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In the heliosheath there are sectors of magnetic fields separated by current

sheets thinner than the ion inertial length and thus subject to the tearing insta-

bility. This instability allows the development of magnetic islands that grow due

to magnetic reconnection. Using PIC (particle-in-cell) simulations, we show that

these islands are relevant because they quickly grow to fill up the space between

the sectors and in the meanwhile generate temperature anisotropies, accelerate par-

ticles, and form instabilities based on the anisotropies. The plasma β (the ratio

of the plasma pressure to the magnetic pressure) of a system can have a large ef-

fect on its dynamics since high β enhances the effects of pressure anisotropies. In

our PIC simulations, we investigate a system of stacked current sheets that break

up into magnetic islands due to magnetic reconnection, which is analogous to the

compressed heliospheric current sheet in the heliosheath. We find that for high β,

and for realistic ion-to-electron mass ratios, only highly elongated islands reach fi-

nite size. The anisotropy within these islands prevents full contraction, leading to

a final state of highly elongated islands in which further reconnection is suppressed.



In the heliosheath there is evidence that these elongated islands are present. We

performing a scaling of the growth of magnetic islands versus the system size. We

thus determine that the islands, although reaching a final elongated state, can con-

tinue growing via the merging process until they reach the sector width. The islands

achieve this size in much less time than it takes for the islands to convect through the

heliosheath. We also find that the electron heating in our simulations has a strong β

dependence. Particles are dominantly heated through Fermi reflection in contracting

islands during island growth and merging. However, electron anisotropies support

the development of a Weibel instability which impedes the Fermi acceleration of the

electrons. In the heliosheath, we predict that energization of particles in general is

limited by interaction with anisotropy instabilities such as the firehose instability,

and by the the Weibel instability for electrons in particular.
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Dedication

To my Dad.

One more step in me asking that familiar question:

“What if you had a magnet ... ?”
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Chapter 1

The Heliosheath

At the outer edges of the solar system, plasma ejected from the sun, known

as the solar wind, encounters extrasolar plasma, known as the interstellar medium

(ISM). Before reaching the ISM the solar wind forms a shock known as the termi-

nation shock (TS). Beyond this shock is the region known as the heliosheath (See

Figure 1.1).

In 1977 the spacecraft, Voyager 1 was launched into space with the primary

objective to investigate Jupiter and Saturn. It set out flying by the planets, and

some of their moons. After several years of fascinating photographs, including the

rings of Saturn, it passed the orbits of Neptune and Pluto. There were no more

planets left to see. Voyager 1 was now entering the vastness of empty space, relying

on particle detectors, magnetometers, and plasma detectors, to see mostly the same

signatures for many years. In 1990 Voyager 1 took one last look at Earth from its

far away vantage point while entering the abyss. At this point, a photo was taken

famously referred to by Carl Sagan as the “Pale Blue Dot.” Voyager 2 followed in

the footsteps of Voyager 1, and was able to investigate Uranus and Neptune as well,

only to meet a similar fate.

In 2004, Voyager 1 encountered the TS [65], fulfilling predictions of theory.

After decades of flying through space, it continued to send back data containing
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vastly different signatures than previous data. In 2007 Voyager 2 joined in the

excitement [9]. Some of the long held theories did not hold up to expectations when

put to the test of reality with the new data from the two spacecraft. For example,

it was predicted that the anomalous cosmic rays (ACRs), energetic particles ∼

10−100MeV, thought to be generated by acceleration at the TS, would peak at the

TS. Now there was new data showing otherwise [65]. There are other examples where

data confirmed predicted results [70]. The flow has been shown to be supersonic

downstream of the TS [47] with respect to the thermal ions, because there is an

additional population of pick-up ions (PUIs) that contributes to the sound speed1.

With all of these new data both predicted and not predicted by theory, it is a

particularly exciting time to discover new theories that might help us model and

understand the outer edges of the solar system.

It has been predicted that the mostly laminar magnetic field carried along with

the solar wind, after entering the heliosheath, begins to break up into a turbulent

mix of so called “magnetic islands” [15, 41, 11]. The description of the reversed

magnetic fields, and associated currents between them, which are required for the

development of islands, will be described in a later section. Unlike the laminar mag-

netic field that can be traced back to the “mainland” of the sun, the magnetic fields

of the islands are largely separated, much like islands in the sea. Throughout this

thesis we will examine this break up due to a process known as magnetic reconnec-

1PUIs are generated when neutral atoms from the interstellar medium, which are unaffected

by magnetic fields, are ionized and then “picked up” by the solar wind. This process generates a

large velocity perpendicular to the magnetic field, giving a thermal energy of around 1keV.
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tion, and how anisotropic velocity distributions contribute to the dynamics of these

islands. We will look at computer simulations that help us understand more about

these heliospheric magnetic islands in terms of their shape, rate of growth, and how

they can accelerate particles. Chapters 4-6 are modified versions of papers either

published [52, 53], or in press.

1.1 The solar wind and the heliosphere

Before 1951 it was thought that interplanetary space was a vacuum save for

isolated clouds of plasma [1]. In 1951, Biermann showed that there is a tail associated

with comets which always faces in the direction away from the sun, and claimed that

the cause of this tail was a stream of charged particles coming from the sun, which

we now call the solar wind [5]. By 1958 this concept of the solar wind was still not

well regarded when Parker published a paper further developing the theory [43].

Parker considered different steady state solutions to a spherical symmetric

plasma density distribution extending from near the surface of the sun to infinity. It

happened that the only solution with a reasonable pressure at infinity also included

a radial outflow of plasma. This radial outflow accelerated up to a constant speed

at large radii.

Satellite measurements confirmed the existence of the solar wind and have

identified a wide variety of dynamics ranging from large scale shocks from coronal

mass ejections to small amplitude waves that heat the expanding plasma. Near

Earth, at 1AU from the sun, the density is on the order of 1 − 10cm−3, with a

3



magnetic field on the order of 1−20nT, and a velocity ranging from 300−1000km/s.

This density is a factor of 10−19 as dense as air, and the magnetic field is 10−6 as

strong as a typical kitchen magnet. Although these numbers are very small, at

large distance scales they play a significant role. When the solar wind reaches the

heliosheath, the density and magnetic field drop to even smaller values; a factor of

1000 in density, and 10 in magnetic field.

The solar wind is not the only plasma in space. Between the stars are clouds

of plasma generated from various astrophysical phenomenon. The matter found out

between the stars is referred to as the interstellar medium (ISM). The solar wind

carves out a bubble inside the local cloud in which the sun is located. This bubble is

referred to as the heliosphere. The boundary between the heliosphere and the ISM

is known as the heliopause.

Since the solar wind tends to blow radially outward at around 400km/s which

is large compared to the sound speed of around 100km/s near 100AU, the plasma was

predicted to form a shock before reaching the heliopause. This shock is referred to as

the termination shock (TS), and was directly observed by both Voyager spacecraft

[47].

It is possible that there is another shock formed by the relative motion of the

heliosphere and the ISM. This shock is the heliospheric bow shock. Figure 1.1 is a

cartoon showing each of these features: the heliosphere, heliopause, TS, heliosheath,

ISM, and the bow shock. The figure also shows the trajectories of the two Voyager

spacecraft which have been making in situ measurements of the heliosheath, and

are now approaching the heliopause.

4



Figure 1.1: Cartoon picture of the heliosphere pointing out the heliopause, TS,

heliosheath, ISM, and bow shock. The trajectories of Voyager 1 and 2 are also

included. (image from NASA, courtesy of Walt Feimer)
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The exact shape of the heliosphere remains unknown, but it is predicted that

the magnetic field pressure, in addition to the ram pressure, of the ISM determines

the shape. The heliosheath becomes elongated along the direction of the magnetic

field [40]. Nevertheless it is still predicted that there is a tail as suggested in Fig-

ure 1.1. Regardless of the shape of the heliosphere, there is a region in between the

TS and the heliopause known as the heliosheath which is the location of interest for

this thesis.

1.2 The Parker spiral

So far we have only considered plasma flowing radially outward from the sun.

In addition to this general concept of the solar wind, there are other important con-

siderations. Namely, there is a magnetic field associated with the solar wind plasma

that plays an essential role in the dynamics of reconnection and island formation,

which will be outlined in the following chapters. The rotation of the sun causes the

field to form a spiral structure, referred to as the Parker Spiral.

The magnetic field of the sun is said to be “frozen-in” to the plasma ejected

from the solar surface. Due to the low resistivity and large spacial scales of the

heliosphere, the magnetic flux that goes through a fluid element will remain con-

stant as the fluid element propagates through space. A derivation of this frozen-in

condition can be found in Appendix A. Because the flux is conserved, it is conve-

nient to consider the magnetic field as a physical entity that moves along with the

plasma, although it is important to keep in mind that the frozen-in condition must
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be satisfied for this picture to hold.

The sun has an associated magnetic field which to first order can be approxi-

mated as a dipole. Like the Earth, the sun rotates around an axis. As the solar wind

moves away from the sun it drags out magnetic fields with it, and these magnetic

fields get wrapped around the sun as it rotates, generating spiral magnetic fields

which point in opposite directions above and below the equatorial plane. Since the

magnetic field at the equator of the sun currently points southward (i.e. the direc-

tion opposite to the axis of revolution of the planetary bodies), this implies clockwise

fields (as viewed from the north) in the northern hemisphere and counterclockwise

in the south. This concept of the spiral magnetic field was predicted in [43].

In Parker’s paper he considers the very simple model of spherically symmetric

outflow and takes a latitudinal cut at θ = θ0, which has magnetic fields attached to

the sun that go out to infinity. In this simple model, there is a steady state solution

in the frame of rotation of the sun at frequency ω. Parker assumes a velocity profile

of.

vr = vm, vθ = 0, vφ = ω(r − b) sin(θ) (1.1)

The radial velocity, vr, is a constant, vm, as predicted for the solar wind without

magnetic fields. The azimuthal velocity, vφ, is ωr sin(θ) since we are in the rotating

frame plus the added constraint that the azimuthal velocity goes to zero at a location

r = b where the solar wind leaves the influence of gravitational forces as well as

acceleration due to the hot corona. If you look at the equator, the outflow follows
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streamlines given by the following equation after integrating the velocity profiles.

r

b
− 1− ln

(r

b

)

=
vm
bω

(φ− φ0) (1.2)

For latitudes above or below the equator, θ > π/2 and θ < π/2, the magnetic fields

either go into or out of the sun. For simplicity Parker looks at the equator, which

gives qualitatively similar results to other latitudes. Since in the rotating frame the

fields are anchored to the sun, and the plasma is frozen into the fields, the magnetic

fields must be aligned with the streamlines of the velocity.

Figure 1.2 shows the streamlines described in Equation (1.2), which are also

the magnetic field lines. In the non-rotating reference frame the spiral pattern spins

transporting the solar wind radially outward at the speed vm.

1.3 Sectored magnetic fields

The change in direction of the magnetic fields above and below the ecliptic

plane must be accompanied by a electric current. This current is found in the solar

wind and is referred to as the heliospheric current sheet (HCS). The solar axis of

rotation and axis of the dipolar magnetic field are not aligned, which causes the

HCS to flap in and out of the equatorial plane. In regions of low latitude, the

magnetic field alternates between sectors of the northern clockwise magnetic field

and southern counterclockwise magnetic field (at the current orientation of the solar

magnetic field) [64].

A cartoon representation of the HCS is shown in Figure 1.3, and shows it sinu-

soidally oscillating in the radial direction. In reality, the sectors are not as regular
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Figure 1.2: The Parker spiral viewed in the ecliptic plane. The lines are streamlines

of the plasma flow, or alternatively magnetic field lines in the frame of rotation

of the sun. These field lines are determined using the model described in Parker’s

paper that coined the term solar wind.
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Figure 1.3: 3D cartoon of the HCS taking into account the discrepancy between

the axis of rotation, and the axis of the dipolar magnetic field. The yellow arrows

represent the direction of the magnetic field above the HCS. (image from NASA

courtesy of J. Jokipii, University of Arizona)
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in length, but they continue to exist throughout the heliosphere. The sectored fields

are found near the equatorial plane but extend out to a significant latitudinal ex-

tent. The magnetic dipole of the sun switches directions roughly every 11 years.

This periodic behavior is known as the solar cycle. The latitudinal extent of the

sectored fields becomes largest while the dipole switches signs.

When the sectored fields separated by the HCS pass through the TS, the HCS

thickness is compressed, and is further compressed as the solar wind velocity slows

on its approach to the HP. This leads to conditions where the frozen-in condition is

violated, and interesting physics, including magnetic reconnection and the formation

of magnetic islands, is predicted to occur. These conditions and physical processes

will be discussed in the next chapter. The computational work described throughout

this thesis is inspired by this configuration found in the heliosheath.

Sectored magnetic fields, are not unique to the solar system. Any magnetized

star with a stellar wind could potentially have them, as long as they have a magnetic

axis, µ, which is not the same as the rotational axis, Ω. One system where sectored

fields are predicted is in pulsar winds. A pulsar is a rapidly rotating neutron star

which has a beam of radiation aligned with its magnetic axis.

Pulsars, analogous to the sun, can have a wind which allows the development

of sectors of oppositely directed magnetic fields. These sectored pulsar winds are

more commonly referred to as striped pulsar winds [62]. Figure 1.4 shows a picture

of these striped pulsar winds, which is an equally valid description for the sectored

fields of the solar wind.
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Figure 1.4: A cartoon of the magnetic field configuration in a striped pulsar wind.

The dotted line is analogous to the HCS. The magnetic fields point inward above

this line, and outward below it. µ represents the magnetic axis, while Ω represents

the rotational axis. Bφ is the out of plane field. (Adapted with permission from

Ref. [Sironi et al. (2011)] by the American Astronomical Society)

1.4 PUIs and plasma beta

Pick-up ions (PUIs) play an important role in the heliosheath and the de-

velopment of reconnection. Throughout the heliosphere neutral ions are ionized

and subsequently picked up by the solar wind and carried towards the heliosheath.

Close to the sun the ions are generated mostly by photo-ionization. After 1AU

charge exchange with solar wind ions dominates.

The density of PUIs increases with distance from the sun, while the density

of cold solar wind ions drops with distance. At the heliosheath, the pressure is

dominated by these PUIs. Although the cold solar wind density is still larger than

the PUI density, the ∼ 1keV PUIs generate significantly more pressure than the
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Figure 1.5: Picture in the solar wind frame of the trajectory of a neutral atom

(blue), which is ionized and follows the new PUI trajectory (red). The green circles

represent magnetic field lines coming out of the page. The small red circle is a cold

solar wind ion trajectory.

∼ 10eV solar wind ions.

In the solar rest frame the neutral atoms have a small velocity ∼ 25km/s.

However in the rest frame of the solar wind, the neutral atoms are moving at the

solar wind speed, ∼ 400km/s. After the atoms become ionized, they begin to orbit

around the magnetic fields. This process can be seen in Figure 1.5 where the blue

neutral atom, is picked up by the magnetic field after ionization. The new PUI
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trajectory (red) has a circular orbit. The energy of the PUIs is much more than the

cold solar wind ions.

An important parameter that determines the dynamics of the plasma in the

heliosheath is the plasma beta,

β =
8πP

B2
, (1.3)

which is the ratio of the plasma pressure to the magnetic pressure. Due to the

PUI population and its influence on the pressure, it is expected that β can be as

large as 10 just past the TS. This means that the magnetic field does not dominate

the dynamics, but rather that the pressure tensor, P, described in Chapter 3 does.

Many of the simulations performed during the work of this thesis investigate how

these large values of β affect the dynamics of reconnection and island formation.

Although this work focuses on the development of magnetic islands in the

heliosheath, the dynamics of island growth and interaction in any high β system

should be similar. A relevant example of a high β system in nature is in accretion

discs. Accretion discs are clouds of gas that orbit a compact object, such as a

neutron star or black hole.

In order for the gas to accrete into the compact object, it must first shed

angular momentum. Since most of these discs are nearly collisionless there is no

significant viscosity to do this. However, most of these accretion discs have a pop-

ulation of ionized gas, and are subject to an instability known as the magnetorota-

tional instability (MRI) [2]. The MRI uses small magnetic fields to transfer angular

momentum outward. The gravitational energy lost as the plasma accretes inward
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is converted into magnetic fields. The MRI thus generates a turbulent mixture of

magnetic fields that can reconnect, form islands, and release magnetic energy in the

form of heat and kinetic energy.
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Chapter 2

Magnetic Reconnection and Magnetic Islands

In the heliosheath, the HCS is compressed to small scales. The conditions are

right for the development of magnetic islands, and the process known as magnetic

reconnection. Magnetic reconnection converts magnetic energy, such as that found in

the sectored fields of the solar wind, into bulk flows, and the heating and acceleration

of particles. In the process of reconnection, the large scale sectored magnetic fields

separate into many individual magnetic islands.

2.1 Breaking the frozen-in condition

One requirement for reconnection to occur is that the frozen-in condition be

violated. The frozen-in condition is derived based on the assumption that

E = −v ×B

c
, (2.1)

where the electric field, E, is expressed as a function of the flow velocity, v, the

magnetic field, B, and the speed of light, c.

The full equation for the electric field, including resistivity, finite mass ratio

effects, and non-Maxwellian particle distributions can be derived from the electron

fluid equation of motion as follows:

E = −v ×B

c
+

1

nec
j×B− 1

ne
∇ · Pe +

me

e2
d j/n

dt
+ η j, (2.2)
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where we use the following additional symbols: the particle density, n, elementary

charge, e, current density, j, the resistivity, η, and the electron mass, me. Pe is the

electron pressure tensor, and is described in more detail in the next chapter.

In many circumstances the additional terms that are found in this equation

beyond that shown in Equation (2.1) are small and thus the frozen-in condition is

satisfied. However, for tearing the frozen-in condition must be violated, and hence

these terms are important.

The four new terms are known as the Hall term, the pressure term, the inertial

term, and the resistive dissipation term, respectively. Each of the last three terms

can potentially break the frozen-in condition.

Although it seems that it might break the frozen-in condition, the Hall term

can be absorbed into the second term transforming the v from the bulk motion of

the ions, to the bulk motion of the electrons. The ions may not be frozen-in to the

magnetic fields, but the electrons remain frozen-in.

2.2 Tearing instability

When there is a sharp change in the direction of magnetic fields over a short

distance, which results in a thin but intense current sheet, an instability can develop

that converts the energy in the magnetic fields into heat, and bulk flows. This

instability is known as the tearing instability, and is the beginning of magnetic

reconnection. Later in this section we will consider at what current sheet width the

instability develops.

17



First we will examine the form of the instability. The sharp change in magnetic

field can be modeled by a magnetic field, B, and density, n, profile known as the

Harris equilibrium [19],

B = B0 tanh(y/w0)x̂ and n = n0 sech
2(y/w0), (2.3)

where w0 is the half width of the current sheet. With a particular constant temper-

ature, T=T0, the total pressure is balanced, but it can be unstable to the tearing

instability. If a perturbation field, B̃ = B̃ sin(kx)ŷ, is added, the instability can

grow. One should note that although the Harris equilibrium is often used in studies

of the tearing instability, in the HCS the magnitude of the magnetic field stays rel-

atively constant, while the direction rotates from the x̂ direction in the asymptotic

region to the ẑ direction in the center of the current sheet.

Figure 2.1 illustrates the magnetic configuration of the tearing instability. The

black lines represent the magnetic fields. Before tearing (with no perturbation field),

the magnetic fields are all in the horizontal direction and switch signs in the center

where the current is located. At this point the entire system consists of open field

lines. After tearing begins (perturbation field included) there are two different topo-

logical regions, the open field lines as highlighted in yellow, and the closed field lines

highlighted in green. This change in configuration cannot happen if the frozen-in

condition holds because the magnetic flux can only transfer from one topological re-

gion to the other when the frozen-in condition is violated. The frozen-in condition is

broken within a current sheet when the thickness becomes small enough, permitting

the topology of the magnetic field to change.
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Figure 2.1: A plot of magnetic field lines around a region exhibiting the tearing

instability. The aspect ratio is distorted so that features in both axes are clearly

visible. The green region is an example of closed field lines, referred to as magnetic

islands. The yellow region is an example of open field lines. An example of an

x-point, and an o-point are labeled in red.
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It is important to consider the different topological regions because they are

important both in the early stages of the tearing instability, and the non-linear

reconnection sites found later in time. The regions of closed magnetic field are

known as magnetic islands, and we will discuss these further later in the chapter.

At the center of each island is an o-point where the in-plane magnetic field goes to

zero, and each island is separated by similar points with zero in-plane magnetic field

called x-points. The field line that separates the two topological regions is known

as the separatrix.

The aspect ratio in Figure 2.1 is exaggerated to show the details of the topology.

In reality, the islands are much longer in the horizontal direction. The tension of the

stretched out fields causes the islands to contract and pull more plasma towards the

x-point from the open field line region. This tension drives the tearing instability.

The tearing instability was originally formulated assuming the frozen-in con-

dition was broken due to collisional resistivity via the resistive dissipation term [18].

The growth rate of the instability scales as.

γ ∼ S−3/5, (2.4)

where S is the Lundquist number,

S =
4πw0cA
ηc2

, (2.5)

and, cA = B/
√
4πmin, is the Alfvén speed.

Therefore the instability is fastest when the thickness, w0, is small compared

to ηc2/4πcA. However, even for large S the instability still occurs, so there is no

thickness that prevents the development of tearing. In many systems in space the
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resistivity is very small, and the system is considered collisionless. The more im-

portant constraint is that the instability only occurs when kw0 ≤ 1, so the current

sheet must be long enough to contain wavelengths that satisfy this constraint. This

constraint must be satisfied regardless of the term that breaks the frozen-in condi-

tion. A derivation of the growth rate of the tearing instability and restriction on k

can be found in Appendix B.

In a collisionless plasma, the pressure term, and the inertial term are the major

contributors towards breaking the frozen in condition, and thus allowing collisionless

tearing. Although the pressure term may be large, only the non-gyrotropic part

of the pressure tensor, described in the next chapter, plays a role. The inertial

term is caused by the finite inertia of the electrons. For collisionless tearing to

occur, a current sheet needs to be compressed to approximately the ion inertial

scale [10, 69]. The ion inertial scale is defined as di = c/ωpi, where c is the speed

of light, ωpi =
√

4πne2/mi is the ion plasma frequency, and mi is the ion mass. An

alternative formulation is di = cA/Ωci, where Ωci = eB/mic is the ion gyrofrequency.

When w0 < di the current sheet becomes unstable to the collisionless tearing mode.

It is useful to know what length scale is expected for collisionless tearing

by calculating the fastest growing wave number of the tearing mode, k. The ion

gyroradius is defined as ρi = vthi/Ωci, where vthi is the ion thermal velocity. In

an analytic study [7], Brittnacher et al. showed that when ρi/w0 ≈ 1, the fastest

growing linear mode occurs at kw0 ≈ 0.5. We will find that the collisionless tearing

mode manifests itself at this length scale in simulations performed in later chapters.

As the tearing mode grows to the nonlinear stage, magnetic flux continues to
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be transfered from the asymptotic field to the magnetic islands in a process known

as magnetic reconnection. As the magnetic islands grow, they tend to merge with

nearby islands and become larger.

2.3 Magnetic reconnection

As islands evolve, they may reach a steady state where the rate of flux transfer

is constant with time. Growth can also be dynamic in which no period of steady

growth appears. Nevertheless, it is instructive to look at the case of steady growth

because it illustrates some important physics, and in some cases does occur in nature

for extended periods of time [45].

Most of the magnetic energy is converted to kinetic energy in the form of heat,

bulk flows, and energetic particles. Consider a flux loop in the shape of a stretched

out oval with length, L, width, w, flux, ψ = B0w, and area A = Lw. The tension

of the field contracts the island to a circular shape. The initial magnetic energy

is ∼ B2
0A/8π. After contracting, A and ψ are conserved. Therefore the magnetic

field strength becomes, B = ψ/
√
A = B0

√

w/L, and thus the new magnetic energy

∼ B2A/8π = (w/L)B2
0A/8π. For a highly stretched island, where w ≪ L, nearly

all of the magnetic energy is released.

By equating the magnetic field energy lost to the outflow energy gained,

B2
0A/8π = minv

2A/2, one finds that v = B0/
√
4πmin = cA. In other words

outflows are Alfvénic. As the bent field lines accelerate away from the x-line at the

Alfvén speed, a depression in the pressure develops at the x-line which pulls in new
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plasma and flux from the upstream open field lines. The process continues, and so

it is self driven and does not require an outside driving force.

For the tearing instability, the frozen-in condition is not satisfied within the

current sheet where the magnetic field changes directions. However, once large

islands develop the frozen-in condition is valid throughout much of the island. The

frozen-in condition is broken only in a region around the x-point. In this dissipation

region, flux can be transfered without a corresponding motion of the plasma.

Reconnection, like the tearing instability, was first formulated assuming the

frozen-in condition was broken by the resistive dissipation term. A process first

presented by Sweet [66], and later refined by Parker [42], described how reconnec-

tion could develop. In their description, the length of the dissipation region, L, is

determined by the system size, while the width, w, is determined by the resistivity.

Since the resistivity is often small in space systems, the aspect ratio was very large.

Due to conservation of mass, the flux into the dissipation region, Lvin, is equal

to the flux out wvout, assuming constant density. Since the outflows are Alfvénic,

we can say vin = (w/L)cA. Thus, for w ≪ L, or large aspect ratio, the inflow of

new flux is slow. We refer to this as slow reconnection.

A later formulation by Petschek [44] predicted an aspect ratio of order unity

allowing for a much faster reconnection. This faster type of reconnection is referred

to as fast reconnection, or Petschek type reconnection.

It turns out that for collisionless reconnection, when the current sheets are

thin enough, as long as the Hall term in Equation (2.2) is accounted for, the aspect

ratio becomes small enough for fast reconnection [6].
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The rate of inflowing flux is referred to as the reconnection rate,

dψ

dt
= vinBup, (2.6)

where Bup is the upstream magnetic field at the boundary of the dissipation region.

In the MHD region outside of the dissipation region, where the frozen-in condition

holds, Equation (2.1), the out-of-plane component of the electric field is equivalent

to the reconnection rate. It can be shown that this out-of-plane electric field is

the same all across a steady state reconnection region in 2D. For a 2D steady state

system (∂/∂z = ∂/∂t = 0), and using Faraday’s law,

∂B

∂t
= −c∇× E, (2.7)

it follows that,

∂Ez

∂x
=
∂Ez

∂y
= 0. (2.8)

Therefore, Ez is uniform across the steady state solution, and the value at the x-

point, where the frozen-in condition is not valid, is also a good measure for the

reconnection rate and is often used as such.

In reality however, reconnection is often not steady state but has secondary

island formation in which dissipation region current layers develop magnetic islands.

The motion and merging of islands then becomes an important feature of reconnec-

tion dynamics.
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2.4 Islands in simulations

Islands form in many different types of simulations of reconnection. As de-

scribed in the previous section, islands will form from small perturbations in a thin

current sheet due to the tearing instability. Some examples of simulations that model

the formation of these islands are particle-in-cell (PIC) simulations, fluid magneto-

hydrodynamic (MHD) simulations with resistivity, and Hall MHD simulations.

Many simulations start with a large perturbation in the current sheet so that

the non-linear stage develops quickly. Around the x-point of these simulations,

secondary islands begin to form. These secondary islands have been found in PIC

simulations [16, 12] and resistive MHD simulations [31, 49, 60].

In PIC simulations the tearing instability can form from the inherent noise

generated by the particles [46, 36, 33]. Recently the formation of islands via this

process has been investigated while working on the problem of reconnection and

magnetic islands in the heliosheath. [15, 41, 52]. The simulations presented in this

thesis are all PIC simulations that begin with a pure Harris sheet equilibrium, and

develop islands from the noise.

In many of these simulations it is assumed that the system is two dimensional.

This assumption implies there is no variation in the direction of the primary out-of-

plane current (Note: There are also in-plane currents). There is often an out-of-plane

magnetic field that threads through these magnetic islands causing helical shaped

magnetic fields. These three dimensional magnetic islands, consisting of a bundle

of wrapped up fields, are referred to as flux ropes.
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Figure 2.2: The plasma density (A) and the average particle energy (B), of a PIC

simulation of a sectored electron-positron plasma. The white arrows represent the

magnetic field lines. A shock that corresponds to the pulsar TS is located around

x = 1000c/ωp. (Adapted with permission from Sironi et al. (2011) [62] by the

American Astronomical Society)

The growth of magnetic islands and turbulence in the out-of-plane direction is

a subject currently under investigation. For the bulk of this thesis we will assume a

two dimensional system, although it can sometimes be helpful to picture the islands

as long flux rope structures.

The striped pulsar winds described in the previous chapter have also been

simulated using a PIC code [62]. Sironi et al. simulate a positron-electron plasma,

and track the development of magnetic islands as striped fields approach the pulsar

TS. Figure 2.2 shows the development of islands along the current sheets. The

centers of the islands gain an enhanced density and thermal energy. After passing

the shock, the islands are space filling. In a similar way, the islands simulated in

this thesis become space filling, although at a small distance past the TS.
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Figure 2.3: A cartoon picture the Earth’s magnetosphere, bow shock, magnetotail,

and regions, labeled in red, where reconnection are likely to occur. (Reprinted with

permission from Day[13]. Copyright 2001, American Institute of Physics.)

2.5 Islands in nature

In nature islands can be found in many systems, from Earth’s magnetic field

to the farthest a man-made object has reached, in the heliosheath.

The magnetic field of the solar wind collides with the plasma contained in the

Earth’s magnetic field much like it does with the interstellar medium (ISM). A bow

shock is generated, and the boundary between the solar wind and the plasma in

the Earth’s magnetic field, akin to the heliopause, is called the magnetopause. The

region within the magnetopause is known as the magnetosphere. This configuration

around the magnetosphere is illustrated in Figure 2.3.

When the interplanetary magnetic field (IMF) points southward, there is a

sharp gradient in the magnetic field across the dayside magnetopause, and magnetic
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reconnection can occur [17]. Islands can form in this system and propagate either

north or south of the equator. In 1977 the ISEE spacecraft measured bipolar sig-

natures of magnetic fields in the direction normal to the magnetopause, which are

indicative of these magnetic islands [48]. These structures measured in the magne-

topause are referred to as flux transfer events (FTEs).

The centers of the FTEs had hotter electrons. In addition the FTEs also

contained an enhanced azimuthal magnetic field, which corresponds to a guide field

that threads through the island allowing it to be a flux rope structure.

As magnetic flux from the sunward side of the magnetopause is reconnected

and propagates over the poles, the night side of the Earth builds up flux. The solar

wind stretches out this flux into a tail like structure known as the magnetotail. The

northern and southern halves of the magnetotail have magnetic fields of opposite

signs. This is another region where the conditions are right for reconnection, and

island formation.

In the magnetotail islands are generated, and are often referred to as plasmoids.

ISEE was also able to detect signatures of these plasmoids in the form of what they

call traveling compression regions (TCRs) [63]. The TCRs consist of a bipolar

signature of the northward component of the magnetic field. In addition the total

magnetic field strength increases as the field is compressed. When the plasmoid

travels away from the Earth, it compresses the fields above and below it.

Another important system where reconnection is believed to occur is in the

solar corona. Massive discharges of energy occur in the solar corona, in events

known as solar flares. The source of this energy is believed to come from magnetic
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Figure 2.4: A cartoon picture of the standard model for solar flares. (Adapted with

permission from Liu et al. (2008)[29] by the American Astronomical Society)
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energy. This magnetic energy can be released through the process of reconnection.

In the standard model of the release of magnetic energy in solar flares, shown in

Figure 2.4, two open regions of magnetic flux (connected to the sun at one end)

pointing in opposite directions compress together creating a current sheet. This

current sheet becomes unstable to tearing, and can release magnetic energy via

reconnection.

It is expected that islands should form in this current sheet and propagate,

both towards and away from the sun. Recently signatures of these islands were

detected by the TRACE spacecraft [59]. While looking at the 195Å filter, dark

tadpole shaped structures propagate towards the postflare loops closer to the surface

of the sun. The density of these signatures are much smaller than the surrounding

plasma and they are unable to produce the same intensity of light.

Recently more detailed pictures of these islands have been detected, by the

SDO spacecraft [51]. Savage refers to the island signatures as supra-arcade down-

flows (SADs), emphasizing that they are cavities rather than high density structures.

She also predicts that the SADs are actually voids behind downward moving islands

rather than the islands themselves, which are predicted to be much smaller. It is

increasingly clear that these signatures are due to islands propagating sunward from

a reconnection event higher up in the corona.
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2.6 Islands in the heliosheath

In most regions in space, the plasma is considered collisionless. At 1AU, using

a density of 6cm−3, temperature of 12eV, and a Coulomb logarithm of 10, the

electron collision frequency is about 3 days [22], and the ion collision frequency is

even longer. For a particle moving at a solar wind speed of 400km/s this corresponds

to a mean free path of ∼ 1AU. Since this density drops by a factor of 1000 in the

heliosheath, and the collision rates are proportional to the density, the assumption of

a collisionless plasma is very well satisfied. However, in the heliosheath the neutral

density from the ISM can be as much as 100 times larger than that at 1AU, and

can cause collisions by charge exchange. The mean free path for charge exchange in

the heliosheath is ∼ 50− 100AU [39]. This scale is larger than the thickness of the

heliosheath, and thus the collisionless assumption is still valid.

There has been research suggesting that the current sheets between the sec-

tored fields found in the heliosheath are compressed to the point that collisionless

reconnection begins to occur, resulting in the formation of magnetic islands [15, 11].

A turbulent MHD model of the reconnection of the sectored fields has also been

proposed [27] although we will argue later that the Voyager data is inconsistent

with this hypothesis.

At low latitude the solar wind is divided by the heliospheric current sheet

into sectors of oppositely directed azimuthal magnetic fields. The thickness of the

current sheet, λ, is around 10, 000km [64] at 1AU, and the separation between each

sector, or the sector width, is around 1AU. The sector width remains nearly con-
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stant, although increasingly variable, out to the termination shock (TS) at ∼ 90AU,

where the supersonic solar wind abruptly slows [4, 8]. For the essentially collisionless

environment of the solar wind λ controls whether collisionless reconnection onsets.

For λ greater than the ion inertial scale, di, reconnection via the collisionless tearing

instability does not take place, while for λ < di it does [10, 69]. Just upstream of the

TS where the ion density is ∼ 0.001cm−3, di ∼ 7200km, which remains smaller than

λ based on measurements at 1AU. Thus, the absence of significant reconnection of

the sector field upstream of the TS is consistent with models, although a definitive

study of λ upstream of the TS remains to be carried out. λ downstream of the TS is

predicted to be 2, 500km based on measurements at 1AU and the shock compression,

while di is 4, 200km based on ion density measurements of about 0.003cm−3 [47].

Thus downstream of the TS the current sheets should begin breaking up into mag-

netic islands and some Voyager 1 and 2 observations support this hypothesis [41].

The distributions of magnetic field density is different for regions with many mag-

netic islands and with sectored fields. We will touch on this and the β dependence

of the magnetic field distributions in Chapter 4.
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Chapter 3

Anisotropies and Instabilities

In the standard picture of an ensemble of particles making a non-relativistic

plasma, collisions cause the distribution of momenta to become isotropic. The pres-

sure is defined as the variance of the momentum. P =
∫

d3p|p − p0|2/(2m)f(p),

where f(p) is the distribution function of particles with respect to momentum, p,

p0 =
∫

d3ppf(p)/n is the average momentum, and m is the mass of the particles.

The fluid is influenced by this pressure, by a force equal to the gradient of the pres-

sure, F = −∇P . In collisionless plasma, on the other hand, the lack of collisions

allows the distribution of the momenta to develop anisotropy. The simple scalar

value of pressure is not enough to describe how the fluid motion is influenced by the

pressure. In this case it is convenient to define the pressure tensor.

P = Pij =

∫

dp3 (pi − p0i) (pj − p0j) /(2m)f(p) (3.1)

The fluid is influenced by this pressure tensor, by a force equal to the divergence of

the pressure tensor, F = −∇ · P.

3.1 Pressure anisotropies and their causes

The motion of particles in the direction perpendicular to the magnetic field is

strongly influenced by the interaction with the magnetic field, due to the Lorentz
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force,

F = q
v ×B

c
. (3.2)

The motion parallel to the magnetic field on the other hand is not affected by the

Lorentz force. It is thus natural to suspect that the forces in the direction of the

magnetic field, which can be described by a scalar pressure, P‖ = B ·P ·B/B2, would

not necessarily be the same as the forces and associated pressures in the other two

dimensions.

In MHD it is assumed that the distribution function is both isotropic and

Maxwellian, f(p) ∼ e−p2/2mT . The idea behind this assumption is that either

classical collisions are large enough to maintain isotropy, or instabilities driven by

anisotropy scatter particles sufficiently to maintain isotropy. In a nearly collision-

less plasma, however, instabilities alone may be unable to maintain isotropy during

reconnection.

One mechanism that can cause a pressure anisotropy is associated with Fermi

reflection in reflecting particles. Once islands develop they begin to contract, si-

multaneously accelerating particles via a first-order Fermi process. This process is

analogous to a ball bouncing between two inwardly moving walls. Each time the ball

(ion or electron) collides with a wall (the end of a magnetic island) it gains energy.

One of the signatures of Fermi acceleration is that the energy gain of a particle

is proportional to energy. In the case of particles bouncing in a magnetic island,

the energy gain occurs in the parallel velocity of the particle and leads to pressure

anisotropies with P‖ > P⊥. Two competing instabilities, Weibel and firehose, can
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be generated by such an anisotropy.

The analogy of particles bouncing off contracting walls is useful, but the phys-

ical mechanism that accelerates the particles needs to be explained. Flow parallel to

an electric field is required for energy gain. When charged particles gyrate around

magnetic fields, the particles tend to drift due to inhomogeneities of the magnetic

field. One such drift is known as the curvature drift,

vCD =
mv2‖c

q

κ×B

B2
, (3.3)

where κ = B · ∇B/B2 is the curvature of the magnetic field. As the particles

encounter the curved magnetic fields of the contracting island, they drift in the

out-of-plane direction. Reconnection generates an out-of-plane electric field, which

is present in regions of the island that satisfy the assumptions of ideal MHD. From

Equation (2.1) it is evident that an electric field develops whenever plasma moves

perpendicular to the magnetic field.

When particles undergo quasi-periodic motion, the period of the motion may

slowly vary with time. If the rate of change is a much longer time scale than the

period of the particles, there is an action variable that remains invariant,

J =

∮

pdq, (3.4)

where q is the variable that varies periodically, p is the canonical momentum asso-

ciated with q, and the integral is done over one full period. These action variables

are known as adiabatic invariants.

A common adiabatic invariant in plasma physics is the magnetic moment,

µ =
mv2⊥
2B

. (3.5)
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In this case a particle gyro-orbits around the magnetic fields, and the action integral

is over one gyroperiod. The adiabatic invariance of µ is another source of pressure

anisotropy. As islands contract, the magnetic field strength within the island drops.

As the field drops, so does the perpendicular velocity due to conservation of µ.

Due to the increase of the parallel velocity due to Fermi acceleration, and the

drop of perpendicular velocity due to µ conservation, the pressure tensor becomes

anisotropic such that P‖ > P⊥.

3.2 The firehose instability

When a magnetized plasma has an anisotropic pressure such that P‖ > P⊥, an

instability known as the firehose instability can develop. This instability converts

the free energy of the pressure anisotropy and converts it into magnetic fields. The

instability is more prominent in systems with large plasma beta, β, the ratio of

plasma pressure to magnetic pressure.

In order to understand the mechanism for the firehose instability it is helpful

to first examine the terms of the standard MHD momentum equation. The MHD

momentum equation is as follows:

min
dv

dt
= −∇

(

P +
1

8π
B2

)

+∇ ·
(

BB

4π

)

, (3.6)

where mi is the mass of an ion, n is the ion density of the plasma, v is the bulk

velocity, P is the plasma pressure, and B is the magnetic field. The left hand side

is the acceleration of a fluid element, while the right hand side expresses the forces

that cause acceleration. The first term is the force due to the gradient of the plasma
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pressure and the magnetic pressure. The second term is caused by the tension

force of the magnetic fields, and is equivalent to B · ∇B/4π. For the well known

MHD waves termed Alfvén waves, the magnetic tension provides a restoring force

for motion of plasma perpendicular to an equilibrium magnetic field.

When an anisotropy is formed with P‖ 6= P⊥ it is necessary to use the pressure

tensor, P. For simplicity we will assume that the plasma is gyrotropic, which means

that:

P =

















P‖ 0 0

0 P⊥ 0

0 0 P⊥

















=
BB

B2
P‖ +

(

I− BB

B2

)

P⊥, (3.7)

where I is the identity matrix. Since the particles rapidly gyro-orbit the magnetic

field, the pressure along any direction perpendicular to the magnetic field is the

same.

The fluid momentum equation along with this anisotropic pressure tensor in

Equation (3.7) becomes

ρ
dv

dt
= −∇

(

P⊥ +
1

8π
B2

)

+∇ ·
[(

1− β‖ − β⊥
2

)

BB

4π

]

. (3.8)

For β‖ = β⊥ the pressure equation reduces to the standard MHD equation. When

β‖ > β⊥ the tension force is reduced. At high β this reduction of tension force is

noticeable for even slight anisotropies in the pressure. For β‖ − β⊥ large enough,

the tension force drops to zero, or even becomes negative. Since the tension of field

lines acts as a restoring force for Alfvén waves in standard MHD, the negative sign

causes this oscillation to become an instability known as the firehose instability [43]
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for:

β‖ − β⊥ > 2. (3.9)

This instability, fueled by the free energy contained in the pressure anisotropy,

causes magnetic field lines to kink, which eventually relieves the pressure anisotropy

by causing scattering. A more detailed derivation is shown in Appendix C.

3.3 The Weibel instability

The Weibel instability forms in the presence of a pressure anisotropy in re-

gions with near zero magnetic field [67], and produces magnetic fields from the free

energy contained in the pressure anisotropy of the unmagnetized plasma. In recon-

nection simulations an instability associated with the Weibel instability can form

[32]. Weibel-produced magnetic fields form in the out-of-plane direction. These

fields can scatter electrons, which isotropizes the electron pressure. Figure 3.1 shows

a heuristic argument of why the instability occurs. The electrons moving to the left

are deflected from the current that separates the oppositely directed fields. The

electrons moving right are focused inward. These effects create a current moving

to the left, which enhances the magnetic field. If there is a temperature anisotropy

with higher temperature along the x direction, more particles are moving in similar

trajectories along the x direction. Thus small magnetic fields perpendicular to the

larger temperature are enhanced. A more detailed derivation is shown in Appendix

D.
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Figure 3.1: Cartoon picture of electron motions at a region where the magnetic fields

change directions. The green circles with dots are magnetic field out of the plane.

The circles with x’s are into the plane. The red lines are electron trajectories.
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3.4 Other instabilities

Alternatively, when β‖ − β⊥ is negative and large enough in magnitude, other

instabilities can occur. The mirror mode instability and the ion cyclotron instability

both occur when P⊥ > P‖. For larger β‖ the mirror mode becomes unstable at

smaller values of |β‖−β⊥| than the ion cyclotron mode, so the marginal mirror mode

criterion acts as the boundary between the stable and unstable regions. Based on

fluid theory assuming Te = Ti [20], the mirror mode instability occurs when

β⊥ − β‖ >
β‖
β⊥

. (3.10)

There are also kinetic modifications that can be made to the marginal insta-

bility criteria for firehose, mirror mode, and ion cyclotron which make them more

accurate. Although a rigorous analytic theory is not available, there are models that

approximate the instability very well [21, 3]. However, for simplicity we will just

consider the conditions based on fluid theory. The changes due to kinetic theory are

only quantitative rather than qualitative in nature.
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Chapter 4

The Shape of Magnetic Islands in the Heliosheath

4.1 Question I: Does plasma β affect the formation of islands?

The previous chapters have described how, after crossing the TS, the HCS

becomes compressed to below the inertial scale and is instable to the formation of

magnetic islands. Reconnection happens at this scale in part because the solar wind

can be well approximated as a collisionless plasma, and thus the reconnection and

island generation should be treated as such. We have described how β is large in

the heliosheath, however, many simulations of reconnection assume a low β.

The important question is whether the conventional treatment of collisionless

reconnection [57] is valid in the heliosheath, where it was suggested that the pick-up

ion (PUI) population increases the plasma pressure compared with values at 1 AU

[70, 47, 68]. Although both Voyager spacecraft are currently taking data in the he-

liosheath, the energy range of the detectors does not cover the PUIs, so it is difficult

to make a reliable estimate of the value for β [47]. Global magnetohydrodynamics

(MHD) simulations suggest, however, that β varies from 8 to 0.5 between the ter-

mination shock and the interstellar medium with the highest β just downstream of

the termination shock [15]. Although this simulation does not include a separate

pick-up ion population, it provides a rough estimate for the expected values for β,

and motivates the range of β in our study. In this chapter we investigate the impact
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of β on the dynamics of reconnection and the formation of magnetic islands relevant

to the sectored heliosheath. We find that the shape of the islands, in particular, the

aspect ratio, is dependent on β.

In this study we simulate several stacked current sheets similar to the com-

pressed sectored heliospheric fields and associated current sheets, and follow the

development of reconnection and islands. We implement this system in a 2D particle-

in-cell (PIC) code, and vary the temperature of the background plasma to test the

dependence on β. We observe that in finite βe systems (βe > 0.5), very elongated is-

lands form as opposed to the modest aspect ratio islands found at low βe (βe < 0.5),

where βe is the β based on the electron pressure. At high β the increased P‖ due to

the Fermi reflection of electrons within islands saturates the normal modest-aspect-

ratio islands. Fermi reflection in highly elongated islands is less efficient because of

the increased bounce time of the electrons so these islands are able to reach finite

amplitude. At late time, however, even these elongated islands exhibit anisotropy

instabilities, from Fermi reflection of both ions and electrons. As a result, late-time

magnetic islands remain highly elongated and do not become round as in the low

β regime. This result has significant implications for the structure of islands that

would be measured in the heliosheath. Although βe is rather moderate in the he-

liosheath, we find a mass ratio dependence suggesting long islands for a broad range

of βe in realistic mass ratios. A large β however may be necessary to sustain the

elongation of these islands.
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4.2 Computational model for sectored fields: Varying β

Our simulations are performed with the particle-in-cell code p3d. The initial

conditions consist of 8 Harris current sheets [19] where the magnetic pressure bal-

ances the plasma pressure. Each Harris sheet consists of a magnetic field profile

B = B0 tanh(y/w0)x̂, and a density profile n = n0 sech
2(y/w0). In addition there

is a uniform background population that has a density of nb = 0.2n0. These sim-

ulations are done in 2 dimensions so ∂/∂z = 0, where ẑ is out-of-plane, parallel to

the initial current. The ŷ direction corresponds to the radial direction and the ẑ

direction corresponds to the northward direction in the heliosheath picture of this

system.

The code uses normalized units. The time scale is normalized to the ion

cyclotron time Ω−1

ci . The distance scales are normalized to the ion inertial length

di = c/ωpi, and thus the velocity is normalized to the Alfvén speed vA. The magnetic

field is normalized to the asymptotic value of the reversed magnetic field B0. The

density is normalized to the peak value of the Harris profile, n0 The pressure is

normalized to P0 = n0miv
2
A = B2

0/4π. The temperature is normalized to T0 = miv
2
A.

In order to vary the β of these simulations we vary the temperature of the

background population Tb. This background temperature is the same for both ions

and electrons. The Harris equilibrium is used to balance the sharp change in the

magnetic field strength across the current sheets, while the background represents

the pick-up ions and has the greatest influence on late time reconnection dynamics.

We performed simulations for β = 0.2, 1, 2, 3, and 4.8, where β is based on the
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pressure in the asymptotic field with density nb. Each simulation was advanced for

a time of 120Ω−1

ci with a time resolution dt = 0.004Ω−1

ci . The simulations are on a

204.8di× 102.4di domain with a grid scale resolution of ∆x = ∆y = 0.05di. In order

to complete such large runs, unless otherwise specified, we used 25 for the mass

ratio of the ions to electrons. This makes it easier to resolve small electron scales.

In order to lessen the separation between the field and particle time scales, we set

the ratio of the speed of light to the Alfvén speed, c/cA, to 25 (in the heliosheath a

more realistic value is near 6000). Reconnection is insensitive to the value of c/cA.

We start with a half thickness for the current sheet w0 = 0.5di, so that collisionless

reconnection can begin from particle noise. The temperature in the Harris sheet is

0.25T0 for both ions and electrons, and there is no guide field. The largest β we

simulated was 4.8 since the electron thermal velocity vthe ≈ 0.7c. Larger β would

begin to have significant unphysical relativistic effects, due to our lowered ratio of

c/cA.

The simulation does not precisely describe the heliosheath but illustrates im-

portant physics that should be found there. The ion pressure in the heliosheath

is much larger than the electron pressure, and thus βe is actually quite moderate

compared with that of the ions. We do not have a separate population of pick-up

ions. The equilibrium magnetic field configuration in our simulation is a Harris sheet

rather than the rotated field configuration (where |B| is constant in a cut through

the current sheet) that characterizes the heliospheric current sheet. However, the

total out-of-plane flux from these layers is small because their width is very small

compared with the total sector width. Thus, this flux should not significantly im-
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Figure 4.1: Normal component of the magnetic field, By, for β = 2, at t = 15Ω−1

ci .

The bipolar signatures in the current sheet indicate the presence of x-lines arising

from the collisionless tearing mode.

pact the dynamics. Future simulations tailored to the specific parameters of the

heliosheath are planned.

4.3 The initial state: How do the islands form, and what sets their

length?

The early development of a run with β = 2 is shown in Figure 4.1. Not

surprisingly a wave mode with kxw0 ≈ 0.5 clearly emerges. The finite β background

plasma does not have a strong effect on the wavelength of linear tearing. During

this time, within the current sheets, an anisotropy in the electron pressure begins

to develop with Pe‖ > Pe⊥. The electrons moving at the thermal velocity are

able to bounce between the two ends of the islands which have lengths of ∼ 6di.
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Comparisons with runs at different β show that at this early time, the lengths of

the islands appear to be insensitive to β.

There are two important time scales controlling the dynamics: the time it

takes for the ions to accelerate to Alfvénic outflow speeds and the time it takes

for a significant electron pressure anisotropy to develop. If electrons bounce several

times between the two ends of a contracting island, an anisotropy develops which

approaches the firehose instability boundary. This is because the bouncing electrons

gain energy in the parallel direction. The time for an electron to bounce off the edge

of an island and then return to its original position is thus a measure of the time

for significant anisotropy to develop.

The tearing instability is driven by the tension in the newly reconnected mag-

netic fields. Since anisotropies cause a weakening of the magnetic tension, the tearing

mode can be suppressed by strong anisotropy within an island.

Reconnecting magnetic field lines, by relaxing their tension, accelerate ions

up to Alfvénic speeds. If several bounces occur during the time required for ions

to be accelerated up to the Alfvénic outflow speed from the x-line, the developing

anisotropy slows the ion outflow and essentially stops the growth of the tearing

mode. However, since the bounce time is proportional to the length of the islands,

the growth of sufficiently long wavelength tearing modes can continue.

Near an x-line adjacent to a growing island, the outflow velocity of ions, to

first approximation, linearly increases with distance (see Figure 4.2) as

vix =
1

ta
x. (4.1)
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Figure 4.2: Ion outflow velocity, vix, versus the position x, for t = 25Ω−1

ci (green),

30Ω−1

ci (red), and 35Ω−1

ci (black) for the β = 2 run. To reduce noise we do a 5 point

smooth of vix in both the x̂ and ŷ directions. The blue curve is a line of slope 0.1,

which corresponds to a convective growth time ta of around 10Ω−1

ci .
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At this point ta is just defined as the inverse slope of the relationship between vix

and x. Since according to Figure 4.2 the slope is constant, this implies that ions

accelerate away from the x-line in an exponential fashion. By integrating, the time,

t, for an ion to accelerate from the initial position, x0, to the final position, xf , can

be obtained.

t =

∫ xf

x0

dx

vix
=

∫ xf

x0

tadx

x
= ta ln

xf
x0

, (4.2)

and thus

xf = x0e
t/ta . (4.3)

An approximate measure for the characteristic time scale for acceleration away from

the x-line up to the Alfvén speed is t ≈ ta, the acceleration time. As seen in

Figure 4.2, the acceleration time at t = 30Ω−1

ci is of order ∼ 10Ω−1

ci . This acceleration

time is approximate, can vary by a factor of as much as 2, and appears to be

insensitive to β.

The bounce time can be estimated based on the thermal velocity of the elec-

trons, vthe, and the length of the island, L:

tb =
L

vthe
=

L

vA

√

1

βe

me

mi

, (4.4)

where βe is the β determined solely from the plasma pressure derived from the

electrons.

Equating the empirical acceleration time ta = 10Ω−1

ci , and the bounce time tb,

Eq. (4.4), a critical island length can be found:

Lcrit ≈ 10di

√

βe
mi

me

. (4.5)
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For islands with L < Lcrit, the anisotropy will stop the tearing instability. Islands

smaller than Lcrit can still form, but they quickly saturate. A similar saturation

was found in [23]. However, in their simulations the size of the computational

domain was 12.6ρi and Lcrit = 100ρi, where ρi is the ion Larmor radius. Thus, the

development of long wavelength islands was not observed.

For the case of β = 2 (βe = 1) and L ≈ 6di, tb ≈ 1.2Ω−1

ci . This time is much

less than the acceleration time, so there is enough time for a significant anisotropy

to develop before a significant x-line is established. This anisotropy can be seen in

Figure 4.3a, which shows the regions from the β = 2 run that are unstable to the

firehose instability. The unstable regions occur inside the islands and stop further

growth of the short wavelength tearing modes. The islands that continue to grow

correspond to longer wavelength, with L ≈ 40di and tb ≈ 8Ω−1

ci ≈ ta. Thus, the

anisotropy develops slowly enough for reconnection to develop. This can be seen in

Figure 4.3b.

4.4 Comparing length prediction with simulation data

As can be seen in Figure 4.4, by t = 51Ω−1

ci , β has a significant influence on

the structure of islands. The islands for β = 0.2 have much shorter wavelength

than for β = 2 and 4.8. In other words there are more locations where reconnection

proceeds in the case of low β. This phenomenon is expected based on the previous

analysis, Lcrit ∝
√
βe. Since Lcrit is proportional to the square root of the mass

ratio
√

mi/me, we expect to find much longer islands in the real mass ratio limit.
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Figure 4.3: Regions where the plasma anisotropy causes instability. White regions

are unstable to the firehose, black regions are unstable to the mirror mode, and red

are stable. The green lines are magnetic field lines. This plot shows one current

layer taken from the β = 2 run at (a) t = 25Ω−1

ci and (b) t = 40Ω−1

ci . The aspect

ratio is distorted to make the islands more visible.
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Figure 4.6: Ion density, ni, for β = 2, along one current sheet between t = 41 and

66Ω−1

ci .

To test this, we perform a β = 0.2 simulation with mi/me = 100. In this case

we reduce the y-domain by a factor of 4 with respect to Figure 4.4a, examining

only two current sheets. We double the resolution in order to resolve the small

electron scales, and reduce the ratio of the speed of light to the Alfvén speed to

15. There is a clear dependence on mi/me shown in Figure 4.5, where we compare

the bottom two current sheets of Figure 4.4a to the new simulation. We find the

islands to be significantly longer, confirming our prediction. Since mi/me ≫ 100 in

the heliosphere, long islands are almost always expected, unless βe is very small.

4.5 Anisotropies: Growth and saturation

As elongated islands grow at high β, anisotropies within them also develop even

though the anisotropies do not suppress island growth. The anisotropy surpasses
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the firehose condition in the center of the islands. These anisotropies are likely

caused by the Fermi mechanism [14]. The dynamics of this acceleration mechanism

will be discussed in chapter 6. The contraction of islands can be seen in Figure 4.6.

The higher density regions inside of the islands move inward at Alfvénic speeds. At

around t = 61 − 66Ω−1

ci the islands begin to kink, which indicates the onset of an

anisotropy instability.

The short wavelength mode is caused by the temperature anisotropy due to the

outflow from the x-line streaming through the plasma entering the exhaust across the

separatrix, and the Fermi acceleration of electrons bouncing in the island. Based on

the similarities in growth rate and other signatures that will be discussed in chapter

6, this mode appears to be associated with the Weibel instability.

The anisotropies that develop during the reconnection simulation do not grow

without bound. In Figure 4.7 we plot the fraction of grid points that are unstable

to the firehose instability. As time advances and the anisotropies begin to form,

the number of grid points unstable to the firehose instability increases. However,

at t ∼ 80Ω−1

ci , the number of unstable grid points begins to saturate. Since it

takes place soon after the onset of the kinking of the islands, the saturation is

likely because the anisotropy is reduced via scattering by the Weibel and firehose

instabilities. Additionally the saturation occurs soon after the unreconnected flux is

exhausted. By 60Ω−1

ci the islands have grown enough so that the islands on adjacent

current sheets begin to interact. This is an additional reason for the saturation of

the firehose unstable area: there is no more space into which the firehose unstable

islands can expand.
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Figure 4.7: Fraction of grid points unstable to the firehose instability vs. time for

β = 0.2, 1, 2, 3, and 4.8.
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Figure 4.8: 2d histogram of anisotropy (α = P⊥/P‖) vs. β‖ for β = 2 at times

from top to bottom t = 80, 120, and 160Ω−1

ci . The blue line represents the marginal

condition for mirror mode instability. Points above this curve are unstable. The red

line represents the firehose marginal stability condition. Points below this curve are

unstable. The color bar represents the number of points with a particular α and β‖.
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At late time the anisotropy of the system is confined within the boundaries

of the marginal firehose (Eq. (3.9)) and mirror mode instabilities (Eq. (3.10)) in a

manner similar to that seen in observations of the solar wind [21, 3] and in earlier

low β current sheet simulations [15]. Figure 4.8 shows the data for our system in

the space of (α,β‖) where α = P⊥/P‖. This plot is generated by calculating the

anisotropy α and the β‖ for each grid point. The plot is a 2-dimensional histogram

of grid points in (α,β‖) space, where β‖ is calculated based on P‖. The parallel and

perpendicular pressures are calculated by taking the diagonal components of the

pressure tensor after rotating into the frame of the local magnetic field, such that the

two perpendicular components are equal. We look at the distribution at t = 80, 120,

and 160Ω−1

ci . At early times the anisotropies have not yet fully developed and the

plasma still occupies a small region in (α,β‖) space. By t = 120Ω−1

ci the anisotropy

has reached the two stability boundaries, and continues to be confined between these

two boundaries at t = 160Ω−1

ci , even as the average β increases. The anisotropy

reaches the stability boundaries at a time after the short wavelength Weibel modes

have dissipated. Since at this point there are no longer large regions with essentially

zero magnetic fields, the firehose and mirror mode instabilities are what determine

the boundaries of the temperature anisotropies. There are no clear signatures of

the classical mirror mode instability at this time. The firehose and mirror mode

instabilities may be hard to distinguish among the turbulent interacting magnetic

islands, or the islands may just stop generating anisotropy as they approach the

instability boundaries.
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4.6 Do long islands last long?

The islands maintain an elongated form for the simulation shown in Figure 4.4c

clear until t = 120Ω−1

ci , the latest time simulated for β = 4.8. This is shown in

Figure 4.9a showing the out-of-plane current for t = 120Ω−1

ci . Since the edges of the

islands are pushing against the firehose instability, the tension force in the magnetic

fields is eliminated. This can be seen in Figure 4.9b which shows the regions that

are unstable to the firehose instability.

4.7 Conclusions about islands at high β

The magnetic islands that reach a significant amplitude are much more elon-

gated at high βe than at low βe. These elongated islands should be found even

for moderate values of βe at realistic mass ratios. Island elongation is caused by

the suppression of the shorter wavelength tearing modes by pressure anisotropies

(P‖ > P⊥) that develop due to the Fermi acceleration of electrons. Later in time the

plasma develops pressure anisotropies of both ions and electrons that are limited by

the firehose and Weibel instabilities. A Weibel mode develops that kinks the mag-

netic field lines. In the regime with a real mass ratio we would expect even longer

islands to form, where multiple wavelengths of the firehose instability could develop.

At late time the fraction of points unstable to the firehose instability saturates, and

the anisotropy is confined between the mirror mode and firehose instability bound-

aries. The long islands persist due to the low requirement of anisotropy to reach

the marginal firehose condition at high β. For even small anisotropies the tension
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Figure 4.9: Out-of-plane current, jz(a), and Stability(b) at t = 120Ω−1

ci for the

β = 4.8 case. White regions in part (b) are unstable to the firehose, and red are

stable.
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in the magnetic fields is removed.

When encountering magnetic islands in the heliosheath, we predict the forma-

tion of similar extended, sausage-shaped islands rather than the more round islands

found in low β simulations [15]. The cores of these islands should also be at the

marginal firehose condition, so the magnetic tension that drives them to become

round vanishes. We would thus expect these sausage shapes to persist long after

the islands have ceased growing, and thus could be found even in regions where

reconnection is no longer occurring.

For the simulations in this chapter there was no out-of-plane guide magnetic

field. In the heliospheric current sheet, the magnetic field rotates from one direction

to the other keeping a constant magnitude rather than passing through zero [64]. A

guide field would cause the center of the islands to have a much lower β since the

magnetic field does not go to zero. Because of this magnetic field, we would not

expect the Weibel instability to develop. In real systems there is frequently a guide

field, so this would be worth further investigation.

4.8 Comparing long island result with Voyager data

These elongated islands exhibit signatures that can be seen in Voyager data.

In particular Voyager measures all three components of the magnetic field. Of

particular interest for the explorations of islands that grow in the ecliptic plane is the

angle λ = tan−1 (BT/BR) where BT and BR are the azimuthal and radial magnetic

fields, respectively. λ = 90◦ and 270◦ correspond to the azimuthal unreconnected
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Figure 4.10: Distribution of λ, at t = 110Ω−1

ci for the (a) β = 0.2 case and (b)

β = 4.8 case. The dotted lines are at λ = 90◦ and 270◦ where we expect to find

peaks in the distribution.
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sectored heliosheath magnetic fields. Deviation of λ from 90◦ and 270◦ indicates

some process is distorting the sectored field. Voyager data shows the distribution of

λ is peaked in the two azimuthal directions λ = 90◦ and 270◦ [41]. These peaks are

significantly broader in the heliosheath than upstream, indicating that reconnection

or another mechanism is disturbing the heliosheath field. The observed Voyager

distribution of λ is consistent with that found in high β simulations[41]. Since the

islands are elongated, the magnetic fields tend to remain primarily in the azimuthal

direction even well after the islands begin to interact with each other. Round islands,

such as would be expected from an MHD model or a low β kinetic model, are

not consistent with observations since they produce much broader λ distributions.

Thus, MHD reconnection [27] in the heliosheath seems to be ruled out. Shown in

Figure 4.10 is the distribution of λ from the simulations at β = 0.2 (Figure 4.4a),

and β = 4.8 (Figure 4.4c) at t = 110Ω−1

ci . The high β simulation which has elongated

islands retains the two peaks at λ = 90◦ and λ = 270◦. The long islands have a

larger magnetic field in the azimuthal direction than the radial, resulting in peaks

in the λ distribution, but the shorter islands become round having a magnetic field

with similar strength in both directions, resulting in a broad distribution in λ. The

loss of tension in a finite β plasma prevents the complete release of magnetic energy

that would be expected in an MHD model. A complete understanding of the β

dependence of magnetic islands is essential in order to obtain reliable signatures

that can be compared with Voyager data.
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4.9 Other applications of high β elongated islands

In astrophysical accretion discs, reconnection plays a role in determining the

saturation of the magnetorotational instability (MRI) [50]. The saturation of MRI is

strongly dependent on the dissipation of the magnetic field due to reconnection. For

the high β in accretion discs, suppression of the most strongly growing small islands

may significantly impact the saturation of the MRI. Since β is typically larger than

100 in these structures, the the only surviving islands would be so long that it is likely

that much of the magnetic free energy would not be dissipated. Further, since the

MRI requires magnetic tension, the absence of tension could limit the development of

the instability. Sharma et al. [55] perform a simulation showing an enhancement of

the growth of MRI due to anisotropies with P⊥ > P‖ , which enhances the magnetic

tension, caused by µ conservation as a magnetic field develops. They do not capture

the physics of reconnection and Fermi acceleration in magnetic islands that would

generate anisotropies with P⊥ < P‖, which removes magnetic tension. These two

competing sources of anisotropy both affect the tension and thus the growth of the

MRI. The relative importance of these mechanisms needs to be explored.

Reconnection at high β, although relatively rare in the terrestrial magneto-

sphere, is also found in the magnetosphere of Saturn [34]. Magnetic islands were

discovered in a region where β is larger than 10. The β dependence of the growth of

finite sized magnetic islands may lead to a better understanding of these findings.

Since the development of elongated islands requires only moderate β, we expect

to see the development of longer islands than expected in lower β systems such as the
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magnetosphere. In contrast to [23], these longer islands can grow to a large enough

size to play a role in magnetospheric dynamics. Since the β of the magnetosphere

is not exceptionally large it is unlikely that the persisting anisotropy is enough to

keep the islands from eventually becoming round.
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Chapter 5

The Scaling of Island Growth

5.1 Question II: Are the islands relevant in the heliosheath?

The growth of islands in the finite plasma β (the ratio of the plasma pres-

sure to the magnetic pressure) heliosheath has been investigated in particle-in-cell

simulations [15, 41, 52]. The predicted island length in the initial phase of reconnec-

tion is around 190di, much smaller than the sector width, 8900di, so it is uncertain

whether islands will grow to the full sector width. Due to computational limitations

it is not possible to realistically simulate the disparate ion inertial and sector scales.

In this chapter, we perform a scaling study of the growth of islands, in which the

inter-current sheet separation (equivalent to the sector width) varies, in order to

understand what happens in the real system. Even our largest simulations have

sector widths that are much smaller than in the actual sectored heliosheath.

The current sheets separating the sectored regions begin to form islands after

crossing the termination shock (TS). As the islands grow, the current sheets are

convected towards the heliopause. The plasma flows outward at around 80km/s

and steadily decreases in speed for 20AU, at which point the radial flow remains

close to zero [26]. The important question which we seek to answer is whether

the islands are able to expand to the sector width before the current sheet reaches

the heliopause. If the islands expand to the sector width, there would be no more
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laminar field that can shield cosmic rays, and cosmic rays could percolate through

the system consisting solely of islands. In addition, the full expansion of the islands

would imply that acceleration mechanisms due to the growth of islands may play a

significant role.

5.2 Simulation setup for scaling

We simulate the growth of magnetic islands using a particle-in-cell code, p3d.

The initial conditions consist of two oppositely directed current sheets in Harris [19]

equilibrium, with a superimposed background density. The initial magnetic fields are

in the x̂ direction, which corresponds to the azimuthal direction in the heliosheath.

The current flows in the ẑ direction, which corresponds to the north-south direc-

tion. The ŷ direction corresponds to the radial direction of the heliosheath. In the

heliosheath the islands are predicted to be highly elongated due to the development

of pressure anisotropy [52]. The elongation is dependent on both the ion-to-electron

mass ratio and the electron temperature. Typical simulations use a reduced mass

ratio in order to reduce computational expenses, which produces much shorter is-

lands than expected for the real system. We therefore use an enhanced temperature

of both the ions and the electrons in the background in order to form more realistic

elongated islands. The ratio of the proton to electron mass in this simulation is

25, and the background temperature is 15 times the Harris sheet temperature of

0.25mic
2
A where mi is the ion mass and cA is the Alfvén speed based on the asymp-

totic magnetic field, B0. The ratio of the speed of light to the Alfvén speed is 25.
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Each simulation has a grid scale resolution of ∆x = ∆y = 0.05di and a time resolu-

tion of dt = 0.004Ω−1

ci , where Ωci is the ion cyclotron frequency. The half thickness

of the current sheet is set to w0 = 0.5di so that collisionless reconnection can begin

from particle noise. We simulate a 2 dimensional system. In 3 dimensional systems

islands form at different z locations and grow along z, eventually stagnating likely

due to interactions with other islands [58, 54]. The significance of this effect in the

heliosheath is unknown.

5.3 Do islands keep growing? Can they reach the sector width?

The time evolution of the largest of these simulations, with dimensions of

409.6di × 102.4di, can be seen in Figure 5.1. By t = 60Ω−1

ci the current sheet

has broken into elongated magnetic islands as predicted in [52] (Figure 5.1(a)).

The length of the islands is smaller than the separation between the two current

sheets, so it is expected that they could not grow to the sector width since circular

islands do not have tension to drive reconnection. However, as can be seen at the

subsequent times (Figure 5.1(b,c,d)), the islands on a given current sheet begin

to merge. Merging lengthens the islands which enables further growth until they

approach the neighboring current sheet.

5.4 How long does it take to reach the sector width?

The islands found in the heliosheath, which are predicted to be much shorter

than the current sheet separation, should in principle grow to the sector width as
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Figure 5.1: Out-of-plane current density, jz, for t = (a) 60Ω−1

ci , (b) 80Ω−1

ci , (c)

120Ω−1

ci , and (d) 160Ω−1

ci For better contrast, all points with |jz| > 1 are assigned

the colors shown for 1 or −1.
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Figure 5.2: Width of the largest island in the lower of the two current sheets versus

time for simulations with dimensions of 102.4di × 25.6di (green), 204.8di × 51.2di

(red), and 409.6di × 102.4di (black). The plus signs denote the point where the

island width reaches 44% of the system size and represents the time when the island

begins to interact with the other current sheet. The blue dashed line is a line of

best fit between these three points. The slope of this curve is the rate of growth at

which the island expands, 0.12cAb.

69



long as the islands are able to continue merging. The aspect ratio of our simulation

box is 4, which was sufficient for islands to continue merging up to the time that

they begin interacting with the neighboring current sheet. We also carried out a

simulation with aspect ratio 2 where the islands stopped merging when their length

approached the system size. The islands saturated and stopped growing when there

was no longer enough magnetic tension to maintain reconnection. The size of the

heliosheath in the azimuthal direction greatly exceeds the sector width. Islands

should therefore grow to the sector width. The next question is how long it takes

for these islands to reach the sector width. In order to establish this time we carry

out a scaling of the time required to grow to the sector width for system sizes

102.4di × 25.6di, 204.8di × 51.2di, and 409.6di × 102.4di.

To determine the size of the island we find the minimum of the flux function ,

ψ where the magnetic field, B = ẑ×∇ψ (x, y) +Bz (x, y) ẑ, along the center of the

lower initial current sheet at a particular time. This minimum corresponds to the

most developed x-point. The upper current sheet has x-points at the maxima. The

line of constant flux that crosses an x-point is known as the separatrix. The distance

between the maximum and minimum y-locations of the separatrix is defined as the

island width, w. Figure 5.2 shows the island width versus time for each of the

simulations. We use the time when the island reaches 44% of the size of the box as

a measure for when the island reaches the neighboring current sheet. At 50% the

island begins to be affected by the presence of the neighboring current sheet. The

best fit line connecting the times when the islands reach the neighboring current

sheet fits very well with the island width versus time for all the simulations.
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The results of Figure 5.2 suggest that the islands grow at a nearly constant

rate that is independent of the system size. Keeping in mind that this number

is based on only three data points, using the slope of the best fit curve we can

obtain an estimate for the rate of growth of the island of around 0.12cAb, where

cAb is the Alfvén speed based on the background density, which is distinct from the

normalization of the code, cA, which uses the peak density of the Harris equilibrium.

If we extrapolate the growth rate to a very large system we can predict a time for

the islands to reach the sector width. Based on a magnetic field, B, of 0.15nT and

density, n, of 0.003cm−3 the Alfvén speed just downstream of the TS is 60km/s.

Using this speed for cAb, and the sector width, W = 0.25AU, we obtain a growth

time, tg, of about 60 days, much less than the plasma convection time across the

heliosheath.

tg = 60 days

(

W

0.25 AU

)

( n

0.003 cm−3

)1/2
(

B

0.15 nT

)−1

(5.1)

Assuming the radial velocity of the solar wind inside the heliosheath is 70km/s

during island growth, this time corresponds to a distance of 2.5AU past the TS.

In addition to the rate of change in the island width being nearly constant,

we find that the reconnection rate is also independent of system size. In Figure

5.3 we look at a similar plot to Figure 5.2, but of the reconnected flux. To find

the reconnected flux we take the difference between the maximum and minimum

of the flux function along the center of the initial current sheet. Based on the

slope of the best fit curve, the reconnection rate was 0.079. Previous scalings of
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Figure 5.3: Reconnected flux in the lower of the two current sheets versus time for

simulations with dimensions of 102.4di × 25.6di (green), 204.8di × 51.2di (red), and

409.6di × 102.4di (black). The plus signs denote the point where the island width

reaches 44% of the system size and represents the time when the island begins

to interact with the other current sheet. The blue dashed line is a line of best

fit between these three points. The slope of this curve is the reconnection rate

0.079B0cA.
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reconnection rate versus system size for conditions with lower plasma β, relevant to

the Earth’s magnetosphere and the 1AU solar wind, have shown comparable rates

[56, 57]. However it is important to note that the reconnection rates shown in [56, 57]

are associated with a steady state reconnection, as opposed to the rate shown here

which includes the complicated dynamics of the merging process as well.

5.5 Conclusions on scaling

In the range of sizes simulated the rate of flux reconnection and the rate of

island growth is nearly constant once reconnection begins. The growth rates are

independent of the system size. It is reasonable to conclude that in a larger system

these trends would continue. The merging of magnetic islands allows the islands

to maintain a high aspect ratio, which maintains the magnetic tension necessary to

drive reconnection. The steady reconnection rate allows for a constant rate of island

growth, resulting in islands with a width that scales like the current sheet separation.

These islands would be fully grown long before reaching the heliopause. The growth

of these islands in the heliosheath is vital for the generation of anomalous cosmic

rays (ACRs) by Fermi acceleration in islands [15]. Since these islands are expected

to be present in the sectored region, and the flux of ACRs is greatly reduced outside

of the sectored region [41] both observations and models suggest that the sectored

heliosheath has broken into magnetic islands.
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Chapter 6

Particle Acceleration in Magnetic islands

6.1 Brief introduction to particle acceleration in reconnection

Energetic particles are often associated with magnetic reconnection. Their

presence is inferred from observations [28] of gamma rays and x-rays that are gener-

ated by the collisions of accelerated electrons and ions with the solar atmosphere [28].

Direct detections of energetic electrons in reconnection outflows have been made in

the magnetotail [37]. When reconnection occurs, many magnetic islands can form.

This can be seen in observations of flux transfer events in the magnetopause [48],

bursty bulk flows in the magnetotail [63], and in supra-arcade downflows in the solar

corona [59, 35, 51]. Recent simulations have revealed energization in this context

through mechanisms such as Fermi reflection within islands[38, 15, 52]. Reconnec-

tion has been suggested as a source for the anomalous cosmic rays found in the

heliosheath [15].

6.2 Question III: Does plasma β affect particle energization in is-

lands?

An effective method for examining the energization of particles is to simulate

several stacked current sheets, which leads to large numbers of interacting magnetic
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islands. This method is particularly relevant to the sectored magnetic fields found

near the ecliptic in the heliosheath [15, 11]. We implement this system in a 2D

particle in cell (PIC) code, and vary the temperature of the background plasma to

test the dependence on β, where β is the ratio of plasma pressure (ion plus electron)

to the magnetic pressure.

Once islands develop they begin to contract, simultaneously accelerating par-

ticles via a first-order Fermi process. This process is analogous to a ball bouncing

between two inwardly moving walls. Each time the ball (ion or electron) collides

with a wall (the magnetic edge of an island) it gains energy. One of the signatures

of first-order Fermi acceleration is that the energy gain of a particle is proportional

to energy. In the case of particles bouncing in a magnetic island, the energy gain

occurs in the parallel velocity of the particle and leads to temperature anisotropies

with T‖ > T⊥. Two competing instabilities, Weibel and firehose, can be generated

by such an anisotropy.

The particle acceleration due to the Fermi mechanism should in principle de-

pend on β [14]. The Fermi mechanism accelerates particles in the direction parallel

to the magnetic field and thus creates a temperature anisotropy. As the anisotropy

grows, the system approaches marginal firehose stability, where the tension of the

bent magnetic fields, and along with it the Alfvén speed, reduces to zero. The

firehose instability occurs when.

1− β‖ − β⊥
2

< 0

Particles gain energy in the Fermi mechanism by bouncing off the Alfvénic flows
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associated with island contraction, which is driven by magnetic tension. As tension

decreases, the outflow velocity from the x-line is reduced and acceleration does as

well. In higher β systems a smaller anisotropy is needed before reaching the firehose

stability boundary and thus particle acceleration should be inhibited. The reduction

of the outflow speed, however, plays less of a role than expected on the β dependence

of acceleration. The tension of the fields goes to zero in some regions, but the regions

where the tension is still large maintain island contraction near the Alfvén speed.

We find that the more important factor is the development of an other anisotropy

instability driven by electrons, the Weibel instability. The Weibel instability devel-

ops in the presence of a temperature anisotropy in regions with near zero magnetic

field [67], and produces magnetic fields from the free energy contained in the pressure

anisotropy of the unmagnetized plasma. In reconnection simulations an instability

associated with the Weibel instability can develop [32]. Weibel-produced magnetic

fields form in the out-of-plane direction. These fields can scatter electrons, which

isotropizes the electron temperature and disrupts the Fermi reflection process and

associated energy gain.

We find that β has a strong effect on the electrons, while ion acceleration is

nearly independent of β, within the range of β studied. Both the electrons and the

ions are accelerated mostly by a first-order Fermi process in contracting islands. The

electrons, however stop accelerating due to the onset of the Weibel instability. The

out-of-plane magnetic fields generated by the Weibel instability keep the electrons

from freely bouncing back and forth and Fermi accelerating. Since the ion gyroradius

is large compared to the length scales of the Weibel generated fluctuations of the
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magnetic field, ions are not significantly affected.

In this paper we first describe the computational model and the parameters

used in our simulations. Next we show individual tracked particles accelerating and

eventually interacting with the Weibel magnetic fields. In addition, we show the

development of the Weibel instability in the simulations along with the confirmation

of the signatures of the Weibel instability in smaller simulations. Finally we draw

some conclusions about what this means for real systems such as the heliosheath

and accretion flows.

6.3 What’s new about the computational model

Our initial setup described in chapter 4 is convenient for examining the growth

of many islands and how particles can be accelerated in this context. In this chapter

we will be discussing the same simulations described in in chapter 4, with additional

identical simulations where we track the most energetic electrons, and ions.

Our full simulations track ≈ 109 particles. Recording the trajectories of all

these particles is not feasible. However, we have recently made upgrades to p3d [24]

that allow us to track the trajectories of selected particles. We used the upgraded

particle tracking code to follow the trajectories of approximately 200 of the most

energetic electrons and ions (178 electrons and 275 ions) for the β = 2 run.
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6.4 Particle heating and β: There is a correlation

In our simulations we investigate the effect of β on a system of stacked current

sheets. Figure 4.4 shows the results of three of these simulations after magnetic

islands begin to develop. The difference in the island lengths is discussed in Chapter

4[52]. However, we also find that there is a β dependence on the heating of the

electrons. The β dependence can be seen in the bulk change in pressure of the

electrons, see Figure 6.1. Individual trajectories of accelerated electrons imply a

scattering mechanism that suppresses acceleration in large β systems. Out-of-plane

magnetic fields generated by a Weibel instability play a role in the scattering of the

electrons.

We explore the heating of the electrons and ions by looking at the average

pressure of the system, P , which can be calculated by taking the trace of the pressure

tensor and dividing by 3. Over time this pressure increases, which is reasonable since

magnetic energy dissipates during reconnection. Strikingly, there is a big difference

between the pressure gains of the ions and the electrons. The pressure gain of

electrons is 4 times less for β = 4.8 than for β = 0.2, while the ion pressure gain is

hardly changed. Since the number of particles is constant, average pressure gains

imply average temperature gains. As seen in Figure 6.1, the amount of heating of

the ions (change in average pressure from that at t = 0), ∆Pi, is nearly independent

of β. The slight dependence observed is expected due the slowing of the outflow

caused by the approach to firehose instability. The electron heating, ∆Pe, on the

other hand is strongly dependent on β. This observation leads to the conclusion
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Figure 6.1: The change in average pressure for β = 0.2, 1, 2, 3, and 4.8, (black, red,

green, blue, cyan respectively) contained in the ions (a) and the electrons (b), where

the pressure is calculated as the trace of the pressure tensor / 3.
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that something is occurring on the spatial scale of electrons.

6.5 Tracking the particles: What energizes them, and what keeps

them under control?

We will examine the trajectory of a typical electron, but in order to understand

the trajectory of the electron itself, we need to look at what the island in which the

electron is located is doing. Figure 4.6 shows islands contracting in the β = 2

simulation for a particular current sheet. The walls of the islands move inward at

Alfvénic speeds, and after t = 60Ω−1

ci the islands begin to show evidence of the

Weibel instability, which will be discussed in the next section. The electron of

interest is located in the island between x = 100 and 150di.

Figure 6.2 shows the trajectory of the electron. As shown in Figure 6.2 (a,b),

before t = 60, whenever the electron changes directions by bouncing off the end of

the island, there is an increase in its energy. As shown in Figure 6.2 (c) the x-velocity

switches to z-velocity each time the bounce occurs. The x̂ direction is essentially

the parallel direction, since the magnetic fields are mostly in the x̂ direction. The

gain in energy is caused by the reconnection electric field which is parallel to the

out-of-plane velocity during the bounce.

After the Weibel instability begins to grow around t = 60Ω−1

ci , the energy stops

increasing. The structure of Bz is shown in Figure 6.2 (e). The structures near the

ends of the island at t < 55Ω−1

ci is first onset of the Weibel instability. The structure

near the center of the island after t = 55Ω−1

ci is the more developed Bz signature
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Figure 6.2: The trajectory of an electron; with (a) the x position vs. t, (b) the kinetic

energy vs. t, (c) v2x (black) and v2z (red) vs. t, (d) v2y (black) and v2z (red) vs. t, and

(e) the out-of-plane magnetic field Bz in a cut along the center of the current sheet

of the island vs. t. The tracked particle is from a run with β = 2, t = 43.5− 80Ω−1

ci .

The green dotted lines are the times where the x velocity changes sign.
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Figure 6.3: The trajectory of an ion; with (a) the x position vs. t, (b) the kinetic

energy vs. t, and (c) v2x (black) and v2z (red) vs. t. The tracked particle is from a

run with β = 2, t = 43.5− 80Ω−1

ci . The green dotted lines are the times where the x

velocity changes sign.

of the Weibel instability. The Weibel magnetic fields divert vx, which is parallel to

the reconnecting field, into vy, which is perpendicular. The primary Bx then rotates

the perpendicular velocity as the particle travels in Larmor orbits. The signature of

this perpendicular velocity can be seen in the y-velocity shown in Figure 6.2 (d).

Figure 6.3 shows the trajectory of an ion in the same island. This ion, unlike

the electron, continues to gain energy throughout the time period where the Weibel
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instability is present. The ion acts in the same way as the electron did before t = 60.

The higher inertia of the moving ions causes the Larmor radius to exceed the length

scale of the out-of-plane Weibel field, allowing the ions to pass through without

being deflected into the ŷ direction.

The trajectory shown in Figure 6.2 is a typical example of energetic electrons

in the system. Nearly all of the tracked electrons are trapped within islands and

gain energy. Many of them are deflected in a similar way. The ion in Figure 6.3 was

chosen to be in the same island as the electron from Figure 6.2, but its behavior is

generally similar to others in the system. Like the electrons nearly all of the ions

were trapped within islands, and gained energy.

6.6 But why is heating β dependent?

To better understand the dependence of the heating with β we examine the

change in the average of the components of the electron pressure tensor from that

at t = 0, ∆Peij . In Figure 6.4 we see the growth of the pressure in the x̂ direction

Pexx for both small and large β. Within islands where much of the temperature

anisotropy develops, the magnetic field is predominantly in the x̂ direction. So

again, x̂ corresponds to the parallel direction in which the Fermi process accelerates

particles. In Figure 6.4 we see that in both low and high β the growth of the

parallel pressure significantly drops around ∆Pexx = 0.05minv
2
A. This drop occurs

at around t = 50Ω−1

ci . In each simulation this drop in growth coincides with the

onset of the Weibel instability. Although the onset is not presented for all values of
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Figure 6.4: The change in average pressure for the electrons for β = 0.2 and 3,

(black and blue respectively), where the diagonal components of the pressure tensor

are shown; Pexx (solid), Peyy (dotted), and Pezz (dashed).
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β, an example of the β = 2 run is seen in Figure 6.2 (e) for one particular island.

The Weibel instability develops for the same value of ∆Pexx for several values

of β, two of which are shown in Figure 6.4. After the drop in growth of the parallel

pressure, the perpendicular pressure begins to rise for all β, two of which are shown

in Figure 6.4. This perpendicular pressure rise is due to the scattering of particles

moving parallel to the magnetic field by the Weibel instability. For the β = 3 case

(the blue curves in Figure 6.4), the scattering causes the growth of the parallel

pressure to essentially stop. For β = 0.2 on the other hand, the scattering is not

sufficient to completely stop the growth. This difference in scattering implies the

heating of particles depends on β.

6.7 Weibel instability spotted

In the regions near the reconnection sites, the outflow streams through the

background plasma, giving rise to an anisotropy. In addition, due to Fermi accel-

eration, anisotropies develop within magnetic islands. In regions of high pressure

anisotropy where the magnetic field is nearly zero, a short wavelength mode grows

(Figure 6.5). This mode is associated with the Weibel instability. A similar Weibel

instability has been found in reconnection simulations [32]. The region of weak

magnetic field is a location where the Weibel instability is more likely to develop

since the instability normally develops in an unmagnetized plasma with anisotropy.

The Weibel instability has a wavevector perpendicular to the direction with higher

temperature. Since the weak magnetic field region is confined above and below by
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Figure 6.5: Out-of-plane magnetic field, Bz. Short wavelength structures are visible

in the low magnetic field regions where the outflow streams through the background

plasma. Zoomed in region is shown in (b). Black box in (a) indicates zoomed in

region. These structures are due to a Weibel instability. This plot is taken from the

β = 2 case at t = 45Ω−1

ci .
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magnetic fields, only half a wavelength can form. The conventional linear theory of

the Weibel instability does not predict the wave vector in the x̂ direction. However,

as shown in Liu et al. [30], a wavevector along the direction of higher temperature

can form such that the gyroradius associated with the magnetic field of the mode

matches the wavelength. In this case the relevant scale is the electron gyroradius.

The out-of-plane magnetic field is approximately 0.3B0, vthe ≈ 8, and me = 0.04 so

the gyroradius is about 1di. This is a quarter of the observed wavelength, consistent

with the prediction of Liu et al.[30].

As anisotropies grow due to the Fermi process, the entire center of the island

becomes unstable to the Weibel instability. As the instability grows into the region

where the magnetic field becomes significant but the length scales are still below di,

whistler dynamics causes the out-of-plane Weibel magnetic fields to rotate into the

page, causing small scale kinking, as shown in Figure 4.6.

6.8 Weibel without reconnection

We have performed small, 25.6di × 51.2di, simulations with a specific initial

temperature anisotropy in order to better understand the development of the Weibel

instability. We use the same space and time resolution as in the larger runs. In these

runs we employ a modified Harris sheet with an initial temperature anisotropy with

higher initial temperature along the x̂ direction (Note that T‖ plays no part in en-

suring pressure balance, so varying it does not change the initial equilibrium). We

take parameters from the late time β = 2 simulation, where the Weibel instabil-
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Figure 6.6: Panels, (a),(b), and (c) are taken from a simulation with a modified

Harris sheet configuration with initial T‖/T⊥ = 3.52. The Bz structure of the Weibel

instability at t = 0.2Ω−1

ci is shown for w0 = (a) 0.5di and (b) 4di. The ky expected

from the Weibel instability is clearly visible in (b) while only half a wavelength fits

in (a) and a non-zero kx becomes evident. In (c), a kinking structure in the ion

density, ni, that appears to be an instance of the Weibel instability at t = 5Ω−1

ci is

shown, for w0 = 0.5di. In (d), plot reveals a similar kinking structure to that seen

in (c) for the β = 2 run at t = 61Ω−1

ci . The overplotted curves in (c) and (d) are

contours of constant magnetic flux.
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ity develops, for which Tb = 1.75T0 (see Figure 6.6). However, in order for the

anisotropy to fully grow, the anisotropy was doubled from T‖/T⊥ = 1.76 to 3.52.

The anisotropy was initiated by varying the temperature in the parallel direction of

the Harris population of both the electrons and the ions, as this is what is observed

in the β = 2 reconnection simulation. Note, however, that the Weibel instability

is only driven by the electron anisotropy. Finally, we performed more simulations

with a variety of anisotropies, for current sheets of width 0.5di and 4.0di, with both

relativistic effects turned on and off. The goal was to demonstrate that the growth

rate of the instability in the simulations matches that of the Weibel instability.

We have reproduced this Weibel phenomenon in our small simulation with an

initial anisotropy. With the enhanced anisotropy the instability develops until the

magnetic fields kink much like what is seen in the larger self generated anisotropy

run. (Figure 6.6c,d).

We had to artificially increase the anisotropy in the small simulation to ≈ 3.5

in order to reproduce the Weibel phenomenon. In the β = 2 reconnection simulation

the anisotropy, T‖/T⊥ ≈ 1.8, is constantly replenished by an influx of plasma from

the x-line, and Fermi acceleration. This enables the instability to grow to finite

amplitude. Since the anisotropy in the test run is quickly exhausted, a much larger

initial anisotropy is needed for the instability to reach large amplitude.
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6.9 Is this instability really Weibel?

The instabilities found in the simulations can be identified as the Weibel in-

stability based on agreement with the predicted Weibel growth rates. The non-

relativistic growth rate of the Weibel instability is determined from

k2yc
2 − ω2 +

∑

α

ω2

pα

(

1− Tαx
Tαy

)

=
∑

α

ω2

pα

Tαx
Tαy

ξα Z(ξα), (6.1)

where

ξα =
ω

ky
√

2Tαy/mα

, (6.2)

Z is the plasma dispersion function,

Z(ξα) =
1√
π

∫ ∞

−∞

exp(−x2)dx
x− ξα

, (6.3)

and α is the species [25]. The growth rate is measured as the imaginary part of the

frequency, ω.

Since the half width of the current sheet is smaller than the predicted wave-

length of the Weibel instability, a clear wave vector along the ŷ direction is not

found. To be certain we are seeing the Weibel instability, we performed a run with

a current sheet half width, w0 = 4di. In this case we observe several wavelengths in

the ŷ direction as predicted for the Weibel instability (see Figure 6.6b). We checked

the growth rate versus anisotropy and it fits very well with the predicted Weibel

growth rate (Figure 6.7). The growth rate in Equation 6.1 depends on both the

temperature anisotropy and the wavelength of the mode. We use the observed ky in

the comparison, although it is generally close to the maximally growing wavenum-

ber, kydi ≈ 3. The growth rate for w0 = 0.5di is a bit smaller than predicted by
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Figure 6.7: Growth rate vs. anisotropy, Tex/Tey. The black plus signs are the growth

rate for w0 = 4di. The blue diamonds have the same w0 but the relativistic effects

in the code are turned off. The red triangles are for w0 = 0.5di. The black curve is

the theoretical non-relativistic prediction for the Weibel growth rate.
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homogeneous theory because the bounding magnetic fields suppress the growth. We

also find that relativistic effects (our electrons have vthe/c = 0.4) also suppress the

growth.

6.10 Conclusions on particle acceleration in high β islands

We find that, based on particle trajectories, first-order Fermi acceleration is

the major source of energetic particle acceleration in our simulations of collisionless

magnetic reconnection. There is a difference between the ion and electron accelera-

tion because the ions are unaffected by the Weibel generated magnetic fields within

the islands while the electrons are scattered. Although we have shown this is the

case for the most energetic electrons, in principle nearly all electrons that have high

enough velocities to bounce between the ends of an island during its formation and

therefore gain energy via the Fermi process. This occurs as long as the speed is

super-Alfvénic. For our simulation with β = 0.2 the thermal velocity vth = 2.5cA so

that most of the electrons are energetic enough to gain energy through the Fermi

process.

In the heliosheath, the fields are closer to a force free configuration around the

current sheet. This means the field strength stays relatively constant rather than

going to nearly zero at the center of the islands. This suggests that the Weibel insta-

bility plays a smaller role. However, since the separation between the current sheets

is rather large (The ratio of the separation to the width is about 17,000 just up-

stream of the termination shock), the total out-of-plane flux is rather small. As the
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islands grow, the out-of-plane field is swept away and replaced by the anti-parallel

flux. The anti-parallel flux leaves a long region with relatively small magnetic field

along the current sheet where the Weibel instability can still develop.

We have demonstrated that at the electron scale, anisotropy instabilities can

limit the acceleration of electrons. In principle, at larger scales, ion scale instabilities

such as the firehose instability would likely develop causing a similar effect on the

ions. However, such an anisotropy also suppresses reconnection and reduces the

drive for anisotropy. Thus, it is unclear whether strong firehose instability sufficient

to scatter ions will take place. We have not yet seen significant ion scattering.

We would thus expect to see a dependence of β on the energetic particles

measured from the Voyager spacecraft. Regions with larger β would be expected to

have fewer energetic particles, since acceleration would be suppressed in that region.

3D MHD simulations of the global heliosphere [15] had predicted that the

pileup of the magnetic field at the heliopause would lead to a region of low β so

that the predictions of the present model could be tested. However, even though the

radial flows of Voyager 1 have dramatically decreased, no buildup of the magnetic

field has been measured. Our interpretation is that reconnection is preventing the

buildup of magnetic field. The unfortunate implication is that no direct comparison

of particle acceleration in different β regimes will be possible with the Voyager

measurements alone.

In accretion discs, the gravitational energy is released, and the plasma gets

heated generating radiation and energetic particles that can be measured. The

gravitational energy release is proportional to the radial-azimuthal component of
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the stress tensor, which transports angular momentum outward and thus allows the

release of gravitational energy. The stress however, is not proportional to the in-

crease in thermal energy. Rather, it is proportional to the magnetic energy. The

generation of magnetic field energy is caused by the magnetorotational instability

(MRI), which is also the source of the stress. The total magnetic field produced

as a result of the release of gravitational energy by the MRI is more than 3 times

the kinetic energy [61]. Since magnetic reconnection is the dominant mechanism

for releasing magnetic energy, our simulations should thus shed light on the how

heating and particle acceleration develop, which would allow comparison with mea-

surements.
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Chapter 7

Conclusion

7.1 Summary of results

We have shown that there is a vastly different picture in the heliosheath than

the conventional understanding. Much of the heliosheath consists of a sea of elon-

gated magnetic island structures. Throughout the course of this thesis we have

shown that magnetic islands in the heliosheath are relevant and are strongly affected

by pressure anisotropies, and enhanced levels of β due to the PUI population. The

shape of the islands is affected, the islands quickly grow to the point of being volume

filling in most of the heliosheath, and energization of particles is limited.

We have shown that at large β, pressure anisotropies form that have a major

impact on the dynamics of island formation, and evolution. The extent of these

anisotropies is limited by the anisotropy levels where anisotropy instabilities begin

to occur. The length of islands forming from a Harris equilibrium is proportional

to the square root of both the electron plasma beta, βe, and the mass ratio, mi/me.

At high β islands are capable of sustaining large aspect ratios without contracting

into a circle.

These magnetic islands take up a significant portion of the heliosheath, because

they continue to grow until they fill the sectored region. We have shown through

a scaling argument that islands should grow to the separation width of magnetic
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sectors in the heliosheath. Note that this means the islands become thousands of

times bigger than the initial di scale islands that form initially. If a current sheet is

long enough compared to the separation width, islands will continue to grow with

large aspect ratios by merging.

Finally we have shown that due to the same pressure anisotropies that cause

high aspect ratio islands, anisotropy instabilities can form. The instabilities can limit

the energization of particles which are energized by the Fermi process in contracting

islands. We also find that there is a β dependence on this limiting of energization.

We identify the Weibel instability, one of these anisotropy instabilities, as growing in

our simulations. The electron energization is limited by the eventual scattering by

Weibel magnetic fields. The anisotropy, P‖/P⊥, cutoff is smaller for large β because,

the instability begins to develop at a value of ∆Pe which is relatively constant.

7.2 Implications and future work

These results imply that magnetic islands should be prevalent in the he-

liosheath. The elongated islands should cause anisotropic distributions of magnetic

fields, so that more magnetic energy is in the azimuthal direction. This is both

something that can be measured, and may have an effect on the transport of the

energetic ACRs. ACRs should diffuse through the heliosheath if it consists of a bath

of magnetic islands. In the case of elongated islands, ACRs should diffuse faster in

the azimuthal direction.

We have concluded that the acceleration of particles should be limited by
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anisotropy instabilities. We should thus be able to see limits on ACR and energetic

electron energy distributions. It is still an open question which instabilities should

play the more significant role. A quantitative measure for the maximum energy a

particle will gain before being scattered by instabilities is yet to be determined.

As mentioned earlier there are other possible systems where magnetic islands

should develop at high β. Theses systems include accretion discs, where the MRI

develops and turbulent generated magnetic fields release energy via reconnection,

in the magnetosphere of Saturn, and even at certain places in the Earth’s magneto-

sphere.
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Appendix A

The Frozen-in Condition

The frozen in theorem states that the magnetic flux through a particular fluid

element remains constant. This means that if you integrate the flux through a

surface, Σ, and follow the motion of that surface due to flow perpendicular to the

magnetic field, the flux remains constant. In other words the total derivative of the

flux is zero,

d

dt
Φ = 0 (A.1)

, where the flux is defined as:

Φ =

∫

B · dA. (A.2)

The total derivative of the flux can then be broken up into the local time

derivative, and the change due to motion of integrated surface,

d

dt
Φ =

∫

∂B

∂t
· dA+

∮

Bv ·
(

dl× b̂
)

, (A.3)

where b̂ is the unit vector in the direction of the magnetic field. The first term

is the change in flux contained in the present surface, Σ. The second term is the

flux added or lost due to the motion of Σ. The flux added is the product of the

component of the magnetic field perpendicular to the normal of the curve enclosing

Σ, dl× b̂, and the fluid velocity. Equation (A.3) can be simplified using the vector

identity A · (B×C) = C · (A×B).
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d

dt
Φ =

∫

∂B

∂t
· dA−

∮

v ×B · dl (A.4)

Now that we have established a condition for the magnetic fields to be frozen

into the velocity field, we will show that this is the case for a reasonable set of

assumptions. Before making any assumptions, we start with Faraday’s law.

∂B

∂t
= −c∇× E (A.5)

For resistive MHD, the generalized Ohms law is:

E = −v ×B

c
+ η j. (A.6)

Inserting Equation (A.6) in Equation (A.5), and integrating over an area, we obtain:

∫

∂B

∂t
· dA =

∫

∇× (v ×B− ηc j) · dA. (A.7)

Using Stokes’ theorem,

∫

∂B

∂t
· dA =

∮

(v ×B− ηc j) · dl. (A.8)

Therefore using the expression for the change in flux from Equation (A.4) we find

that

d

dt
Φ = −

∮

ηc j · dl. (A.9)

For small η the flux following a particular field line is conserved. Generally η is

very small in the solar wind, including the heliosheath. Other terms not present in

the MHD equations, although generally small, can play a role in the breaking the

frozen-in condition in special cases such as regions of reconnection. These terms are

found in the Generalized Ohms law, Equation (2.2).
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Appendix B

The Resistive Tearing Instability

When there is a sharp change in the direction of the magnetic field in a plasma,

an instability known as the tearing instability can form. The tearing instability is a

linear instability that can be derived from the basic incompressible resistive MHD

equations. The two relevant equations are the momentum equation,

mn
∂v

∂t
= −∇P +

j×B

c
, (B.1)

where j = c∇×B/4π, and the induction equation,

∂B

∂t
= ∇× (v ×B) +

ηc2

4π
∇2B. (B.2)

We start with the equilibrium conditions, v0, B0, n0, and P0. B0 is directed

in the x̂ direction and depends only on y. The equilibrium velocity, v0, is zero

everywhere. n0 and P0 are chosen such that the pressure in the current sheet balances

the magnetic pressure associated with the asymptotic magnetic field. Since P0 is

not part of any nonlinear terms, the pressure profile does not play a role in the

instability.

Taking only the first order terms in v, B, n, and P , we obtain the first order

momentum equation,

mn0

∂v1

∂t
= −∇P1 +

(∇×B1)

4π
×B0 +

(∇×B0)

4π
×B1, (B.3)
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and the first order induction equation,

∂B1

∂t
= ∇× (v1 ×B0) +

ηc2

4π
∇2B1. (B.4)

We can assume that the fluid is incompressible because for small perturbations in

velocity, the velocity is small compared to the sound speed. We thus can use the

properties:

∇ · v1 = 0, ∇ ·B1 = 0. (B.5)

Taking the curl of Equation (B.3) conveniently eliminates the pressure term, so

Equations (B.3) and (B.4) are left with two vector equations, and two unknowns,

v1 and B1. We therefore have a closed set of equations. We assume a perturbation

of the form,

A = A(y)eikx+γt. (B.6)

After taking the z component of the curl, Equation (B.3) becomes

γ4πmn0

(

ikvy1 −
∂

∂y
vx1

)

= −ikBx0
∂

∂y
Bx1 − By1

(

k2Bx0 +
∂2

∂y2
Bx0

)

. (B.7)

Using Equation (B.5), we can multiply both sides by k and substitute, kvx1 with

i∂vy1/∂y, and kBx1 with i∂By1/∂y. We are now left with

γ4πmn0

(

ik2vy1 − i
∂2

∂y2
vy1

)

= kBx0
∂2

∂y2
By1 −By1

(

k2Bx0 +
∂2

∂y2
Bx0

)

. (B.8)

After reorganizing, we obtain.

γBx0

(

∂2

∂y2
− k2

)

vy1 = ikc2A

(

∂2

∂y2
− k2 − 1

Bx0

∂2

∂y2
Bx0

)

By1, (B.9)

where c2A = B2
x0/4πmn0. The y component of Equation (B.4) is

γBy1 = ikBx0vy1 +
ηc2

4π

(

∂2

∂y2
− k2

)

By1. (B.10)
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If you examine Equations (B.9) and (B.10), you may notice that By1, and vy1 are

now serendipitously decoupled from the other variables.

The problem is still a set of two second order differential equations, with

coefficients that depend on y, and thus is difficult to solve analytically. To help

solve the problem, we make the assumption that there are three timescales that can

be ordered as follows, τH ≫ τHb ≫ τR[18]. These are the hydrodynamic, hybrid,

and resistive timescales, respectively. Since there is a sharp change in magnetic field

across the current sheet, this can be treated as a boundary layer problem.

Outside of the current sheet, the frozen-in condition holds, and we can neglect

the term that has a factor of η in Equation (B.10), this term changes at a timescale of

τR = 4πw2
0/η, compared to the growth rate, γ, which changes as τHb. In addition we

can neglect the he left hand side of Equation (B.9), because it changes as τHb, which

is slow compared to the right hand side, which changes as τH = w0/cA. We can

solve for the solution on either side of the current sheet and match them together.

We can solve this equation using the constraint that the perturbation must

go to zero as y approaches the asymptotic magnetic field region, where Bx0 is con-

stant with respect to y. In addition By1 must be continuous across the current

sheet, while the derivative does not. For the Harris sheet equilibrium configuration

Equation (2.3), the solutions for positive and negative y are:

By1± = C0e
∓ky

(

1 +
tanh(±y/w0)

kw0

)

. (B.11)

This solution has an unspecified multiplicative constant, C0. In order to re-

move the unspecified constant, it is natural to measure the discontinuous jump in
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the slope of By1 as:

∆′ =

[

1

By1

∂By1

∂y

]0+

0
−

. (B.12)

This term is also known as the tearing stability index. If it is larger than zero the

mode is unstable, while if it is negative the mode is stable. We will show this is the

case below.

For the Harris sheet,

∆′ = −2k

[

1− 1

k2w2
0

]

. (B.13)

Modes are thus unstable when kw0 < 1. This is approximately the case for all

equilibrium conditions.

At this point we have not looked into what breaks the frozen-in condition.

What happens inside the current sheet determines the growth rate. Since we are

using resistive MHD to derive the tearing mode, resistivity breaks the frozen-in

condition, so we will examine the resistive tearing mode.

Inside of the current sheet the y derivative reaches its maximum, such that

∂2/∂y2 ≫ k2 and ∂2/∂y2 ≫ B′′
x0/Bx0. At this point the resistivity is breaking

the frozen in condition, and thus we are looking at the resistive tearing instability.

Equations (B.9) and (B.10) are reduced to

γBx0
∂2

∂y2
vy1 = ikc2A

∂2

∂y2
By1, (B.14)

and

γBy1 = ikBx0vy1 +
ηc2

4π

∂2

∂y2
By1. (B.15)

These equations are not trivial to solve, but after some effort involving Γ
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functions, an expression of the growth rate can be obtained.1

γ ≈ 0.55
(∆′w0)

4/5

τHb

(B.16)

We use the hybrid scale we had defined earlier for the time scale of the growth of

the tearing instability. The hybrid scale now has a more rigorous definition,

τHb = τ
2/5
H τ

3/5
R = τHS

3/5. (B.17)

The growth rate in Equation (B.16) is also a function of the stability parame-

ter, ∆′. Since for a negative number taken to the 4/5 power, the real part is always

negative, the system is damped and therefore stable when ∆′ < 0.

The previous γ is calculated assuming the resistivity breaks the frozen-in con-

dition. This problem can also be solved assuming other terms break the frozen-in

condition, and in that case the growth rate of the collisionless tearing instability is

obtained.

1The 0.55 term comes from the expression, (Γ(1/4)/2πΓ(3/4))4/5
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Appendix C

The Firehose Instability

When there is a pressure anisotropy in the direction of the magnetic field in

a plasma, such that P‖ > P⊥, an instability known as the firehose instability can

develop. The firehose instability is a linear instability that can be derived from

the basic MHD equations with an anisotropic pressure tensor. The two relevant

equations are the momentum equation, Equation (3.8),

mn

(

∂v

∂t
+ v · ∇v

)

= −∇
(

P⊥ +
B2

8π

)

+∇ ·
[(

1− β‖ − β⊥
2

)

BB

4π

]

, (C.1)

and the induction equation,

∂B

∂t
= ∇× (v ×B) (C.2)

We start with the equilibrium conditions, v0, B0, n0, P‖0, and P⊥0. B0 is

directed in the x̂ direction and is uniform. The equilibrium velocity, v0, is zero

everywhere. n0, P‖0, and P⊥0 are all uniform and can be of arbitrary value.

Taking only the first order terms in v, B, n, and P , and defining

ǫ =

(

1− β‖ − β⊥
2

)

, (C.3)

we obtain the first order momentum equation,

mn0

∂v1

∂t
= −∇

(

P⊥ +
B1 ·B0

4π

)

+∇ ·
(

ǫ0
B0B1 +B1B0

4π
+ ǫ1

B0B0

4π

)

, (C.4)

and the first order induction equation,

∂B1

∂t
= ∇× (v1 ×B0) . (C.5)
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The momentum equation can be simlified greatly by looking only at the components

perpendicular to the equilibrium magnetic field.

mn0

∂v⊥1

∂t
= −∇⊥

(

P⊥1 +
B1 ·B0

4π

)

+∇ ·
(

ǫ0
B0B⊥1

4π

)

(C.6)

If we do likewise with the induction equation, Equation (C.5), we obtain:

∂B⊥1

∂t
= ∇‖ × (v⊥1 ×B0) . (C.7)

Taking the curl of Equation (C.4) conveniently eliminates the pressure term. Un-

fortunately, since we have changed from a pure gradient in Equation (C.4) to a

perpendicular gradient in Equation (C.6), this trick does not work anymore. How-

ever, with a slight modification using ∇⊥× in place of the curl we can acheive the

same effect. This transforms Equations (C.6) and (C.5) into two vector equations,

and two unknowns, v⊥1 and B⊥1. We therefore have a closed set of equations.

If we now assume a perturbation of the form,

A = A0e
ik·x+γt, (C.8)

after taking the “perpendicular” curl, Equation (C.6) becomes

iγmn0k⊥ × v⊥1 = −ǫ0k⊥ ×
[

k ·
(

B0B⊥1

4π

)]

= −ǫ0k‖B0

4π
k⊥ ×B⊥1, (C.9)

while Equation (C.7) becomes

γB⊥1 = ik‖ × (v⊥1 ×B0) . (C.10)
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Substituting Equation (C.10) into Equation (C.9), we obtain an equation with only

v⊥1.

γ2mn0k⊥ × v⊥1 = −ǫ0k‖B0

4π
k⊥ ×

[

k‖ × (v⊥1 ×B0)
]

. (C.11)

This can be written a bit more cleanly as

γ2k⊥ × v⊥1 = −ǫ0c2Ak‖k⊥ ×
[

k‖ ×
(

v⊥1 × b̂
)]

. (C.12)

where c2A = B2
0/4πmn0, and b̂ = B0/B0. If we then use the vector identity, A ×

(B×C) = A ·CB−A ·BC, we can simplify further.

γ2k⊥ × v⊥1 = −ǫ0c2Ak2‖k⊥ × v⊥1 (C.13)

This equation generates the dispersion relation:

γ2 = −ǫ0c2Ak2‖ (C.14)

We can see here that when ǫ0 is negative, we obtain a real value for the growth rate,

and thus it is unstable to the firehose instability. If ǫ0 = 1, Equation (C.14) becomes

the standard dispersion equation for Alfvén waves.
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Appendix D

The Weibel Instability

When there is a pressure anisotropy in an arbitrary the direction in a plasma

with a small magnetic field, such that Px > Py, an instability known as the Weibel

instability can develop. The Weibel instability is a linear instability that can be

derived from kinetic theory using the Vlasov equation and Maxwell’s equations,

implementing an anisotropic velocity distribution. We will look into a derivation

of the instability based on one from Krall and Trivelpiece[25]. The two relevant

equations to begin the derivation are the Vlasov equation,

∂fα
∂t

+ v · ∇fα + (E+ v ×B/c) · ∇vfα = 0, (D.1)

and the wave equation based on Maxwell’s equations,

∇× (∇× E) = − 1

c2
∂2E

∂t2
+

4π

c2
∂J

∂t
(D.2)

The α subscript represents the species of interest, for instance electrons or ions. ∇v

is the gradient in velocity space.

We start with the equilibrium conditions, E0 = B0 = 0, and the distribution

function fα = fα
(

v2x, v
2
y , v

2
z

)

. Taking only the first order terms in E, B, and fα, we

assume a perturbation of the form,

A = A0e
ik·x+γt. (D.3)
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From this we are left with the first order equations,

−iωfα1 + iv · kfα1 +
qα
mα

(

E1 +
v ×B1

c

)

· ∇vfα0 = 0, (D.4)

and

−k× (k× E1) =
ω2

c2
E1 +

4π

c2
∂J1

∂t
. (D.5)

These two equations can be combined, by using the definition of J,

J =
∑

α

qαnα0

∫

d3vvfα (D.6)

and we thus obtain,

−k× (k× E1) =
ω2

c2
E1 +

∑

α

4πq2αnα0

mαc2

∫

d3vv
ω (E1 + v ×B1/c)

ω − v · k · ∇vfα0. (D.7)

Using Faraday’s law we can substitute, ωB1/c = k × E1, and use some vector

identities.

k2E1−k·E1k−
ω2

c2
E1−

∑

α

ω2
pα

c2

∫

d3vv
ωE1 + v · E1k− v · kE1

ω − v · k ·∇vfα0 = 0. (D.8)

Now we can simply further remembering that integrating by parts,
∫

d3vvE1 ·

∇vfα0 = −E1.

k2E1−k ·E1k−
ω2

c2
E1+

∑

α

ω2
pα

c2
E1−

∑

α

ω2
pα

c2

∫

d3vv
v · E1k

ω − v · k ·∇vfα0 = 0. (D.9)

We now examine the x̂ component of this equation, which is one of the com-

ponents perpendicular to k = kŷ. Notice the terms with components of the electric

field, Ey1 and Ez1, drop out because we integrate over an odd function in vx. The

distribution function is an even function in vx. Now that we are left with an equation

entirely consisting of Ex1 terms, we arrive at the dispersion relation.

k2c2 − ω2 +
∑

α

ω2

pα +
∑

α

ω2

pα

∫

d3v
kv2x∂fα0/∂vy
kvy − ω

= 0 (D.10)
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We will examine the integral for a particular species, and thus drop the α subscripts.

The integral can be cleaned up by using integration by parts, and then separated

into three integrals, Ix, Iy, and Iz.

∫

d3v
kv2x∂fα0/∂vy
kvy − ω

=

∫

d3v
v2xfα0

(vy − ω/k)2
= IxIyIz (D.11)

For a standard double Maxwellian particle distribution,

f =

(

m

2πTx

)1/2
( m

2πT

)

exp

[

− m

2Tx
v2x −

m

2T

(

v2y + v2z
)

]

. (D.12)

At this point we have made the assumption that the k of the system is perpendicular

to the direction of the anisotropy. We can substitute the distribution function from

Equation (D.12) into Equation (D.11) and thus generate each of the integrals.

Ix =

∫

dvxv
2

x

(

m

2πTx

)1/2

exp

(

−mv

2Tx
v2x

)

=
Tx
m

(D.13)

Iy =

∫

dvy

( m

2πT

)1/2 1

(vy − ω/k)2
exp

(

− m

2T
v2y

)

= −m
T

[1 + ξ Z (ξ)] (D.14)

Iz =

∫

dvz

( m

2πT

)1/2

exp
(

− m

2T
v2z

)

= 1 (D.15)

where

ξ =
ω

k
√

2T/m
, (D.16)

and Z is the plasma dispersion function,

Z(ξ) =
1√
π

∫ ∞

−∞

exp(−x2)dx
x− ξ

. (D.17)

Note that the temperature in the ẑ direction does not show up in the integrated

solution. The instability generated by the difference in temperature between the

k direction and the enhanced temperature direction. If k were in the enhanced
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temperature direction, Tαz would equal Tαx, and we could do the same analysis but

with Tαx < Tα.

We can now substitute our calculated integral into Equation (D.10).

k2c2 − ω2 +
∑

α

ω2

pα

(

1− Tαx
Tα

)

−
∑

α

ω2

pα

Tαx
Tα

ξα Z (ξα) = 0 (D.18)

When Tαx is large enough compared to Tα, ω
2 becomes negative generating an

unstable mode. The terms involving ξα also depend on ω, which makes it more

difficult to determine when the system is unstable. It turns out that by using the

Penrose criterion for stability, we can find that the mode is unstable when

Tex
Te

− 1 >
k2c2

ω2
pe

. (D.19)

The electron temperature dominates because ωpe ≫ ωpi. For a temperature anisotropy

with Tex > Te and k perpendicular to the anisotropy, the Weibel instability can form.

On the other hand, if Tex < Te, or equivalently k is parallel to the enhanced temper-

ature, the system is stable. The Weibel instability is thus expected to occur with k

perpendicular to the enhanced temperature direction. To calculate the growth rate

of the Weibel instability, Equation (D.18) can be solved numerically.
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