare it with:

A0
E =



ax hx rx px

ay hy ry py

az hz rz pz

0 0 0 1


(2.50)

We get that :

rx = cosθ1cos(θ2 + θ3 + θ5)

rz = sin(θ2 + θ3 + θ5)

px = 350cosθ1 − 850cosθ1sinθ2 − 145cosθ1sin(θ2 + θ3) + 820cosθ1cos(θ2 + θ3)
+ 270cosθ1cos(θ2 + θ3 + θ5)

pz = 815 + 850cosθ2 + 145cos(θ2 + θ3) + 820(θ2 + θ3) + 270sin(θ2 + θ3 + θ5)

Solving the eq. (2.13), with q1 = q̇1 = q4 = q̇4 = q6 = q̇6 = 0 we acquire our solution:


q2 = arcsin(K·cos(θ)

α
)−α

q3 =−arccos((α−850) · cos(φ)
820 )+φ −q2

q5 = arccos(rx)−q2−q3

(2.51)

where:

K =
α2 + β 2 + 8502 − G2 − 1452

1700
α = px − 270rx − 350
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β = pz − 270rz − 815

θ = arctan(
β

α
)

φ = arctan(
145
220

)

and the values of rx,rz, px, pz are the ones we obtained by spectating the A0
E matrix.

2.5 Inverse differential model

The equation eq. (2.12) gives us the linear speed and the angular velocity of our robot’s

end effector as a linear function of the joint velocities. In practice, we have to compute

the velocities q̇i’s of the joints which lead the end effector to our desired linear and angular

velocity. Therefore we have to solve the eq. (2.12) towards ·q. Our robot is a six degrees

of freedom q1,q2,q3,q4,q5,q6 robot, with a 6×6 Jacobian matrix.If our Jacobian matrix is

nonsingular then the solution of eq. (2.12) will be:

q̇ = J−1 · ṗ (2.52)

The above equation gives us the required speeds of the joints in order to acquire a

specific linear or angular velocity ṗ on our end effector [28]. Of course here we must

mention that there might be forms on which J might not be invertible. Therefore J−1 does

not exist and so no solution exists. That is what we call a special configuration of our

robotic arm. In this special configuration the columns of our J matrix are linearly depended

and there exists at least one direction on which the robot can not move, independent of our
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way of choosing our joint velocities q̇1, q̇2, q̇3, q̇4, q̇5, q̇6.

Concluding in order to compute the inverse differential model we need to inverse our

Jacobian matrix. In our case of movement simulation though we turn it for q1. Therefore

with q1 = q4 = q6 = q̇1 = q̇4 = q̇6 = 0 results in some all-zeros rows which do not allow

the inverse of the matrix. Therefore, we erase them and conclude to the reduced Jacobian

matrix, which is presented below:

J(q2,q3,q5) =


J11 J12 −270sin(θ2 +θ3 +θ5)

J21 J22 270cos(θ2 +θ3 +θ5)

−1 −1 −1

 (2.53)

where:

J11 = −850cos(θ2)− 145cos(θ2 + θ3)− 820sin(θ2 + θ3)− 270sin(θ2 + θ3 + θ5)

J12 = −145cos(θ2 + θ3)− 820(θ2 + θ3)− 270(θ2 + θ3 + θ5)

J21 = 820cos(θ2 + θ3) + 270cos(θ2 + θ3 + θ5)− 850sin(θ2)− 145sin(θ2 + θ3)

J22 = 820cos(θ2 + θ3) + 270cos(θ2 + θ3 + θ5)− 145sin(θ2 + θ3)

With the use of Mathematica we compute the pseudo-inverse Jacobian matrix J−1:

J−1(q2,q3,q5) =


J−1

11 J−1
12 J−1

13

J−1
12 J−1

22 J−1
23

J−1
31 J−1

32 J−1
33

 (2.54)
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with,

J−1
11 =

−820cos(θ2 + θ3) + 145sin(θ2 + θ3)

det(J)

J−1
12 =

145cos(θ2 + θ3)− 820sin(θ2 + θ3)

det(J)

J−1
13 =

−39150cos(θ5) + 221400sin(θ5)

det(J)

J−1
21 =

820cos(θ2 + θ3)− 850sin(θ2)− 145sin(θ2 + θ3)

det(J)

J−1
22 =

850cos(θ2) + 145cos(θ2 + θ3) + 820sin(θ2 + θ3

det(J)

J−1
23 =

229500cos(θ3 + θ5) + 39150cos(θ5)− 221400sin(θ5)

det(J)

J−1
31 =

850sin(θ2)

det(J)

J−1
32 =

−850cos(θ2)

det(J)

J−1
33 =

−697000cos(θ3)− 229500cos(θ3 + θ5) + 123250sin(θ3)

det(J)

Also it is obvious based on what we said above that we will need to find the determinant

of our Jacobian. That is because in order to find the special configurations of our system

that the robot has, we need to solve the equation Det(J) = 0. Solving the equation we get:

Det(J) = 697000cos(θ3)−123250sin(θ3) (2.55)

Therefore we conclude that we have a singularity for:

q3 = arctan−1 697000
123250

= 79.97◦ (2.56)
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2.6 Kinematic Simulation

The kinematic simulation of our model was done in Matlab and our results are given

below. For our simulation we considered that the angular deviations q4 and q6 (two of the

”wrist” joints) are fixed in their zero configuration (ie, q4 = q6 = 0 = station). Also the

points p1, p2 and p3 belong to a vertical plane defined by an angle θz = 30◦ in relevance to

the zero base position of the robot.

We assume that at time t = 0 the robot is already in the initial position and that the de-

sired (segmentally linear) trajectory of the final action element must last altogether within

10 seconds. The duration of our robot simulation lasts 4 seconds per linear segment of

the track, and 2 secondss for the intermediate shift phase of the orientation of our robot.

The desired position of the robot end effector (pEx , pEy , pEz) at every moment follows at

Figure 2.4, Figure 2.5, and Figure 2.6.
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Figure 2.4: Desired end effector x-position during our motion

Figure 2.5: Desired end effector y-position during our motion
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Figure 2.6: Desired end effector z-position during our motion

At Figure 2.7 follows the the orientation angle at our work level.

Figure 2.7: The orientation angle of our robot’s end effector during our motion

At Figure 2.8 we present the linear and angular velocity of the action tool of our robot.
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Figure 2.8: Linear and angular velocities of the end effector during our motion time

At Figure 2.9 are presented the joint angles at each time point t.
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Figure 2.9: Our robotic joints angles at each time t

At Figure 2.10 are the angular velocities of all of our robot’s joints at each moment t.

40



Figure 2.10: Our robotic joints angular velocities during the simulation movement

Below we present a step by step simulation of the motion of our robot. We start by

presenting the first four seconds of the motion in Figure 2.11.
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(a) (b)

(c) (d)

(e)

Figure 2.11: The first phase(linear) of our robot’s KR 360 FORTEC movement simulation

We continue by presenting the next two seconds of the motion in Figure 2.12.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: The second phase of our robot’s KR 360 FORTEC movement simulation

Finally at Figure 2.13 are the last four seconds of the linear movement of our robot’s

end effector.
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(a) (b)

(c) (d)

(e)

Figure 2.13: The last phase(linear) of our robot’s KR 360 FORTEC movement simulation

The complete robot motion simulation follows at Figure 2.14 :
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Figure 2.14: The complete robot motion simulation
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Chapter 3: Baxter robot dynamics and introduction to planning algorithms

3.1 Motivation

Having seen and fully analyzed the kinematics of a 6-degree of freedom robotic arm

we move on and work with the Baxter robot, starting from analyzing its dynamics. Our

approach to the dynamics of the Baxter robot will be done through the Euler-Lagrange

equation, as we will see later on. A significant mention at this point is that in order for a

robot to be able to place its end effector in any arbitrary position with any kind of orien-

tation, then it must have at least six degrees of freedom. Also six degrees of freedom are

needed in order for the end effector to move on any orientation with any desired angular

velocity. That is also the reason why most of the industrial robots have six degrees of free-

dom, just like the one we studied before. The Baxter robot has seven degrees of freedom,

adding more freedom to our movement capability.

3.2 General Robot Dynamics

As we saw before we fully analyzed a six degrees of freedom robot and simulated

its motion. A good way to understand Baxter robot dynamics, is to analyze an accurate
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dynamic model. The accurate dynamic model of a robot manipulator can be useful for

the design of motion control systems, for the simulation of the manipulators motion or

even for the analysis of our mechanical design. An accurate model [23] of the manipulator

dynamics is commonly of the Lagrangian form:

B(q)q̈+C(q, q̇)q̇+g(q) = u (3.1)

where,

• q denotes the vector of joint angles.

• B(q) ∈ℜn×n is the symmetric, bounded, positive definite inertia matrix.

• n is the degree of freedom (DoF) of the robot arm.

• C(q)q̇ ∈ℜn denotes the Coriolis and Centrifugal force.

• g(q) ∈ℜn is the gravitational force.

• u ∈ℜn is the vector of actuator torques.

At the above form the kinetic energy of the manipulator is described within B(q)q̈+

C(q, q̇) , and the gravity term g(q) stands for the potential energy. This can then be used

for the computation of the forward dynamics, where the manipulator motion is computed

based on a vector of applied torques. It can also be used to calculate the inverse dynamics

(useful in control designs), where the torques for a given set of joint parameters can be

found. There are many control algorithms that normally require an accurate model of

the manipulator dynamics as the one we described in eq. (3.1). It is also important to
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mention that there exist two different methods that one can use to formulate the dynamics

in eq. (3.1). The first is the Euler-Lagrange formulation and the other the Newton-Euler.

Both of those methods are based on the specific and inertial parameters of the robot and

both equivalently describe the dynamic behaviour of the robotic motion. Below we present

some of the basic symbolism we used before and we will use afterwards [29], [24].

Nomenclature

n Degrees of freeedom

q, q̇, q̈ ∈ℜn×1 Vector of joint position, angular velocity and acceleration

respectively

a,d,α,θ Variables denoting the Denavit-Hartenberg parameters

Ii ∈ℜ3×3 Inertia tensor of link i

V Volume occupied by the body

p(r) Mass density

m =
∫

V p(r)dV Is the link mass

r̄i ∈ℜ4×1 Centre of mass of link i

Ai
j ∈ℜ4×4 Homogeneous transform from link i to j

The Euler-Lagrange method is an easy method for computing the exact kinetic and the

potential energies of the rigid body system. The Baxter robot is made up of two seven de-

grees of freedom arm manipulators in a semi-manual configuration, attached to a central

pedestal. The configuration of the Baxter’s manipulator is a complete specification of ev-

ery point on the manipulator. The design aim of Baxter was to create a safe, flexible and

affordable robot for integration into low-volume production. The Software Development
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Kit(SDK) of the Baxter is released and free, and therefore opening Baxter up to research

opportunities.

3.3 Dynamics of the Baxter

3.3.1 Baxter’s kinematic equation

As we did in the previous section with the KR 360 FORTEC, we start our dynam-

ics analysis from the Denavit-Hartenberg matrix. The Denavit-Hartenberg parameters and

link masses of the Baxter manipulator are presented in 3.1 and are derived from the Uni-

versal Robot Descriptor File (URDF) for the Baxter. As we said the Denavit Hartenberg

parameters describe the configuration of the links, and form the basis of the Lagrange-

Euler formulation. The homogeneous link transform matrices are formed from the Denavit

Hartenberg matrix also.
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D-H Parameters of the Baxter Robot

Link θ d(m) a(m) a(rad) m(kg)

1 θ1 0.2703 0.069 −π

2 5.700443

2 θ2 0 0 π

2 3.22698

3 θ3 0.3644 0.069 −π

2 4.31272

4 θ4 0 0 π

2 2.07206

5 θ5 0.3743 0.01 −π

2 2.24665

6 θ6 0 0 π

2 1.60979

7 θ7 0.2295 0 0 0.54218

Table 3.1: Denavit Hartenberg matrix of our Baxter robot

We must mention that the center of mass as well as the inertia tensors Ixx, Iyy, Izz, Ixy, Ixz, Iyz

of each joint of the Baxter robot are also known to us. The homogeneous link transform

matrices are formed from the Denavit Hartenberg parameters accordingly [29], [24]. The

Baxter’s robot kinematic equation will be formed upon:

Ai−1
i =



cosθi −cosαisinθi sinαisinθi αicosθi

sinθi −cosαisinθi −sinαicosθi αisinθi

0 sinαi cosαi di

0 0 0 1


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3.3.2 Euler-Lagrange analysis

The Euler-Lagrange equations of motion for a conservative system are given by:

L(q, q̇) = K(q, q̇)−U(q) and

u =
d
dt
(
∂L
∂ q̇

)− ∂L
∂q

where K(q, q̇) and U(q) are the total kinetic and potential energies of our system re-

spectively, q ∈ ℜn are the generalized robot coordinates equivalent to θ in the Denavit

Hartenberg matrix, and u is the torque at the robot joints [29], [24]. The kinematic energy

of our system will be :

K =
1
2

n

∑
i=1

i

∑
j=1

i

∑
k=1

[Tr(Ui jJiPT
ik )q̇ jq̇k]

where Ji is the Jacobian of our system-robot and Pi j is the rate of change of the positions

of the points on link i while the joint position is changing compared to our robot’s base.

Therefore Pi j will be:

Pi j =
∂A0

i
∂q j

The potential energy [29], [24] is going to be computed from:

U =
n

∑
i=1
−mig(T 0

i r̄i)

By substitution of K(q, q̇) and U(q) to the Euler-Lagrange equation we obtain both L

and u. Of course in order to compute the kinetic energy, one has to evaluate the Jacobian of

the Baxter. Having the Baxter’s link mas, the inertia tensors and the center of mass known,
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due to the fact that the Jacobian is independent of the links positions or motions, it can be

computed directly from:

Ji =



−Ixxi+Iyyi+Izzi
2 Ixyi Ixzi mix̄i

Ixyi

Ixxi−Iyyi+Izzi
2 Iyzi miȳi

Ixzi Iyzi

Ixxi+Iyyi−Izzi
2 miz̄i

0 0 0 1


Having computed K(q, q̇) and U(q) and the Jacobian Ji we have concluded all we

needed to form the Euler Lagrange dynamics of the Baxter’s arm.

3.4 Robot planning algorithms

3.4.1 Deliberative Acting

In this chapter we are moving on and implementing in Python two robot planning algo-

rithms, the RRT [9] and the RRT* [21],[22]. Planning is motivated by acting. Therefore,

before someone goes into planning should become familiar with the word acting or actor.

Planning is well formalized from an Artificial Intelligence point of view whereas acting is

something harder to formalize.

Action [11] is something that the actor (can be the robot) does in order to achieve a

change in his environment, that is make a motion, or exert a force or communicate. The

actor is the person who performs an action. An actor can either be versatile or autonomous.

In both cases deliberation is needed. Deliberation for acting deals with what kind of actions

are needed to be performed in order an objective to be achieved and also how those actions
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are going to be performed. Deliberative acting can either rely on a model-based behaviour,

on a learned behaviour or on a innate behavior, which can either be programmed beforehand

or evolved.

3.4.2 Planning

Planning as in [11] is a mapping from abstract domains and problems into plans. This

means to synthesize an organized set of actions to achieve some purpose or to achieve a

desired goal by organizing the required activities. Planning relies on prediction and search.

Descriptive models of actions to predict their effects and search over predicted states and

possible organizations of feasible actions. A complex task is considered to be a task that

consists of a number of sub-tasks which are further decomposable into another set of sub-

tasks. Those sub-tasks need different planner types, in order to be accomplished. This is

the so called task planner. In order to achieve a goal situation it decomposes a high-level

task into another set of possibly parallel sub-tasks. High-level planners deal with how task

planners work in a general aspect and how they are used for solving manipulation prob-

lems. And as we said above those sub-tasks might often need different low-level planners

to be solved.

3.4.3 Planner Integration

As mentioned, assume that a plan is generated and then mapped onto low-level planners

with the use of a hierarchical top-down approach. Now we assume that the world model is
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correct, which means that all the selected actions are correct and that our initial symbolic

abstraction is also correct. Afterwards we use a hierarchical bottom up approach. That

means that all our low-level planners compute our task planner using all the relevant geo-

metric information of the scene and then try to combine our low level solution planners for

our initial task planner.

3.4.4 Planner types

There are three planner types in general [11]. In our thesis we will be dealing only with

path planners. There exist also grasp planners and robot placement planners. The most

important things one should be aware of the two other planners are that the grasp planners

provide grasps for handling objects and that robot placement planners position the robot

for a task. Each of the domains of path planning, grasp planning and task planning use

separate benchmarks.

Grasp planners [11] either compute grasps for a robotic hand or given a center point

coordinate (TCP) they return a valid reachable grasp. The main objective of a planned

grasp is to hold an object firmly and safely, also in the presence of disturbances on the

object. If the grasp has the force closure property, then a set of valid contract forces exists

and allows a grasp to balance any occurring disturbance forces or torques. Meaning it

includes control on the object.

Robot placement planners [11] determine the position for a manipulator to execute the

task. Few planners are used for placing the robot for grasping tasks. Most approaches

combine the search for feasible trajectories for the robot arm with positioning of the robot
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in the configuration space(C-space).

Our main interest focuses on path planners. Path-planning requires a map of the en-

vironment and the robot to be aware of its location with respect to the map. Paths are a

sequence of points in the configuration space of the robotic arm. Frequently, the points are

connected via straight line segments. There exist two classes of path planners and those are

the regional path planners and the global path planners.

Regional path planners [11] locally distort the direct path connecting the given start and

goal configuration of the robot’s arm. Local distortions are used to avoid obstacles. A path

is found by avoiding the revolting forces and moving towards the attractive ones. Regional

path planners perform well in scenarios where only few objects exist and many times give

smoother paths than those generated from the global planners.

Global path planners search the whole configuration space of the robot for valid paths.

In global motion planning, target space, meaning the linear subspace of free space which

denotes where we want our robot to move to, is observable by the robot’s sensors. A robot

configuration is randomly sampled from the C-space and it is accepted if it is collision-

free. Frequently, it is connected to other valid configurations with the use of collision-free

straight line segments in the C-space. The most useful and well known global planners are

the probabilistic ones. The most common probabilistically complete path planners are the

RRT [9] and the PRM [10]. In this section we will be dealing and presenting how our robot

can be planned with the use of RRT and RRT* which is a variant of RRT. Later on, we

will be experimenting with both of them on Baxter with Moveit! [25] applying planning

experiments, including obstacle avoidance.
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3.4.5 Configuration Space

A key concept for motion planning is configuration. The configuration space (C-space)

is the space of all possible configurations. C-space topology is usually non Cartesian and is

described as a topological manifold. The main idea behind the configuration space comes

from the convenience of our calculations. Due to the fact that most of the robots are rigid

bodies and therefore not single points the planning, the obstacle avoidance and the ex-

act specification of the position of every point of our system is really hard to determine.

Therefore instead of working in ”the real world” with our robot having real dimensions, we

consider our robot as a single point and we expand our obstacles dimensions in a uniform

way. (Most of the times we expand our obstacles by a constant same or slightly bigger than

the maximum size of our robot). The free configuration space is obtained by sliding the

robot along the edge of the obstacle regions ”enlarging them” by the robot radius.

This operation is called the Minkowski sum :

A⊕B = {a+b|a ∈ A,b ∈ B}

where A,B ⊂ℜn.

The configuration space can be randomly sampled with a uniform distribution. The notation

that we used and it is generally used for the configuration space is :

• Configuration space C ⊂ℜn

• Configuration q ∈C

• Free configuration space C f ree
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• Obstacle space Cobs,

3.4.6 Domain Model

A way to model a complex environment is via simplifying assumptions and with plan-

ning. Most of the planning systems are being formulated on the model of State-transition

system. State-transition system (or classical planning domain) is denoted by:

• System denoted as : Σ = (S,A,γ) or Σ = (S,A,γ,cost)

• States S = {s1,s2, ...} describe the current state. S is a finite set of states that the

system may be in.

• A = {a1,a2, ...} are actions through which the current transition to new states is trig-

gered. A is a finite set of actions. That means, things the actor can do.

• γ : S×A→ S is the prediction function (or state-transition function) partial function:

γ(s,a) isn’t defined unless a is applicable in s.

• Dom(a)= {s∈ S|γ(s,a) is defined}= {s∈ S|a is applicable} .Range(a) = {γ(s,a)|s∈

Dom(a)}

•• cost: S→ A→ R could be monetary cost, time required, something else

In general we have the planning problem P = (Σ,s0,Sg) (planning domain, initial state,

set of goal states). The solution for P, will be a plan (sequence of actions) that will produce

a state in Sg
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If S and A are small enough then we give each state and action a name. For each s and

a we then store γ(s,a) in a look-up table.

In larger domains we do not represent all states explicitly. There exist a Language

for describing properties of states and a Language for describing how each action changes

those properties. We start with an initial state and use actions to produce other states.

3.5 Planning dilemma

In the planning ”world” there exists a big dilemma, known as the exploration versus ex-

ploitation. Exploration is the need of our actor, robot, our planner or our learning planning

algorithm to gather more information, whereas exploitation is the need to make the best

decision given any current information we might have. It is an online decision-making that

involves a fundamental choice between those two. On one hand the best long-term goal

strategy may involve short-term sacrifices, but on the other hand gathering more informa-

tion might be more useful to make the best overall decisions. We solve this dilemma with

the right selection of the discount factor in our planners. The selection of this value is often

empiric and based upon the experimental results and of course based on the nature of our

planning problem and world.

3.6 Robot using RRT and RRT* in a realistic simulation environment

Our main interest focuses on path planners. In our simulation we build the RRT as our

robot’s planning algorithm in an attempt to experiment ourselves with the way RRT works.

This will help us understand later on how RRT works on Baxter.
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3.6.1 RRT planner

In searching for a path RRT planner iteratively grows a tree in the configuration space.

The search is successful when the goal configuration qgoal is reached. RRTs can naturally

consider constraints during the tree construction. The RRT algorithm follows :

1.) Initialize tree with first node qi

2.) Pick a random target location (every kth iteration, choose qg), because else it will fail

and run into Cobs and it will not explore, if it did not chose a random target.

3.) Find closest vertex in roadmap

4.) Extend this vertex towards target location

5.) Repeat steps until goal is reached

The formal RRT algorithm follows 1:

A few things one should know about the Rapidly Exploring Random Trees is that they

are probabilistic complete as we mentioned before and they have a good balance between

exploration and greedy search. RRT is a very popular algorithm and has many extensions,

like the RRT* which we will be simulating as well.

Starting from a world without obstacles, our algorithm awaits for the user to enter

the initial position of the robot in the world. Afterwards, we also give as an input the

goal position to our planner. Our robot is assumed to be a single point being planned

in the C-space as the obstacles have been ”enlarged” from their real dimensions. In the

following images we present our robot using RRT and starting from an initial position

trying to achieve the desired end position. One can also see how our robot explores its

59



Algorithm 1: RRT
Data: Initial configuration qinit , number of vertices in RRT K, incremental distance

∆x

Result: Graph G

1 G.init(qinit);

2 for k = 1 : K do

3 qrand ←− Randcon f ();

4 qnear←− Nearestvertex(qrand,G);

5 qnew←− Newcon f (qnear,qrand,∆x);

6 G.addvertex(qnew);

7 G.addedge(qnear,qnew);

8 return G

environment in its attempt to reach its goal.We started by experimenting in a obstacle-

free world and then moved on and added some obstacles to see how our robot is going to

perform. Our simulations where done in Python.
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(a) Initialization (b) Goal position and exploration phase

(c) Feasible path found

Figure 3.1: Our robot using RRT in a obstacle-free world

Having figured out the basics around RRT we added a rectangle as an obstacle to our

2D robot’s world.
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(a) Initialization (b) Goal position and exploration phase

(c) Feasible path found

Figure 3.2: Our robot using RRT in a world with one obstacle

Finally in a attempt to make it even more challenging we added one more obstacle.
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(a) Initialization (b) Goal position and exploration phase

(c) Feasible path found

Figure 3.3: Our robot using RRT in a world with two obstacles

3.6.2 RRT* planner

Same with RRT* we simulated an environment with obstacles in which our robot from

and initial position qinit explores its search in the workspace until it finally reaches our qgoal .

We give two points qinit and qgoal we use a path defined by p(τ) = τ ·q+(s− τ) ·q′, ∀τ ∈

[0,s], where s =‖ q′−q ‖.The pseudocode for RRT* [21],[22] as in algorithm 2:
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Algorithm 2: RRT*
Data: Given a tree G = (V, E) and a vertex v V

Result: Graph G

1 V ′←− E;

2 E ′←−V ;

3 qnear←− Nearest(G,x);

4 qnew←− Steer(qnear,x);

5 if ObstacleFree(qnear,qnew) then

6 V ′←−V ′∪ xnew;

7 xmin←− xnearest ;

8 Qnear←− Near(G,qnew, |V |);

9 for allqnear ∈ Qnear do

10 if ObstacleFree(qnear,qnew) then

11 c′←−Cost(qnear)+ c(Line(qnear,qnew));

12 if 0 <Cost(qnew then

13 qmin←− qnear;

14 E ′←− E ′∪ (qmin,qnew);

15 for allqnear ∈ Qnear \ xmin do

16 if ObstacleFree(qnear,qnew) and

Cost(qnear)>Cost(qnew)+ c(Line(qnew,qnear)) then

17 qparParent(qnear);

18 E ′←− E ′ \ (qpar,qnear);

19 E ′←− E ′∪ (qnew,qnear);

20 return G
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(a) Initialization (b) Goal position and exploration phase

(c) Feasible path found

Figure 3.4: Our robot using RRT* in a obstacle-free world
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(a) Initialization (b) Goal position and exploration phase

(c) Feasible path found

Figure 3.5: Our robot using RRT* in a world with one rectangle obstacle
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Chapter 4: Motion and Planning of a Robot through Reinforcement Learn-

ing Algorithms

4.1 Introduction

In this section, we will be dealing with a robot planning problem, in order to take a

deeper dive in the artificial intelligence planning field. Our robot problem describes a robot

that moves in a fixed grid world. The world may have obstacles, walls and borders that the

robot should not pass through(limits of the world). The robot’s purpose is to successfully

navigate to a location where an item is, pick it up and deliver it to a destination point

where it drops it. The robot receives negative and positive rewards depending on its actions.

Positive rewards are given when the robot picks up the item and delivers it to the destination

point. Negative rewards are given when the robot attempts to step outside of the world, pass

through a wall, try and pick up in the wrong point and deliver on the wrong point.

4.1.1 MDP

Specifically, we will be dealing with a Markov Decision Process problem (MDP) which

is a discrete Stochastic Control Processes, which in general are used to solve many opti-

mization problems. MDPs can be solved with the use of Bellman equation and are an
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extension of Markov chains. We will be using 2 different algorithmic methods the Q-

Learning and the Sarsa which are Reinforcement Learning algorithms and are used to find

the optimal policy, which is a behaviour that produces an optimal control output and can

model our problem as an MDP.

4.2 Problem Formulation

4.2.1 Assumptions

The Data will be taken from our robot’s world. This means each time we will place the

object at a different position and therefore our robot will try to learn all possible combina-

tions that may occur at its world. We formulate our problem with the following assump-

tions:

• State variables: robotLocation {1, ..., 25}, itemLocation {1, ..., 5} (i.e. waiting

at pickup/drop-off {R,G,B,Y} or in the robot), drop-offLocation {1, ..., 4} (i.e.

{R,G,B,Y}).

• Initialisation of a trail: Robot is uniformly randomly in any of the 25 grid squares,

itemLocation is uniformly randomly in one of the 5 item states, dropoffLocation is

uniformly randomly one of the 4 drop-off locations

• Termination of a trial: item was successfully dropped-off or after a time constraint

(item just wants to get out off the robot and does not care where)

• Actions: 1: go north, 2: go south, 3: go west, 4: go east, 5: pick up item, 6: drop off
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Figure 4.1: The 25 grid squares of our robot’s world

item

• Reward is 0, except in the following cases: -1 for an unsuccessful movement (e.g.

if blocked by a wall), 1 for a successful pick-up, 10/(number of steps since pick-up)

for a successful drop-off, -1 for an attempted drop-off with no item or at the wrong

location, -1 for an attempted pick-up at the wrong location (or if the item is already

on the robot).

4.3 Dynamic formulation of our Problem

One can easily observe that every state in our problem has 3 variables in order to ex-

plicitly formulate the environment in our world and that is that every state consists of the
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Robot’s location, the Item location and the Drop off location.

• Let s be the variable of our state.

• Also let xt ∈ S = {x1,x2, ...x25} denote our robot’s position, as our robot can move

and visit every single square of our world.

• And p∈ P = {x1,x5,x20,x21,x0} denote our item’s position, as our item can be either

on one of the R,Y,B,G positions or grabbed from the robot (where x0 stands for item

being on the robot).

• Also let g ∈ G = {x1,x5,x20,x21} denote our drop-off location, as our drop-off loca-

tion can be either on one of the R,Y,B,G positions.

• Let at ∈ A = {a1,a2,a3,a4,a5,a6} be our possible set of actions, where those actions

stand for : go north, go south, go west, go east, 5: pick up item, drop off item

respectively and for every move our robot picks a different one.

• We denote t1 the time the robot successfully picks up the item at p

• And t f the time the robot drops off the item successfully at the correct drop off

location g

Therefore one can completely represent a state in our problem as:

s =
[

xt p g

]
(4.1)

For every single sub-problem; the position of our item p and our drop-off location g are

fixed and the only variable that changes for every step is xt and of course the action that the
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robot chooses at every move at . The robot as we know can perform one out of 6 possible

actions.

The dynamics of xt of the robot’s position are going to be :

xt+1 = f (xt ,at),∀t ∈ [0, t f ] (4.2)

where for our function f (xt ,a) we use the following Look up Table 4.1, in order for our

robot to make every step from a state to the next one.

Every problem with a different initialization to our variables xt , p and g can be tackled

as two separate sub-problems. That is, the first sub-problem is until our robot picks up the

item and the second one is after he has picked it up, until it drops the item to its drop-off

location.

That means that the first of our sub-problem ends when xt1 = p at some time t1 > 0 and

at that time t1 the second sub-problem begins and stops at time t f > t1 when xt f = g.

For the first sub-problem (until the robot picks up the item) the cost function g1[xt ,at ]

is based on the rewards that are defined for every move that the Robot makes and it is given

below.

where r* at Table 4.2 stand for:

r* =



g[s1,a5] = 1 if p = s1,else g[s1,a5] =−1

g[s5,a5] = 1 if p = s5,else g[s5,a5] =−1

g[s20,a5] = 1 if p = s20,else g[s20,a5] =−1

g[s21,a5] = 1 if p = s21,else g[s21,a5] =−1
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Previous State - Action - Next state (f-function)
Robot
Position

Go
north(a1)

Go
south(a2)

Go
west(a3)

go
east(a4)

Pick-up
(a5)

drop off
(a6)

s1 s1 s2 s1 s6 s1 s1
s2 s1 s3 s2 s7 s2 s2
s3 s2 s4 s3 s8 s3 s3
s4 s3 s5 s4 s4 s4 s4
s5 s4 s5 s5 s5 s5 s5
s6 s6 s8 s1 s6 s6 s6
s7 s6 s8 s1 s7 s7 s7
s8 s7 s9 s3 s13 s8 s8
s9 s8 s10 s9 s14 s9 s9
s10 s9 s10 s10 s14 s10 s10
s11 s11 s12 s11 s16 s11 s11
s12 s11 s13 s12 s17 s12 s12
s13 s12 s14 s8 s18 s13 s13
s14 s13 s15 s9 s14 s14 s14
s15 s14 s15 s10 s15 s15 s15
s16 s16 s17 s11 s21 s16 s16
s17 s16 s18 s12 s22 s17 s17
s18 s17 s19 s13 s23 s18 s18
s19 s18 s20 s19 s24 s19 s19
s20 s19 s20 s20 s25 s20 s20
s21 s21 s22 s16 s21 s21 s21
s22 s21 s23 s17 s22 s22 s22
s23 s22 s24 s18 s23 s23 s23
s24 s23 s25 s19 s24 s24 s24
s25 s24 s25 s20 s25 s25 s25

Table 4.1: The Transition Matrix for our Robot’s Dynamics, our look-up Table

Note that the * symbol next to the r in the above table means that for the first sub-

problem with t ∈ [0, t1] for every new problem, only one of those ones is one depending on

our item location in the current problem and all the remaining 3 ones are -1. (i.e Assume

our Item is on p = s1 then only g[s1,a5] = 1, whereas g[s5,a5] = −1, g[s20,a5] = −1 and

g[s21,a5] =−1)
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Current State - Action - Reward
Robot
Position

Go
north(a1)

Go
south(a2)

Go
west(a3)

go
east(a4)

Pick-up
(a5)

drop off
(a6)

s1 -1 0 -1 0 r* -1
s2 0 0 -1 0 -1 -1
s3 0 0 -1 0 -1 -1
s4 0 0 -1 -1 -1 -1
s5 0 -1 -1 -1 r* -1
s6 -1 0 0 -1 -1 -1
s7 0 0 0 -1 -1 -1
s8 0 0 0 0 -1 -1
s9 0 0 -1 0 -1 -1
s10 0 -1 -1 0 -1 -1
s11 -1 0 -1 0 -1 -1
s12 0 0 -1 0 -1 -1
s13 0 0 0 0 -1 -1
s14 0 0 0 -1 -1 -1
s15 0 -1 0 -1 -1 -1
s16 -1 0 0 0 -1 -1
s17 0 0 0 0 -1 -1
s18 0 0 0 0 -1 -1
s19 0 0 -1 0 -1 -1
s20 0 -1 -1 0 r* -1
s21 -1 0 0 -1 r* -1
s22 0 0 0 -1 -1 -1
s23 0 0 0 -1 -1 -1
s24 0 0 0 -1 -1 -1
s25 0 -1 0 -1 -1 -1

Table 4.2: Cost function (Metric) for t ∈ [0, t1]

Therefore, having our dynamics and our metric we can define our first sub-problem as:

min max
t1 at∈A

t1

∑
t=0

g1(xt ,at)

subject to xt+1 = f (xt ,at)

xt1 ∈ P

(4.3)

For the second sub-problem(after the robot has picked up the item and until it success-
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fully drops it off) , when p = s0 which means that our item is on the robot, the cost function

g2[xt ,at ] is based on the rewards that are defined for every move that the robot makes, is

given by the Table 4.3.

Current State - Action - Reward
Robot
Position

Go
north(a1)

Go
south(a2)

Go
west(a3)

go
east(a4)

Pick-up
(a5)

drop off
(a6)

s1 -1 0 -1 0 -1 r**
s2 0 0 -1 0 -1 -1
s3 0 0 -1 0 -1 -1
s4 0 0 -1 -1 -1 -1
s5 0 -1 -1 -1 -1 r**
s6 -1 0 0 -1 -1 -1
s7 0 0 0 -1 -1 -1
s8 0 0 0 0 -1 -1
s9 0 0 -1 0 -1 -1
s10 0 -1 -1 0 -1 -1
s11 -1 0 -1 0 -1 -1
s12 0 0 -1 0 -1 -1
s13 0 0 0 0 -1 -1
s14 0 0 0 -1 -1 -1
s15 0 -1 0 -1 -1 -1
s16 -1 0 0 0 -1 -1
s17 0 0 0 0 -1 -1
s18 0 0 0 0 -1 -1
s19 0 0 -1 0 -1 -1
s20 0 -1 -1 0 -1 r**
s21 -1 0 0 -1 -1 r**
s22 0 0 0 -1 -1 -1
s23 0 0 0 -1 -1 -1
s24 0 0 0 -1 -1 -1
s25 0 -1 0 -1 -1 -1

Table 4.3: Cost function (Metric), fot t ∈ (t1, t f ]

where r** at Table 4.3 stand for:
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r** =



g[s1,a5] = 10/(t f − t1) if g = s1,else g[s1,a5] =−1

g[s5,a5] = 10/(t f − t1) if g = s5,else g[s5,a5] =−1

g[s20,a5] = 10/(t f − t1) if g = s20,else g[s20,a5] =−1

g[s21,a5] = 10/(t f − t1) if g = s21,else g[s21,a5] =−1

Therefore, having our dynamics and our metric we can define our second sub-problem

as:

min max
t f at∈A

t f

∑
t=t1+1

g2(xt ,at)

subject to xt+1 = f (xt ,at)

xt f ∈ G

(4.4)

Solving the 2 above optimization sub-problems, gives us the optimal solution to our

problem for all the different initial s(t=0).

The Bellman’s equation tells us that: V ∗t ( j) = min
at∈A

[g[ j,at ]+
t f

∑
i=0

Pi jV ∗t (i)] , where V ∗t ( j)

is the optimal cost of state j at time t and the
t f

∑
i=0

Pi jV ∗t (i) is the cost-to-go. And because

Bellman’s equation follows the principle of optimality, in order to find the minimum of

V ∗t (x), that means that our solution up until that time is optimal. Same happens with our

problem and the two sub-problems. Finding the minimum t f requires we have found the

optimal t1.

Solving the Bellman’s equation in our Problem we followed two different Reinforce-

ment Learning algorithms. The Q-Learning Algorithm and the Sarsa algorithm.

75



4.4 Estimates

4.4.1 Typical Time horizon

A typical time horizon for a finite Markov Decision Process is the number of future

steps that affects the value of any given state[27]. The time horizon value is calculated by

the formula 1
1−γ

, with γ being the discount factor. In the case of γ = 0.9 the time horizon

is 1
1−0.9 = 10 steps. This means that for a state s0 the value contained in the state-value

matrix is affected by values of 10 future steps. In addition, by deciding the typical horizon

of the problem we can determine the γ value. Given that our grid world is a 5×5 fixed

grid (Figure 4.1) a horizon of 9 steps would be enough for designing a good solution which

means that γ = 8
9 should be sufficient for the first experiments. The best horizon for this

problem is 9 due to the fact that the biggest distance that the robot needs to make, is the

distance from the two corners of the 5x5 grid world which equals to 9 cells.

4.4.2 Maximal value of state-action pair

The maximum value of a state action pair can be bounded for γ < 1 by rmax
1−γ

. In order to

calculate the upper bound of this value we need to calculate rmax .

Given our state vector = [ robot position , item position, goal ], our rewards per action

and a good policy π , the maximum reward that we can get is when our state is initialized

with the robot and the item at the same position of our 5x5 grid world and the item is not on

the robot. This means that in the first step the robot will receive r=1 for picking up the item.

In the second step the robot will deliver the item and receive r = 10
numo f steps with number of
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steps=1 since the drop off point is the same as the pick point. Hence, rmax = 1+ 10
1 = 11.

Given rmax=11 and γ = 0.9 the maximum value of a state action pair is

maxQ(state,action)≤ rmax

1− γ
⇒ maxQ(state,action)≤ 110 (4.5)

This value can be introduced to the design of our algorithm with the use of optimistic

initialization. When we use optimistic initialization, instead of randomly initializing the

values of the Q-matrix(state-action matrix) we set them equal to the maximum value that

they may reach which is equal to 110 (eq. (4.5)) in our case.

4.4.3 Number of trials that a standard algorithm will need to find a good

solution

To determine the maximum number of trials that an algorithm needs to find a solution

we must first define our approach for solving it. Our robot problem satisfies the Markov

property and hence is a Marcovian Decision Process(MDP)[27]. The simplest approach

to find a solution of an MDP is to exhaustively search the total number of deterministic

policies which in our case requires 625∗5∗4 iterations. A much better approach would be to

use dynamic programming to solve the problem. Dynamic programming guarantees to find

a solution in polynomial time of the states and actions.
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4.4.4 Deterministic or Stochastic

In a stochastic problem the result of an action at time T in a specific state can be different

than the result produced at time T+N with the same state-action pair. This means that the

reward for a given state-action pair is given with some probability. On the other hand in a

deterministic problem a state-action pair always yields the same reward. Given the above

and the nature of our problem, if the robot makes an action a0 at state s0 it will always

receive the same reward. Thus the problem is deterministic.

4.5 Q-learning

4.5.1 Short Description and Implementation of the algorithm

The robot problem describes an agent(robot) that moves in a fixed grid world. The

world may have obstacles, walls and borders that the robot should not pass through(limits

of the world). The robot’s purpose is to successfully navigate to a location where an item is,

pick it up and deliver it to a destination point where it drops it. The robot receives negative

and positive rewards depending on its actions. Positive rewards are given when the robot

picks up the item and delivers it to the destination point. Negative rewards are given when

the robot attempts to step outside of the world, pass through a wall, try and pick up in the

wrong point and deliver on the wrong point.

For the implementation of the algorithm the state-action matrix(Q) must be firstly de-

fined. To create Q we need to take into account all the possible actions and states of the

problem. Hence Q is a four dimensional tensor with size 25x5x4x6 containing every pos-
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sible combination of all the positions of the robot, the positions of the item, the drop off

locations and the actions. The state-value matrix contains only the states of our problem

which means it is a 3 dimensional 25x5x6 matrix.

4.5.2 Performance of the algorithm

By storing all the final rewards after each trial of the algorithm and obtaining the max

of this vector with size T=number of trials, the maximum reward was 11 which is equal to

what we estimated(In Section Estimates). In addition, the mean(immediate) reward for a

good policy which is obtained by the mean of the average reward (Figure 4.3, Figure 4.4)

is 0.5819. Regarding the number of trials that the algorithm requires to find a solution, the

experiments converge at 1000 trials approximately (Figure 4.4). This value is significantly

smaller than the exhaustive search which is something that we expected since we use dy-

namic programming that solves the problem in polynomial time. Finally, the mean reward

after each trial is 3.9649.

Below are presented diagrams describing the performance of the algorithm and various

experiments about how variables such as gamma and ε effect the convergence of the algo-

rithm. In order to produce these diagrams each test was executed multiple times(samples>

100) in order to get the mean value of each trial of the different samples to produce

smoother and easier to understand curves.

In Figure 4.2 and Figure 4.3 the number of steps and rewards over the number of trials

are presented. From this diagram we can see that as the policy changes and the Q-matrix

is updated the steps required for the algorithm to find a solution starts from more than
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450 steps and is dramatically reduced until trial 200 where it started to converge to value.

The reduction and the convergence of this diagrams means that the algorithm makes good

decisions which lead it faster to the solution. In Figure 4.3 the rewards follow a positive

trend until the 200 step where we can see the rewards per trial are stabilizing and reaching

a convergence point. We can see that both diagrams appear to converge at the same point

of time.

Figure 4.2: Number of steps over learning time
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Figure 4.3: Rewards over learning time

The average reward over time (Figure 4.4) experiences a steep increase until the 500

trial and starts to converge towards a value after 1000 trials. We can see that even if the

number of steps has already converged at about 200 trials the average rewards converges

later at 1000.
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Figure 4.4: Average reward over learning time

This means that even though the algorithms steps do not increase the algorithm does

not take the optimal decisions by that time.

4.5.3 Trial of the Q-Learning algorithm

The example presented below is a single trial of the algorithm with the use of policy π

after 50000 trials of training. In this example the robot starts at location R, the item is at

location B and the destination point is at location R. In Table 4.4 we can see the results of

the test run.

Actions 1,2,3,4 denote movements: up,left,down and right while actions 5,6 denote

pick up and drop off. The last column is an optimal route that was calculated by a human.

As we can see from the table the robot choose the optimal action in every case and received
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Test Run
step Robot

Position
Item Po-
sition

Action Optimal
Action

1 1 21 3 3
2 2 21 3 3
3 3 21 4 4
4 8 21 4 4
5 13 21 4 4
6 18 21 4 4
7 23 21 1 1
8 22 21 1 1
9 21 21 5 5
10 21 on robot 3 3
11 22 on robot 3 3
12 23 on robot 2 2
13 18 on robot 2 2
14 13 on robot 2 2
15 8 on robot 1 1
16 7 on robot 2 2
17 2 on robot 1 1
18 1 1 6 6

Table 4.4: Example of pick up and drop off using policy π after 50000 trials.

a reward of 2.111 since it did not get penalized, received 1 for pick up and 10/9=1.1 for the

pick up.

In Table 4.5 the values of the state-value matrix for the case that the item is being held

by the robot with destination R are presented. We can clearly see that the value of point

R is the maximum which denotes the significance of the point since it is the destination.

In addition, all nearby values are very high. We can see that the further we get from the

destination, the values get smaller, especially near the walls.
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state-value Matrix
18.9708 12.6045 1.9142 4.2534 8.0790
17.5652 16.3494 11.4521 10.2307 9.1403
15.8723 14.5921 12.9915 11.5823 3.8271
14.1931 0.5212 3.5503 10.3140 0.0298
12.6160 0.0379 0.0314 9.2017 1.9948

Table 4.5: State value matrix of a policy π when item is held by the robot with destination R.

(a) (b)

Figure 4.5: 3D representation of Table IV

4.5.4 Convergence Time

To define a convergence time we need to evaluate the course of the data. Regarding the

average reward from Figure 4.4 we can see that the values converge after a thousand trials.

This means that the average reward is reaching its maximum. Following a similar trend

the maximum of state-action value increases steadily until the same number of trials(1000)

where it starts converging (Figure 4.7). This result also validates the upper bound value that

was calculated in eq. (4.5) which denoted that the maximum value of Q-matrix(V contains

the maximum values of Q in the action’s dimension) will not exceed 120.
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Figure 4.6: Tests of maximum value of V for different gamma values

Figure 4.7: Convergence of V and it’s maximum value
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On the contrary, the absolute difference between successive V-matrices(state-value ma-

trices) keeps decreasing even after eight thousand trials. Without the use of an optimistic

initialization we can observe a very fast increase in the difference of successive V-matrices

which denotes the fast change in their values after each trial. At the thousandth trial this

difference starts to decay and gradually reduces since the problem converges to an optimal

solution.

Figure 4.8: Tests of maximum value of V for different γ values
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Figure 4.9: Tests of maximum value of V for different ε values

4.5.5 Experimenting with variables and their effect on convergence

In Figure 4.8 we can see how different γ affect the maximum values of the state-action

matrix V. From this diagram we can clearly see the correlation between the γ and the

horizon. When γ increases, horizon increases too and so does the maximum value of V,

from the definition given in section 4.5.1 every value of the V-matrix is affected by future

steps equal to the horizon, which means that as the horizon increases more future steps

are incorporated in a single cell of the matrix and thus its Values increase too. Figure 4.9

illustrates the effect of different values of exploration on the maximum values of V. We can

observe that as the epsilon reduces the maximum value increases. When we have a small

exploration our algorithm will not explore much and thus it will end up passing trough the

same route every time. Thus specific values will keep increasing. On the other hand when
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epsilon is big the algorithm will randomly choose different routs more often and thus the

increase will not accumulate only in a few values resulting in lower max values.

Figure 4.10: Convergence of mean reward for different values of ε . Here ε=0.05

In Figures 4.10, 4.11, 4.12, 4.13 plots of average reward for different values are pre-

sented. We can clearly see that as the value of ε decreases so does the average reward.

For random actions the robot might get penalised very often. The higher the probability

of making a random action the higher is the probability of getting penalised and thus the

averaged reward is reduced as the ε increases.
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Figure 4.11: Convergence of mean reward for different values of ε . Here ε=0.1

Figure 4.12: Convergence of mean reward for different values of ε . Here ε=0.2
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Figure 4.13: Convergence of mean reward for different values of ε . Here ε=0.5

4.6 SARSA

In this section we will be testing and evaluating another MDP. SARSA, unlike Q-

Learning, is an on-policy method. In these kind of methods instead of estimating a state-

action matrix we consider transitions between state-action pairs[27]. Regarding the mod-

eling of the world and the algorithm remains the same and only the update function of Q

changes.

4.6.1 Performance of the algorithm

A SARSA algorithm trained for a hundred thousand trials produced a mean of steps per

trial equal to 11.2131. Moreover, the mean(immediate) reward was calculated to be 0.63
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and the mean reward per trial is 4.0095.

Figure 4.14 presents us the rewards per trial for the algorithm. The final reward for

each trial stabilizes after 200 trials. Similarly Figure 4.15 presents us the number of steps

that the algorithm needs to find a solution over trials. Both diagrams converge at about 200

trials. In addition, the mean reward is illustrated in Figure 4.16 where there is a sudden

increase in its value followed by convergence at approximately a thousand trials.

Figure 4.14: Rewards per trial with Sarsa
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Figure 4.15: Number of steps over learning time

Figure 4.16: Mean (immediate) reward over time
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4.6.2 Convergence time

Regarding the convergence time of the algorithm we can examine the convergence of

the maximum value of Q to determine it. We can see from Figure 4.17 that the maximum

value of Q stops increasing after a thousand trials. In addition to that the mean(immediate)

rewards converges at the same time.

Figure 4.17: Rewards and number of steps per trial

4.6.3 Experimenting with variables and their effect on convergence

Given the diagrams in Figure 4.18, we can clearly see that for different values of γ the

mean(immediate) reward remains unchained. This happens due to the fact that γ affects the

horizon and not the actions of the robot.
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Figure 4.18: Average reward for different γ

On the contrary in Figure 4.19 we can see the obvious effects of different ε on the

immediate rewards. As it is mentioned in the section for Q-Learning the higher the ε the

higher is the probability to make a random move which is non optimal.
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Figure 4.19: Average reward for different ε

4.7 Comparison of SARSA and Q Learning

For comparison purposes we will test how a SARSA algorithm with a good policy

responds to the same example that we tested Q-learning with. The problem to test has the

robot initialized at point R and the item at point G with destination point R. Similar with

the previous experiment the SARSA algorithm is trained for a hundred thousand trials and

then the Q-matrix is reused for a singe experiment.

From this experiment we can clearly see that both Q-Learning and SARSA solve the

problem with the same amount of steps, receive the same rewards and are both optimal. An

interesting observation is that although SARSA’s solution is optimal too, it uses a different

route to navigate to the pick up point and deliver to the destination both ways different
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from Q-Learning route. On the other hand Q-Learning uses the same route for going and

returning since the starting point is also the destination point.

Test Run
step Sarsa

Robot
Position

Sarsa
Action

Item Po-
sition

Q-
Learning
Action

Q-
Learning
robot
position

1 1 3 21 3 1
2 2 3 21 3 2
3 3 4 21 4 3
4 8 4 21 4 8
5 13 4 21 4 13
6 18 1 21 4 18
7 17 1 21 1 23
8 16 4 21 1 22
9 21 5 21 5 21
10 21 2 on robot 3 21
11 16 3 on robot 3 22
12 17 2 on robot 2 23
13 12 3 on robot 2 18
14 13 2 on robot 2 13
15 8 2 on robot 1 8
16 3 1 on robot 2 3
17 2 1 on robot 1 2
18 1 6 1 6 1

Table 4.6: Step by step comparison of Q-Learning and SARSA in the same problem

The number of steps per trial, the mean of the average rewards per trial are almost the

same for both approaches.In contrast to that the values of the Q matrix for each method dif-

fer significantly. The values of SARSA are smaller than the values of Q-Learning. Finally

both algorithms may produce optimal solutions to a problem but different, This is due to

the fact that a different approach is used by the algorithms.
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4.8 Improve speed

In order to increase the learning speed of the algorithm and given the compositional

structure of the problem we can reduce the state space. We can consider the robot moving

to pick up and drop off the same action and remove the pick up variable in the state vector.

Hence our resulting state space becomes 25x4. The information of the item, whether is on

the robot or not can be stored in another variable and not in the space vector.

4.9 Conclusions

In this section, two MDP algorithms were developed. Experiments were conducted

about the influence of their variables (γ , ε) to the convergence time, the mean reward and

the values of their variables. Variable γ affects the values of the Q-matrices since it intro-

duces information from the future. The bigger the γ the bigger the information and thus the

values of matrices. Variable ε is used to avoid being greedy in our algorithms. High values

of ε introduce a lot of randomness in the robot’s action which causes it to take non-optimal

decisions. Both variables play a major role in the convergence of the algorithm and their

values should be decided after consideration and experimentation in order to produce good

policies that solve reinforcement learning problems.
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Chapter 5: Simulating motion planning of the Baxter robot

5.1 The Baxter robot and the simulator

In the previous chapters we analyzed the dynamics of the Baxter robot and we dived

into some planning and motion planning algorithms. Based on our previous steps, we now

move on and deal with planning the Baxter robot. As we have already seen, Baxter robot

has 2 arms with seven degrees of freedom (DOF) and series of joint actuators which make

it a unique manufacturing robot. Those joints are composed of a series of elastic actuators

(SEAs) which provide flexibility for control. Baxter has seven rotary joints as shown in the

following figure. Each arm is often referred to as a 7-DOF arm, since motion of the arm

is controlled by seven actuators (motors) that are capable of independent rotation. As we

did with the dynamic model of the Baxter robot where we analyzed just the one arm as the

other one is symmetric, the same will happen with our work here.

We all know that simulation is a technique to replace real life experiences and can be a

technique used for practising and learning and a method of reproducing aspects of real life

in an interactive way. Of course, the best thing one can do before implementing something

in the real world, is to check his work and his results in on a simulator.
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For our work, testing our planner and working with the pre-existing ones, we used a

simulated Baxter humanoid robot.

Gazebo is a powerful simulator that attempts to emulate physics and system dynamics

in a more accurate way. One of the difficult problems in robotics is to define a path for the

motion of a robot’s arms to grasp an object, especially when obstacles may obstruct the

most obvious path of motion. Fortunately, a ROS package called MoveIt! allows us to plan

and then execute a complicated trajectory, taking into consideration the obstacles in our

environment.

Our work was simulated through Gazebo, but mainly through OMPL [26] and Moveit!

[25], and was visualized with the use of RViz package. Due to the fact that we were using

ROS the best way to use OMPL was through Moveit!. Rviz is a 3D visualization package

tool for ROS and we used it to visualize Baxter’s current configuration on a virtual model.

MoveIt! is a very powerful planning framework built into ROS which allows the robot to

plan around obstacles in the environment, among other things. Also MoveIt! comes with a

plugin for the ROS Visualizer (RViz), which allowed us to setup different scenes in which

the robot will work. Moreover it allowed us to generate plans, for which we mainly used

the Open Motion Planning Library. It also gave us the opportunity to visualize any outputs

and interact directly with our simulated Baxter robot.
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5.2 Setting up our environment

In our work we set up, open and use both Moveit! through Rviz and Gazebo simultane-

ously and we simulate the kinematic motion of the Baxter simulator in both platforms. We

use them to display live representations of planning of the Baxter robot.

Due to the fact that the whole setup process by itself is not trivial at all, we will discuss

some crucial steps that had to be made in order to have everything smoothly running.

First of all, we must mention that we used Ubuntu 14.04 for our work. We then installed

the ROS indigo on our machine in order to use Moveit! which is a very powerful planning

framework built into ROS as we mentioned. By ROS installation Rviz was compiled and

build and therefore we could proceed on Moveit! later on. We first installed the latest

version of Gazebo simulator [4] and then Moveit! [25]. In particular we worked with the

indigo version of Moveit! because the kinetic one did not officially support the Baxter yet.

We then incorporated ompl.1.3.0. [26] because that version seemed to have no compatibil-

ity issues with Moveit! and the c++ compiler of ROS. To build our workspace we used a

convenient tool to build code in our catkin workspace. Some packages needed catkin˙make

as they were failing with catkin build and others that fail with catkin˙make needed catkin

build to be compiled, but we also ensured that Moveit! accesses the correct ompl libraries.

Of course there where some smaller impediments that mostly had to deal with compatibil-

ity problems with some libraries and their versions, but in the end were resolved, after a lot
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of attention and re-installing some gazebo packages and compile them in the recommended

way.

After checking all our ROS enviroment variables, we then were ready to launch our

Baxter’s simulator in Gazebo and bring it to life. We then also checked our whole ROS

environment. In order to get everything running we then simultaneously enabled Gazebo,

the robot itself and its tools in it, the joint action server and Moveit!. Thats the only way

one can have things running smoothly.

Having successfully set up our whole environment and our workspace we were able

to work with some preexisting planners and also test our own new one. We managed to

compile all of our planners in ompl with Moveit!.

5.3 Workspace Path Planning and Trajectory Planning

In general the motion planning problem is PSPACE-complete [19], and also there is

no guarantee that a solution can be found in a finite time. Workspace path-planning deals

with manipulation planning in our workspace. First we planned our robotic manipulator,

by specifying the initial and the final position of our end effector in our workspace. Our

objective is to compute a dynamically feasible and collision free plan to achieve our goal.

[13], [15]
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There have been made many approaches [12] on how one can perform a sampling-

based motion-planning such as those that we saw in the previous chapters, like the rapidly

exploring random treet(RRT) [9] or others like RRT* [21],[22], RRT-connect[8] and the

propabilistic roadmap(PRM) framework developed by Kavraki [10]. Other approaches

deal with stohastic transitions[5], others with principal component analysis [3] that have

to do with motion planning in narrow paths [3] and others rely on propability distributions

[7] which extend the propabilistic roadmap (PRM) [10] and result to an undirected graph,

called a probabilistic roadmap.

The PRM algorithm 3 can be separated in two stages, the learning one and the query.

At the first stage PRM samples the configuration space and builds an undirected graph

G = (V,E) which keeps all the information from learning. At the second stage, the algo-

rithm produces a path between qinit and qgoal , with qinit connected to a vertex Vinit and qgoal

to another vertex Vgoal [2],[10].
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Algorithm 3: PRM
Data:
Result: Updated graph components, G

1 V ←− /0;

2 E←− /0;

3 while learning-True do
4 Generate a random configuration c ∈C f ree;

5 V ←−V ∪ c ;

6 Vnv ∈V | Distance(c,v)< M;

7 for ∀ v ∈V in order of increasing Distance(c, v) do
8 if c and v can be connected and do not lie in the same connected component

then
9 E←− E ∪ (c,v)

10 Vs←− v ∈V |Distance(qinit ,v)< M;

11 if ∃ path between qgoal and a vertex in Vs then
12 vs ∈Vs is that vertex;

13 else
14 return failure;

15 Vg←− v ∈V |Distance(qgoal,v)< M;

16 Vg←− v ∈V |Distance(qgoal,v)< M;

17 if ∃ path between qgoal and a vertex in Vs then
18 vg ∈Vg is that vertex;

19 else
20 return failure;

21 Vg←− v ∈V |Distance(qgoal,v)< M;

22 if ∃ path between vs and vg then
23 return solution path (qinit ,vs),P,(vg,qgoal);

24 else
25 return failure;

103



Below at Figure 5.1 and Figure 5.2 we show an instance of our experiments while using

a preexisting planner in OMPL.

(a) Initial pose and end goal (b) Planning phase

Figure 5.1: Baxter robot planning with RRT in a free-obstacle world

(a) Initial pose and end goal (b) After movement completion

Figure 5.2: Baxter robot planning and executing visualized both in Gazebo and Rviz

5.4 Proposed motion planner

We denote our n degrees of freedom configuration space as C⊂ℜn. We then obtain our

free configuration space C f ree. Also the obstacle space Cobs is then obtained from collision
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checking on single configurations, where:

C = C f ree ∪Cobs and C f ree ∩Cobs = 0

As with the planners above we give initial start and end point, with qinit and xgoal ∈

C f ree and we like to find a path from qinit to qgoal . We treat our space C as an Euclidean

and we assume a parameterization of each of our degrees of freedom as an interval subset

of ℜn. Therefore:

C = [cmin
1 ,cmax

1 ]× [cmin
2 ,cmax

2 ]× ...× [cmin
n ,cmax

n ] (5.1)

There have been also other works on reducing the dimensionality in motion planning

[16], [12].

Our planner’s basic method is that searches for a solution in subspaces of progressively

higher dimensions. It searches for a solution in our motion planning problem in the lower

dimensional subspaces of C, hoping that in that way a solution will be found faster without

having to explicitly expand our search graph in all dimensions. We search for every sub-

problem if our system can be reduced. [14]

The planner (algorithm 4), [16] starts its search in the linear one dimensional subspace

of C. If our planner fails to find a solution, then it iteratively expands its search subspace by

one dimension and follows the same pattern search until eventually finds a path or search

the whole C.
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Algorithm 4: RRT+
Data: C,qinit ,qgoal , distance ∆x

Result: graph G

1 G.init(qinit);

2 Csub←− 1−dim subspace of C, through qinit and qgoal;

3 while True do

4 qrand ←− Randcon f ();

5 qnear←− NearestVertex(qrand,G);

6 qnew←− NewCon f (qnear,qrand,∆x);

7 G.addvertex(qnew);

8 G.addedge(qnear,qnew);

9 if done searching Csub then

10 if dim(Csub)< dim(C) then

11 if successful search in Csub then

12 Expand Csub by one dim;

13 else

14 return G

The crucial in this planner is to choose wisely the conditions before moving to the next

subsearch and to be able to select and reproduce our Csub, which is resolved with us keep-

ing each structure that it is created in the lower dimensions and expand it in the subsequent

stages. Of course the question that arises is when we should stop this subspace search [16].

For that, we introduce for our searches a set of timeouts Ti = t1, t2, ..., tn which give us

the time spent for each iteration in the subspaces and let t0 be our base time. If there is a
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successive subsearch that means it will be wise to continue searching even more towards

this direction. Based upon this simple idea we exponentially increase our search in such

subspace, where we had success and stop searching in those that seem unlikely to provide a

solution, having in mind the need for sampling in higher dimensions [16] [12]. We assume

that each ti follows a geometric progression and let T be the time of the timeout of our

whole algorithm. Let λ > 1 be our constant factor that gives us the ratio of the runtime

between successive subsearches, meaning :

ti = λ · ti−1 (5.2)

and because our ti’s are increased geometrically we get:

T =
n

∑
i=1

t0 ·λ i (5.3)

From eq. (5.2) and eq. (5.3) we compute:

t0 =
λ −1

λ · (λ n−1)
·T (5.4)

Our main and initial constraint of the contraction of our subspaces Csub is that they must

include qint to qgoal . We constrain our search in the subspaces by demanding a line passing

from qinit to qgoal . That means having our C ⊂ ℜn we can compute Csub with the above

requirement. We can then sample within C along the line from qinit to qgoal simple as:

qi
rand = (qi

goal−qi
init) ·κ +qi

init (5.5)
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where κ is our random scalar sampling factor, [16]. In the case when a set of con-

strained degrees of freedom, Gcon ⊂ 1, ...,n is given, then one can choose a random point

x in C along line L from qinit to qgoal taking into consideration the possible minimum and

maximum values of κ that those can achieve and sample as follows:

Algorithm 5: RRT+ Samples
Data: qinit , qgoal , Gcon, κmin, κmax

Result: Sample q

1 G.init(xinit);

2 q←− x;

3 for i = 1 : n do

4 if i /∈ Gcon then

5 q[i]←− Random(0,1) · (cmax
n − cmin

i )+ cmin
i ;

6 else

7 search for solution without the use of this DoF

8 return q

Below at Figure 5.3 and Figure 5.4 we show an instance of our experiments while using

our planner after we compiled it in OMPL.
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(a) Initial pose and end goal (b) Planning phase

Figure 5.3: Baxter robot planning with RRT+ in a world with two obstacles and a table

(a) Executing, following trajectory path

(b) After movement completion

Figure 5.4: Baxter robot planning and executing RRT+ visualized both in Gazebo and Rviz
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Chapter 6: Conclusion and Future Work Directions

6.1 Conclusions

In this thesis, we demonstrated a whole path, building concrete steps one can follow

in order to build up the required knowledge to deal with robots and artificial intelligence

planning. A kinematic analysis of a 6-degree of freedom robot and simulation based on it

was implemented. Also dynamic analysis of a 7-degree of freedom robot was made and

planning algorithms were constructed and visualized. Moreover two MDP algorithms were

developed and a variety of experiments were conducted about the influence their variables

(γ,ε) to the convergence time, the mean reward and the values of their variables. Concern-

ing our work that dealt with planning the Baxter itself, work can be done on improving

time planning for high dimensional spaces. One can compute the boundary values, as well

as the cmin and cmax which will give the intersection of the line L between qinit and qgoal . In

general, work can be done on finding a way to sample from projections of arbitrary dimen-

sionality. Last we look forward to implement and run this planner in the real world, with a

real Baxter robot, and see how it performs.
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