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ABSTRACT

We consider the one-step prediction problem for discrete-time linear systems in correlated plant and
observation noises, and non-Gaussian initial conditions. Explicit representations are obtained for the MMSE
and LMMSE (or Kalman) estimates of the state given past observations, as well as for the expected square
of their difference. These formulae are obtained with the help of the Girsanov transformation for Gaussian
white noise sequences, and display explicitly the dependency of the quantities of interest on the initial
distribution. Applications of these results can be found in [5] and [6].
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L INTRODUCTION

We consider the one-step prediction problem associated with the stochastic discrete-time linear dynam-
ical system
Xi = AeXP + Wi,
X5 =¢ t=0,1,... (1.1)
Y = HXP + Vi

defined on some probability triple (2, F, P) which carries the IR"-valued plant process {X;, t = 0,1,...}
and the IR*-valued observation process {¥;, ¢t = 0,1,...}. Here, for all ¢ = 0,1,..., the matrices 4; and H,
are of dimension n X n and n X k, respectively. Throughout we make the following assumptions (A.1)-(A.3),
where
(A.1): The process {(W2,1,V%,), t = 0,1,...} is a zero-mean Gaussian White Noise (GWN) sequence
with covariance structure {T's41, ¢ =0, 1,...} given by

W° E'ur va )
Toppi= Cov( ‘g:) - (25'3?1 z:?ﬁ)’ t=0,1,... (12)

(A.2): Forallt=0,1,..., the covariance matrix Iy, is positive definite; and

(A.3): Theinitial condition £ has distribution F with finite first and second moments i and A, respectively,
and is independent of the process {(W¢y1, Vi%1), t = 0,1,...}. No a priori assumptions, save those
on the first two moments, are enforced on F.

The (one-step) prediction problem associated with (1.1) is defined as the problem of computing, for
each t = 0,1,..., the conditional distribution of the state X7 , given the observations {Yg,...,Y:} or,
equivalently, of evaluating the conditional expectation

E[¢(X241)| Yo,..., Y] (1.3)

for all bounded Borel mappings ¢ : IR® — C, with C denoting set of the complex numbers. In this paper,
we solve the prediction problem (1.3) associated with (1.1)-(1.2).

For each t = 0,1,..., once the conditional distribution of X _; given {Ys,...,Y:} is available, it is
possible to construct the MMSE estimate X4, := E[X{,,| Yo,...,Y:] of X, on the basis of {Ys,...,Y:}.
In general, X;,, is a non-linear function of {Yy,...,Y:}, in contrast to the LMSE (or Kalman) estimate of
X2, on the basis of {Yo, ..., Y:}, which is by definition linear in {Y5,...,Y:}, and which we denote by XX ,.
We shall find representations for both {X;, t = 0,1,...} and {XX, t = 0,1,...}, and then form the mean

square error ¢, := E|| X, — XX||?] for t = 1,2,.... Simply stated, €, is a measure of the agreement between
the MMSE and LMSE estimates of X{ on the basis of {Yp,...,Y;—1}, fort =1,2,...

When the plant and observation noises are uncorrelated, and the observation noise sequence {V;, ¢t =
0,1,...} is standard (i.e., "y =0 and T}, = I, for all ¢ = 0,1,...), the prediction problem posed above
is the discrete-time counterpart of the situation investigated in [4]. In Section II, we briefly outline in the
discrete-time set-up the basic ingredients of the arguments developed in [4]. We then show in Section III
how to modify these ideas in order to solve the prediction problem in the case of correlated noise. Once the
solution to the prediction problem is available, we devote Section IV to the derivation of representations for
{X:, t=1,2,..}, {X¥, t=1,2,...}, and {e&;, t = 1,2,...}. A representation for {X;, t = 1,2,...} is
almost immediate, whereas a representation for {XX, ¢ = 1,2,...} is found from the former by taking the
distribution F' to be Gaussian. For each ¢t = 1,2,..., a simple expression for ¢ is then found by evaluating
the expectation E[}| X, — XX|?].

The objectives of this paper are twofold: First we demonstrate that the technique of [4] carries over
to the correlated noise situation without major difficulties. Moreover, we present expressions for the error
terms {e;, t = 1,2,...} which explicitly display the dependence of the initial distribution F'. These formulae
form the basis for the large time asymptotic analysis carried out in [6] on the error terms {e;, t = 1,2,...}.
Many details have been omitted for the sake of brevity; additional information and material can be found
in the thesis [5].



A word on the notation: For any positive integers n and m, we denote the space of n X m real matrices
by Mg,xm and the cone of n x n symmetric positive-definite matrices by @,. As in [4], for every ¥ in
Q2q, let X3 and By denote generic IR™-valued random variables (RV’s)such that (X, Bg) is a IR*®-valued
zero-mean Gaussian RV with covariance matrix X. For every bounded Borel mapping ¢ : IR"® — C, we define
the mappings T¢ : IR® X IR™ X Qg — C and U : IR® X IR™ X Qp X Muxn X Qa2n — C by

T ¢[z, b; ] := £[¢(z + Xz) exp[d'Bx]] - (14)

and '

1
Ulz, b A, T; D] := E[T h[z + T, & ] exp[b'é - §€'A€]] (1.5)
with the understanding that £ denotes integration with respect to the Gaussian distribution of the RV
(sz BE)'

Throughout, I, denote the unit matrix in My x4, and let O, denote the zero element in A, ,, i.e.,
the n x n matrix whose elements are all zexro. Elements of IR™ are always interpreted as column vectors;
transposition is denoted by ‘.

Let &(-,-) be the state transition matrix associated with {4,t=0,1,...}, i.e.,

8(t,t) = I,

t=0,1,... (1.6
<§(s+1,t)=A.<§(s,t), s=tt+1,... (16)

and let ¥(-,-) be the state transition matrix given by

V(L t)=1I,

t=0,1,... (1.7
V(s +1,t) = [4, — £¥7, (T2,1) "1 H,]¥(s, t). s=tt+1,... ' (1.7)

II. THE FILTERING PROBLEM
I1.1. The main results
We define the Q,-valued sequence {P;, ¢t = 0, 1,...} by the recursions

Piy1 = AP AL — [AP H + TP [He P HY + T3] " AP B + T2 + T,

t=20,1,... .
Po=0, 1 (2.1)

and, for convenience, we introduce the Qy-valued sequence {J¢, t =0, 1,...}, where
Jg = HngHt, + E:+1° t= 0, 1, e (2.2)

The deterministic sequences {Q., t = 0,1,...} and {R;, t = 0,1,...} in My, and Q,, respectively, are
now defined recursively by

Q41 = AeQe — [Ac P H] + TP/ He (Qe + (2, 0)) + T¥7y (THy) "  H 2 (2, 0)

t=0,1,... (2.3
QO - On ( )
and

Rey1 = Re = (Qe + ¥(t,0)) HIJ 1 He (Qe + ¥(2,0)) + ¥/ (¢, 0V H,Ho ¥(2, 0)

t=0,1,... (2.4
R0 =0, , (2.4)
From these sequences, we form the Qa,-valued sequence {I¢, t = 0,1,...} by setting

= (P Q -
2¢_(QZ R:). t=0,1,... (2.5)
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We also generate the IR™-valued processes {X;,t = 0,1,...} and {B;,t = 0,1,...} via the recursive relations

Xey1 = [Ae — [APH: + vn I H) X + [Ae P HL + TP Y,

2 =0 t=0,1,... (2.6)
0=

and
Beyr = Be — Qe+ ¥(t,0)) HIJT Ho X + (Q + ¥(¢,0)) HIJT 'Y

5 —o t=0,1,... (2.7)
o — Y.

The solution to the prediction problem associated with (1.1) can now be given. Define the filtration
{¥:, t =0,1,...} of F as the one generated by the observations {¥;, t =0,1,...}, i.e,

Y i=o{Ys, 11,..., Y2} t=0,1,... (2.8)

Moreover, let T denote the constant mapping IR® - IR:z — 1.

Theorem 1. For any bounded Borel mapping ¢ : IR® — IR and any t =0, 1,..., the relationship

- Ud[Xis1, Bey1; Mey1, ¥(t + 1,0); Deqa)
UI[XH-I) Bt+1; Mt+1) 1I’(t + 1, 0); Eg+1]

E[¢(X241)1D] P —a.s. (2.9)
holds true.

Note that ¥(-,-) = &(-,-) when £¢¢; = O, and T¢,; = I, for t =0, 1, ..., in which case (2.9) reduces to
the discrete-time analog of the results of [4]. We readily see that the structure of the predictor in the general
situation is not markedly different from what would have been obtained in the uncorrelated case. The noise
correlation is encoded in the universal sufficient statistics [4] that parametrize the predictor, but does not
affect the form of the statistics bearing functionals.

I1.2. The discrete-time Girsanov transformation

The proof of these results hinges crucially on a discrete-time version of the Girsanov change of measure
transformation [1}, which is summarized here for easy reference. Let {F¢, ¢t = 0,1,...} be a filtration of F,
and let {U:41, t = 0,1,...} be an IR"-valued zero-mean (F;, P) GWN sequence with correlation structure
Aty1 = E[U41U{ ] for t =0,1,.., i, forall £ =0,1,..., the RV U4, is Fiqi-measurable and

. 1 '
Elexp[i6' Ues1]|Fe] = exp[—EG’AH.lG] t=0,1,... (2.10)

for every 8 in IR®. For any IR"™-valued F:-adapted sequence {x:, ¢ = 0,1,...}, we define the sequences
{Ui41, t=0,1,...} and {L¢, t =0,1,...} taking values in IR™ and IR, respectively, by

Uer1:= Ubgr — Aeraxe t=0,1,... (2.11)

and
¢

1
Lesai= | ] exp | X, Uss1 — X, Ae41Xs t=1,2,...(2.12)
=0 2

with Lo := 1.

Fix a non-negative integer 7', and define a measure Pr,; on (Q, F) by
pT+1(A) = / LT+1dP, Ain F. (2.13)
A

It is easy to see that



(a) The measure Pr,; is a probability measure which agrees with P on Fo, and which is mutually
absolutely continuous with P; in fact, its Radon-Nikodym derivative is given by

dPryy

T = LT+1; (2.14)

(b) Thesequence {U;41, t=0,1,...,T}isazero-mean (F;, Pr,;) GWN process with Er 1[040 4] =}
A¢yyfort =0,1,...,T (where Ep,, is the expectation operator associated with Pr,1); and

(c) The process {L;},t=0,1,...,T+ 1} is an (¢, Pr41)-martingale.

An alternate expression for (2.12) is simply

t

- 1

Lip1:= H exp [X'.U.+1 + Ex',A,.Hx,] . t=1,2,...(2.15)
=0

II.3. The methodology for the uncorrelated case

As noted earlier, the solution to the filtering problem associated with the uncorrelated case can be found
in [4] for the continuous-time version of (1.1). We briefly review the arguments of [4] in the discrete-time
framework of this paper. Throughout the remainder of this section, we assume ¥ =0On and Y, = I,
fort =0,1,..., and fix a positive integer T. A carreful inspection of the solution of [4] reveals that it is
articulated around the following two facts (B.1) and (B.2), where

(B.1): A decomposition of the RV’s {X?, t =0,1,...} of the form
X=Xe+ 27 t=0,1,... (2.16)
with {X, t =0,1,...} representing the effects of the plant noise process {We t=0,1,...} and
{Z:, t =0,1,...} representing the effects of the initial condition .

The most natural such decomposition is described by the recursions

X1 = AcXe + WP,

t=0,1,... (217
Xo=0 (2.17)
and
Zty1 = AeZy
t=20,1,... (2.18

in which case Z; = $(t,0)¢ for t = 0,1,.... However, for any decomposition of the form (2.16) we obtain

}’g = Hng + I,H-l t= 0, 1, e (2.19)

where
Vigr = 1’&_1 + H.Z:. t=0,1,... (2.20)

If {(Wo1, Ves1), t =0,1,...,T} were a GWN sequence under P, the prediction problem associated
with (2.17)-(2.20) would fall within the purview of Kalman filtering. With this in mind, we now use the
Girsanov transformation to find a new measure under which to carry out the calculations.

(B.2): A probability measure P on (Q, F), whick is mutually absolutely continuous with P and which agrees
with P on o{¢}, such that under P, {(W2,;, Ves1), t =0,1,.. ., T} is a GWN sequence independent
of the RV £.

This probability measure P is defined by the Radon-Nikodym derivative

dp L 1w
-5 = exp |- > H,Z,) VY - 3 >[H,2,)(8,2,)| . (2.21)

=0 =0



In view of this last relation, we define the IR-valued RV’s {L;, t =10,1,...} by

Loss 1= exp | € S H.8(s, 001V — 36 S IH.8(s, O [H, (s, 0)l¢ t=0,1,... (2.22)

8=0 8==0

with Lo = 1, and observe that dP/dP = Lr;. We may use this probability measure P to solve our original
filtering problem through the well-known relationship [3, Sec. 27.4]

E($(X2p1) Lzt

E[¢(X241)1Ve] = ElL7L, |74

P —a.s. (2.23)

which holds for each bounded Borel mapping ¢ : IR®* - Candt=0,1,...,T. Here E denotes the expectation
operator associated with P.

We recall that {L;!, t = 0,1,...,T + 1} is an (F;, P)-martingale by virtue of the Girsanov transfor-
mation. Thus, fixing ¢ and t =0, 1,...,T, we see from the law of iterated conditioning that

Ble(xei) 2| v oled] = E[Ble(xe ) B | Feril e v 6]
= B[¢(X241) Lt |Ye v o {€}]

(2.24)

since X?,, is clearly F;1-measurable and Y; C Feq1.

To pursue the discussion, we introduce the IR™-valued RV’s {B:, t = 0,1,...} and the Q,-valued
sequence {M,, t =0,1,...} by setting

¢t
Bepi:= > 8(s,0)H,V, 1 t=0,1,... (2.25)
=0
and .
Myyr:=)  &(s,0) H,H,%(s,0) t=0,1,... (2.26)
=0

with Bg = 0 and Mo = O;. From (2.2d), (2.25) and (2.26), we observe that
- 1
Ly = exp [f’BH-l - -Z-f'Mt+1‘f] t=0,1,... (2.27)
and readily conclude from (2.24) that

B[3(X2,0) 55 % v o16}]

1 t=0,1,... (2.28)
= exp [—EE,MHJ-{] E [¢(X¢+1 + ®(t +1,0)¢) exp {¢' By ] lyg Y 0{{}] .

By property (B.2), we see from (2.17)-(2.19) that under P, the RV’s {X;4+1, Be+1} and {Yo, Y3,...,Y:}
are jointly Gaussian (and independent of the o-field 0{¢}). Motivated by standard facts for Gaussian RV’s
[7, Sec. 2.7], we thus define the MMSE sequences {X;y1, t =0,1,...} and {B¢41, t =0,1,...} by

Xep1 = E[Xe1|Ve] and Beyp = E[Bena|Ve], t=0,1,... (2.29)
with corresponding errors

XH-I = X¢+1 - Xg+1 and BH—I = B¢+1 - Bg.H_. t= 0, 1, “ne (230)
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As in [4], standard arguments [7, Sec. 2.7] imply that the RV’s {X;41, Be+1} are P-independent of ),
whence also P-independent of the o-field Y, v o{¢} since the RV’s {X¢41, Bi41} and {Yo,Y1, ..., Y3} are
P-independent of the o-field 0{¢}. Moreover, under P, the IR**-valued RV (X,41, B:+1) is a zero-mean
Gaussian RV with covariance matrix ;41 given by

- - I
al { Xes1 Xt+1) ] (PH-I Q:+1)
p) =F ~ ~ = . t=20,1,... 2.31
tH [(Bt+1) (Be+1 Qi1 Reqr ' (2.31)
Clearly, the matrices P11, Qi+1 and Riy1 are elements of Qn, Mpxn and Q,, respectively, with the
interpretation that

Py = E-'[X:HX{H], Qi+1 = [X:+1B¢+1] and Riyp = [Bg+1B,+1] (2.32)

The RV’s X1 + (¢ + 1,0)¢, Beyy and ¢ are all ), v o{£}-measurable, and from the remarks made
earlier, we conclude [2, Prop. 6.1.15] through (2.28) that

B[8(x20) 35 |9 v 016

. t=0,1,... (2.33)
= exp ["'é‘f’MHlf + f'Be+1] T¢ [Xewr + 3(t + 1,006, £ S
where the mapping 7'¢ is defined by (1.4).
From (2.33), we now readily obtain by the law of iterated conditioning that
_ dP
° S ———
Bl¢(x2) 35 |7]
- 1 = = =
=F [exp [—Ef’Mt+1£ + E'Bt+1] To [Xepr +B(t + 1,0)¢,£; et l)’:] t=0,1,... (234)

=U¢ [Xt-f-h Bey1; Mesr, (2 + 1,0); Eg+1]

where the mapping U¢ is defined by (1.5). We have used the fact that the RV’s {X;y1B:1} are Yi-
measurable and therefore P-independent of o{¢}. The reader will readily check that substitution of (2.34)
(with arbitrary ¢ and with ¢ = I) results in (2.9) since ¥(-,.) = &(-,) under the assumptions Ly = O,
and I7,; = I, for t = 0,1,..., made here. ]

IITI. THE CORRELATED CASE

We now show how the arguments outlined in the preceding section for the uncorrelated case need to
be modified so as to handle the correlated case as well. Let T be a fixed non-negative integer, and consider
a decomposition of {X?, ¢ = 0,1,...} of the form (2.16), and define {V;41, ¢t = 0,1,...} by (2.20). If
V.1 = Op fort =0,1,..., we would arrive at the probability measure P characterized by property (B.2)
as follows: Define the filtration {F;, t =0,1,...} by

Fepr:=Fova{Vl,, s=0,1,...,t} t=0,1,...(3.1)

with Fo 1= o{¢, W2, s =0,1,...}, and observe that the sequence {V;%,, t = 0,1,...} is an (F;, P) zero-
mean GWN sequence. The Gu:sa.nov transformation implies that P as defined in (2.21) enjoys property
(B.2). However, if 5%, # O, for ¢t = 0,1,..., then the sequence {V%,;, t = 0,1,...} is not necessarily an
(#¢, P) zero-mean GWN sequence because now the sequence {V{%,, ¢t = 0,1,...} may not be independent of
Fo, in which case P given by (2.21) need not enjoy property (B.2).

We may overcome this difficulty when the plant and observation noise sequences have an arbiirary covari-
ance structure by performing a Girsanov transformation on the joint IR***-valued sequence {(W2, 1, V%), t =]
1,...}. With this in mind, we change the definition (3.1) to read instead
Fepri=FoVo{Wiy, Vo, s=0,1,...t} t=0,1,... (3.2)
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- with Fp := 0{¢}. We now define the IR**+*-valued sequence {(Wi41, Vi4+1), £ =0,1,...} by

Wi\ _ [ Wi T T [ -

(Vt+1)_(vtgl—1)—(2?$1 2?:1)(‘»"3) E=0L. (33)
where {p¥, t = 0,1,...} and {¢?, t = 0,1,...} are F,-adapted sequences taking values in IR" and IR,
respectively, which we yet have to specify. Reviewing the Girsanov transformation, we see that for any two
such sequences {p¥, t = 0,1,...} and {9}, t = 0,1,...} if we define {(Wi41,Vi41), t =0,1,...} by (3.3),

we can find a probability measure P on (2, F) satisfying (B.3) where
(B.3): The probability measure P is mutually absolutely continuous with P and agrees with P on Fo.
Furthermore, {(Wi41, Vet1), t =0,1,...,T} is a zero-mean (F;, P) GWN sequence with the same
covariance structure under P as the covariance structure under P of the original noise sequence

{(W1, Vi), t=0,1,..., T}

Now if we impose the constraints (2.20), the sequences {¢¥, t =0,1,...} and {o}, t =0,1,...} in (3.3)
must necessarily have the form

of =@ and @] = —(Th,1)  ETV0 + HeZe) t=0,1,... (3.4)

for some unspecified F;-adapted sequence {(pg, t=0,1,...} taking values in IR™. Injecting (3.4) into (3.3),
we obtain

Wg+1 Wt+1 + 2‘_:1(2 +1) HtZt[zt+1 i E,+1(E,+1) 12‘+1] t = 0, 1, PR (35)

and the appropriate probability measure P given by the Girsanov theorem and satisfying (B.3) is then
defined by

= T
dP v v
-5 = ¢XP Z AU z:+1(2.+1) Vorl — Z,H,(Z] +1) +1
dP yrs
(3.6)

+3 Z[‘pa[zaﬂ v (B0,)7 8 )e, + Z,H(20,,) " H, Z, ]]

n..O

In order to complete the specification of the decomposition (2.16) and of the probability measure (3.6),
we must specify {X¢, t =0,1,...}, {Z, t =0,1,...}, and {g¢, t = 0,1,...}. To that end we rewrite the
evolution of {XJ?, t = 0,1,...} in terms of {X,, t =0,1,...}, {Z:, t =0,1,...} and {Wy41, t =0,1,...}.
Since we wish to use the properties of P, it is more natural to write this evolution in terms of {W;44, t =

1,...} rather than in terms of {W,_;, t =0,1,...}, and this leads to

Xer1 + Zevr = Xy
= AcXP + Wiy
= A X: + Z¢) + Wigr — Tp0 (Z841) 1 He Ze
+ (B - TP (Bl 12t+1]‘Pt
= AeXe + [Ar — TP (T841) T He 2 + Wi
+ [EF1 — T (S2) T S e

t=0,1,... (3.7)

This suggests a separation of the dynamics in the form

Xepr = At Xe + Weir + [SP1 — S8(T81) T E0]we —

X0 ¢ t=0,1,... (3.8)

and 1
Zey1 = [Ae = TP (Z841) " HelZe + 7

Zo=€—¢



where ¢ and {m, t =0,1,...} are IR®-valued RV’s yet to be specified. We shall simply assume that
ge=0, m=0 and (=0, t=0,1,... (3.10)

At this point, a summary of the relevant quantities is in order under the constraints (3.10).
¢ The effect of the initial condition

Zip1 = [Ae — TP (ZY44)” 1H.)Z,

t=0,1,... (3.11
ZO - Ea ( )
which may also be written as Z, = ¥(t,0)¢ fort =0,1,....
e The noise processes
(W:H) - (Wt°+1) _ (gi"ﬂ gl’-f-'x) ( >
\7Z Ve M H pIH4 17,27
Sk t+1 t1 Sl ( “) e t=0,1,... (3.12)
Wi + Z¥Pu(Bi4a)” HtZt)
Vi1 + HeZe

e The auxiliary system
Xep1 = AeXe + Wip
Xo=0 t=0,1,... (3.13)
Y: = HeXe + Ve

e The change of measure

d——exp[ EZ’H’(E ) i ZZ'H'(E M z] (3.14)

+=0 r—O
The properties of our decomposition and change of measure are summarized in

Proposition 1. Let the filtration {F;, t = 0,1,...} be given by (3.2). .If the sequences {X,, t = 0,1,...},
{Z:, t=0,1,...} and {(We41, Ves1), t =0,1,...} are defined by (3.11)-(3.18) and if the probability measure
P is defined by (3.14), then P and P are mutually absolutely continuous and the process {(Wi41, Vig1), t =
0,1,...,T} is a zero-mean (F;, P) GWN sequence with covariance structure structure {T¢41, £ =0,1,...,T}
under P.

Motivated by the form of (3.14), we define the IR-valued sequence {L;, t =0,1,...} by

Legr = exp[ ZZ’H'(Z ) i S Zz’a’(z +1)7tH, z] t=0,1,...(3.15)

s=0 n=0

with Lo = 1, and observe that dP/dP = Lr,i. The Girsanov transformation now implies that {L;}, ¢t =

0,1,...,T+1} is an (F;, P)-martingale, and by the same arguments as the ones leading to (2.24) we conclude
that

E[4(X2) S5 |3 v o18}] = Blo(xa ) Lzh 9 v o1}, t=0,1,... (3.16)
Since
L7k = exp[z ZIH!(T7,) Ve, — = ZZ’E’(E +1) 1 H, z.], £=0,1,...(3.17)
s=0 a—O

we see from (2.20) that
- 1
L} =exp [E'Be+1 - -Z-f'Mt+1€] t=0,1,... (3.18)

9



where

t
Bepr:= Y (s, 0) H)(T24,) Wipa t=0,1,... (3.19)
4=0 .
and .
My =Y (s, 0) H}(T9,,) 1 H,¥(s,0) t=0,1,... (3.20)
8=0 .

with Bp = 0 and Mo = O,.

As before, we define the sequences of conditional means {.32,_,.1, t=0,1,...} and {B;41, t = 0,1,.. 3
by (2.29), with corresponding errors {X;;3, t =0,1,...} and {B:41, t =0, 1,...} given by (2.30). The RV’s
Xt+1, Bt41, and {Yp,...,Y:} may all be represented as linear combinations of {(Wi41, Vi41), £t =0,1,...,T},
and are thus jointly Gaussian and independent of o{¢} under P. As argued in the uncorrelated case, under
P, the IR?**-valued RV (X,11, Bi41) is a zero-mean Gaussian RV with covariance matrix T4, which is is
P-independent of the o-field Y, vV o{{}. Hence standard results on conditional expectations [2, Prop. 6.1.15]
validates the following chain of equalities

B[$(X241) exple' Bess — 26/ Merafl|9e v o{8}]

=E[¢(Xe+1 + Xegr + Ut +1,0)€) expl¢’ Begr + €' Beyr — ;-ﬁ'MeHé] |V v o {€}]
= exp[— %E,M‘+1£]E[¢(Xt+l + 3) exp[blét-f-l]] z=1?.+x+‘1’(t+1,0)€,b=1§‘+1 (3.21)
= expl= 3¢ Mepa€] T4 Zugs + ¥(t + 1,006, € Tera)

where Z,41 has the decomposition (2.31)-(2.32). Removing the conditioning upon o{¢}, we find

E[¢(Xf+1)g'§‘|yt] = B{T@[Xey1 + ¥(t + 1,0)¢,€; Sep1] exp(¢'Beyy — %§IM¢+15]|3’:]
= UP[Xet1y Beyrs Mieg1, ¥(t + 1,0); Sepa]

(3.22)

since (X;41, Bi41) is Yi-measurable and therefore P-independent of o{¢}.

At this point, we have solved the prediction problem over the finite horizon ¢t = 0,1,...,T. Indeed
we readily obtain (2.9) by injecting (3.22) (for arbitrary ¢ and for ¢ = 1) into (2.23). The only remaining
problem is to calculate {(X¢, B), t =0,1,...,T + 1} and {Z41, t = 0,1,...,T + 1}. We combine (3.13)
and (3.19) to rewrite the dynamics of {(X:, B¢), t=0,1,...,T+ 1} and {Y;, t =0,1,...,T} by

(Fr)=(5 2)(E)+ (% we wez) (V)
(§§)=(3) t=0,1,... (3.23)
Y. = (i o)(’;:) +(0 Ik)<v;::*'11>.

By applying the Kalman filtering equations to this system (under P), after appropriate identification,
we easily arrive at the equations (2.1)-(2.7) satisfied by the sequence of IR?*".valued RV’s {(X;, B,), t =
0,1,...,T + 1} and the Mapy2,-valued sequence {Z;, t = 0,1,...,T + 1}. The calculations are tedious,
and the details are left to the interested reader [5).

The final step now consists in extending these results from the finite horizon ¢ = 0,1,...,T to the
infinite horizon ¢ = 0, 1,.... To that end, note the following: The dynamics of the sequences {(X;, B;), t =
0,1,...,T+ 1} and {Z¢, ¢t = 0,1,...,T + 1} are independent of T. Moreover, although the transformed
measure P used in the derivation depends a priori on T, the definitions of the mappings 7¢ and UP are
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independent of T. These remarks are sufficient to yield Theorem 1 from the finite-horizon results of this
section. 0

Following on the comments made at the end of the proof, we could have displayed explicitly the de-
pendence of the transformed measure P on the parameter T, say through the notation Pr,;. Although
Pr,y = Pr on the o-field Fr for all T =0, 1,..., and the probability measure Pr_; is mutually absolutely
continuous with respect to P, it is not true in general [5] that the projective system {Pr, T = 0,1,...}
has a limit P which is absolutely continuous with respect to P on the o-field vrFr, i.e., there does not
exist necessarily a probability measure P on Vo Fr such that P is absolutely continuous with respect to P,
and Pp = P on the o-field Fr for all T = 0,1,.... Although this could a prior: complicate matters for
the infinite-horizon situation, we shall not concern ourselves with this difficulty in what follows. Indeed, in
the remainder of this paper, only statements for finite ¢ will be made and the notation P (and E) will be
used throughout with the understanding that P = Pp,; for some ¢t < T. As should be clear from earlier
comments, the exact choice of T is irrelevant.

IV. REPRESENTATIONS FOR {%;, t=0,1,..}, {XX, t=0,1,...} AND {e, t=0,1,...}.

Using Theorem 1, we now develop formulae for {X,, t = 0,1,...}, {XX, t = 0,1,..} and {&, t =
0,1,...}. We do this under the additional assumption (A.4), where

(A.4): The covariance matrix A is positive-definite.

To state these representation results, we find it convenient to introduce the auxiliary quantities {Q}, ¢t =
0,1,...} and {R}, t =0,1,...} in Myxn and Q,, respectively, by setting

Q: :=Q:+ ¥(¢0) and R} :=M;—R.. t=0,1,...(4.1)

With this notation, we then have

Theorem 2. For allt =0,1,..., the representations

Jrn Zexp [z’BH.l - -;—z’R:Hz] dF(z)

Xep1 = Xep1 + Qi ' (4.2)
S~ €XP [Z’Bc+1 - %z’R;‘Hz] dF(z)
and
¢ g » - 11115 -
X:’gq =Xer1+ Qi [Rip1+ A 1] [BH-I +A 1#] (4.3)
hold P-a.s.
Before giving a proof of this result, several points are in order:
(i): The estimates X,,; and XX, are well defined for t = 0,1, ..., for we may write
t
Xop =8+ 1,006+ D B(t, W7y, t=0,1,... (4.4)

s=0
Since the RV’s £ and {(W¢,,, V%), t =0,1,...} are all P-square-integrable, so are the RV’s {X?,,,Y;, t =
0,1,...}, and the claim follows.

(ii): The expression (4.3) provides a non-standard representation for the Kalman filter associated with
system (1.1). This representation is notable in that it explicitly displays the effects of the mean x and
covariance A of the initial condition £; the only dependence of the filtering formulae on x4 and A is through
the affine mapping = — [Rf,, + A~z + A~ 14].

(iii): Observing from (3.20) that
My1 = My + ¥(t,0) H)(Ze41) P HeT(2,0), t=0,1,...(4.5)
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we readily see from (1.6), (2.3) and (2.4) that

Qi1 = [At ~ [A¢P.H, + 2"-11-’1]-7{-1Ht]Q;

£=0,1,... (4.6
Q = I, (4.6)

and
R:+1 =R{ + Q;"H{J,‘IH;Q:

t= .
R} = O,. 0L (4T)

Note also that the dynamics (2.7) then simplifies into -

By =B — QU HJT He X, + QUHIT'Y:
_ t=0,1,... (4.8)
Bp =0.
The following two technical lemmas will be useful in the forthcoming discussion.
Lemma 1. Fort=0,1,..., Byy1 is a zero-mean Gaussian RV with covariance R}, under P.

Proof. Fixt = 0,1,... The RV B, is normally distributed under P. Moreover, we note from the
Orthogonality Principle that

E[Bt41] = E[Biyi] (4.9)
and
E[Bi+1Bi 1] = E[Biy1Biia] + E[Biy1Bi 4] (4.10)
since E[By41]) = 0 and E[B;41B},,] = 0.
The definition (3.19) implies the relation

Bet1 = By + W' (¢,0)H(Z2,1) Ve, (4.11)
so that
E[Biy1] = E[B.] + ¥/ (¢, 0)H{(Z34.,) "  E[Ves1] = E[B:] (4.12)
and
E[Bi41Biy1) = E[B:By] + ¥'(2, 0)Hy (23 ,,) "1 He ¥ (2, 0) (4.13)

since the RV B, is P-independent of V;41. From the fact By = 0, we readily conclude that E[B;] = 0
for allt = 0,1,..., while by comparison of (4.5) with (4.13) we see that necessarily E[B,B.] = M, for all
t=0,1,.... Finally, from the definitions (2.29)-(2.30), we see that

E[Bi41) = E[Bs41] =0 t=10,1,... (4.14)
and

E’[Bt+15’£+1] = E[B¢+IB£+1] - E[Bt+11§£+1]

t=20,1,... 4.15
= Mi41 — Rey1 = Riyy. (4.15)

O
Lemma 2. For anyt=0,1,... and any IR-valued, nonnegative Y, V o{{}-measurable RV X, the relation

B(X] = B[X expl¢’ Buys — 5€'Risat]] (4.16)
holds true.
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Proof. We readily see that
E(X] = BIXL;}]

= B[X explg' Boss — 56 Miaf]] = E[x%]

[ E[X exp[¢'Biy1 — —£'Mt+1€] | v 0'{5}]]

= E[X exp ——s M¢+1£]E[exp[€'3t+1]|yt v U{E}]

(4.17)

where we have used the law of iterated conditioning and the measurability of X exp[— %E' M, .,.1€] with respect
to the o-field Y, v o{¢}. But

E[exp[¢' Beys1]| Ve V 0{€}] = E [expl¢' Beya]|Ve v o{€}] exp[¢’ Be.y], (4.18)

since the RV By, is V¢ V 0{¢}-measurable. Under P, B,,, is a zero-mean Gaussian RV with covariance
R; 1, which is independent of the o-field Y: vV o{¢}. Consequently, we get

E’[exp[{'égﬂ]lyg \Y 0’{5}] = E[exp[z'§¢+1]] L=€ = exp[%{'RH.lf] (419)

and (4.16) follows from (4.1), (4.17) and (4.19). O

A proof of Theorem 2. Our first step consists in finding a representation for the conditional characteristic
function E [exp(i6’ X,H][y,] Under the enforced moment assumptions on €, we then recover an expression
for the conditional mean by differentiating with respect to 8. Fma.lly, by substituting a Gaussian distribution
for F in this representation for X, we obtain a formula for Xt+1

For 4 in IR™, we define the mapping vy : IR® — C by
Yo(z) := exp[id'z], = in IR" (4.20)
and introduce the C-valued RV g;41(8) by setting
qe+1(0) 1= Uvo[Xet1, Bepr; Megr, ¥(2 + 1,0); Seqa). t=0,1,... (4.21)

Since 1o = 1, we obtain from Theorem 1 that

S 9
E[expli6' X7,4]| 0] = %, t=0,1,... (4.22)

whence
V9¢1e+1(9)|9_.0

Xey1 = —iVoE [exp[if' X7, 4] Vel oeo = G

t=0,1,... (4.23)

since the RV X7, is P-integrable.
Fixt=0,1,...and @ in IR™. For all u and v in IR", we easily check (with the notation of Section 1)

that
T (1, v; Teya] =€ [exp[za'u] exp [(20) (‘gzﬂ-x )”
Zuipr

1 (4.24)
= exp[iG'u] exp [-— 59'?:.}.16 + ia'Qg+1U + -2-U,R¢+1‘U] ,

whence
a1 . ' ,
Tio[z + ¥(t +1,0)¢,£ Teqr] = expliz’d - EG'PeHG] exp[—i6' (Qe+1 — ¥(t + 1,0))¢ + %5 Ri41€]
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for all z in IR™. From (1.5) we have

ge41(0) = E[Tve [z + T(t + 1,0)¢,&; Degr] exp (b€ — %’SIM‘+1£]]::=)?‘+1,5=E¢+1

; s 1 . * 1 "
= exp [19’X:+1 - §9’PH_16] £ [exp [zo'QH_l{ + b€ - EEIRtHE]]z:J?HI,b:B,“ (4.25)
. Ty 1 1Pt 5 1 "
= exp[if' Xpq1 — -2-0’P¢+19] /IR" exp[2'(iQ7416 + Bey1) — iz'RH_lz] dF(z)
and (4.22) now takes the form
E[exp[iG’Xf,,_l]lyg]
o 1 Jmn exP [Z’ (iQ1%16 + Bey1) - %Z’R?HZ] dF(z) | (4.26)
=exp [‘LGIXH,I - -2—9'Pg+19] =
Jmn €xP [z'BH.l - %z’R;_Hz] dF(z)
It is now a simple exercise to verify that under the enforced integrability assumptions, the equality
e 34 0 1 * V
[Vg/ exp[2'(iQ}410 + Bet1) — 52'Rt+1z] dF(z)] oo
e - (4.27)

et Y 1 -
= iQt 41 /IR zexp[z'Byyy — -2—z'R,_Hz]dF(z)

holds P-a.s.; the proof of (4.27) is omitted fror the sake of brevity as the details are available in [5] for the
interested reader. The result (4.2) now follows upon combining (4.23), (4.26) and (4.27).

Now let G be a Gaussian distribution with mean 4 and covariance A. A representation for X{il for
t = 0,1,... may be found by simply substituting G to F in (4.2). This is so because when F = G, the
MMSE estimate of X2, given the observations {Yy,...,Y;} coincides with the estimate generated by the
Kalman filter, whose dependence on the initial condition is only through its second order properties. The
claim then follows from the observation that F and G have the same mean and covariance.

Recalling the assumption (A.4) that A be positive-definite, we find by direct evaluation that the
expressions

[ zexpls'Buss — 37 RiysldG(2)

Rip1+ A=Y Boyr + A1 1 1. “1a
=[ i1t | [Bena ] -exp[—E#'A_lﬂ'*' E[BH'I + A_I#]’[R:H + A7 1[Bc+1 +A_1#]]

4.28)
and
[ exple Buss - 37 Bi1a21dG2)
" 4.29)
1 1, -1, , 15 -1, [p* -11-115 -1 (
= cexpl—=~u'A + —|{Bir1+ A R ;+A Ber: + A
VAAR,, + 1] plogr a7t g B+ AT (B + 47 B+ A7
hold P-as. for ¢ = 0,1,.... The conclusion (4.3) follows as we use (4.28) and (4.29) in (4.2). O

Theorem 2 now leads us to a simple representation of the errors {e;41, ¢ = 0,1,...}. In what follows,
for each A in @,, G5 denotes a normal distribution with zero mean and covariance A.

Theorem 3. The representation

o= /- Qi1 fa {z — [RE 1 + A=Y b+ A~1u]} exp[z’b — 12’ R}, ,2]dF(z) ”sz . )
1 » S~ explz’b — 12/ Ry, 2]dF(z) Bl
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t=0,1,... (4.30)

holds true.
Proof. We observe directly from Theorem 2 that

X:.{.l - X{il
=Qr,- Jmn {2 — [Rip1 + A7 Bey1 + A~ tu]} expl2/Beyy — 32/ Ry, 12]dF (2) (4.31)
s fmn exp[z’Bt-f-l - %Z'R:_,.IZ]dF(z)

. forallt=0,1,..., whence

2

Qo Jme {2 = [Rip1+ AY " Beyy + A~ 1p]} exp[2/Beyy — 32/ Ry, 2]dF(2)
t+1 Jm~exp[2'Beyy — %z'R;Hz]dF(z)

€141 = El

2

Qit1 Jme {7 = [Rip1 + A7 Y [Beyr + A~ 1u]} expl2'Beyy — 32'Riy12]dF (2)

=F

Jimn €xP(2' Beqr — 32/ Ry, 12]dF (z)

upon using Lemma 2. We now obtain (4.30) by a simple application of Lemma 1 on this last relation. [7]
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