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As intense laser pulses propagate in atmosphere, they experience dramatic self-

focusing, spectral broadening and phase modulation, and they ionize atmospheric 

molecules.  The self-focusing and ionization-induced defocusing are competing effects 

that keep parts of the beam, called filaments, at high intensity over many Rayleigh 

lengths.  Optical filaments and the plasma filaments that follow them are useful tools for 

remote sensing and ionization, atmospheric monitoring, terahertz generation, guiding of 

electrical discharges and optical pulse compression even to the few-cycle regime.  Some 

of these applications may only be realized when the filamentation process is stabilized 

and plasma density is enhanced. 

Our experiments have shown that the rotational response of atmospheric nitrogen 

and oxygen is large enough and fast enough to dominate Kerr-induced self-focusing for 



optical pulses propagating with FWHM time duration > 40 fs.   Moreover, our 

measurements have pointed to a way to greatly enhance the filament electron density by 

controlling the alignment of ambient N2 and O2 molecules and thereby controlling the 

optical nonlinearity or air.  In addition, our group pointed out for the first time that 

quantum effects could dominate the propagation of intense femtosecond pulses in the 

atmosphere. 

This effect was demonstrated in our experiment that showed the quantum beats 

from laser-excited rotational wavepackets were able to steer, enhance or destroy laser 

filaments, depending on laser pulse timing.  Our more recent work demonstrates that 

these quantum effects can increase the length of the plasma filament by a factor of three 

and can also promote soliton-like behavior of the pulse, cleaning and compressing it 

temporally.  We performed direct measurements of the plasma density left behind by the 

filamenting optical pulses to confirm enhancement and extension of the electron density 

and laser intensity.  Compression was measured with SPIDER, a technique for measuring 

the complex envelope and phase of optical pulses with sub-5 fs features.   
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Chapter 1: Introduction and overview 

 

1. 1 Introduction to filamentation 

 The invention of high power lasers has made it possible to perform a variety of 

tasks with optical light that were never before thought realistic.  We can now use lasers to 

machine solids, probe the atmosphere, and shoot down small aircraft.  High power, short 

pulse lasers in particular are useful for surgery, accelerating particles, generation of 

coherent and incoherent radiation in previously unreachable parts of the electromagnetic 

spectrum, and probing events that take place on a femtosecond or even attosecond time 

scale. 

 Lasers also emit light with such high intensity that the magnitude of the fast 

oscillating electric field approaches that of the intra-atomic electric field, which is 

roughly 𝑒
(Bohr radius)2

~2 ∗ 107 statVolts/cm [1].  In other words, the electric field 

significantly alters the potential of bound electrons, so perturbation theory is not a valid 

way to describe the electronic response.  Therefore, the laser light propagation through 

solids, liquids, and gases may no longer be accurately described using a linear wave 

equation.  The polarizability of the molecules in the propagating medium is nonlinearly 

field-dependent, giving rise to nonlinear optical effects. 

 This dissertation will describe experiments exploring the regime of atmospheric 

nonlinear optical propagation called filamentation.  In this process, a laser pulse that has 

sufficient power will collapse to an intense focus (with tens of microns diameter) without 

the aid of a lens and propagate at high intensity over many Rayleigh lengths before 

eventually defocusing.  Filamentary propagation of femtosecond pulses can happen in 
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gaseous or transparent condensed media, and occurs due to the dynamic balance between 

nonlinear self-focusing of an intense optical pulse and laser plasma-induced defocusing.  

Figure 1.1 below shows a schematic of the filamentary process in gas. 

 

 

 

Figure 1.1: Filamentation of ultrashort pulses in gas.  Pcr is the critical optical power 
above which the beam will collapse on itself due to self-focusing. 
 

The filamentation effect can be maintained over distances from a few centimeters 

to hundreds of meters.  Filamentation eventually arrests due to diffraction, plasma-

induced refraction, energy loss due to ionization, and/or temporal dispersion and 

modulation of the short pulse.  Co-propagating white light generation, conical continuum 

emission, and a trailing plasma tail accompany short and long-range filaments.  In the 

literature, the term “filament” may refer to either the thin plasma left by the propagating 

optical pulse or to the localized high intensity region of the pulse itself. 

Laser filamentation began to be observed in liquids [2] and solids [3] in the mid to 

late 1960s and early 1970s.  Because the self-focusing nonlinearity (which will be 

discussed in the next section) is generally three orders of magnitude higher in condensed 

matter than in the atmosphere, the Q-switched picoseconds-duration laser pulses of that 

time were not sufficiently intense to filament in air. 

The advent of chirped-pulse amplification [4] and ~100 fs pulsed Kerr-lens mode 

locked oscillator cavities [5] in the late 1980s and early 1990s led to the discovery of 
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atmospheric filamentation, which was first demonstrated at the University of Michigan 

by Braun et al. in 1995 [6].  In their experiment, Braun et al. used a laser pulse with 

center wavelength 775 nm, duration 200 fs, and energy as high as 50 mJ.  This pulse was 

collimated to a diameter of 4 mm FWHM and allowed to propagate in atmosphere over a 

distance 20 m.  They found that pulses with energy greater than 2 mJ would slightly 

focus over that distance, and that pulses with energy greater than 5 mJ would collapse 

into single or multiple high-intensity filaments after 10 m of propagation and then 

continue propagating at a filamentary diameter near ~100 microns over the next 10 m.  

The experiment generated great interest, and in the years since then, many groups have 

studied the science and applications of ultrafast atmospheric filamentation [7].   

 

1.2 Self-focusing and plasma generation in a filamenting optical pulse 

 

1.2.1 Self-focusing 

 Self-focusing of an intense laser pulse is due to intensity-dependent refractive 

index of the medium in which the pulse propagates, which is given by [1]: 

 𝑛 = 𝑛0 +  𝑛2𝐼 . (1.1) 

Here, n0 is the linear index of refraction, n2 is the (typically positive) nonlinear index of 

refraction, and I is the time-averaged intensity of the laser pulse: 

 𝐼 = 𝑛0𝑐
2𝜋

|𝐸(𝜔)|2. (1.2) 

 The intensity-dependent refractive index is a result of the nonlinear polarization 

of molecules in the propagating medium due to a high electric field.  The complex 
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polarization 𝑃�(𝑡) of a medium as a function of the electric field 𝐸�(𝑡) = 𝐸(𝜔)𝑒𝑖𝜔𝑡 +

𝐸(𝜔)∗𝑒−𝑖𝜔𝑡 can be expressed as a power series: 

 𝑃�(𝑡) = 𝜒̿(1)𝐸�(𝑡) + 𝜒̿(2)𝐸�(𝑡)2 + 𝜒̿(3)𝐸�(𝑡)3 + ⋯. (1.3) 

Here, the first coefficient 𝜒̿(1) is the linear susceptibility tensor, and the later coefficients 

represent higher order susceptibilities.  Equation 1.3 implies that the nonlinearity is 

instantaneous. 

 The third order nonlinear susceptibility tensor 𝜒̿(3) is the term from which self-

focusing arises.  The nonlinearity is known as the Kerr nonlinearity.  For time-averaged 

fields in isotropic media, we can express the polarization in the frequency domain as the 

sum of linear and nonlinear components: 

 𝑃(𝜔) = 𝜒(1)𝐸(𝜔) + 3𝜒(3)(𝜔 = 𝜔 − 𝜔 + 𝜔)|𝐸(𝜔)|2𝐸(𝜔) = 𝜒eff𝐸(𝜔). (1.4) 

The refractive index can be expressed as 𝑛2 = 1 + 4𝜋𝜒eff.  Using this relation and 

equation 1.1, and ignoring the terms dependent on 𝐼2 we write: 

 𝑛2~𝑛02 + 2𝑛0𝑛2𝐼 = 1 + 4𝜋𝜒(1) + 12𝜋𝜒(3)|𝐸(𝜔)|2. (1.5) 

Given that the linear refractive index is 𝑛02 = 1 + 4𝜋𝜒(1), we use equations 1.2 and 1.5 to 

express the nonlinear refractive index as a function of the third-order susceptibility: 

 
𝑛2 =  

12𝜋2𝜒(3)

𝑛02𝑐
. 

(1.6) 

A laser pulse will naturally have a gradient in its transverse intensity distribution 

with the highest intensity generally found at its center.  Therefore, the center of the beam 

will experience the largest index of refraction and the largest phase shift.  Over some 

propagation distance, the effect of the transversely non-uniform phase shift on the laser 

pulse is the same as that of a focusing lens. 



5 
 

 There is a power threshold, called the critical power (Pcr) over which the self-

focusing of an intense laser pulse will defeat diffraction and eventually cause the pulse 

collapse to a focus.  For a pulse with a transversely Gaussian profile, Pcr is given by [7, 

8]: 

 
𝑃cr =

3.77𝝀02

8π𝑛0𝑛2
. 

(1.7) 

The measurement of 𝑛2 using a 300 ps FWHM pulsed laser [9] predicts Pcr = 1.3 GW, 

but for pulses of light of wavelength 800 nm and temporal duration ~100 fs FWHM, most 

researchers have measured Pcr ~ 10 GW.  This discrepancy will be discussed in detail in 

Chapter 4. 

Figure 1.2 below shows digital camera images of several 800nm, 130fs FWHM 

pulses with increasing power, incident on an index card after 6 meters of atmospheric 

propagation, 1-2 m of which is filamentary propagation.  The photos clearly show 

emergence of a bright hot spot in the center of the beam that appears over the Pcr 

threshold.  At higher powers, the on-axis intensity of the pulse is high enough to saturate 

the CCD. 

 

 

 

Figure 1.2: Filamenting beam images with increasing power (Pcr occurs at 1.25 mJ for a 
130 fs pulse). 
 

The work described in this dissertation and reference [10] show that while the 

instantaneous Kerr nonlinearity is an important part of self-focusing of ultrafast pulses 
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with ~< 40 fs duration, the self focusing for filamentation of longer pulses in atmosphere 

is mainly due to a delayed refractive index increase from laser-aligned N2 and O2.  Our 

results, which will be discussed in detail in this dissertation, helped bring this important 

distinction to light in the scientific community. 

 

1.2.2 Ionization and plasma-induced defocusing 

 Self-focusing cannot by itself lead to a self-sustaining, high intensity focus over 

many Rayleigh lengths.  In absence of any other nonlinear effect, self-focusing will cause 

the pulse to collapse and then immediately diffract.  What is needed is a refractive effect 

that competes with self-focusing once the pulse has reached a high enough intensity but 

has not fully collapsed.  This requirement is why ionization is the key to filamentation.  

Plasma on the optical propagating axis gives a lensing effect opposite to that of the 

nonlinear index of refraction.  For electromagnetic fields with 𝜔 ≫ 𝜔p, the characteristic 

plasma frequency is: 

 
𝜔p2 =

4𝜋N𝑒𝑒2

𝑚𝑒
. 

(1.8) 

The plasma dielectric function is: 

 𝜖(𝜔) = 𝜖(𝜔)bound electr. −
𝜔p
2

𝜔(𝜔+𝑖𝜈), 
(1.9) 

where 𝜈 is the plasma collision frequency.  In atmosphere, 𝜈 ≪ 𝜔 (discussed in Section 

3.5) and 𝜖(𝜔)bound electr.~1, so Equation 1.9 can be simplified, giving the refractive 

index of a collisionless plasma [11]: 

 
𝑛 = �1 − 𝜔p

2

𝜔2. 
(1.10) 
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Here, Ne is the number density of electrons, and e and me are the electron charge and 

mass, respectively.  As long as the optical frequency 𝜔 > 𝜔p, the plasma refractive index 

is always < 1, giving a negative lensing effect that saturates the self-focusing beam 

collapse.   

Once a laser pulse propagating in atmosphere with P > Pcr nearly collapses, it 

begins to ionize N2 and O2 via multi-photon ionization (MPI—the bound electron absorbs 

enough photons to be ionized) and tunneling ionization (TI—the electric field lowers the 

Coulomb potential and electrons dominantly escape by tunneling through the lowered 

potential barrier). 

The Keldysh parameter γK [12] is proportional the square root of the ratio of the 

ionization time of a molecule to the laser oscillation period, and given by: 

 
γK =  �

𝑈i
2𝑈p

. 
(1.11) 

Here, Ui is the ionization potential of the molecule and Up is the ponderemotive potential 

of the laser’s electric field.  If γK >> 1, MPI is dominant, and if γK < 1, TI is dominant.  γK 

<< 1 is called the strong-field limit.  In this case, the ionization regime is over-the-barrier 

ionization, where the coulomb potential is completely suppressed and electrons escape 

without having to tunnel.  For the purpose of computationally simulating filamentation, 

Couairon et al. [13] calculated γK >> 1 for optical radiation with wavelength 810 nm and 

intensity < 1014 W/cm2, and postulated that MPI is the dominant ionization mechanism in 

filamentation. 

After the axial plasma defocuses the filamenting pulse, the third-order 

nonlinearity eventually causes sufficient nonlinear phase to accumulate, and then self-
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focusing and plasma-induced refraction repeat.  In this way, both the laser intensity and 

the plasma density are limited to maximum values—the laser intensity in air is clamped 

at ~5x1013 W/cm2 [7], which is approximately the ionization threshold of air.  The plasma 

density is also clamped; atmospheric plasma filaments with length > ~1 meter have a 

peak density limited to ~1016 cm-3 [14, 15], which means that approximately one out of 

every 1000 atmospheric molecules is singly ionized.  These measurements have been 

confirmed by simulations [16].  Over the course of many meters of propagation, the 

plasma filament can retain a diameter of tens of microns [17, 14]. 

An important feature of filamentation is that energy losses due to ionization are 

counteracted by light outside the central core of the filament gaining nonlinear phase and 

collapsing into the center of the beam.  This phenomenon has the effect of maintaining a 

high axial intensity and extending the ionized region.  Moloney et al. theoretically 

predicted this effect in 1998 [18].  Eventually, however, diffraction, losses due to 

ionization, and temporal dispersion arrest the filamentation process. 

 

1.2.3 Self-phase modulation and spectral broadening 

During the process of filamentation, the Kerr nonlinearity, molecular rotational 

excitation and plasma generation all result in the refractive index profile changing 

quickly in time.  These processes impart self-focusing and defocusing effects on the 

pulse, but they also dramatically change the temporal structure—and therefore spectral 

content—of the filamenting pulse.  Self-phase modulation (SPM) is a catch-all term to 

describe these effects. 
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In the case of the Kerr nonlinearity, which is instantaneous, the refractive index 

profile follows the pulse temporal profile, and generates a time dependent frequency shift 

according to this expression [7]: 

 
Δ𝜔Kerr = −

∂𝜑
∂𝑡

~
𝜔0

𝑐
𝑧
𝑛2𝜕𝐼(𝑟, 𝑡)

𝜕𝑡
. 

(1.12) 

The above equation predicts spectral broadening in both the higher (blue) and lower (red) 

frequency directions.  At the beginning of the pulse, when the refractive index is rising, 

the beginning of the pulse has a higher phase velocity than the middle, resulting in a red 

frequency shift at those times.  When the intensity-dependent refractive index finally 

falls, the back end of the pulse has a higher phase velocity than the middle, so there is a 

blue shift near the back.  SPM due to delayed molecular rotational alignment is similarly 

described, and will be discussed later in the dissertation. 

 SPM due to plasma generation causes spectral broadening of the filamenting 

pulse in the blue direction.  This effect arises because as the front of the pulse generates 

plasma, it sees a temporally decreasing refractive index that causes the middle of the 

pulse to experience a higher phase velocity than the front.  The instantaneous frequency 

shift due to plasma density 𝑁𝑒(𝑟, 𝑡) is [7]: 

 
Δ𝜔plasma = −

∂𝜑
∂𝑡

~
𝜔0

𝑐
𝑧 �

1
𝑛0𝑁cr

𝜕𝑁𝑒(𝑟, 𝑡)
𝜕𝑡 �, 

(1.13) 

where 𝑁cr = 𝜔2𝑚𝑒
4𝜋𝑒2

 , the critical plasma density at which the plasma frequency 𝜔p equals 

the optical frequency 𝜔. 

Spectral broadening in long-range filaments due to SPM from the Kerr 

nonlinearity, molecular alignment, and plasma generation is dramatic, owing to the long 

propagation length at high intensity.  Figure 1.3 shows the spectrum of a 120 fs, 800 nm 
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center wavelength, 19 GW peak power pulse before and after it filaments 1 meter in 

atmosphere with the aid of 𝑓# = 505 focusing geometry. 

 

 

 

Figure 1.3: spectrum of a 120 fs, 19 GW pulse before (solid line) and after (dashed line) 
it filaments 1 meter in atmosphere. 
 

The extremely broadband spectrum above has components well within the visible range.  

White light generation is an easily identified characteristic of ultrafast filamentary 

propagation. 

 

1.3 Controlling the stability and length of a filament 

 

1.3.1 Multiple filamentation 

 In experiments, laser pulses with power well above Pcr will not collapse into a 

single, large plasma filament.  Instead, nonlinear self-focusing causes smaller transverse 

beamlets to grow out of non-uniformities in the beam profile.  Each of these beamlets 

continues to self focus and they all eventually collapse into a cluster of filaments.  This 

effect is often called multiple filamentation.  Multiple filamentation is a modulational 

instability whose waves grow as the beam propagates in z like 𝑒γi𝑘⊥𝑧 with growth rate γi 
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a function of the transverse spatial frequency (𝑘⊥2 = 𝑘𝑥2 + 𝑘𝑦2), maximum intensity I0 and 

critical power for a Gaussian beam (Eq. 1.7) [7]: 

 
γi =  

𝑘⊥
2𝑘0

�
8𝜋𝐼0
𝑃cr

− 𝑘⊥2 . 
(1.14) 

Campillo et al. studied multiple filamentation in liquid CS2 [19] and noted that γi was 

maximized for an optimal 𝑘⊥, given by 𝑘⊥
opt = 2�𝜋𝐼0

𝑃cr
.  Once a beam with 𝑘⊥

opt spatial 

modulation collapses into multiple filaments, the distance between filaments is 𝑑�il = 2𝜋
𝑘⊥
opt 

[7].  Under conditions of maximal instability, a 1 cm diameter laser pulse with power 

100Pcr, when launched into atmosphere, will collapse into filaments 3 mm apart. 

Multiple filamentation in atmosphere was studied theoretically and 

experimentally by Fibich et al. in 2005 [20].  In simulations, they found that due to 

modulation instability, 10% noise in the input beam profile of a long pulse laser will 

cause a very high power pulse (hundreds of Pcr) to begin filamentation much earlier than 

a pulse with moderate power (tens of Pcr).  They found that the self focusing distance in 

the very high power case scales as 1/𝑃, while that of the moderate power case scales as 

1/𝑃1/2.  Their experiments using a 45 fs, 800 nm pulse corroborated their simulations. 

Figure 1.4 below shows a camera image of a multiply-filamenting beam taken by 

Rodriguez et al. in 2004 [21].  This image strikingly contrasts with the single, stable 

filament images in Figure 1.2. 
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Figure 1.4: Multiply filamenting beam profile [21]. 
 
 
 Multiple filamentation makes it impractical to do detailed studies on 

filamentation, since the position and location of the filaments will vary significantly on a 

shot-to-shot basis.  Additionally, multiple filamentation limits the ability to make 

consistent, long, high-density plasma channels for the applications that will be discussed 

in the next section. 

 

1.3.2 Experimental attempts to stabilize and lengthen plasma filaments 

 To date, many groups have published their attempts to stabilize and enhance the 

filamentation process.  Often, a laser pulse will be sent through a hard circular aperture 

before it filaments.  The aperture causes a radially symmetric diffraction pattern in the far 

field with a hot spot at the center, and in this way encourages single filaments to appear 

in the center of the beam.  In 2004, Fibich et al. were able to control a multiply 

filamenting pulse by angling their 2 m focusing lens by 20° [22].  This setup gave them a 

single, transversely stable filament instead of 1-3 filaments with five times the variance in 

filament position. Other groups passed a pulse through a phase mask to better organize or 

suppress multiple filaments [23] and to stabilize a single filament [24]. 

Theory [25] and experiment [26] have shown that giving a filamenting optical 

pulse an initial negative chirp can change the collapse distance and lengthen the filament.  

This effect occurs because air is a weakly dispersive medium in which a negatively 
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chirped pulse will propagate some distance before it re-compresses and attains a high 

enough power to self-focus and cause filamentation.  The group velocity dispersion 

(GVD or β2) of air for an 800 nm optical pulse is 2.2*10-31 s2/cm [16].  The duration Δt of 

an initially transform-limited 800nm pulse with initial time duration Δt0 that has 

propagated a distance z is given by this expression [27]: 

 
Δ𝑡 =  Δ𝑡0�1 + 𝑧

GVD
 Δ𝑡02

. 
(1.15) 

Using Eq. 1.15, an 800 nm pulse that has been negatively chirped from 100 fs to 200 fs 

duration will re-compress after propagating 136 meters. 

Recently, we showed that rotationally aligned N2 and O2 by a filamenting optical 

pulse can be used to steer and enhance the on-axis filament intensity [10].  This 

dissertation will present those results and new measurements on similarly enhanced 

filaments showing higher plasma density, including tripling of the length of the plasma. 

 

1.4 Applications of filamentation 

 The three major products of filamentation—the long region of high-intensity laser 

light, the long plasma tail, and the co-propagating broadband white light—are useful for a 

variety of applications. 

 

1.4.1 Remote sensing 

 Remote sensing, the detection of chemicals from a standoff distance, is one 

application of filamentation.  Filaments can ionize molecules from a far distance in order 

to probe the composition of the atmosphere [27, 28] and to obtain characteristic spectra 
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of biological materials.  Figure 1.5 below shows remote femtosecond-induced breakdown 

spectroscopy (FIBS) performed with an 800 nm filamenting pulse by Xu et al. in 2006 on 

egg white [29]. 

 

 

 

Figure 1.5: Femtosecond-induced breakdown spectrum of egg white [29]. 
 
 Rairoux et al. [27] sent a 2.2 TW filamenting optical pulse hundreds of meters 

vertically in the atmosphere and collected the broadband backscattered supercontinuum 

light into a gated spectrometer.  The gated spectrometer helped them to measure time-

resolved spectra in the visible-near IR range, which allowed them to collect spectra from 

different atmospheric heights with a range resolution of 100 m.  The measured absorption 

lines due to the characteristic roto-vibrational transitions of O2 and water vapor correlated 

well with tabulated spectroscopic data. 

 

1.4.2 Guiding of high-voltage discharges 

 The plasma left by a filamenting pulse has also been used to guide high-voltage 

electric discharges [30, 31] by providing an ohmic channel along which current can 

travel.  This effect may one day be useful for steering lightning away from buildings.  

Rodriguez et al.’s use of optically-generated plasma filaments to guide an electric 

breakdown over several meters is pictured below in figure 1.6 [32]. 
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Figure 1.6: Top—several meter-long electrical discharge with no filaments present.  
Bottom—guiding of the discharge by optically generated plasma filaments [32]. 
 

1.4.3 Generation of few-cycle optical pulses 

 The coherent, broadband white light generated through filamentary propagation 

can also be used to create pulses of light much shorter than the initially filamenting pulse.  

In a 2004 experiment, Hauri et. al. [33] sent an initially 43 fs FWHM pulse into an argon 

gas-filled cell.  Upon filamentation, defocusing and exiting the cell, the broadened 

spectrum was re-compressed by chirped mirrors to 5.7 fs [33].  The chirped mirrors were 

necessary to compensate for pulse temporal dispersion during filamentation and in the 

exit window of the gas cell.  Since then, Stibenz et al. have generated similarly shortened 

pulses without the use of chirped mirrors by carefully varying the gas species, pressure, 

and input pulse energy [34].  Some of the results of that experiment are shown below in 

Figure 1.7. 

 

 

 

Figure 1.7: Self-compression of a 45 fs, 800 nm pulse after filamentation in a krypton gas 
cell.  A) is the initial pulse, B) is the pulse before it exits the gas cell, and C) is the pulse 
after it passes through the gas cell exit window [34]. 
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1.4.4 High harmonic generation 

The filamentation of ~100 fs pulses in gaseous xenon [35] and neon [36] has been 

used to efficiently generate high harmonics.  In the case of the xenon experiment, Lange 

et al. generated a 70 cm long filament using a 3 mJ, 130 fs pulse focused with f#=140 

geometry.  The tail end of the filament entered the xenon gas cell through a 0.1 mm thick 

silica plate and over a propagating distance of 3.5 mm generated harmonics up to the 15th 

order (22 eV). 

 

1.4.5 Filaments as a source of terahertz radiation 

 Atmospheric filaments are also a promising source of terahertz (THz) frequency 

radiation.  THz radiation is useful for chemical detection because, it can propagate 

through thin barriers and is non-ionizing, and because many chemicals have characteristic 

spectral absorption lines in that range.  For example, THz radiation has been used to 

identify the explosive 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) [37] and HCl and 

ammonia in vapor phase [38]. 

However, this part of the electromagnetic spectrum is not easily accessible; 

broadband THz is difficult to generate and detect.  Practically, many groups that perform 

THz spectroscopy generate the necessary broadband THz signal through the use of an 

ultrashort (~100 fs) pulse incident on either a GaAs photoconductive antenna biased at 

high voltage or a ZnTe crystal that allows phase-matched optical rectification.  Recently 

however, broadband, high-intensity THz radiation has been produced from a laser-

induced spark in air [39].  This and similar experiments employ the use of a two-color 
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~100 fs pulse (fundamental and second harmonic) tightly focused in air.  The 

asymmetrical ionization dynamics of the plasma result in a conversion efficiency of 

~0.02% [40] and produces tens of μJ of THz radiation—much higher than the maximally 

~1 μJ radiation that the earlier mentioned techniques produce. 

THz radiation has also been measured emitting from a filament left by a single 

800 nm pulse [41, 42].  The interesting aspect of using an atmospheric filament to 

produce THz is the promise of a remotely generated THz source and the simplicity of the 

setup; only a femtosecond laser pulse is necessary.  Unfortunately, the THz signal 

strength from long-range filamenting optical pulses is so low that it is impossible to 

measure using electro-optic sampling in ZnTe or GaP—a standard technique employed 

by THz spectroscopy.  The experiments referred to above [41, 42] used sensitive 2 GHz 

bandwidth heterodyne detectors and measured radiation near 100 GHz, the detectors’ 

upper frequency limit.  Later, they used a helium-cooled bolometer with filters to 

ascertain that most of the radiation was indeed between 0.5 and 3 THz [43]. 

 

 

1.4.6 Optical waveguides made from filament-induced damage in solids 

Filamentation in solids and liquids requires a lower intensity laser pulse than in 

atmosphere, and it also has several important applications.  Filamentary propagation 

often leads to visible but quite transparent damage streaks in solids.  Davis et al. [44] 

found that focused 810 nm, 120 fs pulses in silica glass samples left cylindrical damage 

streaks with ~0.035 higher refractive index in the center of the bulk media without 

cracking it.  They scanned the filamenting region through the glass sample to create a 
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planar region that they surmised would be able to act as an optical waveguide.  In ref 

[45], the same group used the technique to write single mode waveguides with 1 GW 800 

nm, 120 fs pulses.  Schaffer et al. [46] were able to write 0.5 micron diameter, single 

mode waveguides with a <1.5 MW beam, where 1.5 MW is Pcr for the Corning 2011 

glass medium they used. 

Davis et al. suggested [44] that the damage mechanism that explains the 

densification of the glass exposed to the filamenting pulse may be either the localized 

heating, melting and cooling of the glass, or generation of trapped excitons, which could 

locally weaken bonds and lead to a relaxed molecular configuration [47]. 

 

1.4.7 Filaments as an underwater acoustic source 

Filamentation of liquids has several interesting applications, one of which is that 

an ionization event in water can be used as an underwater acoustic source for sonar 

applications.  Vogel et al. [48] studied the shock wave emission and cavitation bubble 

expansion due to optical breakdown of water due to focused 6 ns (10 mJ) and 30 ps (1 

mJ) pulses with 1064 nm wavelength.  They found that 40-70% of the optical energy 

coupled to mechanical energy in the shock wave and cavitation bubble. 

Hornstein et al. at the Naval Research Laboratory [49] generated acoustic signals 

8 meters below the surface of water using a filamenting 400 nm pulse with P>Pcr.  They 

used Pcr=1.1 MW, which was calculated in our laboratory [50] using Single-shot 

Supercontinuum Spectral Interferometry (SSSI), a method to sensitively measure time-

resolved nonlinear refractive response of an optical medium to an ultrafast pulse.  SSSI 
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will be discussed in detail in Chapter 3.  The limited depth of optical filamentation in 

water is due to large GVD and optical absorption. 

 

1.4.8 Microsurgery using ultrashort pulses 

Microsurgery is another useful application of femtosecond filamentation in liquid 

and solid media.  Vogel et al.’s water breakdown mentioned above [48] was intentionally 

done with laser parameters similar to those used in intra-ocular surgery.  Juhasz et al. [51] 

found that nonlinear self-focusing and ionization in corneal tissue enabled a 

femtosecond-scale pulse to generate smaller shock waves and cavitation bubbles than 

those generated by picoseconds or nanosecond-scale pulses, resulting in a damage area 

confined to a smaller, more precise location.  Vogel and Venugopalan [52] also note that 

focused femtosecond pulses are able to generate ionization events in biological tissues 

without significantly heating the region, resulting in ablation or dissection processes 

which are very precisely localized and do not unnecessarily kill surrounding cells and 

structures. 

 

1.5 Chapter synopsis 

 This dissertation will primarily deal with our discovery that the rotational 

response of N2 and O2 is the dominant nonlinearity in the filamentation of >40 fs pulses 

in air.  Prior to that discussion, Chapter 2 will describe our lab’s several optical pulse 

diagnostics, which are crucial to any experiments using ultrafast pulses and especially 

vital to our filament diagnostics. 
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 Chapter 3 describes the quantum mechanical nature of the rotation and alignment 

of laser-irradiated linear molecules.  Single-shot, time-resolved measurements of 

molecular alignment are presented and compared to theoretical calculations. 

 The exploitation of molecular alignment in order to enhance on-axis intensity and 

spectral shape of a filamenting probe pulse will be chronicled in Chapter 4.  Chapter 5 

describes a novel, interferometric, time-resolved method to directly measure the axial 

plasma density profile in a filament and presents measurements showing enhancement of 

the maximum plasma density and plasma length due to pre-aligned air molecules.  

Chapter 5 also shows measurements of the electric field envelope of enhanced 

filamenting pulses and discusses the role of molecular alignment in both spatially 

confining and temporally shaping those pulses. 
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Chapter 2: Measuring an ultrashort laser pulse 

 

2.1 Introduction to ultrashort laser pulses 

In our experiments, we use pulses of light that can be as short as 40 fs FWHM, 

and as energetic as 80 mJ.  We are able to generate such short pulses through the use of a 

Kerr-lens mode-locked (KLM) laser oscillator, and we amplify those pulses using the 

chirped pulse amplification (CPA) technique.  Both these techniques are popularly based 

on the use of titanium-doped sapphire (Ti:sapphire) crystals as a laser gain medium.  

CPA is also done with neodymium-doped glass as the amplification medium for systems 

with repetition rate 10 Hz and lower. 

Sapphire—an Al2O3 crystal—when doped with titanium atoms, becomes a 

broadband gain medium.  Ti:sapphire absorption peaks near 500 nm.  When the crystal is 

appropriately pumped, it supports laser gain at wavelengths ~650-1100 nm.  This feature 

makes it an attractive gain medium for broadly tunable continuous-wave (CW) lasers, 

and also for broadband, short pulse lasers. 

If broadband, coherent light is phased properly, the spectral components 

constructively interfere and result in a train of single, short pulses whose duration is 

inversely proportional to their spectral bandwidth.  In the case of a pulse of light with a 

Gaussian spectral intensity profile with FWHM Δν, the Fourier transform-limited FWHM 

time duration is given by: 

 ∆𝑡 =
0.44
∆𝜈

. (2.1) 

0.44 is the minimum time-bandwidth product for an electromagnetic pulse, which is a 

fundamental property of the Fourier transform of classical electromagnetic fields.  The 
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Ti:sapphire CPA system used for filamentation experiments in this dissertation typically 

outputs pulses with FWHM bandwidth Δ𝜆 = 25 nm, centered at 𝜆0 = 800 nm.  This 

corresponds to transform-limited pulse duration of 38 fs. 

 A laser cavity built around Ti:sapphire will not naturally lase in broadband, short-

pulse mode.  KLM has been used since around 1990 [5], in concert with intra-cavity 

dispersion compensation, to passively mode-lock Ti:sapphire lasers so that they output 

pulse trains of nanoJoule-scale pulses with sub-100 fs time duration.  Further amplifying 

these pulses is difficult because, while they are being amplified, their peak power 

becomes high enough that they can destroy the gain medium and surrounding optics.  The 

previous chapter’s discussion of self-focusing, filamentation and damage mechanisms in 

solids explains the limitations of propagating (and amplifying) high-power pulses in solid 

media; Pcr in solids is ~1 MW. 

CPA was developed by Strickland and Mourou in 1985 [4] to sidestep this 

limitation.  In CPA, a broadband pulse emitted from an oscillator is chirped to hundreds 

of picoseconds by a grating stretcher and amplified by a Ti:sapphire-based regenerative 

amplifier and/or multi-pass power amplifier, then expanded by a telescope and 

compressed down to near the transform limit by a grating compressor.  Ultrafast laser 

systems based on KLM and CPA are now ubiquitous and can be purchased off-the-shelf. 

Ultrashort pulses are by common definition a few picoseconds (1 ps = 10-12 s) or 

shorter in duration, but the fastest electronic response time is in the >~10 ps scale.  This 

means, for example, that no photodiode or CCD element can by itself measure the 

temporal profile of an ultrashort pulse.  However, in experiments using such pulses, 

knowing the pulse temporal profile I(t) is extremely important. 
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However, I(t) does not uniquely describe the electric field 𝐸(𝑡) = Re(𝐸�(𝑡)).  

Ultrashort pulses are broadband and often intense enough that material dispersion and 

nonlinear processes will significantly alter their temporal profile and time-dependent 

spectral content.  Full knowledge of 𝐸(𝑡) is crucial in many experiments done using such 

pulses.  𝐸(𝑡) is fully specified in the frequency domain by: 

 𝐸�(𝜔) = �𝐸�(𝜔)�𝑒−𝑖�𝜔0𝑡+𝜑(𝜔)� (2.2) 

Here, �𝐸�(𝜔)� is the magnitude of the spectrum of the electric field, 𝜔0 is the center 

frequency, and 𝜑(𝜔) is the spectral phase of the pulse.  �𝐸�(𝜔)� is easily measured with a 

spectrometer, and the more sophisticated ultrashort pulse diagnostics discussed later in 

this chapter can measure 𝜑(𝜔). 

 

2.2 Autocorrelation 

 

2.2.1 The intensity autocorrelation 

 One simple way to measure an ultrashort pulse is to split gate it with its own 

copy.  This method is called intensity autocorrelation, and can most simply be performed 

by sending the two copies of the pulse onto a detection system with intensity-squared-

dependent response while scanning the delay (τ) of one of the pulses in small steps.  Two 

examples of detection systems that provide the appropriate response are a two-photon 

photodiode and a Beta barium borate (BBO) crystal with a linear photodetector.  The 

photocurrent output of a two-photon photodiode is proportional to I2.  In BBO, the second 

harmonic generated (SHG) electric field �𝐸�(2𝜔)� ∝  𝐼(𝜔), so 𝐼(2𝜔) is also ∝ 𝐼(𝜔)2.  

Monopotassium phosphate (KDP) is another crystal that behaves similarly to BBO.  BBO 
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has higher SHG efficiency than KDP but roughly twice the group velocity mismatch 

between 𝜔 and 2𝜔 [53].  Figure 2.1 (below) shows the design of an interferometric 

intensity autocorrelator based on a Michelson interferometer. 

 

 

 

Figure 2.1: Scanning delay Michelson autocorrelator.  M1 is a mirror on a scanning delay 
stage, M2 is a static mirror, BS is a 50/50 beamsplitter, and F is a filter that only passes 
second harmonic frequency light. 
 

If the delay range allows both pulses to scan through each other in small enough 

steps, the interferometric autocorrelation signal S(τ) is: 

 
𝑆(𝜏) =  � |[𝐸(𝑡) + 𝐸(𝑡 − 𝜏)]2|2𝑑𝑡

∞

−∞
. 

(2.3) 

If we define E(t) as the real part of the complex valued function 𝜀(𝑡)𝑒𝑖𝜔0𝑡 + 𝑖𝜑(𝑡), where 

ω0 is the center frequency of the pulse, and ε(t) is the slowly varying envelope, and then 

expand the integrand of Eq. 2.3, we get [54]: 

 𝑆(𝜏) =  𝐴0(𝜏) + 𝑅𝑒�𝐴1(𝜏)𝑒−𝑖𝜔0𝜏� + 𝑅𝑒�𝐴2(𝜏)𝑒−2𝑖𝜔0𝜏�, (2.4) 

where 

 
𝐴0(𝜏) =  � [𝜀4(𝑡) + 𝜀4(𝑡 − 𝜏) + 4𝜀2(𝑡)𝜀2(𝑡 − 𝜏)]𝑑𝑡

∞

−∞
 

(2.5) 

 
𝐴1(𝜏) =  4� 𝜀(𝑡 − 𝜏)𝜀(𝑡)[𝜀2(𝑡 − 𝜏) + 𝜀2(𝑡)]𝑒𝑖(𝜑(𝑡−𝜏)−𝜑(𝑡))𝑑𝑡

∞

−∞
 

(2.6) 
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𝐴2(𝜏) =  2� 𝜀2(𝑡 − 𝜏)𝜀2(𝑡)𝑒2𝑖(𝜑(𝑡−𝜏)−𝜑(𝑡))𝑑𝑡

∞

−∞
 

(2.7) 

A1(τ) and A2(τ) are fast oscillating terms from interference fringes which may or may not 

be visible, depending on the alignment and stability of the interferometer and the chirp of 

the pulse.  The phase of the interference pattern is 𝜑(𝑡 − 𝜏) − 𝜑(𝑡).  This phase 

information does not allow full recovery of 𝜑(𝑡), but will give the chirp of the pulse. 

 The first and second terms in the integrand of Eq. 2.5 are DC terms in the view of 

any detector.  However, using 𝐸2(𝑡) = 𝜀2(𝑡) ∝ 𝐼(𝑡), the third term is proportional to the 

intensity autocorrelation A(τ) of a signal I(t): 

 
𝐴(𝜏) =  � 𝐼(𝑡)𝐼(𝑡 − 𝜏)𝑑𝑡

∞

−∞
. 

(2.8) 

From this equation, it is clear that 𝐴(𝜏) must be symmetric in 𝜏, regardless of the 

symmetry of 𝐼(𝑡).  This means that, though an interferometric intensity autocorrelation 

gives us some idea of the temporal structure of the input pulse, it cannot tell us the true 

direction of time.  For a given 𝐴(𝜏), there is no unique 𝐼(𝑡).  Even when the interference 

fringes are resolved, they cannot give us 𝐼(𝑡) or 𝐸(𝑡), since 𝜑(𝜔) cannot be recovered 

but for a linear chirp parameter. 

Intensity autocorrelation is not the ideal method for characterization of a 

complicated pulse, but it is generally sufficient for a simple pulse.  If a shape of the input 

pulse is assumed, the temporal width of the measured intensity autocorrelation is 

proportional to the temporal width of I(t) by a constant factor.  In the case of a Gaussian 

intensity profile, Δ𝑡𝐼(𝑡) = 1
√2
Δ𝜏𝐴(𝜏). 
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2.2.2 Single-shot autocorrelator 

An intensity autocorrelator is a very useful tool to have in an ultrafast laser lab, 

but the retrieved autocorrelation will only give average properties if the input pulse has 

large shot-to-shot fluctuations in energy or temporal profile. 

 The solution to this is to build a single-shot autocorrelator (SSA).  This device 

will faithfully recover A(τ) in a single shot of the input laser.  A schematic of a SSA we 

built and used in several of our experiments is below: 

 

 

 

Figure 2.2: Single-shot autocorrelator.  The delay rail at the top is not scanning; it is set 
so that both pulses are coincident on the BBO crystal. 
 

 In an SSA, the input pulse is split into identical copies that are then coincident on 

the nonlinear crystal with a crossing angle ϴ.  While each pulse will generate blue second 

harmonic light in the same direction as their own propagation, if they are spatially and 

temporally coincident on the crystal, they will also generate blue sum frequency (SFG) 

light in the forward direction—the direction along the sum of the two incident k-vectors.   

 The geometry of the setup determines that the width of the SFG beam directly 

corresponds to the amount of time the two pulses spent overlapped in the crystal.  The 

sum frequency light beam can be spatially filtered from the incident and SHG beams and 

imaged onto a CCD camera.  In this manner, the horizontal line-out of the CCD image is 
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the autocorrelation of the input pulse.  The simple equation mapping CCD image width 

Δx to autocorrelation width Δτ is linear for small incidence angle ϴ: 

 Δ𝜏 =
Δ𝑥
𝑐

sin �
𝛳
2�

≈
Δ𝑥𝛳
2𝑐

. (2.9) 

The above relation will hold true as long as each of the two incoming pulses has a beam 

profile that is spatially uniform in the axis that is in the plane of incidence and 

perpendicular to the propagation direction, and a temporal profile that is constant over the 

same direction. 

The calibration of the SSA is simple.  In fact, the constant 𝛳
2𝑐

 does not need to be 

calculated by measuring ϴ; it can easily be experimentally measured by manually 

scanning the delay of one of the two input pulses by small steps, each time recording the 

autocorrelation.  The autocorrelation will likewise move in steps across the CCD screen, 

and the distance between each retrieved peak will correspond to the applied delay.  A 

linear fit gives delay as a function of screen pixel. 

 The output of our SSA is pictured below in Figure 2.3.  The left image is a raw 

CCD image, and the right image is the autocorrelation, given by the horizontal line-out of 

the CCD image.  Our delay resolution is typically ~4 fs/pixel. 

 

 

 

Figure 2.3: Raw SSA image (left) and retrieved autocorrelation (right). 
 



28 
 

2.3 FROG – Frequency-resolved Optical Gating 

 

2.3.1 Polarization-gated FROG 

 As mentioned before, multi- and single-shot intensity autocorrelators are useful 

devices because of their simplicity, but in the arena of ultrashort pulse measurement, they 

fail in three respects: the intensity autocorrelation does not give the true pulse shape, does 

not tell us the direction of time, and does not retrieve the pulse spectral phase 𝜑(𝜔). 

 In 1993, Kane and Trebino introduced Frequency-resolved Optical Gating 

(FROG) [55] as a single-shot device capable of fully characterizing an ultrashort pulse.  

Figure 2.4 below shows an image of the a FROG setup [55]. 

 

 

 

Figure 2.4: Frequency-resolved optical gating setup [55] 
 

 In FROG, as in an autocorrelation, an ultrashort pulse is split into two: the gating 

pulse and the main pulse.  The main pulse is focused with a cylindrical lens into a thin 

sample of any nonlinear optical medium with only instantaneous response (an optical 

glass like fused silica works well).  The gating pulse has its polarization rotated by 45° 

and then is sent into the cylindrical lens at an angle with respect to the main pulse.  The 
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two pulses cross in the medium in a similar fashion to the SSA.  The main pulse then 

enters a polarizing beam splitter cube designed to completely divert all of its light. 

 However, some of the main pulse passes through the polarizer.  This light has 

been polarization rotated by the gating pulse through Kerr-induced birefringence, an 

effect which falls under a group of nonlinear optical effects called cross-phase 

modulation (XPM).  As in the simple Kerr effect described in the previous chapter, the 

gating pulse causes the index of refraction to instantaneously increase as it scans through 

the nonlinear medium.  However, in the case of cross-coupling, where a strong gating 

pulse gates a weak main pulse, the birefringence of the Kerr effect contributes to the 

gating. 

 In the case where the gating pulse 𝐸(𝜔) and main pulse 𝐸(𝜔′) have the same 

polarization direction and are combined in a nonlinear, centro-symmetric medium, the 

polarization experienced by the main pulse is [1]: 

  𝑃∥(𝜔′) = 𝜒(1)𝐸(𝜔′) + 6𝜒(3)(𝜔′ = 𝜔′ + 𝜔 − 𝜔)|𝐸(𝜔)|2𝐸(𝜔′). (2.10) 

In the case of perpendicularly polarized pulses, the main pulse polarization is: 

  𝑃⊥(𝜔′) = 𝜒(1)𝐸(𝜔′) + 2𝜒(3)(𝜔′ = 𝜔′ + 𝜔 − 𝜔)|𝐸(𝜔)|2𝐸(𝜔′). (2.11) 

The difference in degeneracy factors means that there is a birefringent component in the 

increase in nonlinear refractive index experienced by the main pulse.  If, as in the case of 

FROG, the gating pulse is neither parallel nor perpendicularly polarized with respect to 

the main pulse, it will impart a polarization rotation to the main pulse. 

As the gating pulse scans over the main pulse from left to right in the nonlinear 

medium, it introduces a orthogonal polarization component to the temporal fraction of the 

main pulse that it overlaps.  Each vertical slice of the beam that passes through the 
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polarizer is a temporally gated fraction of the original pulse, with the earlier gated 

fractions of the pulse on the left of the beam and the later gated fractions on the right.  A 

spherical lens then brings the polarizer output to a line focus on the slit of an imaging 

spectrometer.  The CCD chip inside the imaging spectrometer collects a two-dimensional 

spectrum.  The vertical axis, perpendicular to the slit, is the spectral axis.  The horizontal 

axis, due to the gate and main pulse interaction geometry, is a delay axis.  The 2-D 

pattern is called a FROG trace. 

 One way to intuitively interpret the FROG trace is to imagine that it shows the 

spectrum of the main pulse at any given time, so the entire image would show the 

evolution of spectral components of the main pulse over its duration.  This explanation is 

clearly not accurate, because the gating pulse has finite, but nonzero time duration.  

However, a very accurate 𝐸(𝑡) of the pulse can be extracted by applying an iterative 

computational algorithm on the FROG trace.  The algorithm involves alternately applying 

a fast Fourier transform to the spectral and temporal axes of the image [55]. 

 The FROG technique is accurate and can be single-shot, but it is inconvenient for 

two reasons.  For one, the iterative algorithm required to extract 𝐸(𝑡) is time-consuming 

enough that real-time pulse measurement is difficult.  Second, it requires a uniform input 

beam profile—as in the case of the SSA, the input pulse must be spatially and temporally 

uniform over the horizontal axis.  Third, the apparatus is large and complex, as is clear 

from the diagram in Figure 2.4.  Trebino and his colleagues solved the last issue by 

inventing a much simpler version of FROG called GRENOUILLE [56].  This long 

acronym stands for “GRating-Eliminated No-nonsense Observation of Ultrafast Incident 

Laser Light E-fields.” 
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2.3.2 GRENOUILLE 

 While former graduate students had built a FROG for our lab in the past, we 

found the GRENOUILLE design much simpler, and built one for the lab that was used 

for many years.  Figure 2.5 below shows the GRENOUILLE schematic [56]: 

 

 

 

Figure 2.5: GRENOUILLE schematic [56]. 
 

 The first difference between GRENOUILLE and FROG is that the beam-splitting 

is done after the cylindrical lens with a Fresnel bi-prism, rather than a beamsplitter.  The 

bi-prism splits the beam into halves and sends them at equal but opposite angles into a 

few-mm thick BBO crystal, where they are both coincident and at horizontal line focus 

due to the cylindrical lens.  If the BBO crystal had been thin, the blue light emitted in the 

forward direction would be in the shape of the simple intensity autocorrelation, where the 

delay axis is horizontal and space-to-delay mapping depends on Equation 2.9.  However, 

the thickness of the BBO crystal severely limits its phase-matching bandwidth.  The 

cylindrical lens allows the autocorrelation to be generated and propagate through the 

crystal at a range of vertically swept angles, each of which will only phase-match for a 

small fraction of the total bandwidth of the input pulse.  As a result, the emanating, 
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divergent pattern of blue light is a spectrally resolved autocorrelation.  Two cylindrical 

lenses after the crystal are then used to image this pattern onto a 2D CCD array. 

 The “spectrally resolved autocorrelation” generated by GRENOUILLE is very 

similar to the previously described FROG trace.  As with the FROG trace, the 

GRENOUILLE trace has a horizontal time axis and a vertical spectral axis.  However, the 

GRENOUILLE trace is always symmetrical.  Therefore, a slightly different iterative 

algorithm must be applied to the trace to discover 𝐸(𝑡), and while the shape of 𝐸(𝑡) may 

be very accurate, the direction of time is unresolved.  Figure 2.5 below shows real 

GRENOUILLE traces and retrieved I(t) for a 70fs FWHM, 800nm pulse. 

 

 

 

Figure 2.6: GRENOUILLE trace (left) and retrieved I(t) (right) for a 70fs pulse. 
 
 GRENOUILLE is very simple to align.  No polarization rotation is necessary, and 

the bi-prism makes careful angular alignment and delay line calibration unnecessary.  

Unfortunately, the optically thicker components of the GRENOUILLE significantly 

disperse laser pulses shorter than 50 fs FWHM.  Also, the spatial uniformity of the input 

pulse must be even better than that of FROG.  The beam must not only be horizontally 

uniform to get the correct autocorrelation, but must be vertically uniform to ensure an 

accurate spectrum.  Even so, the simplicity of alignment and lack of a spectrometer make 

GRENOUILLE a useful and reliable tool to measure a wide range of ultrashort pulses. 
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2.4 SPIDER – Spectral Phase Interferometry for Direct Electric-field 

Reconstruction 

 

2.4.1 SPIDER algorithm 

 As mentioned in the first section of this chapter, the temporal shape of an 

electromagnetic field is uniquely determined by the magnitude of its spectrum and its 

spectral phase 𝜑(𝜔)—the relative phase of all spectral components.  FROG, mentioned 

in the previous section, does faithfully retrieve the spectral phase of an ultrashort pulse.  

Aside from space constraints, the only drawbacks of FROG are the time taken to extract 

𝐸(𝑡) from the FROG trace and the requirement of a clean spatial profile.  SPIDER, a 

different technique, stands for Spectral Phase Interferometry for Direct Electric-field 

Reconstruction, and was developed by Iaconis and Walmsley in 1998 [57].  Speed-wise, 

SPIDER is a better technique than FROG because it performs linear (non-iterative) 

retrieval of 𝜑(𝜔).  SPIDER is also an improvement over FROG because it does not 

involve the interference of spatially separated parts of the input beam, and therefore does 

not require transverse uniformity of the input beam’s intensity and temporal profile. 

SPIDER computes 𝜑(𝜔) through interferometry, which is a means of sensitively 

measuring phase differences between two pulses of light.  If two identical pulses are 

delayed by time Δτ and collinearly enter a spectrometer, the signal is: 

 𝑆(𝜔) = �𝐸�1(𝜔) + 𝐸�2(𝜔)�2 = ��𝐸�(𝜔)�𝑒𝑖𝜔𝑡 + �𝐸�(𝜔)�𝑒𝑖𝜔(𝑡−Δ𝜏)�
2
 (2.12) 

 = 2�𝐸�(𝜔)�2 + �𝐸�(𝜔)�2 cos(𝜔Δ𝜏).  

The output spectrum will have the same slowly varying amplitude as that of a single 

pulse, but an interference pattern will appear overlaid on that signal, with a constant 
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oscillation frequency spacing ∆𝜔 = 2𝜋
Δ𝜏� .  From Equation 2.12, it is clear that if we 

simply split an unknown pulse in two, delay them and then combine them in a 

spectrometer, the signal will give us only the spectrum of the original pulse and the delay 

between the two pulses. 

 SPIDER is spectral interferometry of two pulses that have identical intensity 

profile, are delayed from one another by Δτ, but have slightly different center 

wavelength.  The pulses’ spectra are sheared by amount Ω (angular frequency) with 

respect to one another.  In this case, the spacing between fringes of their spectral 

interference pattern is no longer uniform.  The signal S(ω) in the spectrometer is: 

 𝑆(𝜔) = �𝐸�(𝜔)�2 + �𝐸�(𝜔 + Ω)�2 + 2�𝐸�(𝜔)𝐸�(𝜔 + Ω)� cos�𝛷(𝜔)�. (2.13) 

Φ(ω), the phase of the oscillation in the interference pattern, is related to the fundamental 

spectral phase 𝜑(𝜔): 

 𝛷(𝜔) = 𝜑(𝜔 + Ω) − 𝜑(𝜔) + 𝜔∆𝜏. (2.14) 

 The retrieval of the spectral phase from this interference pattern is simple.  First, 

we get Φ(ω) using the technique described by Takeda et al. in 1982 [58].  The technique 

involves first taking fast Fourier transform (FFT) of the spectrometer signal.  In the 

Fourier domain, we filter out any signal that is not the spectral frequency of the 

interference pattern, which means cutting off the DC spectrum and any high frequency 

noise.  Then we perform an inverse FFT and subtract from the signal the linear phase 

ωΔτ. 

This procedure leaves us with 𝜑(𝜔 + Ω) − 𝜑(𝜔), from which 𝜑(𝜔) is extracted 

by integration, as long as 2𝜋/𝛺 is longer than the time duration of the pulse (this is the 

Whitaker-Shannon sampling theorem).  It is important to remember that the shear Ω must 
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not be too large—certainly nowhere near as large as the bandwidth of the entire pulse 

spectrum—or the sheared spectra will not interfere at all in the spectrometer.  An 

additional constraint on SPIDER retrieval of 𝜑(𝜔) is that the spectrum must vary slowly 

with respect to the interference pattern oscillation frequency which is  ~∆𝜔. 

The full electric field 𝐸�(𝜔) is calculated by using Eq. 2.2 to apply 𝜑(𝜔) to the 

electric field spectrum �𝐸�(𝜔)� (the square root of the intensity spectrum I(ω)).  Then we 

get 𝐼(𝑡) from the inverse Fourier transform: 

 
𝐼(𝑡) ∝ �𝐸�(𝑡)�2 = �

1
2π

� 𝐸�(𝜔)𝑒𝑖𝜔𝑡
∞

−∞

𝑑𝜔�

2

. 
(2.15) 

 

2.4.2 SPIDER apparatus 

 The SPIDER algorithm described above retrieves 𝐸(𝑡) directly, meaning it does 

so in non-iterative fashion.  This gives it a great speed advantage over FROG.  The 

problem remains, though, that generating identical pulses with sheared spectra is non-

trivial.  Figure 2.6 below shows a schematic of our lab’s SPIDER device, based on 

reference [57]. 
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Figure 2.7: SPIDER apparatus, followed by sample interferogram and retrieved |E(t)|. 
 

 In the SPIDER setup above, the input pulse is initially split into two pulses.  The 

first pulse is chirped about 200 times its initial length by a grating stretcher and has its 

polarization rotated by 90°.  The other pulse is again split by a Michelson interferometer 

into two collinear, identical pulses, delayed by Δ𝜏 ≈ 1 ps.  The Michelson pulses are 

combined with the chirped pulse with small angle in a 200 micron thick type-II phase 

matching BBO crystal.  The pulse pair and the chirped pulse each make their own SHG 

signal, but a sum-frequency generated signal (SFG) also emanates from the BBO crystal 

in the direction of the sum of the input k-vectors.  The SFG signal is the SPIDER signal 

that is sent to the spectrometer.  The thickness of the crystal is chosen to provide 

maximum SFG production while minimizing dispersion of the Michelson pulses and 

walk-off due to the group velocity mismatch between the fundamental and SFG signal.   

 The SPIDER signal is created by SFG between each of the identical short pulses 

and the long, chirped pulse.  The chirped pulse is long enough so that over the time 

duration of each short pulse, it can be considered quasi-monochromatic.  The portion of 
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the chirped pulse that interacts with the first short pulse is quasi-monochromatic with 

frequency ω1 and the portion the interacts with the second short pulse has frequency ω2.  

If the center frequency of the short pulses is ω0, the center frequency of each of the SFG 

pulses is (ω0 + ω1) and (ω0 + ω2).  For the purpose of the SPIDER algorithm, 𝜔2 − 𝜔1 =

Ω, causing the center frequency of each pulse to be 𝜔′ and 𝜔′ + Ω. 

Though the sheared pulses are different from the input pulse due to the large 

center frequency shift 𝜔′ = 𝜔0 + 𝜔1, 𝜑(𝜔) is still recoverable because it is preserved 

through SFG with a monochromatic signal, as is the shape of �𝐸�(𝜔)�. 

The sheared pulses then enter a spectrometer, and the SPIDER algorithm is 

performed on the spectrometer signal.  The SPIDER apparatus and algorithm, as 

described above, only retrieve the spectral phase 𝜑(𝜔) of the input pulse.  The spectrum 

|E(ω)| must also be known.  For small shear and smooth input spectrum, the spectrum is 

the square root of the DC term of the SPIDER spectrometer signal.  Alternatively, the 

spectrum can be measured by a second spectrometer that operates synchronously with the 

SPIDER spectrometer.  Figure 2.6 above shows a sample SPIDER spectrometer signal, as 

well as the final computed �𝐼(𝑡). 

 Though the design of the SPIDER apparatus is complex, it operates in single-shot 

mode, does not require a large, smooth input transverse beam profile, and, with the 

appropriate data acquisition software, can display an accurately retrieved 𝐼(𝑡) in real 

time.  In 1999, Iaconis and Walmsley’s group demonstrated a SPIDER device that 

acquired and analyzed SPIDER traces at a repetition rate of 20 Hz [59].  We built our 

own SPIDER device that operates between 9 and 10 Hz.  Our device sacrifices 

acquisition rate for the added functionality of synchronous triggering for multiple 
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devices—the SPIDER spectrometer, a second Ocean Optics fiber spectrometer which 

records the fundamental spectrum of the input pulse, and a digital oscilloscope that 

monitors the pulse energy incident on a photodiode.  Since we simultaneously grab the 

fundamental spectrum of the input pulse along with the SPIDER trace, we increase the 

accuracy of retrieved 𝐸(𝑡), especially for pulses with spectra that are not very smoothly-

varying.  Synchronous measurement of the optical signal on the photodiode allows us to 

make energy-correlated measurements.  Additionally, the spectrometer we use to acquire 

our SPIDER signal is an imaging spectrometer whose output is a CCD image (not array), 

increasing acquisition time but affording spatial resolution. 

 

2.4.3 SPIDER for filamenting optical pulses 

 Femtosecond filamenting pulses are very broadband, have extremely complicated 

temporal structure, and, by their nature, do not have a smooth transverse beam profile.  

While our SSA and GRENOUILLE are sufficient for single-shot measurement of the 

direct ultrashort laser pulse output of our compressor, SPIDER is our only device that can 

measure 𝐸(𝑡) for the filamenting pulses we generate in our experiments.  The SPIDER 

device that measures our filamenting pulses will be further discussed in Chapter Five. 

  



39 
 

Chapter 3: The Rotational Response of Atmospheric Constituents 

 

3.1 Instantaneous versus rotational response of linear molecules 

 When an ultrashort pulse with sufficient intensity is incident on any molecule, the 

refractive index will nearly instantaneously change due to the nonlinear response of the 

very light, very fast bound electrons, according to Equation 1.1, reprinted here as a 

function of time, where I(t) is the temporal intensity profile of the pulse: 

 𝑛(𝑡) = 𝑛0 +  𝑛2𝐼(𝑡) (3.1) 

 This simple equation does not take into account three major effects that may be 

pertinent to ultrafast laser-matter interactions: 1) anisotropy of the propagation medium, 

2) ionization dynamics—any ionization will result in the presence of a plasma, which has 

its own refractive index, and 3) nuclear response—the optical radiation incident on the 

molecule can couple to molecular rotations and vibrations, each of which influences the 

refractive index of the medium in a time-dependent fashion. 

 Of the three processes mentioned above, 1) is clearly not pertinent to atmospheric 

propagation of single short pulses, and  2) is pertinent to filamentation, and has generally 

always been included in modeling of atmospheric filamentation.  As far as 3) is 

concerned, vibrations excited in atmospheric constituents do not constitute a significant 

contribution to the nonlinear refractive index of atmospheric constituents.  At room 

temperature T, the molecular vibrational states of O2 and N2 are in the ground state 

because Δ𝐸𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ≫ 𝑘𝐵𝑇, where 𝑘𝐵 is the Boltzmann constant.  In general, if the 

incident laser’s optical bandwidth is greater than the frequency spacing between Raman-

active vibrational states, it will drive population between states.  The increased bandwidth 
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of a filamenting pulse (caused by SPM and described in Chapter 1) is sufficient to 

noticeably excite some lower vibrational states, as Levis et al. showed in 2009 [60]. 

 The rotational response of atmospheric components is, by contrast, a significant 

part of the total nonlinear response to high intensity optical excitation.  A group of 

molecules, when aligned, will usually have a refractive index that is larger or smaller than 

that of the same group of molecules, randomly oriented.  This is because the 

polarizability of any asymmetric molecule depends on its orientation.  Typically, for a 

dumbbell-shaped molecule, if the molecule is aligned along the polarization direction of 

the incident light, its polarizability is slightly larger, so its refractive index is slightly 

higher.  The opposite is true for such a molecule aligned perpendicularly to the incident 

polarization. 

If the molecule is not aligned along or orthogonal to the incident polarization, the 

polarization anisotropy causes the induced dipole moment 𝐩 to point in a direction 

different than that of the electric field vector 𝐄.  Classically, the rotational potential 

energy −1
2
𝐩 • 𝑬 is minimized when the molecule is aligned, so the molecule will move 

to align in the applied field polarization direction, resulting in a time-varying rotational 

refractive index response.  Any such rotational response can be described through the 

addition of a second term to Equation 3.1: 

 
𝑛(𝑡) = 𝑛0 +  𝑛2𝐼(𝑡) + � 𝑅(𝜏)𝐼(𝑡 − 𝜏)𝑑𝜏

∞

−∞

 
(3.3) 

 The significance of the delayed refractive index contribution in the third term on 

the right hand side of Eq. 3.3 due to rotational response of N2 and O2 to an ultrashort 

pulse has been downplayed in the arena of filamentation as late as 2007 [7]. 
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This chapter presents results showing that the rotational response of N2 and O2 in 

atmosphere is large enough and fast enough to not only significantly contribute to 

nonlinear self-focusing of ultrashort pulses, but that for pulses longer than ~40fs FWHM, 

it is the dominant physical process in the self-focusing of filamenting pulses. 

 

3.2 The relationship of molecular alignment to the refractive index 

 The dielectric response to an electric field applied to a sample of gas molecules is: 

 𝜖 = 𝑛2 = 1 + 4𝜋𝑁〈𝛼〉𝑡 . (3.4) 

Here, N is the number density (per cm3) and 〈𝛼〉𝑡 is the time-varying polarizability of the 

ensemble average of the molecules in the polarization direction of the incident electric 

field.  We define the z axis is the axis of symmetry of a linear molecule, formed by the 

line that goes through all atoms in the molecule, and the x and y axes are perpendicular to 

each other and to z.  We can now express the polarization anisotropy by specifying 

differing values of 𝛼|| =  𝛼𝑧𝑧  and 𝛼⊥ =  𝛼𝑥𝑥 = 𝛼𝑦𝑦, the only nonzero components of the 

molecular polarizability tensor 𝜶�.  Typically, 𝛼|| >  𝛼⊥.  We now express the incident 

electric field as 𝑬 = 𝐸𝒆� = 𝐸𝑥𝒙� + 𝐸𝑧𝒛�, where 𝒆�  is a unit vector in the direction of the 

electric field polarization and 𝒚� is the direction of propagation.  We define 〈𝛼〉𝑡 with the 

aid of Einstein summation notation: 

 〈𝛼〉𝑡 = 〈𝒆� • 𝜶� • 𝒆�〉𝑡 = 〈𝑒𝑖𝛼𝑖𝑗𝑒𝑗〉𝑡 = 〈𝑒𝑥2〉𝑡𝛼𝑥𝑥 + 〈𝑒𝑧2〉𝑡𝛼𝑧𝑧. (3.5) 

Given θ as the angle between the molecular axis z and the polarization 𝒆� we write 

𝑒𝑧 = 𝒆� • 𝒛� = cos𝜃.  Using that, and also Δ𝛼 = 𝛼|| − 𝛼⊥, Equation 3.4 is re-written as 

 𝜖 = 𝑛2 = 1 + 4𝜋𝑁(Δ𝛼〈cos2 𝜃〉𝑡 + 𝛼⊥), (3.6) 
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where 〈cos2 𝜃〉𝑡 expresses the degree of alignment of the molecule with reference to the 

electric field.  In the absence of an aligning electric field, 〈cos2 𝜃〉𝑡 = 1
3
, which is 

equivalent to an average over the solid angle, soo in the field-free case, 𝜖 = 𝑛02.  From 

substituting into Equation 3.3, the third term describing the delayed response becomes: 

 Δ𝑛rot = 2𝜋𝑁𝑛0−1Δ𝛼 �〈cos2 𝜃〉𝑡 −
1
3�

. (3.7) 

The next section describes how optically-aligned 〈cos2 𝜃〉𝑡 was measured initially, and 

how it can be calculated. 

 

3.3 Quantum mechanical rigid rotor model of molecular alignment 

 

3.3.1 Early measurement and modeling of optically-driven molecular alignment 

 In 1975, Lin et al. [61] found that a 5 ps long, 1.06 micron wavelength laser pulse 

rotationally aligned room-temperature CS2 molecules in a vapor state.  They measured 

the molecular alignment by probing the optically pumped vapor with a weak probe pulse 

polarized at 45° with respect to the pump pulse to sample the birefringence due to the 

alignment. They found that the time-dependent rotational behavior was not classical.  The 

molecules quickly aligned with the pump laser pulse and de-aligned once the laser pulse 

was turned off, and then many picoseconds later, they spontaneously re-aligned.  Lin et 

al. were able to explain this behavior when they theoretically computed the rotational 

response of linear molecules to short pulses of light [62], using the quantum mechanical 

rigid rotor model.   

 The time-dependent classical ensemble average alignment 〈cos2 𝜃〉𝑡 in the 

presence of an electric field is calculated as 
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 〈cos2 𝜃〉𝑡 = Tr(𝝆(𝑡)⊗ cos2 𝜃) = 𝜌𝑘𝑙〈𝑙|cos2 𝜃|𝑘〉, (3.8) 

where Tr is the trace operation, 𝝆(𝑡) is the density matrix, ⊗ denotes operator 

multiplication, and 〈�𝑙| � and �|𝑘�〉 are bra and ket spherical harmonic eigenstates of the 

rotational field-free Hamiltonian.  |�𝑘〉 =�| �𝑗,𝑚〉� and |�𝑙〉 = �|�𝑗′,𝑚′〉�, and the energy Ek is: 

 𝐸𝑘 = 𝐸𝑗 = ℎ𝑐𝐵𝑗(𝑗 + 1).  (3.9) 

j is the quantum number for total rotational angular momentum J and m is the quantum 

number for the component of the angular momentum along the polarization direction of 

the electric field 𝑬. B is the rotational constant of the molecule, which depends on its 

moment of inertia I. 

 
𝐵 =

ℎ
8𝜋2𝑐𝐈

 . 
(3.10) 

 The density matrix is calculated to first-order in the optical perturbation 𝝆(𝑡) =

𝝆(0) + 𝝆(1)(𝑡), where 𝝆(1)(𝑡) is 

 
�𝝆(1)(𝑡)�

𝑘𝑙
= −

𝑖
ℏ
�𝑑𝜏�𝒽(𝜏),𝝆(0)�

𝑘𝑙
𝑒(𝑖𝜔𝑘𝑙+𝛾𝑘𝑙)(𝜏−𝑡)

𝑡

−∞

, 
(3.11) 

the first order correction to the density matrix induced by the perturbation Hamiltonian 

𝒽 = −1
2
𝐩 • 𝑬, and 𝐩 = 𝜶� • 𝑬 is the induced molecular dipole moment.  𝑬(𝜏) is the 

electric field envelope whose peak is centered at time 𝜏 = 0.  The thermal equilibrium 

distribution of rotational eigenstates at 𝑡 = −∞ is described by the zeroeth order density 

matrix 𝝆(0), and 𝛾𝑘𝑙 is the dephasing frequency between states k and l.  The perturbation 

Hamiltonian 𝒽 drives the molecular alignment. 

 The distinct energy states correspond to distinct possible angular frequencies 

𝜔𝑗 = 𝐸𝑗/ℏ.  Each eigenstate evolves in time as �|�𝑗,𝑚〉� 𝑒−𝑖𝜔𝑗𝑡 �.  The frequency of rotation 
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is in the terahertz range.  A linear-shaped molecule under zero applied electric field is in 

a superposition of these states, called a wavepacket: 

 �| �𝜓〉� = �𝑎𝑗,𝑚|�𝑗,𝑚〉�
𝑗,𝑚

𝑒−𝑖(𝜔𝑗𝑡) . � (3.12) 

Lin et al. found that a short optical pulse had enough bandwidth to non-resonantly 

excite many rotational eigenstates of CS2 simultaneously.  Though the relative phase of 

the eigenstates (encoded in the complex amplitude 𝑎𝑗,𝑚) is random in the field-free case, 

since the frequency of a rotational eigenstate is related to that of its neighbors by integer 

multiples of a constant— 

 
Δ𝜔𝑗,𝑗+1 =

𝐸𝑗+1 − 𝐸𝑗+1
ℏ

= 2𝜋𝑐𝐵(2𝑗 + 2)  
(3.13) 

—the optical pulse excites a coherent rotational wavepacket whose alignment in time 

evolves like a superposition of in-phase sinusoids.  In the case of first-order perturbative 

optical excitation, the coherent bandwidth of the wavepacket is limited to the either the 

bandwidth of the incident optical pulse Δ𝜔opt or the bandwidth of the thermal rotational 

distribution Δ𝜔rot—whichever is smaller.   

Lin et al.’s experiment on transient birefringence indeed showed picosecond-scale 

alignment of CS2 and subsequent de-alignment, followed by intervals of picosecond 

pulse-like alignment revivals at integer multiples, halves and quarters of the rotational 

revival period T: 

 𝐓 =
1

2𝑐𝐵
.  (3.14) 

In the case of CS2, T = 152 ps. 

 Lin’s work opened up the door for chemists like Felker [63] to study Rotational 

Coherence Spectroscopy (RCS) of large gas-phase molecules with longer revival periods 
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than CS2.  Hartland et al. [64] measured alignment-induced vibronic fluorescence 

depletion to map out the revival structure of I2 gas.  They confirmed the revival period for 

the ground state rotational coherence of I2 to be T = 443 ps. 

 For N2, T = 8.3 ps.  The highest rotational state jmax of the thermal rotational 

distribution is: 

 
𝑗max~

3
4�

1 + �1 +
8
9
𝑘B𝑇
𝐵ℎ𝑐�

1
2�

� . 
(3.15) 

At room temperature, 𝑘B𝑇 𝐵ℎ𝑐� ≫ 1 for N2, so 𝑗max~20.  For large jmax, the available 

bandwidth Δ𝜔rot~
𝑘B𝑇

ℏ� ~4 × 1013  rad
s

, which is the bandwidth of a ~160 fs transform-

limited ultrashort pulse.  This means that an ultrashort pulse can be expected to 

coherently excite the majority of the available bandwidth Δ𝜔rot of atmospheric N2.  In 

this case, the fast rise time to the peak initial alignment would be ~80fs and the molecular 

alignment revivals would also have the same rise and fall time. 

 

3.3.2 Measurement of quantum molecular alignment using spectral analysis 

The fast rising and falling refractive index transients from molecular alignment 

due to an ultrashort pulse could impart cross-phase modulation on a weak probe pulse.  

The fast rising refractive index of molecules swinging into alignment would red-shift a 

probe pulse, and the fast falling index due to de-aligning molecules would cause a blue-

shift.  In 1997, Ripoche [65] irradiated a large volume of N2 gas in a gas cell with a 

strong 800 nm wavelength pulse with 150 fs duration.  They then nearly collinearly 

propagated a weak version of the same pulse through that volume (the pump/probe angle 



46 
 

was <0.3°).  They measured the red- or blue-shift of the probe spectrum versus 

pump/probe delay by computing the center-of-mass of the pump spectrum.  Using a 

propagation model, they back-calculated the molecular alignment necessary to produce 

such spectral shifts and found the molecular rotational response was few-hundred 

femtosecond spikes of alignment, interspersed over longer periods of no discernible 

alignment.  This result was identical to what was theoretically predicted by the quantum 

mechanical model. 

 One of the important results from Ripoche et al.’s work, and from subsequent 

work done by the same group [66] was in the comparison of instantaneous and delayed 

contributions to the nonlinear refractive response of gaseous molecules.  They found that 

the peak refractive index due to the bound electronic response was similar in magnitude 

to the peak index caused by molecular alignment.  They concluded that, for 150 fs 

duration optical pulses, the nonlinear refractive index had equal contributions from 

instantaneous and rotational molecular response. 

 

3.4 Simulation of quantum molecular alignment of N2 and O2 

Using the perturbation method briefly described in the previous section, we 

computed the quantum molecular alignment of the primary atmospheric constituents N2 

and O2.  The computational method we used is described in greater detail in reference 

[67]. 

Shown in Figure 3.1 are calculated plots of the molecular alignment versus time 

for nitrogen (3.1a and 3.1b) and oxygen (3.1c and 3.1d) gas irradiated by a 100 fs optical 

pulse whose peak intensity is at t = 0.  Figures 3.1a and 3.1c highlight the revivals in 
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molecular alignment many picoseconds after the optical radiation is over.  Figures 3.1b 

and 3.1d show the initial molecular response to the ultrafast pulse.  The dashed line 

indicates I(t) of the 100 fs pulse. 

 

 

 

Figure 3.1: Calculated molecular alignment versus time for N2 (top) and O2 (bottom) gas 
due to a 100 fs pulse.  The dashed line indicates the intensity of the optical excitation. 
 

 One important feature of Figures 3.1b and 3.1d is the very quick alignment of N2 

and O2.  Within ~100 fs, the molecules have reached their peak alignment.  This rapid 

alignment implies that in an experiment, a significant part of the tail of the pump pulse 

will experience self-focusing due to molecular alignment.  The other, even more 

noticeable feature of the plot is the equally quick de-alignment and apparent dephasing of 

the molecules until nearly 2, 4, 6 and 8 picoseconds later, where there are similarly fast 
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pulses of molecular aligment.  As explained earlier, molecular alignment revivals occur at 

integer multiples of ¼  of the fundamental rotational period 𝐓 = 8.3 picoseconds for N2 

and 𝐓 = 11.6 picoseconds for O2. 

 

3.5 Inter-molecular collisions 

 The calculations of ultrashort-pulse-driven molecular alignment above predict 

alignment revivals that should continue indefinitely.  In an experiment, elastic inter-

molecular collisions dephase the rotational wavepacket, causing the amplitude of the 

alignment revivals to degrade over time.  The alignment revival amplitude decreases to 

half its size in the collisional time 𝜏coll = 𝜈coll−1 .  Using kinetic theory of gases, the 

collisional frequency 𝜈coll is calculated from the average molecular speed 𝑣̅ and the mean 

free path 𝜆𝑚 (average distance traveled by a molecule between collisions) [68]:  

 
𝜈coll = 𝑣̅ ∗ 𝜆𝑚−1 = �8𝑘B𝑇

𝜋𝑚
∗ √2𝜋𝑑2𝑁, 

(3.16) 

where m is the mass of the molecule, d is its diameter, and N is the gas density.  N for air 

is ~2.5x1019 cm-3.  By approximating the composition of air to be 80% N2 and 20% O2, 

the diameter of an air molecule is ~0.3 nm and its molar mass is 28.8 amu.  𝑣̅ = 468 ms , 

𝜆𝑚 = 0.102 𝜇m, 𝜈coll~4.6 ∗ 109 Hz, and 𝜏coll~217 ps. 

This long collision time implies that many optically induced quantum molecular 

aligment revivals in atmosphere, which occur every few picoseconds, will be measurable 

before the coherence of the wavepacket deteriorates. 
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3.6 Direct space-and-time resolved measurement of delayed rotational response and 

quantum molecular alignment revivals 

 

3.6.1 Measurement of molecular alignment using Coulomb explosion imaging 

 In the previous sections, two pump-probe methods to measure quantum molecular 

alignment were described: measurement of the birefringence of aligned molecules, and 

measurement of probe spectral modulation induced by XPM from the rotating molecules.  

Neither of these methods is spatially resolved, and the spectral measurement requires a 

propagation model to infer, rather than to directly measure alignment.  Molecular 

alignment has been directly measured [69, 70] by Coulomb explosion imaging of a low-

density gas in high vacuum chambers (~10-9 mbar).  Microchannel plates are used to 

record the angular distribution of molecular fragments.  This technique, like the others, 

does not have spatial resolution.  Additionally, the low gas density results in a low signal 

level, so multi-shot averaging is necessary.  All the above mentioned techniques require 

multiple shots to map out the refractive index transient due to molecular alignment, and 

their temporal resolution is limited to that of the ultrashort probe pulse, typically >~45fs. 

 

3.6.2 Spectral interferometry 

In 2002, Kim, Alexeev and Milchberg developed a single-shot method of probing 

ultrafast refractive index transients over a range of a few picoseconds with 10-fs time 

resolution [71].  The technique is called Single-shot Supercontinuum Spectral 
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Interferometry (SSSI).  Spectral interferometry, also known as frequency-domain 

interferometry, had already been developed by Reynaud et al. in 1989 to measure self-

phase modulation of a short pulse in an optical fiber [72] and by Tokunaga et al. in 1992 

to measure cross-phase modulation in thin, optically transparent samples in [73].  In these 

cases, the researchers co-propagated a strong optical pump pulse with a weak probe pulse 

as the pump pulse applied some nonlinear phase shift to the probe in the interaction 

material.  An identical but unperturbed copy of the probe pulse, called the reference pulse 

is then spectrally interfered (Eq. 2.12) with the probe.  If the phase of the reference pulse 

is known, the difference between the reference phase and the phase recovered from the 

interference pattern yields the pump-induced phase modulation.  Scanning the 

pump/probe delay and computing the phase at each delay point gives the full temporal 

profile of the pump-driven nonlinearity. 

Tokunaga et al. [74] later used a linearly chirped probe pulse and found that the 

temporal evolution of the nonlinear refractive index shift roughly linearly mapped to the 

spectral axis.  This result means that 𝛷(𝑡)~const ∗ 𝜑(𝜔); the induced fringe shift plotted 

versus frequency is roughly proportional to the phase shift over time.  However, inferring 

the temporal refractive index profile from a linear frequency-to-time mapping is not fully 

accurate, because the uncertainty principle implies that any single color cannot occur at a 

single point in time.  𝛷(𝑡) is instead computed using Takeda et al.’s Fourier transform 

technique [58] for spectral interferometry described in section 2.4.  Spectral 

interferometry has since been used widely, for example, in the characterization of 

ultrashort pulses [57] and the measurement of the temporal profile of ionization fronts 

with 70 fs resolution [75]. 
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3.6.3 SSSI 

Still, spectral interferometry suffered from either poor time resolution or too small 

of a temporal window until Kim et al. [71] began to use a chirped supercontinuum (SC) 

pulse as the probe and reference.  The continuum was generated by focusing a ~100 fs 

pulse in air and collecting and collimating part of the SC light to be used as a probe and 

reference.  Figure 3.2 below shows a schematic of SSSI from [76]: 

 

 

 

Figure 3.2: SSSI setup used to measure double-step ionization of Helium gas [76]. 
 

 Once the SC is generated, it is split into two collinear copies, one delayed from 

the other by a few picoseconds.  Then, they are heavily chirped to 2 ps duration in a 

dispersive medium.  In this case the medium is a 1” thick piece of SF4 glass, but other 

materials or a grating stretcher are also reasonable choices.  The two chirped pulses are 

then collinearly combined with the pump pulse using a dichroic beamsplitter, with the 

probe pulse temporally overlapping the pump pulse and the reference pulse occurring 2 

ps earlier.  The three pulses propagate into the interaction region, where the pump pulse 

modulates the probe pulse through the nonlinear response.  The pump light is filtered 
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away by a zero-degree 800 nm mirror, and the probe and reference pulses interfere in an 

imaging spectrometer, where the nonlinear process is time-resolved over the spectral 

axis.  Because the interaction region is imaged onto the spectrometer entrance slit, the 

nonlinear process is spatially resolved over the axis defined by the slit.  Kim et al. used 

SSSI to spatio-temporally resolve the double-step ionization of helium gas due to a 100 fs 

pump pulse [76] and to measure the time evolution of the explosion of femtosecond laser-

irradiated clustered gases [77].  These nonlinear processes were time-resolved with 10 fs 

resolution over a 2 ps window.  The calibration of the reference phase (dominated by 

linear chirp from the SF4) is done by scanning the pump/probe delay in small steps and 

recording the spectral location of the peak pump-induced phase shift. 

 

3.6.4 Xenon SSSI 

 More recently, we used an upgraded version of SSSI [78] to resolve the optically-

induced alignment of several linear molecular gases, including N2, O2 and N2O, and 

never-before seen alignment of D2 and H2 [67].  Our major improvement to SSSI was 

using a xenon-filled gas cell for generation of the supercontinuum pulse.  Xenon has a 

lower ionization threshold than air, so broadband supercontinuum can be generated at 

significantly lower pump energy.  As a result, an extremely broad supercontinuum could 

be generated (~100 nm full width, with a center wavelength near 700 nm) with a 100 fs, 

800 nm, 400 μJ pulse, which was easily created by a very stable kilohertz regenerative 

amplifier.  The great stability of the SC spectrum allowed us to do something Kim et al. 

were not able to do previously: average raw spectral interferograms.  Averaging 200 SSSI 

interferograms reduced the phase noise floor from 0.1 to 0.01 radians.  Figure 3.3 is a 
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schematic of our setup for xenon SSSI for the measurement of alignment of linear gas 

molecules. 

 

 

 

Figure 3.3: Xenon SSSI.  BS1: beamsplitter, XGC: xenon gas cell, MI: Michelson 
interferometer, P: 500 µm pinhole, SF4: 2.5-cm thick SF4 glass as dispersive material, 
HWP: half waveplate, M: zero degree Ti:Sapphire dielectric mirror, BS2: beamsplitter 
for combining pump and SC pulses. 
 

 This setup is similar to that from Figure 3.2, except that the gas jet is replaced 

with a 40 cm long cylindrical gas cell, which was filled with various gas species at 

different pressures.  The pump, reference and probe pulses were focused with a 40-cm 

focal length lens into the gas cell.  The distance over which the strong pump pulse 

interacted with the weak probe was approximately 5.6 mm—twice the Rayleigh length of 

the pump pulse.  The end of the interaction region was imaged with 6.9X magnification 

onto the entrance slit of the imaging spectrometer. 

 

3.6.5 Measurement of rotational wavepackets of N2O, N2 and O2 

 Figure 3.4 below is a plot of the raw SSSI interferogram resulting from the 

nonlinear response of N2O gas to a 100 fs pulse.  The peak of the optical pulse is at t = 0, 

and the phase disturbance on the probe is due to the fast nonlinear response of bound 
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electrons and the delayed rotational motion of the N2O molecule.  The spectral axis, 

which from left to right changes from red to blue, also roughly corresponds to time 

moving from 1 ps before the disturbance to 1 ps afterwards.  The phase disturbance is 

much longer than 100 fs, showing how much the molecular alignment affects the total 

initial nonlinear response.  Additionally, the spatial dependence in the vertical direction 

shows us that the pump pulse focal region diameter is much smaller than 250 microns. 

 

 

 

Figure 3.4: Raw SSSI Interferogram showing the initial nonlinear response of N2O to a 
100fs pulse. 
 

 SSSI is also ideal for measuring the fast bursts of molecular alignment revivals 

following the initial nonlinear response of a linear gas molecule to an ultrashort pulse.  

The probe pulse must be delayed to the time at which the re-alignment occurs, and the 

reference pulse, which is ~2 ps earlier than the probe, should occur at a time when there 

is certainly no alignment transient. 

SSSI can measure the initial response, plus the ¼, ½, ¾ and full revivals of N2 

alignment in five single measurements.  Figures 3.5 and 3.6 show the spatio-temporal 

molecular alignment transients of N2 and O2 gas measured by SSSI, side by side with the 

alignment predicted by the computational technique described in [67]. 
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Figure 3.5: a) Axial alignment of N2 measured by SSSI, b) SSSI space-resolved 
alignment, and c) theoretically computed molecular alignment for comparison with a). 
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Figure 3.6: a) Axial alignment of O2 measured by SSSI, b) SSSI space-resolved 
alignment, and c) theoretically computed molecular alignment for comparison with a). 
 

 SSSI faithfully recovers the temporal refractive index transient due to the 

irradiation of a linear molecule with an ultrashort pulse.  The technique does, however, 

have some limitations with respect to the upper limit of pump intensity that can be used 

to drive molecular alignment.  If the pump pulse is bright enough, it will generate 
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supercontinuum in the gas cell, which will propagate through the dichroic splitter and 

interfere with the reference and probe spectra.  Also, for high enough pump intensity, the 

pump pulse will not only drive coherence between constituent states of the wavepacket of 

the gas molecules, but will also transfer the population among those states.  This process 

results in a quasi-steady molecular alignment immediately after the initial molecular 

alignment spike, and was observed by Corkum et al. in 2003 [79].  The rotational revivals 

then appear as AC perturbations on top of the quasi-steady alignment.  If the pump pulse 

is bright enough to drive population transfer and the probe pulse is parked over an 

alignment revival, both probe and reference pulses will overlap with effectively DC 

aligned molecules, rendering the fast alignment but missing the semi-permanent 

alignment. 

 

3.7 Relevance of rotational response of N2 and O2 to atmospheric filamentation 

 Figure 3.7 below shows a more detailed view of the initial response of N2 gas 

(circles) to a 100 fs pump pulse, as measured by SSSI.  For comparison, the pump 

envelope (dots) and calculated molecular alignment (line) are shown. 

 

 

 

Figure 3.7: Initial response of N2 gas to a 100 fs pump pulse, as measured by SSSI 
(circles), intensity envelope of the pump pulse (dots), and calculated molecular alignment 
(line). 
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 The above figure shows a very different picture of the nonlinear response of N2 

than that measured by Ripoche et al. [65], who found that the nonlinear response of N2 to 

a 150fs pulse had equal contributions from the prompt electronic response and the 

delayed rotational response.  Although our SSSI measurement shows the combined effect 

of the instantaneous Kerr effect and delayed rotational alignment, its shape is almost 

perfectly replicated by our calculated molecular alignment, which does not include the 

instantaneous Kerr effect.  The fast rotational alignment of N2 dominates the prompt 

electronic response. 

 This observation has deep consequences for the understanding of filamentation of 

ultrashort pulses in atmosphere.  Our SSSI measurement leads us to believe that quantum 

rotational alignment is the dominant self-focusing effect for pulses ~100 fs in 

atmosphere; the front end of the pulse aligns N2 and O2, and the middle and tail end 

experience the focusing effects from those quickly aligned molecules.  These results led 

us to conjecture that if we could actively control the state of molecular alignment, we 

would be able to strongly control filamentation.  The following chapter will describe the 

first experiments we did to control the filamentary process using quantum molecular 

alignment revivals of N2 and O2 in atmosphere. 
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Chapter 4: Trapping, Enhancement and Destruction of an Optical/plasma Filament 

in a Quantum Molecular Alignment Wake 

 

4.1 The critical power for self-focusing in air 

 

4.1.1 Derivation of Pcr 

 As mentioned in the previous chapter, the dominance of the quantum rotational 

alignment wake over the bound instantaneous response of air constituents in the self-

focusing a filamenting ultrashort pulse is often overlooked.  We will elucidate this issue 

by discussing the critical power for self-focusing, Pcr. 

Pcr is the power required for nonlinear self-focusing to compensate diffraction.  

The half-angle of diffraction for a Gaussian beam 𝜃diff is, for propagation distances much 

greater than the Rayleigh length: 

 
𝜃diff~

2𝜆0
𝜋𝑑𝑛0

, 
(4.1) 

where d is twice the 1/e beam waist and 𝜆0 is the vacuum wavelength.  The convergence 

half-angle for nonlinear self-focusing 𝜃sf is expressed through the use of Fermat’s 

principle of least time; the optical path length traveled by the center ray 𝑙center to the 

focal spot zsf must equal the path length traveled to the same point by an outer ray that 

experiences the minimal nonlinear refractive index 𝑙outer [1]: 

 𝑙center =  𝑧sf�𝑛0 + 𝑛2(𝐼)� = 𝑙outer =
𝑧sf𝑛0

cos(𝜃sf)
~

𝑧sf𝑛0

1 − 1
2𝜃sf

2
, (4.2) 

where cos(𝜃sf) is expanded for small 𝜃sf.  Solving Eq. 4.2 for 𝜃sf gives: 
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𝜃sf ~�

2𝑛2𝐼
𝑛0

. 
(4.3) 

For the condition that self-focusing compensates diffraction, we set Equations 4.1 and 4.3 

equal to one another.  Assuming that the total power in a beam 𝑃 = 𝐼
𝜋𝑑2/4 

, we get: 

 
𝑃cr~

𝜆02

2𝜋𝑛0𝑛2
. 

(4.4) 

The above expression only slightly differs from Eq. 1.7, 𝑃cr = 3.77𝜆02 8π𝑛0𝑛2⁄ , which 

Fibich and Gaeta [8] calculated for a beam with a transversely Gaussian intensity profile.  

Note that although the maximum instantaneous nonlinear refractive index a pulse can 

experience depends on its intensity, the resultant focusing power also depends on the 

magnitude of the refractive index gradient.  Since self-focusing due to the instantaneous 

Kerr nonlinearity is directly proportional to a pulse’s intensity and inversely proportional 

to its spot size, power, and not intensity, is the critical property. 

 

4.1.2 Experimental measurement of Pcr 

The nonlinear refractive index of air was measured with long pulse, high power 

lasers as early as 1989 by Shimoji et al. [9] and Pennington et al [80].  By substituting the 

measured n2 into Equation 1.4, they predicted 𝑃cr~1.8 GW.  However, many researchers 

doing filamentation experiments with ultrashort pulses have since reported critical 

powers in the range 5-10 GW [6, 7].  This power is significantly higher than predicted, 

but very few groups took the time to examine the discrepancy.  Liu and Chin in 2005 [81] 

did vary their input power by maintaining a constant pulse energy and varying pulse 

length from 42 fs to 800 fs by adjusting their chirped pulse amplification compressor.  
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They focused the pulse in air and inferred Pcr from the decrease in focal length as a 

function of pulse power.  In this way, they found that the measured Pcr dropped from 10 

GW to ~5 GW when the pulse length changed from 42 fs to 200 fs FWHM, regardless of 

chirp.  They pointed to Ripoche et al.’s measurement [65] that roughly predicted a 

doubling of the nonlinear refractive index (and therefore halving of Pcr) due to rotational 

alignment of atmospheric N2 and O2, but did not model or pursue the issue further. 

Our direct measurement of the molecular response of N2 and O2 [67], discussed in 

detail in the previous chapter, allowed us to directly measure the time-dependent 

nonlinear response to a focused 110 fs optical pulse of the two major atmospheric 

constituents at room temperature and 1 atm pressure.  The fact that the calculated 

molecular alignment almost completely predicted the experimentally-measured total 

response highlighted the dominance of the rotational versus instantaneous contribution to 

the refractive index perturbation. 

The experimentally measured refractive index bump near t=0 (the peak of I(t)) for 

N2 and O2, shown in Figures 3.1b and 3.1d, including both instantaneous Kerr and 

delayed molecular alignment effects, were used to synthesize the nonlinear response of 

air (80% N2 and 20% O2).  The air response curve is pictured below, along with a plot of 

I(t) for the pump pulse. 

 

 

 

Figure 4.1: Experimental measurement of air refractive index change near t=0 (black 
line), synthesized from SSSI measurement of molecular alignment of N2 and O2, 
compared with the pump pulse I(t) (red dotted line). 
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 We use our measurement of the total nonlinear response of air in Figure 4.1 to 

predict Pcr for filamenting 100 fs pulses in atmosphere.  We approximate n2 using the 

refractive index shift at the peak of the laser intensity: 𝑛2 ≈
𝛥𝑛𝑡=0
𝐼(𝑡=0)

.  Using this value, we 

find that 𝑃cr ≈ 10 GW.  At the peak molecular alignment, 𝑃cr ≈ 4.3 GW.  Both of these 

values are very close to the 𝑃cr that has been experimentally measured by the scientific 

community for short and long pulses.  This fact lends credence to our statement that 

rotational alignment is the dominant self-focusing nonlinearity for >40 fs pulses.  The 

refractive index response time δ𝑡 due to molecular orientation alone is [10]: 

 δ𝑡~
2𝐓

𝑗𝑚𝑎𝑥(𝑗𝑚𝑎𝑥 + 1). (4.5) 

For N2, 𝐓 = 8.3 ps is the rotational revival period (Eq. 3.13) and 𝑗𝑚𝑎𝑥 = 20 is the 

highest rotational state (Eq. 3.14), giving δ𝑡~40 fs.  This means that unless a pulse is 

shorter than ~40 fs, the rotational response of air is the dominant nonlinearity. 

 

4.2 Filament enhancement experimental concept 

 The periodic revivals of aligned N2 and O2 were nearly as large in magnitude as 

the initial response and travel behind a filamenting pulse at the same group velocity as 

the pulse.  In a very real sense, behind every ultrafast filamenting pulse is a delayed wake 

of periodically-spaced lenses, each with almost the same self-lensing power as the initial 

response and the same time duration as a ~100 fs FWHM optical pulse.  Our idea was to 

send a second, collinear, delayed “probe” filamenting pulse into one of those molecular 

lenses in the alignment wake of a pump filament, with the thought that the probe would 
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experience an enhanced focusing effect, leaving behind a longer and/or more axially 

dense plasma filament. 

In order for us to do this experiment, we had to determine the best temporal delay 

at which to inject the probe pulse.  For that, we had to know the full temporal structure of 

the rotational response of air to the pump filament.  Armed with the SSSI alignment data 

for N2 and O2, we constructed the full space and time response of air to an ultrafast pulse 

for up to 12 ps after the pulse, in the same way that we synthesized Figure 4.1.  Figure 

4.2 below shows the result: 

 

 

 

Figure 4.2: Measured alignment of 1 atm N2 and O2 at room temperature by a 110fs, 800 
nm, 4.1x1013 W/cm2 laser pulse.  The effective alignment of air is synthesized from the 
N2 and O2 plots. 
 

 One very pronounced feature in the synthesized spatio-temporal alignment 

response of air is the fast oscillating negative to positive to negative alignment near the 

full revival of N2 and the ¾ revival of O2, near 8.3 ps pump/probe delay.  This delay is an 

ideal one at which to seat our probe pulse; because the alignment peak is comprised of 

both aligned N2 and O2, the lensing effects on a probe pulse would be greater at this delay 

than elsewhere. 
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 In order to predict how significantly the pump-induced quantum molecular revival 

would lens the probe pulse, we estimate the magnitude of the effect using an argument 

similar to the one made to compute Pcr.  For a Gaussian beam propagating one Rayleigh 

length z0 away from its waist, the difference in phase acquired by the center of the beam 

and the waist is approximately 1 radian.  If on the central axis there were a central 

refractive index bump Δn, then over the same propagation distance z0, the center of the 

beam would have its phase retarded by kΔnz0, where 𝑘 = 𝜔𝑛0
𝑐

= 2𝜋
𝜆

, the optical 

wavenumber in air.  If the phase retardation induced by the on-axis fractional increase in 

refractive index negates the natural phase advancement of the center of the beam, it will 

compete with diffraction and therefore assist self-focusing.  So Δn will aid filamentation 

of the probe pulse if: 

 Δ𝑛 > ~(𝑘𝑧0)−1. (4.6) 

 Now we predict the on-axis Δn a probe pulse would see ~8.3 ps after a pump 

filament aligns atmospheric N2 and O2.  Using our SSSI measurement of the molecular 

alignment of air, we found that at that delay, the maximum effective alignment 

〈cos2 𝜃〉eff −
1
3

~0.025.  Using Equation 3.6, we find N2(Δα=0.93x10-24 cm3) and 

O2(Δα=1.14x10-24 cm3) [82] with that degree of alignment would give Δ𝑛~3 × 10−6.  

We estimate the beam waist 𝑤0~100 𝜇m, and calculate 𝑧0 and find that (𝑘𝑧0)−1~3 ×

10−6. 

 It is important to keep in mind that w0 and z0 for our probe filament will depend 

on any focusing geometry introduced in a filamentation experiment.  We expected to 

weakly focus our pump and probe filaments to encourage quick filamentation along our 

small laboratory space (several meters of atmospheric propagation), so we needed to 
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make sure that diffraction due to our focal geometry will not overcome the molecular 

focusing effect.  The f-number 𝑓# = 𝑓/NA, where f is the focal length and NA is the 

diameter of the beam.  In the limit of long focal length, f# can be put in terms of k and z0 

using the relation: 

 
𝑓# =

𝑘𝑤0
4

=
1
2
�𝑧0𝑘

2
. 

(4.7) 

Using Equation 4.2, the condition for lensing of the probe filamenting pulse due to the 

index perturbation of molecular pre-alignment in Equation 4.1 becomes: 

 
𝑓# > ~

1
2
� 1

2Δ𝑛
~200. 

(4.8) 

Therefore, we needed to be careful to launch our filamenting pulses with 𝑓# > 200. 

 One more important thing to note is that in the experimental implementation of 

the above concept, the probe and pump filamenting pulses will be perpendicularly 

polarized.  This is necessary so that the probe may be separated by a polarizing 

beamsplitter and analyzed independently from the pump.  We define the pump 

polarization as 𝒛�, the probe is polarized in 𝒙�, the propagation direction is 𝒚�, 𝜃 is the angle 

between the molecular axis and 𝒛�, and 𝜑 is the angle between the projection of the 

molecular axis on the x-y plane and 𝒙�.  The alignment with respect to 𝒛� is 〈cos2 𝜃〉𝑡, and 

the alignment with respect to 𝒙� is 〈sin2 𝜃〉𝑡〈cos2 𝜑〉𝑡.  Because the aligning pulse is 

polarized in 𝒛�, the molecular alignment has no 𝜑 dependence, and 〈cos2 𝜑〉𝑡 =

〈sin2 𝜑〉𝑡 = 1/2.  Additionally, 〈sin2 𝜃〉𝑡 = 1 − 〈cos2 𝜃〉𝑡.  As a result, the pump-

induced molecular alignment in the polarization direction of the probe pulse is (1 −

〈cos2 𝜃〉𝑡)/2.  Pump-induced molecular alignment viewed by a perpendicularly polarized 
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probe pulse is half the magnitude and opposite in sign of the alignment it would see if its 

polarization were parallel to the pump. 

 

4.3 Experimental setup 

 There are two major steps involved in the implementation of the experimental 

concept described in the previous section.  The first is the generation of collinear pump 

and probe filamenting pulses.  The second is the separation of the probe filament light 

from the pump and a diagnostic to measure the effect of pump-aligned molecules on the 

probe filament.  Figure 4.3 shows the experimental setup. 

 

 

 

Figure 4.3: Dual-polarization interferometer (DPI) and probe filament end mode imaging 
setup. 
 

 We developed the dual-polarization interferometer (DPI) to split the amplified 

ultrashort pulse that exits from our compressor into the pump and probe filaments.  The 

pulse initially enters the DPI through a half-wave plate and encounters the first of two 

thin-film polarizers (TFPs).  The vertically-polarized part of the input pulse reflects off 

the first TFP through a quarter-wave plate and onto a retro-reflecting mirror on a delay 
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rail driven by a Newport CMA-25CCCL stepper motor actuator.  The double pass 

through the quarter-wave plate rotates the polarization 90°, so when it encounters the first 

TFP again, it passes through it, and through a second TFP.  On the other hand, the 

horizontally-polarized part of the input pulse transmits through the first TFP, reflects off 

two 45° mirrors and then through another half-wave plate, to get 90° polarization 

rotation.  The now vertically-polarized second pulse encounters the second TFP and 

reflects off it on a path collinear with the first pulse. 

 The first half-wave plate allows us to arbitrarily split the input energy between the 

two pulses, and the quarter-wave plate and the second half-wave plate make it 

straightforward to tune the energy of the pump and probe independently of each other.  

Also, the DPI transmits nearly 100% of the energy of the input pulse to the experiment, 

while typical Mach-Zender and Michelson interferometers always dump 50% of the input 

energy. 

 Once the vertically polarized pump and horizontally polarized probe pulses 

collinearly leave the TFP, they enter a 3 meter focal length lens immediately followed by 

a hard adjustable aperture set to roughly 1 cm diameter.  This gives the focal geometry 

𝑓#~300, which sufficiently fulfills the condition in Equation 4.8.  An advantage of using 

a hard aperture in the beam prior to filamentation is that it generates a far-field diffraction 

pattern that is radially symmetric with a hot spot in the center, promoting on-axis 

filamentation.  Without the hard aperture, the location of the filament may not necessarily 

be in the center of the beam, and may not be that stable.  In order to verify that the hard 

aperture would not drastically change the plasma filament, we used WAKE, a 2-D 

simulation code developed by Mora and Antonsen [83], to simulate filamentary 



68 
 

propagation of two 6 mJ, 65 fs pulses launched with the above experimental geometry, 

one with a Gaussian transverse profile and one with a flat-top profile.  In Figure 4.4, we 

plot the density and radius of the filaments. 

 

 

 

Figure 4.4: 2D WAKE simulation results showing plasma density (solid markers) and 
radius (hollow markers) of two 65 fs, 6 mJ pulses launched with 𝑓#~300 and filamenting 
in atmosphere.  Black-Gaussian transverse profile, blue-flat top profile. 
 

We see that the hard aperture does not significantly change the filament plasma density or 

diameter, but the flat-top pulse collapses ~10 cm earlier than the Gaussian pulse. 

At the exit of the 3 meter focusing lens, the pump and probe pulses were 130 fs 

FWHM intensity, measured by the GRENOUILLE described in Section 2.3.  The pulses 

typically begin to filament 2.5 to 3 meters after passing through the 3 m lens.  The plasma 

filaments are ~1 m long.  The length of the plasma filament was not measured in this 

experiment, and the fluorescence of the filament was only visible to the naked eye for 

~20 cm.  However, the experiment which will be described in the following chapter 

confirms the length of the plasma for the parameters in this chapter. 

Once the filaments end, the pump and probe pulses defocus for 1.5 meters and 

enter a single-lens beam mode imaging system.  The first optics in the imaging system 

are two glass wedges which attenuate the pump and probe pulses.  After reflecting off 
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both wedges, the light passes through a 30 cm focal length lens that images the 

filamenting pulse onto a digital camera.  Just before the camera are a few neutral density 

(ND) filters to further attenuate the light, and a broadband polarizing cube beamsplitter to 

split off the vertically polarized pump pulse and allow only the probe filament to be 

imaged on the camera.  The camera is positioned 39.5 cm after the imaging lens, so that 

the object plane is 1.25 m before the lens.  The probe pulse is therefore imaged roughly 

1.5 meters after it has stopped filamenting, with a magnification factor M=0.32.  In order 

to measure the probe pulse spectrum, the digital camera is replaced with an Oceanoptics 

USB4000 fiber spectrometer with wavelength range ~700-900 nm. 

 In a typical run of the experiment, the pump and probe pulses will be carefully 

aligned across the room through pre-set apertures.  Then, the probe beam delay line is set 

so that the pump/probe delay τ is in the region of initial molecular alignment (𝜏 ≈ 0) or 

near the full quantum rotational revival of N2 (𝜏 ≈ 8.3 ps).  The stepper motor then scans 

the probe in small steps—typically 5 microns per step—for an effective time delay step 

size of 33 fs.  At each delay step, thirty CCD images of the probe filament are taken, as 

well as 100 consecutive spectra.  Later, the images and the spectra are averaged. 

 

4.4 Results and Discussion 

 

4.4.1 Probe filament enhancement and destruction near 𝜏 ≈ 0 

 We saw the large effect of molecular alignment on the probe pulse both at 

pump/probe delay near 𝜏 ≈ 0 and 𝜏 ≈ 8.3 ps.  First, we show the probe filament profile 

near 𝜏 ≈ 0, in Figure 4.5. 
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Figure 4.5: 1-D slices of the probe filament image v. pump/probe delay near 𝜏 ≈ 0. 
 

Rather than show each 2-D image of the probe pulse for every pump/probe delay we 

used, we display the data by taking a 1-D line-out of the center of the probe pulse image 

and plotting it versus delay.  The line-out is the average of a 10-pixel strip in the center of 

the 2-D image.  The colormap is linear.  2-D images of the probe filament at certain 

delays are shown as insets in the plot.  This format for displaying the delay-varying probe 

filament profile will be repeated for the duration of this chapter. 

 In Figure 4.5, the pump filament is 1.4 mJ (1.1 Pcr, using Pcr = 10 GW) and the 

probe filament is 2 mJ (1.5 Pcr).  Both are 130 fs.  Well before 𝜏 = 0, the probe image 

shows a bright spot in the center of the beam, indicating a strong filament.  As the delay 

nears 𝜏 = 0, the probe filament intensity rises and then very noticeably at 𝜏~50fs, the 

bright center of the filament is abruptly destroyed and smeared over the beam profile (this 

corresponds to the 2-D image in inset A). 
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The initial rise and subsequent drop in axial intensity is easily explained.  The rise 

in probe intensity near 𝜏 = 0 corresponds to an additional lensing effect from the Kerr 

effect of the pump pulse.  The Kerr effect always has a positive sign, though for a 

perpendicularly polarized probe, the effect has half the magnitude that it would for a 

probe pulse with parallel polarization.  The later destruction of the probe filament is a 

result of strongly aligned N2 and O2 in the wake of the pump pulse, at a pump/probe 

delay of ~100 fs.  Because the pump and probe are perpendicularly polarized, the aligned 

molecules left by the pump pulse will be seen as anti-aligned by the probe pulse.  In this 

case, the molecular effect will be a drop in the on-axis refractive index, and negative 

lensing of the probe pulse.  The negative lensing effect is so strong that it refracts the 

probe pulse and does not allow it to continue to filament. 

 But at even later pump/probe delays, the probe filament comes back (this 

corresponds to the 2-D image in inset B).  This means that the molecular alignment is 

large and short-lived—roughly 100 fs—and corresponds very closely with the transient 

response measured by SSSI and shown in Figure 4.1. 

 Figure 4.6 below shows the same experiment as above, repeated with more 

energetic pump and probe filaments, but with time duration 330fs.  The pump filament is 

5.85 mJ (3.7 Pcr) and the probe filament is 7.25 mJ (4.6 Pcr).  The pump/probe delay was 

adjusted in 85fs steps.  The effect on the probe filament is similar to that from the 130fs 

case, but the delay range over which the probe filament is destroyed is longer.  This is 

expected because the pump pulse is longer in duration. 
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Figure 4.6: 1-D slices of the probe filament image v. pump/probe delay near 𝜏 ≈ 0 for 
330 fs pump and probe pulses. 
 

4.4.2 Probe filament trapping, enhancement and destruction near 𝝉 ≈ 𝟖.𝟑 𝐩𝐬 

 In the next experiment, the pump/probe delay is scanned in 33 fs steps near 8.3 ps, 

near the summed alignment from the full N2 and ¾ O2 molecular revivals.  Here, we can 

decouple the effect of pump-aligned molecules from the instantaneous response.  Those 

responses overlap near 𝜏 = 0.  The pump and probe filaments are once again 130 fs in 

duration, and the pump/probe energies are 1.4 mJ/2.5 mJ (1.1 Pcr/1.9 Pcr).  Additionally, 

the pump and probe filaments are misaligned by ~0.1 mrad.  The resulting probe filament 

profile as a function of pump/probe delay is pictured in Figure 4.7. 
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Figure 4.7: 1-D slices of the probe filament image v. pump/probe delay near 𝜏 ≈ 8ps for 
130fs pump and probe pulses which are misaligned by 1 mrad.  Inset in the graph are the 
air alignment near the same delay, and 2-D images corresponding to selected delays.  The 
dashed gray line indicates the position of the pump filament. 
 

 In this figure, the dashed gray line indicates the position of the pump filament.  A 

plot of the air alignment in the same delay range is inset in the picture (the alignment is in 

the direction of pump polarization, so the alignment the probe witnesses will be of 

opposite sign).  Selected delays in the air alignment are labeled A through D on the inset 

plot, and 2-D images corresponding to those delays are also inset.  The most obvious 

feature in this plot is the enhancement and steering of the probe filament into the wake of 

the pump filament at delays in between 8.3 and 8.4 ps.  The delay at which this 

enhancement occurs is labeled A in Figure 4.7, and it is near the point at which the air 

molecules are maximally aligned.  In fact, the intervals over which the probe filament is 
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enhanced (A and B) or destroyed (C and D) map closely with the focusing and 

defocusing molecular alignment intervals.  At point A, aligned N2 gives a strong lensing 

effect.  At point B, the less strong lensing effect is from the ¾ revival of O2 alignment.  

O2 has a larger polarizability than N2, but one quarter the atmospheric concentration, so 

its contribution to the refractive index is smaller.  At point C, a filament extinction is due 

to perpendicularly-aligned N2 and O2, because the molecular alignment waveforms 

constructively add at this delay.  From the probe filament profile, it is clear that the 

lensing effect of the aligned molecules is so strong that it can drag the probe into or out of 

the wake of the pump, in addition to enhancing or decreasing the probe filament on-axis 

intensity. 

 The steering effect of the pump-aligned molecules is clear.  We now calculate 

how far away a probe filament must be from a region of pump-aligned N2 and still be 

trapped by their lensing effect.  Trapping will occur when 𝑘Δ𝑛𝐿 > ~1, where Δn is the 

off-axis refractive index perturbation due to molecular alignment, averaged over effective 

interaction length L~2 m, which is roughly the length of the pump filament.  These 

parameters give a minimum Δ𝑛 ~6 × 10−8 off-axis, which is approximately 0.2% of the 

peak on-axis Δn.  Since the FWHM diameter of a filament is typically 100μm, Δn of 

molecular alignment should fall to 0.2% of its maximum value at r~200μm (given a 

Gaussian intensity distribution).  In our experiment, the pump and probe filaments are 

skewed by ~0.1 mrad from the exit of the 3m focusing lens and 1cm hard aperture.  This 

means that at the collapse of the filaments (about 2.5 meters later), they would be 

spatially separated by ~250 μm.  This separation would give ample overlap between the 



75 
 

probe pulse and the pump-aligned molecules to cause steering of the probe filament into 

the wake of the pump. 

 This experiment was repeated while scanning the pump filament energy from 0.85 

mJ-4.65 mJ (0.7 Pcr-3.6 Pcr), while keeping the probe filament energy a constant 4.35mJ 

(3.4 Pcr) for all but the case in which the pump energy was highest (probe energy in this 

case was 3.05 mJ/2.4 Pcr).  The resulting probe filament profiles versus delay are shown 

in Figure 4.8. 
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Figure 4.8: 1-D probe filament profiles v. delay for constant probe filament energy and 
increasing pump filament energy near 𝜏 ≈ 8.3 ps. 
 

 The molecular effects of steering, enhancing, and destroying the probe filament 

are not as evident for the lowest pump energy.  Because the pump power is lower than 

Pcr, it is not filamenting, and only leaves a region of molecular alignment as long as its 
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Rayleigh range, ~10 cm.  Though the axial intensity is high enough to significantly align 

atmospheric molecules, the interaction length L is too low to significantly lens the probe 

filament.  At higher pump powers, the molecular effects of probe filament axial 

intensification and steering robustly increase, and then saturate after the pump power is 

increased past 2.3Pcr.  The persistence of molecular alignment in the face of strong pump 

filamentation is worth discussing. 

 In a strong pump filament, the axial plasma density will be high enough that 

plasma defocusing will compete with the focusing effects from the Kerr effect, molecular 

alignment, and any pre-filamentation focusing apparatus.  For our 130 fs pulses, the 

dominant focusing effects are from the 3 m focal length lens (f#lens ~ 300) and molecular 

alignment (f#mol ~ 200).  𝑓#𝑡𝑜𝑡
−1 = 𝑓#𝑙𝑒𝑛𝑠

−1 + 𝑓#𝑚𝑜𝑙
−1 , giving f#tot ~ 120.  For filament 

stabilization, there must be enough plasma-induced defocusing to counteract this, so: 

 
−𝑓#𝑝𝑙𝑎𝑠𝑚𝑎 =

1
2�

1
2Δ𝑛𝑝𝑙𝑎𝑠𝑚𝑎

~120. 
(4.9) 

Δ𝑛𝑝𝑙𝑎𝑠𝑚𝑎~𝑁𝑒
2𝑁cr� , where Ne is the plasma density and 𝑁cr = 1.7 × 1021cm−3, the 

critical plasma density for 800 nm wavelength light.  Using Equation 4.9, we estimate the 

axial plasma density to be 𝑁𝑒~1016cm−3.  This value is less than 0.001 the density of 

atmosphere at room temperature and atmospheric pressure, so only ~0.1% of atmospheric 

constituents need to be ionized for the plasma to arrest self-focusing, leaving the vast 

majority of molecules unionized.  In this way, plasma-induced defocusing clamps the 

maximum plasma density and axial optical intensity, resulting in the persistence of 

molecular alignment in the wake of a filament. 
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 We also repeated the experiment from Figure 4.7 with collinear (not misaligned) 

pump and probe filaments with pump energy 3.6 mJ(2.8 Pcr) and probe energy 4.6 mJ(3.6 

Pcr).  The 1-D profile of the probe beam versus delay is pictured in Figure 4.9. 

 

 

 

Figure 4.9: 1-D slices of the probe filament image v. pump/probe delay near 𝜏 ≈ 8ps for 
130 fs, collinear pump and probe pulses. 
 

The behavior of the halo of light that surrounds the high-intensity filament, often called 

the “reservoir” [7], is important to filamentary propagation.  Liu et al [84] placed a 300-

micron pinhole 2.75 meters after the beginning of a plasma filament.  They found that the 

plasma recombination radiation, which was 4.5 m in length without the pinhole, abruptly 

stopped a few centimeters after the pinhole when it was in place, even though the high 

intensity core of the filament was allowed to pass through.  Simulations [18] and 

experiments like the one above have shown that the high intensity light at the core of the 

filamenting pulse, which leaves the core due to defocusing and losses due to ionization, 

gets replenished (hence the name “reservoir”) by the surrounding light continually self-

focusing towards the center. 
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The results depicted in Figure 4.9 show that the brightening of the core of the 

probe filament at pump/probe delay corresponding to position A on the plot comes at the 

expense of the reservoir, whose intensity drops at the same delay.  Conversely, when the 

filament core is destroyed by anti-aligned N2 and O2 at position C, the light seems to have 

been expelled back into the reservoir, whose intensity rises at the same delay.  This result 

is particularly compelling, because it shows that by controlling the alignment of 

atmospheric N2 and O2, we are able to exercise control over the probe filament 

nonlinearity at its high-intensity core and also in the weaker parts of the beam. 

 

4.4.3 Measurement of spectral broadening 

 One characteristic of filamentation is broadening of the filamenting pulse 

spectrum and white light generation in the pulse propagation direction.  With our 

measurement of the spectral content of the probe filament as a function of pump/probe 

delay, we showed that when a probe filament is trapped in a quantum molecular wake, 

the white light in the filament is also enhanced. 

 The white light enhancement of a trapped filament is easy to see with the naked 

eye.  Figure 4.10 shows three pictures of the pump and probe filaments incident on an 

index card just before the filament imaging system.  We took the pictures with a Canon 

Powershot A4 digital camera.  The pump and probe filaments are 2.3 Pcr and 2.5 Pcr, 

respectively, and are again misaligned by ~0.1 mrad.  The figure shows pump and probe 

filaments at a pump/probe delay τ (i) not specific to any molecular revival, (ii) ~8.35 ps, 

where probe trapping due to focusing of aligned N2 occurs, and (iii) ~8.5 ps, where anti-

aligned N2 and O2 deflect the probe away from the pump. 



80 
 

 

 

 

Figure 4.10: digital camera image of pump and probe filaments incident on an index card 
at three different delays near 8.3 ps.  (i) at non-specific τ, where there is no alignment, (ii) 
is at τ~8.35 ps, where aligned N2 steers the probe filament into the pump path, and (iii) is 
at τ~8.5 ps, where anti-aligned N2 and O2 deflect the probe from the pump path. 
 

The CCD chip in the digital camera is sensitive to both visible and infrared radiation.  

When the probe filament encounters aligned molecules at the full revival of N2, it clearly 

gets dragged in to the pump filament wake and either is so intense on the index card, or 

creates so much white light, that it saturates many of the detector pixels.  This 

observatoin suggests higher probe filament intensity, a longer probe filament, or both. 

 We see an even more detailed dependence of the probe spectrum on pump/probe 

delay in our fiber spectrometer measurement of the probe filament.  This dependence is 

shown in Figure 4.11. 
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Figure 4.11: Probe filament spectrum as a function of delay (33 fs steps) through the air 
alignment revival near τ=8.3 ps. 
 

 Previous studies have documented the spectrum and phase of weak pulses that 

probe rotational wakes in gas cells [65, 67, 82, 85], but this is the first measurement of 

the spectrum of a high power filamenting pulse probing such wakes in the atmosphere.  

At delays long before or after the molecular wake near τ = 8.3 ps, the probe spectrum is 

very broad, corresponding to measurements made by many other groups. 

Major noticeable effects of molecular alignment are the general broadening of the 

probe spectrum when it encounters aligned N2 or O2 and the narrowing of the probe 

spectrum when it encounters anti-aligned molecules.  The narrowing of the spectrum (for 

example, at points labeled C and D on Figure 4.11) can be explained by the destruction of 

the filament due to the defocusing effect of the anti-aligned molecules.  If the filament is 

arrested, the light simply propagates at lower intensity and experiences fewer nonlinear 
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effects, such as broadening due to self-phase modulation from bound electrons, rotational 

effects, and plasma generation. 

The broadening of the probe spectrum near delays labeled A and B in Figure 4.11 

can be qualitatively described as follows.  At both points, the large blue wings of the 

spectrum can be attributed to molecular focusing leading to extra ionization.  Ionization 

induced self-phase modulation typically causes a blue-shifted spectrum— Δ𝜔𝑙𝑖𝑛 > 0—

since the emergence of plasma causes a temporal drop in the refractive index, retarding 

the phase (and accelerating the phase velocity) of later parts of the pulse.  The temporal 

structure of the quickly changing molecular alignment can also describe how some of the 

finer spectral features change versus pump/probe delay.  Because the changing molecular 

alignment generates a time-varying refractive index shift, it will impart time-varying 

phase modulation to the probe pulse in the form of linear and quadratic frequency shifts: 

Δ𝜔𝑙𝑖𝑛~ − 𝜕𝜑
𝜕𝑡

 and Δ𝜔𝑞𝑢𝑎𝑑~ − (𝑡 − 𝑡0) �𝜕
2𝜑
𝜕𝑡2

�
𝑡=𝑡0

, where t0 is a point at the peak of 

molecular alignment such as A or B.  At such delays, the probe pulse will experience 

both Δ𝜔𝑙𝑖𝑛 and Δ𝜔𝑞𝑢𝑎𝑑.  If the probe filament co-propagates with the molecular revival 

at a time delay during which the pulse duration is at inflection between peaks, it will 

experience either positive or negative Δ𝜔𝑙𝑖𝑛.  So when the probe filament is exactly at a 

time delay t0 like at positions A and B, it experiences 𝜕
2𝜑
𝜕𝑡2

> 0, which explains the blue-

shift for 𝑡 < 𝑡0 followed by the red-shift for 𝑡 > 𝑡0. 

 

4.5 Conclusions and future experiments 

 The experiments and analyses in this chapter clearly show that air molecules can 

be pre-aligned in order to affect the long-range propagation of a high intensity probe 
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filament.  The alignment wake can control the intensity of the probe filament, as well as 

steer its position and modulate its spectrum.  The molecular wake is robust enough to 

produce these effects at a wide range of pump and probe powers. 

 Although we have reason to believe that the focusing effect of pump-aligned N2 

and O2 in the atmosphere causes more intense and/or longer probe filamentation, it is 

worth noting that without a diagnostic of the actual plasma density in the probe filament, 

we cannot directly prove this point.  We also note that the time delays over which we see 

the highest probe filament intensity and greatest spectral broadening do not coincide, nor 

do they perfectly correspond to peak molecular alignment from the probe pulse as 

measured by SSSI.  In fact, the probe filament with the most enhanced axial intensity 

happened a few tens of femtoseconds later than the peak N2 alignment predicted by SSSI. 

One explanation for the discrepancy is that the strongly filamenting probe pulse 

re-aligns the pump-aligned N2 and O2.  This phenomenon is not described by our 

simulations or SSSI measurements, because those assume or involve a very weak, non-

perturbative probe pulse.  To get a real idea of the true alignment the probe filament sees, 

we must simulate molecular alignment driven by two intense optical pulses. 

Another factor we do not take into account with our analysis is that phase 

modulation and trapping due to aligned molecules will alter the temporal structure of the 

probe pulse in ways that may favor or discourage filamentation.  Simply monitoring the 

filament profile at one point and measuring its spectrum is not enough to test this idea.  

We would need to measure the full electric field envelope 𝐸(𝑡) of the probe pulse to 

draw further conclusions about the physical processes at work. 
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The next chapter will show the results of successful efforts to resolve the spectral 

phase and envelope of the filamenting probe pulse, and the plasma density of the probe 

filament. 
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Chapter 5: Coherently excited quantum wake-induced pulse shaping and extension 

of femtosecond air filaments 

 

5.1 Introduction 

In this chapter, it is shown that the molecular quantum wake can temporally and 

spatially shape a filamenting probe pulse while significantly extending the nonlinear 

propagation distance.  The wake does so by disrupting the usual balance between 

nonlinear focusing and plasma defocusing responsible for extended filament propagation. 

In a single pulse filament, the radially confined high intensity region (typically <100 µm 

in diameter) is not really akin to the intensity confinement in a glass or plasma optical 

fiber [86, 87], where there is no transverse energy exchange with zones outside the 

confinement region.  In a typical single-pulse filament, however, the high intensity region 

is quasi-stably sustained by simultaneous incoming and outgoing energy exchange with a 

wider co-propagating ‘reservoir’ whose transverse extent is roughly defined by the spatial 

envelope of the original beam [18]. We show here that by applying an intense probe pulse 

field coherently to the co-propagating rotational wake induced by the pump pulse, the 

wake is strongly shaped and enhanced so as to self-consistently support an enhanced 

filament, in which quantum molecular lensing dominates both Kerr focusing and plasma 

defocusing. Remarkably, the wake shaping and filament extension is sensitive to pump-

probe delay on a 10 fs timescale. 
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5.2 Interferometric optical plasma density measurement 

Our experiment measures both the detailed electron density profile produced in 

the probe pulse-enhanced filament and the envelope and phase of the probe pulse exiting 

the filament. The density profile measurement uses our recent interferometric scheme 

[14] and the probe pulse electric field is measured using self-referencing spectral 

interferometry (SPIDER, [57]). Figure 5.1 shows the experimental setup. 

 

 

 

Figure 5.1: Filamenting pulse diagnostic experiment.  The plasma density is measured by 
an optical interferometry setup on a sled (shaded gray region).  L indicates a lens and O is 
a microscope objective.  The filamenting probe pulse is selected by an aperture A and 
TFP before being sent into SPIDER.  Residual probe light is separated from the pump 
using a cube polarizer C and sent into a broadband fiber spectrometer. 
 

Orthogonally polarized, collinear pulses (pump and probe) are produced from the 

main pulse, with one arm delayed by a computer controlled stepper motor [10]. The 

pulses pass through a 3.1 m focal length lens, immediately followed by a 5.5 mm 

diameter aperture. The orthogonal polarization allows later separation of the probe pulse 

for SPIDER measurements. For the electron density diagnostic, a probe beam split from 

the main beam counterpropagates across the filament axis at 0.75° and enters a folded 

wavefront imaging interferometer mounted on a carriage with 2 m travel along the 

filament axis [14]. The small crossing angle enhances the sensitivity to the low electron 

density (typically <1017 cm-3) of filaments, with the price paid a reduced axial resolution 
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of ~ 5 mm, which is of little concern for our meter-scale filaments. Our technique allows 

measurement of plasma density as low as ~5x1014 cm−3, with a transverse resolution of 5 

µm. Radial density profiles, averaged from ~100 shots, were measured every 1 cm along 

the filament, and were extracted with standard techniques [58]. For all measurements, the 

pump energy and pulsewidth were εpump =1.5 mJ and τ=80 fs, which easily formed 

extended single filaments as expected at ~2 Pcr, where the critical power for self-focusing 

is Pcr~10 GW at this pulsewidth [10]. The probe pulse energy εprobe was varied in the 

range 1.0-2.5 mJ with pulsewidth 90 fs. All parameters were measured after the lens. 

Single filament propagation with pump plus probe was verified by examination of 

electron density profiles as well as the white light spot in the filament far field. 

The effect of delaying the injection of a 1.85 mJ probe pulse into the filament 

formed by the pump is shown in the electron density measurements of Figures 5.2(a) and 

(b), showing the peak on-axis electron density at each position. 

 

 

 

Figure 5.2(a): Peak on-axis electron density of the plasma filament for pump/probe 
delays from 8.326 ps-8.379 ps.  Plasma density of pump and probe filaments alone are 
shown with dashed lines. 
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Figure 5.2(b): Peak on-axis electron density of the plasma filament for pump/probe 
delays from 8.379 ps-8.419 ps.  Plasma density of pump and probe filaments alone are 
shown with dashed lines. 
 

The range of delays chosen is near the full rotational revival of N2 (TN2= 8.3 ps) 

and the ¾ revival of O2 ( ¾ TO2=8.7ps), which have a sum effect on the air refractive 

index [10]. With the pump alone, filament formation and plasma generation occurs well 

before the vacuum focus (z=0 on the axial scale), with a peak density ~1.5x1016cm-3 and 

axial extent ~25 cm. The probe-alone filament, with similar shape, is displaced forward 

by ~10cm owing to the slightly lower peak power of the probe pulse. The general form of 

the pump plus probe filaments is a ~70% enhanced first peak, followed by a long electron 

density recurrence (peak ~0.5x1016 cm-3) with axial extent up to z = 40 cm.  The filament 

length is approximately tripled at the optimum probe delays of 8.37 to 8.38 ps. There are 

several notable aspects of this plot. First, the extended sections at each delay all begin at 

z~ −23 cm, where the first peak reaches a minimum. Second, the filament extension 

profile shows a remarkably fine sensitivity to probe delay on a ~10 fs timescale. After a 

delay of τ = 8.38 ps, the electron density in the extended part of the filament abruptly 
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drops to close to our threshold sensitivity level. Figure 5.3 shows the sequence of electron 

density profiles for delays τ=8.38 ps and greater where, except for τ=8.38 ps, there is no 

density enhancement above the pump or probe alone. 

The effect of probe energy near the onsets of the first peak (z = -54 cm) and the 

second peak (z=-9cm) are shown in Figures 5.3(a) and (b) below.  In these plots, it is 

evident that the plasma density is enhanced at pump/probe delays near τ=8.37.  However, 

in this energy scan experiment, since the density was not measured at more axial 

positions, it is not clear that whether the overall peak density increases with increasing 

probe pulse energy, or if it shifts to a different axial location. 

 

 

 

Figure 5.3(a): Peak on-axis electron density of the plasma filament v. pump/probe delay 
54 cm before vacuum focus for a range of probe pulse energies.  The pump plasma 
present in absence of the probe is indicated in red. 
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Figure 5.3(b): Peak on-axis electron density of the plasma filament v. pump/probe delay 
9cm before vacuum focus for a range of probe pulse energies.  The pump plasma present 
in absence of the probe is indicated in red. 
 

 

5.3 SPIDER measurement of probe electric field 

The effect on an intense probe pulse’s envelope and phase from propagation in 

the pump-induced molecular wake was measured by SPIDER. The goal was to extract 

this information from the central high intensity filament where the rotational wake is 

concentrated. The pump and probe were orthogonally polarized (see Fig. 1), allowing the 

probe to be filtered off by reflection from a broadband thin film polarizer. It was verified 

that the polarizer did not distort the pulse’s spectrum or phase by comparing probe-only 

filament SPIDER traces with those using reflection from a fused silica flat. The beam 

was passed through a 1.3 mm diameter aperture centered on the central supercontinuum 

spot 2 m after the end of the filament (taken as the location beyond which the electron 

density was below the measurement threshold). It then propagated another 3.28 m to the 
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nonlinear crystal in the SPIDER. It was found that extracted pulse envelope and phase 

converged for apertures with diameter d where 1.0<d<1.7 mm; above 2 mm, SPIDER 

results were aperture-dependent owing to beam nonuniformities and interference effects.  

For d <= 1.0 mm, not enough signal made it into the spectrometer to accurately resolve 

the interference pattern.  This is illustrated in Figure 5.4, where we display SPIDER 

interferograms (2-D spectra in the right hand column) and corresponding retrieved I(t) 

(left hand column) for a singly filamenting, 1.6 mJ pulse passing through circular 

apertures of increasing diameter (inset). 

 

 

 

Figure 5.4: Raw SPIDER interferograms (2D spectra in the right hand column) and 
corresponding retrieved I(t) (left hand column) for a singly filamenting, 1.6 mJ pulse 
passing through circular apertures of increasing diameter (inset). 
 

The probe field in the spectral domain, �𝐸�(𝜔)�𝑒𝑖𝜑(𝜔), was determined as follows. 

For each pump-probe time delay, 200 SPIDER spectral interferograms (200 laser shots) 

were taken. The spectral phase was extracted from each interferogram (see Section 2.4.1) 

and then averaged over the number of shots to yield 𝜑(𝜔), while the spectral amplitude 
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�𝐸�(𝜔)� was taken from an auxiliary spectrometer. The time dependent field �𝐸�(𝑡)�𝑒𝑖𝛷(𝑡) 

is simply the Fourier transform of �𝐸�(𝜔)�𝑒𝑖𝜑(𝜔). Note that 𝜑(𝜔) was corrected for the air 

group velocity dispersion of β = 22 fs2/m [16] experienced in propagation from the end of 

the filament to the SPIDER . The correction amounts to less than 10 rad in the spectral 

wings of the pulse. 

Figure 5.5 shows intensity vs. time plots, 𝐼(𝑡) ∝ �𝐸�(𝑡)�2, for a sequence of pump-

probe delays near 8 ps. Here, the probe energy is 2.5 mJ. 

 

 

 

Figure 5.5: First column: measured 𝐼(𝑡) and 𝛷(𝑡) for a 2.5 mJ probe pulse for selected 
pump/probe delays.  Second column: corresponding 𝐼(𝜆)and 𝜑(𝜆), with the pre-
filamentation spectrum in dashed red lines.  Third column: corresponding Wigner plots, 
with the pre-filamentation Wigner plot inset at the top right. 
 

Note that the probe alone pulse breaks up into multiple spikes, as is consistent 

with both filamentary self-focusing of different time slices in the pulse [18] and 

interference of spectral components nonlinearly generated from self-phase modulation. 
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With the pump on, and the probe delayed by 8.146 ps (about ~150 fs before the onset of 

the revival), the pulse is qualitatively similar, showing multiple spikes, but then as delay 

increases, the pulse ‘cleans up’, developing a dominant leading spike followed by a much 

smaller wing as seen by 8.373 ps. The time-dependent phase Φ(t) is superimposed as a 

dashed line. Figures 5.6(a-c) show the evolution of I(t), I(ω) and the Wigner diagram at 

finer intervals, all corresponding to delays within the air revival. 

 

 

 

Figure 5.6(a): Measured 𝐼(𝑡) and 𝛷(𝑡) for a 2.5 mJ probe pulse finely spaced 
pump/probe delays within the air revival between 8.306 ps and 8.426 ps. 
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Figure 5.6(b): Measured 𝐼(𝜆) and 𝜑(𝜆) for a 2.5 mJ probe pulse finely spaced 
pump/probe delays within the air revival between 8.306 ps and 8.426 ps. 
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Figure 5.6(c): Measured Wigner diagrams for a 2.5 mJ probe pulse finely spaced 
pump/probe delays within the air revival between 8.306 ps and 8.426 ps. 
 

Note that I(t) for 8.359 ps < τ < 8.399 ps, a 40fs interval, shows an especially 

dominant spike, with reduced temporal wings.  Beyond this interval, the pulse begins to 

break up again and in fact, the extended filament disappears. Figure 5.5 additionally 

shows the spectral amplitudes and phases corresponding to displayed I(t), where the 

spectra corresponding to the above interval are more compact and less modulated. Figure 

5.5 also shows Wigner plots of the extracted fields, a useful representation explicitly 

displaying any chirps present [88]. These plots, in the right column, also show an 
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interesting trend. The probe alone and τ = 8.146 ps cases show significant modulations in 

both the frequency and time directions, consistent with the pulse splitting and 

interference mentioned earlier. As the interval 8.359 ps < τ < 8.399 ps is approached, as 

seen in Fig. 5.6(c), the Wigner traces become smoothly arching, with a strong red to blue 

shift from the front to the back of the pulse. Beyond this interval, the Wigner plots again 

develop modulations in time and frequency.  Two other probe energies were used, 1.0 mJ 

and 1.6 mJ, with similar results (see Figs. 5.7, 5.8, and 5.9(a-c)), where it is seen that the 

pulse cleaning and narrowing effect is stronger with higher probe energy. 

 

 

 

Figure 5.7: First column: measured 𝐼(𝑡) and 𝛷(𝑡) for a 1.0 mJ probe pulse for selected 
pump/probe delays.  Second column: corresponding 𝐼(𝜆)and 𝜑(𝜆), with the pre-
filamentation spectrum in dashed red lines.  Third column: corresponding Wigner plots, 
with the pre-filamentation Wigner plot inset at the top right. 
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Figure 5.8: First column: measured 𝐼(𝑡) and 𝛷(𝑡) for a 1.6 mJ probe pulse for selected 
pump/probe delays.  Second column: corresponding 𝐼(𝜆)and 𝜑(𝜆), with the pre-
filamentation spectrum in dashed red lines.  Third column: corresponding Wigner plots, 
with the pre-filamentation Wigner plot inset at the top right. 
 
 

 

 

Figure 5.9(a): Measured 𝐼(𝑡) and 𝛷(𝑡) for a 1.6 mJ probe pulse finely spaced 
pump/probe delays within the air revival between 8.306 ps and 8.426 ps. 
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Figure 5.9(b): Measured 𝐼(𝜆) and 𝜑(𝜆) for a 1.6 mJ probe pulse finely spaced 
pump/probe delays within the air revival between 8.306 ps and 8.426 ps. 
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Figure 5.9(c): Measured Wigner diagrams for a 1.6 mJ probe pulse finely spaced 
pump/probe delays within the air revival between 8.306 ps and 8.426 ps. 
 

5.4 Discussion and analysis 

Reexamination of the pump-probe delays corresponding to the axially extended 

filaments of Fig. 5.2 reveals they are highly correlated with the unusual trend in pulse 

evolution shown in Figs. 5.5-5.9. That is, the interval 8.359 ps < τ < 8.399 ps over which 

the pulse shortens and suppresses its wings corresponds to the delay range of significant 

lengthening of the filament axial profile. As seen on Fig. 5.2, these profile changes are 

sensitive, remarkably, to ~10 fs changes in pump-probe delay 
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The explanation for this sensitivity of pump-probe delay to pulse shaping and 

filament enhancement lies in the coherent two-pulse excitation of molecular wavepackets 

in air.  The coherent interaction is modeled using a non-perturbative density matrix code 

[to be published].  For high intensities, this is an improvement over the perturbative 

model presented in Chapter 3 and ref [67]. 

 

 

 

Figure 5.10: Air molecular alignment (proportional to ∆n) due to a pump pulse at t = 0 
and probe pulse at delay τ = 8.366 ps for several probe pulse energies.  The probe pulse 
envelope is shown with a dashed red line, and the alignment due to only the pump pulse 
is in green. 
 

Figure 5.10 shows the result on the ∆n (proportional to effective air molecular 

alignment 〈cos2 𝜃〉-1/3) experienced by the probe (red curve) when it is at delay τ = 

8.366 ps (pump pulse peak intensity 5x1013 W/cm2, probe energy variable and shown on 

plot). The pulse envelopes are modeled as cosine-squared to ensure they go to zero at 

finite times. The pump alone curve is green and shows a leading positive ∆n followed by 

a negative excursion. As the probe intensity increases, it is seen that the negative 

excursion is reversed with the response forming a well followed by an increasingly large 

peak.  
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Figure 5.11(i) shows the air molecular alignment due to a sequence of two 

perpendicularly polarized pulses delayed by τ = 8.373 ps, each with peak intensity 5x1013 

W/cm2.  Figure 5.11(ii) shows air alignment due to two pulses synthesized from the sum 

of the individual response of one pulse at τ = 0 and the other perpendicularly polarized 

pulse at τ = 8.373 ps. 

 

 

 

Figure 5.11: (i-red) Air molecular alignment due to a sequence of two perpendicularly 
polarized pulses delayed by τ = 8.373 ps, each with peak intensity 5x1013 W/cm2.  (ii-
green) Air alignment due to two pulses synthesized from the sum of the individual 
response of one pulse at τ = 0 and the other perpendicularly polarized pulse at τ = 8.373 
ps. 
 
In the two-pulse plot, as opposed to the plot synthesized using the individual pulse 

responses, the dip in alignment near 8.3 ps is not as deep, and the following alignment 

peak is not as high.  There is a high level of DC molecular alignment evident in the 

summed plot that does not exist in the two-pulse plot.  These results are a direct 
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demonstration of the coherent interaction between the probe and the pump-prepared 

molecular ensemble. 

Figures 5.10 and 5.11 refer to rotations only, but in a filament, both the Kerr 

(instantaneous) response and plasma generation affect the refractive index. We can 

estimate the effect of these contributions as follows. From our work described in ref [14] 

we found that propagation simulations fit the measured electron density profiles best if 

the Kerr response was ~15% of the peak response owing to molecular alignment. Also, 

from Fig. 5.2, our measurement of the electron density gives bounds on a maximum 

index shift due to plasma generation. The transient responses for all three contributions 

are shown in Fig. 5.12, for τ = 8.366 ps, where we use the fact that the electronic Kerr 

effect follows the pulse envelope, and that plasma generation occurs by multiphoton 

ionization [7], following an I8 power law for oxygen ionization with 800 nm photons. It is 

immediately evident that the molecular response dominates, especially promoted by the 

coherent probe interaction.  

 

 

 

Figure 5.12: Rotational (green), Kerr (dashed red) and plasma (blue) contributions to ∆n 
in air due to a 1.5 mJ pump pulse at t=0 and 1.9 mJ probe pulse at delay τ = 8.366 ps for 
several probe pulse energies.   
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Figure 5.13 shows a sequence of total (rotation + Kerr + plasma) index shifts ∆n 

for variable pump-probe delay. 

 

 

 

Figure 5.13: Total ∆n in air due to a 1.5 mJ pump pulse at t=0 and 1.9 mJ probe pulse at a 
sequence of pump/probe delays (inset).  ∆n is synthesized from simulations of the 
contribution from rotational alignment, electronic Kerr effect, and plasma generation. 
 
Note in particular 8.346 ps < τ < 8.373 ps, a span of ~30 fs, where a temporal well with 

positive curvature exists in ∆n such that the well bottom is positive. Such a structure can 

temporally trap and clean/compress a pulse: the portion of the pulse in the early time 

(falling) part of the well blue shifts, but then falls back due to normal dispersion of the 

background air, while the rear portions red shift and move forward. The net result is 
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soliton-like propagation where self-phase modulation is balanced by the local well 

structure dispersion.  Preliminary 1-D calculations show that the negative GVD afforded 

by the temporal region of positive curvature of ∆n in the simulation in Figure 5.13 is of 

the correct sign but an order of magnitude larger than what is required to compensate for 

normal air dispersion of a pulse with bandwidth ∆𝜔~1015 rad
s

 —roughly our probe 

filament bandwidth. 

A similar compressive effect has been recently observed in plasma wave 

generation by ultrashort multi-terawatt pulses [89]; the laser pulse rides in the first bucket 

of the plasma wave, where the index is affected by both electron density and the 

relativistic electron mass.  The result is that the pulse rides in a refractive index well of 

positive curvature, with a blue shift temporally leading a red shift. 

In addition, such a temporal index structure has been previously proposed for 

pulse cleanup/compression of weak probe pulses injected into rotational revivals [82, 90], 

where the injection point was the negative region in the green curve of Fig. 5.12, where 

the curvature of ∆n is positive.  Finally, we note that in Fig. 5.13, for τ>8.373, the central 

part of the well dips below zero, making the well act as a negative lens.  This corresponds 

well to the abrupt disappearance in Fig. 5.2(b) of the extended filament for delays longer 

than ~8.39 ps: at those longer delays, the negative molecular lens assists the plasma in 

defocusing the probe.  

The correspondence of these heuristic simulations (note that no spatial 

dependence or propagation is considered), to the fine delay sensitivity in pulse envelope 

and phase shaping and in the filament extension, is not exact, but still compelling.  The 

slight deviations from predicted and measured filament may be attributed to the low 
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dimensionality and lack of self-consistency in the simulations and also the difficulty in 

measuring an exact pump/probe delay during an experiment (error is typically +/- 5 fs). 

That being said, the correspondence can be understood as follows.  First, for the 

full range 8.25 ps < τ < 8.38 ps, a substantial portion of the probe pulse time envelope 

experiences ∆n>0, and thus those portions are focused transversely and can help to 

extend the filament, albeit with a potentially spiky time evolution which tends to reduce 

the peak intensity available to generate filament plasma. Only when the τ is within the 

special 30 fs- (simulation) to 40 fs- (experiment) wide interval does the probe pulse 

reside within a ∆n well with positive curvature in time. And only in this interval does the 

pulse intensity rise up sufficiently to maintain the filament multiphoton ionization 

process. Hence the 10 fs delay sensitivity to both filament extent and peak electron 

density.  

Admittedly, this discussion is speculative and a self-consistent propagation 

simulation is needed to refine or revise the insight into the physical processes at work.  At 

the time of this writing, such a simulation is taking place using a modified version of the 

code employed in [14] and has been repeatedly delayed owing to numerical issues with 

the code. 

Another intriguing mechanism for the measured plasma density enhancement, 

besides molecular lensing and temporal compression, is a possible gain in probe energy 

from pump-and-probe-aligned molecules at the molecular revival.  The motivation for 

this idea comes from considering the 1D wave equation for the electric field in the slowly 

varying envelope approximation [14], neglecting dispersion, ∂𝐸
∂𝑧

= −4𝜋
𝑐
∂𝑃
∂Τ

, where z is the 

coordinate in the propagation direction and Τ = 𝑡 − 𝑧/𝑐 is a time coordinate local to the 
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pulse.  Here P is the medium polarization and can be written as 

𝑃(T) = 𝐸(T)∫ 𝑅(𝑠)|𝐸(𝑠)|2𝑑𝑠 = χ𝐸T
−∞ , where E is the electric field, R is a response 

function, and χ is an effective susceptibility.  The propagation equation can be 

manipulated to give ∂|𝐸|2

∂𝑧
= −4𝜋

𝑐
∂χ|𝐸|2

∂Τ
, whereupon ∫ ∂|𝐸|2

∂𝑧
𝑑𝑧 is proportional to an energy 

loss/gain. So the loss/gain should be non-negligible when the pump probe delay coincides 

with a rotational revival, since in those regions ∂χ
∂Τ

 is non-negligible, as seen from our 

prior data and simulations. 

To measure probe energy gain/loss in our experiment, we split the probe pulse 

from the pump pulse 2 meters after filamentation and measured the entire probe beam 

incident on an optical power meter, as we scanned the pump/probe delay over 8.18 ps< τ 

< 8.49 ps.  In absence of a pump filament, the probe filament measured 1.5 mJ at the 

power meter, which had a 12 mm input diameter.  There was no pump/probe delay over 

the interval that resulted in an increase in probe energy, but there were several delays 

near τ < 8.43 ps in which a ~30% energy loss was recorded.  Refraction of the probe due 

to anti-aligned pump molecules did not explain the loss, because when the input aperture 

of the power meter was closed to 11 mm or 10 mm, the total energy was unchanged. The 

results of the measurement are shown in Figure 5.14. 
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Figure 5.14: Energy in the probe pulse after filamentation as a function of pump/probe 
delay.  Black line—total probe energy, pink line—probe energy inside 1mm core, red 
line—probe energy outside 1mm core.  Dashed lines indicate probe energy in absence of 
the pump pulse. 
 
 The above experiment was also performed with the input aperture of the power 

meter set to 1.0 mm, in order to measure the fraction of energy inside and outside the 

core of the filament.  The fraction of energy in the core increases slightly over 8.27ps < τ 

< 8.38ps, but at the expense of light in the reservoir. 

 Although we did not measure probe energy gain, the dramatic loss in energy at 

pump/probe delays 8.4 ps < τ < 8.5ps lends credence to the idea that gain/loss of probe 

energy due to coherent molecular rotational excitation may play a role in extension and 

enhancement of the probe filament plasma density. 

 

5.5 Conclusion 

 The experiments and discussion in this chapter show that because molecular 

alignment of N2 and O2 in air is the dominant self-focusing nonlinearity in atmospheric 

filamentation of ultrashort pulses >40 fs in duration, manipulating the nonlinearity using 

an ultrashort filamenting pump pulse results in enhanced axial plasma density and length 



108 
 

left by a probe filamenting pulse.  Our results also strongly suggest that the fast molecular 

alignment transient, at certain pump/probe delays, causes temporal compression of the 

probe pulse.  The combined processes of spatial and temporal confinement due to the 

rotational alignment transient result in filament density enhancement and extension. 

 Filamentation of ultrashort pulses in atmosphere is a remarkable effect 

with a wide variety of applications.  The experiments and analysis presented in this 

dissertation significantly contribute to our knowledge of the physical processes at work 

during filamentation, and will hopefully lead to future breakthroughs in the understanding 

and application of the phenomenon. 

 



109 
 

References 

[1] R. W. Boyd, Nonlinear Optics, Second Edition (Academic Press, 2003). 

[2] P. Lallemand and N. Bloembergen, Self-Focusing of Laser Beams and Stimulated 
Raman Gain in Liquids, Physical Review Letters 15, 1010 (1965). 

[3] R. R. Alfano and S. L. Shapiro, Observation of Self-phase Modulation and Small-
scale Filaments in Crystals and Glasses, Physical Review Letters 24, 592 (1970). 

[4] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, 
Optics Communications 56, 219 (1985). 

[5] D. E. Spence, P. N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-
mode-locked Ti:sapphire laser, Optics L 16, 42 (1991). 

[6] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self-channeling of 
high-peak-power femtosecond laser pulses in air, Optics Letters 20, 73 (1995). 

[7] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent 
media, Physics Reports 441, 47 (2007). 

[8] G. Fibich and A. L. Gaeta, Critical power for self-focusing in bulk media and in 
hollow waveguides, Optics Letters 25, 335 (2000). 

[9] Y. Shimoji, A. T. Fay, R. S. F. Chang, and N. Djeu, Direct measurement of the 
nonlinear refractive index of air, Journal of the Optical Society of America B 6, 1994 
(1989). 

[10] S. Varma, Y.-H. Chen, and H. M. Milchberg, Trapping and Destruction of Long-
Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air, Physical 
Review Letters 101, 205001 (2008). 

[11] J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley & Sons, 
2003). 

[12] L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Soviet 
Physics JETP 20, 1307 (1965). 

[13] A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, and A. Mysyrowicz, 
Infrared femtosecond light filaments in air: simulations and experiments, Journal of the 
Optical Society of America B 19, 1117 (2002). 

[14] Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, Direct 
Measurement of the Electron Density of Extended Femtosecond Laser Pulse-Induced 
Filaments, Physical Review Letters 105, 215005 (2010). 

[15] S. Eisenmann, A. Pukhov, and A. Zigler, Fine Structure of a Laser-Plasma 
Filament in Air, Physical Review Letters 98, 155002 (2007). 



110 
 

[16] P. Sprangle, J. R. Penano, and B. Hafizi, Propagation of intense short laser pulses 
in the atmosphere, Physical Review E 66, 046418 (2002). 

[17] A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, and P. Sprangle, Direct 
characterization of self-guided femtosecond laser filaments in air, Applied Optics 44, 
1474 (2005). 

[18] M. Mlejnek, E. M. Wright, and J. V. Moloney, Dynamic spatial replenishment of 
femtosecond pulses propagating in air, Optics Letters 23, 382 (1998). 

[19] A. J. Campillo, S. L. Shapiro, and B. R. Suydam, Relationship of self-focusing to 
spatial instability modes, Applied Physics Letters 24, 178 (1974). 

[20] G. Fibich, S. Eisenmann, B. Ilan, Y. Erlich, M. Fraenkel, Z. Henis, A. Gaeta, and 
A. Zigler, Self-focusing distance of very high power laser pulses, Optics Express 13, 
5897 (2005). 

[21] M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, 
A. Scholz, B. dStecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Woste, and 
J.-P. Wolf, Kilometer-range nonlinear propagation of femtosecond laser pulses, Physical 
Review E 69, 036607 (2004). 

[22] G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, Control of multiple filamentation 
in air, Optics Letters 29, 1772 (2004). 

[23] G. Mechain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, Organizing 
Multiple Femtosecond Filaments in Air, Physical Review Letters 93, 035003 (2004). 

[24] T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark, and S. R. Leone, Circular 
phase mask for control and stabilization of single optical filaments, Optics Letters 31, 
2326 (2006). 

[25] R. Nuter, S. Skupin, and L. Berge, Chirp-induced dynamics of femtosecond 
filaments in air, Optics Letters 30, 917 (2005). 

[26] G. Mechain, C. D’Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, 
A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Range of plasma filaments 
created in air by a multi-terawatt femtosecond laser, Optics Communications 247, 171 
(2005). 

[27] P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, 
B. Stein, D. Waite, C. Wedekind, H. Wille, L. Woste, and C. Ziener, Remote sensing of 
the atmosphere using ultrashort laser pulses, Applied Physics B 71, 573 (2000). 

[28] J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, 
S. Frey, Y.-B. Andre, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, White-
Light Filaments for Atmospheric Analysis, Science 301, 61 (2003). 

[29] H. L. Xu, W. Liu, and S. L. Chin, Remote time-resolved filament-induced 
breakdown spectroscopy of biological materials, Optic 31, 1540 (2006). 



111 
 

[30] S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, Femtosecond laser-
guided electric discharge in air, Physical Review E 64, 057401 (2001). 

[31] M. Rodriguez, R. Sauerbrey, H. Wille, L. Woste, T. Fujii, Y.-B. Andre, 
A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. salmon, J. Yu, 
and J.-P. Wolf, Triggering and guiding megavolt discharges by use of laser-induced 
ionized filaments, Optics Letters 27, 772 (2002). 

[32] J. Kasparian, Lightning control by lasers, Nature Photonics 3, 120 (2009). 

[33] C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, 
A. Mysyrowicz, J. Biegert, and U. Keller, Generation of intense, carrier-envelope phase-
locked few-cycle laser pulses through filamentation, Applied Physics B 79, 673 (2004). 

[34] G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Self-compression of millijoule 
pulses to 7.8 fs duration in a white-light filament, Optics Letters 31, 274 (2006). 

[35] H. R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger, and 
P. Agostini, High-Order Harmonic Generation and Quasiphase Matching in Xenon Using 
Self-Guided Femtosecond Pulses, Physical Review Letters 81, 1611 (1998). 

[36] Y. Tamaki, J. Itatani, Y. Nagata, M. Obara, and K. Midorikawa, Highly Efficient, 
Phase-Matched High-Harmonic Generation by a Self-Guided Laser Beam, Physical 
Review Letters 82, 1422 (1999). 

[37] Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, 
Detection and identification of explosives using terahertz pulsed spectroscopic imaging, 
Applied Physics Letters 86, 241116 (2005). 

[38] R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, Chemical recognition of gases 
and gas mixtures with terahertz waves, Optics Letters 21, 2011 (1996). 

[39] K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Terahertz emission 
from ultrafast ionizing air in symmetry-broken laser fields, Optics Express 15, 4577 
(2007). 

[40] K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Coherent control of 
terahertz supercontinuum generation in ultrafast laser-gas interactions, Nature Photonics 
2, 605 (2008). 

[41] S. Tzortzakis, G. Mechain, G. Patalano, Y.-B. Andre, B. Prade, M. Franco, 
A. Mysyrowicz, J.-M. Munier, M. gheudin, G. Beaudin, and P. Encrenaz, Coherent 
subterahertz radiation from femtosecond infrared filaments in air, Optics Letters 27, 1944 
(2002). 

[42] C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and 
V. T. Tikhonchuk, Conical Forward THz Emission from Femtosecond-Laser_Beam 
Filamentation in Air, Physical Review Letters 98, 235002 (2007). 



112 
 

[43] A. Houard, Y. Liu, A. Mysyrowicz, and B. Leriche, Calorimetric detection of the 
conical terahertz radiation from femtosecond laser filaments in air, Applied Physics 
Letters 91, 241105 (2007). 

[44] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing waveguides in glass 
with a femtosecond laser, Optics Letters 21, 1729 (1996). 

[45] K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, Photowritten optical waveguides in 
various glasses with ultrashort pulse laser, Applied Physics Letters 71, 3329 (1997). 

[46] C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Micromachining bulk glas 
by use of femtosecond laser pulses with nanojoule energy, Optics Letters 26, 93 (2001). 

[47] N. F. Borrelli, C. Smith, D. C. Allan, and T. P. S. III, Densification of fused silica 
under 193-nm excitation, Journal of the Optical Society of America B 14, 1606 (1997). 

[48] A. Vogel, S. Busch, and U. Parlitz, Schock wave emission and cavitation bubble 
generation by picosecond and nanosecond optical breakdown in water, Journal of the 
Acoustical Society of America 100, 148 (1996). 

[49] M. K. Hornstein, T. G. Jones, and A. C. Ting, Optical Bandwidth and Focusing 
Dynamics Effects on an Underwater Laser Acoustic Source, in OSA/CLEO/IQEC (2009). 

[50] Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, 
Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm 
using single-shot supercontinuum spectral interferometry, Applied Physics Letters 94, 
211102 (2009). 

[51] T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, Time-resolved 
observations of shock waves and cavitation bubbles generated by femtosecond laser 
pulses in corneal tissue and water, Lasers in Surgery and Medicine 19, 23 (1998). 

[52] A. Vogel and V. Venugopalan, Mechanisms of Pulsed Laser Ablation of 
Biological Tissues, Chemical Review 103, 577 (2003). 

[53] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear 
Optical Crystals (Springer, 1997). 

[54] J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, 
Techniques, and Applications on a Femtosecond Time Scale (Academic Press, 2006). 

[55] D. J. Cane and R. Trebino, Single-shot measurement of the intensity and phase of 
an arbitrary ultrashort pulse by using frequency-resolved optical gating, Optics Letters 
18, 823 (1993). 

[56] P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, Highly simplified device for 
ultrashort-pulse measurement, Optics Letters 26, 932 (2001). 

[57] C. Iaconis and I. A. Walmsley, Spectral phase interferometry for direct electric-
field reconstruction of ultrashort optical pulses, Optics Letters 23, 792 (1998). 



113 
 

[58] M. Takeda, H. Ina, and S. Kobayashi, Fourier-transform method of fringe-pattern 
analysis for computer-based topography and interferometry, Journal of the Optical 
Society of America 72, 156 (1982). 

[59] T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. 
Walmsley, Real-time SPIDER: ultrashort pulse characterization at 20Hz, Optics Express 
5, 134 (1999). 

[60] J. H. Odhner, D. A. Romanov, and R. J. Levis, Rovibrational Wave-Packet 
Dispersion during Femtosecond Laser Filamentation in Air, Physical Review Letters 103, 
075005 (2009). 

[61] J. P. Heritage, T. K. Gustafson, and C. H. Lin, Observation of Coherent Transient 
Birefringence in CS2 Vapor, Physical Review Letters 34, 1299 (1975). 

[62] C. H. Lin, J. P. Heritage, T. K. Gustafson, R. Y. Chiao, and J. P. McTague, 
Birefringence arising from the reorientation of the polarizability anisotropy of molecules 
in collisionless gases, Physical Review A 13, 813 (1976). 

[63] P. M. Felker, Rotational Coherence Spectroscopy: Studies of the Geometries of 
Large Gas-Phase Species by Picosecond Time-Domain Methods, Journal of Physical 
Chemistry 96, 7844 (1992). 

[64] G. V. Hartland, L. L. Connell, and P. M. Felker, Theory of rotational coherence 
spectroscopy as implemented by picosecond fluorescence depletion schemes, Journal of 
Chemical Physics 94, 7649 (1991). 

[65] J.-F. Ripoche, G. Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and 
A. Mysyrowicz, Determination of the time dependence of n_2 in air, Optics 
Communications 135, 310 (1997). 

[66] E. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, 
Determination of the intertial contributoin to the nonlinear refractive index of air, N_2, 
and O_2 by use of unfocused high-intensity femtosecond laser pulses, Journal of the 
Optical Society of America B 14, 650 (1997). 

[67] Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, Single-shot, space- and 
time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and 
N2O, Optics Express 15, 11341 (2007). 

[68] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (John Wiley & 
Sons, Inc., 1997). 

[69] F. Rosca-Pruna and M. J. J. Vrakking, Experimental Observation of Revival 
Structures in Picosecond Laser-Induced Alignment of I2, Physical Review Letters 87, 
153902 (2001). 

[70] P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. 
Villeneuve, and P. B. Corkum, Direct imaging of rotational wave-packet dynamics of 
diatomic molecules, Physical Review A 68, 023406 (2003). 



114 
 

[71] K. Y. Kim, I. Alexeev, and H. M. Milchberg, Single-shot supercontinuum spectral 
interferometry, Applied Physics Letters 81, 4124 (2002). 

[72] F. Reynaud, F. Salin, and A. Barthelemy, Measurement of phase shifts introduced 
by nonlinear optical phenomena on subpicosecond pulses, Optics Letters 14, 275 (1989). 

[73] E. Tokunaga, A. Terasaki, and T. Kobayashi, Frequency-domain interferometer 
for femtosecond time-resolved phase spectroscopy, Optics Letters 17, 1131 (1992). 

[74] E. Tokunaga, A. Terasaki, and T. Kobayashi, Induced phase modulation of 
chirped continuum pulses studied with a femtosecond frequency-domain interferometer, 
Optics Letters 18, 370 (1993). 

[75] S. P. LeBlanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, 
Single-shot measurement of temporal phase shifts by frequency-domain holography, 
Optics Letters 25, 764 (2000). 

[76] K. Y. Kim, I. Alexeev, and H. M. Milchberg, Single-shot measurement of laser-
induced double step ionization of helium, Optics Express 10, 1563 (2002). 

[77] K. Y. Kim, I. Alexeev, V. Kumarappan, E. Parra, T. Antonsen, T. Taguchi, 
A. Gupta, and H. M. Milchberg, Gases of exploding laser-heated cluster nanoplasmas as 
a nonlinear optical medium, Physics of Plasmas 11, 2882 (2004). 

[78] Y.-H. Chen, S. Varma, I. Alexeev, and H. M. Milchberg, Measurement of 
transient nonlinear refractive index in gases using xenon supercontinuum single-shot 
spectral interferometry, Optics Express 15, 7458 (2007). 

[79] I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villenueve, and 
P. B. Corkum, Alignment-Dependent Strong Field Ionization of Molecules, Physical 
Review Letters 90, 233003 (2003). 

[80] D. M. Pennington, M. A. Henesian, and R. W. Hellwarth, Nonlinear index of air 
at 1.053um, Physical Review A 39, 3003 (1989). 

[81] W. Liu and S. L. Chin, Direct measurement of the critical power of femtosecond 
Ti:sapphire laser pulse in air, Optics Express 13, 5750 (2005). 

[82] R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. 
Murnane, and H. C. Kapteyn, Phase Modulation of Ultrashort Light Pulses using 
Molecular Rotational Wave Packets, Physical Review Letters 88, 013903 (2002). 

[83] P. Mora and J. Thomas M. Antonsen, Kinetic modeling of intense, short laser 
pulses propagating in tenuous plasmas, Physics of Plasmas 4, 217 (1997). 

[84] W. Liu, J.-F. Gravel, F. Theberge, A. Becker, and S. L. Chin, Background 
reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air, 
Applied Physics B 80, 857 (2005). 



115 
 

[85] F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. D. 
Silvestri, and S. Stagira, Rotational Raman Effects in the Wake of Optical Filamentation, 
Physical Review Letters 100, 123006 (2008). 

[86] G. P. Agrawal, Fiber-optic Communication Systems, Third Edition (John Wiley & 
Sons, 2002). 

[87] C. G. D. III, J. Lynch, and H. M. Milchberg, Development of a plasma waveguide 
for high-intensity laser pulses, Physical Review E 51, 2368 (1995). 

[88] J. Paye, The Chronocyclic Representation of Ultrashort Light Pulses, IEEE 
Journal of Quantum Electronics 28, 2262 (1992). 

[89] J. Schreiber, C. Bellei, S. P. D. Mangles, C. Kamperidis, S. Kneip, S. R. Nagel, 
C. A. J. Palmer, P. P. Rajeev, M. J. V. Streeter, and Z. Najmudin, Complete Temporal 
Characterization of Asymmetric Pulse Compression in a Laser Wakefield, Physical 
Review Letters 105, 235003 (2010). 

[90] V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, Generation of Single 
Dispersion Precompensated 1-fs Pulses by Shaped-Pulse Optimmized High-order 
Stimulated Raman Scattering, Physical Review Letters 88, 103901 (2002). 

 


