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17-20% of the world’s cows have had bovine mastitis at some point in their lives. 

Mastitis is the inflammation of mammary glands caused by infection, such as by the 

bacterium Escherichia coli. The focus of this thesis research is the immunopotency of 

a novel catanionic surfactant vesicle vaccine for E. coli mastitis that could 

theoretically resemble an ‘artificial pathogen.’ To this end, serum studies analyzing 

antibody titers and immunogenic profiles were conducted.  These studies demonstrate 

that there was no significant increase in total E. coli specific-IgG in vaccinated cows 

post-vaccination and that there may be variation in immunogenic profiles post-

vaccination.  
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Chapter 1: Introduction 

 
Bovine Milk  

Dairy Industry in the Global and Domestic Markets 

The dairy industry is a major player in global and domestic markets.  In 2008, a study 

conducted by the Food and Agriculture Organization of the United Nations (FAO) 

analyzing global milk production in 2007 determined that India, the United States, 

China, Pakistan, and Brazil were the top 5 milk-producing countries that year.1 This 

calculation took cow, buffalo, goat, sheep, and camel milk into consideration, but also 

specified that milk derived from cattle represents 83% of the world’s milk.1 The same 

study concluded that between 2002 and 2007 world milk production increased 13% to 

697 million tons.1 

 

 As of 2014, milk production in the United States is projected to reach 93.6 million 

tons.2 Currently, the United States ranks as the third-highest dairy exporter in the 

world, following New Zealand and the European Union.2 In fact, the United States 

Department of Agriculture (USDA) states that for fiscal year 2013 the US dairy 

industry reported exports worth a recording-breaking $6.1 billion.3 Domestically, the 

US dairy industry is responsible for $140 billion in economic output, $29 billion in 

household earnings, and more than  900,000 jobs.4 Clearly, the US dairy industry has 

economic significance internationally and domestically.  
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Bovine Milk  

As defined by FAO, milk is "the normal mammary secretion of milking animals 

without either addition to it or extraction from it, intended for consumption as liquid 

milk or for further processing." 5 Liquid milk ranks as one of the most identifiable 

products of the dairy industry alongside powdered milk, cream, cheese, and butter. 2 

Last year, the US dairy industry produced 201,218 million pounds of liquid milk 

(USDA- National Agricultural Statistics Service). 6, 7    

 

Milk composition and regulations  

Liquid milk comprises of approximately 88% water, 3-4% fat, 3.5% protein, and 5% 

lactose.8 Cows’ milk contains over 400 different fatty acids, which derive from feed 

and microbial activity in the cow’s rumen.9 Fatty acids components include 

conjugated linoleic acid and vaccenic acid, which contains trace elements of natural 

trans-fatty acids that are unique to ruminants.10 The major proteins found in cows’ 

milk are casein and whey.  Casein (asi-> as2, β-casein, and κ-casein) constitute 78% 

of total milk protein.10 Whey constitutes the other 17% of milk protein and includes 

β-lactoglobulin, α lactalbumin, serum albumin, immunoglobulins (Ig), 

glycomacropeptides, lactoferrin, insulin-like growth factor (IGF), and the 

lactoperoxidase system.10 The major carbohydrate component of milk is lactose, a 

disaccharide made of glucose and galactose.10 Given its physiochemical 

characteristics, milk is a popular source of nutrition for cows and humans alike. 

 

Strict federal regulations and safety procedures are enforced by agencies like the 

USDA, the US Food and Drug Administration (FDA), and the National Association 
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of State Departments of Agriculture (NASDA) to ensure safe milk for human 

consumption. Consumable milk must contain no debris, off-flavors, abnormal 

coloring or odors, must be low in bacterial counts, contain little to no chemicals like 

antibiotics or detergents, and must retain normal acidity and composition.8 As milk is 

a natural growth medium for microbes, spoilage by organisms in milk and 

transmission of food-borne pathogens 11 are safety concerns that are largely addressed 

by pasteurization. Pioneered by the microbiologist Louis Pasteur, pasteurization 

remains the gold-standard in maintaining milk safety in the US and abroad.  

 

Milk can never be completely sterile once it leaves the udders.12   Pasteurization is a 

process that decontaminates but does not completely sterilize milk, as it reduces the 

number of viable pathogens in milk but does not necessarily kill them all. 12 This 

process reduces the number of milk-borne microbes, yeasts, and molds and extends 

shelf life. 8 Pasteurization techniques include holding vat pasteurization, flash 

pasteurization, and ultra-high temperature pasteurization.12 In the US, each state has 

the authority to regulate pasteurization 12 though there are overarching federal 

agencies like the FDA, USDA, and the US Centers for Disease Control and 

Prevention (CDC) that also monitor milk safety.  According to the 2011 revision of 

the FDA’s Pasteurized Milk Ordinance, it is imperative that milk does “not contain 

levels of deleterious substances, harmful pathogenic organisms, or other toxic 

substances which are secreted in the milk at any level, which may be deleterious to 

human health.” 13 Thus, milk’s safety is inextricably linked to milk’s pasteurization.
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Pathogenic Contamination  

Pasteurization helps reduce milk-borne pathogens. These pathogens include human-

derived Streptococcus pyogenes and Salmonella typhi and bovine-derived Brucella 

abortus, Mycobacterium bovis, Listeria monocytogenes, Salmonella species (spp.), 

Campylobacter spp., and Escherichia coli (E. coli) O157:H7. 12, 14 When produced 

and stored in healthy udders, milk is sterile. 12, 15 however, upon exiting the udders, 

milk becomes contaminated by commensal or pathogenic microbes of the udder or 

teat canal, by fecal contamination of the udders, by contamination of milking 

equipment, or by commensal or pathogenic microbes belonging to human milk-

handlers. 12, 15, 16 Of specific relevance to this study is the contamination of milk 

caused by infections of the udders. 16 

 

Bovine Mastitis  

Mastitis is the inflammation of the mammary glands caused by infection.17 Of the 

estimated 250 million dairy cows in the world18, 17-20% have had mastitis at some 

point in their lives.19  In 2007, the disease ranked first among health problems found 

in cows (Figure 1). 20 Over 135 pathogenic species can cause bovine mastitis (BM), 

including bacteria and fungi. 21 BM can be classified as subclinical or clinical and 

contagious or environmental.  BM causes changes in composition and 

physiochemical characteristics 19 that render mastitic milk unsuitable for human 

consumption, and as such is a costly disease that has relevance to public health and 

safety.  
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Figure 1. Percent of cows by health problems. Data was collected related to prevalence of cow health 
problems in the year 2007 published in a National Animal Health Monitoring System study in 2010.  
This figure was constructed based on statistics provided in that document. 20 

 

 Etiological Agents 

Mastitis can be caused by bacterial pathogens. These bacterial pathogens can be 

contagious or environmental (Table 1). 22 Contagious pathogens are those that live on 

mammary gland epithelia and teat lesions as well as on milking machines, milkers’ 

hands, fomites, and sponges. 21 These species include S. aureus, S. agalactiae, 

mycoplasmas and M. bovis.21,22  Contagious pathogens can be transmitted between 

cows or even between quarters during milk. 22, 23 Environmental pathogens derive 

from the cows’ environment and enter the mammary gland by contaminating the 

teat.22  These species include E. coli, S. dysgalactiae, S. uberis, K. pneumonia, and 

Bacillus spp.22 Reservoirs for environmental pathogens include feces, soil, bedding, 

and manure.21  Corynebacterium species and coagulase-negative staphylococcus 

(CNS) are emerging pathogens.21 The most common BM-associated pathogens are S. 
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aureus, CNS, and E. coli. 23 Contagious and environmental pathogens can cause 

different signs and symptoms in infected cows. BM can also be described, based on 

signs and symptoms, as either subclinical or clinical (Table 1). Clinical signs of BM 

will be discussed in the next subsection. 

 
Table 1. The Two Classifications of Bovine Mastitis. BM can be identified as  

  environmental/ contagious or subclinical /clinical.24,25 

 

Signs and symptoms 

The severity of a BM case relates to the physical signs and symptoms exhibited by 

the infected cow. BM can be classified as subclinical (asymptomatic) or clinical 

(symptomatic).  In both cases, cows with BM present elevated somatic cell counts 

(SCC). Somatic cells are white blood cells (macrophages, lymphocytes, 

polymorphonuclear cells) and mammary epithelial cells that shed from the infected 

mammary gland into milk upon milking. 26 Elevated SCC can alter the appearance 

and composition of milk as well as encourage milk spoilage. Healthy milk contains 
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somatic cells but at a very low concentration, typically a SCC of <100,000 cells/ml of 

milk. 26 In contrast, mastitic milk typically contains >200,000 cells/ml of milk to an 

upper limit of millions of cells. 26, 27 A SCC of >200,000 cells/ml clearly indicates 

mammary gland inflammation and is synonymous with the diagnosis that the animal 

producing that milk suffers from subclinical or clinical mastitis.  Cows that suffer 

from subclinical mastitis present elevated SCC in milk but no other symptoms. Cows 

that suffer from acute mastitis present elevated SCC in milk and observable 

symptoms. 

  

Observable symptoms can be assessed by considering the state of the cows’ udders, 

the physical appearance of milk collected from cows’, and the cows’ overall health. 

In cases of clinical mastitis, udders frequently appear swollen and hard. 28, 29, 30 

Mastitic milk can appear clotted, thick, serous to yellow colored, flakey, and purulent 

as well as contain blood. 28, 29, 30  Cows with clinical mastitis exhibit high fevers, 

decreased rumen contractions, appetite loss, decreased milk yield, elevated rectal 

temperatures, dullness, diarrhea, depression, and weakness. 28, 29, 30  The observable 

symptoms of clinical mastitis render this form of the disease more easily identifiable.  

 

The consequences clinical mastitis can be severe. Clinical mastitis oftentimes 

becomes systemic, which leads to death. Cows afflicted with clinical mastitis die 

from their condition naturally or are forcibly killed (culled) to prevent further spread 

of the disease. 17, 19, 21, 22, 23, 28, 30, 31 Pregnant cows (periparturient) are especially at 

risk for clinical mastitis. 31  Clinical mastitis is an expensive problem that challenges 
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the dairy industry: economic losses include reduced milk production losses, cost of 

discarded milk, increased cull rates, costs associated with pharmaceutical treatment, 

and increased labor. 32  

 

Management, treatment, and control  

Bovine mastitis is an economically expensive health challenge for the dairy industry. 

Managing, treating, and controlling this disease is a top priority for dairy farmers and 

scientists.  Practices include “establishing good management [of cows] on the farm, 

treating infected animals, and slaughtering chronic cases.” 19 Poor udder hygiene, 

dirty udders, and teats close to the ground are all potential risk factors for mastitis. 31 

In terms of management practices, disinfecting teats with germicidal dipping, 

disinfecting milking equipment before milking, and reducing cow densities per unit 

area all help reduce risk.31,34  Additionally, mastitic cows can be quarantined. Cows 

with chronic mastitis that are especially contagious can be forcibly killed or culled. 

Treatments include novel bacteriophage methods and antibiotics.21   Control methods 

include administrating killed whole-cell vaccines to cows during their dry periods. 21 

Current commercial vaccines for E. coli-associated bovine mastitis will be discussed 

later in this chapter.  

 
Significance 

Bovine mastitis is a disease of public health and economic significance due to its 

impact on human consumption of milk.  Milk is a nutritious source of calcium, 

magnesium, selenium, riboflavin, and vitamin B12.1 However, milk contaminated 

with mastitis-causing bacteria can cause fever, nausea, vomiting, diarrhea, and 
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abdominal pain in humans.15 Veterinary drugs and antibiotic residues used to treat 

mastitis can be secreted into milk and can influence milk processing, inhibit acid 

production in starting cultures for cheese, and contribute to poor aging of further 

processed milk products like cheese and butter. 11 The presence of antibiotic residues 

in milk decreases milk quality as well as raises debate regarding excessive antibiotic 

use and the emergence of antibiotic-resistant bacterial species within bovine and 

human populations. 11, 35 Additionally, the presence of somatic cells in milk secretions 

decreases milk and cheese yields as well as influences milk’s nutritional qualities. 30, 

35 Specifically, proteolytic and lipolytic enzymes promote enzymatic breakdown of 

milk protein and fat. 35 Overall, mastitis is estimated to cost $200 per cow affected 

per year, including costs for cow feed, management, treatment, antibiotics, labor, and 

milk. 30 This figure is projected to be a $2 billion loss per year for the dairy industry. 

30 Therefore, controlling the spread of bovine mastitis is in the interest of public 

health and economics. 

 
 
E. coli Mastitis  

E. coli is the most commonly isolated pathogen in cases of environmental (coliform) 

mastitis and frequently causes acute clinical mastitis.23,30 . 

 
E. coli and E. coli strain P4 

E. coli belongs to the Enterobacteriaceae family. 30 It is a Gram-negative, rod shaped, 

lactose fermenting, facultative anaerobe that is commonly found in the 

gastrointestinal (GI) tracts of animals and humans.  Common pathogenic strains 

include enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), 
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enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. 

coli, (EIEC) and diffusely adherent E. coli (DAEC), which cause GI and urinary tract 

diseases in humans.36   E. coli is classified into serotypes based on shared O 

(lipopolysaccharide) and H (flagellar) antigens. 30, 36 General virulence factors include 

lipopolysaccharide (O antigen), fimbriae, capsules (K antigen), and flagella (H 

antigen). 37 

 

 P4 is a mammary pathogenic E. coli strain (MPEC) responsible for inducing mastitis 

in bovines. 38,28 P4 was first isolated by Andrew John Bramley in 1976 from a clinical 

case.39 P4’s natural reservoirs include the bovine GI tract, soil surroundings in the 

dairy barn, and  bedding.33 P4 utilizes lactose found in milk as a carbon source to 

grow in mammary secretions. 33 Today, P4 is considered a model mastitis-producing 

strain and is used to induce experimental mastitis. 

 

Virulence factors  

P4 was first isolated in 1976, but it was not fully characterized bioinformatically until 

2012 by Blum et al. The Blum group determined that P4 belonged to serotype O32: 

H37. 40 In addition to lipopolysaccharide (LPS), within the 5.2 megabases (Mb) 

genome the following virulence factors were identified: aerobactin siderophores, 

enterobactin siderophores, protein secretion system type II, yidE mediator (for 

hyperadherence), type I fimbriae, type I pili, and curli pili. 40 LPS, flagella, and 

fimbriae are depicted in Figure 2.  
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Figure 2. Selected E. coli virulence factors. Adapted from source 81.   

 
 
Lipopolysaccharide (LPS) endotoxin plays a pivotal role in the structure and function 

of Gram-negative outer membranes. 41 The molecule consists of 3 regions: the lipid A 

region, the core polysaccharide region, and the O-polysaccharide region as illustrated 

in Figure 3. 41 The general architecture of a core polysaccharide, made of inner and 

outer cores, and a lipid A portion is highly conserved among Gram-negative species. 

42 More than 180 O-antigen serotypes have been identified and these can be divided 

into the R1, R2, R3, R4, and K-12 groups. 42 The R1 group is commonly found in E. 

coli that colonize humans and bovines.  

 

LPS can be divided into three regions: the O-polysaccharide region, the core 

polysaccharide region, the 3-deoxy-D-manno-octulosonic acid (Kdo) residues, and 

the  lipid A region.42 First, the O-polysaccharide region is made of repeating units of 1 

to 8 glycosyl residues. 42 This region is highly variable due to structural diversity in 

sugars, sequence, chemical linkage, substitution, and ring formations.42 The O-

polysaccharide is the most exterior facing portion of the LPS molecule and as such is 

highly antigenic. 41, 42 The O-polysaccharide also assists in conferring serum 

resistance as it prevents the membrane attack complex (MAC) of the complement 

pathway from penetrating the outer membrane. 42 Next, the core polysaccharide is 
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made of an outer and inner core. The outer core is made of hexose sugars like 

glucose, galactose, N-acetyl galatcosamine, and N-acetylglucosamine. 42 The inner 

core is made of a highly conserved sequence consisting of heptose and Kdo.41,42 E. 

coli LPS’s lipid A region contains acyl chains of C12-C14 length and seems to be 

optimally structured to bind and activate Toll-like Receptor 4 (TLR-4). 42 The lipid A 

moiety is the part of the LPS molecule responsible for its endotoxicity. 41, 42 The LPS 

molecule is amphiphilic, meaning it has a hydrophilic and hydrophobic domain.  The 

lipid A region of the molecule is embedded in the outer membrane while the O-

polysaccharide faces the extracellular milieu. 

  
                     E. coli P4 (R1)                                     E. coli DH5α (K-12) 

Figure 3. E. coli’s LPS.  These figures were adapted from sources 41 and 76. 
 

LPS regions 

12 
 



 

LPS is an important factor in determining the severity of E. coli mastitis.43 The 

molecule is found on Gram-negative bacteria and is released upon bacterial lysis. 43 

Once released, LPS enters the teat and udder cistern, where it induces the expression 

of pro-inflammatory cytokines, including Interleukin 6 (IL-6), Interleukin 1 (IL-1), 

Interleukin 8 (IL-8), and Tumor Necrosis Factor (TNF-α). 44 This results in 

leukopenia, leukocytosis, complement activation, macrophage activation, and 

increased vessel permeability, and inflammation.43 Injecting E. coli LPS alone into 

healthy bovine mammary glands is enough to induce mastitis.38,44  LPS is recognized 

by TLR-4 as well as by membrane-bound CD14 receptors (mCD14R)  found on 

macrophages.44 LPS can directly bind mCD14Rs and the binding is facilitated by LPS 

binding protein (LBP), which transfers lipids, promotes LPS disassociation into 

monomers, and catalytically transfers those monomers to mCD14R. 44 LBP 

expression is upregulated by IL-1 and IL-6.44 In an experiment by Yunhe et al 

comparing innate responses elicited by E. coli and S. aureus, it was determined that 

E. coli LPS activated the NFκβ pathway in mammary epithelial cells.45 

  
 
While P4 E. coli is highly virulent in cows, it causes mild or latent mastitis in mice 

that is self-curing. 38 These results suggest that P4 is highly host specific. P4’s niches 

in the bovine mammary gland include stratified epithelial lining, luminal walls, teat 

canal, teat cistern, and the specialized aveoli.38 
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The Mammary Gland and E. coli Pathogenesis  

Anatomy of the Mammary Gland  

The udders are the milk producing organs of bovines. Each udder is made of 4 

separate mammary glands, each with their own teat end. 46 Mammary gland structure 

is depicted in Figure 4.  Significant features include the teat end, teat cistern, gland 

cistern, alveoli, and ducts.  

 

 

              Figure 4. Bovine mammary gland. Adapted from source 82. 
 

Teats, which allow milk to exit the mammary gland, are made of a teat muscle 

sphincter, a teat canal and a teat cistern. 46 The teat sphincter is the first anatomical 

barrier against mammary infection. 22 The teat sphincter keeps the gland closed 

between milkings and therefore helps prevent bacterial invasion.47 The teat canal  

connects the teat cistern to the teat end. The teat canal contains keratin, a protein 

formed by stratified squamous epithelium. 47 Keratin contains bacteriostatic fatty 

acids like myristic acid, palmitoleic acid, and linoleic acid, a defense against bacterial 

invasion. 47 The teat cistern is a cavity where milk collects before it is expelled 

through the teat end. 46  
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Milk is synthesized in alveoli by milk-secreting cells. An alveolus is a sac-like 

spherical structure of milk-secreting cells and many alveoli come together to form 

lobules. 48 The overall structure of a lobule resembles the structure of a lung. 48 Milk 

is continuously made and stored in alveoli as well as transported in milk ducts to the 

gland cistern and the teat cistern.48 Alveoli respond to the hormone oxytocin, which 

induces milk to be squeezed out of alveoli into small tubes called ducts, which carry 

milk into the gland cistern. 48 The gland cistern is another collection area for milk, 

which connects directly to the teat cistern, where milk is stored prior to expulsion by 

milking the teat end. 46  

 

E. coli Pathogenesis  

E. coli pathogenesis is a multi-step process, involving colonization, evasion of host 

defense, and host damage. 36 P4 breaches the anatomical defenses of the mammary 

gland and colonizes mammary epithelial cells. Due to the constant presence of lactose 

in milk, which is ubiquitous in the mammary gland, bacteria are able to grow rapidly, 

doubling every 20 minutes. 37, 49 Bacteria colonize epithelial cells in the teat cistern 

and then migrate into the udder cistern. 35 As it grows, P4 releases LPS into the teat 

and udder cisterns. As the bacteria invade epithelial cells along milk-collecting ducts 

and cisterns, it kills milk-secreting cells, whose contents permeate blood vessels and 

attract leukocytes. 30  Blockage of the teat end ultimately ensues and any milk trapped 

inside the gland converts milk-secreting cells into resting cells, resulting in shrinkage 

of alveolis.30  Eventually, E. coli destroy milk-secreting tissues, increasing somatic 

cell counts in milk and decreasing milk yield. 30 
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Neutrophils are the first-responders to E. coli infection. In fact, robust neutrophil 

response is the hallmark of E. coli mastitis cases.30 Neutrophils account for 90% of all 

mammary  gland leukocytes.47 Neutrophils migrate from the blood to the site of 

infection, where they are involved in bactericidal killing by phagocytosis and 

respiratory bursts via release of superoxide ions, hypochlorites, and hydrogen 

peroxide.30, 47 Neutrophil recruitment usually occurs 16 hr post-infection and precedes 

increased TNF-α, IL-1β, and C5a production.22 In healthy lactating mammary glands, 

neutrophils are found in a concentration of <105 cells/ml but in mastitic glands 

neutrophil concentrations rise to >106 cells/ml.34 Complement killing is not a very 

effective response to E. coli infection as many strains, like P4, are inherently 

complement-resistant. Serum and milk complement components like C3b and C3bi 

are too low in concentration to contribute significantly to phagocytosis by 

neutrophils.49  

 

After neutrophils, macrophages dominate the immune response.43 Macrophages make 

up the majority of cells in milk and tissue of healthy, lactating mammary glands. 47 

However, macrophages are much less in concentration than neutrophils and have 

fewer Fc receptors than neutrophils.34 Macrophages are involved in bactericidal 

killing by phagocytosis and in antigen processing and presentation by way of their 

MHC class II molecules.47 Macrophages express TLR-4, LBP and mCD14 

receptors.34, 43 TLR-4 recognizes the lipid A portion of LPS.33  mCD14 receptors also 

bind LPS and initiate TNF-α expression.50 Activated macrophages recruit other 

macrophages and neutrophils.38 Activated macrophages also release prostaglandins, 
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leukotrienes, and cytokines like IL-1, TNF-α, and IL-8, which all enhance the local 

inflammatory response.33, 34 Lymphocytes, cytokines, and chemokines all contribute 

to the local inflammatory response, which is characterized by heat, redness, pain, and 

swelling of the mammary gland.35 The fat and casein found in milk dilute recruited 

immune factors such as neutrophils and macrophages. Neutrophils and macrophages 

can experience ‘phagocytic overload,’ which means instead of ingesting bacterial 

pathogen, they ingest casein micelles and fat globules in milk. This means the 

population of neutrophils and macrophages that would otherwise recognize and 

phagocytize bacteria is reduced. 49 Therefore greater amounts of these factors must be 

continually recruited to infection sites.49 

 

Following macrophage recruitment, adaptive immunity is initiated. Healthy glands 

are mostly populated by CD8+T cells, whereas mastitic glands are mostly populated 

by CD4+ T cells.22 In the mastitic response, CD4+ T cells are activated by antigen-

MHC II complexes on antigen presenting cells (APCs).47 B cells secrete antibodies 

and irreversible class-switching occurs from IgM to IgG1 and IgG2 populations.33  

IgM, IgG1, and IgG2 populations all play a role in opsonization.33,34  IgM could act as 

an opsonin for to recruit milk neutrophils to clear bacterial cells, however to do so 

IgM must first fix complement and the concentration of complement in milk is very 

low.49 IgG is the predominant phenotype in milk.51  IgG1 is the major isotype in 

healthy milk whereas IgG2 is the major isotype in mastitic milk.47,52 IgG1 is the major 

isotype in healthy milk because in healthy milk, massive neutrophil response is not 

required.49 Bovine neutrophils usually do not express high affinity Fc receptors for 
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IgG1.49 Bovine neutrophils do express high affinity Fc receptors for IgG2, which is 

why IgG2 is the major isotype in mastitic milk.49 Post infection, the blood-milk barrier 

becomes altered.51 Sloughed epithelial, P4 bacteria, and blood components 

(immunoglobulins, neutrophils, macrophages, and lymphocytes) cross into milk, 

rendering that milk mastitic.47,51  

 

Despite a robust bovine immune response, P4 bacteria have developed ways to evade 

host defenses. Firstly, P4 is inherently complement-resistant.52 Therefore, it can evade 

bactericidal killing by host classical and adaptive complement pathways. 

Additionally, P4 can form biofilms and intracellular microcolonies that adhere to 

mammary alveolar epithelial cells, which may have implications the mediation of 

inflammatory responses as well as the process of microbial invasions.38 P4 is also 

resistant to high concentrations of nitric oxide. 38 In these ways, P4 can evade host 

defenses and establish niches in the mammary glands.  

 

Vaccines for E. coli mastitis  
 
Four vaccines are currently available for coliform mastitis: the J5 Bacterin vaccine, 

the MastiguardTM vaccine, the JVAC® vaccine, and the STARTVAC vaccine. These 

vaccines are administered in the non-lactating stages but their effects tend to wane 

over time. 21 They are based on antigens of E. coli LPS. 21 Research into the J5 

Bacterin, long considered the gold-standard in the field of coliform mastitis control, 

and STARTVAC vaccines will be discussed as there are not many published studies 

specifically on the MastiguardTM and JVAC® preparations.  
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The J5 Bacterin vaccine is derived from LPS mutant E. coli strain O111:B4. 53 The J5 

strain is a rough LPS mutant, meaning its LPS does not have an O-side chain but does 

have an intact core.54 J5 has been extensively studied since 1989. In a 1989 study 

González et al showed that in a sample population of 218 vaccinated and 

unvaccinated cows, only 35 (6 vaccinated, 25 unvaccinated) developed clinical 

mastitis.55 E. coli was successfully isolated from 2.5% of the  vaccinated and 12.77% 

of the unvaccinated cows. 55  In this study, the J5 vaccine was prepared by heat-killing 

a 24 hr bacterial culture, resuspending the culture in 0.9% sodium chloride solution, 

and emulsifying the antigen by sonication.55 5 ml of emulsified J5 antigen was mixed 

with 1 ml of Freund’s incomplete adjuvant.55 This emulsion was sonicated once more 

time prior to injection.55  

 

In a 2007 study by Wilson et al no difference was observed in antibody 

concentrations between vaccinated and unvaccinated cows.56 Wilson et al conducted a 

2009 study of J5- Bacterin, hypothesizing that vaccination would increase J5-specific 

antibodies in sera.57 The authors collected sera samples for J5-specific ELISA 

assays.57 They observed that prior to vaccination, there was no difference in titer for 

serum-specific IgM and IgG2 between vaccinates and control cows.57 After 

vaccination and calving, the authors observed an increase in J5-specific IgG1 and 

IgG2 in vaccinate cow sera compared to control sera.57 A 2014 study by Tomita et al 

concluded that J5 immunization can induce cross-reactive antibodies against other 

coliforms.53  
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STARTVAC, manufactured by HIPRA, contains inactivated E. coli J5 and 

inactivated S. aureus SP 140. 58 SP 140 is a S. aureus strain that expresses the slime 

and biofilm forming phenotype. 58 STARTVAC is given in 3 doses of 2 ml: the first 

dose is 45 days before parturition, the second dose 35 days after the first dose, and the 

third dose 62 days after the second dose.58 In a study examining 386 cows (198 

vaccinated and 188 control cows) 7 vaccinated cows and 31 control cows developed 

coliform mastitis.58 11.42% of vaccinated cows produced abnormal milk.58 March et 

al concluded the 2 ml dosage and immunization schedule to be effective. 58 The 

STARTVAC vaccine is marketed to protect against E. coli, S. aureus, and CNS.59   

 

Although there are already 4 commercial vaccines for E. coli mastitis, the market 

could benefit from the addition of a fifth vaccine that is based on catanionic surfactant 

vesicles. All 4 current vaccines must be refrigerated. A catanionic surfactant vesicle 

does not need to be refrigerated. A catanionic surfactant vesicle vaccine 

thermodynamically stable at RT for years. A catanionic surfactant vesicle vaccine can 

be autoclaved or pasteurized and so, a single aliquot can be used for many years. 

Also, a catanionic surfactant vesicle vaccine is prepared with relatively inexpensive 

reagents. Finally, the catanionic surfactant vesicle allows for the incorporation of LPS 

without the risk of molecule’s toxicity harming or killing hosts. Thus, there could be 

demand for a catanionic surfactant vesicle vaccine due to its stability, its potential for 

sterilization, its relatively inexpensive preparation, and its ability to present LPS in a 

with decreased toxicity.    
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Eighty percent of all coliform mastitis cases are caused by E. coli.60 However, 

mastitis-causing E. coli has become resistant to many favored antibiotics like 

ampicillin, streptomycin, tetracycline, and sulfonamides. 60  Therefore, immunization 

against E. coli is an attractive endeavor as the goal of a bovine mastitis vaccine is to 

increase sera levels of IgM and IgG2. 56 Thus, developing new vaccines that can 

confer long-term protective immunity is highly anticipated by dairy farmers and 

scientists.  The purpose of this thesis is to investigate one such new vaccine: the 

catanionic surfactant vesicle vaccine.  

 
 
Catanionic surfactant vesicles  

Catanionic surfactant vesicles are derived from colloidal systems.61 Coined in 1861 

by Thomas Graham, colloids are substances of 1 µm to 1 nm size.61 Colloids were 

characterized by lack of sedimentation under the influence of gravity and low 

diffusion rates.61 Today, colloids are defined as systems in which one substance finely 

disperses into another. 61   

 

There are 3 major classes of colloidal systems: lyophobic, lyophilic, and association 

colloids.61 Lyophobic colloids are made of immiscible components.61 An example of 

a commonly encountered lyophobic colloid is milk, wherein liquid fat droplets are 

dispersed in an aqueous phase.61 Lyophilic colloids are spontaneous, 

thermodynamically stable solutions of solute molecules.61 A major branch of 

lyophilic colloid research is polymer research.61 Association colloids, which are also 
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lyophilic, are aggregates of amphiphilic molecules.61 Association colloids are 

commonly referred to as surface-active agents or surfactants. 61 

 

Surfactants are organic molecules that can move towards surface interfaces when 

dissolved in solvent at low concentrations. 61 Such interfaces include liquid/liquid, 

solid/liquid, and gas/liquid.61 In the case of surfactants, their amphiphilic nature 

allows them to orient at interfaces in such a way that their lyophobic moiety is 

sequestered from strong solvent interactions while their lyophilic moiety remains in 

solution.61 As water is the most common solvent, surfactants’ lyophobic and lyophilic 

moieties are referred as hydrophilic heads and hydrophobic tails.61  

 

Surfactants can be classified by their head groups into the following classes: 

cationics/anionics, non-ionics, and zwitterionics. 61 A catanionic surfactant is a 

mixture of cationic and anionic surfactants. 61 These oppositely charged surfactants 

spontaneously aggregate, forming thermodynamically-stable vesicles in aqueous 

mixtures. 62 Relevant to this study is the use of the cationic surfactant 

cetyltrimethylammonium tosylate (CTAT) and the anionic surfactant sodium 

dodecylbenzylsulfonate (SDBS) in preparing catanionic surfactant vesicles. These 

molecules are shown in Figure 5A. 

 

Surfactants are known for moving towards surface interfaces and for self-assembling 

in bulk phase. 61, 62 They can be emulsified or even made into detergents. 61 

Surfactants can adsorb and aggregate because of the hydrophobic effect: water-water 
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intermolecular interactions are much stronger than water-tail interactions.61 

Surfactants can aggregate as micelles, liquid crystals, bilayers, microemulsions, 

liposomes, and vesicles.62 Liposomes, known as lipid vesicles, are made of 

phospholipid molecules and are formed by the supramolecular interactions of 2 

hydrophobic tails and 1 hydrophilic head group.62 Advances in colloid and liposome 

research have paved the way for recent studies evaluating the use of surfactant 

vesicles as a drug delivery platform.  

 

 

          

 

 

           

Figure 5. General structure of the catanionic surfactant vesicle vaccine. 
Figures were adapted from sources 72 and 83. 

 

In the early 1960s, A.D. Bangham’s work related to liposomes advanced the field of 

colloid science. Based on his work, liposomes became accepted as a model for 

biological membranes.62  In the 1970s, research was conducted into encapsulating 

liposomes, allowing these structures to be applied toward drug delivery and 

A. Structure of CTAT and SDBS.  

B. Formation of catanionic surfactant vesicles.  
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pharmaceutical endeavors. 62 Then, in the 1980s, research into catanionic surfactants 

came to the forefront. The term ‘catanionic’ was first used by Jokela et al63. Kaler et 

al noted the spontaneous formation of catanionic vesicles using three different 

catanionic systems, one of them being the CTAT/SDBS system. 64, 65 Hargreaves and 

Dreamer were the first to characterize catanionic vesicles’ ability to carry molecules. 

62 Since then, many other studies have been undertaken to investigate catanionic 

vesicles’ unique properties, especially investigating their applications as drug delivery 

systems and vaccines (Bramer et al 2006; Bramer et al, 2007; Boudier et al, 2011; 

Gosh et al 2013; Stein et al, 2013; Richard et al 2014; Richard et al, 2014) 66, 65, 

67,68,69,70,71  The DeShong group at the University of Maryland, College Park has 

shown that a surfactant vesicle vaccine prepared from a mixture of CTAT/SDBS (see 

Figure 5B) can elicit antibodies against the LPS molecule of  Francisella tularenesis, 

a Gram-negative coccobacillus and the causative agent of tularemia. 70  

 

Catanionic vesicles have many advantages over liposomes as a vaccine platform.  The 

main advantage is that catanionic vesicles form spontaneously from inexpensive 

reagents and are thermodynamically stable.71, 72, 73 For example, liposomes must be 

made from phospholipids like egg yolk phosphatidylcholine ($177/X) whereas 

catanionic vesicles can be made from less expensive ionic surfactants like SDBS 

($1.10/X).72 Another advantage of  vesicles is that they can be sterilized by 

pasteurization at 65oC or by autoclaving.72 With liposomes, proteins can become 

denatured when incorporated into membranes.72 Catanionic vesicles vaccines can be 

prepared in such a way as to extract immunogenic bacterial membrane components 
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into the membranes of the vesicles, creating an ‘artificial pathogen’ whereby proteins 

may be presented on membrane surfaces in their natural conformations.72  In Gram-

negative infections, such as those caused by F. tularenesis and E. coli, LPS is a potent 

and critical immunostimulatory molecule. The surfactant vesicle vaccine platform 

allows incorporation of LPS without the toxicity associated with the molecule. 

Maintaining the conformation of immunogenic surface proteins as well as decreasing 

the endotoxicity of LPS may help elicit long-term protective immunity. 

 
 
Thesis focus  

The focus of this thesis research is the immunopotency of a novel catanionic 

surfactant vesicle vaccine for E. coli (P4) bovine mastitis. In 2000, a liposomal 

complete core LPS vaccine intended for humans was developed from a LPS cocktail 

of 4 Gram-negative bacteria (E. coli K-12, E. coli R1, Pseudomonas aeruginosa 

PAC 608, and B. fragilis).74 However, to date an E. coli mastitis vaccine that 

incorporates the entire LPS molecule as well as other potential immunogenic surface 

components has not yet been developed.  The catanionic surfactant vesicle is one such 

potential vaccine platform.  

 

As depicted in Figure 6, the outer surface of this vaccine could resemble the outer 

membrane surface of a Gram-negative bacterium with LPS, phospholipids, porins, 

and outer membrane proteins in the outer membrane of the vesicle. The lipid A 

moiety of LPS could incorporate into the inner leaflet of the vesicle’s outer 

membrane. The oligosaccharide and O-antigen moieties could into the outer leaflet of 

the vesicle’s outer membrane. In this way, the highly immunogenic LPS molecule, 
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which does not readily functionalize in vaccine preparations, can be incorporated.75 

The catanionic surfactant platform provides the potential for immunizing cows 

against whole-cell E. coli P4, thereby potentially providing a means to prevent 

rampant cases of E. coli mastitis. 

 

 
 

 
Figure 6. Putative outer membrane surface of the catanionic surfactant vesicle vaccine.  

Adapted from source 72 and 84.  
 

 
 

Hypothesis 

The bovine mastitis vaccine induces a strong antibody response to antigens found on 

the outer membrane surface of E. coli P4. 

 
Specific Aim 1 

Generate an antibody titer comparing pre- and post- vaccination sera. 
 
 
 

Specific Aim 2  

Generate an immunogenic profile comparing pre- and post-vaccination sera. 
 

LPS 

porin 

outer 
membrane 
protein  
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Chapter 2: Materials and Methods 
 
 
Preparation of catanionic surfactant vesicle vaccine  

The bovine mastitis vaccine was developed based on technology described in U.S. 

Patent 20110165067 (Carbohydrate Functionalized Catanionic Surfactant Vesicles for 

Drug Delivery).75 E. coli strain P4 was grown and collected by centrifugation. 

Centrifugation allowed outer membrane proteins to disassociate from the outer 

membrane but kept the peptidoglycan layer intact.  E. coli was then mixed with 

surfactant reagents. Within 12 hr, vesicles formed spontaneously from mixing the 

anionic surfactant SDBS and the cationic surfactant CTAT in a 7: 3 ratio.75  The 180 

nm vesicles were purified on sepharose columns, quantified, and normalized to 

contain 20 mg of LPS.  

 

Preliminary in vivo vaccine study 

Preliminary in vivo studies were conducted in partnership with the USDA. Three 

pregnant heifers were selected. Heifers are cows that are giving birth (calving) for the 

first time. Heifers were preferred over cows because these animals had never suckled 

claves before. Suckling can cause tissue damage to the udders, thereby creating 

opportunities for microorganisms to invade and infect the mammary gland, inducing 

mastitis. Therefore, unlike cows’ udders, heifers’ udders would have minimal 

exposure to environmental pathogens.  Additionally, heifers were selected because 

cows are at a significantly higher risk of developing mastitis during parturition.34 

Using heifers allowed researchers to ascertain whether this vaccine had any toxic 
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effects on gestation and the delivery of calves. All 3 heifers in this study delivered 

healthy calves, suggesting this vaccine is safe for pregnant cows.    

 
Heifers were vaccinated with 50 µl of the whole-cell catanionic surfactant vesicle 

vaccine, 45 days prior to their expected calving date (“d 0”).  Each dose of vaccine 

was normalized to contain 20 mg of LPS.  Heifers were then administered a second 

booster dose approximately 21 days into the study (“d 21”).  During this time, blood 

and milk samples were collected from the animals at regular intervals, following the 

schedule outlined in Table 2. Animals were monitored until 14 days after calving. 

 
Three heifers (3635, 3629, 3643) were vaccinated with the P4 vaccine.  Blood 

samples were collected at regular intervals. Pre-vaccination blood was collected on 

d0. Post-vaccination blood was collected the final day of the study (clv d 14).  Serum 

was isolated from the blood samples by collaboraters at the USDA.  

 

                                                     Table 2. Vaccination schedule. 
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Growth and maintenance of bacterial strains  

Bacterial strains used in this study are shown in Table 3.  Media employed are shown 

Table 4.  E. coli strains P4 and DH5α were grown from glycerol stock on Luria Broth 

(LB) agar plates at 37oC for 16-24 hr.  Strains were confirmed to be P4 and DH5α by 

streaking them onto MacConkey’s agar plates, incubating overnight at 37oC and 

observing the lactose utilization patterns.  P4 ferments lactose and DH5α does not. 

Bacterial strains were maintained by subculturing onto fresh LB agar plates daily and 

used for experimentation within 18-24 hr.  N. gonorrhoeae strain MS11 was grown 

from glycerol stock on GCK agar plates at 37oC with 5% CO2 for 16-24 hr. Strains 

were streaked onto fresh GCK agar plates as needed and used for experimentation 

within 18-24 hr.   
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Media             Composition 
GCK agar 
 
 
 
 
 
 
LB agar                         
 
 
LB agar + Ampicillin 
 
 
LB broth   
 
 
MacConkey’s agar                   

 36g Difco TM GC Medium Base (Becton, Dickson, and Co.) 
5g bacteriological agar (U.S. Biological Co.) 
1L Elix water 
10ml 100X Kellogg’s supplement (5g glutamine, 5g ferric nitrate anhydrous, 
 0.02g thiamine pyrophosphate, 1L Elix water, 400g glucose) 
 
40g LB agar base (U.S. Biological Co.) 
1L Elix water  
 
40g LB agar base (U.S. Biological Co.) 
1L Elix water 
30µg/L ampicillin  
 
40g LB Broth Base (U.S. Biological Co.) 
1L Elix water 
  
17g peptone  
3g proteose peptone  
10g lactose 
5g NaCl 
1.0 mg crystal violet 
3.0mg neutral red 
1.5g bile salt 
13.5g agar 
1L Elix water 
pH 7.1 

Table 4. Media used in this study. 
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Preparation of Outer Membrane, Inner Membrane, and Cytoplasmic Fractions 

Cytoplasmic/inner/outer membrane protein fractions were obtained using 

lysozyme/EDTA lysis and selective detergent isolation following Method 1 

developed by Thein et al.80 The protocol can be divided into three parts: collection of 

bacterial cells after growth; induction of spheroblast formation; and isolation of 

cytoplasmic/inner membrane and outer membrane proteins.  

 
Collection of bacterial cells after growth  

P4 and DH5α were grown from glycerol stocks in LB broth for 16-24 hr at 37oC in 15 

ml centrifuge tube (VWR International).  Bacterial cultures were grown overnight in 

a rolling drum at 37oC. The next day, 1 ml overnight culture was added to 24 ml of 

LB broth, and the cultures incubated at 37oC, 220 rotations per minute (rpm), until 

O.D600.~0.9. Bacterial cells were collected by centrifugation in a Sorvall RC-53 

Refrigerated Super-speed centrifuge for 10 min at 12,000rpm, 4oC.  The supernatant 

was discarded and the pellet, containing whole cell bacteria, was kept for 

resuspension.   

 

Induction of spheroblast formation 

Pellets were resuspended in 500 µl of Buffer 1 (0.2M Tris-HCl, pH 8.0; 1 M sucrose; 

1 mM EDTA).  The resuspension was transferred to a Beckman Ultra-clear centrifuge 

tube.  Lysozyme (100 µl of a 5mg/ml stock solution dissolved in Elix H2O) was 

added to each centrifuge tube, which was flicked gently. The resuspension was 

incubated at room temperature (RT) for 5 min, and 1.76 ml of Elix H2O added. This 

resuspension was incubated at RT for 20 min until spheroblasts were observed. 
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Following spheroblast formation, 3 ml of Buffer 2 (50 mM Tris-HCl, pH 8.0; 2% 

(w/v) Triton X-100; 10 mM MgCl2) and 30 µl of TURBOTM DNase (Ambion®) were 

added.  The suspension was incubated at RT until it cleared.   

 

Isolation of cytoplasmic/inner membrane and outer membrane proteins 

The suspension was clarified by ultracentrifugation at 26,500 rpm for 30 min, 4oC in 

a SW 55 Ti rotor (Beckman Coulter OptimaTM L-90 K Ultracentrifuge).  The 

supernatant, containing cytoplasmic and inner membrane proteins, was collected and 

stored at -20oC.  The pellet, which contained the outer membrane, was re-suspended 

in 750 µl of Buffer 2 and repelleted by ultracentrifugation at 27,000 rpm for 20 min at 

4oC.  The pellet containing the outer membrane fraction was washed with 500 µl of 

Elix H20 and collected by ultracentrifugation at 27,000rpm for 20 minutes at 4oC.  

The membrane was washed 3 times and the final wash was stored at -20oC.  

 
 
Preparation of whole-cell protein fractions 

Whole-cell protein lysates were prepared for each E. coli strain from culture grown 

for 16-24 hr in LB broth.  The remaining 1ml of overnight culture was concentrated 

using a tabletop centrifuge (eppendorf Centrifuge 5417C) at 10,000rpm for 10 min at 

RT. Pellets were resuspended in 50 µl of Lysing Buffer and stored at -20oC. To all 

protein fractions, protein inhibitors were added.  
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SDS-PAGE/western blot procedures  

Aliquots of membrane fractions were analyzed by gel electrophoresis through a 10-

20% SDS-PAGE gel. Half of the gel was silver stained and the other half was 

immunoblotted using Pre-Vaccination and Post-Vaccination sera as primary 

antibodies.  

 
Preparation of protein fractions for SDS-PAGE 

The amount of protein contained in each fraction was determined using a Nanodrop 

(ND-100 Spectrophotometer) by loading 2 µl of protein fraction and measuring the 

absorbance at A280.  A concentration was given in mg/ml and each fraction was then 

normalized to 10 µg of protein: 10 µl samples of each fraction were prepared for 

SDS-PAGE analysis in 1X Lysing Buffer.  

 

Separation of protein fractions by SDS-PAGE 

Prior to loading, samples were boiled at 100oC for 10 min and vortexed for 30 sec.  

Samples were loaded on a 10-20% Criterion Tris-HCl gel (Bio-Rad) in the pattern 

shown in Figure 7.  Experimental samples (10 µl) were loaded alongside 1µl of 

Precision Plus Protein TM Kaleidoscope Standard (Bio-Rad).  The gel was placed in a 

Criterion cell, immersed in 1X Running Buffer, and run at constant current (100 mA) 

on ice for 2-4 hr.  After electrophoresis, the gel was cut and used immediately for 

immunoblotting and silver staining.  

 
Silver stain protocol   

The gel was fixed in Fixing Solution (500 ml) overnight at RT. The next day, the gel 

was oxidized with Periodic Acid (100 ml) for 5 min and then washed in Elix H2O for 
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2 hr. During the wash period, water was changed every 30 min. Silver Stain was 

applied for 15 min at RT. The gel was washed 3 times, 30 min each, with 250 ml of 

Elix. Staining was detected by allowing the gel to soak in developing Solution until 

bands became visible. The gel was given a final water rinse and then imaged using 

the Bio-Rad ChemiDocTM XRS Gel Documentation system and Bio-Rad Quantity 

One ® software. 

 

Figure 7. Gel loading pattern and silver stain/immunoblotting workup. 10 µl of each sample was 
run in the following pattern: Kalediscope Marker (KM), DH5α Total Protein (D-TP), DH5α 
Cytoplasmic/Inner Membrane (D-CIM), DH5α Outer Membrane (D-OM), P4 TP (P-TP), P4 CIM (P-
CIM), P4 OM (P-OM), KM. Empty lanes (blnk) contained 10 µl of 1X Lysing Buffer.  The gel was 
run at constant 100 mA and following electrophoresis, was cut along lane 16. The first gel was used for 
immunoblotting and the second gel was used for silver staining. 
 
 

Immunoblotting protocol  

Immediately following electrophoresis, the gel was transferred in Transfer Buffer to a 

0.45 µm pore PVDF membrane (Immobilon-P membrane) at 100 V on ice for 1 hr. 
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The membrane was blocked overnight at 4oC in Blocking Buffer.  The next day, the 

membrane was cut along lane 9 (Kaleidoscope Marker). The left half was probed with 

pre-vaccination (PR) cow serum and the other half with post-vaccination (PO) cow 

serum.  The membranes were incubated in 10 ml of their respective primary 

antibodies (see Table 7) overnight at 4oC. The next day, the membrane was washed 3 

times in PRST for 15 min and rinsed in Elix H2O 3 times. The membrane was 

blocked again for 1 hr at RT, probed with 50 ml of secondary antibody at RT for 1 hr, 

washed in PRST 6 times, and rinsed in Elix H2O 3 times. The blot was developed 

using 2 ml of the Western Blotting Luminol Reagent system (Santa Cruz 

Biotechnology) at RT for 5 min.  Finally, the blot was imaged using audiography or 

the LAS-3000 Imaging System (FUJIFILM) and quantified using ImageJ software 

(National Institutes of Health). 

 

 
ELISA procedures  

Enzyme-linked immunosorbent assays (ELISAs) were performed on pre- and post-

vaccination sera.  

 

ELISA plate setup  

Control gonorrheal strain MS11 wild-type and experimental coliform strain P4 were 

grown overnight. Bacteria were swabbed from the plate using a Dacron swab and 

resuspended in 4 ml of 1X PRS to a turbidity of 100, as measured with a Klett 

Summerson Photoelectric Colorimeter.  Bacteria (100 µl) was added to 96 well 

microtiter plates (nuncTM Maxisorp flat bottom plate) following the design outlined in 
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Table 6.  Plates were incubated at 37oC for 3 days to allow bacteria to adsorb. The 

experimental controls were a blank control (wells A1-3, E1-3) and two sample 

controls (wells A5-7 and A9-12).  The controls were duplicated in Rows A and D. 

The experimental pre-vaccination samples were triplicated in Rows B, E, and G. The 

experimental post-vaccination samples were triplicated in Rows C, F, and H. 

 

Table 6. ELISA setup. 

 

 

Antibodies  

Cow primary antibody solutions were prepared in 2 ml quantities following a 12 two-

fold serial dilution scheme. Dilutions were prepared from 1:100 to 1:102,400.  Cow 

secondary antibody was prepared in a 45 ml quantity and diluted 1:30,000.   
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Description  Designation Stock Volume; Dilution in PRST 
Heifers 3643, 3629, 
3635 Pre- and Post-
Vaccination sera 
 
Rabbit α bovine 
IgG (whole 
molecule)-
peroxidase 
 
Goat α N. 
gonorrheoae IgG 
bleed 3 antisera 

 
Donkey α goat IgG-
HRP 

  1’ antibody        Immunoblot: 10ml; 1:500 
                          ELISA: 2ml; 1:100 to 1:102,400 
 
 
 
2’ antibody        Immunoblot: 50ml; 1:50,000 
                          ELISA: 45ml; 1:30,000 
 
 
1’ antibody        Immunoblot: 1ml; 1:50 
 
 
 
2’ antibody        Immunoblot: 1ml; 1:10,00 
 

Table 7. Antibodies used in this study.  
 
 

N. gonorrheoae primary antibody (goat α N. gonorrheoae IgG bleed 3 antiserum) was 

prepared in 1 ml quantities and diluted 1:50. N. gonorrheoae secondary antibody 

(donkey α goat IgG-HRP) was prepared in 1 ml quantities and diluted 1:10,000.  

Antibodies were used at RT and stored at -4oC. The antibodies used in this thesis are 

summarized in Table 7. 

 

 

 

 

 

 

 
 

 

 

 

ELISA readings  

Wells were blocked with 250 µl Blocking Buffer for 1 hr at RT. Wells were rinsed 

with PRST 3 times. Wells were probed with primary antibody (50µl) for 1 hr at RT, 

rinsed with PRST 3 times, and dried by aspiration. Wells were probed with secondary 

antibody (70 µl) for 1 hr at RT and rinsed with PRST 6 times. Finally, wells were 

developed with trimethylbenzidine (TMB) (Sigma) (100µl) for 5 min at RT. The KC4 

Plate Reader program was employed to measure absorbance at 645 nm every min for 

20 min. For analysis, readings were averaged across a 1 min time frame. 
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Chapter 3: Results 
 
 

Verification of strain phenotypes 

P4 and DH5α E. coli were swabbed on MacConkey’s agar and allowed to grow for 18 

hr. MacConkey’s agar contains lactose as its carbon source. As seen in Figure 8, only 

P4 is able to utilize and ferment lactose, generating an acidic by-product that renders 

the agar on which it grows pink. DH5α is a lactose operon deletion mutant and as 

such cannot utilize the lactose on the MacConkey’s plate as its carbon source. 

Instead, DH5α uses the peptones in the agar, generating ammonia as a by-product, 

raising the pH of the agar and rendering colonies with a white appearance.  

 
 

 
Figure 8. Verification of strain phenotypes.  

P4 ferments lactose (pink colonies) and 
 DH5α does not (white colonies).  

 
 
 
 
 

DH5α P4 
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Determination of pre--vaccination and post-vaccination antibody titers  

The concentrations of IgG antibodies in sera pre- and post-vaccination were analyzed 

by performing direct ELISAs. Antigen (whole-cell P4) was adsorbed to wells of a 

microtiter plate. Antiserum (PR and PO sera) was diluted 2-fold from 1:100 to 

1:100,240 and probed with a secondary horseradish peroxidase (HRP)-conjugated 

antibody that recognizes bovine IgG molecules. HRP cleavage of the substrate TMB 

forms a blue-colored product, the absorbance of which was measured at O.D. 

645nm.An example of a representative ELISA plate is shown in Figure 9, which 

follows the same setup depicted in Table 6.     

 

 

Figure 9. Representative ELISA plate. 

 

The absorbance readings for PR and PO sera of cows 3643, 3629, and 3635 are given 

in Table 8.  These data are corrected values after the values for the blanks were 

subtracted out. Absorbance measurements of PR and PO sera were plotted as log2 
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graphs to determine antibody titers. Graphs are shown as follows: Cow 3643 (Figure 

10), 3629 (Figure 11), and 3635 (Figure 12).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
       Table 8. Absorbance measurements pre-vaccination and post-vaccination. 

 

 
Figure 10. P4-specific IgG antibodies in Cow 3643 pre-and post-vaccination sera. 

  Absorbance measurements at O.D.645 

  Cow 3643 Cow 3629 Cow 3635 
Antisera 
Dilution 
Factor 

PR              PO PR          PO PR              PO 
1 0.555 0.451 0.399 0.322 0.558 0.567 
100 0.516 0.567 0.371 0.416 0.490 0.491 
200 0.443 0.507 0.270 0.290 0.415 0.460 
400 0.319 0.323 0.210 0.211 0.285 0.302 
800 0.198 0.181 0.136 0.153 0.176 0.203 
1,600 0.124 0.102 0.088 0.102 0.106 0.103 
3,200 0.063 0.057 0.061 0.065 0.067 0.075 
6,400 0.044 0.034 0.044 0.051 0.042 0.054 
12,800 0.026 0.025 0.036 0.038 0.033 0.039 
25,600 0.022 0.018 0.035 0.031 0.023 0.032 
51,200 0.021 0.023 0.026 0.030 0.027 0.030 
102,400 0.020 0.037 0.027 0.029 0.034 0.037 

Pre-Vaccination Post-Vaccination 
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Figure 11. P4-specific IgG antibodies in Cow 3629 pre-and post-vaccination sera. 

 

 
Figure 12.  P4-specific IgG antibodies in Cow 3635 pre- and post-vaccination sera. 

 
 

Pre-Vaccination Post-Vaccination 

Pre-Vaccination Post-Vaccination 
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For all 3 cows, background existed in the ranges of dilution factors 12,800 to 

102,240.  Antibody titer is defined as the greatest dilution of antisera that still allows 

for detection. Titer for all 3 cows’ pre-and post-vaccination sera was 6,400. For cow 

3643, detection was observed between absorbance 0.340 to 0.325. For cow 3629, 

detection was observed between absorbance 0.044 to 0.300. Finally, for cow 3635 

detection was observed between absorbance 0.042 to 0.302. Plateaus of saturation 

were observed for all cows from dilution factors 200 to undiluted.  Based on titer, 

conclusions can be made about antibody concentration in sera pre-and post-

vaccination. These conclusions will be discussed in the following chapter. 

 

Matched two-tailed student t-tests were performed on all 3 sets of ELISA data.  The P 

value for cow 3643 was 0.858. The P-value for cow 3629 was 0.728. Finally, the P 

value for cow 3635 was 0.012. The meaning of these P values will be discussed in the 

following chapter.  

 
 
 
Identification of potential vaccine antigens  

Immunoblot analyses were conducted to identify potential P4 antigens that had 

incorporated into catanionic surfactant vesicles. Outer membrane proteins were 

thought to have been extracted from P4 E. coli into the outer membrane of the 

catanionic surfactant vesicle vaccine.  It was hypothesized that the vaccine could 

stimulate strong antibody production to P4 outer membrane antigens.  
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Thus, subfractionation of E. coli cells was conducted to assist in identifying which P4 

antigens incorporated where in the catanionic surfactant vesicle. The following 

fractions were prepared and analyzed: total proteins (TP), cytoplasmic/inner 

membrane proteins (CIM), and outer membrane proteins (OM). E. coli DH5α protein 

fractions were used as controls. E. coli P4 protein fractions were used as experimental 

samples. To aid in identifying potential antigens in the vaccine, immunogenic profiles 

were generated. Each immunogenic profile consists of a silver stain, an immunoblot 

using pre-vaccination and post-vaccination sera as primary antibody, and histograms 

of the distribution by size of protein antigens in each fraction. Histograms, a 

densitometric analysis, relate detection to number of proteins. Profiles are shown for 

cows 3643 (Figure 13) and 3635 (Figure 14).  

 

Cow 3643’s silver stain revealed the presence of lipoproteins, the “blank bands” in 

the gel. The lipid portions of these proteins do not take up silver stain completely. A 

doublet of lipoproteins was observed in the 60 kiloDalton (kD) range in P4 and DH5α 

OM fractions.  CIM proteins were observed from 100 kD and below. CIM proteins 

were strongly seen in the 37 to 10 kD range. A 20 kD band was observed in all 

fractions: TP, CIM, and OM of P4 and DH5α. The relative density of this band was 

calculated across the fractions with the DH5α-TP band as the control. The data 

presented in Table 9 was collected in reference to this 20 kD band.  
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Lane  Area Percent  
Relative 
Density  

1 221340.9 18.245 1.00 
2 156914 12.934 0.71 
3 155296 12.801 0.70 
4 155655.3 12.83 0.70 
5 156293 12.883 0.71 
6 156765 12.922 0.71 

Table 9. Relative density of 20 kD band across all protein fractions (Silver Stain, Cow 3643). 

 

Shown in Figure 13, an immunogenic profile for Cow 3643 was generated. The 

immunoblot showed a prominent band in the 75 kD range in all DH5α and P4 

fractions but the CIM fraction. A band was observed in the 200 kD range in all 

fractions except in the OM fractions. A band in the 150 kD range was strongly 

observed in the P4-OM fraction by pre-vaccination probing. This ~150kD band was 

not strongly observed in the P4-OM fraction by post-vaccination sera probing. Again, 

in the immunoblot a 20 kD band was observed in all fractions. Normalization of the 

200 kD, 150 kD, and 75 kD bands relative to the 20 kD was not pursued due to the 

saturation already present in the immunoblot. Histogram analysis of the 

immunoblotted protein fractions showed protein detection across pre-and post-

vaccination sera did not differ significantly, except for in the P4 OM fractions. The 

histograms reveal a slight shift in peak distribution towards higher molecular weight 

proteins in the post-vaccination serum probing of P4 OM fractions. Specifically, the 

mode for pre-vaccination serum detection was 52 and the mode for post-vaccination 

serum detection was 207.     
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 Figure 13. Immunogenic profile for Cow 3643. 

 

 

 

 

 

A  Silver Stain of Protein Fractions 
 

 
 

B  Immunoblot of Pre-and Post-Vaccination  
Sera (Cow 3643) 
 

 

20 kD 

Pre-
Vaccination 

Post-
Vaccination 

200kD 
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Shown in Figure 14, an immunogenic profile for Cow 3635 was generated. A silver 

stain of cow 3635 protein fractions was performed. Again, a band around 75 kD was 

observed in all fractions. A strong doublet lipoprotein band was observed in the TP 

fractions in the 50 to 37 kD range. A prominent band was observed in all fractions at 

20 kD as was seen in the previous silver stain. Bands in the 200 kD range were also 

observed in TP and OM fractions. Looking at the immunoblot, a prominent 200 kD 

band was observed in P4-TP and-OM fractions pre-and post-vaccination. A 75 kD 

band was observed in all fractions but CIM. CIM bands were observed only in the 25 

to 10 kD range on the immunoblot. By histogram analysis, the only significant 

differences in detection were between detection of P4 OM fractions pre-and post-

vaccination. Pre-vaccination serum detected a high number of protein counts in the 

30-100 peak range. Post-vaccination serum detected a high number of protein counts 

in the 200-230 peak ranges.  Specifically, the mode for pre-vaccination serum 

detection was 174 and the mode for post-vaccination serum detection was 226.  

 

 

 

47 
 



 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

    

Figure 14. Immunogenic profile for Cow 3635. 
 

 

 

 

A  Silver Stain of Protein Fractions 
 
 

 

B  Immunoblot of Pre-and Post-Vaccination 
Sera (Cow 3635) 
 

 

 

  Pre-Vaccination      Post-Vaccination 
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Chapter 4: Discussion 

 

The goal of this project was to investigate the immunopotency of a catanionic 

surfactant vesicles as a potential vaccine platform. This project focused on 

investigating if a catanionic surfactant vesicle vaccine could elicit antibody response 

against E. coli, a causative agent of bovine mastitis. Specifically, it was hypothesized 

that the vaccine could elicit strong antibody response against E. coli outer membrane 

antigens. It was predicted that data generated may offer insight into whether the 

vaccine could elicit protective immunity against E. coli. The goals of this particular 

vaccine were 1) determining if the vaccine formulation decreased the inherent 

toxicity of incorporating the lipid A portion of LPS and 2) determining what, if any, 

effect the vaccine formulation had on antibody production in cow serum.  

 

Based on these goals, success could be framed in the context of survival of animals 

that received the vaccine. The 3 heifers that were vaccinated in the study all survived 

vaccination and were alive at the conclusion of clv d 14. Additionally, success could 

be framed in the context of the delivery of healthy offspring. All heifers in this study 

birthed healthy calves. By this perspective, the vaccine was a success. 
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Another context by which success could be defined is by the vaccine formulation’s 

effects on bovine antibody production in serum. At the very least, success could be 

thought of as the vaccine’s ability to generate an antibody response. To validate this 

perspective, serum studies were performed. These studies were ELISAs and 

immunoblots.   

 

A vaccine was developed using E. coli as the bacterium causes 80% of all coliform 

mastitis cases.60 Moreover, E. coli was chosen over other causative agents like S. 

aureus as E. coli is a Gram-negative bacterium. Previous published data from the 

DeShong group70 and unpublished data from the Stein group69 have demonstrated the 

suitability of a catanionic surfactant vesicle platform in eliciting antibody against 

LPS/LOS.  This thesis utilized DH5α and P4 E. coli as the control and experimental 

coliform strains. 

 

DH5α was selected as the control coliform strain. DH5α shares structural and 

antigenic characteristics with P4. However as a laboratory strain, DH5α has been 

genetically modified and no longer expresses some characteristics that contribute 

towards virulence such as lactose utilization79 and an O-antigen.42 This strain belongs 

to the K-12 O-antigen serotype 42, meaning it does not express O-antigen, rendering 

bacteria sterically susceptible to complement-mediated killing (serum sensitivity). 

Additionally, the lack of O-antigen renders bacteria less antigenic than R-1 strains 

like P4. DH5α can be considered an avirulent E. coli strain whereas P4 is a highly 

virulent (pathogenic) E. coli strain. P4 was chosen for study as it is frequently isolated 
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in cases of clinical mastitis. 39, 78 and is used to induce experimental mastitis. 

Responses to DH5α were to be compared with responses to P4 in the hopes that 

surface antigens unique to P4 could be discerned. Overlap in responses could be 

attributed to shared structural features and the response to DH5α could be ‘subtracted 

out,’ giving further insight into vaccine-induced P4-specfic responses.  

 

The ELISA experiments, under the conditions described in this thesis, suggest there 

was no significant difference in bovine IgG concentration after vaccination. For 

example, significant difference is defined as P<0.01. P values for each cow’s ELISA 

readings are as follows: Cow 3643 (P=0.858), Cow 3629 (P= 0.728), and Cow 3635 

(0.012). Based on the parameters of the experiment conducted, it could concluded 

that 1) there was no observable difference in IgG concentrations after vaccination and 

2) perhaps the vaccine formulation was unable to elicit an IgG response. These 

observations are in stark contrast to Wilson et al’s J5 Bacterin vaccine study, which 

showed increase in J5-specific IgG post-vaccination.57 

 

On the other hand, the argument can be made that differences in IgG concentration 

may be obscured by a high background of non-specific binding. This could be 

concluded because whole-cell P4 reacted strongly to Neisserial primary and 

secondary antibody, as observed qualitatively by comparing intensity of blue color 

development between P4 and MS11 control wells. Blue color was equally intense 

between P4 and MS11 wells. Ideally, P4 would have little to no specificity for 

Neisserial antibodies.  
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E. coli response to Neisserial antibodies may have been observed because of 

improper blocking of wells. Perhaps wells could have been blocked overnight at 4oC 

instead of for 1 hr at RT. Another explanation for non-specific binding could be the 

choice of 5% BSA solution as the blocking buffer. Cows naturally produce BSA in 

their sera Blocking with BSA may not then have been the most choice, given that this 

protein is already highly prevalent in bovine sera and given that in these experiments 

bovine sera were used as primary antibodies. In these studies BSA, casein, or 

powdered milk should not be used as blocking reagents. These reagents could interact 

with antibodies present in bovine sera. An alternative experiment could be to repeat 

the ELISA procedures using a regent like fish gelatin as a blocking buffer. 

 

The use of additional positive and negative controls could help troubleshoot the 

ELISA studies. Since P4 belongs to E. coli serotype O32: H37, 40 antibodies for O32 

O-antigen or H37 flagellar antigen could be used as positive controls to probe 

specifically for P4. Theoretically, only wells with P4 should have TMB development.  

Since these antigens are highly specific for P4, wells with MS11 should have no 

TMB detection.  One negative control could be probing bovine antisera with bovine 

secondary antibody. As these wells would contain no bacteria, theoretically antisera 

would not bind the well, preventing the binding of secondary antibody and the 

cleavage of TMB substrate. Little to no TMB should be detected in a well with only 

bovine antisera and bovine secondary antibody. Similarly, to assess non-specificity 

another negative control could be probing MS11 with bovine antisera and bovine 

secondary antibody. Theoretically, heifers would not have been exposed to Neisseria 
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at any point in their lives and therefore should not produce antibodies against this 

bacterial species. Ideally, little to no TMB should be detected in wells with Neisseria, 

bovine antisera, and bovine secondary antibody. In the future, ELISA studies could 

be repeated with these positive and negative controls. ELISAs could be optimized to 

reduce the high background of non-specific binding and perhaps in this new context, 

differences between IgG concentrations pre- and post-vaccination could be seen. 

 

Based on the immunogenic profiles generated in this thesis, it could be concluded that 

post-vaccination, antibodies were produced to high molecular proteins found mostly 

in P4’s outer membrane. For example, there was an antibody response to a high-

molecular weight protein on P4’s OM surface in the post-vaccination serum of one 

cow (Cow 3635). The presence of that 200 kD band may warrant further study. To 

better identify that protein, bands could be excised from the gel, analyzed, and 

structurally characterized by mass spectrophotometry. One interpretation of the data 

could be that vaccination may elicit antibodies to P4 OM antigens and that in this 

way, the vaccine may potentially hold promise as an alternative commercial 

therapeutic for decreasing symptoms of clinical mastitis and improving the quality of 

milk obtained from mastitic cows.  

 

However, another interpretation of the immunogenic profiles generated in this thesis 

is that high background response to common DH5α and P4 antigens obscures P4-

specific antibody binding. This could be concluded from comparing histogram 

distributions of detection of DH5α and P4 protein fractions. There was a high, non-
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specific bovine serum antibody response to DH5α proteins.  Non-specific antibody 

response to DH5α proteins could be minimized in future studies by conducting an 

antibody absorption experiment. Bovine antisera could be absorbed with DH5α whole 

cell antigen to eliminate non-specific binding. Immunoblotting could be repeated 

using absorbed pre-and post-vaccination primary antibodies. Immunoblots probed 

with absorbed antisera should theoretically demonstrate P4-specific binding.  

Histogram analyses of these immunoblots should reveal little to no detection of 

protein bands in the DH5α fractions and detection of some unique protein bands in 

the P4 fractions. These changes could be applied to future immunoblot studies and 

perhaps in these studies, detection of P4-specific antigens could be seen.   

 

Data generated from this study can be compared to what is known about current 

vaccines for bovine mastitis. The well-studied vaccine available is J5 Bacterin. In 

previous studies related to J5 Bacterin, Wilson et al observed no differences in 

antibody concentrations prior to vaccination between vaccinated and unvaccinated 

cows. 56 Another study showed vaccination increased J5-specific IgG2 antibodies.57 In 

this thesis study, P4-specific IgG antibodies remained relatively unchanged. But 

perhaps, IgG2 and IgG1 populations differed pre-and post-vaccination. Knowing this, 

further ELISA studies could be done to determine whether vaccination promoted P4-

specific IgG2 production while reducing IgG1 production. Secondary antibodies that 

distinguish between the two IgG isotypes could be used in these studies. Additionally, 

perhaps the vaccine was unable to elicit class-switching from IgM to IgG. If that is 

the case, perhaps post-vaccination bovine serum contains high levels of IgM. To 
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determine the validity of this hypothesis, ELISAs could be conducted specifically for 

bovine IgM instead of IgG.  

 

A major limitation of this study could be the 3 heifers chosen for the preliminary trial.  

Under the parameters of this thesis, even if these animals had exposure to P4 E. coli 

prior to the study this may not have been observed with the high background of non-

specific binding. Optimizing the ELISA and immunoblot experiments to minimize 

non-specific binding would help in determining what effect exposure to E. coli prior 

to vaccination has on the data. Theoretically, vaccines should elicit highly specific 

and robust responses despite prior exposure.  

 

Overall, this study could benefit from further optimization to reduce the non-specific 

binding of bovine sera antibodies. At this time, given the parameters of this thesis, 

conclusive statements regarding the immunopotency of the catanionic surfactant 

vesicle as a vaccine platform cannot be made. Nonetheless, catanionic surfactant 

vesicles could hold potential as a vaccine platform as they are relatively inexpensive 

to prepare, can be stored long-term at room temperature, can be autoclaved and 

pasteurized, and allow the incorporation of LPS without inducing toxicity in hosts.  

 

 

 
 
 
 

55 
 



 

References 
 
1. Food and Agricultural Organization of the United Nations. May 2014. Food 

Outlook: Biannual Report on Global Food Outlooks.   
  
 

2. Food and Agricultural Organization of the United Nations. ‘Milk Production.’ 
Dairy. Web. 2014. 

 
 

3. United States Department of Agriculture. ‘Dairy: World Markets and Trade.’ 
Web. Dec 2013. 

 
 

4. Dairy Farming Today.  ‘The US Dairy Industry.’ Dairy Farming Today. Web.  
2014.  

 
 

5. Food and Agricultural Organization of the United Nations and the World Health 
Organization. 2011. Codex Alimentarius: Milk and Milk Products. Rome. Web.  

 
 

6. United States Department of Agriculture. ‘Milk: Production by Year, US.’ 
National Agricultural Statistics Service. Web.  2014. 

 
 

7. United States Department of Agriculture Economic Research Service. ‘US Milk 
Production and Related Data (Quarterly).’ Dairy Data. Web. May 2014.  

 
 

8. Food and Agricultural Organization of the United Nations. ‘Milk Composition.’ 
Milk and Milk Products. Web. 2014.   

 
 

9. Muehlhoff E, A Bennett, and D McMahon. Introduction. Milk and Dairy 
Products in Human Nutrition. Rome: Food and Agricultural Organization of the 
United Nations. 2013. 1- 10. Web.  

 
 
 
10. Stanton C, D McMahon, and S Mills. Dairy components, products, and human 

health. Milk and Dairy Products in Human Nutrition. Rome: Food and 
Agricultural Organization of the United Nations. 2013. 207- 242. Web.  

 
 

56 
 



 

11.  Kenny, M. Safety and quality. Milk and Dairy Products in Human Nutrition. 
Rome: Food and Agricultural Organization of the United Nations. 2013. 243-
274.Web.  

 
 
12.  Leedom, JM. 2006. ‘Milk of non-human origin and infectious diseases in 

humans.’ Clin Infect Dis 43(5): 601-615. 
 
 

13.  Food and Drug Administration. 2011 Revision of the Grade “A” Pasteurized 
Milk Ordinance. 

 
14. Canadian Medical Association. 2007. ‘Raw Milk and the Protection of Public 

Health.’  CMAJ 177 (7): 721-723.  
 
 

15. Quigley L, O O’Sullivan, C Stanton, TP Beresford, RP Ross, GF Fitzgerald, 
and PD Cotter.  2013. ‘The complex microbiota of raw milk.’ FEMS Microbiol 
Rev 37 (5): 664-698. 

 
16. Centers for Disease Control and Prevention. ‘Raw Milk Questions and Answers.’ 

Food Safety. Web. March 2014.  
 
 

17. Rinaldi M, RW Li, DD Bannerman, KM Daniels, C Evock-Clover, M VB 
Silva, MJ Paape, B Van Ryssen, C Burvenich, and AV Capuco. 2010. ‘A 
sentinel function for teat tissues in dairy cows: dominant innate immune response 
elements define early response to E. coli mastitis.’ Funct Integr Genomics 10: 21-
38. 
 

 
18.  World Wildlife Fund. ‘Dairy Industry.’Web. 2014. 

<http://www.worldwildlife.org/industries/dairy> 
 
 

19. Nunes ELC, EV Barbosa, E Folly, VF Lione, and HC Castro. 2013. ‘Bovine 
Mastitis: a brief reminder about a potential target for exploring medicinal plant 
use.’  Intl Jrl of Medical Plans and Alternative Medicine 1: 80-86.  

 
 

20. United States Department of Agriculture. Biosecurity Practices on US Dairy 
Operations 1991-2007. Web. May 2010.< http://www.aphis.usda.gov/ > 

 
 
 

57 
 



 

21. Tiwari J, C Babra, HH Tiwari, V Williams, S De Wet, J Gibson, A Paxman, 
E Morgan, P Constantino, R Sunagar, S Isloor, and T Mukkur. 2013. ‘Trends 
in therapeutic and prevention strategies for management of bovine mastitis: an 
overview.’ J Vaccines Vaccin 4(2): 8-11. 

 
 

22. Oviedo-Boyso J,  JJ Valdez-Alarcón, M Cajero-Juárez, A Ochoa-Zarzoa, JF 
López-Meza, A Bravo-Patiño, and VM Baizabal-Aguirre. 2007. ‘Innate 
immune response of bovine mammary gland to pathogenic bacteria responsible 
for mastitis.’ J Infection 54:399-409.  

 
 

23.  Contreras GA and JM Rodriguez. 2011. ‘Mastitis: comparative etiology and 
epidemiology.’ J. Mammary Gland Biol Neoplasia 16: 339-356. 

 
 

24. National Mastitis Council. ‘A Practical Look at Environmental Mastitis.’ NMC. 
Web. 2014.  

 
 

25. National Mastitis Council. ‘A Practical Look at Contagious Mastitis.’ NMC. Web. 
2014.  

 
26. National Mastitis Council. ‘Guidelines on Normal and Abnormal Raw Milk 

Based on Somatic Cells Counts and Signs of Clinical Mastitis.’ NMC. Web. 2014. 
 

27. Oliver, SP. ‘How Milk Quality is Assessed.’ Extension. Web. Dec 21. 2010.  
 
 

28. Dufour D, P Germon, E. Brusseaux ,Y Le Roux, and A Dary. 2011. ‘First 
evidence of the presence of genomic islands in Escherichia coli P4, a mammary 
pathogen frequently used to induce experimental mastitis.’ J Dairy Sci 94: 2779-
2793.  

 
 

29. Awale MM, GB Dudhatra, A Kumar, BN Chauhan, DR Kamani, CM Modi, 
HB Patel, and SK Mody. 2012. ‘Bovine Mastitis: A Threat to Economy.’ Open 
Access Scientific Reports.  

 
 

30. Bogni C, L Odierno, C Raspanti, J Giraudo, A Larriestra, E Reinoso, M 
Lasagno, M Ferrari, E Ducrós, C Frigerio, S Bettera, M Pellegrino, I Frola, S 
Dieser and C Vissio. ‘War against mastitis: Current concepts on controlling 
bovine mastitis Pathogens.’ Science against microbial pathogens: communicating 
current research and technological advances. A. Méndez-Vilas (Ed.). Formatex: 
2011.  

58 
 



 

31. De Vliegher S, LK Fox, S Piepers, S McDougall, and HW Barkema.2012.  
‘Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and 
control.’ J Dairy Sci 95: 1025-1040.  

 
 

32.  Ballou MA. 2012. ‘Inflammation: role in the etiology and pathophysiology of 
clinical mastitis in dairy cows.’ J Anim Sci 90: 1466-1478. 

 
 

33. Schukkena YH, J Güntherb, J Fitzpatrick, MC Fontainec, L Goetzed, O 
Holste, J Leighf, W Petzlg, H-J Schuberthh, A Sipkah, DGE Smith, R 
Quesnelld, J Wattsd, R Yanceyd, H Zerbeg, A Gurjara, RN Zadoksa, and H-
M Seyfert. 2011. ‘Host-response patterns of intramammary infections in dairy 
cows.’ Vet Immunol Immunop 144: 270-289. 

 
 
34. Sordillo, LM. 2005. ‘Factors affecting mammary gland immunity and mastitis 

susceptibility.’ Livestock Production Science 98: 89-99.  
 
 

35.  Bruno DM. 2010. ‘Mastitis, Mammary Gland Immunity, and Nutrition.’ Mid-
South Ruminant Nutrition Conference.  
 

36. Kaper, JB, JP Nataro, and HT Mobley. 2004. ‘Pathogenic Escherichia coli.’ 
Nat Rev Immunol 2: 123- 140. 

 
 

37.  Gilbert FB, P Cunhal, K Jensen, EJ Glass, G Foucras, C Robert-Granié, 
       R Rupp, and P Rainard. ‘Differential response of bovine mammary epithelial  
       cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune  
       system. Veterinary Research 40(40):1-22.  
 
38.  Shpigel NY, S Elazar, and I Rosenshine. 2008. ‘Mammary pathogenic 

Escherichia coli.’ Curr Opin Microbiol 11: 60-65.  
 
39. Anderson JC, MR Burrows, and AJ Bramley. 1977. ‘Bacterial Adherence in 

Mastitis Caused by Escherichia coli.’ Vet Pathol 14(6): 618-628.  
 
  

40. Blum, S., N. Sela, E. D. Heller, S. Sela, and G. Leitner. 2012. ‘Genome 
Analysis of Bovine-Mastitis-Associated Escherichia coli O32:H37 Strain P4.’ J 
Bacteriol. 194(14): 3732. 

 
 

41. Erridge C, E Bennett-Guerrero, IR Poxton. 2002. ‘Structure and function of 
lipopolysaccharides.’ Microbes Infect 4:837-851. 

59 
 



 

42. Duda KA, b Lindner, H Brade, A Leimbach, E Brzuszkiewicz, U Dobrindt, 
and O Holst. 2011. ‘The lipopolysaccharide of the mastitis isolate Escherichia 
coli strain 1303 comprises a novel O-antigen and the rare K-12 core type.’ 
Microbiol 157: 1750-1760.  

 
 
43.  Burvenich C, V Van Merris, J Mehrzad, A Diez-Fraile, and L Duchateau. 

2003. ‘Severity of E. coli Mastitis is mainly determined by cow factors.’ Vet Res 
34: 521–564. 

 
 

44.  Burvenich C, DD Bannerman, JD Lippolis, L Peelman, BJ Nonnecke, ME 
Kehrli Jr and MJ Paape. 2007.  ‘Cumulative physiological events influence the 
inflammatory response of the bovine udder to Escherichia coli infections during 
the transition period.’ J Dairy Sci 90(E Suppl): E39-E54.  

 
 

45.  Yunhe F, Z Ershun, L Zhicheng, L Fenyang, L Dejie, L Bo, S Xiaojing, Z 
Fuyi, F Xioasheng, L Depeng, C Yongguo, Z Xichen, Z Naisheng, and Y 
Zhengtao. 2013. ‘Staphylococcus aureus and Escherichia coli elicit different 
innate immune responses from bovine mammary epithelial cells.’ 2013. Vet 
Immunol Immunop 155: 245-252.  

 
 

46. Hurley WL. ‘Lactation Biology.’ Department of Animal Sciences University of 
Illinois, Urbana. Web. 2010.< http://ansci.illinois.edu/static/ansc438/index.html> 

 
 

47.  Sordillo LM, K Shafer-Weaver, and D DeRosa. 1997. ‘Immunobiology of the 
mammary gland.’ J Dairy Sci 80(8): 1851-1865.  

 
 

48. Bertoldo J. ‘Anatomy of the Mammary Gland.’ Cornell University Cornell 
Cooperative Extension New York Dairy and Field Crops. Web. 2013. < 
http://cnydfc.cce.cornell.edu/> 

 
  

49.  Burton JL and RJ Erskine. 2003. ‘Immunity and mastitis. Some new ideas for 
an old disease.’ Vet Clin North Am Food Anim Pract 19(1): 1-45.  

 
50.  Wellnitz O and RM Bruckmaier. 2012. ‘The innate immune response of the 

bovine mammary gland to bacterial infection.’ Vet J 192:148-152. 
 

 

60 
 



 

51.  Lehmann M, O Wellnitz, and RM Bruckmaier. 2013.  ‘Concomitant 
lipopolysaccharide-induced transfer of blood-derived components including 
immunoglobulins into milk.’ J Dairy Sci 96: 889-896.  

 
 

52.  Rainard, P. 1983. ‘Experimental Mastitis with Escherichia coli: Kinetics of 
Bacteriostatic and Bactericidal Activities.’ Ann Rech Vét 14 (1): 1-11.  

 
 

53. Tomita GM, CH Ray, SC Nickerson, WE Owens, and GF Gallo. 2014. ‘A 
comparison of two commercially available Escherichia coli J5 vaccines against E. 
coli intramammary challenge.’ 2000. J Dairy Sci 83 (10): 2276-2281.  

 
 

54.  Brade L, S Hensen, and H Brade. 2012.  ‘Evaluation of a LPS-based 
glycoconjugate vaccine against bovine Escherichia coli mastitis: Formation of 
LPS Abs in cows after immunization with E. coli core oligosaccharides 
conjugated to hemocyanine.’ Innate Immunity 19(4):368–377. 

 
 

55. González RN, JC Cullor, DE Jasper, PO Fraver, RB Bushnell, and MN 
Oliver. 1989. ‘Prevention of clinical coliform mastitis in dairy cows by a mutant 
Escherichia coli vaccine.’ Can J Vet Res 53(3):301-305.  

 
 

56.  Wilson DJ, BA Mallard, JL Burton, YH Schukken, and Y Gröhn. 2007. ‘ 
Milk and serum J5-specific antibody responses, milk production change, and 
clinical effects following intramammary Escherichia coli challenge for J5 
vaccinated and control cows.’ Clin Vaccine Immunol 14(6):693-699. 

 
 

57. Wilson DJ, BA Mallard, JL Burton, YH Schukken, and Y Gröhn. 2009. 
‘Association of Escherichia coli J5-specific serum antibody responses with 
clinical mastitis outcome for J5 vaccinate and control dairy cattle.’ Clin Vaccine 
Immunol 16(2): 209-217. 

 
 

58.  March R, A Foix, M Noguera, R Guix, and A Prenafeta.2010. ‘Efficacy 
Evaluation of a new vaccine against bovine mastitis: field trial results.’  

 
 

59. Porter R. 2011. ‘The Next Step in Mastitis Control?.’ Cow Management.  
 
 

61 
 



 

60. Suojala L, L Kaartinen, and S Pyorala.  2013. ‘Treatment for bovine 
Escherichia coli mastitis- an evidence based approach.’ J Vet Pharmacol Therap 
36: 521-531. 

 
 

61. Eastoe, Julian. “Surfactant chemistry and general phase behavior.” Surfactant 
Chemistry. Bristol: University of Cambridge. 2003.  

 
 

62. Segota S and D Tezak. 2006. ‘Spontaneous formation of vesicles.’ Advances in 
Colloid and Interface Science 121: 51-75.  

 
 

63. Jokela P, B Joensson, and A Khan. 1987. ‘Phase Equilibria of Catanionic 
surfactant-water systems.’J Phys Chem 91 (12): 3291–3298 

 
 

64. Kaler EW, AK Murthy, BE Rodriguez, and JA Zasadzinski. 
1989.‘Spontaneous vesicle formation in aqueous mixtures of single-tailed 
surfactants.’ Science 245(4924): 1371-1374.  

 
65. Bramer T, N Dew, and K Edsman. 2007. ‘Pharmaceutical Applications for 

catanionic mixtures.’ J Pharm Pharmacol 59(10): 1319-1334. 
 
66. Bramer, T, N Dew, and K Edsman. 2006. ‘Catanionic mixtures involving a 

drug: A rather general concept that can be utilized for prolonged drug release 
from gels.’ J Pharm Sci 95(4): 769-780. 

 
67. Boudier A, P Castagnos, E Soussan, G Beaune, H Belkhelfa, C Ménager, V 

Cabuil, L Haddioui, C Roques, I Rico-Lattes, and M Blanzat. 2011. 
“Polyvalent catanionic vesicles: Exploring the drug delivery mechanisms.” 
International Journal of Pharmaceutics 403 (1-2): 230-236.  

 
68. Gosh S, B Ambade, and A Ray. 2013. ‘Stable Catanionic Vesicles as Drug 

Delivery Vehicle.’ Science of Advanced Materials 5(12): 1837-1846. 
 
 

69. Stein DC, L Zimmerman, J Park, L Stocker, and P DeShong. 2013. ‘Use of 
Surfactant Vesicles as a Potential Gonococcal Vaccine Delivery System to 
Generate Antibody Against Neisserial Lipooligosaccharide.’ Sex Transm Infect 
89(S1).(Oral session abstract) 

 
70. Richard K, BJ Mann, L Stocker, EM Barry, A Qin, LE Colea, MT Hurley, 

RK Ernst, SM Michalek, DC Stein, P DeShong, and SN Vogel. 2014. ‘Novel 
Catanionic Surfactant Vesicle Vaccines Protect against Francisella tularensis 

62 
 



 

LVS and Confer Significant Partial Protection against F. tularensis Schu S4 
Strain.’ Clin Vaccine Immunol 21(2): 212-226.    

 
 

71. Richard K, B Mann, L Stocker, EM Barry, A Qin, L Cole, M Hurley, R 
Ernst, S Michalek, DC Stein, P DeShong, and SN Vogel. 2014. ‘Novel 
vaccination strategy: Francisella tularensis vaccines based on functionalized 
catanionic vesicles (VAC7P.963).’ J Immunol 92(S1). 

 
 

72. Stocker, LH. Catanionic Surfactant Vesicles: Technology for Vaccine 
Development and Targeted Drug Delivery Applications. Diss. University of 
Maryland, College Park, 2013.  <http://hdl.handle.net/1903/14523> 

 
73. Stocker, LH, A Horn, L Zimmerman, AP Dhabaria, C Fenselau, DC Stein, 

and P DeShong. 2013 (unpublished). ‘Extraction of membrane components from 
Neisseria gonorrhoea using catanionic surfactant vesicles.’  

 
74.  Bennett-Guerrero E, TJ McIntosh, GR Barclay, DS Snyder, RJ Gibbs, MG 

Mythen, and IR Poxton. 2000.  ‘Preparation and Preclinical Evaluation of a 
novel liposomal complete-core LPS Vaccine.’ Infect Immunol 68 (11): 6202-
6208.  

 
75. English DS, PR DeShong, DC Stein, S Lioi, J Park, EJ Danoff, GB Thomas. 

US Patent 20110165067, 2011.  
 

76. Mudrak B and MJ Kuehn. 2010.  ‘Heat-Labile Enterotoxin: Beyond GM1 
Binding.’ Toxins.  Openi Beta (NIH). 

 
77. Caroff M and D Karibian. 2003.  ‘Structure of bacterial lipopolysaccharides.’ 

Carbohydr Res 338 (23): 2431-2437.  
 

78.  Bramley, A.J. 1976. ‘Variations in the susceptibility of lactating and non-
lactating bovine udders to infection when infused with Escherichia coli.’ J Dairy 
Sci. 43 (02): 205-2011. 

 

79. Chen, Xi. 1997. The Characterization of the putative dcrG gene from Neisseria 
gonorrheoae 1291C. Masters Thesis, University of Maryland College Park.  

 

80. Thein M., G. Sauer, N. Paramasivam, I. Grin, and D. Linke. 2010. ‘Efficient 
subfractionation of gram-negative bacteria for proteomics studies.’ J. Proteome 
Res. 9(12): 6135-47.  

 

63 
 



 

81. Universite de Montreal. ‘Pathogenic E. coli.’ ECL. Web. 2004.  
 

82. Park, Choong-saeng. ‘Lactation.’ Gyeongsang National University. Web.  
 

83. Dashaputre N. Diss. University of Maryland, College Park, 2014.  
 

84. Schevchuk O, J Jager, and M Steinert. 2011. ‘Virulence properties of the 
Legionella pneumophila cell envelope.’ Front Microbiol.2 (74): 1-12. 

 

 
 

64 
 


	Prarthana Vasudevan, Master of Science, 2014. 
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Bovine Milk
	Dairy Industry in the Global and Domestic Markets
	Bovine Milk
	Milk composition and regulations
	Pathogenic Contamination

	Bovine Mastitis
	Etiological Agents
	Signs and symptoms
	Management, treatment, and control
	Significance

	E. coli Mastitis
	E. coli and E. coli strain P4
	Virulence factors

	The Mammary Gland and E. coli Pathogenesis
	Anatomy of the Mammary Gland
	E. coli Pathogenesis

	Vaccines for E. coli mastitis
	Catanionic surfactant vesicles
	Thesis focus
	Hypothesis
	Specific Aim 1
	Specific Aim 2


	Chapter 2: Materials and Methods
	Preparation of catanionic surfactant vesicle vaccine
	Preliminary in vivo vaccine study
	Growth and maintenance of bacterial strains
	Preparation of Outer Membrane, Inner Membrane, and Cytoplasmic Fractions
	Collection of bacterial cells after growth
	Induction of spheroblast formation
	Isolation of cytoplasmic/inner membrane and outer membrane proteins

	Preparation of whole-cell protein fractions
	SDS-PAGE/western blot procedures
	Preparation of protein fractions for SDS-PAGE
	Separation of protein fractions by SDS-PAGE
	Silver stain protocol
	Immunoblotting protocol

	ELISA procedures
	ELISA plate setup
	Antibodies
	ELISA readings


	Chapter 3: Results
	Verification of strain phenotypes
	Determination of pre--vaccination and post-vaccination antibody titers
	Identification of potential vaccine antigens

	Chapter 4: Discussion
	References

