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Multiscale (or multiresolution) analysis is used to represent signals or functions

at increasingly high resolution. In this thesis, we develop multiresolution representa-

tions based on frames, which are overcomplete sets of vectors or functions that span

an inner product space.

First, we explore composite frames, which generalize certain representations

capable of capturing directionality in data. We show that we can obtain composite

frames for L2(Rn) given two main ingredients: 1) dilation operators based on matrices

from admissible subgroups GA and G, and 2) a generating function that is refinable

with respect to GA and G.

We also construct frame multiresolution analyses (MRA) for L2-functions of

spaces of homogeneous type. In this instance, dilations are represented by operators

that come from the discretization of a compact symmetric diffusion semigroup. The

eigenvectors shared by elements of the compact symmetric diffusion semigroup can

be used to define an orthonormal MRA for L2. We introduce several frame systems



that generate an equivalent MRA, notably composite diffusion frames, which are built

with the composition of two “similar” compact symmetric diffusion semigroups.

The last part of this thesis is an application of Laplacian Eigenmaps (LE) to

a biomedical problem: Age-Related Macular Degeneration. LE, a tool in the family

of diffusion methods, uses similarities at local scales to provide global analysis of

data sets. We propose a novel approach with two steps. First, we apply LE to

retinal images, provided by the National Institute of Health, for feature enhancement

and dimensionality reduction. Then, using an original Vectorized Matched Filtering

technique, we detect retinal anomalies in eigenimages produced by the LE algorithm.
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Chapter 1

Introduction

1.1 Background

The availability of high dimensional data has soared in the past twenty years. In all

areas of science, mathematics and even in popular culture, the ubiquity of expressions

such as “big data” or, more dramatically, “data deluge”, demonstrates the scientific

appeal of this phenomenon. Our interest in constructing efficient, sparse, represen-

tation systems for such large data is driven both by pure mathematical pursuit and

the reality of technology today. Indeed, although the sustained increase of compu-

tational power facilitates the acquisition of immense amounts of data, most of that

data could be meaningless without the proper analysis. Therefore, the goal in many

areas of mathematical sciences is to find techniques to represent data efficiently for

clustering, prediction, visualization, etc. In designing these techniques, one or more

of the following properties can often be exploited:

• Intrinsic low-dimensionality. The data is embedded in high dimensional space,

but it actually lies on a significantly lower dimensional space due to physical or

statistical constraints.

• Varying behavior at different scales. An example of this could be a physical

process that obeys different laws at different scales. In this case, Multiscale (or
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Multiresolution) Analysis, i.e., data representation at each scale, can reveal and

efficiently capture changing behaviors of the systems at different scales.

In this thesis, the systems that we study, Composite Frames (or Frame GAG-Multires-

olution Analysis), Diffusion (Wavelet) Frames and Composite Diffusion Frames, give

an efficient multiresolution representation for data possessing one or both of the prop-

erties above. In Chapter 2 and 3, we lay out some theoretical foundations for these

methods. In Chapter 4, we present the application of Laplacian Eigenmaps (LE), a

member of the family of diffusion methods, in combination with a matched filtering-

based algorithm, Vectorized Matched-Filtering (VMF), in a retinal imaging problem.

Although dealing with large data sets is a concern typical to our era, the search

of efficient representation systems is a problem as old as age. From its origin with

Fourier Analysis ([49]) to Wavelet analysis ([28, 31]) and its successors, Harmonic

Analysis has engendered many successful methods that respond to the challenge of

efficient representation by decomposing signals or data into basic constituents. The

classical example of time-frequency methods, Fourier Analysis, uses orthogonal eigen-

functions of the Laplace operator on subsets of Rn as a basis for square-integrable

functions or signals defined on subsets of Rn. For many problems, Fourier analysis

gives good global approximations and there exist fast transforms for efficient compu-

tations. However, Fourier representation elements are not localized in space, which

can create significant approximation errors in certain applications [33]. In Wavelet

Analysis, square-integrable functions defined on subsets of Rn are approximated us-

ing wavelets, which are orthonormal sets of functions localized both in space and
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frequency. There also exist fast transforms for wavelet analysis and, moreover, func-

tions can be represented at different scales (or resolutions), which allows for fast

pyramidal schemes in numerical computations [33, 78]. Based on the success of these

harmonic analysis tools on Rn, in recent years, there has been a great interest in

establishing Fourier- and wavelet-type analysis for non-Euclidean domains. In 2006,

Coifman and Lafon constructed Diffusion Maps, a Fourier basis for square-integrable

functions of domains such as manifolds and graphs [26], and in the same year, Coif-

man and Maggioni introduced Diffusion Wavelets, a wavelet basis for the same type

of functions and domains [27].

Briefly, Diffusion Wavelets are an efficient wavelet multiscale analysis for func-

tions on domains such as graphs and manifolds for which the notion of scale is not as-

sociated with any “natural” operation such as dilation on Euclidean spaces. Diffusion

wavelets (and the accompanying wavelet packets [13]) are useful to represent many

functions on graphs and manifolds with good accuracy. However, their construction

is associated with a high computational cost due to an underlying orthogonalization

process [27]. The present dissertation expands the theory of diffusion methods in

ways that we describe more precisely in the thesis contribution, Section 1.3.

In the next few sections of this chapter, we present preliminary concepts and

introduce the notation and definitions that will be used throughout the thesis.
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1.2 Preliminaries

1.2.1 Lp-Spaces & Fourier Transform

We have already been using Rn to represent Euclidean spaces; let us denote by N, C

and Zn, the set of natural numbers, complex numbers and the n-dimensional integer

lattice, respectively.

Let x be a column vector representing points in Rn and ω, a row vector repre-

senting points in the frequency domain R̂n. Suppose X is an open subset of Rn or Rn

itself. For 1 ≤ p <∞, the Banach spaces Lp(X) contain complex-valued functions f

for which |f |p is integrable on X with respect to the Lebesgue measure, i.e.,

Lp(X) :=

f : X −→ C : f is measurable and

∫
X

|f(x)|pdx <∞

 .

The norm on Lp(X) is

‖f‖p = ‖f‖Lp(X) =

∫
X

|f(x)|pdx

1/p

.

For p =∞, the essential supremum of a function f on X is given by

‖f‖L∞(X) = ess sup
x∈X

f = inf
x∈X
{λ ∈ R : f(x) ≤ λ a.e.} .

We are particularly interested in the space L2 (X) of complex-valued, square inte-

grable functions on X, with respect to the Lebesgue measure:

L2 (X) :=

f : X −→ C : f is measurable and

∫
X

|f(x)|2dx <∞

 ,
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equipped with the norm

‖f‖2 = ‖f‖L2(X) =

∫
X

|f(x)|2dx

1/2

.

Note that, in agreement with standard notation, we sometimes write ‖f‖ to denote

‖f‖2. The space L2 (X) is a Hilbert space and thus has an inner product given by

〈f, g〉 =

∫
X

f(x)g(x)dx, f, g ∈ L2 (X) .

To compute estimates for certain quantities associated with functions in L2 (X), we

will often use the Cauchy-Schwartz inequality, which states that

∫
X

|f(x)g(x)|dx ≤

∫
X

|f(x)|2
1/2∫

X

|g(x)|2
1/2

for all f, g ∈ L2 (X) .

The discrete analogue of L2 (Rn) is `2 (K), the space of square summable scalar

sequences with respect to a countable index K:

`2 (K) :=

{
{xk}k∈K ⊆ C, K is countable : ‖f‖2

`2(K) =
∑
k∈K

|xk|2 <∞

}
.

The space `2 (K) is also a Hilbert space with respect to the inner product

〈{xk} , {yk}〉 =
∑
k∈K

xkyk,

where {xk}k∈K , {yk}k∈K ⊂ `2 (K).

The Cauchy-Schwartz inequality on L2 (K) is given by∣∣∣∣∣∑
k∈K

xkyk

∣∣∣∣∣
2

≤
∑
k∈K

|xk|2
∑
k∈K

|yk|2 , {xk}k∈K , {yk}k∈K ⊂ `2 (K) .

Finally, we denote by Tn the n-dimensional torus Rn/Zn ' [0 1]n. The space of
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measurable Zn periodic function f such that

‖f‖2
L2(Tn) :=

∫
Tn

|f(x)|2dx <∞

is denoted by L2 (Tn).

Next, we define the Fourier transform of functions in L2 (Rn). Note that the

Fourier transform is usually defined for functions in L1(Rn), but because we wish to

use formulas such as Plancherel’s equation without additional assumptions, we adopt

the following definition.

Definition 1.1. The Fourier transform of F : L2 (Rn) −→ L2(R̂n) of a function

f ∈ L2(Rn) is given by

f̂(ω) := F [f ] (ω) =

∫
Rn

f(x)e−2πiωx dx, ω ∈ R̂n. (1.1)

For all f, g ∈ L2 (Rn), we have Plancherel’s equation

〈f, g〉 =
〈
f̂ , ĝ

〉
, and ‖f‖L2(Rn) = ‖f̂‖L2(R̂n). (1.2)

1.2.2 Frames

Although frames only started to garner popularity under the influence of Daubechies,

Grossman and Meyer in the 1980’s [34], they were introduced in 1952 by Duffin and

Schaeffer [42], and even before that, they were a recurrent topic in the mathematical

literature. Under the influence of Benedetto, Casazza, Christensen, and a few others,

the importance and usefulness of frames is now fully established, and they engender

significant interest both theoretically and in practice, particularly in signal analysis

applications [1, 3, 7, 8, 17, 18, 23].
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In a nutshell, frames can be described as a redundant (or over-complete) set of

vectors or functions that spans an inner product space V . Frames are often compared

to orthonormal bases (ONB’s), which are also a spanning set but have the added

requirements that the elements are 1) linearly independent, 2) orthogonal, and 3)

have norm 1. The main consequence of these differences between frames and ONB’s

is that vectors or functions in V have a unique representation in ONB’s, unlike in

frames, because of redundancy. Uniqueness of representation is a key property that

makes reconstructing a signal from its ONB decomposition computationally tractable

and stable. Therefore, frames may lack an important feature needed for signal recon-

struction. However, despite this drawback, frames present attractive features. One is

flexibility. Indeed, since frames can be constructed without independence and orthog-

onality restrictions, they allow for varied characteristics that can be custom-made for

the application of interest. Moreover, non-uniqueness of representation can actually

lead to a more robust representation of vectors or functions in V during certain pro-

cesses [60]. For example, suppose that you would like to send a signal across some

communication system using the coefficients which represent the signal in terms of

an ONB or in terms of a frame system. As mentioned above, each element of the

ONB will be associated with a single coefficient. If one coefficient is lost in the trans-

mission, its information content cannot be recovered. With frames, however, if one

piece is missing, because of redundancy, the information can be recovered from the

remaining pieces [60].

More importantly, a goal of our work is to perform analysis of the data in a

reduced dimension space, so there may be no need to reconstruct the original data.
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Therefore, we can fully take advantage of the desirable features of frames without

suffering the main inconvenience. Note also that, in some well-established cases, a

signal reconstruction from its frame decomposition is just as computationally feasible

as for ONB’s.

Now, we give the formal definition of frames.

Definition 1.2. A countable family of elements {fk}∞k=1 in a (separable) Hilbert

space H is a frame for H if for each f ∈ H there exist constants CL, CU > 0 such

that

CL‖f‖2 ≤
∞∑
k=1

| 〈f, fk〉 |2 ≤ CU‖f‖2. (1.3)

The constants CL and CU are called the frame bounds: CL is the lower frame

bound and CU is the upper frame bound, and they are optimal if CL is maximal

and CU is minimal. When a countable family of elements in a Hilbert space satisfies

the upper bound condition, we say this family is a Bessel system.

Different types of frames can be defined in terms of the value of frame bounds. We

give a few types as follows:

Definition 1.3. a) A frame is tight if A = B.

b) A frame is a Parseval frame if it is tight with A = 1.

c) A frame is a finite unit-norm tight frame (FUNTF) if it is tight and each

frame element has norm one.

Example 1.4. An orthonormal basis satisfies the frame definition with CL = CU = 1,

so an ONB is a Parseval frame, but also a FUNTF since each element is unit norm.

9



This shows that frames are a generalization of orthonormal bases.

Next, we study the operators associated with frames. Recall that the following

definition an adjoint:

Definition 1.5. The adjoint of a bounded linear operator T : H −→ K, where H

and K are Hilbert spaces, is the unique operator T ∗ : K −→ H satisfying the inner

production equality

〈Tx, y〉K = 〈x, T ∗y〉H , for all x ∈ H, y ∈ K.

When T = T ∗, we say that T is self-adjoint.

Note that definition implies that ‖T‖ = ‖T ∗‖.

Definition 1.6. Let {fk}∞k=1 be a frame in a Hilbert space H and let f ∈ H.

a) The synthesis operator T is given by

T : `2 (N) −→ H, T {ck}∞k=1 =
∞∑
k=1

ckfk. (1.4)

a) The analysis operator is given by the adjoint of T ,

T ∗ : H −→ L2 (N) , T ∗f = {〈f, fk〉}∞k=1 . (1.5)

c) The frame operator is obtained by composing T and T ∗:

S : H −→ H, Sf = TT ∗
∞∑
k=1

〈f, fk〉 fk. (1.6)

The operator S is bounded, invertible, self-adjoint, and positive.

The operators associated with frames govern the interaction of frame elements with
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other constituents of the Hilbert space. The following result concerns the characteri-

zation of a frame system via the synthesis operator T .

Proposition 1.7. A sequence {fk}∞k=1 in H is a frame for H if and only if

T : {ck}∞k=1 −→
∞∑
k=1

ckfk

is a well-defined mapping from `2 (N) onto H.

Next, we look at properties of frames under the action of operators other than those

naturally associated with them. The following results will come to play in Chapters 2

and 3, when we will have families of frames acted on by certain “dilation” operators.

The meaning of dilation will vary from one chapter to the other, but, as we will

discuss later, we can relate these dilation operators by some common properties of

their action.

First, we give the formula for the frame operator of the frame obtained by

applying an operator to a finite frame. This standard result can be found in [19].

Proposition 1.8. Let {fk}Nk=1, N ∈ N, be a frame in a finite dimensional Hilbert

space H, with frame operator S. If U is an operator on H, then the frame operator

for {Ufk}Nk=1 is USU∗. If U is invertible, then {Ufk}Nk=1 also constitutes a frame for

H.

For the next result, first recall the definition of a unitary operator:

Definition 1.9. An operator U : H −→ H is unitary if, for x, y ∈ H,

〈Ux, Uy〉H = 〈x, y〉H ,
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which implies U∗ = U−1.

In [23], we have the following result:

Proposition 1.10. Let {fk}∞k=1 be a frame in a Hilbert space H with frame bounds

CL, CU > 0. If U : H −→ H is a unitary operator, then {Ufk}∞k=1 is a frame with

frame bounds CL, CU .

Proposition 1.10 tells us that applying an unitary operator to a frame for H produces

another frame for H. This is very useful when we can find a unitary operator that

gives better properties to our original frames, e.g., a more precise approximation of

elements of H.

Now, when the operator U applied to a frame is not unitary but has other

desirable properties, the following proposition, also found in [23], will be helpful.

Proposition 1.11. Let H, K be Hilbert spaces, and suppose that U : K −→ H

is a bounded operator with closed range RU . Then there exists a bounded operator

U † : H −→ K, the pseudo-inverse of U , for which

UU †f = f, (1.7)

for all f ∈ RU . Moreover, the following holds:

(i) The orthogonal projection of H onto RU is given by UU †.

(ii) The orthogonal projection of K onto RU† is given by U †U .

(iii) U∗ has closed range and (U∗)† = (U †)∗.

(iv) On RU , the operator U † is given explicitly by

U † = U∗(UU∗)−1. (1.8)
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Proposition 1.11 leads to the following:

Corollary 1.12. (i) Let H, K be Hilbert spaces, and suppose that U : K −→ H is

a bounded operator with closed range RU . Let U † be defined as in (1.7). If U is

invertible, then

U † = U−1.

(ii) Suppose U1U2 : K −→ H is a bounded, closed range operator with U2 : K −→

K′ = RU2, bounded, closed range and U1 : K′ −→ H, also bounded, closed range.

Then

(U1U2)† = U †2U
†
1 .

Proof. (i) We know UU †f = f and UU−1f = f . By uniqueness of inverse, it must

be that U−1 = U †.

(ii) Using Proposition 1.11 (i), for f ∈ H, we have

(U1U2)(U1U2)†f = f.

Now,

U1U2U
†
2U
†
1f = U1(U †1f),

where, we have used U2U
†
2U
†
1f = U †1f since U †1f ∈ K′. Thus,

U1U2U
†
2U
†
1f = U1(U †1f) = f.

This result will be useful in Chapter 3, when we build a frame system for a Hilbert

13



space H using the discretization of a family of operators called compact symmetric

diffusion semigroup. These operators are not unitary but are bounded and closed

range, and they will allow us to obtain frames for approximation subspaces of the

Hilbert space H.

1.2.3 Wavelets and Multiresolution Analysis

Wavelets are another celebrated representation system brought to high interest in the

1980’s. Since that time, they have given rise to a plethora of related representation

systems that aim to give increasingly precise approximations of functions or signals,

including performing tasks such as detecting singularities or denoising. We give an

overview of important concepts in wavelet analysis by considering a basic example in

L2 (R).

Let ψ ∈ L2 (R) and j, k ∈ Z. Define

ψj,k(x) := 2j/2ψ(2jx− k), x ∈ R. (1.9)

If {ψj,k(x)}j, k∈Z forms an orthonormal basis for L2 (R), the function ψ is called a

wavelet or mother wavelet.

Example 1.13. A basic example of wavelet, the Haar wavelet, is defined by

ψ(x) =


1 if 0 ≤ x < 1

2
,

−1 if 1
2
≤ x < 1,

0 otherwise.

Haar proved that, for this choice of ψ, the system {ψj,k(x)}j, k∈Z forms an orthonormal

basis for L2 (R). For the proof, please, refer to [23, 33, 57].
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The Haar wavelet has advantages such as simplicity, orthogonality and compact sup-

port. However, it is clear from the definition that it has poor differentiability prop-

erties, which can cause severe errors in certain approximations. To compensate for

this, subsequent wavelets were designed with characteristics such as exponential de-

cay or smoothness. The introduction of multiresolution analysis gave a systematic

construction of wavelet orthonormal bases [77]. The definition is as follows.

Definition 1.14. A sequence of closed subspaces {Vj}j∈Z of L2 (R) together with a

function φ is a multiresolution analysis (MRA) for L2 (R) if the following hold:

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · .

(ii)
⋃
j∈Z

Vj = L2 (R) and
⋂
j∈Z

Vj = {0}.

(iii) f ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, x ∈ R.

(iv) f ∈ V0 =⇒ f(x− k) ∈ V0, for all k ∈ Z, x ∈ R.

(v) {φ(x− k)}k∈Z is an orthonormal basis for V0.

The properties described in Definition 1.14 are very useful for approximations. For

example, if we are looking for the approximation of a function f ∈ L2 (R) in a certain

space Vj and cannot find a satisfying one, we know, by (i), that the Vj’s are nested,

and this allows us to move to another approximation space Vj′ , j
′ 6= j, via the simple

scaling defined in (iii).

Starting with a MRA, one can define, for each j ∈ Z, the space Wj as the

orthogonal complement of Vj in Vj+1. It follows that

L2 (R) =
⊕
j∈Z

Wj.
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These spaces Wj will satisfy the same dilation property as the Vj’s, i.e.,

ψ(x) ∈ Wj ⇐⇒ ψ(2x) ∈ Wj+1.

To obtain an orthonormal basis {ψj, k(x)}j, k∈Z for L2 (R), we can use the fact that,

via the Fourier transform,

φ̂(2ω) = H0(ω)φ̂(ω), a.e.ω ∈ R̂n, (1.10)

where H0 is a 1-periodic function [23]. A function φ that can be written as 1.10 is

said to be refinable.

In this case, a choice of φ ∈ W0 that will generate a wavelet orthonormal basis is

ψ̂(ω) = H0

(
ω

2
+

1

2

)
e−πiωφ̂

(ω
2

)
.

In this thesis, we are mainly concerned with conditions that guarantee the existence

of a frame multiresolution analysis. In Chapter 2, we will obtain a condition similar

to (1.10) for a frame generated by composite dilations and translations of a scaling

function φ. In Chapter 3, we focus on obtaining systems that form a system close

to a MRA for square integrable functions defined on spaces of homogeneous type

including, but not limited to Euclidean spaces.

1.3 Thesis Contribution

The main goal of this thesis is to generalize the diffusion wavelets of Coifman

and Maggioni. First, in Chapter 2, we obtain sufficient conditions for Composite

Frames as part of the exploratory process to define Diffusion Wavelet Frames and
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Composite Diffusion Frames. The idea of using a composition of dilation operators

was inspired by shearlets, which were introduced by G. Kutyniok et al. [55], and

have generated important developments in recent years [30, 43, 54, 67, 68]. Shearlets

are a family of wavelets constructed via the composition of dyadic dilations and

shear transformations, which pick up directionality in data sets. Shearlets are a

particular case of Wavelets with Composite Dilations, a family of affine systems that

can provide flexibility and efficiency for function representation [56]. That type of

flexibility, and hence, adaptability to various data sets is exactly what we are seeking

in the settings of graphs and manifolds by generalizing diffusion wavelets. The theory

of this generalization is established in Chapter 3. We begin by constructing Diffusion

Frames and Diffusion Wavelet Frames, which broaden the type of representation

system (frame instead of ONB) and allow us to forego of the orthogonalization process

that makes diffusion wavelets computationally expensive. Then, we introduce the

theory of Composite Diffusion Frames, which are obtained by applying a composition

of dilation operators to a diffusion frame. We argue that composite diffusion frames

defined in this way could be used to define a notion of directionality on graphs and

functions defined on graphs. At this stage, we present diffusion wavelet frames and

composite diffusion frames only on a theoretical level and briefly discuss a strategy

to obtain Diffusion Shearlets. Numerical examples are in progress, but we will not

discuss them in this thesis.

In Chapter 4, our medical application is an effective illustration of the usefulness

of harmonic analysis tools on domains other than subsets of Rn. This application is

also an example of the type of problems for which composite diffusion frames may
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be useful in the future. We will come back to this remark in more detail later, in

the conclusion of Chapter 4. We focus on the detection of reticular anomalies in

autofluorescence retinal images taken by Denise Cunningham from the National Eye

Institute, with the goal of diagnosing Age-related Macular Degeneration (AMD), the

leading cause of vision loss in elderly patients in industrialized nation [63]. The novel

method that we propose detects anomalies in images in two steps. First, we perform

feature enhancement and dimensionality reduction using Laplacian Eigenmaps (LE)

of Belkin and Niyogi [2]. Although LE has existed for a long time, using this algorithm

in the context of detecting anomalies in the retina is a novel approach. LE belongs in

the family of kernel based analysis techniques for manifold learning, which also include

Kernel PCA [91], Locally Linear Embedding (LLE) [89], Diffusion Maps [26], Diffusion

Wavelets [27, 64] etc. Many of these methods can be related to the family of diffusion

methods that we construct in Chapter 3. Given the set of vectors X = {x1, · · · xN},

xi ∈ RD, where D is large, all these methods start by 1) representing the data in

form of a graph, where nodes represent the data vectors and edges represent some

arbitrary relationship between pairs of vectors, 2) storing the graph in the adjacency

matrix, 3) designing a kernel that captures some affinity or similarity between points

of the graph. The methods can differ vastly on the kernel definition but most try to

recover the underlying data manifold by representing the data in terms of the most

significant eigenvectors of the kernel matrix or operator. In [59], the authors show

that all kernel-based techniques are just special cases of kernel PCA. In Chapter 4,

we also show how this applies to Laplacian Eigenmaps. Now, after performing the

LE-step on retinal images, we obtain Laplacian eigenimages on which we perform
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anomaly classification using Vectorized Matched Filtering algorithm (VMF). VMF

is a novel approach, based on matched filtering, that views the retinal images as a

data cubes and aggregates detections of anomalies on individual images into a single

detection.
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Chapter 2

Sufficient Conditions for Composite Frames

2.1 Introduction

In this chapter, we give sufficient conditions to obtain Composite Frames (or Frame

GAG-MRA). This is a frame multiresolution analysis generated by applying succes-

sive dilations based on elements of subgroups GA and G of the general linear group to

a function φ ∈ L2(Rn) satisfying certain requirements. As we stated in the introduc-

tion, our main goal in studying systems with composite dilations is to get an insight

on how the same idea could be used to define more flexible, possibly directional,

diffusion representation systems.

Our construction is related to Composite Wavelets (or Wavelets with Composite

Dilations), which were introduced by Guo et al. in [56] as a class of affine systems of

the form

AGAG = {DADBTkψ : k ∈ Zn, B ∈ G, A ∈ GA} , (2.1)

where ψ ∈ L2(Rn), Tk is translation by an integer k, DA andDB are dilation operators,

and GA, G are countable subgroups of GLn(R), the general linear group of degree n

over R. These affine systems are a generalization of the traditional wavelet system{
2−j/2ψ

(
2−j/2x− k

)
: x ∈ R, j, k ∈ Z

}
.
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Composite wavelets are an umbrella for numerous directional representation

systems such as contourlets [37], curvelets [16], shearlets, [55, 73], which are extensions

of traditional wavelets. These systems target applications in which they optimally,

i.e., sparsely, represent functions with certain singularities or particular geometric

features, based on the following criteria [37]:

• Multiresolution. Constituents of the representation approximate the data at suc-

cessive, coarse to finer, resolutions.

• Localization. Constituents of the representation system are localized both in space

and frequency domains.

• Critical sampling. Constituents of the representation must form a sparse system,

i.e., a system with low redundancy for targeted applications.

• Directionality. Constituents of the representation must capture various orienta-

tions in the data.

• Anisotropy. Constituents of the representation must capture various elongated

shapes with different aspect ratios.

The latter two properties are the key difference between directional representations

and traditional wavelets, which contain isotropic elements occurring at all scales and

locations. Directional representations are particularly useful for images. For exam-

ple, contourlets are made of a discrete-domain multiresolution and multi-direction

tight frame that efficiently approximates images made of smooth regions separated

by smooth boundaries [37]. By finding a common framework for all these representa-

tions, not only does [56] provide a beautiful mathematical theory, but also, it allows

21



experimentation with specific parameters, which could seamlessly lead to representa-

tions with even more flexibility and ability to capture specific features of the data.

The crux of [56] is to establish conditions on GA and G such that the system AGAG is

an orthonormal wavelet (or multiwavelet) basis or, more generally, a Parseval frame

for L2(Rn). In our construction, we take these conditions for granted. In particular,

we use the idea of shift-invariant systems and the admissibility conditions on GA and

G in [56].

Our work differs from [56] mainly by its focus on constructing a frame multires-

olution analysis of scaling functions instead of orthonormal wavelets. In particular,

our main result, Theorem 2.14, gives conditions, most importantly, that of being re-

finable (2.5), that a function φ must satisfy to generate a frame GAG-MRA. This

theorem settles a case that was, so far, only stated as true without poof or proved

for specific orthonormal bases [55, 56]. Theorem 2.14 is also attractive in that the

proof uses technical arguments that give a better understanding of how the dilations

interact to yield a frame GAG-MRA.

This chapter is organized as follows. In Section 2.2, we begin by introducing the

terminology used throughout the chapter. Then, we provide a few important results

and summarize some important developments in directional methods. In Section 2.3,

we present the admissibility conditions for sets of matrices used as dilation matrices

in the frame GAG-MRA and also give the formal definition of a frame GAG-MRA.

Then, to prove our main theorem, we assume that there exists a function φ whose

integer translations and dilations by admissible matrices forms a semi-orthogonal

Parseval frame for the space of square integrable functions on Rn and show that
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whenever φ is refinable we obtain a frame GAG-MRA. This condition of self-similarity

for φ is related to others in classical wavelets theory [10, 11, 23, 79]. In Section 2.4,

we produce an example of a frame based on the partial mollification of a 2-D Haar

wavelet. Our frame differs from a GAG-MRA only on a small set and have better

smoothness properties. Finally, we summarize our results in the conclusion.

2.2 Background

2.2.1 Terminology

In this section, we formally introduce the operators used to build affine systems with

composite dilations. Since we will use both their time and frequency properties, we

provide useful commutative relations as well as formulas that describe how the Fourier

transform acts on these operators.

Recall that we view x ∈ Rn as a column vector in space or time and ω ∈ R̂n as

a row vector in the frequency domain. We denote by GLn(R) the linear group of

degree n, i.e., the set of n×n invertible matrices over the field R with the operation of

ordinary matrix multiplication and by SLn(R) the special linear group of degree

n, i.e., the set of n× n matrices in GLn(R) with determinant 1.

Definition 2.1. Let f ∈ L2 (Rn), x ∈ Rn. We can define the following unitary

operators on L2 (Rn):

• The translation of f by y, Ty : L2 (Rn) −→ L2 (Rn), where y ∈ Rn, is given by:

(Tyf) (x) = f(x− y).
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• The dilation of f by A, DA : L2 (Rn) −→ L2 (Rn), where A ∈ GLn (R), is given

by

(DAf) (x) = |detA|−1/2f
(
A−1x

)
.

In particular, when A = 2, (D2f) (x) = 1√
2
f
(
x
2

)
is the standard dyadic dilation, and

G is the trivial group, we have the classical wavelet system:

{
2−j/2ψ

(
2−j/2x− k

)
: j, k ∈ Z

}
. (2.2)

Next, we examine how translations and dilations commute with another. The follow-

ing results can be found in standard books on wavelets on Rn. We show the details

of the proofs as it familiarizes us with common techniques when dealing with dilation

and translation operators.

Proposition 2.2. Let A, B ∈ GLn(R), y ∈ Rn. We have

(i) D−1
A = DA−1.

(ii) DADB = DAB.

(iii) DATy = TA−1yDA.

Proof. The formulas follow from simple linear algebra manipulations. Let f ∈ L2 (Rn).

(i) For the first formula,

DA−1 [DAf ] (x) = |det(A)|1/2 [DAf ] (Ax)

= |det(A)|1/2
(
|det(A)|−1/2f(A−1Ax)

)
= f(x).

Hence DA−1 = D−1
A .
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(ii) For the second formula,

DADB [f ] (x) = |det(A)|−1/2|det(B)|−1/2f(B−1A−1x)

= |det(AB)|−1/2f((AB)−1x)

= DAB [f ] (x).

(iii) Last,

[DATyf ] (x) = DA [f ] (x− y)

= |detA|−1/2f(A−1(x− y))

= |detA|−1/2TA−1yf(A−1x)

= [TA−1yDAf ] (x).

Let us introduce two unitary operators that will simplify certain frequency domain

manipulations.

Definition 2.3. a) Let y ∈ Rn, A ∈ GLn(R) and g ∈ L2(R̂n). The Fourier domain

dilation D̂A of g is

D̂A (g) (ω) = | detA|1/2g (ωA) , ω ∈ R̂n.

b) The operator My : L2(R̂n) −→ L2(R̂n) is the modulation of g by y ∈ Rn, given

by:

(Myg) (ω) = e−2πiωyg(ω), ω ∈ R̂n.

Remark 2.4. Observe that the exponent in the modulation operator My contains a
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negative sign. This definition is different from the usual definition of modulation, but

it will yield more obvious commutation relationships between operators in the Fourier

domain, and will spare us from the task of keeping track of a negative sign in future

calculations.

We proceed to studying the action of Fourier transform on the operators defined

above.

Proposition 2.5. Let A ∈ GLn(R), B ∈ SLn(R) and y, k ∈ Rn. Then,

(i) FDA = D̂AF .

(ii) FTy = MyF .

(iii) FDj
ADB = D̂AjD̂BF .

Proof. For the first and second formulas, substitution in the Fourier integral is the

main tool. Let f ∈ L2 (Rn).

(ii) We have

F [DAf ] (ω) =

∫
Rn
|detA|−1/2f(A−1x)e−2πiωxdx

= |detA|−1/2

∫
Rn
f(u)e−2πiωAu|detA|du

= |detA|1/2f̂(ωA)

= D̂Af̂(ω).
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(ii) Here,

F [DAf ] (ω) =

∫
Rn
f(x− k)e−2πiωxdx

=

∫
Rn
f(u)e−2πiω(u+y)du

= e−2πiωy

∫
Rn
f(u)e−2πiωudu

= Myf̂(ω).

(iii) For these equalities use Proposition 2.2 (ii) and Proposition 2.5 (i) as follows:

F
[
Dj
ADBf

]
(ω) = F [DAjBf ] (ω)

= D̂AjBF [f ] (ω)

= D̂AjD̂BF [f ] (ω),

where the last equality is obtained in exactly the same way as we obtained 2.2 (ii).

2.2.2 Shift-Invariant Spaces

Next, we examine shift-invariant spaces. Before we describe the importance of these

spaces in our work, we state the definition.

Definition 2.6. A Zn-invariant space (or shift-invariant space) of L2 (Rn) is

a closed subspace V ⊂ L2 (Rn) such that TkV = V for each k ∈ Zn. Let φ ∈

L2 (Rn) \ {0}. We denote by 〈φ〉 the invariant shift space generated by φ:

〈φ〉 = span {Tkφ : k ∈ Zn} .

We get an idea of the importance of shift-invariant spaces by observing Equation

(2.2) and noting that, for traditional wavelets, we work on the shift invariant space
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generated by a function ψ ∈ L2 (Rn) under the shifts of Zn ⊂ Rn. Observing that

Zn is actually the semi-direct product of the trivial group in SLn(R) and Zn is the

bridge between shift-invariant spaces for classical wavelet theory and shift-invariant

spaces for composite wavelets. For composite wavelets, we consider L2 (Rn)-functions

with shifts by the semi-direct product of Zn and a discrete, and often non-abelian

group, G. In [79], [10], and [11], the authors study wavelets with composite dilations,

where G is a crystallographic group, i.e., a group of isometries such as rotations or

reflections on Rn. The example that we give in Section 2.4 will also feature such a

group, which naturally preserves the MRA structure of the Haar wavelet.

Remark 2.7. From now on, we only consider finite groups G, but note that one can

certainly define shift-invariant spaces for any countable group G, as is done when

defining shearlets.

Definition 2.8. Let G be a finite subgroup of SLn (Z) and let M n N denote the

semi-direct product of two groups M and N . The GnZn-invariant spaces are the

closed subspaces V ⊂ L2 (Rn) for which DBTkV = V for any pair (B, k) ∈ G n Zn.

Let φ ∈ L2 (Rn). The G n Zn-invariant spaces generated by φ, denoted 〈〈φ〉〉, are

defined as

〈〈φ〉〉 = span {DBTkφ : B ∈ G, k ∈ Zn} .

Definition 2.9. Let φ ∈ L2 (Rn) and let G be a finite subgroup of SLn (Z). The

set ΦG = {DBTkφ : B ∈ G, k ∈ Zn} is a semi-orthogonal Parseval frame for the
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G n Zn-invariant subspace 〈〈φ〉〉 if {Tkφ : k ∈ Zn} is a Parseval frame for 〈φ〉 and

〈〈φ〉〉 =
⊕
B∈G

DB 〈φ〉 ,

i.e., DBTkφ ⊥ DB′Tk′φ for any B, B′ ∈ G, B 6= B′ and k, k′ ∈ Zn. We also say that

φ generates the semi-orthogonal Parseval frame ΦG in this case.

Note that Definition 2.9 can be extended to any frame and the condition of semi-

orthogonality can be removed for more general shift-invariant spaces. However, as

we will show in our example, adding those conditions simplify the construction of a

frame GAG-MRA.

2.2.3 GAG-Multiresolution Analysis

Before we define the GAG-MRA, we briefly discuss conditions on GA and G that

yield such a system.

Definition 2.10. A matrix A is an expanding matrix if all the eigenvalues λ of A

satisfy the condition |λ| > 1.

Definition 2.11. Let G be a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z} ⊂

GLn (R). We say that A ∈ GA normalizes G if, for each B ∈ G, ABA−1 ∈ G.

Imposing the condition that A be an expanding matrix is not necessary to obtain

an GAG-MRA. However, when combined with the condition that A normalizes G,

it is a simple way to ensure that GAG meets the “admissibility condition” that

guarantees the existence of a Parseval frame for L2 (Rn) of the form (2.1). For a

more comprehensive understanding of admissibility conditions, refer to [56]. In our
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case, this admissibility condition basically ensures that we obtain shift-invariance for

fundamental domains of Rn and a nested sequence of MRA spaces.

Now, we are ready to define a GAG-MRA.

Definition 2.12. Let G be a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z},

where A ∈ GLn(Z) is an expanding matrix. Moreover, assume that A normalizes

G. We say that the sequence of closed subspaces {Vj}j∈Z of L2 (Rn) is a GAG-

multiresolution analysis (GAG-MRA) if the following properties hold:

(i) DBTkV0 = V0, for all B ∈ G, k ∈ Zn.

(ii) Vj ⊂ Vj+1 for each j ∈ Z, where Vj = D−jA V0.

(iii)
⋂
j∈Z

Vj = 0 and
⋃
j∈Z

Vj = L2 (Rn).

(iv) There exists φ ∈ L2 (Rn) such that ΦG = {DBTkφ : B ∈ G, k ∈ Zn} is a semi-

orthogonal Parseval frame for V0.

2.3 Sufficient Conditions

We establish sufficient conditions for a GAG-MRA by the way of Lemma 2.13, which

gives conditions that guarantee that Vj ⊂ Vj+1 for each j ∈ Z. We make use of

Proposition 1.10 and Proposition 1.7 in this first lemma.

Lemma 2.13. Assume G is a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z},

where A ∈ GLn(Z) is an expanding matrix. For j ∈ Z, let Vj be defined as

Vj = D−jA span {ΦG} = span
{
D−jA ΦG

}
. (2.3)

Moreover, let φ ∈ L2 (Rn) and assume that ΦG = {DBTkφ : B ∈ G, k ∈ Zn} is a

30



semi-orthogonal Parseval frame for V0. Then, for j ∈ Z,

(i) D−jA ΦG is a semi-orthogonal Parseval frame for Vj.

(ii) A function f ∈ L2 (Rn) belongs to Vj if and only if

f =
∑
k∈Zn

∑
B∈G

ck,BDA−jDBTkφ,

for some {ck,B}k∈Zn, B∈G ⊂ `2 (Zn).

(iii) A function f ∈ L2 (Rn) belongs to Vj if and only if there exist L2 (Tn) periodic

functions FB, j ∈ L2 (Tn), B ∈ G, such that

f̂
(
ωAj

)
=
∑
B∈G

FB, j (ωB) φ̂ (ωB) . (2.4)

Proof. (i) Since {Tkφ : k ∈ Zn} is a Parseval frame and D−jA is a unitary operator,

by Proposition 1.10, we have that
{
D−jA Tkφ : k ∈ Zn

}
is a Parseval frame. For

semi-orthogonality, we use again the fact that DA is unitary, to obtain

〈
D−jA DBTkφ, D

−j
A DB′Tk′φ

〉
=

〈
(D−jA )∗D−jA DBTkφ, DB′Tk′φ

〉
= 〈DBTkφ, DB′Tk′φ〉

= 0,

whenever B 6= B′, by assumption.

(ii) This is a consequence of (i) combined with Proposition 1.7.

(iii) Using (ii), for each f ∈ Vj we have

f̂ (ω) = F

[∑
k∈Zn

∑
B∈G

ck,BD
−j
A DBTkφ

]
(ω)

=
∑
k∈Zn

∑
B∈G

ck,BF
[
D−jA DBTkφ

]
(ω) .
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Making use of Proposition 2.5,

f̂ (ω) =
∑
k∈Zn

∑
B∈G

ck,B

[
D̂−jA D̂BMkφ̂

]
(ω)

= D̂−jA
∑
k∈Zn

∑
B∈G

ck,B

[
D̂BMkφ̂

]
(ω) .

Then,

f̂
(
ωAj

)
= | detA|−j/2D̂j

Af̂(ω)

= | detA|−j/2D̂j
A

(
D̂−jA

∑
k∈Zn

∑
B∈G

ck,B

[
D̂BMkφ̂

]
(ω)

)
= | detA|−j/2

∑
k∈Zn

∑
B∈G

ck,B

[
D̂BMkφ̂

]
(ω)

= | detA|−j/2
∑
B∈G

(∑
k∈Zn

ck,Be
−2πiωBk

)
φ̂ (ωB) .

Now, for each j ∈ Z, B ∈ G, define

FB,j (ω) = | detA|−j/2
∑
k∈Zn

ck,Be
−2πiωBk.

To verify that FB, j is in L2 (Tn), we compute

∫
Tn
|FB,j(ω)|2dω =

∫
Tn

∣∣∣∣∣| detA|−j/2
∑
k∈Zn

ck,Be
−2πiωBk

∣∣∣∣∣
2

dω

= | detA|−j
∫
Tn

∑
k∈Zn

∑
k′∈Zn

ck,Bck′, Be
−2πiωBke2πiωBk′dω.

Now {ck,B} ⊂ `2 (Zn), so

∫
Rn
|FB,j(ω)|2dω = | detA|−j

∑
k∈Zn

∑
k′∈Zn

ck,Bck′, B

∫
Tn
e−2πiωBke2πiωBk′dω

= | detA|−j
∑
k∈Zn
|ck,B|2

∫
Tn

∣∣e−2πiωBk
∣∣2 (ω) dω,
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since, for each B,
{
e−2πiωBk

}
k∈Z form an orthonormal basis for L2 (Tn). Thus

∫
Rn
|FB,j(ω)|2dω = |detA|−j

∑
k∈Zn
|ck,B|2 <∞.

Hence, we have that (2.4) holds with FB, j (ω) = | detA|−j/2
∑
k∈Zn

ck,Be
−2πiωBk.

For the other direction, suppose that f ∈ L2 (Rn) and there exists a function FB, j

such that Equation (2.4) is satisfied. Let dB,k be the Fourier coefficients of FB,j. If

we define cB,k = |detA|j/2dB,k, then we get f =
∑
k∈Zn

∑
B∈G

ck,BDA−jDBTkφ. Hence,

by (ii), f ∈ Vj.

2.3.1 Main Result

We obtain sufficient conditions for composite frames or frame GAG-MRA by

proving that, given our set of assumptions, each property in Definition 2.12 holds. Our

argument uses a few classical tools from Harmonic Analysis ([23], [33]) as well new

approaches to deal with a few technicalities arising from our more complex setting.

Theorem 2.14. (Sufficient Conditions for frame GAG-MRA.) Let G be a finite

subgroup of SLn (Z) and GA = {Aj : j ∈ Z}, where A ∈ GLn(Z) is an expanding

matrix. Assume that A normalizes G. Assume also that φ ∈ L2 (Rn) and that ΦG =

{DBTkφ : B ∈ G, k ∈ Zn} is a semi-orthogonal Parseval frame for V0. Define

Vj = D−jA V0.

If φ̂ is continuous, and uniformly bounded on a neighborhood of zero, φ̂ 6= 0, and there
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exist Tn-periodic functions HB ∈ L∞ (Tn) such that

φ̂ (ω) =
∑
B∈G

HB

(
ωBA−1

)
φ̂
(
ωBA−1

)
, (2.5)

then φ generates a semi-orthogonal Parseval frame GAG-multiresolution analysis.

Proof. (i) To show that our system satisfies (i) in Definition 2.12, we simply observe

the fact that ΦG is a semi-orthogonal Parseval frame for V0 implies

V0 = span {ΦG} ,

which is, by assumption, an GnZn-invariant subspace of L2 (Rn), i.e., DBTkV0 = V0.

(ii) Let f ∈ Vj, j ∈ Z. We want to show that this implies f ∈ Vj+1, or equivalently,

via Lemma 2.13, that there exist Tn-periodic functions FB, j+1 ∈ L2 (Tn) such that

Equation (2.4) holds.

Employing (iii) of Lemma 2.13 yields

f̂(ωAj+1) = f̂((ωA)Aj)

=
∑
B′∈G

FB′,j (ωAB′) φ̂ (ωAB′) ,

where FB′,j(ω) is a Tn-periodic, L2 (Tn) function.

Using the assumption (2.5),

f̂
(
ωAj+1

)
=

∑
B′∈G

FB′,j (ωAB′)

(∑
B′′∈G

HB′′
(
ωAB′B′′A−1

)
φ̂
(
ωAB′B′′A−1

))

=
∑
B′∈G

FB′,j (ωAB′)

(∑
B′′∈G

HB′′
(
ωAB′B′′A−1

)
φ̂
(
ωAB′B′′A−1

))
.(2.6)

Now, since GA normalizes G, we have that A′B′B′′A−1 ∈ G. Let B = AB′B′′A−1.

We claim that for distinct B′1, B′2 in the first sum, A′B′1B
′′A−1 and A′B′2B

′′A−1
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are distinct. We show this by contradiction. Suppose that the claim is false, i.e.,

A′B′1B
′′A−1 = A′B′2B

′′A−1. Then, we would have

A′B′1B
′′A−1 = A′B′2B

′′A−1

B′1B
′′ = B′2B

′′

B′1 = B′2,

a contradiction.

Therefore, we have

f̂
(
ωAj+1

)
=

∑
B′∈G

FB′,j (ωAB′)

(∑
B∈G

HB′′ (ωB) φ̂ (ωB)

)

=
∑
B∈G

(∑
B′∈G

FB′,j (ωAB′)HB′′ (ωB)

)
φ̂ (ωB) ,

where B′′ = A−1(B′)−1BA.

Let

FB, j+1(ω) =
∑
B′∈G

FB′,j
(
ωAB′B−1

)
HB′′ (ω) .

With FB′,j and HB′′ Tn-periodic, FB, j+1 is Tn-periodic. We obtain FB, j+1 ∈ L2 (Rn)

via the following calculation

∫
Tn

|FB, j+1(ω)|2dω =

∫
Tn

∣∣∣∣∣∑
B′∈G

FB′,j
(
ωAB′B−1

)
HB′′ (ω)

∣∣∣∣∣
2

dω

≤ ‖HB′′‖2
L∞(Tn)

∫
Tn

∣∣∣∣∣∑
B′∈G

FB′,j
(
ωAB′B−1

)∣∣∣∣∣
2

dω

≤ ‖HB′′‖2
L∞(Tn)#|G|

∫
Tn

∑
B′∈G

∣∣FB′,j (ωAB′B−1
)∣∣2dω,
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by Minkowski’s inequality. Consequently,

∫
Tn

|FB, j+1(ω)|2dω ≤ ‖HB′′‖2
L∞(Tn)#|G|

∑
B′∈G

∫
Tn

∣∣FB′,j (ωAB′B−1
)∣∣2dω <∞.

The next step is to show that the intersection Vj, j ∈ Z, is empty of that the closure

of their union is the entire space L2 (Rn).

(iii)
⋂
j∈Z

Vj = {0} . Let f ∈
⋂
j∈Z

and let ε > 0 be fixed. Recall that the set of compactly

supported and continuous functions on Rn, S(Rn), is dense is L2 (Rn). Thus, there

exists a function fc ∈ S(Rn), with compact support, supp (fc) ⊂ BR (0) for some

R > 0, such that

‖f − fc‖L2(Rn) ≤ ε/2.

Let Pj be the orthogonal projection operator onto Vj, j ∈ Z. Then,

‖f − Pjfc‖L2(Rn) = ‖Pj(f − fc)‖L2(Rn) ≤ ‖f − fc‖L2(Rn) ≤ ε/2,

and therefore,

‖f‖L2(Rn) ≤ ε/2 + ‖Pjfc‖L2(Rn), for all j ∈ Z. (2.7)

Let φBj, k := D−jA DBφ, A ∈ G, B ∈ G, k ∈ Zn, j ∈ Z. Since, by assumption,

ΦG =
{
φB0, k : B ∈ G, k ∈ Zn

}
is a Parseval frame for V0, and consequently, by (i),

D−jA ΦG =
{
φBj, k : B ∈ G, k ∈ Zn

}
is a Parseval frame for Vj, we have

‖Pjfc‖2
L2(Rn) =

∑
k∈Zn

∑
B∈G

∣∣〈fc, φBj, k〉∣∣2.
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Now,

∑
k∈Zn

∑
B∈G

∣∣〈fc, φBj, k〉∣∣2 =
∑
k∈Zn

∑
B∈G

(∫
BR(0)

fc(x)φBj, k(x)dx

)2

≤
∑
k∈Zn

∑
B∈G

(∫
BR(0)

|fc(x)|
∣∣φBj, k(x)

∣∣dx)2

≤ ‖fc‖2
L∞(Rn)

∑
k∈Zn

∑
B∈G

(∫
BR(0)

∣∣φBj, k(x)
∣∣dx)2

(2.8)

≤ ‖fc‖2
L∞(Rn)|BR (0)|

∑
k∈Zn

∑
B∈G

∫
BR(0)

∣∣φBj, k(x)
∣∣2dx, (2.9)

where, for (2.9), we used the fact that fc ∈ S, and hence, has finite L∞(Rn) norm,

and for (2.9), we used Cauchy-Schwartz.

Then,

∑
k∈Zn

∑
B∈G

∣∣〈fc, φBj, k〉∣∣2 ≤ ‖fc‖2
L∞(Rn)|BR (0)||detA|−j

∑
k∈Zn

∑
B∈G

∫
BR(0)

∣∣φ (B−1A−jx− k
)∣∣2dx

= ‖fc‖2
L∞(Rn)|BR (0)||detA|−j

∑
k∈Zn

∑
B∈G

∫
B‖A‖−jR(k)

|detA|j|φ(y)|2dy

= Cf,R

∫
SR, j

|φ(y)|2dy,

where Cf,G = ‖fc‖2
L∞(Rn)|BR (0)||G| and SR, j =

⋃∑
k

B‖A‖−jR (k). Note that

Cf,G < ∞ since the support of fc is of bounded measure and G is finite by as-

sumption.

We want to show that if we can pick j large enough, we will obtain

∫
SR,j

|φ(y)|2dy ≤ ε2

4Cf,R
, (2.10)

and, therefore,

∑
k∈Zn

∑
B∈G

∣∣〈fc, φBj, k〉∣∣2 ≤ ε2

4
. (2.11)
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Write

∫
SR,j

|φ(y)|2dy =

∫
SR,j∩E

|φ(y)|2dy +

∫
SR,j∩Ec

|φ(y)|2dy, (2.12)

where E = Bt (0), t > 0. Then

∫
SR,j∩Ec

|φ(y)|2dy ≤
∫
Ec
|φ(y)|2dy

=

∫
|y|≥t
|φ(y)|2dy.

Now, since φ is L2 (Rn), then φ2 is L1(Rn), and by the Weirstrass theorem, there

exists t0 ∈ R such that

∫
|y|≥t0
|φ(y)|2dy ≤ ε2

8Cf,R
. (2.13)

Let m be the Lebesgue measure on Rn. Fix t = t0. Since t < ∞, observe that

E = Bt (0) is a set of finite measure and therefore E contains finitely many integers

k. That is, for each j ∈ Z, there exists a finite sequence of K ⊂ Z such that

SR,j ∩ E =

[⋃
k∈K

B‖A‖−jR (k)

]
∩ E.

Since A is expanding, ‖A‖ > 1, and it follows that ‖A‖−(j+1) ≤ ‖A‖−j. Thus, for

R fixed, B‖A‖−(j+1)R (k) ⊆ B‖A‖−jR (k) and hence,[⋃
k∈K

B‖A‖−(j+1)R (k) ∩ E

]
⊆

[⋃
k∈K

B‖A‖−jR (k) ∩ E

]
.

Consequently,

(SR,j+1 ∩ E) ⊆ (SR,j ∩ E)

By a standard result of real analysis [90], since SR,j ∩ E, j ∈ Z is a sequence of
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decreasing measurable sets, we have

m

(
∞⋂
j=1

(SR,j ∩ E)

)
= lim

j−→∞
m (SR,j ∩ E) . (2.14)

Now, as j −→∞, m(B‖A‖−jR (k)) −→ 0, because ‖A‖ > 1. Therefore, as j −→∞,

m

(⋃
k∈K

B‖A‖−jR (k) ∩ E

)
−→ 0.

Applying (2.14), we obtain

m

(
∞⋂
j=1

(SR,j ∩ E)

)
= 0.

In particular, as j −→ ∞,
∞⋂
j=1

(SR,j ∩ E) contains only the integers k ∈ K. Let

χSR, i∩E(x) = 1 if x ∈ SR, i ∩ E and χSR, i∩E(x) = 0 otherwise.

Using our recent calculations, we get

∫
SR, J∩E

|φ(y)|2dy =

∫
Rn
|φ(y)|2χSR, i∩E(y)dy (2.15)

Now, as j −→∞, if y /∈ Zn, in particular, if y is not one of the k ∈ K, χSR, i∩E −→

0. Therefore, using dominated convergence theorem, we have (2.15) goes to 0 as

j −→∞. Hence, for j large enough, we have,

∫
SR, J∩E

|φ(y)|2dy =
ε2

8Cf,R
. (2.16)

Therefore, for j large enough, if we add (2.13) and (2.16), we obtain that (2.11)

holds. Employing (2.11) in the right-hand side of (2.7) yields ‖f‖L2(Rn) ≤ ε. Taking

ε −→ 0, we finally obtain f = 0.

(iv) Last, we show that
⋃
j∈Z

Vj = L2 (Rn). Let ε > 0 and pick a function f such that

f ∈
(⋂

j∈Z Vj

)⊥
. Using density of L2 (Rn) in S once more, we can find a function
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fc ∈ S such that ‖f − fc‖L2(Rn) ≤ ε. Then, on one hand, for J = −j, j ∈ Z, we

have

‖P−Jfc‖L2(Rn) ≤ ε, (2.17)

and one the other hand, the frame condition implies that

‖P−Jfc‖2
L2(Rn) ≥

∑
B∈G

∑
k∈Zn

∣∣〈fc, φB−J, k〉∣∣2. (2.18)

For the right hand side RHS of the last equation, we begin by computing some

estimates.

First, using Plancherel formula,

RHS =
∑
B∈G

∑
k∈Zn

∣∣∣∣∫
Rn
f̂c(ω)D̂A−J D̂Bφ̂ dω

∣∣∣∣2
=

∑
B∈G

∑
k∈Zn

∣∣∣∣∫
Rn
f̂c(ω)|detA|−J φ̂(ωBA−J)e2πiωBA−Jk dω

∣∣∣∣2

=
∑
B∈G

∑
k∈Zn

∣∣∣∣∣
∫
Tn
e2πiωBA−Jk

∑
l∈Zn

f̂c(ω +BAJ l)φ̂(ωBA−J + l) dω

∣∣∣∣∣
2

=
∑
B∈G

∣∣∣∣∣
∫
Tn

∑
l∈Zn

f̂c(ω +BAJ l)φ̂(ωBA−J + l) dω

∣∣∣∣∣
2

=
∑
B∈G

∑
k∈Zn

∣∣∣∣∫
Rn
f̂c(ω)f̂c(ω +BAJk) ˆφ(ωA−J)φ̂(ωBA−J + k) dω

∣∣∣∣2(2.19)

Define

S0 =
∑
B∈G

∣∣∣∣∫
Rn
|f̂c(ω)|2|φ̂(ωBA−J)|2 dω

∣∣∣∣2
and

SRest =
∑
B∈G

∑
k∈Zn
k 6=0

∣∣∣∣∫
Rn
f̂c(ω)f̂c(ω +BAJk) ˆφ(ωA−J)φ̂(ωBA−J + k) dω

∣∣∣∣2.
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Since fc ∈ S, there exists C > 0 such that

|f̂c(ω)| ≤ C
(
1 + |ω|2

)−3/2
.

Then, we have

SRest ≤ ‖φ̂‖2
L∞(Rn)

∑
B∈G

∑
k∈Zn
k 6=0

∣∣∣∣∫
Rn
f̂c(ω)f̂c(ω +BAJ l) dω

∣∣∣∣2

≤ C2‖φ̂‖2
L∞(Rn)

∑
B∈G

∑
k∈Zn
k 6=0

(
1 +

∣∣ω + AJ l
∣∣2)−3/2 (

1 +
∣∣ω − AJ l∣∣2)−3/2

dω.

After applying after applying some upper bound estimates, we arrive at

SRest ≤ C ′′2−J , (2.20)

where C ′′ > 0.

Combining (2.17), (2.18), (2.19) and (2.20), we obtain

S0 ≤ Bε2 + C ′′2−J . (2.21)

Now, by assumption, φ̂(ω) is uniformly bounded and continuous at ω = 0. Thus

so, by the dominated convergence theorem, for J → ∞, S0 → |φ̂(0)|2‖fc‖2
L2(Rn).

Therefore, for C > 0 independent of ε,

‖fc‖L2(Rn) ≤ |φ̂(0)|−1Cε. (2.22)

Putting together ‖f − fc‖L2(Rn) ≤ ε and (2.22), we arrive at

‖f‖L2(Rn) ≤ ε+ ‖fc‖L2(Rn) ≤
(

1 + C|φ̂(0)|−1
)
ε,

where C is some finite positive constant. Letting ε→ 0, we obtain f = 0.
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2.4 Example: Approximate GAG-MRA

In this section, we present an example of composite dilation frame based on a Haar-like

wavelet associated with the quincunx dilation in R2. This Haar wavelet is presented

in [72] and also discussed briefly by Manning and Blanchard in the context of, re-

spectively, composite MRA wavelets [79] and crystallographic Haar-type composite

dilation wavelets [11], [10]. We chose to base our example on this Haar wavelet both

because of its simplicity in illustrating a GAG-MRA and also because it shows the

type of difficulties that can arise when one tries to obtain more desirable properties

for composite dilation systems. We begin by describing the Haar system and verify

that this is exactly an example of GAG-MRA. Then, we deform the scaling function

φ of this Haar system to obtain a function φε, ε > 0, smooth on one side of the

boundary of the domain of φ. We show that φε yields a frame for a pre-defined space

V0 and also generates a frame system which approximates a GAG-MRA in a sense

that we will define later.

Let A be the quincux matrix:

A =

 1 −1

1 1

 (2.23)

and G = {Bi : i = 0, . . . , 7} be the group of symmetries of the unit square, that is,

B0 =

 1 0

0 1

 , B1 =

 0 1

1 0

 , B2 =

 0 −1

1 0

 , B3 =

 −1 0

0 1

 ,

and for i = 4, 5, 6, 7, Bi = −Bi−4.

Now, consider the region R0 = {(x1, x2) : 0 ≤ x1 < 1/2, 0 ≤ x2 ≤ x1}, i.e., R0 is the
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triangular region with the vertices (0, 0), (1
2
, 0) and (1

2
, 1

2
). For i = 1, . . . , 7, define

Ri = BiR0. The resulting triangles are shown in Figure 2.1.

R₀
 

R₁R₂

R₃

R₇

R₆ R₅

R₄

1/2

1/2

-1/2

-1/2

x₁

   x₂

A⁻¹R₁

A⁻¹R₂A⁻¹R₃

A⁻¹R₄

A⁻¹R₅

A⁻¹R₆ A⁻¹R₇

A⁻¹R₀
1/2

1/2

-1/2

-1/2

x₁

x₂

Figure 2.1: Fundamental domain R0 of the scaling function φ and its images, on the left,
under B1, . . . , B7, and on the right, under B1, . . . , B7, composed with A−1.

Let φ be defined as

φ =
√

8χR0 . (2.24)

We will use the following results, proved in [72].

Proposition 2.15. Let φ be defined as in (2.24). Suppose A is the quincux matrix

in (2.23) and G = {Bi : i = 1, . . . , 7} is the group of symmetries of the unit square.

(i) The system ΦG = {DBiTkφ : Bi ∈ G, k ∈ Z2} is an orthonormal basis for its

closed linear span V0 ⊂ L2 (R2), which is comprised of all square integrable functions

that are constant on each Z2-translate of the triangles Ri, i = 0, . . . , 7.

(ii) Let Vj = DA−jV0, j ∈ Z, i.e., Vj contains all L2 (R2)-functions constant on
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A−jZ2 translates of the triangles A−jRi, i = 0, . . . , 7. Then Vj ⊂ Vj+1, j ∈ Z.

(iii) The spaces Vj, j ∈ Z form an GAG-MRA with φ, which can be written as

φ =
√

2
(
D−1
A DB1φ(x) +DA−1DB6T(1/2, 1/2)φ(x)

)
. (2.25)

In Fourier domain, we have

φ̂(ω) =
√

2
[
D̂−1
A D̂B1φ̂(ω) + D̂A−1D̂B6M(1/2, 1/2)φ̂(ω)

]
=
√

2
[
φ̂(ωB1A

−1) + e−2πiωB6A−1(1/2, 1/2)φ̂(ωB6A
−1)
]
,

i.e., φ meets condition (2.5) with

HB1 =
√

2, HB6 =
√

2e−2πiωB6A−1(1/2, 1/2),

HB2 = HB3 = HB4 = HB5 = 0.

Remark 2.16. We will not give a formal proof but just make a few observations. To

verify (ii), first consider the images of the Ri in Figure 2.1, which show V0 ⊂ V1. From

that observation and the definition of the Vj’s, the conclusion that the Vj’s form a

nested sequence is obvious. Formula (2.25) can be verified by, again, looking at the

right picture in Figure (2.1) and noting

R0 = A−1R1 ∪

A−1R6 +

 1/2

1/2


 .

Next, we focus on showing that a “smooth” deformation φε of φ on one side of the

triangle R0 generates a frame for V0. For x ∈ Rn, consider a “standard” mollifier

η(x) =


Ce

1

|x|2−1 , |x| < 1,

0, otherwise,

(2.26)
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where C is chosen so that
∫
Rn η(x) dx = 1.

Mollifiers, also known as approximations to identity or Friedrichs mollifiers after Kurt

Otto Friedrichs who introduced them in [52], are smooth functions with many useful

properties. In many cases, such as our present example, mollifiers are used to build

sequences of smooth approximations to a given function via convolution. We will

state properties pertinent to our proof later.

Given, ε > 0, let

ηε(x) :=
1

ε2
η
(x
ε

)
.

It is easy to see that

∫
R2

ηε(x)dx = 1 and supp (ηε) ⊂ Bε (0) .

Now, we define the mollification f ε of f : U −→ R, where U ⊂ Rn and f ∈ L2 (Rn)

locally, by the convolution

f ε(x) := (ηε ∗ f) (x), x ∈ Uε

=

∫
R2

η(y)f(x− y) dy,

where Uε := {x ∈ U : ‖x− ∂U‖ > ε}.

Following these definitions, we can give a few useful properties of mollifiers. For the

proofs, refer to [47].

Proposition 2.17. Let f ε be the mollification of f : U −→ R, U ⊂ Rn, f ∈ L1(Rn)

locally. Then

(i) f ε ∈ C∞ (Uε),
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(ii) f ε −→ f a.e. as ε −→ 0,

(iii) supp (f ε) ⊂ supp (f) + Bε (0) =
{
x+ y : x ∈ supp (f) , y ∈ Bε (0)

}
.

(iv) if 1 ≤ p <∞ and f ∈ Lp(U) locally, then f ε −→ f in f ∈ Lp(U) locally.

Let x = (x1, x2) and consider

ρ(x) =


√

8, 1/2− ε/2 ≤ x1 ≤ 1/2 + ε/2, −ε/2 ≤ x2 ≤ x1,

0, otherwise.
Define

ρε(x) =
(
ηε/4 ∗ ρ

)
(x),

and note that, by Proposition 2.17(i), (ii) and (iii) respectively,

1) ρε(x) ∈ C∞(R2).

2) supp (ρε) = {(x1, x2) : 1/2− ε ≤ x1 ≤ 1/2 + ε, −ε ≤ x2 ≤ x1}.

3) supp (ρε) =
√

8 on {(x1, x2) : −1/2− ε/4 ≤ x1 ≤ 1/2 + ε/4, −ε/4 ≤ x2 ≤ x1 + ε/4}.

This way of defining ρε is just a particular case of cutoff or bump functions. Indeed,

for given open sets Ω′ compactly contained in Ω ⊂ Rn, it is well-known that there

exists a function ψ ∈ C∞c (Ω), such that, 0 ≤ ψ ≤ 1 on Ω′ via mollification.

Finally, we define the smooth, one-sided, deformation φε of φ as follows:

φε = φ+ ρε+,

where ρε+ is defined as the right side of ρε, that is,

ρε+(x) =


1, 1/2 ≤ x1 ≤ 1/2 + ε/4, 0 ≤ x2 ≤ x1,

a(x), 1/2 + ε/4 ≤ x1 ≤ 1/2 + 3ε/4, 0 ≤ x2 ≤ x1,

0, otherwise.

(2.27)

In this definition, a(x) is a smooth function whose values are in (0, 1) for all x.
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R₃

R₇

R₆ R₅

R₄

1/2

-1/2

-1/2

x₁

   x₂

1/2 1/2+ℇ

R₀ᵋ⤺

Figure 2.2: Domain of Haar scaling function φε smoothed on one side and extended via
mollification on Rε0.

Proposition 2.18. The system Φε
G = {DBiTkφ

ε : Bi ∈ G, k ∈ Z2} is a frame for V0,

i.e., if f ∈ V0, then there exist constant CL, CU > 0 such that

CL‖f‖2
L2(R2) ≤

∑
k∈Z2

7∑
i=0

|〈f, DBiTkφ
ε〉|2 ≤ CU‖f‖2

L2(R2). (2.28)

Proof. We start with the upper bound:

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ
ε〉|2 =

∑
k∈R2

7∑
i=0

∣∣〈f, DBiTkφ〉+
〈
f, DBiTkρ

ε
+

〉∣∣2
=

∑
k∈R2

7∑
i=0

{
|〈f, DBiTkφ〉|

2 + 2 〈f, DBiTkφ〉
〈
f, DBiTkρ

ε
+

〉
+
∣∣〈f, DBiTkρ

ε
+

〉∣∣2} .
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Using the inequality 2ab ≤ a2 + b2 for the middle term, we obtain

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ
ε〉|2 ≤ 2

∑
k∈R2

7∑
i=0

{
|〈f, DBiTkφ〉|

2 +
∣∣〈f, DBiTkρ

ε
+

〉∣∣2} .
Since by Proposition 2.15(i), ΦG is an orthonormal basis for V0, we have

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ〉|
2 = ‖f‖2

L2(R2),

so, we focus on finding a bound for the term

R (f, ε) =
∑
k∈R2

7∑
i=0

∣∣〈f, DBiTkρ
ε
+

〉∣∣2
=

∑
k∈R2

7∑
i=0

∣∣∣∣∫
R2

f(x)ρε+
(
B−1
i x− k

)
dx

∣∣∣∣2.
Let y = B−1

i x−k. By definition, ρε+(x) = 0 on R2 except for x ∈ Rε
0 := {(x1, x2) : 1 ≤ x1

≤ 1/2 + ε, 0 ≤ x2 ≤ x1}, as well as Rε
i = BiR

ε
0, for i = 1, . . . , 7. Note that x =

B−ii y + B−1
i k, which we will write as x = B−1

i y − k since Bi is an invertible matrix

and k ∈ Z2.

Thus, we have

R (f, ε) =
∑
k∈R2

7∑
i=0

∣∣∣∣∣
∫
Rεi

ρε+(y)f
(
B−1
i y − k

)
dy

∣∣∣∣∣
2

≤
∑
k∈R2

7∑
i=0

(∫
Rεi

∣∣ρε+(y)
∣∣DBiTk|f(y)| dy

)2

≤
∑
k∈R2

7∑
i=0

‖ρε+‖L∞(Rεi )

(∫
Rεi

DBiTk|f(y)| dy

)2

=
∑
k∈R2

7∑
i=0

(∫
Rεi

DBiTk|f(y)| dy

)2

,
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since, by definition 0 ≤ ρε+ ≤ 1 on Rε
i . Note that we can write

∑
k∈R2

7∑
i=0

(∫
Rεi

DBiTk|f(y)| dy

)2

=
∑
k∈R2

7∑
i=0

(∫
Rεi

DBiTk|f(y)|χRεi (y)dy

)2

.

Therefore,

R (f, ε) ≤
∑
k∈R2

7∑
i=0

(∫
Rεi

DBiTk|f(y)|χRεi (y)dy

)2

(2.29)

=
∑
k∈R2

7∑
i=0

(∫
Rεi

|f(y)|DBiTkχRεi (y) dy

)2

=
∑
k∈R2

7∑
i=0

∣∣〈f, DBiTkχRεi
〉∣∣2. (2.30)

At this stage, it is useful to look at the meaning of (2.29) geometrically, on the

fundamental domain. On R0, R (f, ε) is integrated on translates and images of Rε
i

which overlaps on corners of [−1/2, 1/2)2 as shown on Figure 2.3. On all the other

Ri, we have the contribution of at most 2 other translates of Rε
i . Therefore, we are

integrating most 2|f | on each Ri, i = 0, . . . , 7, and their translates. Thus,

R (f, ε) =
∑
k∈R2

7∑
i=0

|〈2f, DBiTkφ〉|
2

≤ 4‖f‖2
L2(R2), (2.31)

using Proposition 2.15.
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    Overlap of 
R₃+(1, 0) and of R₆+(0,1) = (R₀ᵋ)''

⟵

Figure 2.3: The region Rε0 and its images Rεi overlap on [−1/2, 1/2)2.

Next, we compute the lower bound. We have

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ
ε〉|2 =

∑
k∈R2

7∑
i=0

∣∣〈f, DBiTkφ〉+
〈
f, DBiTkρ

ε
+

〉∣∣2
≥
∑
k∈R2

7∑
i=0

∣∣|〈f, DBiTkφ〉| −
∣∣〈f, DBiTkρ

ε
+

〉∣∣∣∣2
=
∑
k∈R2

7∑
i=0

{
|〈f, DBiTkφ〉|

2 − 2|〈f, DBiTkφ〉|
∣∣〈f, DBiTkρ

ε
+

〉∣∣
+
∣∣〈f, DBiTkρ

ε
+

〉∣∣2}
≥
∑
k∈R2

7∑
i=0

|〈f, DBiTkφ〉|
2 − 2

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ〉|
∣∣〈f, DBiTkρ

ε
+

〉∣∣.
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Using Cauchy-Schwartz, we rewrite the last term as

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ〉|
∣∣〈f, DBiTkρ

ε
+

〉∣∣ ≤ (∑
k∈R2

7∑
i=0

|〈f, DBiTkφ〉|
2

)1/2

×

(∑
k∈R2

7∑
i=0

∣∣〈f, DBiTkρ
ε
+

〉∣∣2)1/2

.

Now, using (2.29),

∑
k∈R2

7∑
i=0

∣∣〈f, DBiTkρ
ε
+

〉∣∣ =: R (f, ε) ≤
∑
k∈R2

7∑
i=0

∣∣〈|f(w)|, DBiTkχRεi
〉∣∣2.

Here, we cannot use the crude upper bound found in (2.31) because it will make our

lower bound negative. Instead, once again, we look at this sum on each translate of

[−1/2, 1/2)2 and make use of Figure 2.3 for more careful estimates. We obtain

R (f, ε) ≤
∑
k∈R2

7∑
i=0

∣∣∣∣∫
R2

|f(x)|DBiTkχ(Rεi )
′ dx+

∫
R2

|f(x)|DBiTkχ(Rεi )
′′ dx

∣∣∣∣2.
Recall that f(x) is constant on Ri, so we can simplify this expression by finding which

proportion of
∫
R2|f(x)|χRidx the terms

∫
R2|f(x)|χ(Rεi )

′ dx and
∫
R2|f(x)|χ(Rεi )

′′ dx rep-

resent. These proportions are given by, respectively,

p1 :=
Area((Rε

i )
′)

Area(R1)
=

(1/2)ε/2

(1/2)2/2
= 4ε

p2 :=
Area((Rε

i )
′′)

Area(R1)
=

ε2/2

(1/2)2/2
= 4ε2.

This yields

R (f, ε) ≤
∑
k∈R2

7∑
i=0

∣∣∣∣(p1 + 2p2)

∫
R2

|f(x)|DBiTkχRi(x)dx

∣∣∣∣2

= (8ε2 + 4ε)2
∑
k∈R2

7∑
i=0

∣∣∣∣∫
R2

|f(x)|DBiTkχRi(x)dx

∣∣∣∣2
= (8ε2 + 4ε)2‖f‖L2(R2),
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and hence, we have

∑
k∈R2

7∑
i=0

|〈f, DBiTkφ
ε〉|2 ≥ ‖f‖2

L2(R2) − 2(8ε2 + 4ε)2‖f‖2
L2(R2)

= (1− 2(8ε2 + 4ε)2)‖f‖2
L2(R2).

We simply pick ε such to get CL = (1− 2(8ε2 + 4ε)2) > 0 to obtain a frame. Figure

2.4 shows that such an ε exists.

0
0 0.05 0.1 0.15 0.2 0.25

C
L

-3

-2

-1

0

1

2

3CL 

ε 

Figure 2.4: This is the plot of the term θ(ε) = (1− 2(8ε2 + 4ε)2) in the lower bound for the
approximate GAG-MRA frame, CL ≥ θ(ε)‖f‖, for any f ∈ L2 (Rn). If we pick ε > 0 in the
interval between 0 and some value around 0.125, we obtain a positive CL.

Let us summarize our results:

• The system Φε
G is a frame for the space V0.

• Since we have not changed the definition of V0, the spaces Vj = A−1V0, j ∈ Z form

a nested sequence for the same reasons as in the orthonormal case.

• The scaling function φ(x) is “approximately refinable”. Indeed,

φε(x) =
√

2
(
D−1
A DB−1φε(x) +D−1

A DB−6φε(x)
)
,
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except for two strips Sε1 in the middle of A−1Rε
1 ∪A−1Rε

6 + (1/2 + ε/2, 1/2 + ε/2)T

where 1/4 + ε/2 ≤ x1 ≤ 1/2 ≤ ε/2, and Sε2 = {1/2 + ε/2 ≤ x1 ≤ 1/2 ≤ ε/2, 0 ≤ x2

≤ x1} which can be made as small as needed by choosing the appropriate ε. This

is in part due to the fact that we did not start with a semi-orthogonal frame, i.e.,

Z2-translates of the Ri with the added strips are not disjoint.

A⁻¹R₁

A⁻¹R₂A⁻¹R₃

A⁻¹R₄

A⁻¹R₅

A⁻¹R₆ A⁻¹R₇

A⁻¹R₀

1/2

-1/2 x₁

x₂

A⁻¹R₁ᵋ⤺

A⁻¹R₆⤻

1/2+�/2

-1/2-�/2

A⁻¹R₁

A⁻¹R₂A⁻¹R₃

A⁻¹R₄

A⁻¹R₅

A⁻¹R₆

A⁻¹R₇

A⁻¹R₀

1/2

-1/2 x₁

x₂

A⁻¹R₁ᵋ⤺

1/2+�/2

-1/2-�/2

A⁻¹R₆ᵋ⤺ +(1/2+�, 1/2+�)

+(1/2+�, 1/2+�)

Figure 2.5: No union of images of Rε0 and their shifts under Bi and A−1 gives a cover for Rε0.
The consequence of this is that φε only satisfies an “approximate” GAG-MRA condition.

In future work, we would like to make the following modification to our construc-

tion. Instead of a one-sided mollification, we could mollify φ on all sides. Currently,

we have no guarantee that the resulting system is still a frame or a GAG-MRA, al-

though the former is likely. However, if it happens to be a frame, we have the added

advantage of a smoother function.

2.5 Conclusion

In this chapter, we showed that if we are given the following:
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• A subgroup of dilations GA, formed by integer powers of an invertible, expand-

ing matrix A and a finite subgroup of dilations G, formed by invertible matrices

with determinant 1, such that A normalizes G,

• A function φ ∈ L2 (Rn) such that 1) ΦG = {DBTkφ : B ∈ G, k ∈ Zn} is a semi-

orthogonal Parseval frame for V0, a closed subspace of L2 (Rn) and 2) φ satisfies

(2.5),

then, we obtain a frame GAG-MRA for L2 (Rn). We also provided an example of an

“approximate” GAG-MRA.

In the next chapter, we will obtain conditions similar in essence to those listed

above for composite diffusion frames for a space L2(X,µ) of square-integrable func-

tions on graphs or manifolds. Instead of the condition A normalizes G, we will have

the condition that the dilations are “similar” in a specific manner, and we will also

start the construction from a frame for a subspace V0 of L2(X,µ).
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Chapter 3

Composite Diffusion Wavelet Frames

3.1 Introduction

In this chapter, we give the requirements to construct a Diffusion Frame MRA, Dif-

fusion Wavelet Frames and Composite Diffusion Wavelet Frames for L2(X,µ), which

contains square-integrable functions defined on a space of homogeneous type X. Sub-

spaces of these frame representations span subspaces from a multiresolution analysis

induced by eigenvectors of dyadic powers tj of an operator S. These powers of S are

the discretization of a symmetric diffusion semigroup on L2(X,µ).

In [27], R. Coifman and M. Maggioni construct bases of scaling functions ap-

proximating the MRA of eigenvectors of Stj and the corresponding diffusion wavelets

using a fast and stable orthogonalization scheme. However, this orthogonalization

scheme is complex and makes diffusion wavelets computationally expensive in appli-

cations.

Although we will use the idea of diffusion representation systems as described

in [25–27], which constitute a Fourier and wavelet analysis for L2(X,µ), our goal is to

avoid the orthogonalization process completely. Frame representations are an attrac-

tive solution for different reasons. One of these reasons is the practicability of frames,

e.g., robustness, that we have already discussed in the Introduction and Chapter

55



2. Moreover, since diffusion frames generalize Coifman and Maggioni’s orthogonal

system, our construction is appealing on a purely theoretical level. Of course, with

frames, we may not have a stable and computationally tractable inversion process

existing for orthogonal systems, which allows us to reconstruct the original data.

However, since the purpose of obtaining diffusion systems is also to reduce the di-

mensionality of the data, we can perform the analysis in the embedding space of

reduced dimension, and therefore, may never need to reconstruct the original data.

In addition, the generalization achieved via composite dilations frames inscribes itself

in the framework of constructing systems analogous to those existing on Euclidean

spaces. In this case, the goal is to obtain even more flexible systems that would cap-

ture properties such as directionality in functions defined on graphs and manifolds.

This chapter is organized as follows. In Section 3.2, we give the notation and

definitions used throughout the chapter and state important preliminary results. In

Section 3.3, we present the construction of a diffusion frame MRA and diffusion

wavelet frames. In Section 3.4, we give sufficient conditions for composite diffusion

wavelet frames.

3.2 Background

3.2.1 Notation and Definitions

In this section, we provide the necessary notation and definitions, and also some

important results. Many of these can be found in [27], so we will skip proofs of

background results that are not essential to the understanding to our construction.
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The first definitions are geared towards establishing spaces of homogeneous

type. These are abstract spaces that describe many different data domains (graph,

manifolds, etc.) of interest here. Much of the genius of the work of Coifman and

Maggioni actually lies in viewing the data in the framework of spaces of homogeneous

type. We will see in the following that these spaces possess a dyadic structure similar

to dyadic cubes on Euclidean spaces, a key property in Coifman and Maggioni’s

construction, as well as ours.

We start by defining quasi-metric and measure spaces on a set X.

Definition 3.1. The pair (X, d), where X is a set and d is a function d : X ×X −→

[0,+∞) is a quasi-metric space on X, if, for all x, y, z ∈ X, d satisfies the following

properties:

a) Non-negativity: d(x, y) ≥ 0,

b) Identity of indiscernible: d(x, y) = 0 if and only if x = y,

c) Symmetry: d(x, y) = d(y, x),

d) Quasi-triangle inequality: there exists A > 0 such that

d(x, y) ≤ A (d(x, z) + d(z, y)) .

From this definition, it is clear that the traditional quasi-metric space is a metric

if A can be set to 1. We denote the open ball of radius δ around x ∈ X as Bδ (x) =

{y ∈ X : d(x, y) < δ}.

Now, we can formally define spaces of homogeneous type:

Definition 3.2. A quasi-metric measure space (X, d, µ) with µ, a nonnegative mea-
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sure, is a space of homogeneous type, if for all x ∈ X, δ > 0, there exists a positive

constant C such that

µ (B2δ (x)) ≤ Cµ (Bδ (x)) . (3.1)

A measure µ that satisfies (3.1) is said to be C-doubling. One simple example

of a doubling measure is the Lebesgue measure on a Euclidean space X. Doubling

measures are of interest in many areas of analysis because many results from classical

harmonic analysis, such as estimations for singular integrals and maximal functions,

extend to the general setting of metric spaces when those are equipped with a doubling

measure. Here, the doubling measure is a necessary condition to obtain dyadic cubes.

Before we define the latter, we make the following assumptions:

(i) X is a connected space;

(ii) For each δ > 0, x ∈ X, µ (Bδ (x)) <∞.

Example 3.3. Instances of spaces of homogeneous type include Rn with Euclidean

metric and Lebesgue measure, any C∞-compact Riemannian manifold with Rieman-

nian metric and volume, or finite graphs of bounded degree, with shortest path distance

and the counting measure [27, 36].

Now, we can introduce dyadic cubes for X. The following theorem was proved

by M. Christ in [22].

Theorem 3.4. (Dyadic cubes.) Suppose that (X, d, µ) is a space of homogeneous

type. Then, there exists a collection of open subsets {Qj
τ ⊆ X, j ∈ Z, τ ∈ Tj}, where
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Tj is a countable set, and constants δ > 1, η > 0, and 0 < c1 ≤ c2 <∞, which depend

only of A, C, such that:

(i) For each j ∈ Z, µ(X\
⋃
τ∈Tj

Qj
τ ) = 0.

(ii) For each k ≤ j, τ ′ ∈ Tk, τ ∈ Tj, either Qk
τ ′ ⊆ Qj

τ or Qk
τ ′ ∩Qj

τ = ∅.

(iii) For each k < j, τ ∈ Tj, there exists a unique τ ′ such that Qj
τ ⊆ Qk

τ ′.

(iv) Each Qj
τ contains a dyadic center xjτ such that

Bmin{c1δj, diam(X)}
(
xjτ
)
⊆ Qj

τ ⊆ Bc2δj
(
xjτ
)
.

(v) For each (l, τ), if ∂tQ
j
τ := {x ∈ Qj

τ : ρ(x,X\Qj
τ ) ≤ tδj}, then µ(∂tQ

j
τ ) ≤ c2t

ηµ(Qj
τ ).

Here, ρ is the measure of the smallest ball containing x and X\Qj
τ .

Definition 3.5. a) The collection {Qj
τ ⊆ X, j ∈ Z, τ ∈ Tj} is called a family of

dyadic cubes for the set X.

b) For each j ∈ Z, the set {Qj
τ ⊆ X, τ ∈ Tj} is called the set of dyadic cubes at

scale j and the set Γj = {xjτ} is called the set of dyadic centers at scale j.

The meaning of Theorem 3.4 is that spaces of homogeneous type can essentially

be understood as Euclidean spaces via the dyadic decomposition. Each of the prop-

erties above has an equivalent on Rn. Indeed, part (a) of the theorem states that X

has a covering for each dyadic level. Part (b) states that a “cube” in a lower level

is either contained in another cube at a higher level or their intersection is empty.

Part (c) states that a cube at a lower level must be contained in at most one cube at

a higher level. Part (d) states that all sets at some level of the decomposition have

roughly the same size, and finally, part (e) states that the area near the boundary of
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Figure 3.1: Illustration of dyadic cubes for R2, δ = 2, Tj = 2jZn.

each cube is small.

Existence of dyadic cubes on Euclidean spaces Rn are an obvious example of Theorem

3.4, with δ = 2, η = 1, c1 = c2 = 1, and Tj = 2jZ. An illustration for R2 is provided

in Figure 3.1.

The next definition describes the support set of families for some functions.

Definition 3.6. a) A sequence of functions Φ = {φk}k∈K defined on X has a center

set, denoted center(Φ) := {xk}k∈K ⊆ X, if there exists η > 0 such that, for each

k ∈ K, we have supp (φk) ⊆ Bη (xk).

b) A family of functions with a center set as defined above is said to be η-local.

Next, we introduce the notion of ε-span, which allows us to define in which

sense a subspace is an approximation for another subspace.

60



Definition 3.7. a) Let H is a Hilbert space and let PV be the orthogonal projection

onto V , a closed linear subspace of H. The set of vectors {ξk}k∈K ε-spans a sequence

{φj}j∈J ∈ H if, for every j ∈ J ,

‖P〈{ξk}k∈K〉φj − φj‖H ≤ ε. (3.2)

b) We define the ε-dimension of {φj}j∈J by

dimε

(
{φj}j∈J

)
= inf

{
dim(V ′) : V ′ is an ε-span of

〈
{φj}j∈J

〉}
One remark is in order. Terminology-wise, just as in [27] we will abuse notation and

say that
〈
{ξk}k∈K

〉
is an ε-span of

〈
{φk}k∈K

〉
if Equation (3.2) holds. This is an

abuse of notation because a strict application of the definition implies that only set

of vectors can ε-span another set of vectors, i.e., ε-spanning is not a relation between

subspaces as the latter notation implies.

Example 3.8. It is useful to look at a simple example to illustrate the significance

of Definition 3.7. Suppose that {φ1, φ2, φ3} are an orthonormal set. Then, for fixed

ε > 0, the set {φ1, φ2} is an ε-span for {φ1, φ2, εφ3}, but not for the original set.

Note that any f in the span of {φ1, φ2} can be approximated by {φ1, φ2, εφ3} with a

precision depending on the choice ε. This could be useful in cases where it is more

convenient to find an ε-span of a set of vectors than the set of vectors itself.

Definition 3.9. Let L be a compact, self-adjoint, bounded operator on L2(X,µ),

with spectrum σ(L), and spectral decomposition

L =

∫
σ(L)

λ dEλ.
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Let ε > 0 be fixed. We define the ε-approximation of L, Lε as follows:

Lε =

∫
σε(L)={λ∈σ(L): |λ|>ε}

λ dEλ. (3.3)

Lε acts on a function f ∈ L2(X,µ) by projecting f onto eigenfunctions of L corre-

sponding to eigenvalues larger than a given precision.

Example 3.10. One can tie this definition with the concept of ε-span by letting L be

an orthogonal projection onto {φ1, φ2, φ3} with spectrum {1, 1, 0}. With ε > 0, the

operator Lε would produce the subspace {φ1, φ2}, an ε-span for {φ1, φ2, εφ3}. This

concept of an ε-approximation of an operator is key, as the approximation spaces

constructed in [27] and in our work are spans of functions obtained by applying powers

of an ε-approximation of a family symmetric diffusion semigroup operators, defined

in 3.2.2.

Next, we discuss the construction of Fourier and wavelet bases on graphs and

manifolds. The Hilbert space that we consider is the space of square integrable

functions L2(X,µ) on a space of homogeneous type X. We begin by defining families

of operators on L2(X,µ).

3.2.2 Symmetric Diffusion Semigroups

The theory of semigroups of operators was established by E. Hille and K. Yoshida in

the 1940’s and since then, has developed into a beautiful abstract theory with many

applications. For the set-up and many of the results used here, we relied on [35, 86, 93].

For an introduction of semigroup operators in the context of PDEs, please, refer to

[47]. For the general theory, Semigroups of Linear Operators and Applications to
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Partial Differential Equations [86], is an acclaimed reference. A. Pazy wrote this

textbook at the University of Maryland in 1972-1973, and he did an excellent job in

presenting both the abstract theory and basic applications of semigroup operators in

a clear, detailed, and stimulating manner. The strength of his contribution is that it

establishes the relation between the semigroup and its infinitesimal generator, which

is, as we will see in this section, fundamental. Most of the spectral theory results that

we use in this section are taken from Pazy’s textbook [86].

We begin by defining strongly continuous semigroups of bounded linear opera-

tors on a general Banach space B.

Definition 3.11. Let B be a Banach space. A family of operators {St}t≥0, 0 ≤

t <∞, of bounded linear operators from B to B is a semigroup of bounded linear

operators on X if it satisfies the following:

a) Identity: S0 = I.

b) Semigroup property: St1St2 = St1+t2 .

Moreover, {St}t≥0 is a strongly continuous semigroup, denoted C0 semigroup, if,

for all f ∈ B,

lim
t−→0

Stf = f in B. (3.4)

Definition 3.12. The linear operator A defined by

D(A) =

{
f ∈ B : lim

t−→0

Stf − f
t

exists

}
(3.5)
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and

Af = lim
t−→0

Stf − f
t

=
d+Stf

dt

∣∣∣∣
t=0

for f ∈ D(A) (3.6)

is the infinitesimal generator of the semigroup {St}t≥0, D(A) is the domain of A.

The next theorem gives an exponential formula for the infinitesimal generator

of a C0 semigroup.

Theorem 3.13. (Theorem 8.3, Chap 1, [86].) Let {St}t≥0 be a C0 semigroup on B.

If A is the infinitesimal generator of {St}t≥0, then

St = eAt, (3.7)

in the sense that, for all f ∈ B,

Stf = lim
n−→∞

(
I − t

n
A

)−n
, (3.8)

and this limit is uniform in t on any bounded interval.

In this first, general, definition, t play the role of an index for a set of operators with

the semigroup structure. But in the construction that we will propose, the superscript

will take the familiar meaning of power of S. Next, we define the family of operators

used to build our multiresolution analysis.

Definition 3.14. A strongly continuous semigroup of bounded operators {St}t≥0 on

L2(X,µ) is a symmetric diffusion semigroup (or a Markovian semigroup) if

the following properties hold:

a) Contraction: ‖St‖p ≤ 1 for every 1 ≤ p ≤ +∞.
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b) Symmetry: each St is self-adjoint.

c) Positivity: for each smooth f ≥ 0 in L2(X,µ), Stf ≥ 0.

d) Conservation: St1 = 1.

Definition 3.16 was first introduced by Stein in [93]. His goal was to obtain classical

Fourier analysis tools such as the Littlewood-Paley maximal function, the Littlewood-

Paley inequalities and other important results in a very general setting. Symmetric

diffusion semigroups provided this setting. In view of Theorem 3.13, it is clear that, by

assumption, symmetric diffusion semigroups have an infinitesimal generator for which

the exponential formula holds. We give a few examples of symmetric semigroups. To

illustrate symmetric diffusion semigroups of operators, we pick two examples from an

extensive list provided in [27, 93]. The first example is a typical example of symmetric

diffusion semigroup in the context of Partial Differential Equations and the second

example illustrates the practical scenarios that we are interested in investigating.

Example 3.15. a) The semigroup St = etL generated as follows on the interval

(a, b):

Lf = a2(x)
d2

dx2
f(x) + a1(x)

d

dx
f(x) + a0(x)f(x),

with a2(x) > 0, a0(x) ≤ 0, acting on a subspace of L2 ((a, b), q(x) dx), where q is

an appropriate weight function, given by imposing appropriate boundary conditions,

so that L is formally self-adjoint and generates a semigroup satisfying conditions

(a) through (c) in Definition 3.16. If we set a0(x) = 0, with appropriate boundary

conditions, then (d) holds as well [93].
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b) The semigroup generated by the normalized graph Laplacian. Consider the undi-

rected weighted graph X = (V,E,W ), where V = {x1, . . . , xi, . . .} is the set of

vertices, E = {e} is the set of edges, and W = {we} is the set of weights assigned

to the edges. First define the quasi-metric

d(xi, xj) = inf
γxi, xj

∑
e∈γxi, xj

we,

where γxi, xj is a path connecting xi and xj. Let the diagonal matrix D be defined as

Di =
∑
xj

xi∼xj

we,

where ∼ means that there is an edge between xi and xj. Then the normalized

Laplacian L = I − D−1/2WD−1/2 is a contraction on Lp(G, µG), µG(i) = Di and

is self-adjoint. The normalized Laplacian induces a symmetric diffusion semigroup

on L2 (G, µG).

To obtain a convenient spectral theory for our diffusion semigroup, we can add

an additional assumption of compactness.

Definition 3.16. A diffusion semigroup {St}t≥0 is called compact if St is compact

for 0 < t <∞.

Remark 3.17. Note that the notation for compact symmetric diffusion semigroup

leaves something to be desired. Indeed, when we write {St}t≥0 is compact, the

notation might suggest that the identity, at t = 0 is also compact, but this is not

implied by the definition. The next remark expands on why we want to avoid a

compact identity operator.
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Remark 3.18. In Coifman and Maggioni’s paper, the above definition is stated for

t ≥ 0, which means that the identity is compact and hence, that they are only dealing

with finite dimensional spaces L2(X,µ). Although we also end up constructing finite

dimensional multiresolution scaling function spaces, we prefer to adopt Definition 3.16

to keep the possibility of an infinite dimensional space in the corresponding wavelet

construction.

We proceed with the spectral theory for {St}t≥0.

3.2.3 Spectral Theory for Symmetric Diffusion Semigroups

The next three theorems come from [86]. First, recall the following definitions

from function analysis.

Definition 3.19. Let S be a bounded linear operator acting on a Banach space B

over the scalar field C. A complex number λ is in the spectrum of S, denoted σ(S),

if the operator S − λI does not have an inverse.

Now, by the open mapping theorem, if S − λI is one-to-one, then its inverse is

bounded. Hence, λ ∈ σ(S) if and only if S − λI is either not one-to-one or, not onto.

In this occurrence, we can have three distinct sections of the spectrum of S, defined

next.

Definition 3.20. a) The value λ is said to be in the point spectrum of S, denoted

σp(S), if S − λI is not injective. Then there exist a non-zero function ξ such that

Sξ = λξ. Therefore, λ in the points spectrum are eigenvalues of S in the traditional

sense of linear algebra.
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b) The value λ is said to be in the continuous spectrum of S, denoted σc(T ), if

S − λI is injective and its range is a dense subset of B, but not the whole B.

c) The value λ is said to be in the residual spectrum of S, denoted σr(T ), in

S − λI is injective but does not have dense range.

In the next theorem, we characterize the point spectrum (or equivalently, eigenvalues)

of a strongly continuous semigroup with infinitesimal generator A.

Proposition 3.21. (Theorem 2.4, Chap 2, [86].) Suppose {St}t≥0 is a strongly con-

tinuous semigroup with infinitesimal generator A. If σp(A) is the point spectrum of

A, then

eσp(A)t ⊂ σp(S
t) ⊂ eσp(At) ∪ {0} . (3.9)

When we add the assumption of compactness of the diffusion semigroup, we have the

following:

Proposition 3.22. (Corollary 3.7, Chap 2, [86].) Suppose {St}t≥0 is a compact,

strongly continuous semigroup with infinitesimal generator A. For every −∞ < α ≤

β < ∞, the intersection of σ(A) with the strip α ≤ Re(µ) ≤ β, where µ ∈ σ(A) is

compact and contains at most a finite number of eigenvalues.

Proposition 3.21 has one immediate consequence: if {St}t≥0 is compact, then the spec-

trum σ(A) contains only eigenvalues, i.e., σ(A) = σp(A) [86]. Even more important is

the consequence of the spectrum of symmetric diffusion semigroup with positive gen-

erator. An observation of B. Manning during a conversation on symmetric diffusion

semigroups lead to the following theorem:
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Theorem 3.23. Suppose {St}t≥0 is a compact, symmetric diffusion semigroup with

positive self-adjoint infinitesimal generator A. Then each St has at most two eigen-

values: 1 and 0.

Proof. Since A is positive, we can choose α = 0 in Proposition 3.21. Now, by Propo-

sition 3.21 (and σ(A) = σp(A)), we know that eσp(A)t ⊂ σ(St) ⊂ eσ(A)t ∪ {0}. Since

St is a contraction for any t, this implies that the largest that eµt, for µ ∈ σ(A) is 1,

i.e., we can choose β = 0 in Proposition 3.21. Therefore, σ(A) contains at most one

value: 0, and consequently, σ(St) for any t contains at most two values, 0 and 1.

Remark 3.24. Based on Theorem 3.23, the spectra of the compact symmetric diffusion

semigroup operators with positive generators considered by Coifman and Maggioni

(Definition 13, [27]) have at most 1 and 0 for eigenvalues. If 1 is the only eigenvalue,

then each St is the identity, so {St}t≥0 loses practical appeal. Now, suppose that

St has two eigenvalues 0 and 1. In their construction, Coifman and Maggioni only

consider a discrete subset of {St}t≥0 indexed by dyadic integers. The consequence of

this choice is that their approximation spaces are constant, i.e., V0 = V1 = . . ., so

there is no actual multiresolution since all λtj = 1. Since we also only consider an

integer discretization of {St}t≥0 in our construction, we will avoid a trivial construc-

tion by assuming that our diffusion semigroup has unbounded negative infinitesimal

generator.

Remark 3.25. In all that follows, we will assume that {St}t≥0 is a compact diffusion

semigroup with unbounded negative generator.

Next, we establish the spectral theory for the discretization of a compact dif-
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fusion semigroup {St}t≥0. First, consider the spectral theorem for general compact,

self-adjoint operators.

Theorem 3.26. (Spectral theorem for compact, self-adjoint operators [14].) Let

T : L2(X,µ) −→ L2(X,µ) be a compact, self-adjoint operator. Then there exists

a countable orthonormal basis of L2(X,µ) consisting of eigenvectors of T .

Based on this theorem, the eigenvectors associated with each St in a compact diffusion

semigroup form an orthonormal basis for L2(X,µ). The next theorem highlights the

fact that the St and the infinitesimal generator A share the same eigenvectors.

Theorem 3.27. (Spectral theorem for compact diffusion semigroups.) Let {St}t≥0

be a compact diffusion semigroup {St}t≥0 with self-adjoint, negative generator A.

Furthermore, suppose that each eigenvalue of {St}t≥0 have multiplicity 1. Then, the

following hold:

(i) The eigenvalues µ of A are real and non-zero eigenvalues of each St have the

form eµt.

(ii) An eigenvector ξµ of A with corresponding eigenvalue µ > −∞ is also an eigen-

vector for each operator St with corresponding eigenvalue λt = eµt.

(iii) An eigenvector ξµ of St with corresponding eigenvalue eµt is also an eigenvector

for A with corresponding eigenvalue µ.

(iv) Let ξµ be eigenvectors of A, for each f ∈ L2(X,µ), we can write

Stf =
∑

µ∈σ∗(A)

eµt 〈f, ξµ〉 ξµ, (3.10)

where σ∗(A) is the spectrum of A without the zero eigenvalues.
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For the proof, we need the following result from [86].

Proposition 3.28. Let {St}t≥0 be a C0-semigroup and let A be its infinitesimal gen-

erator. Then,

(i) ([86], Corollary 1.4, Chap 1.) For f ∈ L2(X,µ), if we define

Bγ(t)f :=

∫ t

0

eγ(t−τ)Sτfdτ,

we have

eγtf − Stf = Bγ(t)(γI − A)f. (3.11)

Proof. (Theorem 3.27)

(i) The first part of the statement is a standard result for self-adjoint operator on

Banach spaces. The second part of the statement follows directly from Proposition

3.21 and the fact that for self-adjoint operators, the point spectrum corresponds to

the set of eigenvalues .

(ii) Let µ ∈ σ(A) and assume that the corresponding eigenvector is ξµ, i.e.,

Aξµ = µξµ ⇐⇒ (Iµ− A)ξµ = 0 (3.12)

Then, using Proposition 3.28(i), we have

Stξµ − eµtξµ = eµt
∫ t

0

e−µτSτ (Iµ− A)ξµdτ

= 0,

i.e., ξµ is an eigenvector of St.

(iii) Let ξµ,1 be an eigenvector of St with eigenvalue eµt, where µ is an eigenvalue of
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A. We can write

Stξµ,1 = eµtξµ,1.

Suppose that ξµ,1 is not an eigenvector of A, and let ξµ,2 be the eigenvector of A

corresponding to µ. By part (ii), ξµ,2 is also an eigenvector of St corresponding to eµt.

However, this contradicts the assumption that all eigenvalues of St have multiplicity

1. Therefore, the eigenvector ξµ of St associated with eµt is an eigenvector of A with

eigenvalue µ.

(iv) Equation (3.10) comes directly from the Spectral Theorem 3.26. Since zero-

eigenvalues and the corresponding eigenvectors do not contribute to the sum, they

need not appear in the expression.

Remark 3.29. Theorem 3.27 is key in our work. It means that the compact symmetric

diffusion semigroup operators share eigenvectors with their infinitesimal generators.

This will allow us to define a MRA on L2(X,µ), which can be approximated using

projections of St onto certain approximation functions. Moreover, (3.10) will make

our computations clear and precise.

3.2.4 Multiresolution Analysis Induced by Symmetric Diffusion Semi-

groups

Let {St}t≥0 be symmetric diffusion semigroup on a space of homogeneous type

X. Consider a discretization of {St}t≥0 at times tj = 2j+1−1. Then, by compactness
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and Theorem 3.27, for each f ∈ L2(X,µ), we can write

Stjf =
∑
λ∈σ(S)

λtj 〈f, ξλ〉 ξλ. (3.13)

We regard Stj as dilation operator on L2(X,µ). Let ε ∈ (0, 1) be given and let

σε,j(S) :=
{
λ ∈ σ(S), λtj ≥ ε

}
.

The subspaces of scaling functions ξλ on L2(X,µ) can be used to define a multireso-

lution analysis of finite dimensional spaces Vj. Indeed, if we let

V−1 = L2 (X) , (3.14)

V ε
j = 〈{ξλ : λ ∈ σε,j(S)}〉 , for j ≥ 0, (3.15)

then the V ε
j ’s form a multiresolution analysis in the sense that

(i) V−1 = L2 (X), lim
j−→∞

V ε
j = 〈{ξλ : λ = 1}〉;

(ii) V ε
j+1 ⊆ V ε

j for each j ≥ −1;

(iii) {ξλ : λtj ≥ ε} is an orthonormal basis for V ε
j .

Properties (i) and (ii) follow from the definition. For (ii), one can use the fact that if

j > j′ ≥ −1, then

σε,j(S) ⊆ σε,j′(S). (3.16)

The corresponding wavelet decomposition is obtained in the usual way. For each

j ≥ −1, define W ε
j such as

V ε
j = V ε

j+1 ⊕W ε
j . (3.17)
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Then L2 (X) =
⊕

j≥−1W
ε
j is a wavelet decomposition of L2(X,µ).

The next assumption is used to control the dimension of the growth of the approxi-

mation spaces.

Definition 3.30. Let {St}t≥0 be a compact symmetric diffusion semigroup with

spectrum σ (S) = {λj : λ0 ≥ . . . ≥ λj . . . ≥ 0}. If there exists a constant C > 0 such

that, for each λ ∈ (0, 1),

| {λj ∈ σ (S) : λj ≥ λ} | ≤ C logγ2
1

λ
,

then we say that {St}t≥0 has γ-strong decay.

Finally, we define a few terms that describe the action {St}t≥0 on functions in

L2(X,µ).

Definition 3.31. A symmetric diffusion semigroup {St}t≥0 is said to act δ-locally,

for δ > 0, if for each x ∈ X, and each φ that is η-local around x, Sφ is (δ + η)-local

around x.

Recall that Definition 3.6 described sets of functions Φ = {φk}k∈K that are η-local.

Definition 3.31 tells us that a symmetric diffusion semigroup is δ-local if it acts by

expanding the radius of the support of each function φ ∈ Φ by δ.

Definition 3.32. A symmetric diffusion semigroup {St}t≥0 is expanding if, for each

smooth f , supp (f) ⊆ supp (Stf).

Now, we have all the ingredients needed to build our diffusion frames multireso-

lution analysis and composite dilations diffusion frames construction. Before jumping
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to our construction, we describe Coifman and Lafon’s diffusion maps and Coifman

and Maggioni’s diffusion wavelets. The reader is free to skip these sections, as it

will not affect the understanding of our construction. However, we chose to present

these representation systems here because, 1) they constitute logical steps in the pro-

gression towards more generalized representation systems for graphs and manifolds,

2) their advantages justify our construction in the same framework, 3) some of the

disadvantages motivate a need for more flexible systems such as our frames.

3.2.5 Diffusion Maps

We present the diffusion maps of Coifman and Lafon [26] quite thoroughly for two

reasons. First, they can be viewed as a Fourier analysis on graphs and manifolds and,

therefore, are theoretically appealing. Second, they can easily be put in the framework

of diffusion semigroup and spaces of homogeneous type and provide a good illustration

for the type of data sets we wish to study beyond the present dissertation.

In [26], the authors consider a connected data set X and suppose (X, A, µ) is a

measure space. In addition, assume that a measure of proximity between x, y ∈ X is

given by a kernel K with the following properties:

a) K is symmetric, i.e., K(x, y) = K(y, x),

b) K is positivity-preserving, i.e., K(x, y) ≥ 0.

Moreover, K is local in the sense that K(x, y) is large if x and y are “close” and

K(x, y) “small” for x and y are far apart. The notion of far apart and close depends on

the application. The exponentially weighted distance K(x, y) = e(−||x−y||2/σ), σ > 0,
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is an example of a function with such properties.

Using K, one can further define a notion of similarity between two points x and

y via the probability of transition from one point to the other. Starting from any

graph G as defined by the pairing G := (X, K), one can make a reversible Markov

chain using the normalized graph Laplacian construction that follows. First, define a

“transition probability” from x to y is defined as

p(x, y) =
K(x, y)

d(x)
, (3.18)

where d, which defines a measure of the density of points in the neighborhood of x,

is given by

d(x) :=

∫
X

K(x, y) dµ(y). (3.19)

Note that the function p(x, y) is positivity preserving since K and d are positive.

However, unless d(x) is a constant function of x or satisfies some specific symmetric

properties, p(x, y) will not be symmetric. The quantity p(x, y) can be used to view

pairwise similarities as edge flows in a Markov random walk on the graph.

The Markov chain defined above satisfies some interesting stochastic (ergodicity, ir-

reducibility). Let

π(z) =
d(z)∫

X

d(x) dµ(x)

be the stationary distribution of the Markov chain and suppose that the kernel a(x, y),

given by

a(x, y) =
k(x, y)√
π(x)

√
π(y)

,
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is compact. All these assumptions yield a useful spectral properties the operator P

associated with the Markov chain. Indeed, P has a spectrum σ(P ) and eigenfunctions

{ξλ}λ∈σ(P ) as in Theorem 3.27. Here, in particular, by ergodicity, we have 1 = λ0 >

|λ1| ≥ |λ2| ≥ . . .. Using the orthogonal basis eigendecomposition, we can write

Pξλ = λξλ. (3.20)

Employing (3.20), for t ≥ 0, the probability of transition pt(x, y) is from x to y in t

time steps is given by

pt(x, y) =
∑

λ∈σ(P )

λtξλ(x)ξλ(y). (3.21)

Since the transitions in the Markov chain encode the local geometry between neigh-

boring points, via Equation (3.21), X can be analyzed at increasingly larger scale

geometry by looking at up to t steps of the random walk [26]. One can organize the

data into clusters by defining them as a region from which the probability of escaping

is low as time increases. In this way, the parameter t plays both the roles of time

and scale parameters. This idea can motivate the definition of dyadic powers of the

semigroup as dilation operators for diffusion wavelets.

Next, Coifman and Lafon introduce a metric that measures the closeness of x and y

based on the transition probabilities pt(x, z) and pt(y, z) for all z ∈ X.

Definition 3.33. The family of diffusion distances {Dt}, t ∈ N from x to y is

D2
t (x, y) := ‖pt(x, ·)− pt(y, ·)‖2 =

∫
X

(pt(x, z)− pt(y, z))2 dµ(z)

π(z)
. (3.22)

The authors make the observation that, for any given t ≥ 0, Dt defines a distance

77



function on X, not only because it satisfies the mathematical definition, but in the

sense that it provides an “average” of all possible paths between x and y. If the

points x and y are connected by many shorts paths on the graph, then the diffusion

distance Dt(x, y) is small and vice-versa. Note that, since Dt adds up contributions

from all paths between x and y, it gives a reliable notion of proximity. This averaging

property also makes this distance more robust to noise unlike the geodesic distance,

which is more sensitive to perturbations on the data [26].

Using Equation (3.21), we can rewrite Dt as

Dt(x, y) =

√ ∑
λ∈σ(P )\{λ0}

λ2t (ξλ(x)− ξλ(y))2. (3.23)

Note that the eigenfunction corresponding to λ0 is omitted in this sum since it is a

constant. Now, since λn → 0 and |λi| < 1 for all i, Dt can be approximated with a

finite number of terms within an arbitrary degree of accuracy indexed by some arbi-

trary constant δ > 0. Let σδ,t(P ) = {λ ∈ σ(P ) : |λ|t > δ|λ1|t}. The approximation of

Dt with relative precision δ is given by

Dδ
t =

√ ∑
λ∈σδ(P )

λ2t (ξλ(x)− ξλ(y))2. (3.24)

Definition 3.34. The family of diffusion maps {Et}t∈R is defined as the set

Et(x) :=
{
λtξλ(x)

}
λ∈σδ(S)

, (3.25)

where each component λtξλ(x) is called a diffusion coordinate.

The mapping Dδ
t : X → Rd(δ,t), where d(δ, t) = |σδ(P )| embeds the data in a Euclidean
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space, where diffusion distances are preserved up to a relative accuracy δ, i.e.,

Dt(x, y) = ‖Et(x)− Et(y)‖L2(Rd(δ, t)).

This last equation tells us that, for a given time scale, Et embeds the space X in

the Euclidean space Rd(δ,t), where the coordinates of each point x is given by the

diffusion coordinate λtξλ(x) and the distance between two points x and y is given

Dt(x, y) [26]. Therefore, diffusion maps can be viewed as a reparametrization of the

data. In this reparametrized space, we can achieve dimension reduction. Indeed, for

a fixed t, d(δ, t) is the dimension of the embedding space, hence, the smaller it is,

the better the dimensionality reduction from X to Rd(δ,t). Now, for a choice of δ, the

value s(δ, t) depends on how early the ratio |λ|/|λt1| exceeds δ. Therefore, the decay

of the spectrum governs the dimension of the embedding space. In particular, if P

has γ-strong decay,

d(δ, t) ≤ Ct−γ logγ2

(
1

δ

)
.

Remark 3.35. Based on this construction, diffusion maps are a Fourier analysis for

a graph meeting certain requirements. To put diffusion maps in the framework of

symmetric diffusion semigroup/space of homogeneous type, it suffices to note that Dt

is a quasi-metric on X (more precisely, it is a metric) and assume that the powers

{P t}t≥0 of P form a compact symmetric diffusion semigroup acting on L2(X,µ),

where (X,Dt, µ) is a space of homogeneous type.
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3.2.6 Diffusion Wavelets

We consider a symmetric diffusion semigroup {St}t≥0 on a space of homogeneous type

X. Based on the experience with diffusion maps, in which powers of the Markovian

operator can be used to define different scales, we regard S as a dilation operator.

Suppose that we have the set-up described in 3.2.4. Although the bases for the spaces

in Equation (3.17) are simple candidates for diffusion wavelets, they are made of eigen-

functions of S, which are typically highly non-localized, just as in the Euclidean case.

Moreover, the computation of the eigenfunctions of S can be computationally costly.

To get around this difficulty, Coifman and Maggioni construct ε-approximations of

the V ε
j with localized bases of functions. The justification for the idea is a Heisenberg

principle [84] that states that “eigenfunctions have a smoothness or frequency content

or scale determined by the corresponding eigenvalues, and can be reconstructed by

maximally localized bump functions, or atoms, at that scale” [27].

We briefly describe diffusion wavelets constructed in the setting spaces of ho-

mogeneous type:

1. Multiscale dyadic orthogonalization. Starting with a set of “bump” functions

defined on a space of homogeneous type, using “modified multiscale Gram-Schmidt”,

construct a set of well-localized orthonormal functions spanning the same subspace,

up to a given precision. The dyadic cubes property of spaces of homogeneous type is

essential to this step.

2. Approximate multiresolution scaling functions. Apply the multiscale dyadic

orthogonalization to families of the form {Stjδx}x∈X . Here {St}t≥0 is a compact
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diffusion semigroup with γ-strong decay, tj a dyadic power, and the δx are either

a set of Dirac δ-functions in the discrete setting, or a mollification of those in the

continuous case. The the multiscale dyadic orthogonalization of {Stjδx}x∈X yields a

family of orthonormal bases {Φj}j≥0, which ε-span the V ε
j , j ≥ 0.

3. Diffusion wavelets. Build bases for the spaces W ε
j , j ≥ 0 by applying a the

modified multiscale Gram-Schmidt procedure to the set of functions

{(Pj − Pj+1)φj,k}k∈Kj
,

where Pj is the projection onto V ε
j , and φj,k ∈ Φj are functions from the approximate

multiresolution analysis.

The procedure modified multiscale Gram-Schmidt procedure as well as the

proofs of the validity of the multiscale dyadic orthogonalization and the approximate

multiresolution scaling functions construction can be found in detail in [27].

3.3 Frame Multiresolution Analysis and Diffusion Wavelet

Frames

3.3.1 Frame Multiresolution Analysis

As stated in the introduction, diffusion wavelets require a computationally expensive

orthogonalization process [27]. Although the cost of this process can be significantly

improved using the fact that large powers of S can be compressed if S is of low rank,

it is still high [27]. This leads us to direct our attention to frames, which would allow

us to forego of this orthogonalization process when building the multiresolution of
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approximation spaces.

We first construct a diffusion frame multiresolution analysis from which we obtain

diffusion wavelets frames. In the next section, we will use some of the results estab-

lished here to construct composite diffusion frames. We start by defining an operator

between the subspaces V ε
j , j ≥ 0 and study its properties.

Assumption: In the remaining of this chapter, we make the assumption that all the

eigenvalues of S have multiplicity 1.

Notation 3.36. Let {St}t≥0 be a compact symmetric semigroup and let tj = 2j+1−1.

For f ∈ L2(X,µ), we denote by Sε,j the operator given by

Sε,jf =
∑

λ∈σε,j(S)

λtj 〈f, ξλ〉 ξλ, (3.26)

Remark 3.37. Notice the difference between the operator Sε,j and Stj , j ≥ 0. Recall

that the action of Stj is given by

Stjf =
∑
λ∈σ(S)

λtj 〈f, ξλ〉 ξλ.

To understand this difference, suppose that we have a family of function {φ}k∈K,

where K is some indexing set. Then, for j ≥ 0, {Sε,jφ}k∈Z is an ε-span of {Stjφ}k∈Z.

Proposition 3.38. Let {St}t≥0 be a compact symmetric semigroup and Sε,j be as in

(3.26). Additionally, given ε ∈ (0, 1), tj = 2j+1 − 1, define the spaces V ε
j as in 3.15.

Then the following are true:

(i) For each j ≥ 0, Sε,j : V ε
j −→ V ε

j is a closed range, bounded operator. Moreover,

V ε
j is invariant under Sε,j.
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(ii) For each j′, j ≥ 0, and j′ < j, the operator Sε,j : V ε
j′ −→ V ε

j is a closed range,

bounded operator from V ε
j′ to V ε

j .

(iii) For each j ≥ 0, Sε,j is self-adjoint, and hence, so is its pseudoinverse S†ε,j.

(iv) For each f ∈ V ε
j , we can write

Sε,jf = S†ε,j(Sε,j)
2f. (3.27)

Proof. (i) The first assertion follows directly from the definition of Sε,j. Indeed, if

f ∈ V ε
j , then f can be written as f =

∑
λ∈σε,j(S)

cλξλ. However,

Sε,jf =
∑

λ∈σε,j(S)

cλSε,jξλ

=
∑

λ∈σε,j(S)

cλ

 ∑
λ′∈σε,j(S)

λtj 〈ξλ, ξλ′〉 ξλ′

 .
Now, if λ 6= λ′, then 〈ξλ, ξλ′〉 = 0.

If λ = λ′, then ξλ and ξλ′ coincide. Thus 〈ξλ, ξλ′〉 = 1 and

Sε,jf =
∑

λ∈σε,j(S)

λtjcλξλ.

For the second part of the assertion, the range is closed by linearity and boundedness

of Sε,j follows directly from boundedness of S.

(ii) Let f ∈ Vj′ . We can write f =
∑

λ′∈σj′ (S)

cλξλ′ . Then,

Sε,jf =
∑

λ′∈σε,j′ (S)

cλ′Sε,jξλ′

=
∑

λ′∈σε,j′ (S)

cλ′

 ∑
λ∈σε,j(S)

λtj 〈ξλ′ , ξλ〉 ξλ

 .

83



Note that, since σε,j(S) ⊆ σε,j′(S), for λ′ ∈ σε,j(S), we have

∑
λ∈σε,j(S)

λtj 〈ξλ′ , ξλ〉 ξλ = λtjξλ,

and λ′ /∈ σε,j(S),

∑
λ∈σε,j(S)

λtj 〈ξλ′ , ξλ〉 ξλ = 0.

This yields

Sε,jf =
∑

λ∈σε,j(S)

λtjcλξλ.

(iii) Self-adjointness of Sε,j follows directly from self-adjointness of S. We obtain

that S†ε,j using Proposition 1.11 (iii):

[S†ε,j]
∗ =

[
S∗ε,j
]†

= S†ε,j.

(iv) Using Proposition 1.11 (i), for f ∈ V ε
j , we have

Sε,jf = (Sε,jS
†
ε,j)
∗Sε,jf

= S†ε,jSε,jSε,jf

= S†ε,j(Sε,j)
2f.

Theorem 3.39. (Frame multiresolution analysis.) Suppose that we are given the

following:

a) A bounded space of homogeneous type (X, d, µ),

b) A compact symmetric semigroup {St}t≥0 on L2 (X, µ).

c) A precision ε ∈ (0, 1), such that, for tj = 2j+1−1, the V ε
j are defined as in (3.15),
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d) A frame sequence Φ0 = {φ0,k}k∈K, K <∞, with frame constants C1, C2 > 0, i.e.,

C1‖f‖ ≤
∑
k∈K

|〈f, φ0,k〉| ≤ C2‖f‖,

such that, 〈Φ0〉 = V ε
0 .

For each j ≥ 1, define the sequence.

Φj := Sε,jΦ0, (3.28)

where Sε is defined with as in (3.26). Then, {Φj}j≥0 has the following properties:

(i) 〈Φj〉 = V ε
j and hence 〈Φj+1〉 ⊆ 〈Φj〉,

(ii) Φj is a frame for 〈Φj〉 with frame constants C ′1, C2 > 0.

Proof. Let

φj,k = Sε,jφ0,k, j ≥ 0, k ∈ K.

(i) For the first assertion, we begin by showing that V ε
j ⊆ 〈Φj〉. By definition, we

have 〈Φ0〉 = V ε
0 . Let f ∈ V ε

j , j ≥ 1. Then, we can write

f =
∑

λ∈σε,j(S)

cλξλ,

for some {cλ}λ∈σε,j(S).

But then

f =

 ∑
λ∈σε,j(S)

λ−tjcλλ
tjξλ


=

 ∑
λ∈σε,j(S)

λ−tjcλSε,jξλ

 .
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Since Φ0 is a frame for V ε
0 , we can write ξλ =

∑
k∈K

cλ,0,kφ0,k for some {cλ,0,k}k∈K.

Then,

f = =
∑

λ∈σε,j(S)

λ−tjcλSε,j

(∑
k∈K

cλ,0,kφ0,k

)
=

∑
λ∈σε,j(S)

∑
k∈K

λ−tjcλcλ,0,kSε,jφ0,k

=
∑
k∈K

 ∑
λ∈σε,j(S)

λ−tjcλcλ,0,k

Sε,jφ0,k

=
∑
k∈K

cj,kφj,k,

where cj,k =

[ ∑
λ∈σε,j(S)

λ−tjcλcλ,0,k

]
. Note that, since the V ε

j are finite dimensional,

|σε,j(S)| <∞, and by assumption K <∞. Therefore all the sums above are finite,

which explains why we were able to switch the summation order and why cj,k is well

defined and in `2 (N).

The fact that 〈Φj〉 ⊆ V ε
j can be obtained using the definition of Φj and a similar

argument. If f ∈ 〈Φj〉, for j ≥ 1, there exists {cj, k}k∈K ⊆ `2 such that we can write

f =
∑
k∈K

cj,kφj,k

=
∑
k∈K

cj,k
∑

λ∈σε,j(S)

λtj c̃λξλ

=
∑

λ∈σε,j(S)

[∑
k∈K

cj,kλ
tj c̃λ

]
ξλ.

(ii) For f ∈ 〈Φj〉, we have

∑
k∈K

| 〈f, φj,k〉 |2 =
∑
k∈K

| 〈f, Sε,jφ0,k〉 |2 =
∑
k∈K

| 〈Sε,jf, φ0,k〉 |2,

Now, by part (i), we know that f ∈ V ε
j . Then, by invariance of V ε

j under Sε,j, given

by Lemma 3.38 (i), we have Sε,jf ∈ V ε
j . This, combined with the fact that the V ε

j
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are nested implies Sε,jf ∈ V0. Therefore, we have

C1‖Sε,jf‖2 ≤
∑
k∈K

| 〈Sε,jf, φ0,k〉 |2 ≤ C2‖Sε,jf‖2.

It is easy to see that Φj is a Bessel sequence:

‖Sε,jf‖2 ≤ ‖Sε,j‖2‖f‖2 ≤ ‖f‖2,

where, for the second inequality, we have employed the fact that Sε,j is a contraction.

For the lower bound, using Lemma 3.38 (iv), we can write:

f = S†ε,j(Sε,j)
2f,

which implies

‖f‖ = ‖S†ε,j(Sε,j)2f‖ ≤ ‖S†ε,j‖‖Sε,j‖‖Sε,jf‖ ≤ ‖S
†
ε,j‖‖Sε,jf‖.

Therefore,

∑
k∈K

| 〈Sε,jf, φ0,k〉 |2 ≥ C1‖Sε,jf‖2

≥ C1
‖f‖2

‖S†ε,j‖2
= C ′1‖f‖2.

Remark 3.40. Note that Theorem 3.39 as well as the Theorem that will follow 3.41,

there is nothing particular about V ε
0 . Just as for MRA constructions in Euclidean

spaces, we start with a frame for any V ε
j and build approximations of spaces V ε

j′ for

j′ > j.

The next result states that if we starts with a frame {φk}k∈K whose span is

approximately V ε
0 , then {Sε,jφk}k∈K gives us an approximate multiresolution analysis.
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In certain problems, this will relieve us from finding a frame that spans exactly V0.

In particular, we would like to be able to use the spanning functions at any step j of

the construction in [27] (minus the orthogonalization process) as the starting frame

for some space V ε
j .

Theorem 3.41. (Approximate frame multiresolution analysis) Suppose that we have

all the assumptions of Theorem 3.39 except that we are given a sequence of functions

Φ̃0 = {φ0,i}i∈I, which is a δ-span for Φ0 = {φ0,k}k∈K, where Φ0 is a frame for V ε
0 with

frame constants C1, C2 > 0. Then there exists a sequence
{

Φ̃j

}
j≥0

such that for each

j ≥ 0, Φ̃j δ-spans Φj, a frame for V ε
j , with frame bounds C ′1, C

′
2 > 0.

Proof. For j ≥ 1, tj = 2j+1 − 1. Define Φ̃j = Sε,jΦ̃, Φj = Sε,jΦ. Similarly, let

φ̃j,i = Sε,jφ̃0,i, i ∈ I and φj,k = Sε,jφ0,k, k ∈ K.

The fact that we can obtain a frame Φj for V ε
j , with frame bounds C2 and C ′1 > 0,

C ′1 =
C1

‖S†ε,j‖
comes from Theorem 3.39. We want to show that Φ̃j δ-spans Φj for

j ≥ 0. Let U be the frame operator for Φ0.

Employing the formula for the frame operator of for {Sε,jφ0,k}k∈ in Proposition

1.8, we have, for each φ̃j,i, i ∈ I,

‖P〈Φj〉φ̃j,i − φ̃j,i‖ = ‖
∑
k∈K

〈
φ̃j,i, (Sε,jUSε,j)

−1φj,k

〉
φj,k − φ̃j,i‖

= ‖
∑
k∈K

〈
Sε,j(Sε,jUSε,j)

−1Sε,jφ̃0, i, φ0,k

〉
Sε,jφ0,k − φ̃j,i‖,

where we have used the fact that Sε,j is self-adjoint.
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Now, by Proposition 1.11 (v), we obtain

‖P〈Φj〉φ̃j,i − φ̃j,i‖ = ‖
∑
k∈K

〈
Sε,j(Sε,jUSε,j)

†Sε,jφ̃0, i, φ0,k

〉
Sε,jφ0,k − φ̃j,i‖,

and by Proposition 3.21 (vi) and subsequent algebraic manipulations, we have

‖P〈Φj〉φ̃j,i − φ̃j,i‖ = ‖
∑
k∈K

〈
Sε,j(Sε,j)

†U−1(Sε,j)
†Sε,jφ̃0, i, φ0,k

〉
Sε,jφ0,k − φ̃j, i‖

= ‖
∑
k∈K

〈
U−1φ̃0, i, φ0,k

〉
Sε,jφ0,k − Sε,jφ̃0,i‖

= ‖Sε,j

(∑
k∈K

〈
U−1φ̃0, i, φ0,k

〉
φ0,k − φ̃0, i

)
‖

≤ ‖Sε,j‖‖

(∑
k∈K

〈
U−1φ̃0, i, φ0,k

〉
φ0,k − φ̃0, i

)
‖.

Using the assumption and ‖Sε,j‖ ≤ 1,

‖P〈Φj〉φ̃j,i − φ̃j,i‖ ≤ ‖

(∑
k∈K

〈
U−1φ̃0,ı, φ0,k

〉
φ0,k − φ̃0, i

)
‖

≤ δ.

Thus, applying the definition of δ-span, we have that, for each j ≥ 0, Φ̃j δ-spans

Φj.

3.3.2 Diffusion Wavelet Frames

The construction of diffusion wavelet frames follows easily from the previous results

and a classical argument from wavelet frames on Euclidean spaces [8, 9]. For j ≥ 0,

recall that we define each space W ε
j as the orthogonal complement of V ε

j+1 in V ε
j , i.e.,

V ε
j = V ε

j+1 ⊕W ε
j . (3.29)

Just as for the frame multiresolution analysis in Theorem 3.39, we define a
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particular operator that is invariant on the W ε
j and has some special properties.

Notation 3.42. Let {St}t≥0 be a compact symmetric semigroup and let tj = 2j+1−1.

For f ∈ L2 (X, µ), we denote by S⊥ε,j the operator as follows:

S⊥ε,jf =
∑

λ∈σcε,j(S)

λtj 〈f, ξλ〉 ξλ, (3.30)

where σcε,j(S) = σε,j(S)\σεj+1(S).

Proposition 3.43. Let {St}t≥0 be a compact symmetric semigroup and S⊥ε,j as in

(3.30). Additionally, given ε ∈ (0, 1), tj = 2j+1− 1, define the spaces V ε
j as in (3.15)

and W ε
j as in (3.29). Then the following are true:

(i) For each j ≥ 0, S⊥ε,j : W ε
j −→ W ε

j is a closed range, bounded operator. Moreover,

W ε
j is invariant under S⊥ε,j.

(ii) For each j ≥ 0, the operator Sε,j : V ε
j −→ W ε

j is closed range, bounded operator

from V ε
j to Wj.

(iii) For each j ≥ 0, S⊥ε,j is self-adjoint, and hence so is (S⊥ε,j)
†.

(iv) For each f ∈ W ε
j , we can write

S⊥ε,jf = (S⊥ε,j)
†(S⊥ε,j)

2f. (3.31)

Proof. (i) Let f ∈ W ε
j . Then f =

∑
λ∈σcε,j(S)

cλξλ. Therefore, using 3.30 and orthonor-

mality of the eigenfunctions, we have

S⊥ε,jf =
∑

λ∈σε,j(S)

cλ

 ∑
λ′∈σcε,j(S)

λtj 〈ξλ, ξλ′〉 ξλ′


=

∑
λ∈σcε,j(S)

λtjcλξλ.
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Again, the range is closed by linearity and boundedness of S⊥ε,j follows directly from

boundedness of S.

(ii) Let f ∈ V ε
j . We can write f =

∑
λ∈σε,j(S)

cλξλ. Then,

S⊥ε,jf =
∑

λ∈σε,j(S)

cλ

 ∑
λ′∈σcε,j(S)

λtj 〈ξλ, ξλ′〉 ξλ′

 .
Here again, we use orthonormality and the fact that σcε,j(S) ⊆ σε,j(S) to get

Sε,jf =
∑

λ′∈σε,j(S)

λtjξ′λ.

The arguments for statements for (iii) and (iv) are identical to Proposition 3.38.

Remark 3.44. If f ∈ V0, by construction, there exists a sequence {fj}j∈J ⊆ W ε
j such

that f =
∑
j∈J

fj, and 〈fj, fj′〉 = 0 if j 6= j′ [8].

Theorem 3.45. Suppose that we have the frame multiresolution analysis from The-

orem 3.39, and let W ε
j be defined as in equation 3.29. Define

Ψ := S⊥ε,jΦj. (3.32)

Then,
⋃
j≥0

Ψj is a frame for V ε
0 .

Proof. We prove the theorem in two steps.

(i) First, we show that Ψj is a frame for W ε
j . Let f ∈ W ε

j . Then

∑
k∈K

| 〈f, ψj, k〉 |2 =
∑
k∈K

|
〈
f, S⊥ε,jSε,jψ0, k

〉
|2 =

∑
k∈K

|
〈
Sε,jS

⊥
ε,jf, ψ0, k

〉
|2.

Now S⊥ε,jf ∈ W ε
j ∈ V ε

j . Hence, Sε,jS
⊥
ε,jf ∈ V ε

j ⊆ V0. Thus, we have

C ′1‖Sε,jS⊥ε,jf‖2 ≤
∑
k∈K

| 〈f, ψj, k〉 |2 ≤ C ′2‖Sε,jS⊥ε,jf‖2,

91



The upper bound is easily found as

‖Sε,jS⊥ε,jf‖2 ≤ ‖Sε,j‖2‖S⊥ε,j‖2‖f‖2 ≤ ‖f‖2,

and for the lower bound, using the pseudoinverse, we obtain

‖Sε,jS⊥ε,jf‖ ≥
‖f‖

‖(S⊥ε,j)†‖‖S
†
ε,j‖

.

(ii) Next, we show that
⋃
j≥0

Ψj is a frame for V ε
0 . Using Remark 3.44 gives us

∑
j≥0

∑
k∈K

| 〈f, ψj, k〉 |2 =
∑
j≥0

∑
k∈K

|
∑
l∈L

〈fl, ψj, k〉 |2

=
∑
j≥0

∑
k∈K

| 〈fj, ψj, k〉 |2.

By part (i), we have

C ′1
∑
j≥0

‖fj‖2 ≤
∑
j≥0

∑
k∈K

| 〈fj, ψj, k〉 |2 ≤ C2

∑
j≥0

‖fj‖2.

But
∑
j

‖fj‖2 = ‖f‖2, so our claim holds, i.e.,

C ′1‖f‖2 ≤
∑
j≥0

∑
k∈K

| 〈f, ψj, k〉 |2 ≤ C2‖f‖2.

3.4 Composite Diffusion Frames

As we mentioned before, diffusion wavelet frames gives us a higher degree of flexibility

than diffusion wavelets. However, once a frame Φ0 for the space V ε
0 is set, for a given

symmetric diffusion semigroup {St}t≥0 we have no more control on the functions

Φj = Sε,jΦ0 than spans the approximation spaces V ε
j . Depending on the properties of

the functions that we are trying to represent, this could be non-efficient representation
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system. This problem is not unlike trying to represent any function of L2 (R) with

a Haar system, or other wavelet systems lacking more or less properties that we are

trying to capture in the function. In Chapter 2, we have studied composite dilations

wavelet frames, which, depending on the composition of dilations, capture different

properties of functions such as directionality. Our goal is to build upon that idea to

construct diffusion systems with the ability of representing functions with different

properties more efficiently.

Let us introduce composite diffusion frames.

Theorem 3.46. (Composite diffusion frames MRA) Suppose that we have all the

assumptions in Theorem 3.39. In addition, we have a compact symmetric diffusion

semigroup {T t}t≥0. We assume that {St}t≥0 and {T t}t≥0 are “similar” in the sense

that S and T have identical spectrum and there exists an invertible U such that for

each λ, the eigenfunctions ξλ and ζλ of, respectively, S and T satisfy

ζλ = Uξλ. (3.33)

Then, for each j ≥ 0, tj = 2t+1 − 1, the sequence of frames

Φj := {Sε,jTε,iΦ0}i∈Ij⊂{0, 1,...j−1} (3.34)

has the following properties:

(i) for each j ≥ 0, 〈Φj〉 =
〈
V ε
j

〉
and hence 〈Φj+1〉 ⊆ 〈Φj〉,

(ii) for each j ≥ 0, Φj is a frame for 〈Φj〉 with frame constants C ′′′1 , C
′′′
2 > 0.
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Proof. Let Sε,j be defined as in (3.26) and let

Tε,if =
∑

λ∈σε,i(T )

λti 〈f, ζλ〉 ζλ for all f ∈ L2(X,µ).

Note that all the properties of Sε,j holds for Tε,i.

We prove our theorem in several steps.

a. For j ≥ 0, i ∈ Ij, Tε,iΦ0 is a frame for

V ε
i = 〈{ξλ : λ ∈ σε,j(S)(S)}〉 .

Define the subspace

Y ε
i = 〈{ζλ : λ ∈ σε,j(S)(S)}〉 .

We claim that by similarity of S and T , for all i ≥

V ε
i = Y ε

i . (3.35)

This is because invertibility of U implies that the set {ξλ}λ∈σε,i(T ) {ζλ}λ∈σε,i(T ) have

the same span.

The first consequence of (3.35) if that, since Φ0 is a frame for V ε
0 , then is it also a

frame for Y ε
0 . Then, we can employ Theorem 3.39 to obtain Tε,iΦ0 is a frame for

Y ε
i , and hence Tε,iΦ0 is a frame for V ε

i with frame bounds C ′1 =
C1

‖T †ε,j‖
and C ′2 = C2.

b. For j ≥ 0, i ∈ Ij, the composition Sε,jTε,iΦ0 is a frame for V ε
j . By part a., we

have

〈Tε,iΦ0〉 = Y ε
i = V ε

i .

So, via Proposition 3.38 (ii) and, again, the same argument as in Theorem 3.39,
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we obtain that for each i ∈ Ij, Sε,jTε,iΦ0 is a frame for V ε
j with frame constants

C ′′1 =
C ′1

‖S†ε,j‖
and C ′′2 = C ′2.

c. Define Φj as in (3.34). Φj is therefore a finite union of frames (over the i’s), which

is a frame with frame constants C1′′′, which is the minimum of C ′′1 over i′s and

C ′′′2 = |Ij||Ij|C ′′2 .

Here, we have in mind that U could be an operator such as a shear, or a unitary

operation such as a rotation. Note that, by varying the powers Tε,i, i ∈ Ij, applied

to our frame, we can select, to a certain extent, how we would like to modify the

frame at each each j. We say to a certain extent, because, although we have gained

in flexibility, U fixes all the types of transformations that we can make.

To have even more control at every level, consider the following theorem:

Corollary 3.47. Suppose that we have all assumptions of Theorem 3.46 except that,

instead of the compact diffusion semigroup T we are given a family of closed range,

bounded operators {Ui}i∈Ij , |Ij| = Nj <∞, such that, for each i ∈ Ij, j′ ≤ j,

〈{Uiφk}i∈Ij ,k∈K〉 = 〈{ξλ}λ∈σε,j′ (S)〉. (3.36)

Then, for each 0 ≤ j <∞, tj = 2j+1−1, the sequence of frames Φj := {Sε,jUiΦ0}i∈Ij ,

has the following properties:

(i) for each j ≥ 0, 〈Φj〉 =
〈
V ε
j

〉
and hence 〈Φj+1〉 ⊆ 〈Φj〉,

(ii) for each j ≥ 0, Φj is a frame for 〈Φj〉 with frame constants C ′1, C
′
2 > 0.
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Proof. The argument for this proof is very similar to the previous. For j = 0, the

result is again obvious. For the remaining j, note that for each i ∈ Ij, condition

3.36 implies that {Uiφ0,k}i∈I,k∈K a frame for V ε
i , i < j with frame bounds

C1

min
i∈I
‖U †i ‖

and C2|Ij|max
i∈I
‖Ui‖. Then, we apply exactly the same reasoning as in the proof of

Theorem 3.46 to obtain the results for V ε
j .

Based on Theorem 3.46 and Corollary 3.47, it would be easy to see how analogues

of Theorem 3.41, approximations of V ε
j , would be constructed for composite dilation

diffusion frames MRA and also how we could construct diffusion frame MRA with

composite operators. In addition, we can construct composite dilations wavelet frames

in using an argument similar as before for a frame defined using composite dilations.

Remark 3.48. We would like to address the connection of Chapter 2 and Chapter 3.

We have already noted that some common properties of St and DA such as expansion

of the support functions on f . Recall that in order to build the composite frames in

Chapter 2, we used the assumption that A ∈ GA normalizes G if, for each B ∈ G,

ABA−1 ∈ G, where G be a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z} ⊂

GLn (R). Here, the “normalization” condition becomes the “similarity” of operators

S and T in the composite diffusion frames constructions. In both cases, we want the

operators DB and T tj to modify functions fk in some V , which Dj
A and Stj will later

dilate, in such a way that the span of fk is left unchanged.
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3.5 Examples

The obvious catch here is how to find the family {Ui}i∈Ij that allows such a system to

exist. Actually, this can be done by considering different {Ui}i∈Ij such that Equation

3.33 holds for the eigenvectors of T and S for that tj. We will show such a family of

operators simply based on diffusion wavelets.

Example 3.49. We can argue that the diffusion wavelets of Coifman and Maggioni

are a particular case of composite operators diffusion wavelets. Indeed, they start

with an orthonormal basis, which is just a special case of frame. And we can de-

fine the orthogonalization process as applying a sequence of operators {Ui}i∈Ij to the

orthonormal basis.

Example 3.50. (Novel idea: Diffusion Shearlets) Suppose that we have all

assumptions of the composite diffusion frames theorem. Here, we are given an invert-

ible, shear matrix U and form a family of operators Tk, similar to S, such that the

eigenvectors of each Tk and the eigenvectors of S are related as follows:

ζλ,k = Ukξλ.

The function Ukξλ are sheared versions of the ξλ. For f ∈ L2(X,µ), we define

Tε,i,kf =
∑

λ∈σε,i(T )

λti 〈f, ζλ,k〉 ζλ,k.

Then, via Theorem 3.46, it is it easy to see that Φj = {Sε,jTε,i,kΦ0}i∈Ij⊂{0, 1,...j−1},k∈Kj⊂Z

is a frame for Vj. We call the set of Φj diffusion shearlets.
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Chapter 4

Detection of Anomaly In Human Retina using

Laplacian Eigenmaps and Vectorized Matched

Filtering

4.1 Introduction

Age-related Macular Degeneration (AMD) is the leading cause of blindness in elderly

patients in industrialized nations [63]. The earliest clinically observable sign of retinal

pigment epithelium dysfunction, the cause of AMD, is an accumulation of color fundus

deposits known as drusen. Epidemiological studies have found that drusen increases

in number and size with age and that larger, irregularly shaped, perifoveal drusen (soft

drusen) signal a high risk for progression to advanced AMD. Currently, pathologists

manually classify drusen based on size and shape, but there is a growing interest in

automated, analytic tools, to diagnose AMD in early stages, track its progression and

test the effectiveness of new treatment methods.

The classification of drusen can be complex because limitations of the imag-

ing devices. These cause nonlinear mixing between spectral information about the

chemicals of interest and other responses from other layers just beneath the retina, or

from different illumination patterns [29]. In the work that has been done up to this
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point, the trend is to detect macular drusen or other anomalies through direct fundus

image segmentation or through application of a multiscale analysis procedure such as

wavelet analysis or dimensionality reduction followed by a classification algorithm. In

[70], the automatic segmentation of fundus images is done first by choosing a sample

healthy area in the image using a region growing method, and then classifying blood

vessels and other areas of the macula as healthy. For the final segmented image,

the inverse image of the segmented image is generated as an unhealthy region of the

macula. In [83], the authors propose an automated AMD detection system using dis-

crete wavelet transform and feature ranking strategies based on, among others, the

Kullback-Lieber Divergence and Bhattacharyya Distance. In [50], the authors clas-

sify drusen based on multiscale analysis and kernel-based drusen detection. They use

the Mexican hat wavelet to obtain a feature vector composed of the response of the

image to filtering and apply Support Vector Data Description to this feature vector

to detect anomalies. In [88], a Gabor kernel-based filter bank is used to eliminate

spurious regions which may be confused with drusen in fundus images. Each region

is then represented with a number of features and classified as drusen and non-drusen

using a hybrid classifier based on Naive Bayes and Support Vector Machine. Czaja,

Ehler and al. use a great variety of techniques to respond to the challenges of drusen

detection [4, 5, 45]. In [29], Czaja and Ehler propose Schrödinger Eigenmaps, a new

semi-supervised manifold learning and recovery technique. Schrödinger Eigenmaps

are a kernel method based on Schrödinger operators made of a Laplacian and a po-

tential barrier constructed with carriers of labeled information. This method gives

promising results on standard biomedical datasets and multispectral retinal images.
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This extension of Laplacian eigenmaps is further studied in [58]. Ehler and al. also

detect precursors in retinal images of AMD via such methods as quantification of

retinal chromophores or sparse representation and variational methods [38, 44].

In this joined work with Wojciech Czaja, Lucia Simonelli and Denise Cunning-

ham, we focus on detecting structures that represent any anomaly rather than drusen

only, as the variability in color, shape or texture of drusen is very high among pa-

tients. We detect these anomalies in autofluorescence retinal images provided by

the National Eye Institute at the NIH (National Institute of Health). Our gener-

ous collaborators at the NIH, Robert Bonner, Emily Chew and Denise Cunningham,

also provided us with much insight on retinal anomaly detections via multiple con-

versations and through their work on AMD[21, 82, 95, 96]. Our algorithm focuses

on distinguishing normal background features in the macula from drusen or other

anomalies. This approach has been taken in previous work [50, 65, 87, 98].

In the detection algorithm that we propose, dimensionality reduction and fea-

ture enhancement is achieved by use of the Laplacian Eigenmaps (LE) of Belkin and

Niyogi [2], and classification is done via vectorized matched filtering (VMF). The

Laplacian Eigenmaps algorithm is an example of so called kernel-based techniques,

which have many forms of utility [6, 24, 41, 58]. In [87], for example, Rajapakse

applies them to a multitude of biomedical applications such as microarray gene ex-

pression data for nonlinear gene cluster analysis. Our motivation to use a spectral

technique such as LE lies in the fact that given multispectral retinal imagery, LE

has the capability to indirectly segment the multispectral information into coherence

classes of pixels with similar spectral behavior. As such, it avoids the pitfalls of mixing
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models that rely on presence of pure pixels, i.e., pixels that contain only one feature

or class, in the image. The information obtained by applying the LE algorithm then

takes the form of images formed by the eigenvectors of the Laplace operator defined

on the data graph. By correlating spectral information, LE provides us with a way to

select the most significant eigenvectors, i.e., the eigenvectors that emphasize anomaly

structures. In other words, we exploit the capability of the LE algorithm to pro-

duce vectors (or images) that visually emphasize the locations of anomalies in retinal

images.

We apply two matched filtering-based algorithms, Overlapping-detections Matched

Filtering (OMF) and Vectorized Matched Filtering (VMF), to the Laplacian eigen-

maps. The first, OMF is mainly used for comparison purposes. In OMF, filtering

and detection are applied to each individual image, and then the anomaly detections

are chosen as those that match in most images. In VMF, the filtering is applied to

all eigenimages at once and the average response is used for a single detection. Our

results demonstrate that VMF is superior in performance and hence, that operating

on the retinal images or retinal eigenimages as data cubes is the better approach.

Our work is presented as follows. In Section 4.2, we give a review of Laplacian

Eigenmaps and matched filtering. In Section 4.3, we describe our approach to anomaly

detection using a Laplacian Eigenmaps algorithm (LE) followed by matched filtering-

based algorithms (OMF and VMF). In Section 4.4, we outline the preparation of the

images and explain the implementation of our method. In section 4.5, we present and

discuss our results. Finally, in section 4.6, we summarize this work and give some

ideas for future research.
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4.2 Background

We begin with a review of Laplacian Eigenmaps, and make the connection with other

kernel-based algorithms as well as diffusion semigroups. We follow with a review of

matched filtering.

4.2.1 Laplacian Eigenmaps

Suppose that we are given the set of vectors X = {x1, · · · xN} ⊂ RD, where D

is large. We want to find vectors Y = {y1, . . . yN} ⊂ Rd , where d << D, such the

important information in the original data X is retained in Y . We assume that the

data set X is sampled from a manifold M embedded in RD.

The steps of the LE algorithm are the following:

1. Adjacency matrix construction.

Given N vectors of dimension D, we construct an adjacency graph G that represents

the data with nodes (or vertices) formed by the data vectors, and with edges that

represent the distances between the nodes that are defined to be “close”. There are

two ways of establishing the notion of closeness for this neighborhood construction.

In both cases, we start by computing the Euclidean distances between all pairs of

points xi, xj, i, j = 1, . . . , N . Then, one option is to define two nodes as connected

by an edge if the Euclidean distances between them is less that some pre-defined,

fixed ε. Although this option is geometrically intuitive, it can be difficult to choose

an appropriate ε, and it often yields disconnected graphs. In our work, we use the

second option: the k-nearest neighbors method. Here, the nodes are connected

102



if xi is among the k nearest neighbors of xj or vice versa. The main advantage of

k nearest neighbors is that it is simpler to choose k and we have more control over

the degree of connectivity of our graph. Also, just as with the first option, we have a

symmetric relationship.

All the information for the graph G is stored in an adjacency matrix A.

2. Heat kernel as weights.

The adjacency matrix A is modified by assigning weights to the edges of the graphs.

Let σ > 0 and weight the edges of the graphs using the heat kernel as follows

wi, j =


e
−‖xi−xj‖

2

σ if i and j are connected,

0 otherwise.

(4.1)

Now, note that by using this type of weights, we would need to determine the appro-

priate σ. Although they are simpler alternatives (for e.g., setting wi, j = 1 if xi and

xj are connected by an edge and wi, j = 0 otherwise), which avoids choosing σ, the

heat kernel is a better option from a geometrical point of view. Indeed, the Laplace

operator that we define next, based on these weights, is analogous of the Laplace

Beltrami operator on manifolds, whose eigenfunctions have properties desirable for

embedding. For a complete discussion on the geometric implications choice as well as

the relation between heat flow and the Laplace Beltrami operator on manifolds, refer

to the original paper [2].

3. Minimization problem.

We define a diagonal matrix D such that di, i =
∑
j

wi,j and consider the minimization
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problem

min
yTDy=I

1/2
∑
i, j

‖yi − yj‖2wi, j = min
yTDy=I

trace
(
ytLy

)
, (4.2)

where L = D − W : d × d Laplace operator and I: identity matrix. Assume that

the graph G is connected. The Laplace operator is a symmetric, positive semidefinite

matrix that can be thought of as an operator on functions defined on vertices of G.

For yTDy = I, we solve the minimization problem by noticing that it is equivalent to

finding the d minimal eigenvalues solutions of

Lξ = λDξ. (4.3)

Hence, the Laplacian eigenmaps are the eigenvectors of the matrix L. We order the

eigenvalues from lowest to highest, 0 = λ1 ≤ λ2 ≤ . . . ≤ λN−1, and let ξ0, . . . ξN−1

be the corresponding eigenvectors. We ignore the eigenvector ξ0 corresponding to the

eigenvalue x0 = 0 and use the next d eigenvectors as coordinates for the d-dimensional

embedding Euclidean space.

Laplacian eigenmaps in the context of Kernel Methods

In [59], the authors show that all kernel-based techniques, such as Diffusion

Maps and Laplacian eigenmaps are just special cases of kernel PCA [91]. The follow-

ing summary appeared in [26].

In kernel eigenmaps techniques, the goal is to find the solution to the optimiza-
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tion problem

min
f
{Q1(f)}, (4.4)

subject to Q2(f) = 1 (4.5)

where Q1(f) =
∑

x∈X Qx(f). Here, Q2 and {Qx, x ∈ X} are symmetric positive-

definite quadratic forms acting on functions f defined on X. The forms Qx measure

local variations of f and the form Q2 are defined to normalize f . For example, in the

Locally Linear Embedding (LLE) method [40], Qx is the squared norm of difference

between the vector x of points in X and the vector f which contains the weighted

average of the neighbors of each x in x. The functions f are local in the sense that

for points lying outside a predefined neighborhood of each point, the weights are set

to 0. The normalization Q2 is given by the fact that the weights of all points in the

neighborhood of x sum up to 1.

It is very easy to see that, setting f = y, Equation (4.2) gives Q1(f) and

Q2(f) = 1 is the same as yTDy = I.

Laplacian Eigenmaps and Diffusion methods

In Chapter 3, we defined symmetric diffusion semigroups on a graph or manifold

3.14. Now, the Laplacian L = D−W meets all diffusion semigroup properties except

for contraction, so its powers do not define a symmetric diffusion semigroup. However,

powers of the closely related normalized Laplacian, D−1/2(I −W )D−1/2 generate a

symmetric diffusion semigroup in a discrete setting. In [87], it is shown that the

Fourier eigenvectors in diffusion maps is just the same as the eigenvectors obtained in
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Laplacian Eigenmaps, except for the fact that the former are weighted with respect to

the eigenvalues of the transition matrix P associated with the Markov chain defined

on the data set.

4.2.2 Matched Filtering

In signal processing, matched filtering is used to detect the presence of specific ele-

ments in an unknown signal using an appropriately designed linear filter. Matched

filter are such that the transfer (or impulse response) function which processes a re-

ceived signal minimizes the effect of noise [85]. Matched filtering can therefore be

very useful in biomedical applications which are often characterized by low signal to

noise ratio (SNR) [63]. Vinodh Rajapakse, Zachary Rom and Jonathan Franck have

already tackled the detection of drusen using matched and we are grateful for their

insight and base codes.

Let us define this problem in more technical terms. We consider the detection

of an arbitrary 1-D real discrete-time system signal s(t). Although the term signal

usually has that connotation, we make the explicit assumption that s(t) is finite-

energy, i.e., s(t) ∈ L2 (R). To ensure that ŝ(t), the Fourier transform of s has a

well-defined inverse, we make the further assumption that L2 (R) ∩ L1(R). Now, let

s(t) have the form

x(t) = y(t− t0) + n(t), (4.6)

where for t ∈ R, y(t) is the signal (or pulse) that we want to detect, n(t) is noise, and

A and t0 is an unknown propagation time delay constant. In general, the output of
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a matched filter is a sharp peak in response to the presence of the desired signal (or

pulse) at its input. Using this peak, we can find the time t0, and amplitude A of the

signal within the input. First, let’s go through some terminology.

Consider an arbitrary signal x(t) as defined in (4.6) and recall that the Fourier

transform of a function f(t) ∈ L2 (R) is given by

f̂(ω) =

∫
R
f(t)e−2πωtdω.

The filter output x0(t) when x(t) passes through the filter h(t) is given by

x0(t) = x(t)⊗ h(t) :=

∫
R

x̂(ω)ĥ(ω)ejωtdω, (4.7)

i.e., by the inverse Fourier transform of x̂(ω)ĥ(ω). By linearity, we immediately have

x0(t) = y(t)⊗ h(t) + n(t)⊗ h(t).

We will denote the output signal component y(t)⊗h(t) as y0(t) and the output noise

component n(t)⊗ h(t) as n0(t). Then the peak output signal to noise ratio (SNR) is

defined as

SNR =
|y0(t)|2

|n0(t)|2
, (4.8)

where |n0(t)|2 is the average noise power.

Now, we can define the matched filter.

Definition 4.1. Given a finite energy signal x(t) defined as in (4.6), a matched filter

hMF (t) (or ĥMF (ω)) is a linear filter that maximizes the peak SNR at its output x0(t)

at some specified instant td relative to t0.
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We will omit the formal details of the derivation, which can be found in, e.g., [62],

[51] and arrive directly at the conclusion: the SNR is maximized when

ĥMF (ω) = k
x̂∗(ω)

r̂n(ω)
e−jωtd , (4.9)

where k is some arbitrary constant and r̂n(ω) is the Fourier transform of the auto-

correlation function of the noise:

rn(τ) =

∫
R
n(t)n∗(t− τ)dt.

If we assume that the noise is Gaussian, then r̂n is constant. Then, HMF (ω) =

kX∗(ω)ejωtd and using inverse transform, we have hMF (t) = kx∗(−t + td). Assume

without loss of generality that k = 1, td = 0 (matched filter with zero-delay). More-

over, we are only interested in real valued signals, therefore we finally have

hMF (t) = x(−t). (4.10)

This equation means that the impulse response of our filter is exactly a reversed copy

of the transmitted signal. In practice, a series of filters, which we call templates, are

correlated with an unknown signal. Components of the templates yielding “high”

correlation coefficients will be retained as components of the signal.

It is fairly obvious to extend the above concept to a higher dimensional, discrete

case, and in particular to our 2-D case. Suppose that we form a template image T of

size p×q. We compute the normalized cross-correlationNCC of the matrices template

and each of our images, yielding a matrix that contains correlation coefficients. For
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each pixel I(x, y) in the image I, the correlation coefficient is given by

NCC(x, y) =

p∑
i

q∑
j

I(x+ i, y + j)T (i, j)√
p∑
i

q∑
j

|I(x+ i, y + j)|2
√

p∑
i

q∑
j

|T (i, j)|2
. (4.11)

We use the absolute values of this NCC matrix as the response matrix for each of

our image. The methods that we describe in Section 4.3.2 will combine these filter

responses from different images in two different ways.

4.3 Methodology

4.3.1 Feature Extraction using Laplacian Eigenmaps

The first part of our method consist in just applying the Laplacian eigenmaps algo-

rithm as described in Section 4.2.1 to the set of images provided by the NIH.

Figure 4.1 provides an example in which the Laplacian Eigenmap algorithm is applied

to a set of retinal images and illustrates how the eigenimages make the anomalies more

obvious.

4.3.2 Classification using Matched-Filtering-based Algorithms

Consider that we have a number of images of the same eye and perform matched

filtering for each of them as described in Section 4.2.2. We integrate the responses in

two ways.
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Figure 4.1: One of the original images in the green band and four eigenimages. Note that
the eigenimages enhance the appearance of structures in the retinal images, pointing to
the possibility of distinct anomaly spectral signatures. For example, the eigenimage on the
second row, left, we can distinguish two classes of anomalies and the eigenimage the third
row, right, emphasizes only structures with large dark centers surrounded by a thin contour
with white fluffy appearance.
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Overlapping-detections Matched Filtering (OMF)

We perform matched filtering for each image, identify detections for each individual

image separately by applying a threshold to keep more significant correlations, and

then keep the detections which overlap in an arbitrary number of images. The idea

behind this method is that detections that persist across bands are less likely to be

due to noise. The reason to keep detections present in a few images instead of all

bands is that our experiments have shown that while the former gives reasonable

results, the latter eliminates too many valid detections and is too sensitive to the fact

that one of the bands might have images of poor quality that yield poor detections.

Vectorized Matched Filtering (VMF).

We perform matched filtering for each image, but this time, the final matched filter

correlation matrix considered is obtained by taking the average of the correlation ma-

trices across all images and applying a threshold to keep more significant correlations.

The idea behind this method is, on one hand, that correct detections will lead to large

correlations across all images and on the other hand, noisy detections will be more

likely to produce small correlation coefficients in some images. Thus, the average

response of the noisy pixels will be insignificant. In other work, the identification of

anomaly in retina images was done via segmentation coupled with image enhance-

ment approaches [70], [71]. Those classification techniques focus on single images,

while with VMF, we are able to systematically incorporate all the information in all

bands or eigenvectors at once.
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4.4 Implementation

4.4.1 Image Preparation

One big part of our work is to turn the autofluorescence retinal images provided by

the National Eye Institute (at the NIH) into data viable for the implementation. We

begin with blue, green, and yellow AF images of the human retina. These colors are

chosen for their ability to capture and absorb different chemicals. This was done in

the following steps:

1. Registration

We register the 9 images of each eye (3 per color band, each of them with three RGB

components) in order to determine the overlap between them and produce a common

coordinate system. This is an extremely important step as misregistration can lead

to translational, scale and rotational differences and hence, lower the performance of

our algorithm.

2. Alignment

After registration, we manually crop the images to a uniform size with an attempt

to maintain consistency within a patient’s eye image set. Following this, we align

the images for each eye in order to generate a correspondence across the images.

The images obtained after alignment have the same size and uniform overlap. The

registration and alignment was done using the software i2k Align from DualAlign.

3. Vessel Mask

We create a mask of the image in order to remove contribution from the blood vessels,

as they are otherwise selected by the detection algorithm as anomaly. Retinal vessel
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extraction is in its own right a very active research area, and the results produced are

quite impressive.

(a) One blue band compo-
nent

(b) One green band compo-
nent

(c) One yellow band com-
ponent

(d) Vessel Mask

Figure 4.2: Blue, green, yellow autofluorescence images and corresponding vessel mask
obtained using a simple vessel tracing technique with MATLAB commands ginput and
roipoly.

In [39] for example, the authors develop a variational technique that approxi-

mates measured scanning laser ophthalmoscope image sets optimally within the range

of the bleaching model. This technique is robust to noise and has consistent numerical

results despite the differences in the variational settings. Other state of the art meth-

ods can be found in [92], [80] or [20], and [69] gives a useful survey of this topic. Here,

we got the original idea to obtain our retinal vessel mask using a few simple steps in

MATLAB. First, using the command ginput on a retinal image, we trace around the

most visible vessels section by section. For each section, ginput returns the pixels
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coordinates. We gather all the data points and use the command roipoly to create

a polygon encasing these vessels. roipoly returns the binary image that we use as

a mask for filtering. Figure 4.2 shows an example of one of the vessel masks created

by using this method. Our method for creating vessel masks presents the advantage

of being computationally efficient, avoiding complicated algorithms and the use of

supplementary software. However, it is clearly not as precise as more sophisticated

schemes. The most obvious weakness of our vessel extraction method can be seen in

Figure 4.3, where most of incorrect detections lie on or near the small vessels that we

did not capture in the vessel mask. As the purpose of this work is to focus on the

role of nonlinearity and joint vector-valued analysis of retinal multispectral imagery,

a simple (even if somewhat underperforming) method for vessel mask creation allows

us to clearly separate and attribute the resulting artifacts.

Algorithm for vessel mask creation

// Input: grayscale retinal image img

// Output: binary colored vessel mask: mask

% Display image

display(img) ←− imshow(IMG)

% Trace around points x, y around vessels.

x, y ←− ginput(cursor entries)

% Return region(s) of interest specified by the polygon described by points x, y.

mask ←− roipoly(img, x, y)
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4.4.2 Anomaly Detection

Our data set is made of the images obtained after registration et alignment of

the retinal images of 3 patients. We picked these patients from a larger data set

provided by the NIH based on the following criteria. First, we selected patients with

a complete set of images in each band, ideally for both eyes. Second, their retinal

images had to show significant levels of anomalies. Third and last, we wanted the

anomalies to have different appearance, i.e., different shape and texture.

Laplacian Eigenmaps

For each patient, we crop the images to obtain smaller images of identical sizes m×

n × 3 and then convert the images into grayscale m × n matrices. In the LE step,

we vectorize these matrices to obtain D = mn vectors in 9-dimensional space. We

computed the LE using Laurens van der Maaten’s Dimension Reduction Toolbox,

which containing MATLAB implementations of several techniques for dimensionality

reduction, some of which were optimized by Cloninger, Doster and Halevy. For the

first patient, whom we will call Patient 1, the images were of size 325× 350, and for

the last two patients, Patient 2 and Patient 3, the images were of size 425 × 350.

Hence, the set dataset is made of 113750 vectors in 9-dimensional space for Patient 1

and 148750 in 9-dimensional space for Patient 2. As we mentioned in the algorithm

description, we choice of the parameters σ and k is key. For the parameter σ, we tried

10 values in several order of magnitude. Due the increase of computational cost as k

increases, we tried 7 values between 5 and 100. The eigenimages shown in Figure 4.1

were obtained for σ = 1, k = 30.
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Template creation

Our first algorithm step in the implementation step is the creation of templates. We

rely on the following properties of drusen or anomalies in retinal images:

• The drusen or other anomalies usually have circular or ellipsoid shapes whose size

does not vary significantly for an individual patient but varies significantly across

patients.

• The centers of drusen or other anomalies have lower reflectance compared to other

retinal surfaces, and therefore they appear darker relative to the background. How-

ever, this reflectance is comparable to that of the vessels or the fovea, which is the

darkest part located in the centre of the macula. Therefore, we “remove” detections

located on the vessels and fovea using the vessel masks.

Based on these observations, we produce a series of templates containing circles and

ellipsoids of various sizes. We localize anomalies in the eye image of different patients,

and then determine the approximate “radius,” in pixels, of an anomaly. To account

for different orientations, we rotate our templates by various angles between 0 and

π. In our experiments, we determined that 12 rotation angles provide more than

enough variations for the template orientation. Then, for each image, we compute

the correlation with the different templates using the MATLAB routine normxcorr

and retain the maximum response.

Thresholding and Detection

The term ”detecting” anomalies precisely means determining their locations (or im-

age coordinates). In our algorithm, given a maximum response matrix (correlations
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retained after matched filtering), we first apply a threshold coefficient r to elimi-

nate false detections due to some background elements that produce high correlation

responses. Then, we get an intensity ranking by sorting responses by descending

values. Following this ranking, we exclude responses that are in the neighborhood of

a correlation “peak.” At this stage, the radius of the neighborhood was defined by

visual approximation of the anomaly size; we will propose an improvement of this

method in the discussion. Note that the optimal threshold coefficient r∗ is obtained

by selecting a value that results in the most “reasonable” detections as determined

by visual inspection. Figure 4.3 illustrates the process of determining the best r∗

among the values r = 0.50, r = 0.67 and r = 0.75 for Patient 3. Here, one can see

that r = 0.67 is the best since, on one hand, the extra detections (represented by the

minus markers) obtained using r = 0.50 are mostly false detections, and on the other

hand, using r = 0.75 excludes many valid detections. The optimal r is chosen as

the highest value of r that strikes a good balance between maximizing the number of

detections while minimizing the number of false detections. This optimal parameter

depends on each patient and on the methods used for detection; in our experiments,

we found that 0.60 ≤ r∗ ≤ 0.70.
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(a) Detections at r = 0.50
versus 0.67: the minus
markers are detected at r =
0.50 and not at r = 0.67

(b) Detections at 0.67. (c) Detections at r = 0.67
versus 0.75: the minus
markers are detected at r =
0.67 and not at r = 0.75

Figure 4.3: Variations of detections using different correlation thresholds.

To compare two methods in terms of matching or differing detections, or to

determine if two detections overlap in OMF, we need to define a search neighborhood.

Indeed, if we only match using identical pixel coordinates for the detection, we would

not account for noise effect or slight variations in eye images that yield correlation

peaks with slightly different coordinates which actually point to the same anomaly

locations. So, for each correlation peak corresponding to a detection, in order to

determine if detections overlap, the search neighborhood’s radius for matching pixels

is the same as the radius of exclusion from the neighborhood of a correlation “peak”.

All the processing was performed using MATLAB R2014b on a Mac. OS X

10.10.
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4.5 Results and Discussion

4.5.1 Detection in Absence of Added Noise

For all our results, any image containing only plus markers shows anomaly detec-

tions in this image. More precisely, these markers represent the anomalies’ centers

detected. In order to visually compare the effectiveness of different methods or differ-

ent parameters, two images are created to track the anomaly centers detected by one

method but not by the other. In these images, the plus markers in both images denote

the anomalies detected by both methods while the minus markers denote anomalies

detected by one method and not by the other.

First, we discuss the effect of the heat kernel and nearest neighbors parameters,

respectively, σ and k on the quality of Laplacian eigenmaps. As noted in [2], there is

not yet a principled way to choose the heat kernel. Although the authors attempt to

demonstrate the relation between the choice of σ and the k, there is a lot that still

needs to be done in that area. We will proceed mostly by trial and error. For low val-

ues of σ (0.1, 0.2), the Laplacian eigenmaps show very little structure. This is because

the exponents in the heat kernels become large and all points are basically treated

as far apart. Starting from σ = 1, we notice that the value of σ has very little effect

on the images produced. The color scheme may change, but the structures present

in the eigenimages do not. One way to improve this experiment could be to design

an experiment to pick σ based on the distribution of the pixels. To pick k, we adopt

the convention that the larger the number of pixels, the higher (although not at all

proportionally) the number of nearest neighbors. For k small, there eigenimages have
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little structure, but for larger k, the features are enhanced. Since the computational

cost increases with k, we picked the smaller value in our experiments for which the

eigenimages are almost similar to those at higher k.

Next, we compare the matched filtering algorithms. We observe that VMF

performs better than OMF when each is applied to the original images across all

bands and then to the Laplacian Eigenmaps. The results are shown in Figures 4.4

and Figures 4.5, respectively, and summarized in Table 4.1. Given an optimal r∗ for

each method, Table 4.1 shows that VMF is able to maximize the number of correct

detections and, when preceded by LE, yields a relatively low number of both false

detections or missed detections, which we will henceforth refer to as false positives and

true negatives, respectively. In particular, when OMF and VMF are preceded by LE

(Figure 4.5), VMF clearly gives the best results with the highest number of correct

detections and hence, lowest number of true negatives. The fact that OMF performs

poorly when applied to Laplacian eigenimages is due to a mismatch in treating a joint

data cube with a method that treat individual slices only. Each eigenimage in the

joint data cube tends to highlight different structures and hence, there is little chance

of overlapping detection. Now, observe that although the number of false positives is

still significant, the ratio FP/C is the second lowest. Since most of the false positives

occurred around vessels, we believe that with a more enhanced algorithm to create

vessel masks, we will significantly lower this FP/C ratio. Table 4.1 gives detection

results for only one patient, but these results are consistent with those obtained for

other patients.
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Table 4.1: Performances of OMF versus VMF

Type of Detections OMF VMF LE-OMF LE-VMF

Correct (C) 16 18 11 21

True Negative (TN) 6 4 11 1

False Positive (FP) 11 19 4 11

Rate of Correct anomaly Detection (R) 73% 82 % 50 % 95 %

Table 4.1 also shows the fact that the LE-VMF works better than VMF alone.

As expected, the Laplacian eigenmaps are able to enhance the differences between

anomalies and other parts of the retinal images. We also found that, when the

eigenimages are chosen carefully, LE-VMF is less sensitive to changes in r. We picked

an average of 4 eigenimages per patient. Note that, for each patient, the optimal r∗

for LE-VMF is also the highest, hence, we have more certainty in the validity of the

detections.

We can evaluate the performance of LE in preserving specific features of the

data set by comparing its performance to one of the most highly acclaimed dimension

reduction methods, Principal Component Analysis (PCA). Briefly, PCA can be used

to simplify the analysis of high dimensional data sets (e.g. for data compression,

visualization). It is a linear transformation that creates a new orthonormal basis for

the data set. We will refer to the vectors of the PCA basis as the principal components.

The PCA vectors are ordered such that the greatest variance of the data projection

is contained in the lower order modes (first vectors) while the data variance residuals

are contained in the higher order modes. In this way, PCA separates the data’s

important dynamics from redundant ones [61].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison of OMF and VMF performed on original images. For each patient,
in both images the plus markers are the common detections. In the left images, the minuses
mark the detections by OMF that were not detected by VMF and vice versa in the right
images. VMF is able to pick up more anomalies, but both methods have a high rate of false
positive.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Comparison of OMF and VMF performed on Laplacian eigenimages. For each
patient, in both images the plus markers are the common detections. In the left images,
the minuses mark the detections by OMF that were not detected by VMF and vice versa
in the right images. VMF performs a lot better than OMF and the rate of false positive is
lower.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Comparison of PCA and LE as anomaly enhancing schemes. For each patient,
in both images the plus markers are the common detections. In the left images, the minuses
mark the detections by PCA-VMF that were not detected by LE-VMF and vice versa in
the right images.
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Table 4.2: Performances of VMF applied to principal components versus Laplacian eigen-
maps.

Type of Detections PCA-OMF LE-VMF

C 16 21

TN 6 1

F 22 11

R 73 % 95 %

The principal components are found by computing the eigenvectors of the covariance

matrix of the data zero-empirical mean. Figure 4.6 shows the performance of VMF

on principal components versus VMF on Laplacian eigenmaps, and the detections for

Patient 3 are summarized in Table 4.2.

For Patient 3, it is clear the LE-VMF performs better, but on other patients,

for example, Patient 1, in which anomalies are less clear, LE-VMF seems to be hy-

persensitive and yields a lot of many false positives. However, this hypersensitivity

becomes an advantage when different types of anomalies are mixed, for example, for

Patient 2. In general, if we ignore false positives occurring in both cases because of

our less than optimal vessels mask, the common detections of LE-PCA are correct.

We can therefore think of a possible hybrid of LE and PCA for better detection.

4.5.2 Detection in Presence of Added Noise

Finally, we study how the presence of added (or artificial) noise can affect our results.

To study the effect of noise on the performance of different algorithms for retinal im-

ages analysis, the standard choice is white Gaussian, [94], [76], [99]. We will therefore

use white Gaussian noise w, with the added advantage that this is the assumption for
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the type of noise in the matched filtering algorithm. Next, to decide which amount

of noise to add to the images, we use the SNR. Since many signals have a very wide

dynamic range, SNRs are often expressed using the logarithmic decibel scale. The

SNR is measured in decibels as [78]:

SNRdB = 10 log10 SNR.

As we mentioned earlier, biomedical images are characterized by low SNR, there-

fore, we will use Gaussian noise such that we have relatively low SNR. As imaging

procedure vary significantly, we could not find a typical (good) SNR for autofluores-

cence images. We therefore set the baseline at the approximate SNR value for our

image. SNR estimation is in its own right a very active field (add reference). In this

work, we simply use the native MATLAB function snr and found that the SNR of

our image is about 30 decibels. So we evaluate our performance for SNR at 15dB,

20dB, 25dB, corresponding to noise variance of 2.5× 10−4, and 8× 10−5, 2.5× 10−5,

respectively. Table 4.3 summarizes our findings. Overall, as can be expected, all the

methods give less accurate detections in the presence of noise, but LE-VMF again

outperforms all the other methods. Note that both methods involving classification

in eigenimages instead of the original images perform better on all criterial. Another

note is that PCA-VMF does best in terms of eliminating false positive, which rein-

forces our opinion that a hybrid method might work well. During the experiment, we

observed that, in presence of noise, all the methods became a lot more sensitive to

the choice of r∗. Since we analyzed only a few subjects, this was not a major issue,

but in the future, when we will study much larger sets of images, we will need to
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create a more “intelligent” way of determining this optimal r.

Table 4.3: Performances of different algorithms in presence of added noise.

SNR Type of Detections VMF PCA-VMF LE-VMF

25 dB

C 16 17 19

TN 6 5 3

FP 22 8 10

R 73 % 77 % 86 %

20 dB

C 14 18 19

TN 8 4 3

FP 10 9 17

R 64 % 68 % 86 %

15 dB

C 10 14 15

TN 12 8 7

FP 7 3 7

R 45 % 64% 68%

In general, one area that would need improvement is eliminating false positives.

We have a few ideas to do this. As we mentioned earlier, a number of far more

sophisticated algorithms exist for more accurate retinal vessel extraction. Although

these methods can be computationally inefficient, we expect that they could improve

our final detection results significantly. Decreasing the number of false positive can

could be also done by designing an automated thresholding scheme that would dis-

criminate enhanced anomaly from other background elements. This would have the

added advantage of further automating the detection process.
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4.6 Conclusion

We have introduced a new method for automated detection of anomalies in autofluo-

rescence retinal images. Our method takes advantages of the ability of LE to enhance

the appearance of drusen or other anomalies in the images, before applying VMF.

As a classification method, VMF treats the images as a data cube by averaging the

matched filter responses over all the images. In this way, VMF gives more accurate

results than a matched filtering algorithm such as OMF, which considers the common

detections results from the filtering responses of individual images. Although LE is

a nonlinear method and is relatively computationally expensive than say PCA, it

is computed only once on the images and vastly outperforms PCA. Combined with

VMF, which is linear and therefore, fast, our algorithm ends up with computational

simplicity in addition to effectiveness in detection. Possible improvements could be

attained by using a better vessel mask and templates made by a doctor-sanctioned

approximation of real drusen shapes. For complete automation, in addition to a pre-

cise thresholding scheme, we could design a way of picking eigenimages with the most

features without having to look at the images individually. We can also construct

anomaly enhancements hybrid methods involving LE, PCA or experiment with other

kernel-based methods. In particular, it would be interesting to study the performance

of LE versus the Fourier basis and wavelets algorithms discussed in Chapter 3 and

make a comparative analysis of these kernel-based methods.

A major goal of this work is also to establish a foundation for VMF analysis of

Schrödinger Eigenmaps (SE), a semi-supervised version of LE. SE has been success-

128



fully applied to retinal multispectral data, see [29]. Our present method provides a

groundwork for combining SE with vectorized matched filtering, in an effort to create

a tool which will aid experts in the quantitative analysis of specific types of drusen

such as hard versus soft or retinal versus reticular.
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