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The first part of the dissertation is a Monte-Carlo study of the small sample

properties of various estimators of the parameters of single equation model with

a spatially lagged dependent variable and a spatially lagged disturbance term.

We focus on the small sample behavior of the maximum likelihood estimator

(MLE) and spatial instrumental variable (IV) estimators. These IV estimators

are feasible spatial two-stage least squares (FGS2SLS) and series estimators which

were suggested by Kelejian and Prucha (1998, 2001), the best GS2SLS estimator

which was suggested by Lee (2000).

The findings indicate that the finite sample properties of the IV estimators

are almost identical. Furthermore, the advantage of the ML estimator over the

spatial IV estimators is very limited or nonexistent in most of the cases con-

sidered. These results have important implications in terms of efficiency and

computational feasibility of these estimators.



The second part analyses the importance of alternative channels of contagion

during the Asian, Russian and Brazilian crisis episodes. We consider four con-

tagion channels relating to the extent of trade, financial links through common

lenders (bank lending channel), similarity in risk, and neighborhood effects.

In order to assess the significance of each we apply a spatial modeling tech-

nique to weekly stock market returns of a cross-section of countries. The paper

improves upon previous contagion studies with similar methodology in two as-

pects. First, the parameters of the model are estimated by a consistent procedure.

This clearly leads to more reliable inferences. Second, we use a data set involving

a larger sample of countries. This should alleviate some of the potential sample

selection biases inherent in previous studies.

The results indicate that (a) the bank lending channel was important in all

three crisis episodes, (b) the trade channel was relevant in the Russian and Brazil-

ian crisis episodes, but not in the Asian crisis, (c) there is some evidence of the

risk similarity channel during the Asian crises, but not in the Russian and Brazil-

ian crises, (d) neighborhood effects were important in all three crisis episodes.

Furthermore, there is an evidence of negative trade spillovers from Japan during

the Asian crisis.
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Chapter 1

Introduction

The recent years witnessed a growing interest in econometric models that account

for spatial interactions. They have been applied to police expenditure (Kelejian

and Robinson (1992)), spatial price competition (Pinske, Slade and Brett (2001)),

spending by jurisdiction (Case, Hines and Rosen (1993)), housing prices (Bell and

Bockstael (2000)). Theoretical estimation of these models has been developed by

Kelejian and Prucha (1998, 1999, 2001), Lee (1999a), Ord (1975), Pinske and

Slade (1998). The theoretical results obtained by these authors relate to large

samples. The purpose of the first part of the thesis is to study small sample

properties of the suggested estimators.

The second part of my dissertation relates to the empirical application of spa-

tial models to study the issues of contagion in international financial markets. In

particular, the focus of the study is on the channels of contagion. Understand-

ing the channels of contagion is important for economic policymaking and crisis

prevention.

The organization of the dissertation is as follows. Chapter 2 considers the

small sample properties of various estimators of the parameters of single equa-

tion model with a spatially lagged dependent variable and a spatially lagged

1



disturbance term. Chapter 3 explores the importance of alternative channels of

contagion during several crisis episodes. Chapter 4 is the appendix to chapter 2.

Chapter 5 is the appendix to chapter 3.

2



Chapter 2

Finite Sample Properties of Estimators of

Spatial Autoregressive Models With

Autoregressive Disturbances: Further Results

2.1 Introduction

In cross-sectional and panel data studies units under consideration often interact

with each other in such a way that spatial correlation or spatial spill-overs result.

This correlation or spill-overs could relate directly to the dependent and inde-

pendent variables involved, as well as to the error terms. Neglecting the presence

of such spatial interactions could lead to inefficient or even inconsistent estima-

tors of the model parameters. Very often such problems are exacerbated by the

short time dimension of the data. In such cases traditional methods of estimation

(OLS, SUR, fixed and random effects estimators) are not able to account for these

effects. For this reason spatial modeling techniques have been developed. Using

these techniques relationships involving various forms of spatial correlations and

spatial spill-overs can often be estimated with just a single cross section of data.

In contrast, as an example, an SUR approach would typically require T cross
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sections of data, and the corresponding large sample properties would be based

on the assumption that T →∞.
Spatial correlations can be found in a wide variety of empirical models. As

one example, the activities of one bank may have an effect on the stability of

its partners and, subsequently, on the performance of other banks (Allen and

Gale (2000)). As another example, the spread of balance of payments crises

across countries, the phenomena called contagion, is directly related to the inter-

actions between countries through different channels such as exposure to a com-

mon lender, trade links etc. (Calvo and Reinhart (1997), Kaminsky and Reinhart

(2000)). As still another example, decision of state and local governments on the

level of public expenditure, taxes and tariffs, to a large extent depends on the

decisions of neighboring jurisdictions (Besley and Case (1995), Brueckner (1998),

Case, Hines and Rose (1993), Shroder (1995), Stigler (1957)).

Spatial models typically cope with issues relating to spatial spill-overs in three

ways, namely, by modeling such spill-overs involving the dependent variables, the

predetermined variables, and, finally, the disturbance term. In order to be able to

estimate such models in terms of a single cross-section, a great deal of structure

is imposed on the relationships involved.1

In the early literature the prevalent technique of estimation of spatial models

was maximum likelihood (ML). However, later studies showed that this method is

computationally imprecise in large samples. As a result, a new computationally

simpler method, namely the generalized spatial two stage least squares method,

was developed by Kelejian and Prucha (1998). In still later studies a more asymp-

1For a general review of spatial models see Anselin (2001), Cliff and Ord (1973, 1981), and

Cressie (1993)
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totically efficient version of this method was suggested by Lee (1999a), and also

by Kelejian and Prucha (2001). The suggestion in Lee (1999a) as well as in

Kelejian and Prucha (2001) relate to the instruments used in the procedure.

To date, results relating to the small sample properties of these variations of

the original generalized spatial two stage least squares procedure are not available

in the literature. The purpose of this thesis, therefore, is to fill this gap via Monte-

Carlo techniques. In doing this we will follow the strategy of Das, Kelejian and

Prucha (2003) who investigated the small sample properties of the generalized

spatial two stage least squares.

This paper is organized as follows. Section 2.2 provides a review of spatial

models. Section 2.3 presents a general specification of a single linear equation

model with spatially lagged dependent variable and the error term. Section 2.4

describes the estimation techniques which include the maximum likelihood pro-

cedure and the generalized spatial two stage least squares procedure proposed by

Kelejian and Prucha (1998). Section 2.5 introduces modifications of the gener-

alized spatial two stage least squares method suggested by Lee (1999a), and by

Kelejian and Prucha (2001) Section 2.6 describes the iterated versions of the con-

sidered estimators. Section 2.7 introduces the design of Monte Carlo experiments.

Section 2.8 discusses the results. And, finally, Section 2.9 concludes.

2.2 Review of Spatial Models

2.2.1 Weighting matrix

The key component of spatial models, which captures interactions among units,

is a square weighting matrix whose dimension is equal to the sample size . The
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elements of the weighting matrix are designed to select units that are related to

each other in a meaningful way. Such units are considered to be neighbors. More

specifically, the i,j-th element of the weighting matrix (wij) describes the extent

to which the i-th unit is related to the j-th unit. This relation could reflect the

presence of spill-overs, externalities, similarity of markets etc. In other words, it

captures the effect of some characteristics of unit j on unit i.

Another important feature of the weighting matrix is that its diagonal ele-

ments are equal to zero. This is essentially a normalization of the model; it can

also be interpreted as indicating that a unit cannot be a neighbor of itself.

As an example consider the (simple) model:

y = b0 + b1x+ b2Wx+ ε, (2.1)

where y is an n×1 vector of observations on the dependent variable, x is an n×1
vector of observations on an exogenous variable, W = (wij) is an n×n weighting
matrix with zero diagonal elements, and ε is a disturbance vector whose elements

are i.i.d. (0,σ2). This model can also be written in the scalar notation:

yi = b0 + b1xi + b2

NX
j=1

wijxj + εi, i = 1, ..., N (2.2)

∂E (yi)

∂xj
= b2wij (2.3)

The model in (2.2) suggests that the value of the dependent variable corre-

sponding to the i−th unit is related to the values of the independent variables
corresponding to the i-th as well as to other units. For example from (2.3) it

follows that wij reflects the effect of xj on the mean yi. Note that without spatial

interaction between i-th and j-th units, the derivative in (2.3) would be zero for

i 6= j.
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The choice of the elements of the weighting matrix (wij) is specific to the

context of the empirical model. For instance, in many regional studies geographic

neighbors are the logical choice of neighboring units. As one example one could

take wij = 0 if regions i and j do not have a common border, and otherwise

wij 6= 0, otherwise (Kelejian and Robinson (1997), Shroder (1995)). In some

cross-sectoral studies the extent of this interaction, wij, is often measured by a

sector’s input shares of goods and services produced by the other sector (Conley

and Dupor (2003)).

In many studies the weighting matrix is row normalized in the sense that the

sum of the elements in every row is unity:
PN

j=1wij = 1, i = 1, .., N . Clearly,

in terms of the model above, if W is row normalized, yi relates, among other

things, to a weighted average of the exogenous variable corresponding to the

neighboring units. As a technical point we note that all the eigenvalues of a row

normalized weighting matrix are less than or equal to unity in absolute value.

The importance of this will become clear in Section 2.3.

2.2.2 Cliff-Ord models

The classical form of spatial autocorrelation was put forth by Cliff and Ord (1973,

1981) and had the following representation

yn = λWnyn + εn (2.4)

where yn is an n × 1 vector of the dependent variable, εn is an n × 1 vector

of disturbances whose elements are i.i.d.(0,σ2), Wn = (wij,n) is an observed and

exogenous n × n nonstochastic weighting matrix with zero diagonal elements,
and λ is a scalar parameter which is typically assumed to be less than unity in

absolute value.
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This model is a variant of the model that was originally suggested by Whittle

(1954) in the context of stationary processes on a plane. Cliff and Ord (1973,

1981) were the first to introduce this model in the regression analysis framework.

It was discussed further by Besag (1974), Hordijk (1974), Hordijk and Paelinck

(1976), Ripley (1981), and Ord (1975). More recent contributions include Anselin

(1988), Kelejian and Prucha (1999), Cressie (1993), Pinske and Slade (1998), Case

(1991), McMillen (1992).

In an analogy to the time-series analysis Anselin (1988) refers to (2.4) as a

spatial autoregressive process (SAR). The term Wnyn is often called a spatial lag

of yn. Typical assumptions are that the row and column sums of both Wn and

(In − λWn)
−1 are uniformly bounded in absolute value for all |λ| < 1 and n ≥ 1.

An important feature of this model is that the elements of the dependent

variable yn are allowed to depend on the sample size n (it is reflected by the

subscript n). Consequently, yn forms a triangular array whose presence influences

the theoretical treatment of the model. Kelejian and Prucha (1999) were among

the first to discuss this characteristic of the model. They pointed out that the

elements of the weighting matrix Wn typically change with the sample size n.

One reason for this is that the weighting matrix is row normalized. This, in turn,

implies that the elements of yn also depend on the sample size. They also note

that even if the elements of Wn and εn do not change with n, the dependent

variable would still represent a triangular array. This becomes evident after

observing that yn = (In−λWn)
−1εn, and the elements of (In−λWn)

−1 generally

depend on the sample size n, even if the elements of Wn do not depend on it.

The spatial model in its original form (2.4) has not been widely used in the

applied regression work except as a specification of spatial correlation involving
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the disturbance term in a regression model. Consider now such a regression

model:

yn = Xnβ + un, (2.5)

un = ρWnun + εn, |ρ| < 1

where yn is an n × 1 vector of observations on the dependent variable, εn is an
n × 1 vector of innovations with i.i.d. (0,σ2) elements, un is an n × 1 vector of
disturbances, Xn is an n×k nonstochastic matrix of observations with uniformly
bounded elements, rank(Xn) = k, β is a k×1 parameter vector, and ρ is a scalar

parameter.

The specification in (2.5) implies that un = (In−ρWn)
−1εn, so thatE (unu0n) =

σ2(In − ρWn)
−1(In − ρW 0

n)
−1. Thus, the disturbance term un is generally het-

eroscedastic and spatially correlated since the off-diagonal elements of its variance-

covariance matrix are not equal to zero unless ρ = 0.

The existence of spatial correlation in the disturbance term is often attributed

to the presence of omitted variables that are spatially correlated. For instance,

in the case of property prices it is very difficult, if not impossible, to account

for all the factors that have an impact on the values of properties in neighboring

locations. In this context, Bell and Bockstael (2000) employed this specification

to empirically model the price of residential sales in Maryland.2 They compared

the results obtained from two estimation procedures, namely, the maximum like-

lihood and the GM procedure of Kelejian and Prucha (1999) and found that they

were not substantially different.

2Other studies that used spatial correlation for modeling property prices are Dubin (1988),

and Pace, Barry and Sirmans (1998).
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Another important feature of this model is that the regressor matrix Xn may

also include spatial lags of exogenous variables. That is, let Hn = (H1n,H2n)

be a matrix of exogenous variables, then, Xn may contain both Hn and, say,

WnH1n, i.e. Xn = (Hn,WnH1n). One of the studies that utilizes this structure of

exogenous variables as well as the spatial correlation in the error term is Kelejian

and Robinson (1997). It assessed the effect of public capital of neighboring states

on the private sector productivity of a given state. In their results the authors

underscored the importance of accounting for spatial effects.

Consider yet a more general extension of the Cliff-Ord model. This model

involves spatial lags in both the dependent variable and the error term, and

referred by Anselin and Florax (1995) as a spatial autoregressive model with

autoregressive disturbances of order (1,1), for short SARAR (1,1). Consistent

with the previous notation it is given by

yn = Xnβ + λWnyn + un, |λ| < 1 (2.6)

un = ρWnun + εn, |ρ| < 1

where the assumptions are the same as above.

Since this model is discussed in more details in the next section at this point

we present only a brief overview. As noted above the spatial spill-overs enter (2.6)

not only via the disturbances, but also directly by the dependent variable. This

feature has been widely used in the empirical implementation of the models deal-

ing with strategic interactions of economic agents. For instance, Case, Hines and

Rosen (1993) considered this specification to estimate an importance of various

factors relating to spending of jurisdictions. Brueckner (1998) estimated the pol-

icy reaction functions relating to the growth control for Californian cities. Case

(1991) used a discrete choice version of this model in order to explain farmers’
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decision to adopt a sickle as a rice harvesting tool in rural Java, a province of

Indonesia. Pinske, Slade, and Brett (2001), and Kapoor (2003) applied this em-

pirical framework to estimate the nature and extent of spatial price competition

in the US gasoline market.

In many of these studies the spatial modelling technique has been used not

only to obtain quantitative inferences concerning the explanatory variables, but

also to test for a validity of a relevant theory involving spatial interactions.

Besides the mentioned papers there are a number of other studies considering

spatial interactions within a wide variety of applications. Shroder (1995) em-

pirically assessed interactions of neighboring states in the game of competitive

reduction of public assistance to the poor3. The author used a simultaneous equa-

tion framework involving spatial lags in the exogenous and endogenous variables

in his model. Kelejian and Robinson (1992) considered spatial models in the con-

text of per capita county police expenditure. Another study by Besley and Case

(1995) considered a spatial model relating to tax setting interactions of states.

Conley and Dupor (2003) investigated productivity co-movements across sectors

of the US economy by incorporating spatial interactions measured by economic

distance into the covariance matrix approach. Similar technique was exploited

by Conley and Topa (2002) in order to explore spatial patterns of unemployment

characterized by socio-economic distance and social structure.

All in all, the spatial approach has been proved to be very useful in many

empirical application.

3see Brown and Oates (1986), Gramilich (1987), and Stigler (1957)

11



2.3 General specifications of the Single Linear

Equation Model

Consider the cross-sectional autoregressive spatial model with autoregressive dis-

turbances:

yn = Xnβ + λWnyn + un, |λ| < 1 (2.7)

un = ρWnun + εn, |ρ| < 1

where yn is n×1 vector of observations on the dependent variable, Xn is the n×k
matrix of observations on k exogenous variables, Wn is an n×n spatial weighting
matrix of known constants, β is the k × 1 vector of regression parameters, un is
n× 1 vector of disturbances, and εn is an n× 1 vector of innovations.

Assumption 1 . All diagonal elements of the weighting matrix Wn are zero.

Assumption 2 . (In − aWn) is nonsingular for all |a|< 1

Assumption 3 . The row and column sums of the matrices Wn, (In − λWn)
−1

and (In − ρWn)
−1 are uniformly bounded in absolute value.

Assumption 4 . The regressor matrix Xn has full column rank (for n large

enough). Furthermore, the elements of Xn are uniformly bounded in absolute

value.

Assumption 5 . The innovations {εi,n : 1 ≤ i ≤ n, n ≥ 1} are distributed
identically . Further, the innovation {εi,n : 1 ≤ i ≤ n} are for each n distributed
(jointly) independently with E (εi,n) = 0, E

¡
ε2i,n
¢
= σ2ε, where 0 < σ2ε < b, where

b<∞. Additionally the innovations are assumed to possess finite fourth moments.
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At the later stage we are going to use the 2SLS method, which exploits a

set of instruments. Let Hn denote the n × p matrix of instruments, and let
Zn = (Xn,Wnyn) denote the matrix of regressors in (2.7). We are going to specify

different sets of instruments in the next sections. At this point we formulate the

assumptions that they satisfy.

Assumption 6. The instrument matrices Hn have full column rank p ≥ k + 1
(for n large enough.)

Assumption 7. The instrument Hn satisfy furthermore the following:

QHH = limn
−1H 0

nHn

where QHH is finite and nonsingular;

QHZ = p limn
−1H 0

nZn

and

QHWZ = p limn
−1H 0

nWnZn

where QHZ and QHWZ are finite and have full column rank; furthermore,

QHZ − ρQHWZ = p limn
−1H 0

n(In − ρWn)Zn

has full column rank where |ρ| < 1;

Φ = limn−1H 0
n(In − ρWn)

−1(In − ρW 0
n)
−1Hn

is finite and nonsingular where |ρ| < 1.
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The following assumption ensures that the autoregressive parameter ρ is

“identifiably unique” (see Kelejian and Prucha, 1999).

Assumption 8. The smallest eigenvalue of Γ0Γ, say λmin (Γ
0Γ) , is bounded

away from zero; that is λmin (Γ
0Γ) ≥ λ∗ > 0, where

Γn =
1

n


2E(u0nun) −E(u0nun) 1

2E(u
0
nun) −E(u0nun) tr(W 0

nWn)

E(u0nun + u
0
nun) −E(u0nun) 0


and un =Wnun and un =Wnun =W

2
nun.

2.3.1 Model Implications

Given Assumption 2 the reduced form of the model is

yn = (In − λWn)
−1Xnβ + (In − λWn)

−1un, (2.8)

un = (In − ρWn)
−1εn.

Therefore by Assumptions 2 and 5, E(un) = 0 and so

E (yn) = (I − λWn)
−1Xnβ (2.9)

The result in (2.9) clearly reveals the force of the spatial interactions involving

the dependent variable. To see this, suppose k = 1 so that Xn is a vector. Then,

denoting the i − th elements of yn and Xn as yi,n and xi,n, the result in (2.9)
implies that

∂E (yi,n)

∂xj,n
= (I − λWn)

−1
ij,nβ
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where (I −λWn)
−1
ij,n is the i, j-th element of (I −λWn)

−1. Thus, unless λ = 0 the

effect on the mean of yi,n of a change in the exogenous variable corresponding

to j-th unit, has two components. One might be thought of as the direct effect,

which in this case is the corresponding coefficient , β. The other is an indirect

effect, namely, (I − λWn)
−1
ij,n , which depends , in general, on all the weights in

the weighting matrix. Note, in the absence of the spatial lag λWnyn in (2.7)

∂E (yi,n)

∂xj,n
= 0, i 6= j

It follows from the Assumptions 3 and 5 that

E(unu
0
n) = σ2ε(In − ρWn)

−1(In − ρW 0
n)
−1

= σ2εΩu

where Ωu = (I − ρWn)
−1(I − ρW 0

n)
−1.

Therefore, in general, the elements of un will be both spatially correlated and

heteroscedastic. It also follows from(2.8) that

E[(Wnyn)u
0
n] = Wn(In − λWn)

−1σ2εΩu

= σ2εWn(In − λWn)
−1(In − ρWn)

−1(In − ρW 0
n)
−1

6= 0

Therefore, in general, the parameters of (2.7) cannot be consistently estimated

by least squares.

15



2.4 Estimation Procedures

2.4.1 Maximum Likelihood

Assuming εn ∼ N(0,σ2εIn) so that un ∼ N(0,σ2εΩn), the model in (2.7) can be

estimated by the maximum likelihood method. The log-likelihood function is4

ln (L) = −(n/2) ln(2π)− (n/2) lnσ2ε + ln |In − ρWn|+ ln |In − λWn|(2.10)

−(1/2σ2ε)(yn − λWnyn −Xnβ)0 (In − ρWn)
0 ×

(In − ρWn) (yn − λWnyn −Xnβ)0 (2.11)

Two points related to this method are in order. First, there are no formal

results on the consistency and asymptotic normality of the ML estimator for

this model5. However, many researchers suggest that there are “appropriate

regularity” conditions such that the ML estimator is consistent, asymptotically

normal, and efficient. Furthermore, Monte Carlo studies strongly support this

conjecture, at least as it relates to consistency and efficiency.6

Second, in large samples the ML procedure will be difficult, if not impossible,

to empirically implement. The reason for this is that ML procedure requires the

evaluation of the determinants of two n × n matrices, namely |In − ρWn| and
|In − λWn|, for each trial value of ρ and λ in the maximization of ln (L) . Ord

(1975) has suggested a simplification in which the determinant of these n × n
matrices can be evaluated in terms of the characteristic roots of Wn which need

4For detailed discussion of the ML procedure for spatial models see Cliff and Ord (1981),

Ord (1975), Anselin (1988).

5An exception is Lee (1999b) who demonstrated these properties of the ML estimator under

somewhat restrictive conditions on the parameter space

6see Kelejian and Prucha (1999), and Das, Kelejian and Prucha (2003)
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only be computed once. However, Kelejian and Prucha (1999) found that it is

“very challenging” to accurately determine the roots of nonsymmetric matrices

of size 400× 400, or larger.
Because of this difficulty with the ML procedure, Kelejian and Prucha (1998,

1999) suggested an alternative procedure which involves three steps which are

computationally simple even in large samples.

2.4.2 Feasible Generalized Spatial Two Stage Least Squares

Step 1: Two Stage Least Squares Estimation

In the first step of the procedure suggested by Kelejian and Prucha (1998) con-

sistent estimators of λ and β are obtained by the two-stage least squares (2SLS)

technique. Results given in Amemiya(1985) suggest that the conditional mean is

an ideal instrument for an endogenous regressor, in (2.7) namely Wnyn. In the

context of our model the conditional expectation of Wnyn can be obtained by

premultiplying (2.8) by Wn and then taking expectations

E[Wnyn] =WnE[yn] =Wn(In − λWn)
−1Xnβ (2.12)

where we have used (2.9) .

Assuming that all of the eigenvalues of λWn are less than unity in absolute

value, the conditional expectation in (2.12) can be written in the form of the

infinite sum:

E[Wnyn] =Wn

∞X
i=0

λiW i
nXnβ (2.13)

From (2.13) E[Wnyn] is seen to be a linear combination of (WnXn,W
2
nXn, ..).

On the basis of this observation Kelejian and Prucha (1999) proposed the in-
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strument set Hr
n = (Xn,WnXn, ..,W

r
nXn)

7. For r = 1 the instrument set is

H1
n = (Xn,WnXn). We will henceforth refer to H

1
n as the minimum set of instru-

ments, as suggested in Kelejian and Prucha (1998). Typically, r ≤ 2.
Now we are ready to introduce the 2SLS estimator. For simplicity of notation

let us rewrite (2.7) as

yn = Znδ + un, (2.14)

un = ρWnun + εn,

where Zn = (Xn,Wnyn) and δ0 = (β0,λ). Then, the 2SLS estimator of δ is given

by

bδ2SLSn = ( bZ 0nZn)−1 bZ 0nyn, (2.15)

where bZn = PHr
n
Zn = (Xn,\Wnyn), where\Wnyn = PHr

n
Wnyn, and

PHr
n
= Hr

n(H
r0
nH

r
n)
−1Hr0

n . Under the assumed conditions Kelejian and Prucha

(1998) show that bδ2SLSn is consistent.

Step 2: General Moments Estimator of ρ

Step 2 of the Kelejian and Prucha procedure for the estimation of (2.7) involves

a generalized moments (GM) estimator of ρ. This GM estimator is described

below, and was introduced by Kelejian and Prucha (1999). At this point we give

background results which aid in its comprehension.

7Without loss of generality it is assumed that the columns of the indicated instrument set

are linearly independent. Otherwise one would have to include in Hr
n only linearly independent

columns of (Xn,WnXn, ..,W
r
nXn).
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A Preliminary: Notation Consider (2.7) and let un =Wnun, un =WnWnun

and εn =Wnεn. Then from (2.7) we have

un = ρun + εn (2.16)

un = ρun + εn (2.17)

Now note that

Eε0nεn
n

= σ2ε (2.18)

Eε0nεn
n

=
Eε0nW

0
nWnεn
n

=
1

n
σ2εTr(W

0
nWn)

Eε0nεn
n

=
Eε0nW

0
nεn

n
=
1

n
σ2εTr(W

0
n) = 0

Given assumptions it can be shown that

(a)
ε0nεn
n

P→ σ2ε (2.19)

(b)
ε0nεn
n
− 1
n
σ2εTr(W

0
nWn)

P→ 0

(c)
ε0nεn
n

P→ 0.

The results in (2.19) imply that

ε0nεn
n

= σ2ε + ψ1 (2.20)

ε0nεn
n

=
1

n
σ2εTr(W

0
nWn) + ψ2

ε0nεn
n

= ψ3

where ψ1
P→ 0, ψ2

P→ 0, and ψ2
P→ 0.

GM estimation The GM procedure produces estimators of ρ and σ2ε on the

basis of the residuals from the first step 2SLS estimator of δ. At this point we
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specify these estimators as if we observe un. We will then generalize to the case

in which these disturbances are estimated.

The three equations below are obtained from (2.20) by setting εn = un− ρun

and εn = un − ρun :

(un − ρun)
0 (un − ρun)

n
− σ2ε = ψ1 (2.21)¡

un − ρun
¢0 ¡
un − ρun

¢
n

− 1
n
σ2εTr(W

0
nWn) = ψ2¡

un − ρun
¢0
(un − ρun)

n
= ψ3

If un, and therefore, un and un, were observed the GM estimator of ρ and σ2ε

would be obtained from the following minimization problem

min
ρ,σ2ε

¡
ψ21 + ψ22 + ψ23

¢
Since un is not observed the above described procedure is not feasible. Letbun = yn − Znbδ2SLSn where bδ2SLSn is defined in (2.15); also let bun = Wnbun andbun =WnWnbun. Then a three equation system which is analogous to (2.21) but is

based on bun, bun, and bun is
³bun − ρbun´0 ³bun − ρbun´

n
− σ2ε = bψ1 (2.22)³bun − ρbun´0 ³bun − ρbun´

n
− 1
n
σ2εTr(W

0
nWn) = bψ2³bun − ρbun´0 (bun − ρun)

n
= bψ3

where bψ1, bψ2, and bψ3 are corresponding residuals. The GM estimator of ρ and

σ2ε, say bρ2SLSn and bσ2ε,n, defined by Kelejian and Prucha (1999) are obtained from
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minimization of 8

min
ρ,σ2ε

³bψ21 + bψ22 + bψ23´
Kelejian and Prucha (1998) showed that p lim

n→∞
bρ2SLSn = ρ. However, the large

sample distribution of bρ2SLSn was not determined, and so tests of hypotheses

concerning ρ cannot be based on their procedure.

Step 3: Two Stage Least Squares Estimation of the Transformed Model

In Step 1 we obtained a consistent estimator of δ. However, that estimator did

not take into account the spatial correlation of the disturbances which results in

a loss of efficiency. In Step 3 an estimator of δ is proposed which accounts for

the spatial correlation of the error term un.

Consider a spatial Cochrane-Orcutt transformation of (2.7):

yn∗(ρ) = Zn∗(ρ)δ + εn, (2.23)

where

yn∗(ρ) = yn − ρWnyn,

Zn∗(ρ) = (In − ρWn)Zn

= (In − ρWn)[Xn,Wnyn].

Note that the elements of the disturbance vector εn in (2.23) are i.i.d. (0,σ
2
ε).

8As clarified later, the superscript of an estimator of ρ indicates the estimator of δ which

was used to obtain the residuals used in the GM procedure.
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This equation cannot be consistently estimated by least squares since, in

general, EZn∗(ρ)ε0n 6= 0. Specifically

E ([(In − ρWn)Wnyn] ε
0
n) = (In − ρWn)WnE (ynε

0
n)

= σ2ε(In − ρWn)Wn(In − ρWn)
−1

6= 0

Therefore Kelejian and Prucha (1998) considered an instrumental variable

technique.

As pointed out in Step 1, the results in Amemiya (1985) suggest that the

ideal instrument for the endogenous regressorWnyn is its conditional expectation.

Based on the result in (2.13)

E [(In − ρWn)Wnyn] = (In − ρWn)Wn(In − λWn)
−1Xnβ (2.24)

= (In − ρWn)Wn

∞X
i=0

λiW i
nXnβ

Thus, the optimal instrument for Zn∗(ρ) in (2.23) would be .

Zoptn∗ (ρ) = (In − ρWn)[Xn, E (Wnyn)] (2.25)

= (In − ρWn)[Xn,Wn(In − λWn)
−1Xnβ]

From (2.24) and (2.25) it is easily seen that the optimal instruments are a

linear combination of (Xn,WnXn,W
2
nXn, ..). Following the logic of Step 1 we

can approximate the optimal instruments in terms of the instrument set Hr
n =

(Xn,WnXn, ..,W
r
nXn), where linearly dependent columns are omitted.

Now on the basis of the instrument set Hr
n we are able to define the estimatorbδGS2SLSn which is termed by Kelejian and Prucha (1998) as the Generalized Spatial
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Two-Stage Least Squares (GS2SLS) estimator:

bδGS2SLSn = ( bZn∗(ρ)0Zn∗(ρ))−1 bZn∗(ρ)0yn∗(ρ) (2.26)

where bZn∗(ρ) = PHr
n
Zn∗(ρ) and PHr

n
= Hr

n(H
r0
nH

r
n)
−1Hr0

n .

In practice, ρ is usually not known. Therefore, a logical step would be to

replace it with some consistent estimator of ρ, bρn. Theoretically it could be any
consistent estimator of ρ since Kelejian and Prucha(1998) show that ρ is a nui-

sance parameter concerning the estimation of δ. The resulting estimator of δ is

called the feasible GS2SLS (FG2SLS) estimator and is given by

bδFGS2SLSn =
h bZn∗(bρn)0Zn∗(bρn)i−1 bZn∗(bρn)0yn∗(bρn), (2.27)

where bZn∗(bρn) = PHnZn∗(bρn) and PHn = Hr
n(H

r0
nH

r
n)
−1Hr0

n .

Kelejian and Prucha (1998) prove the consistency of this estimator and derived

its asymptotic distribution for the case in which bρn is any consistent estimator of
ρ. They suggest the use of the GM estimator bρ2SLSn obtained in Step 2.

2.5 The Best Instrumental Variable Estimators

The choice of the instrument set in the estimation procedure described above

is based upon the approximation of the optimal instrument given in (2.25). To

improve the efficiency of the estimator of δ, at least, in large samples, one would

consider a better approximation to the conditional mean of Wnyn.

Two possible procedures involving bλ2SLSn and bρ2SLSn have been considered in

the literature. One was proposed by Lee (1999a) and the other by Kelejian and

Prucha (2001). In this section these procedures are described.
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2.5.1 Lee’s Approximation to the Optimal Instruments

In his recent paper Lee (1999a) suggested the following instrumental variable

estimator:

bδLeen =
h
(Z̄n∗(bρ2SLSn ,bδ2SLSn )0Zn∗(bρ2SLSn )

i−1
Z̄n∗(bρ2SLSn ,bδ2SLSn )0yn∗(bρ2SLSn )

where Zn∗(bρn,eδn) is the following approximation of the optimal instrument:
Z̄n∗(bρn,bδ2SLSn ) = (In − bρ2SLSn Wn)

h
Xn,Wn(In − bλ2SLSn Wn)

−1Xnbβ2SLSn

i
(2.28)

This estimator requires calculation of (In − bλ2SLSn Wn)
−1, which, as noted be-

fore, might be computationally challenging. Lee (1999a) introduced a numerically

simple algorithm for the calculation of (In − bλ2SLSn Wn)
−1, involving the Choleski

decomposition of the matrix (In − bλ2SLSn Wn).

An advantage of this estimator is that it is consistent and asymptotically

efficient, see Lee (1999a). However, despite the fact that Lee’s estimator is feasible

for the models with large sample sizes it still requires a great deal of computation

as well as specific programming of the algorithm that calculates the inverse.

To avoid these difficulties Kelejian and Prucha (2001) proposed a compu-

tationally simpler estimator which possesses the same asymptotic properties as

Lee’s estimator.
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2.5.2 Kelejian and Prucha’s Approximation to the Opti-

mal Instruments

The instruments suggested by Kelejian and Prucha (2001) are based on the ap-

proximation of the polynomial expansion of (In − bλ2SLSn Wn)
−1:

(In − bλ2SLSn Wn)
−1 =

∞X
i=0

³bλ2SLSn

´i
W i
n (2.29)

.≈
rnX
i=0

³bλ2SLSn

´i
W i
n,

where rn is a natural number such that rn → ∞ as n → ∞, and rn = O(nα),

where α < 0.5. In practice rn could be taken as the nearest integer to n
α. For

further reference let rn(α) = Int(n
α), where Int(·) is a function whose outcome

is a nearest integer to the argument of the function which is a real number. The

approximation of the ideal instrument in Kelejian and Prucha (2001) is given by:

eZn∗(bρ2SLSn ,bδ2SLSn ,α) = (In − bρ2SLSn Wn)

Xn, rn(α)X
i=0

³bλ2SLS´iW i+1
n Xnbβ2SLSn


(2.30)

where bλ2SLSn and bβ2SLSn are the estimators obtained in the first step.

The resulting instrumental variable estimator is called a series estimator and

defined as follows:

bδSeriesα,n =
h eZn∗(bρ2SLSn ,bδ2SLSn ,α)0Zn∗(bρ2SLSn )

i−1 eZn∗(bρ2SLSn ,bδ2SLSn ,α)0yn∗(bρ2SLSn )

Kelejian and Prucha (2001) showed that this estimator is also consistent and

asymptotically efficient.

An important property of the procedure implementing the series estimator is

that its computational count is only O(N2) in contrast to the Lee’s computational

count of O(N3).
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2.5.3 Iterated Estimators

The third step of FGS2SLS involves spatial Cochrane Orcutt transformation of

(2.7) based on the GM estimator of ρ. It is reasonable to believe that in finite

samples the accuracy of the estimator of ρ affects the precision of the FGS2SLS of

δ. At the same time, one may expect that the GM procedure using more precisely

calculated residuals produces a better estimate of ρ. Therefore, the GM estimator

of ρ based on the FGS2SLS residuals is likely to be more accurate than the one

based on the 2SLS residuals.

This leads to an evident extension of the FGS2SLS procedure. The extended

procedure would use the residuals of FGS2SLS in order to reestimate ρ, and,

then, based on the new estimator of ρ repeat step 3, i.e. transform the model

and estimate it by 2SLS again. Similar iteration can be conducted with respect

to the Lee’s and Kelejian and Prucha’s modifications. In these modifications the

estimator of δ, bδ2SLSn , in (2.28) and (2.30) should be replaced by bδLeen and bδSeriesn ,

respectively. It is important to note that asymptotically this iteration does not

produce gains in efficiency; however, in small samples efficiency may be improved.

These efficiency issues are the purpose of this Monte-Carlo study.

As a notational convention let the superscript of an estimator of ρ indicate

which estimator of δ was used in order to calculate residuals for the GM proce-

dure. For instance, bρ2SLSn is a GM estimator of ρ based on u2SLSn = yn−Znbδ2SLSn .

Similarly, bρFGS2SLSn ,bρSeriesα,n , and bρLeen are the GM estimators of ρ based on the

residuals uFGS2SLSn = yn−ZnbδFGS2SLSn , uSeriesα,n = yn−ZnbδSeriesα,n , uLeen = yn−ZnbδLeen ,

respectively. Then, the iterated estimators are given by the following formulas:
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• Iterated FGS2SLS (IF) based on bρFGS2SLSn

bδIFn =
h bZn∗(bρFGS2SLSn )0Zn∗(bρFGS2SLSn )

i−1 bZn∗(bρFGS2SLSn )0yn∗(bρFGS2SLSn )

where bZn∗(bρFGS2SLSn ) = PHnZn∗(bρFGS2SLSn ) and PHn = H
r
n(H

r0
nH

r
n)
−1Hr0

n .

• Iterated Series estimator (IS) based on bρSeriesα,n , bδSeriesα,n = (bλSeriesα,n , bβSeries0α,n )0

bδISα,n = h eZn∗(bρSeriesα,n ,bδSeriesα,n ,α)0Zn∗(bρSeriesn )
i−1 eZn∗(bρSeriesα,n ,bδSeriesα,n ,α)0yn∗(bρSeriesα,n )

where

eZn∗(bρSeriesα,n ,bδSeriesα,n ,α) = (In − bρSeriesα,n Wn)

Xn, rn(α)X
i=0

³bλSeriesα,n

´i
W i+1
n XnbβSeriesα,n



• Iterated Lee estimator (IL) bρLeen , bδLeen = (eλLee, eβLee0n )0

bδILn =
h
Z̄n∗(bρLeen ,bδLeen )0Zn∗(bρLeen )

i−1
Z̄n∗(bρLeen ,bδLeen )0yn∗(bρLeen )

where

Z̄n∗(bρLeen ,bδLeen ) = (In − bρLeen Wn)
h
Xn,Wn(In − bλLeen Wn)

−1XnbβLeen

i

2.6 Monte Carlo Results of Previous Studies

There are only a few Monte Carlo studies in the literature that are related to

the estimators of the spatial model. Most of the existing Monte Carlo studies
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are confined to the issues of testing for spatial correlation which is beyond the

scope of this paper. To the best of my knowledge there are only three papers that

consider the small sample properties of estimators of spatial models via Monte

Carlo experiments.

Kelejian and Prucha (1999) introduced the GM estimator described in sec-

tion 2.4.2 and applied it to the model involving a spatial lag in the error term

(but not in the dependent variable). In addition to their theoretical contribution,

they carried out a comprehensive Monte Carlo study related to the small sample

properties of the GM estimator and its performance relative to the ML estima-

tor. They considered various specifications of the weighting matrices along with

various distributions of the vector of innovations. Their conclusion was that the

GM estimator “is virtually as efficient as” the (quasi) ML estimator.

Other results of this study involved estimation of root mean square error

response functions relating to the estimation of the autoregressive parameter

ρ. These functions help to relate the magnitude of the root mean square error

(RMSE) to the parameters of Monte Carlo experiments. The response functions

provided a good fit to the data which was reflected by high values of R2 statis-

tics. The estimation results of the response functions established that RMSEs of

the considered estimators are generally higher for weighting matrices with lower

degree of sparseness. It was also found that their relationship to the parameter

ρ is nonlinear. Namely, the RMSEs were at a maximum for values of ρ between

-0.25 and 0.0 (depending on the sparseness of the weighting matrix) and declined

as ρ approached the “critical” points ±1. These patterns were expected by the
authors and were given an appropriate explanation.

Further Monte Carlo results are given in a paper by Das, Kelejian and Prucha
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(2003) who investigated the small sample properties of the ML and FGS2SLS es-

timators of (2.7). They also considered other estimators, namely, OLS, 2SLS,

GS2SLS, and iterated FGS2SLS. The Monte Carlo experiments in their paper

were conducted with respect to several sample sizes and involved weighting ma-

trices varying in their degree of sparseness. They found that although the ML

estimator is somewhat more efficient than FGS2SLS, its advantage was, on av-

erage, just 7% for the spatial autoregressive parameters λ and ρ relating to the

spatial lags of the dependent variable and disturbance term. They also found that

the ML and FGS2SLS estimators were virtually equally efficient in the estima-

tion of the parameters relating to the exogenous variables, namely β = (β1, β2).

Therefore, their suggestion was that in finite samples the difference in efficiency

of these two estimators is very small even under the most favorable condition for

the ML procedure which involves normally distributed vectors of disturbances.

The paper also emphasizes that the actual difference between RMSEs of the

ML and FGS2SLS estimators is not uniform over the parameter space, but instead

depends crucially on the true values of λ and ρ. In particular, the RMSEs of

the ML estimator of the autoregressive parameter λ are smaller than those of

FGS2SLS when λ is negative and ρ is large and positive, the situation is reversed

when both λ and ρ are positive and large. It was also confirmed in the study that

the OLS and 2SLS estimators of λ and β would generally perform worse than the

others due to the inconsistency of the former and inefficiency of the latter.

Another important result of the paper emerges from the comparison of FGS2SLS

and GS2SLS (based on the true value of ρ). According to Das, Kelejian and

Prucha (2003) RMSE differences between these two estimators are generally

small. It indicates that the use of the GM estimator of ρ instead of the true
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value of ρ results in a “slight” loss in finite sample efficiency.

The findings of these two papers can be summarized in a statement that

although the ML estimator is on average somewhat more efficient than the

FGS2SLS and GM estimators its advantage is very small. This is very important

in light of the major advantage of the FGS2SLS and GM procedures over the

maximum likelihood in terms of computational complexity.

Another study by Rey and Boarnet (1998) considered a two equation lin-

ear spatial model containing spatially lagged dependent variables as well as sys-

tems endogenous variables. The authors explored the small sample efficiency of

two-stage least squares estimators of the model parameters. Their estimation

procedure in their two equation model could be implemented in terms of the

instruments (X1, X2), where Xi is a matrix of exogenous variables in the i-th

equation, i = 1, 2. However, Rey and Boarnet (1998) found that estimation effi-

ciency was improved if their procedure was carried out in terms of the instrument

set (X1, X2,WnX1,WnX2), where Wn is their weighting matrix. Interestingly, ef-

ficiency was not generally improved when they carried out their procedure in

terms of the instrument set (X1, X2,WnX1,WnX2,W
2
nX1,W

2
nX2).

Further findings of this paper indicate that in finite samples it is preferable to

instrument the spatial lag of the dependent variable rather than the dependent

variable itself with subsequent multiplication by a weighting matrix. This is

consistent with theory and can be illustrated within a single equation framework.

Consider a model

yn = Xnβ + λWnyn + εn, |λ| < 1 (2.31)

where yn is n×1 vector of observations on the dependent variable, Xn is the n×k
matrix of observations on k exogenous variables, Wn is an n×n spatial weighting
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matrix of known constants, β is the k × 1 vector of regression parameters, and
εn is an n × 1 vector of disturbances with elements distributed i.i.d.(0,σ2). Let
us rewrite (2.31)

yn = Znγ + εn,

where Zn = (Xn,Wnyn) and γ
0 = (β0,λ). LetHn be a matrix of instruments which

containsXn.
9 Consider bZn = PHnZn = (Xn,\Wnyn), where\Wnyn = PHnWnyn, andbbZn = (Xn,WnPHnyn) = (Xn,Wnbyn), where byn = PHnyn and PHn = Hn(HnHn)−1Hn.

Essentially bZn and bbZn are matrices which were used by Rey and Boarnet (1998) in
their estimation. It is not difficult to show that in the 2SLS framework the use of

the instrument matrix
bbZn leads to an inconsistent estimator. On the other hand,

the use of the instrument matrix bZn results in a consistent estimation procedure.
To be explicit, let

bγn = ( bZ 0n bZn)−1 bZ 0nyn,bbγn = (
bbZ 0nbbZn)−1bbZ 0nyn.

Then, under further “standard” assumptions

p lim
n→∞

bγn = γ

p lim
n→∞

bbγn 6= γ.

This is consistent with the finding of Rey and Boarnet (1998).10

9E.g., Hn = (Xn,WnXn)

10Note that if bbγn is defined as (bbZ 0nZn)−1bbZ0nyn it would be a consistent estimator of γ.
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2.7 Design of The Monte Carlo Study

The Monte Carlo model is

yn = λWnyn +Xnβ + un, |λ| < 1 (2.32)

un = ρWnun + εn, |ρ| < 1

where yn is n×1 vector of observations on the dependent variable, Xn = [x1n, x2n]
is an n × 2 non-stochastic matrix containing two n × 1 vectors of observations
on the exogenous explanatory variables x1n and x2n, Wn is an n × n spatial
weighting matrix of known constants, β = [β1,β2]

0 is the 2×1 vector of regression
parameters, un is n×1 vector of disturbances, and εn is an n×1 stochastic vector
of innovations whose elements are distributed i.i.d. N(0,σ2). Essentially, (2.32)

is a version of (2.7) formulated in terms of two explanatory variables.

In a more compact notation (2.32) can be written as

yn = Znδ + un, (2.33)

un = ρWnun + εn,

where Zn = (Wnyn,Xn) and δ0 = (λ,β0).

The Monte Carlo experiments in this study are designed in a way that makes

their results comparable to the previous studies, and, in particular, to the results

of Das, Kelejian and Prucha (2003). We extend that study in two aspects. First,

we consider more experiments involving “extreme” values of the spatial autore-

gressive parameters λ and ρ, namely the values of 0.9 and -0.9, and, second,

there are more estimators under investigation in this study. The first extension

allows a wider assessment of the small sample properties of the estimators over

the parameter space; the second relates to the theoretical development of efficient
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estimators in the spatial econometrics literature. Below is a detailed description

of the experimental design.

We consider two sample sizes, namely 100 and 400. For each sample size we

consider a weighting matrixWn which is often referred as “3 ahead and 3 behind”.

This name is given due to the fact that this matrix relates each element of yn and

un to the three elements immediately after and before it. More specifically, i-th

row has six non-zero elements only in positions i+1, i+2, i+3, and i− 1, i− 2,
i − 3, for i = 4, ..., n − 3. This weighting matrix is circular in a sense that the
non-zero elements in the first row are in the positions 2, 3, 4, and n, n−1, n−2;
in the last row the non-zero elements are in positions 1, 2, 3, and n − 1, n − 2,
n − 3. The positioning of the non-zero elements in rows 2, 3, n − 1, and n − 2
are determined analogously. Furthermore, all non-zero elements of the weighting

matrix are equal and the rows sum to unity. Thus, each non-zero element in this

weighting matrix is 1/6. This weighting matrix is such that (I − aWn)
−1 exists

for all |a| < 1. Therefore, the reduced form of (2.32)

yn = (In − λWn)
−1Xnβ + (In − λWn)

−1(In − ρWn)
−1εn

is well defined

We consider seven values considered for λ and seven values for ρ. They are

-0.9, -0.8, -0.4, 0.0, 0.4, 0.8, 0.9. We also consider three values of σ2, namely 0.25,

0.5, 1.0. These values of σ2 are related to the values of λ and n, and, thus, are

woven into the experimental design in the same fashion as in Das, Kelejian, and

Prucha (2003)11. Table 2.1 describes these values of σ2.

The combinations of λ, n and σ2 are such that the average squared correlation

11In Das, Kelejian and Prucha (2003) the values of σ2 were related to the values of λ and n

in a way that facilitated estimation of the root mean squared error response functions.
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Table 2.1: Design value of the variance of innovations

n = 100 n = 400

λ σ2 λ σ2

-0.9 0.5 -0.9 0.5

-0.8 0.25 -0.8 0.5

-0.4 0.25 -0.8 0.5

-0.4 1.0 -0.4 1.0

0.0 0.5 0.0 0.25

0.4 0.25 0.4 0.5

0.8 1.0 0.8 1.0

0.9 0.5 0.9 0.5

coefficient between yn and E[yn] = (I − λWn)
−1Xnβ over all the experiments

corresponding to a given value of λ and n is between 0.60 and 0.90.

The values of the matrix of exogenous variables Xn = [x1n, x2n] in (2.32) are

based on the data given in Kelejian and Robinson (1992) on income per capita

and on the percent of rental housing in 1980 in 760 counties in the US mid-

western states. The 760 observations on the income and rental variables were

normalized to have zero mean and unit variance. For experiments in which the

sample size is 100 the first 100 observations on these variables were used; the first

400 observations were used in experiments in which the sample size is 400. The

same vectors of exogenous variables were used in all the experiments of a given

sample size n. Finally, the elements of the parameter vector β = (β1,β2)
0 are

taken to be equal to one, i.e. β1 = β2 = 1.

All in all, we consider seven values of λ, seven values of ρ, three values of σ2
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which are woven into the experimental design, and two values of n. That leads

us to the total of 98 experiments. Each Monte Carlo experiment consists of

5000 trials which generate 5000 different vectors of innovations. The elements of

each vector of innovations are distributed i.i.d. N(0,σ2). The same set of 5000

vectors of innovations is used in all experiments that correspond to the same

sample size n. Furthermore, the vector of innovations for experiments in which

the sample size 100 is taken to be the first 100 elements of the corresponding

vector of innovations for the sample size 400.

The efficiency measure of the estimators for each experiments is based on

the empirical distribution over the 5000 Monte Carlo trials. For each trial the

coefficient are estimated, and the empirical distribution is defined with respect to

these 5000 trials. Following Kelejian and Prucha (1998), our efficiency measure

is a variation on the root mean squared error and is taken as

RMSE∗ =
£
bias2 + [IQ/1.35]2

¤1/2
(2.34)

where bias is an absolute difference between the median of the empirical distri-

bution and the true parameter value, and IQ is an interquantile range. That

is IQ = c1 − c2 where c1 is the 0.75 quantile and c2 is the 0.25 quantile. Note
that if the distribution is normal the median is equal to the mean and IQ/1.35

is approximately equal to the standard deviation. An important feature of the

measure in (2.34) is that it is based on 0.25, 0.5, 0.75 quantiles which always

exist. The standard measure of root mean square error is based on the first and

second moments which, as pointed out in Kelejian and Prucha (1999) among oth-

ers, may not always exist, and, therefore, that measure would not be well defined.

For simplicity of presentation we refer to our measure of efficiency as RMSE.
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For further reference let:

yn(a) = yn − aWnyn,

Zn∗(a) = Zn − aWnZn

where a is any finite scalar. Let the independent columns ofHn = (Xn,WnXn,W
2
nXn)

be the set of instruments used in the 2SLS and FGS2SLS procedures, and PHn =

Hn(H
0
nHn)

−1H 0
n be a projection matrix corresponding to Hn.

There are fourteen estimators of the parameter vector δ = (λ,β1, β2)
0 of (2.32)

considered in this study. The following is a list of these estimators.

• Maximum likelihood estimator based on the maximization of the log-likelihood
function (2.10): bδML.

• Ordinary least squares estimator:

bδOLSn = (Z 0nZn)
−1Z 0nyn

• Two-stage least squares estimator:

bδ2SLSn = ( bZ 0nZn)−1 bZ 0nyn
where bZn = PHnZn = (\Wnyn, Xn), and\Wnyn = PHnWnyn.

• GS2SLS based on the true value of ρ :

bδGS2SLSn = ( bZn∗(ρ)0Zn∗(ρ))−1 bZn∗(ρ)0yn∗(ρ)
where bZn∗(ρ) = PHnZn∗(ρ).

• FGS2SLS based on bρ2SLSn

bδFGS2SLSn =
h bZn∗(bρ2SLSn )0Zn∗(bρ2SLSn )

i−1 bZn∗(bρ2SLSn )0yn∗(bρ2SLSn ),

where bZn∗(bρ2SLSn ) = PHnZn∗(bρ2SLSn ).
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• Lee estimator:

bδLeen =
h
(Z̄n∗(bρ2SLSn ,bδ2SLSn )0Zn∗(bρ2SLSn )

i−1
Z̄n∗(bρ2SLSn ,bδ2SLSn )0yn∗(bρ2SLSn ),

where

Z̄n∗(bρn,bδ2SLSn ) = (In − bρ2SLSn Wn)
h
Xn,Wn(In − bλ2SLSn Wn)

−1Xnbβ2SLSn

i

• Three series estimators (Series1, Series2, and Series3) corresponding to
three values of α which are α1 = 0.25, α2 = 0.35, and α3 = 0.45:

bδSeriesαi,n
=

h eZn∗(bρ2SLSn ,bδ2SLSn ,αi)
0Zn∗(bρ2SLSn )

i−1
×

eZn∗(bρ2SLSn ,bδ2SLSn ,αi)
0yn∗(bρ2SLSn ),

where

eZn∗(bρ2SLSn ,bδ2SLSn ,αi) = (In − bρ2SLSn Wn)×Xn, rn(αi)X
j=0

³bλ2SLS´jW j+1
n Xnbβ2SLSn

 ,
i = 1, 2, 3

and rn(αi) = Int(n
αi) where Int(·) is a function whose outcome is a nearest

integer to the argument which is a real number.

• Iterated FGS2SLS (IF):

bδIFn =
h bZn∗(bρFGS2SLSn )0Zn∗(bρFGS2SLSn )

i−1 bZn∗(bρFGS2SLSn )0yn∗(bρFGS2SLSn )

where bZn∗(bρFGS2SLSn ) = PHnZn∗(bρFGS2SLSn ).
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• Iterated Lee (IL):

bδILn =
h
Z̄n∗(bρLeen ,bδLeen )0Zn∗(bρLeen )

i−1
Z̄n∗(bρLeen ,bδLeen )0yn∗(bρLeen )

where

Z̄n∗(bρLeen ,bδLeen ) = (In − bρLeen Wn)
h
Xn,Wn(In − bλLeen Wn)

−1XnbβLeen

i
• Three iterated series estimators (IS1, IS2, IS3) corresponding to the three
already defined values of α :

bδISαi,n =
h eZn∗(bρSeriesαi,n

,bδSeriesαi,n
,αi)

0Zn∗(bρSeriesαi,n
)
i−1

×
eZn∗(bρSeriesαi,n

,bδSeriesαi,n
,αi)

0yn∗(bρSeriesαi,n
)

where

eZn∗(bρSeriesαi,n
,bδSeriesαi,n

,αi) = (In − bρSeriesαi,n
Wn)×Xn, rn(αi)X

j=0

³bλSeriesαi,n

´j
W j+1
n XnbβSeriesαi,n


i = 1, 2, 3

and rn(αi) has been defined before. For future reference, the FGS2SLS,

Lee, Series estimators, and their iterated versions are referred to as spatial

instrumental variable (IV) estimators.

There are six GM estimators of ρ, namely bρ2SLSn , bρFGS2SLSn , bρSeries1n , bρSeries2n ,

bρSeries3n , bρLeen which are obtained by applying the GM procedure to the correspond-

ing residuals u2SLSn = yn−Znbδ2SLSn , uFGS2SLSn = yn−ZnbδFGS2SLSn , uSeries1n = yn−
ZnbδSeries1n , uSeries2n = yn−ZnbδSeries2n , uSeries3n = yn−ZnbδSeries3n , uLeen = yn−ZnbδLeen ,

We also consider the ML estimator of ρ, bρMLn , based on the maximization of the

log-likelihood function (2.10) .
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2.8 Results

Tables 2.2-2.9 report the RMSEs of the considered estimators of the parameters

λ,β1, β2, and ρ corresponding to 98 sets of experimental parameter values. These

sets of parameter values are based on seven values of λ, seven values of ρ, and

two values of n. The values of σ2 are woven into the 49 combinations of λ and ρ.

There are two tables containing RMSEs corresponding to each parameter. The

first table relates to the results when n = 100; the second table corresponds to

the case when n = 400.

As a starting point observe that if the experiments involving the values 0.9 and

-0.9 of λ and ρ are omitted the sets of parameter values (but not the estimators)

of the remaining experiments are identical to those considered by Das, Kelejian

and Prucha (2003). Therefore, for these experiments the results reported in

their study in Tables 3-10 should be statistically the same as those reported

in this study in Tables 2.2-2.9 for the same estimators. In fact, the RMSEs

of ML, FGS2SLS, 2SLS, and OLS estimators are virtually the same in both

studies. There are some discrepancies stemming from differences in the vectors

of innovations used in the Monte Carlo experiments. These discrepancies are

within the range of the statistical error12.

12For an additional check we ran our program using vectors of innovations of Das, Kelejian

and Prucha (2003). The resulting RMSEs turned out to be identical to those of Das, Kelejian

and Prucha (2003).
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Table 2.2.  Root mean square error of the estimators of λ , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.092 0.092 0.095 0.094 0.101 0.098 0.092
-0.9 -0.8 0.50 0.093 0.092 0.095 0.093 0.099 0.095 0.092
-0.9 -0.4 0.50 0.094 0.094 0.095 0.095 0.098 0.094 0.093
-0.9 0 0.50 0.104 0.104 0.107 0.104 0.105 0.102 0.103
-0.9 0.4 0.50 0.123 0.124 0.126 0.124 0.126 0.124 0.130
-0.9 0.8 0.50 0.137 0.153 0.177 0.169 0.171 0.173 0.178
-0.9 0.9 0.50 0.135 0.159 0.223 0.213 0.212 0.213 0.217
-0.8 -0.9 0.25 0.065 0.064 0.066 0.065 0.067 0.066 0.064
-0.8 -0.8 0.25 0.065 0.064 0.066 0.065 0.066 0.065 0.064
-0.8 -0.4 0.25 0.066 0.066 0.067 0.066 0.068 0.067 0.066
-0.8 0.0 0.25 0.074 0.074 0.075 0.074 0.075 0.074 0.074
-0.8 0.4 0.25 0.090 0.088 0.091 0.089 0.090 0.089 0.091
-0.8 0.8 0.25 0.107 0.114 0.126 0.122 0.122 0.121 0.125
-0.8 0.9 0.25 0.108 0.117 0.147 0.143 0.143 0.143 0.145
-0.4 -0.9 0.50 0.078 0.079 0.081 0.081 0.081 0.081 0.081
-0.4 -0.8 0.50 0.079 0.079 0.081 0.081 0.081 0.081 0.081
-0.4 -0.4 0.50 0.083 0.084 0.084 0.084 0.084 0.084 0.084
-0.4 0.0 0.50 0.097 0.096 0.097 0.097 0.096 0.097 0.097
-0.4 0.4 0.50 0.124 0.123 0.126 0.124 0.123 0.124 0.124
-0.4 0.8 0.50 0.164 0.181 0.207 0.199 0.199 0.198 0.199
-0.4 0.9 0.50 0.163 0.196 0.292 0.276 0.276 0.276 0.277
0.0 -0.9 1.00 0.085 0.087 0.089 0.088 0.088 0.088 0.088
0.0 -0.8 1.00 0.087 0.088 0.089 0.089 0.089 0.089 0.089
0.0 -0.4 1.00 0.093 0.093 0.095 0.094 0.094 0.094 0.094
0.0 0.0 1.00 0.112 0.111 0.111 0.111 0.111 0.111 0.111
0.0 0.4 1.00 0.150 0.149 0.150 0.149 0.149 0.149 0.149
0.0 0.8 1.00 0.223 0.254 0.296 0.283 0.283 0.283 0.284
0.0 0.9 1.00 0.218 0.302 0.474 0.445 0.451 0.455 0.459
0.4 -0.9 0.25 0.028 0.029 0.028 0.029 0.029 0.029 0.029
0.4 -0.8 0.25 0.028 0.029 0.029 0.029 0.029 0.029 0.029
0.4 -0.4 0.25 0.031 0.031 0.032 0.032 0.032 0.032 0.032
0.4 0.0 0.25 0.037 0.037 0.038 0.037 0.038 0.038 0.038
0.4 0.4 0.25 0.055 0.053 0.054 0.054 0.055 0.055 0.054
0.4 0.8 0.25 0.109 0.109 0.114 0.109 0.109 0.109 0.109
0.4 0.9 0.25 0.129 0.139 0.165 0.162 0.160 0.161 0.162
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Table 2.2 (cont).  Root mean square error of the estimators of λ , N=100
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.111 0.361 0.095 0.094 0.106 0.101 0.096
-0.9 -0.8 0.50 0.107 0.330 0.095 0.094 0.105 0.100 0.095
-0.9 -0.4 0.50 0.098 0.230 0.096 0.095 0.105 0.102 0.096
-0.9 0 0.50 0.104 0.156 0.107 0.106 0.111 0.111 0.106
-0.9 0.4 0.50 0.136 0.134 0.127 0.125 0.129 0.128 0.128
-0.9 0.8 0.50 0.312 0.590 0.166 0.156 0.154 0.155 0.160
-0.9 0.9 0.50 0.533 1.086 0.184 0.169 0.167 0.169 0.172
-0.8 -0.9 0.25 0.078 0.200 0.066 0.066 0.067 0.066 0.065
-0.8 -0.8 0.25 0.075 0.182 0.065 0.065 0.066 0.065 0.065
-0.8 -0.4 0.25 0.068 0.127 0.067 0.066 0.069 0.067 0.066
-0.8 0.0 0.25 0.074 0.093 0.076 0.074 0.076 0.075 0.074
-0.8 0.4 0.25 0.097 0.099 0.091 0.090 0.091 0.090 0.090
-0.8 0.8 0.25 0.235 0.393 0.119 0.115 0.114 0.115 0.116
-0.8 0.9 0.25 0.392 0.796 0.127 0.120 0.120 0.120 0.121
-0.4 -0.9 0.50 0.093 0.267 0.080 0.080 0.080 0.080 0.080
-0.4 -0.8 0.50 0.090 0.242 0.081 0.081 0.081 0.081 0.081
-0.4 -0.4 0.50 0.087 0.162 0.084 0.084 0.084 0.084 0.084
-0.4 0.0 0.50 0.096 0.111 0.098 0.098 0.098 0.098 0.098
-0.4 0.4 0.50 0.132 0.148 0.127 0.126 0.126 0.126 0.126
-0.4 0.8 0.50 0.314 0.608 0.195 0.183 0.183 0.183 0.183
-0.4 0.9 0.50 0.517 0.972 0.242 0.220 0.219 0.223 0.221
0.0 -0.9 1.00 0.099 0.289 0.090 0.088 0.088 0.088 0.088
0.0 -0.8 1.00 0.096 0.258 0.089 0.089 0.089 0.089 0.089
0.0 -0.4 1.00 0.096 0.161 0.096 0.095 0.095 0.095 0.095
0.0 0.0 1.00 0.111 0.110 0.112 0.113 0.113 0.113 0.113
0.0 0.4 1.00 0.156 0.220 0.153 0.153 0.153 0.153 0.153
0.0 0.8 1.00 0.349 0.683 0.282 0.275 0.274 0.276 0.276
0.0 0.9 1.00 0.564 0.879 0.439 0.388 0.385 0.397 0.405
0.4 -0.9 0.25 0.031 0.042 0.029 0.029 0.029 0.029 0.029
0.4 -0.8 0.25 0.030 0.039 0.029 0.029 0.029 0.029 0.029
0.4 -0.4 0.25 0.031 0.033 0.032 0.032 0.032 0.032 0.032
0.4 0.0 0.25 0.037 0.039 0.038 0.038 0.038 0.038 0.038
0.4 0.4 0.25 0.055 0.070 0.055 0.055 0.055 0.055 0.055
0.4 0.8 0.25 0.142 0.247 0.112 0.113 0.113 0.112 0.112
0.4 0.9 0.25 0.228 0.407 0.154 0.147 0.145 0.146 0.148
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Table 2.2 (cont).  Root mean square error of the estimators of λ , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.014 0.015 0.015 0.015 0.015 0.015 0.015
0.8 -0.8 0.50 0.015 0.015 0.015 0.015 0.015 0.015 0.015
0.8 -0.4 0.50 0.017 0.017 0.017 0.016 0.017 0.017 0.017
0.8 0.0 0.50 0.021 0.021 0.021 0.021 0.021 0.021 0.021
0.8 0.4 0.50 0.031 0.031 0.030 0.031 0.031 0.031 0.031
0.8 0.8 0.50 0.077 0.070 0.069 0.073 0.075 0.074 0.073
0.8 0.9 0.50 0.103 0.108 0.109 0.114 0.125 0.120 0.116
0.9 -0.9 0.50 0.007 0.008 0.008 0.007 0.008 0.008 0.007
0.9 -0.8 0.50 0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.9 -0.4 0.50 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.9 0 0.50 0.011 0.011 0.011 0.011 0.011 0.011 0.011
0.9 0.4 0.50 0.017 0.017 0.017 0.017 0.017 0.017 0.017
0.9 0.8 0.50 0.045 0.039 0.038 0.041 0.045 0.044 0.042
0.9 0.9 0.50 0.064 0.064 0.062 0.061 0.074 0.071 0.068

Column Average 0.081 0.085 0.096 0.094 0.095 0.095 0.095
Col.Av.w/o |λ|,|ρ|=0 0.081 0.083 0.087 0.086 0.086 0.086 0.086
Col. Av. w/o ρ=0.9 0.072 0.074 0.077 0.076 0.077 0.076 0.076
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Table 2.2 (cont).  Root mean square error of the estimators of λ , N=100
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3
0.8 -0.9 0.50 0.015 0.016 0.015 0.015 0.015 0.015 0.015
0.8 -0.8 0.50 0.015 0.016 0.015 0.015 0.015 0.015 0.015
0.8 -0.4 0.50 0.017 0.017 0.017 0.016 0.017 0.017 0.017
0.8 0.0 0.50 0.021 0.023 0.021 0.021 0.021 0.021 0.021
0.8 0.4 0.50 0.031 0.042 0.030 0.031 0.031 0.031 0.031
0.8 0.8 0.50 0.073 0.132 0.069 0.081 0.080 0.080 0.080
0.8 0.9 0.50 0.110 0.183 0.106 0.123 0.121 0.119 0.122
0.9 -0.9 0.50 0.008 0.008 0.008 0.007 0.008 0.008 0.007
0.9 -0.8 0.50 0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.9 -0.4 0.50 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.9 0 0.50 0.011 0.012 0.011 0.011 0.011 0.011 0.011
0.9 0.4 0.50 0.016 0.020 0.017 0.017 0.017 0.017 0.017
0.9 0.8 0.50 0.040 0.067 0.039 0.045 0.049 0.048 0.047
0.9 0.9 0.50 0.059 0.097 0.060 0.070 0.079 0.075 0.074

Column Average 0.127 0.233 0.092 0.090 0.091 0.091 0.091
Col.Av.w/o |λ|,|ρ|=0.9 0.101 0.170 0.086 0.085 0.086 0.086 0.085
Col. Av. w/o ρ=0.9 0.091 0.166 0.076 0.076 0.077 0.076 0.076

 
 
 



 44

Table 2.3.  Root mean square error of the estimators of λ , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.057 0.057 0.057 0.057 0.058 0.057 0.057
-0.9 -0.8 0.50 0.056 0.056 0.056 0.056 0.057 0.056 0.057
-0.9 -0.4 0.50 0.056 0.056 0.056 0.056 0.056 0.056 0.056
-0.9 0 0.50 0.059 0.060 0.060 0.060 0.061 0.060 0.059
-0.9 0.4 0.50 0.068 0.072 0.073 0.073 0.073 0.074 0.070
-0.9 0.8 0.50 0.077 0.092 0.097 0.096 0.096 0.097 0.105
-0.9 0.9 0.50 0.076 0.095 0.111 0.108 0.107 0.109 0.118
-0.8 -0.9 0.50 0.055 0.056 0.056 0.056 0.056 0.055 0.056
-0.8 -0.8 0.50 0.055 0.055 0.055 0.055 0.055 0.055 0.055
-0.8 -0.4 0.50 0.055 0.056 0.056 0.055 0.055 0.055 0.056
-0.8 0.0 0.50 0.059 0.060 0.060 0.060 0.060 0.060 0.059
-0.8 0.4 0.50 0.070 0.073 0.074 0.073 0.074 0.074 0.072
-0.8 0.8 0.50 0.080 0.096 0.101 0.100 0.100 0.101 0.103
-0.8 0.9 0.50 0.080 0.100 0.119 0.115 0.114 0.114 0.118
-0.4 -0.9 1.00 0.066 0.068 0.068 0.069 0.069 0.069 0.069
-0.4 -0.8 1.00 0.067 0.068 0.068 0.069 0.069 0.069 0.069
-0.4 -0.4 1.00 0.069 0.070 0.070 0.069 0.069 0.069 0.069
-0.4 0.0 1.00 0.078 0.078 0.078 0.078 0.078 0.078 0.078
-0.4 0.4 1.00 0.097 0.101 0.102 0.100 0.101 0.100 0.100
-0.4 0.8 1.00 0.116 0.152 0.171 0.163 0.163 0.163 0.163
-0.4 0.9 1.00 0.111 0.166 0.242 0.215 0.215 0.215 0.215
0.0 -0.9 0.25 0.026 0.027 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 0.25 0.026 0.027 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 0.25 0.028 0.028 0.028 0.028 0.028 0.028 0.028
0.0 0.0 0.25 0.032 0.032 0.032 0.032 0.032 0.032 0.032
0.0 0.4 0.25 0.043 0.043 0.043 0.043 0.043 0.043 0.043
0.0 0.8 0.25 0.072 0.075 0.079 0.077 0.077 0.077 0.077
0.0 0.9 0.25 0.076 0.088 0.102 0.097 0.097 0.097 0.097
0.4 -0.9 0.50 0.023 0.024 0.024 0.024 0.024 0.024 0.024
0.4 -0.8 0.50 0.024 0.024 0.024 0.024 0.024 0.024 0.024
0.4 -0.4 0.50 0.026 0.026 0.026 0.026 0.026 0.026 0.026
0.4 0.0 0.50 0.030 0.030 0.030 0.030 0.030 0.030 0.030
0.4 0.4 0.50 0.043 0.043 0.043 0.043 0.043 0.043 0.043
0.4 0.8 0.50 0.084 0.090 0.093 0.090 0.090 0.090 0.090
0.4 0.9 0.50 0.093 0.118 0.142 0.133 0.131 0.133 0.133
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Table 2.3 (cont).  Root mean square error of the estimators of λ , N=400
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.067 0.450 0.057 0.057 0.058 0.058 0.057
-0.9 -0.8 0.50 0.064 0.411 0.056 0.056 0.058 0.057 0.056
-0.9 -0.4 0.50 0.059 0.280 0.057 0.056 0.057 0.056 0.057
-0.9 0 0.50 0.060 0.163 0.060 0.060 0.061 0.060 0.061
-0.9 0.4 0.50 0.078 0.081 0.073 0.073 0.073 0.073 0.074
-0.9 0.8 0.50 0.192 0.693 0.094 0.090 0.091 0.091 0.094
-0.9 0.9 0.50 0.353 1.220 0.099 0.094 0.094 0.094 0.096
-0.8 -0.9 0.25 0.066 0.435 0.056 0.056 0.056 0.056 0.056
-0.8 -0.8 0.25 0.063 0.395 0.055 0.055 0.056 0.055 0.055
-0.8 -0.4 0.25 0.058 0.264 0.056 0.055 0.055 0.055 0.056
-0.8 0.0 0.25 0.060 0.148 0.060 0.060 0.060 0.060 0.060
-0.8 0.4 0.25 0.079 0.089 0.074 0.074 0.074 0.074 0.074
-0.8 0.8 0.25 0.196 0.711 0.098 0.095 0.095 0.095 0.096
-0.8 0.9 0.25 0.358 1.204 0.105 0.099 0.099 0.099 0.100
-0.4 -0.9 0.50 0.080 0.563 0.068 0.069 0.069 0.069 0.069
-0.4 -0.8 0.50 0.077 0.508 0.068 0.068 0.068 0.068 0.068
-0.4 -0.4 0.50 0.072 0.316 0.070 0.069 0.069 0.069 0.069
-0.4 0.0 0.50 0.078 0.136 0.078 0.078 0.078 0.078 0.078
-0.4 0.4 0.50 0.107 0.208 0.102 0.102 0.102 0.102 0.102
-0.4 0.8 0.50 0.268 0.914 0.159 0.151 0.151 0.151 0.151
-0.4 0.9 0.50 0.470 1.206 0.200 0.174 0.173 0.176 0.177
0.0 -0.9 1.00 0.030 0.105 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 1.00 0.029 0.093 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 1.00 0.029 0.053 0.028 0.028 0.028 0.028 0.028
0.0 0.0 1.00 0.032 0.032 0.032 0.032 0.032 0.032 0.032
0.0 0.4 1.00 0.046 0.089 0.043 0.043 0.043 0.043 0.043
0.0 0.8 1.00 0.121 0.418 0.077 0.076 0.076 0.076 0.076
0.0 0.9 1.00 0.220 0.685 0.093 0.088 0.088 0.088 0.088
0.4 -0.9 0.25 0.026 0.075 0.024 0.024 0.024 0.024 0.024
0.4 -0.8 0.25 0.026 0.064 0.024 0.024 0.024 0.024 0.024
0.4 -0.4 0.25 0.026 0.032 0.026 0.026 0.026 0.026 0.026
0.4 0.0 0.25 0.030 0.041 0.030 0.030 0.030 0.030 0.030
0.4 0.4 0.25 0.045 0.123 0.043 0.043 0.043 0.043 0.043
0.4 0.8 0.25 0.117 0.399 0.092 0.091 0.091 0.091 0.091
0.4 0.9 0.25 0.197 0.528 0.130 0.121 0.120 0.120 0.121
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Table 2.3 (cont).  Root mean square error of the estimators of λ , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.011 0.012 0.012 0.012 0.012 0.012 0.012
0.8 -0.8 0.50 0.012 0.012 0.012 0.012 0.012 0.012 0.012
0.8 -0.4 0.50 0.013 0.014 0.014 0.013 0.013 0.013 0.013
0.8 0.0 0.50 0.016 0.016 0.016 0.016 0.016 0.016 0.016
0.8 0.4 0.50 0.024 0.024 0.024 0.024 0.024 0.024 0.024
0.8 0.8 0.50 0.059 0.057 0.056 0.056 0.057 0.056 0.056
0.8 0.9 0.50 0.079 0.092 0.095 0.095 0.098 0.095 0.095
0.9 -0.9 0.50 0.004 0.005 0.005 0.004 0.004 0.004 0.004
0.9 -0.8 0.50 0.004 0.005 0.005 0.004 0.004 0.004 0.004
0.9 -0.4 0.50 0.005 0.005 0.005 0.005 0.005 0.005 0.005
0.9 0 0.50 0.006 0.006 0.006 0.006 0.006 0.006 0.006
0.9 0.4 0.50 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.9 0.8 0.50 0.024 0.023 0.023 0.024 0.024 0.024 0.024
0.9 0.9 0.50 0.041 0.039 0.039 0.040 0.043 0.042 0.041

Column Average 0.050 0.055 0.059 0.057 0.057 0.057 0.058
Col.Av.w/o |λ|,|ρ|=0 0.051 0.054 0.055 0.055 0.055 0.055 0.055
Col. Av. w/o ρ=0.9 0.045 0.047 0.048 0.048 0.048 0.048 0.048
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Table 2.3 (cont).  Root mean square error of the estimators of λ , N=400
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3
0.8 -0.9 0.50 0.013 0.016 0.012 0.012 0.012 0.012 0.012
0.8 -0.8 0.50 0.013 0.014 0.012 0.012 0.012 0.012 0.012
0.8 -0.4 0.50 0.014 0.016 0.014 0.013 0.013 0.013 0.013
0.8 0.0 0.50 0.016 0.035 0.016 0.016 0.016 0.016 0.016
0.8 0.4 0.50 0.024 0.079 0.024 0.024 0.024 0.024 0.024
0.8 0.8 0.50 0.061 0.184 0.058 0.061 0.062 0.061 0.061
0.8 0.9 0.50 0.099 0.210 0.094 0.098 0.099 0.098 0.098
0.9 -0.9 0.50 0.005 0.005 0.005 0.004 0.004 0.004 0.004
0.9 -0.8 0.50 0.005 0.005 0.005 0.004 0.004 0.004 0.004
0.9 -0.4 0.50 0.005 0.006 0.005 0.005 0.005 0.005 0.005
0.9 0 0.50 0.006 0.010 0.006 0.006 0.006 0.006 0.006
0.9 0.4 0.50 0.009 0.023 0.009 0.009 0.009 0.009 0.009
0.9 0.8 0.50 0.024 0.075 0.023 0.025 0.025 0.025 0.025
0.9 0.9 0.50 0.040 0.101 0.040 0.043 0.046 0.044 0.043

Column Average 0.086 0.284 0.056 0.055 0.055 0.055 0.056
Col.Av.w/o |λ|,|ρ|=0.9 0.068 0.214 0.055 0.054 0.054 0.054 0.054
Col. Av. w/o ρ=0.9 0.059 0.208 0.048 0.047 0.048 0.047 0.048
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Table 2.4.  Root mean square error of the estimators of B1, N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.060 0.060 0.061 0.061 0.062 0.063 0.061
-0.9 -0.8 0.50 0.061 0.060 0.061 0.061 0.062 0.062 0.061
-0.9 -0.4 0.50 0.061 0.060 0.061 0.060 0.061 0.061 0.061
-0.9 0 0.50 0.062 0.061 0.061 0.061 0.061 0.061 0.061
-0.9 0.4 0.50 0.064 0.064 0.064 0.064 0.064 0.064 0.064
-0.9 0.8 0.50 0.069 0.070 0.074 0.074 0.074 0.074 0.075
-0.9 0.9 0.50 0.068 0.071 0.084 0.086 0.085 0.086 0.087
-0.8 -0.9 0.25 0.043 0.043 0.043 0.043 0.044 0.044 0.043
-0.8 -0.8 0.25 0.043 0.043 0.043 0.043 0.044 0.044 0.043
-0.8 -0.4 0.25 0.043 0.043 0.043 0.043 0.043 0.043 0.043
-0.8 0.0 0.25 0.043 0.043 0.043 0.043 0.043 0.043 0.043
-0.8 0.4 0.25 0.045 0.045 0.045 0.045 0.045 0.045 0.045
-0.8 0.8 0.25 0.049 0.050 0.052 0.052 0.052 0.052 0.052
-0.8 0.9 0.25 0.050 0.050 0.057 0.057 0.057 0.057 0.057
-0.4 -0.9 0.50 0.062 0.062 0.062 0.063 0.063 0.063 0.063
-0.4 -0.8 0.50 0.062 0.062 0.063 0.063 0.063 0.062 0.063
-0.4 -0.4 0.50 0.062 0.061 0.062 0.062 0.062 0.062 0.062
-0.4 0.0 0.50 0.061 0.061 0.061 0.061 0.061 0.061 0.061
-0.4 0.4 0.50 0.062 0.062 0.062 0.062 0.062 0.062 0.062
-0.4 0.8 0.50 0.068 0.068 0.070 0.071 0.070 0.070 0.071
-0.4 0.9 0.50 0.068 0.071 0.079 0.084 0.084 0.084 0.085
0.0 -0.9 1.00 0.090 0.090 0.090 0.090 0.090 0.090 0.090
0.0 -0.8 1.00 0.090 0.089 0.090 0.089 0.089 0.089 0.089
0.0 -0.4 1.00 0.089 0.088 0.089 0.089 0.089 0.089 0.089
0.0 0.0 1.00 0.087 0.087 0.087 0.087 0.087 0.087 0.087
0.0 0.4 1.00 0.087 0.087 0.086 0.086 0.087 0.086 0.086
0.0 0.8 1.00 0.091 0.092 0.093 0.097 0.098 0.098 0.098
0.0 0.9 1.00 0.092 0.096 0.102 0.120 0.128 0.127 0.126
0.4 -0.9 0.25 0.046 0.045 0.046 0.046 0.046 0.046 0.046
0.4 -0.8 0.25 0.046 0.045 0.046 0.046 0.046 0.046 0.046
0.4 -0.4 0.25 0.045 0.045 0.045 0.045 0.045 0.045 0.045
0.4 0.0 0.25 0.044 0.044 0.044 0.044 0.044 0.044 0.044
0.4 0.4 0.25 0.043 0.043 0.043 0.043 0.043 0.043 0.043
0.4 0.8 0.25 0.044 0.044 0.044 0.044 0.044 0.044 0.044
0.4 0.9 0.25 0.045 0.046 0.047 0.048 0.048 0.049 0.049
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Table 2.4 (cont).  Root mean square error of the estimators of B1 , N=100
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.069 0.062 0.061 0.061 0.064 0.064 0.061
-0.9 -0.8 0.50 0.066 0.061 0.061 0.061 0.063 0.063 0.061
-0.9 -0.4 0.50 0.062 0.060 0.060 0.060 0.061 0.061 0.061
-0.9 0 0.50 0.061 0.060 0.061 0.061 0.062 0.063 0.061
-0.9 0.4 0.50 0.067 0.066 0.064 0.064 0.065 0.065 0.064
-0.9 0.8 0.50 0.106 0.089 0.073 0.072 0.072 0.072 0.073
-0.9 0.9 0.50 0.154 0.097 0.078 0.075 0.075 0.075 0.077
-0.8 -0.9 0.25 0.049 0.046 0.044 0.044 0.044 0.044 0.044
-0.8 -0.8 0.25 0.047 0.045 0.044 0.044 0.044 0.044 0.044
-0.8 -0.4 0.25 0.044 0.043 0.043 0.043 0.043 0.043 0.043
-0.8 0.0 0.25 0.043 0.043 0.043 0.043 0.043 0.043 0.043
-0.8 0.4 0.25 0.046 0.046 0.045 0.045 0.045 0.045 0.045
-0.8 0.8 0.25 0.074 0.066 0.051 0.051 0.050 0.050 0.051
-0.8 0.9 0.25 0.115 0.081 0.053 0.052 0.051 0.051 0.052
-0.4 -0.9 0.50 0.071 0.069 0.063 0.063 0.063 0.063 0.063
-0.4 -0.8 0.50 0.069 0.067 0.063 0.063 0.062 0.063 0.063
-0.4 -0.4 0.50 0.063 0.062 0.062 0.062 0.062 0.062 0.062
-0.4 0.0 0.50 0.061 0.061 0.061 0.061 0.061 0.061 0.061
-0.4 0.4 0.50 0.064 0.064 0.062 0.062 0.062 0.062 0.062
-0.4 0.8 0.50 0.091 0.089 0.070 0.070 0.069 0.069 0.070
-0.4 0.9 0.50 0.126 0.102 0.076 0.077 0.076 0.077 0.077
0.0 -0.9 1.00 0.103 0.105 0.091 0.091 0.091 0.091 0.091
0.0 -0.8 1.00 0.100 0.101 0.091 0.090 0.090 0.090 0.090
0.0 -0.4 1.00 0.090 0.091 0.090 0.090 0.090 0.090 0.090
0.0 0.0 1.00 0.087 0.086 0.088 0.087 0.087 0.087 0.087
0.0 0.4 1.00 0.089 0.093 0.087 0.087 0.087 0.087 0.087
0.0 0.8 1.00 0.120 0.136 0.093 0.095 0.094 0.095 0.096
0.0 0.9 1.00 0.134 0.149 0.101 0.111 0.115 0.118 0.120
0.4 -0.9 0.25 0.053 0.053 0.046 0.046 0.046 0.046 0.046
0.4 -0.8 0.25 0.051 0.051 0.046 0.046 0.046 0.046 0.046
0.4 -0.4 0.25 0.046 0.046 0.045 0.045 0.045 0.045 0.045
0.4 0.0 0.25 0.044 0.044 0.044 0.044 0.044 0.044 0.044
0.4 0.4 0.25 0.044 0.047 0.043 0.043 0.043 0.043 0.043
0.4 0.8 0.25 0.056 0.091 0.044 0.044 0.044 0.044 0.044
0.4 0.9 0.25 0.080 0.135 0.046 0.047 0.047 0.047 0.047
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Table 2.4 (cont).  Root mean square error of the estimators of B1 , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.065 0.064 0.064 0.065 0.065 0.065 0.065
0.8 -0.8 0.50 0.065 0.064 0.064 0.065 0.064 0.065 0.065
0.8 -0.4 0.50 0.064 0.064 0.065 0.065 0.064 0.065 0.065
0.8 0.0 0.50 0.063 0.063 0.063 0.063 0.063 0.063 0.063
0.8 0.4 0.50 0.061 0.060 0.061 0.061 0.061 0.061 0.061
0.8 0.8 0.50 0.059 0.058 0.059 0.059 0.060 0.059 0.059
0.8 0.9 0.50 0.059 0.058 0.059 0.064 0.067 0.067 0.067
0.9 -0.9 0.50 0.063 0.063 0.064 0.064 0.064 0.064 0.064
0.9 -0.8 0.50 0.064 0.063 0.064 0.064 0.064 0.064 0.064
0.9 -0.4 0.50 0.064 0.063 0.065 0.064 0.064 0.065 0.065
0.9 0 0.50 0.063 0.063 0.063 0.063 0.063 0.063 0.063
0.9 0.4 0.50 0.061 0.061 0.061 0.061 0.061 0.061 0.061
0.9 0.8 0.50 0.058 0.058 0.058 0.059 0.059 0.059 0.059
0.9 0.9 0.50 0.058 0.058 0.058 0.061 0.063 0.063 0.063

Column Average 0.061 0.062 0.063 0.064 0.064 0.064 0.064
Col.Av.w/o |λ|,|ρ|=0.9 0.061 0.060 0.061 0.061 0.061 0.061 0.061
Col. Av. w/o ρ=0.9 0.061 0.061 0.062 0.062 0.062 0.062 0.062
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Table 2.4 (cont).  Root mean square error of the estimators of B1 , N=100
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3
0.8 -0.9 0.50 0.075 0.075 0.064 0.065 0.065 0.065 0.065
0.8 -0.8 0.50 0.072 0.072 0.065 0.065 0.065 0.065 0.065
0.8 -0.4 0.50 0.066 0.066 0.065 0.065 0.065 0.065 0.065
0.8 0.0 0.50 0.063 0.065 0.063 0.063 0.063 0.063 0.063
0.8 0.4 0.50 0.063 0.072 0.061 0.061 0.061 0.061 0.061
0.8 0.8 0.50 0.081 0.142 0.058 0.059 0.059 0.059 0.059
0.8 0.9 0.50 0.108 0.172 0.059 0.064 0.063 0.063 0.063
0.9 -0.9 0.50 0.075 0.074 0.064 0.063 0.064 0.064 0.064
0.9 -0.8 0.50 0.072 0.072 0.064 0.064 0.064 0.064 0.064
0.9 -0.4 0.50 0.066 0.066 0.065 0.065 0.065 0.064 0.064
0.9 0 0.50 0.063 0.064 0.063 0.063 0.063 0.063 0.063
0.9 0.4 0.50 0.063 0.070 0.061 0.061 0.061 0.061 0.061
0.9 0.8 0.50 0.082 0.139 0.058 0.059 0.059 0.059 0.059
0.9 0.9 0.50 0.106 0.169 0.058 0.061 0.060 0.060 0.061

Column Average 0.076 0.080 0.062 0.063 0.063 0.063 0.063
Col.Av.w/o |λ|,|ρ|=0.9 0.067 0.072 0.061 0.061 0.061 0.061 0.061
Col. Av. w/o ρ=0.9 0.069 0.072 0.062 0.062 0.062 0.062 0.062
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Table 2.5.  Root mean square error of the estimators of B1 , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.034 0.034 0.034 0.034 0.034 0.034 0.035
-0.9 -0.8 0.50 0.034 0.034 0.034 0.034 0.034 0.034 0.035
-0.9 -0.4 0.50 0.035 0.035 0.035 0.035 0.035 0.035 0.035
-0.9 0 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.9 0.4 0.50 0.040 0.040 0.040 0.040 0.039 0.040 0.040
-0.9 0.8 0.50 0.043 0.046 0.046 0.046 0.046 0.047 0.049
-0.9 0.9 0.50 0.044 0.047 0.050 0.050 0.050 0.051 0.053
-0.8 -0.9 0.50 0.035 0.034 0.034 0.035 0.035 0.035 0.034
-0.8 -0.8 0.50 0.035 0.034 0.034 0.034 0.035 0.034 0.034
-0.8 -0.4 0.50 0.035 0.035 0.035 0.035 0.036 0.035 0.035
-0.8 0.0 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.8 0.4 0.50 0.039 0.040 0.040 0.039 0.039 0.039 0.039
-0.8 0.8 0.50 0.043 0.046 0.046 0.046 0.046 0.046 0.047
-0.8 0.9 0.50 0.043 0.047 0.050 0.051 0.051 0.051 0.051
-0.4 -0.9 1.00 0.051 0.051 0.051 0.052 0.052 0.052 0.052
-0.4 -0.8 1.00 0.051 0.051 0.051 0.051 0.051 0.051 0.051
-0.4 -0.4 1.00 0.052 0.051 0.051 0.052 0.052 0.052 0.052
-0.4 0.0 1.00 0.053 0.053 0.053 0.053 0.053 0.053 0.053
-0.4 0.4 1.00 0.055 0.055 0.055 0.055 0.055 0.055 0.055
-0.4 0.8 1.00 0.060 0.063 0.064 0.064 0.064 0.064 0.064
-0.4 0.9 1.00 0.059 0.065 0.074 0.076 0.075 0.075 0.075
0.0 -0.9 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.0 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.4 0.25 0.028 0.028 0.028 0.028 0.028 0.028 0.028
0.0 0.8 0.25 0.030 0.030 0.030 0.030 0.030 0.030 0.030
0.0 0.9 0.25 0.031 0.032 0.033 0.033 0.033 0.033 0.033
0.4 -0.9 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 -0.8 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 -0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.0 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.8 0.50 0.040 0.040 0.041 0.040 0.040 0.040 0.040
0.4 0.9 0.50 0.041 0.043 0.043 0.044 0.044 0.044 0.044
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Table 2.5 (cont).  Root mean square error of the estimators of B1 , N=400
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.041 0.043 0.034 0.034 0.035 0.035 0.035
-0.9 -0.8 0.50 0.040 0.042 0.034 0.034 0.035 0.035 0.035
-0.9 -0.4 0.50 0.037 0.038 0.035 0.035 0.035 0.035 0.035
-0.9 0 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.9 0.4 0.50 0.043 0.043 0.040 0.040 0.040 0.040 0.040
-0.9 0.8 0.50 0.084 0.076 0.046 0.045 0.046 0.046 0.047
-0.9 0.9 0.50 0.150 0.099 0.048 0.047 0.047 0.047 0.047
-0.8 -0.9 0.25 0.042 0.048 0.035 0.035 0.035 0.035 0.035
-0.8 -0.8 0.25 0.040 0.046 0.035 0.035 0.035 0.035 0.035
-0.8 -0.4 0.25 0.037 0.040 0.035 0.035 0.036 0.036 0.035
-0.8 0.0 0.25 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.8 0.4 0.25 0.042 0.042 0.040 0.040 0.039 0.039 0.040
-0.8 0.8 0.25 0.083 0.081 0.046 0.045 0.046 0.045 0.046
-0.8 0.9 0.25 0.145 0.111 0.048 0.047 0.047 0.047 0.047
-0.4 -0.9 0.50 0.062 0.098 0.051 0.051 0.051 0.051 0.051
-0.4 -0.8 0.50 0.060 0.091 0.051 0.051 0.051 0.051 0.051
-0.4 -0.4 0.50 0.054 0.068 0.052 0.052 0.052 0.052 0.052
-0.4 0.0 0.50 0.053 0.055 0.053 0.053 0.053 0.053 0.053
-0.4 0.4 0.50 0.058 0.064 0.055 0.055 0.055 0.055 0.055
-0.4 0.8 0.50 0.104 0.149 0.063 0.063 0.063 0.063 0.063
-0.4 0.9 0.50 0.177 0.185 0.068 0.067 0.067 0.068 0.068
0.0 -0.9 1.00 0.032 0.041 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 1.00 0.031 0.038 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 1.00 0.028 0.030 0.027 0.027 0.027 0.027 0.027
0.0 0.0 1.00 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.4 1.00 0.029 0.035 0.028 0.028 0.028 0.028 0.028
0.0 0.8 1.00 0.050 0.115 0.030 0.030 0.030 0.030 0.030
0.0 0.9 1.00 0.084 0.183 0.032 0.032 0.032 0.032 0.032
0.4 -0.9 0.25 0.047 0.057 0.039 0.039 0.039 0.039 0.039
0.4 -0.8 0.25 0.046 0.053 0.039 0.039 0.039 0.039 0.039
0.4 -0.4 0.25 0.041 0.042 0.039 0.039 0.039 0.039 0.039
0.4 0.0 0.25 0.039 0.042 0.039 0.039 0.039 0.039 0.039
0.4 0.4 0.25 0.042 0.070 0.039 0.039 0.039 0.039 0.039
0.4 0.8 0.25 0.067 0.198 0.040 0.041 0.041 0.041 0.041
0.4 0.9 0.25 0.112 0.257 0.043 0.043 0.043 0.043 0.044
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Table 2.5 (cont).  Root mean square error of the estimators of B1 , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.054 0.055 0.056 0.055 0.055 0.055 0.055
0.8 -0.8 0.50 0.054 0.056 0.056 0.056 0.056 0.056 0.056
0.8 -0.4 0.50 0.056 0.056 0.057 0.057 0.057 0.057 0.057
0.8 0.0 0.50 0.056 0.056 0.057 0.057 0.057 0.057 0.057
0.8 0.4 0.50 0.056 0.056 0.056 0.056 0.056 0.056 0.056
0.8 0.8 0.50 0.055 0.056 0.055 0.056 0.056 0.055 0.056
0.8 0.9 0.50 0.055 0.057 0.057 0.059 0.061 0.061 0.061
0.9 -0.9 0.50 0.038 0.039 0.039 0.038 0.038 0.038 0.038
0.9 -0.8 0.50 0.038 0.039 0.039 0.039 0.039 0.039 0.039
0.9 -0.4 0.50 0.040 0.040 0.040 0.040 0.040 0.040 0.040
0.9 0 0.50 0.040 0.040 0.040 0.040 0.040 0.041 0.041
0.9 0.4 0.50 0.040 0.040 0.040 0.040 0.040 0.040 0.040
0.9 0.8 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.9 0.9 0.50 0.039 0.040 0.039 0.040 0.040 0.040 0.040

Column Average 0.042 0.042 0.043 0.043 0.043 0.043 0.043
Col.Av.w/o |λ|,|ρ|=0 0.043 0.043 0.043 0.043 0.043 0.043 0.043
Col. Av. w/o ρ=0.9 0.041 0.042 0.042 0.042 0.042 0.042 0.042
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Table 2.5 (cont).  Root mean square error of the estimators of B1 , N=400
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3
0.8 -0.9 0.50 0.067 0.068 0.056 0.055 0.055 0.055 0.055
0.8 -0.8 0.50 0.065 0.065 0.056 0.055 0.055 0.055 0.055
0.8 -0.4 0.50 0.059 0.060 0.057 0.056 0.057 0.057 0.056
0.8 0.0 0.50 0.056 0.073 0.057 0.057 0.057 0.057 0.057
0.8 0.4 0.50 0.060 0.128 0.056 0.056 0.056 0.056 0.056
0.8 0.8 0.50 0.094 0.272 0.055 0.056 0.056 0.056 0.056
0.8 0.9 0.50 0.160 0.302 0.056 0.059 0.058 0.059 0.060
0.9 -0.9 0.50 0.047 0.047 0.039 0.038 0.038 0.038 0.038
0.9 -0.8 0.50 0.046 0.045 0.039 0.038 0.039 0.038 0.039
0.9 -0.4 0.50 0.042 0.042 0.040 0.040 0.040 0.040 0.040
0.9 0 0.50 0.040 0.047 0.040 0.040 0.040 0.041 0.041
0.9 0.4 0.50 0.043 0.074 0.040 0.040 0.040 0.040 0.040
0.9 0.8 0.50 0.067 0.217 0.039 0.039 0.039 0.039 0.039
0.9 0.9 0.50 0.111 0.280 0.039 0.040 0.039 0.039 0.040

Column Average 0.062 0.090 0.043 0.043 0.043 0.043 0.043
Col.Av.w/o |λ|,|ρ|=0.9 0.052 0.077 0.043 0.043 0.043 0.043 0.043
Col. Av. w/o ρ=0.9 0.050 0.071 0.042 0.042 0.042 0.042 0.042
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Table 2.6.  Root mean square error of the estimators of B2 , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.076 0.075 0.075 0.075 0.077 0.078 0.075
-0.9 -0.8 0.50 0.076 0.075 0.076 0.075 0.076 0.076 0.076
-0.9 -0.4 0.50 0.076 0.074 0.075 0.075 0.075 0.076 0.075
-0.9 0 0.50 0.076 0.076 0.076 0.076 0.077 0.077 0.076
-0.9 0.4 0.50 0.077 0.078 0.078 0.077 0.079 0.079 0.078
-0.9 0.8 0.50 0.080 0.082 0.086 0.086 0.087 0.087 0.086
-0.9 0.9 0.50 0.080 0.083 0.096 0.098 0.099 0.099 0.099
-0.8 -0.9 0.25 0.054 0.053 0.054 0.054 0.054 0.054 0.054
-0.8 -0.8 0.25 0.054 0.053 0.054 0.054 0.053 0.054 0.054
-0.8 -0.4 0.25 0.054 0.053 0.053 0.053 0.053 0.053 0.053
-0.8 0.0 0.25 0.054 0.053 0.054 0.054 0.054 0.054 0.054
-0.8 0.4 0.25 0.054 0.054 0.054 0.054 0.055 0.055 0.054
-0.8 0.8 0.25 0.057 0.058 0.060 0.060 0.060 0.060 0.060
-0.8 0.9 0.25 0.058 0.058 0.065 0.065 0.065 0.065 0.066
-0.4 -0.9 0.50 0.078 0.078 0.078 0.077 0.077 0.078 0.077
-0.4 -0.8 0.50 0.077 0.078 0.078 0.077 0.077 0.077 0.077
-0.4 -0.4 0.50 0.076 0.076 0.077 0.077 0.077 0.077 0.077
-0.4 0.0 0.50 0.076 0.075 0.076 0.076 0.076 0.076 0.076
-0.4 0.4 0.50 0.075 0.076 0.075 0.075 0.075 0.075 0.075
-0.4 0.8 0.50 0.080 0.081 0.083 0.083 0.083 0.083 0.083
-0.4 0.9 0.50 0.080 0.083 0.094 0.100 0.100 0.100 0.100
0.0 -0.9 1.00 0.112 0.112 0.112 0.112 0.112 0.112 0.112
0.0 -0.8 1.00 0.111 0.113 0.112 0.111 0.111 0.111 0.111
0.0 -0.4 1.00 0.110 0.110 0.110 0.110 0.110 0.110 0.110
0.0 0.0 1.00 0.108 0.108 0.108 0.108 0.108 0.108 0.108
0.0 0.4 1.00 0.106 0.105 0.105 0.106 0.106 0.106 0.106
0.0 0.8 1.00 0.108 0.111 0.112 0.117 0.118 0.118 0.118
0.0 0.9 1.00 0.108 0.115 0.128 0.143 0.152 0.153 0.153
0.4 -0.9 0.25 0.057 0.057 0.057 0.057 0.057 0.057 0.057
0.4 -0.8 0.25 0.057 0.057 0.057 0.057 0.057 0.057 0.057
0.4 -0.4 0.25 0.056 0.056 0.056 0.056 0.056 0.056 0.056
0.4 0.0 0.25 0.054 0.054 0.055 0.055 0.054 0.054 0.055
0.4 0.4 0.25 0.052 0.052 0.052 0.052 0.052 0.052 0.052
0.4 0.8 0.25 0.053 0.053 0.053 0.053 0.053 0.053 0.053
0.4 0.9 0.25 0.054 0.055 0.056 0.058 0.058 0.059 0.059
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Table 2.6 (cont).  Root mean square error of the estimators of B2 , N=100
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.090 0.083 0.076 0.076 0.079 0.079 0.076
-0.9 -0.8 0.50 0.087 0.081 0.076 0.076 0.078 0.079 0.076
-0.9 -0.4 0.50 0.079 0.076 0.076 0.076 0.076 0.077 0.075
-0.9 0 0.50 0.076 0.074 0.076 0.076 0.077 0.078 0.076
-0.9 0.4 0.50 0.081 0.081 0.078 0.077 0.079 0.079 0.078
-0.9 0.8 0.50 0.137 0.114 0.084 0.083 0.082 0.082 0.084
-0.9 0.9 0.50 0.195 0.136 0.088 0.087 0.086 0.087 0.088
-0.8 -0.9 0.25 0.064 0.061 0.054 0.054 0.054 0.054 0.054
-0.8 -0.8 0.25 0.062 0.059 0.054 0.054 0.054 0.054 0.054
-0.8 -0.4 0.25 0.056 0.054 0.054 0.054 0.054 0.054 0.054
-0.8 0.0 0.25 0.053 0.052 0.054 0.054 0.054 0.054 0.054
-0.8 0.4 0.25 0.057 0.057 0.055 0.054 0.055 0.054 0.054
-0.8 0.8 0.25 0.097 0.085 0.059 0.059 0.058 0.058 0.059
-0.8 0.9 0.25 0.151 0.104 0.060 0.059 0.060 0.059 0.060
-0.4 -0.9 0.50 0.091 0.085 0.078 0.078 0.078 0.078 0.078
-0.4 -0.8 0.50 0.088 0.083 0.078 0.077 0.077 0.077 0.077
-0.4 -0.4 0.50 0.080 0.078 0.077 0.077 0.077 0.077 0.077
-0.4 0.0 0.50 0.075 0.074 0.076 0.076 0.076 0.076 0.076
-0.4 0.4 0.50 0.078 0.078 0.075 0.075 0.075 0.075 0.075
-0.4 0.8 0.50 0.121 0.094 0.083 0.081 0.081 0.081 0.081
-0.4 0.9 0.50 0.161 0.093 0.090 0.089 0.090 0.090 0.090
0.0 -0.9 1.00 0.131 0.126 0.112 0.112 0.112 0.112 0.112
0.0 -0.8 1.00 0.127 0.122 0.112 0.111 0.111 0.111 0.111
0.0 -0.4 1.00 0.115 0.112 0.110 0.111 0.111 0.111 0.111
0.0 0.0 1.00 0.108 0.107 0.108 0.108 0.108 0.108 0.108
0.0 0.4 1.00 0.108 0.108 0.107 0.107 0.107 0.107 0.107
0.0 0.8 1.00 0.147 0.123 0.112 0.113 0.113 0.114 0.113
0.0 0.9 1.00 0.164 0.124 0.127 0.133 0.136 0.143 0.145
0.4 -0.9 0.25 0.067 0.068 0.057 0.058 0.057 0.058 0.058
0.4 -0.8 0.25 0.065 0.065 0.057 0.057 0.057 0.057 0.057
0.4 -0.4 0.25 0.058 0.058 0.056 0.056 0.056 0.056 0.056
0.4 0.0 0.25 0.054 0.054 0.055 0.054 0.054 0.054 0.054
0.4 0.4 0.25 0.054 0.055 0.052 0.052 0.052 0.052 0.052
0.4 0.8 0.25 0.072 0.087 0.053 0.053 0.053 0.053 0.053
0.4 0.9 0.25 0.102 0.117 0.055 0.056 0.056 0.056 0.056
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Table 2.6 (cont).  Root mean square error of the estimators of B2 , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.082 0.082 0.082 0.082 0.083 0.083 0.082
0.8 -0.8 0.50 0.082 0.082 0.082 0.083 0.083 0.083 0.082
0.8 -0.4 0.50 0.080 0.080 0.081 0.080 0.080 0.080 0.080
0.8 0.0 0.50 0.078 0.077 0.079 0.078 0.078 0.078 0.078
0.8 0.4 0.50 0.074 0.073 0.074 0.074 0.074 0.075 0.074
0.8 0.8 0.50 0.071 0.071 0.071 0.072 0.072 0.072 0.072
0.8 0.9 0.50 0.071 0.072 0.072 0.077 0.080 0.080 0.080
0.9 -0.9 0.50 0.081 0.082 0.082 0.081 0.082 0.082 0.082
0.9 -0.8 0.50 0.081 0.082 0.082 0.081 0.082 0.082 0.082
0.9 -0.4 0.50 0.080 0.080 0.080 0.081 0.081 0.081 0.080
0.9 0 0.50 0.078 0.077 0.078 0.079 0.078 0.078 0.078
0.9 0.4 0.50 0.074 0.073 0.074 0.074 0.074 0.074 0.074
0.9 0.8 0.50 0.071 0.070 0.070 0.071 0.072 0.072 0.072
0.9 0.9 0.50 0.070 0.070 0.070 0.073 0.075 0.076 0.076

Column Average 0.075 0.076 0.077 0.078 0.078 0.078 0.078
Col.Av.w/o |λ|,|ρ|=0 0.074 0.074 0.075 0.075 0.075 0.075 0.075
Col. Av. w/o ρ=0.9 0.075 0.075 0.076 0.076 0.076 0.076 0.076
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Table 2.6 (cont).  Root mean square error of the estimators of B2 , N=100
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3
0.8 -0.9 0.50 0.097 0.097 0.082 0.082 0.083 0.082 0.082
0.8 -0.8 0.50 0.093 0.093 0.082 0.082 0.082 0.082 0.083
0.8 -0.4 0.50 0.082 0.082 0.081 0.081 0.081 0.080 0.081
0.8 0.0 0.50 0.077 0.078 0.078 0.078 0.078 0.078 0.078
0.8 0.4 0.50 0.076 0.083 0.074 0.074 0.074 0.074 0.074
0.8 0.8 0.50 0.099 0.144 0.072 0.072 0.072 0.072 0.072
0.8 0.9 0.50 0.125 0.173 0.071 0.077 0.075 0.077 0.077
0.9 -0.9 0.50 0.097 0.096 0.083 0.081 0.082 0.082 0.081
0.9 -0.8 0.50 0.093 0.093 0.083 0.081 0.082 0.082 0.082
0.9 -0.4 0.50 0.083 0.082 0.081 0.081 0.081 0.080 0.080
0.9 0 0.50 0.077 0.078 0.078 0.079 0.078 0.078 0.078
0.9 0.4 0.50 0.076 0.083 0.074 0.074 0.074 0.074 0.074
0.9 0.8 0.50 0.099 0.147 0.071 0.072 0.072 0.072 0.072
0.9 0.9 0.50 0.123 0.179 0.070 0.073 0.073 0.073 0.073

Column Average 0.095 0.093 0.077 0.077 0.077 0.077 0.077
Col.Av.w/o |λ|,|ρ|=0.9 0.084 0.083 0.075 0.075 0.075 0.075 0.075
Col. Av. w/o ρ=0.9 0.086 0.086 0.076 0.076 0.076 0.076 0.076
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Table 2.7.  Root mean square error of the estimators of B2 , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.037
-0.9 -0.8 0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.037
-0.9 -0.4 0.50 0.037 0.037 0.037 0.037 0.037 0.037 0.037
-0.9 0 0.50 0.039 0.039 0.039 0.039 0.040 0.040 0.040
-0.9 0.4 0.50 0.041 0.042 0.042 0.042 0.042 0.042 0.042
-0.9 0.8 0.50 0.043 0.046 0.046 0.047 0.046 0.046 0.049
-0.9 0.9 0.50 0.043 0.046 0.049 0.049 0.049 0.049 0.052
-0.8 -0.9 0.50 0.036 0.036 0.036 0.036 0.036 0.036 0.036
-0.8 -0.8 0.50 0.036 0.036 0.037 0.036 0.036 0.037 0.037
-0.8 -0.4 0.50 0.037 0.037 0.037 0.037 0.037 0.038 0.037
-0.8 0.0 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
-0.8 0.4 0.50 0.041 0.041 0.041 0.041 0.042 0.041 0.041
-0.8 0.8 0.50 0.043 0.046 0.046 0.046 0.046 0.046 0.047
-0.8 0.9 0.50 0.043 0.047 0.049 0.050 0.050 0.049 0.050
-0.4 -0.9 1.00 0.052 0.052 0.052 0.052 0.052 0.052 0.052
-0.4 -0.8 1.00 0.052 0.052 0.052 0.052 0.052 0.052 0.052
-0.4 -0.4 1.00 0.053 0.053 0.053 0.053 0.053 0.053 0.053
-0.4 0.0 1.00 0.055 0.055 0.055 0.055 0.055 0.055 0.055
-0.4 0.4 1.00 0.057 0.057 0.057 0.057 0.057 0.057 0.057
-0.4 0.8 1.00 0.059 0.064 0.064 0.064 0.064 0.064 0.064
-0.4 0.9 1.00 0.058 0.065 0.073 0.074 0.074 0.074 0.074
0.0 -0.9 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.0 0.25 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.4 0.25 0.028 0.028 0.028 0.028 0.028 0.028 0.028
0.0 0.8 0.25 0.030 0.030 0.030 0.030 0.030 0.030 0.030
0.0 0.9 0.25 0.031 0.032 0.033 0.033 0.033 0.033 0.033
0.4 -0.9 0.50 0.038 0.039 0.039 0.039 0.039 0.039 0.039
0.4 -0.8 0.50 0.038 0.038 0.039 0.039 0.039 0.039 0.039
0.4 -0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.0 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.8 0.50 0.040 0.040 0.040 0.040 0.040 0.040 0.040
0.4 0.9 0.50 0.040 0.043 0.044 0.045 0.044 0.045 0.044
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Table 2.7 (cont).  Root mean square error of the estimators of B2 , N=400
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3

-0.9 -0.9 0.50 0.043 0.055 0.036 0.036 0.036 0.036 0.037
-0.9 -0.8 0.50 0.042 0.053 0.036 0.036 0.036 0.036 0.037
-0.9 -0.4 0.50 0.039 0.045 0.037 0.037 0.037 0.037 0.037
-0.9 0 0.50 0.039 0.041 0.039 0.040 0.040 0.040 0.040
-0.9 0.4 0.50 0.044 0.043 0.041 0.041 0.042 0.042 0.042
-0.9 0.8 0.50 0.084 0.084 0.046 0.045 0.045 0.045 0.046
-0.9 0.9 0.50 0.143 0.122 0.047 0.046 0.046 0.046 0.047
-0.8 -0.9 0.25 0.043 0.051 0.036 0.036 0.036 0.036 0.036
-0.8 -0.8 0.25 0.042 0.049 0.036 0.036 0.036 0.036 0.036
-0.8 -0.4 0.25 0.039 0.043 0.037 0.038 0.038 0.037 0.037
-0.8 0.0 0.25 0.039 0.040 0.039 0.039 0.039 0.039 0.039
-0.8 0.4 0.25 0.043 0.043 0.041 0.041 0.042 0.041 0.042
-0.8 0.8 0.25 0.083 0.077 0.046 0.045 0.045 0.045 0.046
-0.8 0.9 0.25 0.140 0.106 0.047 0.046 0.047 0.047 0.047
-0.4 -0.9 0.50 0.063 0.057 0.052 0.052 0.052 0.052 0.052
-0.4 -0.8 0.50 0.060 0.056 0.052 0.052 0.052 0.052 0.052
-0.4 -0.4 0.50 0.056 0.055 0.053 0.053 0.053 0.053 0.053
-0.4 0.0 0.50 0.055 0.055 0.055 0.055 0.055 0.055 0.055
-0.4 0.4 0.50 0.060 0.058 0.057 0.057 0.057 0.057 0.057
-0.4 0.8 0.50 0.107 0.066 0.064 0.063 0.063 0.063 0.063
-0.4 0.9 0.50 0.157 0.066 0.069 0.068 0.067 0.068 0.068
0.0 -0.9 1.00 0.032 0.032 0.027 0.027 0.027 0.027 0.027
0.0 -0.8 1.00 0.031 0.031 0.027 0.027 0.027 0.027 0.027
0.0 -0.4 1.00 0.028 0.028 0.027 0.027 0.027 0.027 0.027
0.0 0.0 1.00 0.027 0.027 0.027 0.027 0.027 0.027 0.027
0.0 0.4 1.00 0.029 0.029 0.028 0.028 0.028 0.028 0.028
0.0 0.8 1.00 0.051 0.042 0.030 0.030 0.030 0.030 0.030
0.0 0.9 1.00 0.086 0.048 0.032 0.032 0.032 0.032 0.032
0.4 -0.9 0.25 0.046 0.047 0.039 0.039 0.039 0.039 0.039
0.4 -0.8 0.25 0.045 0.045 0.039 0.039 0.039 0.039 0.039
0.4 -0.4 0.25 0.041 0.041 0.039 0.039 0.039 0.039 0.039
0.4 0.0 0.25 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.4 0.4 0.25 0.041 0.044 0.039 0.039 0.039 0.039 0.039
0.4 0.8 0.25 0.068 0.076 0.040 0.041 0.041 0.041 0.041
0.4 0.9 0.25 0.106 0.091 0.043 0.043 0.042 0.043 0.043
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Table 2.7 (cont).  Root mean square error of the estimators of B2 , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.054 0.055 0.056 0.055 0.055 0.055 0.055
0.8 -0.8 0.50 0.055 0.055 0.056 0.055 0.055 0.055 0.055
0.8 -0.4 0.50 0.055 0.056 0.055 0.055 0.055 0.055 0.055
0.8 0.0 0.50 0.056 0.056 0.056 0.056 0.056 0.056 0.056
0.8 0.4 0.50 0.055 0.055 0.055 0.055 0.055 0.055 0.055
0.8 0.8 0.50 0.054 0.054 0.053 0.054 0.054 0.054 0.054
0.8 0.9 0.50 0.054 0.055 0.054 0.058 0.060 0.060 0.059
0.9 -0.9 0.50 0.038 0.039 0.039 0.038 0.038 0.038 0.038
0.9 -0.8 0.50 0.038 0.039 0.039 0.038 0.039 0.038 0.038
0.9 -0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.9 0 0.50 0.040 0.040 0.040 0.040 0.039 0.039 0.039
0.9 0.4 0.50 0.039 0.039 0.039 0.039 0.039 0.039 0.039
0.9 0.8 0.50 0.038 0.038 0.038 0.038 0.038 0.038 0.038
0.9 0.9 0.50 0.038 0.038 0.038 0.039 0.039 0.039 0.039

Column Average 0.042 0.043 0.043 0.043 0.043 0.043 0.043
Col.Av.w/o |λ|,|ρ|=0 0.043 0.044 0.044 0.044 0.044 0.044 0.044
Col. Av. w/o ρ=0.9 0.042 0.042 0.042 0.042 0.042 0.042 0.042



 63

Table 2.7 (cont).  Root mean square error of the estimators of B2 , N=400
λ ρ σ2 TSLS OLS IF ILEE ISER1 ISER2 ISER3
0.8 -0.9 0.50 0.066 0.066 0.055 0.055 0.055 0.055 0.055
0.8 -0.8 0.50 0.064 0.064 0.056 0.055 0.055 0.055 0.055
0.8 -0.4 0.50 0.058 0.058 0.055 0.055 0.055 0.055 0.055
0.8 0.0 0.50 0.056 0.059 0.056 0.056 0.056 0.056 0.056
0.8 0.4 0.50 0.057 0.074 0.055 0.055 0.055 0.055 0.055
0.8 0.8 0.50 0.089 0.127 0.054 0.055 0.054 0.055 0.054
0.8 0.9 0.50 0.122 0.140 0.054 0.058 0.057 0.058 0.058
0.9 -0.9 0.50 0.047 0.046 0.039 0.038 0.038 0.038 0.038
0.9 -0.8 0.50 0.045 0.045 0.039 0.038 0.039 0.038 0.038
0.9 -0.4 0.50 0.041 0.041 0.039 0.039 0.039 0.039 0.039
0.9 0 0.50 0.040 0.041 0.040 0.040 0.039 0.039 0.039
0.9 0.4 0.50 0.041 0.048 0.039 0.039 0.039 0.039 0.039
0.9 0.8 0.50 0.065 0.104 0.038 0.038 0.038 0.038 0.038
0.9 0.9 0.50 0.098 0.131 0.038 0.039 0.038 0.039 0.039

Column Average 0.061 0.060 0.043 0.043 0.043 0.043 0.043
Col.Av.w/o |λ|,|ρ|=0.9 0.052 0.053 0.044 0.044 0.044 0.044 0.044
Col. Av. w/o ρ=0.9 0.051 0.053 0.042 0.042 0.042 0.042 0.042
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Table 2.8.  Root mean square error of the estimators of ρ , N=100
λ ρ σ2 ML TSLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.227 0.247 0.254 0.254 0.263 0.266 0.254
-0.9 -0.8 0.50 0.229 0.241 0.254 0.254 0.260 0.263 0.253
-0.9 -0.4 0.50 0.230 0.225 0.240 0.238 0.240 0.242 0.238
-0.9 0 0.50 0.202 0.197 0.206 0.205 0.207 0.207 0.206
-0.9 0.4 0.50 0.151 0.157 0.153 0.152 0.153 0.153 0.154
-0.9 0.8 0.50 0.068 0.122 0.082 0.080 0.082 0.082 0.081
-0.9 0.9 0.50 0.039 0.144 0.062 0.061 0.061 0.062 0.060
-0.8 -0.9 0.25 0.215 0.233 0.242 0.240 0.242 0.242 0.241
-0.8 -0.8 0.25 0.219 0.231 0.241 0.241 0.241 0.243 0.241
-0.8 -0.4 0.25 0.218 0.215 0.230 0.228 0.228 0.229 0.228
-0.8 0.0 0.25 0.193 0.189 0.198 0.197 0.197 0.196 0.197
-0.8 0.4 0.25 0.144 0.149 0.147 0.147 0.145 0.146 0.147
-0.8 0.8 0.25 0.064 0.101 0.074 0.073 0.073 0.073 0.074
-0.8 0.9 0.25 0.038 0.104 0.050 0.050 0.050 0.050 0.049
-0.4 -0.9 0.50 0.220 0.241 0.250 0.250 0.250 0.250 0.250
-0.4 -0.8 0.50 0.223 0.239 0.250 0.250 0.250 0.250 0.250
-0.4 -0.4 0.50 0.228 0.226 0.237 0.237 0.237 0.237 0.237
-0.4 0.0 0.50 0.203 0.197 0.204 0.204 0.204 0.204 0.204
-0.4 0.4 0.50 0.155 0.162 0.157 0.158 0.158 0.158 0.158
-0.4 0.8 0.50 0.074 0.129 0.093 0.090 0.090 0.090 0.090
-0.4 0.9 0.50 0.044 0.161 0.080 0.074 0.073 0.073 0.074
0.0 -0.9 1.00 0.226 0.251 0.260 0.260 0.260 0.260 0.260
0.0 -0.8 1.00 0.232 0.249 0.261 0.260 0.260 0.260 0.260
0.0 -0.4 1.00 0.236 0.237 0.249 0.248 0.248 0.248 0.248
0.0 0.0 1.00 0.217 0.213 0.221 0.219 0.219 0.219 0.219
0.0 0.4 1.00 0.175 0.185 0.180 0.174 0.174 0.174 0.174
0.0 0.8 1.00 0.098 0.182 0.141 0.132 0.132 0.132 0.131
0.0 0.9 1.00 0.056 0.268 0.186 0.136 0.121 0.122 0.125
0.4 -0.9 0.25 0.207 0.226 0.238 0.238 0.237 0.238 0.238
0.4 -0.8 0.25 0.211 0.225 0.239 0.239 0.239 0.239 0.239
0.4 -0.4 0.25 0.213 0.216 0.228 0.229 0.229 0.229 0.229
0.4 0.0 0.25 0.190 0.191 0.197 0.197 0.197 0.197 0.197
0.4 0.4 0.25 0.147 0.148 0.149 0.150 0.150 0.150 0.150
0.4 0.8 0.25 0.082 0.103 0.086 0.085 0.085 0.085 0.085
0.4 0.9 0.25 0.052 0.110 0.072 0.071 0.070 0.071 0.071
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Table 2.8. (cont.)  Root mean square error of the estimators of ρ , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 0.207 0.227 0.240 0.241 0.240 0.241 0.241
0.8 -0.8 0.50 0.211 0.228 0.240 0.242 0.240 0.240 0.241
0.8 -0.4 0.50 0.215 0.217 0.230 0.230 0.230 0.230 0.230
0.8 0.0 0.50 0.192 0.194 0.199 0.200 0.198 0.199 0.200
0.8 0.4 0.50 0.150 0.151 0.152 0.152 0.153 0.153 0.153
0.8 0.8 0.50 0.099 0.112 0.096 0.097 0.100 0.099 0.098
0.8 0.9 0.50 0.078 0.130 0.112 0.101 0.106 0.104 0.103
0.9 -0.9 0.50 0.206 0.226 0.238 0.241 0.238 0.238 0.240
0.9 -0.8 0.50 0.211 0.226 0.238 0.241 0.238 0.239 0.240
0.9 -0.4 0.50 0.212 0.215 0.227 0.228 0.226 0.227 0.227
0.9 0 0.50 0.191 0.191 0.196 0.196 0.196 0.197 0.196
0.9 0.4 0.50 0.146 0.147 0.146 0.148 0.147 0.147 0.148
0.9 0.8 0.50 0.094 0.101 0.088 0.091 0.093 0.091 0.091
0.9 0.9 0.50 0.074 0.109 0.096 0.090 0.099 0.096 0.094

Column Average 0.163 0.187 0.182 0.180 0.180 0.180 0.180
Col.Av.w/o |λ|,|ρ|=0.9 0.176 0.188 0.188 0.187 0.187 0.187 0.187
Col. Av. w/o ρ=0.9 0.182 0.194 0.197 0.196 0.197 0.197 0.196
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Table 2.9.  Root mean square error of the estimators of ρ , N=400
λ ρ σ2 ML TSLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 0.114 0.123 0.124 0.124 0.124 0.124 0.125
-0.9 -0.8 0.50 0.115 0.123 0.124 0.124 0.124 0.124 0.125
-0.9 -0.4 0.50 0.114 0.115 0.118 0.117 0.117 0.117 0.118
-0.9 0 0.50 0.101 0.101 0.103 0.102 0.103 0.103 0.102
-0.9 0.4 0.50 0.075 0.080 0.077 0.077 0.078 0.078 0.076
-0.9 0.8 0.50 0.034 0.064 0.041 0.040 0.040 0.040 0.043
-0.9 0.9 0.50 0.020 0.075 0.027 0.026 0.026 0.026 0.029
-0.8 -0.9 0.50 0.113 0.123 0.123 0.124 0.124 0.124 0.124
-0.8 -0.8 0.50 0.115 0.123 0.123 0.123 0.123 0.123 0.124
-0.8 -0.4 0.50 0.114 0.115 0.117 0.117 0.116 0.117 0.117
-0.8 0.0 0.50 0.101 0.101 0.103 0.103 0.103 0.103 0.103
-0.8 0.4 0.50 0.076 0.080 0.077 0.077 0.078 0.078 0.077
-0.8 0.8 0.50 0.035 0.065 0.042 0.041 0.041 0.041 0.042
-0.8 0.9 0.50 0.020 0.076 0.028 0.028 0.027 0.027 0.028
-0.4 -0.9 1.00 0.119 0.133 0.134 0.133 0.133 0.133 0.133
-0.4 -0.8 1.00 0.122 0.132 0.133 0.133 0.132 0.133 0.133
-0.4 -0.4 1.00 0.122 0.124 0.128 0.127 0.127 0.127 0.127
-0.4 0.0 1.00 0.111 0.112 0.113 0.112 0.112 0.112 0.112
-0.4 0.4 1.00 0.086 0.094 0.090 0.089 0.089 0.089 0.089
-0.4 0.8 1.00 0.041 0.093 0.060 0.058 0.058 0.058 0.058
-0.4 0.9 1.00 0.022 0.125 0.053 0.046 0.046 0.046 0.046
0.0 -0.9 0.25 0.103 0.113 0.115 0.115 0.115 0.115 0.115
0.0 -0.8 0.25 0.104 0.113 0.116 0.115 0.115 0.115 0.115
0.0 -0.4 0.25 0.104 0.108 0.110 0.110 0.110 0.110 0.110
0.0 0.0 0.25 0.093 0.095 0.096 0.096 0.096 0.096 0.096
0.0 0.4 0.25 0.073 0.073 0.073 0.073 0.073 0.073 0.073
0.0 0.8 0.25 0.036 0.054 0.041 0.040 0.040 0.040 0.040
0.0 0.9 0.25 0.022 0.060 0.030 0.029 0.029 0.029 0.029
0.4 -0.9 0.50 0.104 0.116 0.118 0.117 0.117 0.117 0.117
0.4 -0.8 0.50 0.106 0.116 0.118 0.117 0.117 0.117 0.117
0.4 -0.4 0.50 0.106 0.111 0.112 0.112 0.112 0.112 0.112
0.4 0.0 0.50 0.097 0.098 0.099 0.099 0.099 0.099 0.099
0.4 0.4 0.50 0.078 0.079 0.079 0.079 0.079 0.079 0.079
0.4 0.8 0.50 0.047 0.068 0.055 0.053 0.053 0.053 0.053
0.4 0.9 0.50 0.029 0.081 0.053 0.047 0.046 0.047 0.047
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Table 2.9. (cont.)  Root mean square error of the estimators of ρ , N=400
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3

0.8 -0.9 0.50 0.102 0.118 0.120 0.118 0.119 0.118 0.118
0.8 -0.8 0.50 0.105 0.117 0.119 0.118 0.119 0.118 0.118
0.8 -0.4 0.50 0.107 0.111 0.114 0.113 0.113 0.113 0.113
0.8 0.0 0.50 0.099 0.101 0.102 0.102 0.102 0.102 0.102
0.8 0.4 0.50 0.082 0.084 0.083 0.083 0.083 0.083 0.084
0.8 0.8 0.50 0.066 0.078 0.069 0.065 0.067 0.065 0.065
0.8 0.9 0.50 0.053 0.104 0.093 0.074 0.075 0.074 0.073
0.9 -0.9 0.50 0.099 0.111 0.113 0.113 0.113 0.113 0.113
0.9 -0.8 0.50 0.101 0.111 0.113 0.113 0.113 0.113 0.113
0.9 -0.4 0.50 0.101 0.107 0.108 0.108 0.108 0.108 0.108
0.9 0 0.50 0.090 0.093 0.094 0.093 0.093 0.093 0.093
0.9 0.4 0.50 0.071 0.073 0.072 0.072 0.072 0.072 0.072
0.9 0.8 0.50 0.049 0.052 0.048 0.048 0.049 0.048 0.048
0.9 0.9 0.50 0.044 0.059 0.052 0.047 0.051 0.049 0.048

Column Average 0.082 0.098 0.091 0.090 0.090 0.090 0.090
Col.Av.w/o |λ|,|ρ|=0.9 0.089 0.098 0.095 0.094 0.094 0.094 0.094
Col. Av. w/o ρ=0.9 0.091 0.100 0.098 0.097 0.098 0.098 0.098
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Table 2.10.  Bias of the estimators of ρ , N=100
λ ρ σ2 ML TSLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 -0.022 0.022 -0.043 -0.050 -0.028 -0.029 -0.051
-0.9 -0.8 0.50 -0.021 0.013 -0.043 -0.048 -0.028 -0.026 -0.049
-0.9 -0.4 0.50 -0.023 -0.012 -0.037 -0.038 -0.025 -0.024 -0.040
-0.9 0 0.50 -0.019 -0.024 -0.025 -0.025 -0.017 -0.017 -0.025
-0.9 0.4 0.50 -0.011 -0.031 -0.016 -0.013 -0.012 -0.012 -0.009
-0.9 0.8 0.50 -0.005 -0.045 -0.015 -0.006 -0.007 -0.008 0.002
-0.9 0.9 0.50 -0.004 -0.081 -0.019 -0.005 -0.003 -0.003 0.001
-0.8 -0.9 0.50 -0.024 0.016 -0.045 -0.051 -0.046 -0.047 -0.052
-0.8 -0.8 0.50 -0.024 0.008 -0.045 -0.050 -0.044 -0.045 -0.051
-0.8 -0.4 0.50 -0.022 -0.014 -0.038 -0.040 -0.034 -0.035 -0.040
-0.8 0.0 0.50 -0.019 -0.024 -0.026 -0.025 -0.020 -0.022 -0.025
-0.8 0.4 0.50 -0.010 -0.029 -0.015 -0.011 -0.009 -0.009 -0.011
-0.8 0.8 0.50 -0.004 -0.032 -0.009 -0.003 -0.003 -0.003 0.000
-0.8 0.9 0.50 -0.003 -0.049 -0.009 -0.002 -0.001 -0.001 0.000
-0.4 -0.9 1.00 -0.025 0.006 -0.050 -0.054 -0.054 -0.054 -0.054
-0.4 -0.8 1.00 -0.025 0.000 -0.049 -0.053 -0.053 -0.053 -0.053
-0.4 -0.4 1.00 -0.025 -0.021 -0.042 -0.043 -0.043 -0.043 -0.043
-0.4 0.0 1.00 -0.022 -0.029 -0.031 -0.028 -0.027 -0.027 -0.027
-0.4 0.4 1.00 -0.015 -0.035 -0.022 -0.016 -0.015 -0.015 -0.015
-0.4 0.8 1.00 -0.007 -0.049 -0.024 -0.010 -0.009 -0.008 -0.007
-0.4 0.9 1.00 -0.005 -0.096 -0.033 -0.010 -0.007 -0.004 -0.003
0.0 -0.9 0.25 -0.025 -0.003 -0.055 -0.057 -0.057 -0.057 -0.057
0.0 -0.8 0.25 -0.026 -0.011 -0.055 -0.055 -0.055 -0.055 -0.055
0.0 -0.4 0.25 -0.026 -0.030 -0.049 -0.046 -0.046 -0.046 -0.046
0.0 0.0 0.25 -0.023 -0.039 -0.041 -0.032 -0.032 -0.032 -0.032
0.0 0.4 0.25 -0.020 -0.047 -0.035 -0.021 -0.020 -0.020 -0.020
0.0 0.8 0.25 -0.013 -0.095 -0.066 -0.017 -0.024 -0.016 -0.019
0.0 0.9 0.25 -0.009 -0.189 -0.111 -0.030 -0.023 -0.011 -0.014
0.4 -0.9 0.50 -0.027 -0.015 -0.056 -0.058 -0.058 -0.058 -0.058
0.4 -0.8 0.50 -0.027 -0.020 -0.055 -0.057 -0.057 -0.058 -0.058
0.4 -0.4 0.50 -0.029 -0.031 -0.050 -0.050 -0.049 -0.049 -0.050
0.4 0.0 0.50 -0.025 -0.037 -0.038 -0.036 -0.036 -0.036 -0.036
0.4 0.4 0.50 -0.021 -0.033 -0.024 -0.021 -0.020 -0.020 -0.020
0.4 0.8 0.50 -0.010 -0.032 -0.023 -0.010 -0.009 -0.009 -0.009
0.4 0.9 0.50 -0.007 -0.057 -0.031 -0.011 -0.009 -0.007 -0.007
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Table 2.10. (cont.)  Bias of the estimators of ρ , N=100
λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 -0.031 -0.017 -0.058 -0.065 -0.062 -0.063 -0.065
0.8 -0.8 0.50 -0.030 -0.022 -0.056 -0.063 -0.060 -0.061 -0.063
0.8 -0.4 0.50 -0.032 -0.035 -0.050 -0.052 -0.050 -0.051 -0.052
0.8 0.0 0.50 -0.027 -0.039 -0.040 -0.038 -0.037 -0.038 -0.038
0.8 0.4 0.50 -0.020 -0.036 -0.028 -0.021 -0.021 -0.021 -0.021
0.8 0.8 0.50 -0.012 -0.041 -0.038 -0.009 -0.018 -0.007 -0.011
0.8 0.9 0.50 -0.011 -0.083 -0.075 -0.017 -0.027 -0.005 -0.018
0.9 -0.9 0.50 -0.033 -0.015 -0.055 -0.067 -0.060 -0.062 -0.064
0.9 -0.8 0.50 -0.033 -0.019 -0.054 -0.066 -0.060 -0.061 -0.063
0.9 -0.4 0.50 -0.034 -0.032 -0.049 -0.056 -0.050 -0.051 -0.054
0.9 0 0.50 -0.028 -0.037 -0.038 -0.039 -0.036 -0.037 -0.039
0.9 0.4 0.50 -0.021 -0.033 -0.026 -0.023 -0.021 -0.022 -0.022
0.9 0.8 0.50 -0.007 -0.035 -0.029 -0.006 -0.016 -0.005 -0.008
0.9 0.9 0.50 -0.007 -0.067 -0.062 -0.019 -0.029 -0.006 -0.018

Column Average -0.019 -0.034 -0.040 -0.033 -0.031 -0.030 -0.032
Col.Av.w/o |λ|,|ρ|=0.9 -0.021 -0.031 -0.038 -0.032 -0.032 -0.031 -0.032
Col. Av. w/o ρ=0.9 -0.022 -0.025 -0.039 -0.036 -0.034 -0.034 -0.036
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Table 2.11.  Bias of the estimators of ρ , N=400
λ ρ σ2 ML TSLS FGS2SLS LEE SER1 SER2 SER3

-0.9 -0.9 0.50 -0.007 0.008 -0.013 -0.012 -0.014 -0.014 -0.010
-0.9 -0.8 0.50 -0.007 0.005 -0.012 -0.012 -0.014 -0.014 -0.010
-0.9 -0.4 0.50 -0.007 -0.003 -0.011 -0.010 -0.011 -0.011 -0.009
-0.9 0 0.50 -0.006 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008
-0.9 0.4 0.50 -0.004 -0.011 -0.007 -0.006 -0.006 -0.005 -0.008
-0.9 0.8 0.50 -0.002 -0.018 -0.005 -0.005 -0.004 -0.003 -0.009
-0.9 0.9 0.50 -0.001 -0.032 -0.005 -0.005 -0.004 -0.004 -0.007
-0.8 -0.9 0.50 -0.006 0.007 -0.013 -0.012 -0.014 -0.014 -0.012
-0.8 -0.8 0.50 -0.007 0.004 -0.013 -0.012 -0.014 -0.013 -0.011
-0.8 -0.4 0.50 -0.007 -0.003 -0.011 -0.010 -0.011 -0.010 -0.010
-0.8 0.0 0.50 -0.006 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008
-0.8 0.4 0.50 -0.004 -0.011 -0.007 -0.006 -0.006 -0.006 -0.006
-0.8 0.8 0.50 -0.002 -0.018 -0.006 -0.006 -0.005 -0.005 -0.008
-0.8 0.9 0.50 -0.001 -0.033 -0.006 -0.005 -0.005 -0.005 -0.007
-0.4 -0.9 1.00 -0.008 0.006 -0.015 -0.013 -0.013 -0.013 -0.013
-0.4 -0.8 1.00 -0.007 0.003 -0.014 -0.012 -0.012 -0.012 -0.012
-0.4 -0.4 1.00 -0.007 -0.005 -0.013 -0.011 -0.011 -0.011 -0.011
-0.4 0.0 1.00 -0.007 -0.012 -0.012 -0.010 -0.010 -0.010 -0.010
-0.4 0.4 1.00 -0.006 -0.016 -0.012 -0.010 -0.010 -0.010 -0.010
-0.4 0.8 1.00 -0.002 -0.033 -0.019 -0.014 -0.014 -0.014 -0.014
-0.4 0.9 1.00 -0.002 -0.072 -0.023 -0.012 -0.012 -0.012 -0.012
0.0 -0.9 0.25 -0.007 0.002 -0.016 -0.015 -0.015 -0.015 -0.015
0.0 -0.8 0.25 -0.007 -0.001 -0.015 -0.015 -0.015 -0.015 -0.015
0.0 -0.4 0.25 -0.008 -0.007 -0.013 -0.012 -0.012 -0.012 -0.012
0.0 0.0 0.25 -0.008 -0.010 -0.010 -0.009 -0.009 -0.009 -0.009
0.0 0.4 0.25 -0.007 -0.010 -0.007 -0.006 -0.006 -0.006 -0.006
0.0 0.8 0.25 -0.003 -0.014 -0.007 -0.006 -0.006 -0.006 -0.006
0.0 0.9 0.25 -0.002 -0.024 -0.008 -0.006 -0.006 -0.006 -0.006
0.4 -0.9 0.50 -0.008 -0.002 -0.018 -0.016 -0.016 -0.016 -0.016
0.4 -0.8 0.50 -0.008 -0.004 -0.017 -0.015 -0.015 -0.015 -0.015
0.4 -0.4 0.50 -0.008 -0.009 -0.015 -0.013 -0.014 -0.013 -0.013
0.4 0.0 0.50 -0.007 -0.012 -0.012 -0.010 -0.010 -0.010 -0.010
0.4 0.4 0.50 -0.007 -0.013 -0.010 -0.008 -0.008 -0.008 -0.008
0.4 0.8 0.50 -0.005 -0.020 -0.018 -0.012 -0.012 -0.012 -0.012
0.4 0.9 0.50 -0.002 -0.042 -0.024 -0.013 -0.013 -0.013 -0.013
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Table 2.11. (cont.)  Bias of the estimators of ρ , N=400

λ ρ σ2 ML GS2SLS FGS2SLS LEE SER1 SER2 SER3
0.8 -0.9 0.50 -0.007 -0.004 -0.018 -0.017 -0.017 -0.017 -0.017
0.8 -0.8 0.50 -0.007 -0.006 -0.018 -0.017 -0.016 -0.017 -0.017
0.8 -0.4 0.50 -0.008 -0.012 -0.016 -0.013 -0.014 -0.014 -0.013
0.8 0.0 0.50 -0.007 -0.013 -0.013 -0.010 -0.010 -0.010 -0.010
0.8 0.4 0.50 -0.005 -0.015 -0.011 -0.007 -0.006 -0.007 -0.007
0.8 0.8 0.50 -0.004 -0.030 -0.030 -0.013 -0.014 -0.013 -0.013
0.8 0.9 0.50 -0.005 -0.067 -0.062 -0.024 -0.017 -0.018 -0.019
0.9 -0.9 0.50 -0.007 -0.003 -0.016 -0.016 -0.016 -0.016 -0.016
0.9 -0.8 0.50 -0.008 -0.005 -0.016 -0.015 -0.015 -0.016 -0.016
0.9 -0.4 0.50 -0.007 -0.009 -0.014 -0.013 -0.013 -0.013 -0.013
0.9 0 0.50 -0.006 -0.011 -0.011 -0.009 -0.009 -0.009 -0.009
0.9 0.4 0.50 -0.005 -0.010 -0.008 -0.006 -0.006 -0.005 -0.006
0.9 0.8 0.50 -0.002 -0.015 -0.011 -0.004 -0.006 -0.005 -0.004
0.9 0.9 0.50 -0.003 -0.032 -0.028 -0.012 -0.012 -0.011 -0.011

Column Average -0.006 -0.013 -0.014 -0.011 -0.011 -0.011 -0.011
Col.Av.w/o |λ|,|ρ|=0.9 -0.006 -0.011 -0.013 -0.011 -0.011 -0.011 -0.011
Col. Av. w/o ρ=0.9 -0.006 -0.008 -0.013 -0.011 -0.011 -0.011 -0.011

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



It follows from the tables relating to the parameters λ,β1, and β2 that typi-

cally RMSEs of the OLS estimator are the largest while those of the ML estimator

are the lowest. This relates to the theoretical notion of inconsistency of the OLS

estimator and consistency and efficiency of the ML estimator (assuming standard

ML theory applies for the considered model). The relatively low RMSE values of

the ML estimator are also likely to be due to the normality assumption on the

disturbances. The RMSEs of the 2SLS estimator are typically lower than those

of the OLS, but typically larger than the other estimators under consideration.

This result is due to the fact that the 2SLS estimator is consistent but inefficient

because, in contrast to the other estimators (except the OLS), it does not take

into account the spatial structure of the error term.

The next observation relates to the comparison of the FGS2SLS and Lee

estimators. The theory indicates that asymptotically the Lee estimator is more

efficient than the FGS2SLS. Our results show that in finite samples, namely of

sizes 100 and 400, the difference between RMSEs of these estimators averages to

just 2% for the parameter λ. The RMSEs of the Lee and FGS2SLS estimators of

β1 and β2 are, on average, virtually the same. Generally, our results suggest that

in finite samples the Lee estimator is somewhat more efficient than the FGS2SLS,

however, its efficiency gains are practically negligible. This finding is important

in light of the computational and programming simplicity of FGS2SLS estimator

relative to the Lee estimator.13

The results also indicate that the difference between the RMSEs of these

13As shown later in this section the Lee and series estimators are very close in terms of the

efficiency in finite samples. Therefore, the results on comparison of the FGS2SLS and the Lee

estimators apply to the comparison of the FGS2SLS and the series estimators.
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estimators is not uniform over the parameter space. Although the RMSEs of the

Lee estimators of λ, β1 and β2 are generally the same or somewhat lower than

those of the FGS2SLS estimators, the FGS2SLS estimator generally dominates

the Lee estimator when λ and ρ have high and positive values. This observation

is probably due to the fact that the Lee estimator involves the inversion of the

matrix (In− bλ2SLSn Wn) which under certain circumstances may be close to being

singular. In particular, when the true value of λ is large, the estimated value of λ

could be close to 1 which is a singular point, or even exceed it. This could cause

problems for the Lee estimator. On the other hand, the FGS2SLS estimator only

relates to the 2SLS estimator indirectly through the disturbance estimates and,

therefore, does not possess this vulnerability.

Comparing the Lee and Series estimators one can readily see that their per-

formance is virtually the same. On average, the difference between the RMSEs

of the Lee and the three series estimators do not exceed 1% for the parameter

λ, and 0.5% for the parameters β1 and β2. The performance of these estimators

is similar not only in terms of averages but also over the whole parameter space.

More specifically, the difference between the RMSEs of the Lee and Series3 (based

on α = 0.45) estimators typically does not exceed 5% in any of the experimental

sets of parameter values when the sample size is 100 and 3% when the sample

size is 400. The fact that the differences between RMSEs of the two estimators

become smaller as the sample size increases is consistent with the equivalence of

asymptotic distributions of the Lee and series estimators. These findings imply

that one could use the computationally simpler series estimator without much

loss of efficiency.

Another result emerges from the comparison of the series estimators based on
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different values of α, namely Series1, Series2, and Series3 estimators. Interest-

ingly, there seems to be no indication that a series estimator with a higher value

of α, which corresponds to a better approximation of the optimal instrument,

dominates a series estimator with a lower value of α. More specifically, the Se-

ries3 estimator does not dominate the Series2 or Series1 estimators. Furthermore,

the Series2 estimator does not outperform the Series1 estimator. Therefore, one

may conjecture that in moderate to reasonably large samples a series estimator

based on α = 0.25 provides a sufficient approximation of the optimal instrument.

It is also interesting to compare the RMSEs of the ML estimator to the

FGS2SLS, Lee, and series estimators, which are spatial instrumental variable

(IV) estimators. Consider first the set of the experiments that do not contain

ρ = 0.9. Over these experiments the gain in efficiency of the ML estimator rela-

tive to the spatial IV estimators averages to just 6-7% for the parameter λ. For

the parameters β1 and β2 the ML and the spatial IV estimators are roughly the

same in terms of the averages over this set of experiments. Therefore, we can

say that if the value of ρ is not close to 1, the loss of efficiency of the spatial IV

estimators relative to the ML estimator is generally small or nonexistent.14

If all the experiments are considered the difference between RMSE averages of

the ML and the spatial IV estimators rises up to 16-18% for λ and between 2-4%

for β1 and β2. The reason for such disparity is that for certain combinations of

the parameters λ and ρ, namely those involving negative λ and high and positive

ρ, the RMSEs of spatial IV estimators are considerably higher than those of the

14For the purpose of the comparison to Das, Kelejian and Prucha (2003) we also report the

averages over the experiments not involving values 0.9 and -0.9 of λ and ρ. These averages are

almost identical to the averages over the experiments not involving ρ = 0.9.
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ML. This may be due to the fact that such combinations of the parameter values

are associated with high RMSEs of the 2SLS estimator whose residuals are used

in the FGS2SLS, Series, and Lee procedures for estimation of ρ. Therefore, it is

reasonable to believe that iterating on the spatial IV estimators would improve

their performance (see the discussion in Section 2.5.3). In fact, for the parameter

λ the average difference between RMSEs of the ML and the iterated FGS2SLS

estimators goes down to 14%, and between the ML and the iterated Lee and

series estimators to 11-12%. For the parameters β1 and β2 these differences go

down to just 2-3%. These results suggest that the advantage of the ML over

the spatial IV estimators is still relatively small given that the experiments are

conducted under the most favorable conditions for the ML procedure involving

normally distributed vectors of disturbances. This finding is important in light

of the computational simplicity of the spatial IV estimators considered in this

study relative to the ML estimator which is often not feasible because of severe

computational problems.

As a general observation we note that iterating on the spatial IV procedures

typically does not reduce the efficiency of the estimators, but it substantially

improves that efficiency in cases involving negative λ and high and positive ρ.

Therefore, in practice, it would be advisable to use the iterated version of the

FGS2SLS, Lee, and Series estimators.

The average difference between RMSEs of GS2SLS and FGS2SLS estimators

of λ is 13% for n = 100 and 8% for n = 400. This difference decreases to

5% and 2%, respectively, if only the experiments which do not involve ρ = 0.9

are considered. Furthermore, the RMSEs of the iterated FGS2SLS of λ are, on

average, higher than those of the GS2SLS by 8% for the sample size 100 and by
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3% for the sample size 400. For the parameters β1 and β2 the average RMSEs of

FGS2SLS and iterated FGS2SLS estimators are, on average, higher than those

of the ML estimator by at most 2% if the sample size is 100, and by 1% if the

sample size is 400. These results suggest that the loss of finite sample efficiency

due to the use of GM estimator of ρ is small in moderate to large samples.

Tables 2.8-2.9 relate to the estimators of ρ. Generally the ML estimator of this

parameter is better than the others, while the performance of the GM estimators

based on the residuals of the FGS2SLS, Lee, and series procedures are very similar

throughout the parameter space. The efficiency of the GM estimator of ρ based

on the 2SLS residuals is similar to the other GM estimators if the experiments

not involving ρ = 0.9 are considered. Over these experiments the GM estimators

are on average roughly 8% worse than the ML estimator. If all the experiments

are considered the average difference with the ML estimator is roughly 16% for

the 2SLS estimator, and 10% for the others. The bias of the estimators of ρ is

reported in Tables 2.10-2.11. If one compares it to the root mean squared error

of these estimators it is readily seen that the bias is very small relative to RMSE,

and, therefore, its contribution to RMSE is minimal and becomes smaller as the

sample size increases. In most cases, however, the value of the bias is negative,

and in absolute terms it is typically the smallest in case of the ML estimator.

We also note that the values of RMSEs of almost all the considered estimators

in the tables corresponding to λ, β1 and β2 generally decrease as the sample size

increases. An exception to this is the OLS estimator which is not consistent and

whose RMSEs, as a result, often increase with the sample size. These findings

are in accordance with the asymptotic properties of these estimators.

Finally we note that the relative performance of the estimators in sample size
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100 are roughly the same as in sample size 400. As an illustration, over all the

experiments considered the ratio of the RMSE of the ML estimator of λ relative

to that of the FGS2SLS estimator is, roughly 0.85 for the samples of size 100

as well as for the samples of size 400. The corresponding ratio for the ML and

FGS2SLS estimators of β1 and β2 are 0.975 in samples of size 100 and in samples

of size 400.
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2.9 Conclusion

This paper conducted a Monte Carlo study aimed to explore the finite sample

properties relating to the ML, FGS2SLS, Lee and the series estimators of a linear

spatial model with lagged dependent variable and autocorrelated disturbances.

The findings indicate that, on average, the advantage of the ML estimator

over the spatial IV estimators is limited. It seems most beneficial to use the

ML estimator when λ is negative and ρ is large and positive. In the other cases

the difference between the ML estimator and the spatial IV estimators is small

or nonexistent. This is important since the ML estimator is computationally

impossible to implement in large samples, while for the spatial IV estimators this

consideration is not an issue. We also considered iterated versions of the spatial

IV estimators and found them to be rarely less efficient than the corresponding

non-iterated IV estimators, and considerably more efficient in the cases when λ

is negative and ρ is large and positive. Therefore, in practice it is advisable to

use iterated versions of the FGS2SLS, Lee, and the series estimators.

Of the spatial IV estimators the Lee estimator while asymptotically efficient

in the class of IV estimators is computationally burdensome relative to the other

spatial IV estimators. We found that the computationally and programmingly

simpler Kelejian-Prucha series estimator, which is asymptotically equivalent to

the Lee estimator, has virtually the same finite sample properties as the Lee

estimator. We also found that the efficiency of the series estimator does not seem

to relate for values of α considered, namely 0.25, 0.35, and 0.45. This is somewhat

contrary to the intuition because large values of α lead to a better approximation

of the optimal instrument.

Furthermore, the results indicate that the loss of efficiency of the FGS2SLS
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estimator relative to the Lee estimator is minimal. Thus, the model can be

estimated at even smaller computational cost, and practically without loss of

efficiency.

We have also explored the finite sample efficiency of the ML and GM estima-

tors relating to the parameter ρ. Again, the ML estimator is usually superior to

the others when λ is negative and ρ is large and positive. Furthermore, in these

cases the GM estimators based on the residuals of FGS2SLS, Lee, or series pro-

cedures are more efficient than the GM estimator based on the 2SLS residuals.

For all other values of λ and ρ the considered GM estimators of ρ are virtually

the same, and the their finite sample properties are similar to those of the ML

estimator.

For future research it would be interesting to design rules determining an opti-

mal number of instruments for the FGS2SLS procedure and an optimal expansion

for the series estimator. To the best of our knowledge the existing literature does

provide an answer to this issue. One of the ways it can be addressed is by con-

ducting a Monte Carlo study.
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Chapter 3

Estimating Contagion: A Spatial Approach

3.1 Introduction

The devastating consequences of the financial crises of the last decade left economists

and policymakers wondering how a crisis starting in one country could travel

within and beyond its original neighborhood to other countries, leaving behind

inflated exchange rates, ballooned interest rates and economic stagnation. This

phenomena, which was a common feature of the major recent crises, is referred

by economists as “contagion”.

Understanding channels of contagion is of great importance for prescribing

economic policies when dealing with a crisis or preventing it from spreading to

other economies. For instance, if trade is the reason for contagion, a country

would be advised to diversify its export base and/or trading partners. However,

policy implications change when contagion is due to other factors such as finan-

cial linkages among countries, imperfections in the world capital markets, herd

behavior etc. In these cases, one can make an argument for intervention by inter-

national financial organizations, or for a change in regulations of capital markets

in the major financial centers.
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While theoretical research put forth a number of models highlighting different

channels that could explain the existence of contagion, the empirical literature

has not reached a firm consensus regarding the propagation mechanisms of con-

tagion.1

This paper tries to identify channels of contagion by looking at the patterns

of co-movement of weekly stock market returns during the three recent crisis

episodes in Asia, Russia and Brazil. We distinguish between four channels of

contagion highlighted in the literature: bilateral trade, financial links through

major banking centers (bank lending channel), similarity in risk, and neighbor-

hood effects.

Our empirical analysis is based on a spatial model in which the dependent

variable relates to stock market returns. The model contains four spatial lags in

the dependent variable. Each spatial lag reflects a channel of contagion trans-

mission which describes how the stock market returns of the countries involved

are interrelated. We test for the significance of each channel of transmission.

Some previous papers used a similar methodology to assess contagion effects.

The closest study to this one was conducted by Hernandez and Valdes (2001)

who also considered weekly stock market returns and used weights to compare the

relative importance of different contagion channels. However, there are consid-

erable differences in the empirical and methodological frameworks in that study

and ours. First, we use a consistent estimation procedure for this type of model,

which is based on the generalized spatial two-stage least squares procedure sug-

gested by Kelejian and Prucha (1998). Second, we consider a larger sample of

1See discussion in Dornbusch and Claessen (2000), Kaminsky and Reinhart (2000), Cara-

mazza et. al. (2000), Van Rijckeghem and Weder (2001) among others.
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countries which helps to alleviate possible sample selection biases which may be

contained in earlier studies. Third, we use more comprehensive accounting for a

common shock (or common factor), an issue largely ignored in empirical studies

on contagion. And, finally, in our methodology the importance of each channel

of contagion can be determined when they are considered simultaneously.

Section 3.2 provides a brief review of the literature, while Section 3.3 highlights

some of the methodological issues. The empirical model is given in Section 3.4

and 3.5. Section 3.6 describes the data, and results are discussed in Section 3.7.

Conclusions are given in Section 3.8.

3.2 Review of Related Literature

3.2.1 Definition of contagion

To date there is no consensus on the definition of contagion. Researchers use

different definitions depending upon the objective of their study, see, e.g. the

discussion in Masson (1998), Kaminsky and Reinhart (2000), and Forbes and

Rigobon (2001). In this paper we use a definition based on what Calvo and

Reinhart (1996) call a “fundamental-based contagion”, namely, a contagion is a

transmission of a crisis from one country to another through real and financial

interdependence between them. In the context of this paper this transmission is

manifested through the co-movement of stock market returns, which we try to

explain by the existence of various types of links among countries.
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3.2.2 Trade links

In the contagion literature the notion of real interdependence is often related

to trade links. Countries may be connected through trade in two ways: first,

by trading directly with each other, and, second, by competing with each other

for exports to a third country. Clearly, both connections may contribute to the

transmission of a crisis.

In the first case, a fall in aggregate demand in a crisis country would adversely

affect imports from its trading partners. As a result, it would create pressures

on exchange rates in economies that have a large share of exports going to the

crisis country. These pressures could eventually result in a sizable devaluation of

domestic currency and a full scale financial crisis. This argument was formalized

by Gerlach and Smets (1994) with respect to EMU crisis in 1992.

In the second case, a currency devaluation in one country would reduce com-

petitiveness of countries that export their goods to the same markets. The result-

ing competitive disadvantage would create incentives for competitors to devalue

their currency, see Corsetti et al.(2000) for a formal treatment.

There are a number of empirical studies that find the trade channel to be a

significant explanation for contagion. Eichengreen et al. (1996) analyzed con-

tagion using data on 20 industrial economies from 1959 to 1993. They found

that the probability of a crisis in a country increases in the presence of a crisis

elsewhere, and that this increase is better explained by trade links among coun-

tries than by macroeconomic similarities. Glick and Rose (1999) used a much

larger sample of countries and found that trade competition in third markets had

high power in explaining contagion across countries in five major crisis episodes

between 1971 and 1997. Forbes (2001) used disaggregated trade data which lead
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to a more accurate measure for export competition. She finds that both bilateral

trade and competition in third markets are robust and significant determinants

of co-movements in stock market returns in times of crisis.

3.2.3 Financial links

Similar to trade links, financial links can be of two types — direct and through a

third party. The first type relates to direct financial interdependence which results

from, among other things, cross border investments among countries. In the

presence of these links, a crisis in, say, Thailand, could cause financial difficulties

for, say, Malaysian companies that invest in Thailand. If the aggregate financial

exposure was high, the consequences for the Malaysian economy may be quite

severe.

The second type of financial link which received much more attention is called

a “common lender” link. It arises from the fact that countries borrow money

from large financial institutions that are concentrated in financial centers such as

Europe, Japan and the US. Therefore, these countries are interconnected by the

financial system. In this sense, Europe, Japan and the US can be viewed as three

big creditors and, hence, are usually referred to as common lenders. Exposure

to a common lender may propagate a crisis in the following way. A country

experiencing a crisis would generate losses to a common lender, and, if those

losses are large enough they may adversely affect its liquidity. Thus, the common

lender may be forced to sell the securities of other countries, driving down their

prices. In some studies, contagion during the Asian crisis was attributed to the

fact that Japanese banks, that were already experiencing difficulties, suffered

losses followed by the Thai devaluation, and, as a result, had to liquidate their
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portfolios in other countries in the region, leading to a crisis propagation. The

study by Kaminsky and Reinhart (2000) was among the first that stressed the

role of this channel of contagion.

It has also been shown that a presence of informational asymmetries may

amplify the common lender effect. In Calvo (1999) the amplification mechanism

works through the existence of large highly leveraged informed investors and

uninformed investors. The informed investors experiencing a margin call have to

sell their assets to restore liquidity. The uninformed investors, in turn, receive a

mixed signal about the quality of the assets, and, as a result of signal extraction,

follow informed investors creating fall in prices not warranted by fundamentals.

In a study by Kodres and Pritsker (2001) it was shown that the presence of in-

formational asymmetries among investors can generate contagion across countries

that do not even share macroeconomic risks. In their modeling the transmission

mechanism involves a rebalancing of investors’ portfolios.

There are other explanations for financial contagion which are based on imper-

fections and institutional arrangements in capital markets. Calvo and Mendoza

(2000) built a model where the presence of fixed informational cost concerning a

country’s fundamentals, and increasing diversification opportunities in the global

capital markets give rise to the role of rumors and escalate herd behavior.

Other observers attribute contagion to shifts in investor sentiment, such as

increased risk-aversion. In this scenario a crisis serves as a “wake-up call” for

investors, making them reassess risks involved in other countries. As a result,

economies with similar fundamentals may suffer (see Goldstein (1998)).

Empirical studies of contagion which allow for financial links usually find

them significant, and sometimes “overshadowing” the trade channel. Kaminsky
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and Reinhart (2000) found that the probability of a crisis increases significantly

when a country shares a common lender with a crisis country, although, the

authors caution that generally it is difficult to distinguish between the trade and

a common lender channel since both of them have a regional pattern.

Van Rijckeghem and Weder (2001) employ different measures of financial links

and find strong evidence of financial spill-overs through a common creditor. Her-

nandez and Valdes (2001) analyze co-movement of bond spreads and stock mar-

ket returns across countries during the Asian, Russian and Brazilian crises. They

find that financial links are important in explaining bond spreads, but these links

seemed to effect stock prices only during the Russian crisis.

Still other studies found evidence of investment practices that create conta-

gion. For instance, Kaminsky Lyons and Schmukler (1999) showed a presence

of a momentum strategy in the behavior of mutual funds. This strategy creates

co-movements in asset prices not warranted by fundamentals.2

3.3 Some Methodological Issues

Essentially, one can distinguish three approaches in the contagion literature re-

lating to channels of transmission.

The approach used by Kaminsky and Reinhart (2000) originates from the

2There are a number of papers which address the issues of contagion by looking at correlation

in asset prices (see Calvo and Reinhart (1996), Valdes (1997), Rigobon (1999), Forbes and

Rigobon (2001), Bordo and Murshid (2000)), and changes in volatility (see Edwards (1998),

Park and Song (1998)). These studies focus on establishing existence of “excess” co-movements

in asset prices or geographical direction of contagion. However, they do not focus on the issues

of propagation mechanisms of contagion, and , therefore, are beyond the scope of this study.
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methodology introduced by Kaminsky, Lizondo and Reinhart (2000) in their

study on currency crises. The channels of contagion are identified by comparing

the unconditional probability of a crisis to the probability conditional on a coun-

try being in the same region as crisis country, or in the same trade or financial

cluster. Typically in this framework various statistics are considered in order to

verify the robustness of inferences .

Another approach was introduced by Glick and Rose (1999) and widely used

in subsequent studies. First, it requires identification of a “ground-zero country”

— a country where a crisis started. Second, a crisis variable is regressed on a set of

fundamentals and variables reflecting trade or financial links to the “ground-zero

country”.

The advantage of the latter approach is that it is relatively simple and it allows

testing not only for the presence of contagion, but also to distinguish between

different channels of transmission. One of the drawbacks of this methodology

is that it does not take into account a so called “cascade effect” (following the

terminology of Glick and Rose (1999)). The “cascade effect” implies that a

country may experience a crisis not only because of its direct links to the “ground-

zero” country, but also due to spill-overs from countries that were already affected

by the original crisis. For example, if Brazil was affected by the crisis in Russia,

Argentina may also experience a crisis not because of its links to Russia, but

because of its links to Brazil. Missing these links in an empirical model would

lead to inconsistent estimates.

This point was recognized in a series of papers on contagion, see e.g. De

Gregorio and Valdes (2001), and Hernandez and Valdes (2001). In their empirical

models a contagion indicator of one country depends on a weighted average of the
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indicators of other countries. They construct different types of weights based on

macroeconomic similarities, trade, financial links through major banking centers,

and neighborhood effects, and check which set of weights better fits the data. For

instance, Hernandez and Valdes (2001) model weekly stock market returns using

the following equation:

yit = c+ α
nX
j=1

wijyjt + xtB + uit (3.1)

where yit is a measure of weekly stock market return in country i in time period

t, wij are the weights linking country i to country j, xt is an observable exoge-

nous common shock, uit is a heteroscedastic disturbance term, and α and B are

parameters. The model is normalized by setting wii = 0 for all i. The presence

of contagion would be reflected by a non-zero value of α. Due to the interactions

of the values of the dependent variable, this is a simultaneous equation model.

While recognizing the simultaneity problem the authors estimate their model

by ordinary least squares. They argue that a bias of their estimator is propor-

tional to the true value of parameters and is not present when the true value of

α is zero (under the null of the absence of contagion).

Their approach, while informative about the presence of contagion channels,

has certain disadvantages. First, models such as (3.1) are not consistently es-

timated by least squares procedure. Since the extent of inconsistencies are not

known the parameter describing contagion, namely α, cannot be accurately es-

timated. Second, it becomes tricky to test for different channels of contagion

simultaneously since in the presence of two sets of weights in one equation the

biases of both coefficients are interrelated and OLS estimation gives little infor-

mation about relative relevance of each coefficient.

These disadvantages would be resolved if a consistent estimation procedure
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were applied to an expanded version of the model which contains more than one

channel of transmission3. This is a strategy that we are going to pursue in the

paper.

The empirical setup in this study builds on the work of Hernandez and Valdez

(2001) who apply this empirical methodology to measure contagion through bond

spreads and stock market returns. We consider a larger sample of countries which

helps to alleviate some of the sample selection biases. Furthermore, we utilize

a consistent estimation procedure which is a special case of generalized spatial

two-stage least squares proposed by Kelejian and Prucha (1998).

3.4 Specification

In our empirical framework we try to explain the behavior of weekly stock market

returns of a cross-section of countries during the Asian, Russian, and Brazilian

crises.

The presence of contagion is captured by the fact that the stock market return

yit of country i in time period t is determined not only by exogenous variables

but also by a weighted average of returns of other countries in time period t. We

allow for several kinds of weights in the equation simultaneously. Each set of

weights corresponds to a specific channel of contagion. Our model is:

3Lee (2000) shows that under certain restrictive conditions the OLS estimator is consistent

and efficient. However Lee’s conditions are not satisfied by the typical contagion model.
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yit = ct + α1

nX
j=1,i6=j

wTradeij yjt + α2

nX
j=1,i6=j

wFinij yjt (3.2)

+α3

nX
j=1,i6=j

wSimilarityij yjt + α4

nX
j=1,i6=j

wNeighborij yjt

+xiBt + zitγ + uit,

t = 1, .., T , n = 1, .., N

where yit is a measure of weekly stock market returns of country i in period t,

denominated in US$, wTradeij , wFinij , w
Similarity
ij , wNeighborij are the weights reflecting

how country i is connected to country j through, respectively, bilateral trade,

financial links, similarity in risk, and the geographical neighborhood; xi and zit are

variables capturing common shocks and uit is a heteroscedastic disturbance term

which we assume to be independently distributed over i and t. The parameters

of the model are α1,α2,α3, α4, Bt, and γ.

Following the methodology of Hernandez and Valdes (2001), for each crisis

episode we take a three-month window starting from the month a crisis starts —

July in the Asian crisis, August in the Russian crisis, and January in the Brazilian

crisis. This procedure creates a time dimension equal to 12 in each case, i. e., 12

panels for each of the three crises. The cross-sectional dimension consists of 50

countries for the Asian crisis, and 54 for the Russian and Brazilian crises4.

4The full list of countries includes Argentina, Australia, Brazil, Bulgaria, Chile, China,

Colombia, Croatia, Cyprus, Czech Republic, Ecuador, Egypt, Estonia, Greece, Hong Kong,

Hungary, Iceland, India, Indonesia, Israel, Jordan, Kenya, Korea, Kuwait, Latvia, Lebanon,

Lithuania, Malaysia, Malta, Mauritius, Mexico, Morocco, New Zealand, Nigeria, Pakistan,

Peru, Philippines, Poland, Portugal, Romania, Russia, Saudi Arabia, Singapore, Slovakia,

Slovenia, South Africa, Sri Lanka, Taiwan, Thailand, Tunisia, Turkey, Ukraine, Venezuela,
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3.4.1 Weighting Matrices

Trade

Following the previous literature wTradeij is taken to be the ratio of exports from

country i to country j to the total exports of country i. The matrix is subse-

quently row-normalized, i.e. each row is scaled such that it sums up to one. Using

evident notation

wTradeij =
Exporti,j
Exporti

, Exporti =
NX
j=1

Exporti,j

where N is the total number of countries involved.

Financial Links

It is more difficult to find an intuitive measure of the financial interdependence

through a common lender. The previous literature has proposed several ways to

account for it.

The first measure of financial links was originally based on a formula for trade

competition in third markets and was proposed by Glick and Rose (1999). Van

Rijckeghem and Weder (2001) used their formula to measure financial interde-

pendence between two countries through a common lender (sometimes referred

as a bank lender). They called it a competition for funds indicator - the extent to

which country i competes with country j for funding from the same bank lenders.

Following previous studies we consider three bank lenders corresponding to the

three major financial center: Europe, Japan and the US.

Zimbabwe. For the Asian crisis we had to exclude Bulgaria, Tunisia, Saudi Arabia, Ukraine

due to unavailability of data.
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There are two measures for competition for funds in the literature: absolute

and relative. The absolute measure relative to common lender C is:

wCij,Abs =
bj,C + bi,C
bj + bi

µ
1− |bj,C − bi,C|

bj,C + bi,C

¶
(3.3)

where bi,C is the debt of country i to a common lender C, and bi is the total

foreign debt of country i (bi =
P

C bi,C), C = {Europe, Japan, US}.
The first term of (3.3) reflects the importance of a common lender C to country

i and j. The second term captures similarity in the borrowing patterns between

country i and j. If they owe the same amount to the common lender the second

term takes its highest value of one; if the difference between their debt is large it

is close to zero.

Interestingly, after some simple manipulations we can write (3.3) as

wCij,Abs = 2 ∗
min{bj,C , bi,C}

bj + bi

In this representation it has a different interpretation. Let us assume that

bj,C = min{bj,C , bi,C}. Then, the formula suggests that the financial link between
countries i and j is determined by the debt of country j to lender C, bj,C , relative

to the total debt of countries i and j. Put differently, the value of bi,C does not

play any role as long as bi,C > bj,C .

In order to construct an aggregate financial link between two countries we

form the three matrices WC
Abs =

¡
wCij,Abs

¢
corresponding to each of the three

financial centers C = {Europe, Japan, US} and after row normalizing each of
them we sum them up:

wFinij,Abs =
1

3

Ã
wEurij,AbsP
j w

Eur
ij,Abs

+
wJapij,AbsP
j w

Jap
ij,Abs

+
wUSij,AbsP
j w

US
ij,Abs

!
. (3.4)
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The relative competition for funds indicator is similar to the absolute one

with the only difference being that it uses shares of funds obtained from the

same creditor instead of absolute values. It is calculated as follows:

wCij,Re l =
bj,C + bi,C
bj + bi

µ
1− |bj,C/bj − bi,C/bi|

bj,C/bj + bi,C/bi

¶
(3.5)

Similar to the absolute competition for funds weighting matrix the elements

of the financial weighting matrix WFin
Re l = (w

Fin
ij,Re l) based on (3.5) are given by

wFinij,Re l =
1

3

Ã
wEurij,Re lP
j w

Eur
ij,Re l

+
wJapij,Re lP
j w

Jap
ij,Re l

+
wUSij,Re lP
j w

US
ij,Re l

!
. (3.6)

It is worth noting that, before row-normalization, the matrices constructed on

the basis of (3.3) and (3.5) are symmetric. This implies that country i is affected

by country j through this channel in the same way that country j is affected by

country i. Clearly, this situation does not seem to be plausible when one imagines

countries such as China and Bangladesh.

To overcome this problem we propose a second measure which is a variation

of the one given in Caramazza et al. (2000).

Motivation for this measure comes from the simple logic that contagion be-

tween two countries sharing a common lender may occur if two conditions are

fulfilled. First, the exposure of the common lender to a crisis country should be

large enough to bring about significant losses that would affect the liquidity of

that common lender. Second, the debt of an affected country to the common

lender must also be large so that the country would be vulnerable to the common

lender’s actions.

In light of this discussion an intuitive measure of the link between country i

and j through a common lender C, which we call an asymmetric measure, can

be captured by the following formula:
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wCij,Asym =
bi,C
GDPi

∗ bj,C
bC

(3.7)

where bC is the total portfolio of the common lender bC =
P

i bi,C . The first

component reflects the importance of common lender C to country i, while the

second component measures exposure of the common lender to country j. The

product of these two terms reflects the potential impact of country j on country

i through the common lender channel.

A matrix based on (3.7) will not be symmetric and, therefore, would embrace

the mentioned asymmetries in the links between countries. In constructing an ag-

gregate financial link we do not row normalize this matrix. However, we scale the

matrices corresponding to each common lender by the sum of all their elements

divided by the number of cross-sectional units, i. e. the number of countries.

The resulting expression is given by

wFinij,Asym =
1

3

Ã
wEurij,Asym

1
N

P
i

P
j w

Eur
ij,Asym

+
wJapij,Asym

1
N

P
i

P
j w

Jap
ij,Asym

+
wUSij,Asym

1
N

P
i

P
j w

US
ij,Asym

!
.

(3.8)

As becomes clear from the appendix this scaling ensures that the resulting

weighting matrix WFin
Asym =

¡
wFinij,Asym

¢
is absolutely summable.

It is also important to note that the financial weighting matrices are based

on the banking statistics which does not include mutual funds, hedge funds,

and other institutional investors. Therefore, they reflect the linkage through the

banking sectors of the major economies, and these linkages are further often

referred to as bank lending channel.
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Similarity in Risk

For calculating similarity in risk we use a distance measure of credit ratings be-

tween two countries. One can view that as a proxy for macroeconomic similarity

between two countries, the aspect that received a lot of attention in the literature

on contagion.5 The rationale for the importance of this measure is the “wake-up

call” theory of contagion. This theory suggests that the occurrence of a crisis in

one country makes investors look at other countries with similar macroeconomic

conditions or falling in the same risk category, and update their risk assessment of

these countries. This channel is based on the presence of incomplete information,

which creates cross-country informational externalities.

We use the data on credit rating of countries compiled by Institutional Investor

Magazine. Risk distance is calculated using the formula suggested by De Gregorio

and Valdes (2001):

dij = exp {− |xi − xj|}

where xi is a credit rating of country i. The variable xi is standardized to have

mean zero and standard deviation 1. The risk similarity matrix based on this

measure of distance is a row normalized matrix whose elements are given by

wSimilij =
dijP
j dij

Neighborhood

There are several reasons for inclusion of a neighborhood effect into the empirical

model. First, it reflects direct financial links among countries. Their regional

5See Golstein (1998), Eichengreen et. al. (1996), Rigobon (1998), De Gregorio and Valdes

(2001).
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pattern may originate from bilateral trade which also tend to be regional. Sec-

ond, it may capture many of the non-linearities and residual terms of the trade

links since the trade matrix may not be of very precise functional form and the

neighborhood matrix may correct for it. Third, there might be other economic

and non-economic regional links that connect countries and may contribute to

the existence of spill-overs. In other words, many things that are regional and

not accounted for by the other three matrices may be reflected by neighborhood

effects.

The “neighborhood” matrix is constructed by assigning a weight of one if

two countries belong to the same region, and a weight of zero otherwise. All

the countries are divided into four regions: Europe, South and South-East Asia,

Latin America, Middle East and North Africa, and South African region. The

list of the countries divided by region is given in Table 3.1.
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Table 3.1. Neighborhood clusters 
Europe Latin 

America 
South and 
South East Asia 

Middle East 
and North 
Africa 

Africa 

Bulgaria 
Croatia 
Cyprus 
Czech 
Estonia 
Greece 
Hungary 
Iceland 
Latvia 
Lithuania 
Malta 
Poland 
Portugal 
Romania 
Russia 
Slovakia 
Slovenia 
Turkey 
Ukraine 
 

Argentina 
Brazil 
Chile 
Colombia 
Ecuador 
Mexico 
Peru 
Venezuela 

Australia 
China 
Hong Kong 
India 
Indonesia 
Korea 
Malaysia 
New Zealand 
Pakistan 
Philippines 
Singapore 
Sri Lanka 
Taiwan 
Thailand 

Egypt 
Israel 
Jordan 
Kuwait 
Lebanon 
Morocco 
Saudi Arabia 
Tunisia 

Kenya 
Mauritius 
Nigeria 
South Africa 
Zimbabwe 

 
 
 



Common Shock Variables

There are three groups of variables in the model that capture the effect of common

shocks: time effects represented by ct in the model, so called “quasi-fixed effects”

represented by the vectors xi, and zit. The first group, time effects ct, controls

for common shocks in time period t that affect all countries equally.

There are a number of reasons to believe that some common shocks have a

different effect on different groups of countries. For instance, it is documented

that an increase in the US interest rates has a more dramatic effect on the Latin

American region than any other. Therefore, the effect of a shock originating

in, say, US should be properly weighted by the extent of country’s ties to the

US economy. In our framework these ties can be either trade or financial. Fur-

thermore, we assume that common shocks originate in the three major world

economies - Europe, Japan and the US - and their impact on other countries is

proportional to the trade and financial ties to these economies.

The set of vector xi accounts for shocks propagated through the trade linkages,

and zit through financial linkages.

The vector xi is specified as follows:

xi =

·
Exporti,Eur
GDPi

,
Exporti,Jap
GDPi

,
Exporti,US
GDPi

¸
Note that the coefficient corresponding to this vector, namely, Bt, is time-

variant. It reflects the spill-overs in time period t, coming from Europe, Japan

and the US through a trade channel. In a way, it can be interpreted as a time-

effect proportionate to trade. This is the reason why we sometimes refer to the

set of variables xi as “quasi-fixed effects”. Among other things it would capture

trade competition among countries in the third market, given that the large share

of their exports goes to the three major economies.
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The financial common shock is more difficult to account for. At first glance,

one may argue that we can construct the same variables as for trade with debt

instead of export ratios. However, the problem with this approach is that among

other things a time-variant coefficient before these variables (analog of Bt in the

trade case) would also absorb the financial shocks transmitted across countries,

in our sample through Europe, Japan and the US (a common lender channel).

As a result, it would be impossible to identify whether a country is influenced

by troubles of the major economies, or it is suffering from a shock transmitted

through a common lender channel. Since the common lender channel is of great

interest to us we cannot use this approach.

To overcome this problem we construct the vector zit which interacts debt

ratios with stock market returns in three financial centers:

zit =

·
bi,Eur
GDPi

yt,Eur,
bi,Jap
GDPi

yt,Jap,
bi,US
GDPi

yt,US

¸
where bi,C is the debt of country i to financial center C, and yt,C is the weekly stock

market return in countryC at time period t, where, again, C = {Europe, Japan, US}.
Clearly, the stock market components of zit, yt,Eur, yt,Jap, and yt,US are likely to

be endogenous, i.e. they might be affected by the stock markets in, for instance,

Asia or Eastern Europe during crises. Therefore, it is necessary to construct

instruments for these variables.

In order to find proper instruments, we obtain sub-indices of the total stock

market index which are inherently domestic: non-cyclical consumer services,

real estate and utilities. Second, we regress the stock market return variables

yt,Eur, yt,Jap, yt,US on the corresponding changes in the sub-indices and oil price.

And finally, the fitted values from these regression are substituted into the for-
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mula for zit. The resulting instrument becomes

ẑit =

·
bi,Eur
GDPi

ŷEur,t,
bi,Jap
GDPi

ŷJap,t,
bi,US
GDPi

ŷUS,t

¸
.

So far we have specified the model and explained all the variables and the

coefficients involved. Next we are going to discuss the estimation of the model.

3.5 Matrix Notation And Estimation

In order to describe the estimation procedure it will be useful to write the model

in the matrix notation. First, at time period t :

yit = ct + α1W
Tradey.t + α2W

Finy.t + α3W
Similarityy.t (3.9)

+α4W
Neighbory.t +XBt + z.tγ + u.t, t = 1, .., T ,

where y.t = (y1t, .., ynt)
0,X = (x01, .., x

0
n)
0, u.t = (u1t, .., unt)0, z.t = (z01t, .., z

0
nt)

0, Bt

and γ are 3×1 vectors of parameters, and ct,α1,α2,α3, and α4 are scalar param-

eters of the model. Essentially (3.9) is a panel data models. We can stack the

data in the usual way and obtain:

Y = EC + α1W
TradeY + α2W

FinY + α3W
SimilarityY (3.10)

+α4W
NeighborY +XB + Zγ + u

where Y = (y0.1, .., y
0
.T )

0 is a stacked dependent variable, E = (IT ⊗ eN) is a
matrix of dummy variables, which relate to the time period involved,WTrade =

(IT⊗W Trade),WFin = (IT⊗WFin),WSimilarity = (IT⊗W Similarity),WNeighbor =

(IT ⊗WNeighbor) are block diagonal weighting matrices, X = (IT ⊗X) is a ma-
trix of quasi-fixed effects, Z = (z0.1, .., z

0
.T )

0 is matrix of financial common shock

variables, u = (u0.1, .., u
0
.T )

0 is a stacked heteroscedastic disturbance term, and

B = (B01, ..., B
0
T )
0, C = (c1, ..., cT )0 are parameters of the model.
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The last expression resembles a typical spatial model of the type considered

in Cliff and Ord (1973)6. There are four endogenous variables on the RHS be-

sides Z. They are WTradeY,WFinY,WSimilarityY,WNeighborY. In the literature

on spatial model these variables are called spatial lags of the dependent variable,

and they are obviously correlated with the error term and therefore need to be

instrumented7. The list of instruments for this model is inspired by the work of

Kelejian and Prucha (1998) and given by

H = [X, Ẑ,WTradeX,WFinX,WSimilarityX,WNeighborX,WTradeẐ,

WFinẐ,WSimilarityẐ,WNeighborẐ],

where Ẑ is defined the same way as Z with hats on corresponding variables.8

One of the important conditions for consistency given by Kelejian and Prucha

(1998) is that the weighting matrices possess the property of absolute summa-

bility. In Appendix we give a definition of this concept and show that all our

weighting matrices satisfy this property. For detailed discussion and proofs of

consistency and asymptotic normality of this estimator see Kelejian and Prucha

(1998).

6The only difference with the typical Cliff-Ord model is that it contains several weighting

matrices and the regressor Z is endogenous. However, it does not complicate the analysis, and

it stays essentially the same.

7For discussion of spatial models and their estimation see Anselin (1988), Cliif and Ord

(1973, 1981), Cressie (1993), Kelejian and Prucha (1998, 1999), Ord (1975).

8For detailed motivation of this set of instruments see Kelejian and Prucha (1998).
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3.6 Data

All the data on stock market indices and exchange rates were extracted from

Datastream. The trade data and GDP figures were taken from Direction of Trade

statistics compiled by IMF and World Development Indicators, respectively. The

source of the data on the financial matrix deserves special attention. We use

Bank of International Settlements (BIS) data on consolidated claims of banks of

18 developed countries on other individual countries in order to calculate a proxy

for a total debt of an individual country to Europe, US and Japan.

There are several points that need to be mentioned about these data. First,

it does not cover certain financial institutions such as hedge funds, institutional

investors, dedicated mutual funds. Nonetheless, it seems to be a valid (and the

only available) proxy for financial involvement of the industrial countries in the

rest of the world given the substantial role of banks during crises (see discussion

in Van Rijckeghem Weder (2001)). Second, the data covers only on-balance sheet

positions ignoring off-balance positions that can be used to hedge risk. As pointed

out by Van Rijckeghem Weder (2001) it could play a significant role only when

crisis is widely anticipated such as Brazilian crisis, and is of less importance in

the Russian and Asian crises. Moreover, they argue that it does not seem to be

feasible to account for the off-balance positions.

Another imprecision in the BIS data which has not been as widely recognized

before may arise from the fact that a lot of investment in emerging markets

went through offshore financial centers and zones, see Wincoop and Yi (2000)

for discussion. This fact would result in a bias in debt figures that may work

both ways. For instance, some funds invested by European banks to Thailand

through, say, Cayman Islands would not be reflected in BIS statistics as claims
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of European banks on Thailand. Hence debt of Thailand to Europe would be

underestimated. From this angle, the BIS statistics of European, Japanese and

American claims on some of the countries would be underestimated.

On the other hand, some countries in our sample themselves have offshore

zones on their territories9. That means that part of their debt claimed to be

owed to, say, Europe may turn out to be money of European banks actually

invested in neighboring countries. It implies that for those countries the reported

debt is an overestimation of the actual amount. Given a large concentration of

funds in the offshore centers the latter bias is likely to be more substantial. We

proceed keeping these limitations in mind.

3.7 Empirical Results

We start our empirical analysis by replicating some of the results of Hernandez

and Valdes (2001) henceforth referred as HV. Next, we illustrate the differences

in the results arising from more comprehensive accounting for common shocks,

using a larger sample of countries, and utilizing a consistent estimation proce-

dure. Finally, we use this procedure to estimate the full model that includes all

contagion links at the same time.

First, we estimate the regression of HV containing a single weighting matrix,

namely, based on bilateral trade. A common shock in this regression is captured

by the US stock market return. In scalar notation the estimated equation is given

9By classification of Erico and Musalem (1999) there are fourteen countries in our sample

falling under this category. They are Australia, Cyprus, Hong Kong, Hungary, Israel, Kuwait,

Lebanon, Malaysia, Malta, Mauritius, Philippines, Russia, Singapore, Thailand.
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by:

yit = c+ α
nX

j=1,i6=j
wTradeij yjt + xtB + uit

where yit is a weekly stock market return of country i in time period t, wij are the

weights based on bilateral trade, xt is a weekly return on the US stock market

in time period t, and uit is a heteroscedastic disturbance term, c, α and B are

scalar parameters.

We estimate this equation using the same estimation technique as HV, which

is OLS, the same time windows for each crisis episode which are three months

starting from the month of a crisis, and the same sample of seventeen countries.

The estimated values of the parameter of interest, namely, α are reported in the

first column of Table 3.2. They are very close to those of HV, except for the

Russian crisis in which our estimate is 0.79 while HV’s is 0.45. The discrepancies

might be due to differences in stock market indices used in the data as well as

somewhat different methodology in constructing the trade matrices10.

10There are two such differences. First, we use export statistics to construct the trade links

while HV use the sum of export and import figures. Forbes (2001) argue that the contagion

effects via export links and import links work in different directions. However, she found that

the effect of import links is insignificant while that of export links is very siginificant. Therefore,

it seems reasonable to use just export statistics for constructing bilateral trade links. Second,

in order to constuct export figures, we use a reflection of the import statistics since the import

statistics are presumed to be more precise.
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Table 3.2. Comparison of Different Estimation Procedures, Different Accounting 
For Common Shocks and Different Sample Sizes.* 

Estimation: OLS OLS 2SLS 2SLS 
Sample size: Small 

Sample 
Large Sample Large Sample Small Sample 

Accounting for 
common 
shock: 

US stock 
market 

As in the 
model 

As in the 
model 

As in the 
model 

Asian  
crisis 

0.76 
(7.33) 

0.13 
(0.98) 

0.42 
(2.37) 

0.22 
(0.80) 

Number of obs. 204 600 600 204 
Russian crisis 0.79 

(7.86) 
0.21 

(1.83) 
0.71 

(3.34) 
1.12 

(1.82) 
Number of obs. 204 648 648 204 
Brazilian crisis 0.42 

(3.20) 
0.12 

(1.01) 
0.80 

(3.49) 
-0.54 

(-1.47) 
Number of obs. 204 648 648 204 
* t-statistics based on robust standard errors are in parenthesis 
 
  
 



Note that HV estimated their model for both stock market returns and for

bond spreads as dependent variables. Since bond spreads are available only for a

limited number of countries, they consider only 17 countries in both bond spread

and stock market returns regressions in order to make the results comparable.

However, this approach may have some hidden biases. The data on bond spreads

is compiled by JP Morgan, and, apparently, the choice of countries for which

the bond spreads are calculated is not random. This fact implies that there is a

potential for sample selection bias in the model.

In order to investigate this problem we check whether HV’s results would hold

if we expand the sample from 17 to 50 countries for the Asian crisis and to 54

for the Russian and Brazilian crises, and improve accounting for common shock.

Again the model is estimated by OLS. Astonishingly, none of the coefficients

corresponding to the weighting matrix turns out to be significant in any of the

crisis episodes. Thus, the results change completely.

So far, we have run two OLS regressions differing in the sample of countries

and accounting for common shocks. We have found that all of them produce

different and sometimes opposite results. It suggests that even if we use the esti-

mation procedure of previous studies the results change substantially depending

on the sample of countries under consideration, and the way of accounting for

common shocks. However, these assertions are based on least squares estimation

which, as already mentioned, is clearly inconsistent. Therefore, we now introduce

the results obtained with a consistent estimation and compare them to what we

have found so far.

Columns 3 and 4 of Table 3.2 report the 2SLS estimates of the coefficients
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based respectively on the small and large samples of countries11. Two comments

are in order. First, if we compare these two columns we can observe a substantial

difference in both the values and the significance of the coefficients. It confirms

that the sample selection bias may be quite substantial. Second, the OLS and

2SLS results based on the large sample of countries (columns 2 and 3, respec-

tively) produce strikingly different outcomes. Specifically, results based on 2SLS

indicate significance of the trade matrix coefficient in all crisis episodes, while the

corresponding least squares estimates are insignificant at the 5% level in all cases.

Hence, it may be misleading to base conclusions on the least squares estimates in

this type of model. Clearly, a consistent estimation procedure is needed in order

to obtain reliable inferences in such models.

We used the above exercise in order to illustrate that the estimation procedure

matters in the empirical model a la HV. However, in order to estimate the model

consistently one would have to include all the weighting matrices corresponding

to different channels of contagion into one equation. The rest of this section

discusses the results of the main specification given by equation (3.2).

The main specification (3.2) contains all four weighting matrices in one equa-

tion. We run three regressions for each crisis episode. They differ only in the

specification of the financial matrix included in the equation. The financial ma-

trices were described in Section 3.4.

Table 3.3 contains the estimates of the coefficients corresponding to the weight-

ing matrices (α1,α2,α3,α4). It can be seen that the results are sensitive to the

definition of the financial matrix. For example, in case of the Russian crisis the

11Unfortunately, it is not feasible to apply the consistent estimation procedure used in the

paper to the specification that accounts for common shocks a la HV.
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channels that are significant in the first column (absolute competition financial

matrix) are insignificant in the second and the third columns (relative compe-

tition and asymmetric financial matrices) and visa versa. This finding is not

surprising because the weighting matrices themselves may be correlated due to

the regional pattern of trade and financial links. Thus, when one of the matrices

is misspecified the others may gain significance by absorbing the effect of mis-

specification. This situation may be a consequence of potential multicollinearity

among these weights discussed in Kaminsky and Reinhart (2000). Keeping this

limitation in mind we proceed to the next step which finds the financial weighting

matrix that fits our empirical model the best.
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Table 3.3. Estimated coefficients corresponding to the weighting matrices* 
Financial Matrix: Absolute 

Competition 
Relative 

Competition 
Asymmetric 

Asian Crisis    
Trade 0.24 

(1.31) 
0.26 

(1.33) 
0.20 

(1.03) 
Financial Link 0.79 

(3.25) 
0.40 

(0.62) 
0.01 

(0.20) 
Similarity 0.88 

(1.77) 
0.68 

(1.35) 
0.79 

(1.54) 
Neighborhood 0.38 

(2.60) 
0.43 

(2.75) 
0.49 

(3.22) 
Number of obs. 600   
    
Russian Crisis    
Trade 0.46 

(2.18) 
0.07 

(0.31) 
0.13 

(0.51) 
Financial Link 1.06 

(4.54) 
0.14 

(0.18) 
0.06 

(1.06) 
Similarity 0.33 

(0.83) 
1.07 

(2.70) 
1.05 

(2.66) 
Neighborhood 0.30 

(1.65) 
0.67 

(3.61) 
0.62 

(3.11) 
Number of obs. 648   
    
Brazilian Crisis    
Trade 0.46 

(2.05) 
0.21 

(0.92) 
0.30 

(1.11) 
Financial Link 1.00 

(4.30) 
-0.94 

(-0.90) 
0.18 

(2.70) 
Similarity 1.04 

(1.57) 
1.28 

(1.95) 
1.33 

(1.92) 
Neighborhood 0.47 

(2.74) 
0.75 

(4.32) 
0.64 

(3.41) 
Number of obs. 648   

* t-statistics based on robust standard errors are in parenthesis, estimates in bold 
imply 5% significance, in italic – 10% 

 
 

  
 



In order to find a preferred financial weighting matrix we simultaneously in-

clude two different financial weighting matrices into one regression equation and

see which one performs better12. There are three distinct pairs of the different

financial matrices. Hence we run three regressions for each crisis episode covering

all the different combinations of the financial matrices. The results are reported

in Table 3.4. It is readily seen that the absolute competition financial matrix is

always significant when it is present in the equation while the other two are never

significant when paired with absolute competition weighting matrix. It clearly

indicates that the absolute competition for funds financial matrix dominates the

others in terms of capturing financial links among countries.

Table 3.5 reports the results for the preferred specification of (3.2) which

includes absolute competition for funds weighting matrix as a financial weighting

matrix.

12Another way to find a preferred specification is to include all three financial weighting

matrices into one equation. However this method may encounter the problem of degrees of

freedom in the first stage of 2SLS procedure.
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Table 3.4. Comparison of different financial weighting matrices.* 
  

Coefficient
T-

statistics 
Tail 

probability 
Asian 
Crisis 

Absolute 
competition 0.76 2.97 0.00 

 Relative 
competition -0.41 -0.62 0.54 

 Absolute 
competition 0.71 2.91 0.00 

 Asymmetric -0.03 -0.71 0.48 
 Relative 

competition 0.35 0.57 0.57 

 Asymmetric 0.01 0.22 0.82 
     

Russian 
Crisis 

Absolute 
competition 1.21 5.62 0.00 

 Relative 
competition -0.99 -1.28 0.20 

 Absolute 
competition 1.20 5.14 0.00 

 Asymmetric -0.09 -1.28 0.20 
 Relative 

competition 0.19 0.23 0.82 

 Asymmetric 0.07 1.24 0.22 
     

Brazilian 
Crisis 

Absolute 
competition 1.24 5.40 0.00 

 Relative 
competition -1.78 -1.73 0.09 

 Absolute 
competition 1.05 3.87 0.00 

 Continuous 0.05 0.63 0.53 
 Relative 

competition -0.44 -0.44 0.66 

 Continuous 0.18 2.60 0.01 
* The financial weighting matrices in the double line boxes were included in the 
empirical specification simultaneously.  
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Table 3.5. Summary of the results of the preferred specification.* 
  Asian 

Crisis 
Russian 
Crisis 

Brazilian 
Crisis 

Coefficients Trade 0.24 
(1.31) 

0.46 
(2.18) 

0.46 
(2.05) 

before the weighting Financial 
Link 

0.79 
(3.25) 

1.06 
(4.54) 

1.00 
(4.30) 

matrices Similarity 0.88 
(1.77) 

0.33 
(0.83) 

1.04 
(1.57) 

 Neighborhood 0.38 
(2.60) 

0.30 
(1.65) 

0.47 
(2.74) 

Coefficients 
Europe -0.18 

(-0.58) 
-0.11 

(-0.38) 
-0.25 

(-0.47) 
corresponding to 

financial Japan -0.03 
(-0.05) 

0.52 
(0.89) 

0.86 
(1.12) 

spillovers US -0.72 
(-0.22) 

1.10 
(0.65) 

1.19 
(0.42) 

Sum of the coefficients 
corresponding to  

Europe 
6.3 

Prob. = 
0.82 

66.7 
Prob. = 

0.09 

-18.1 
Prob. = 

0.41 
trade spillovers of 

each major economy Japan 
-281.6 
Prob. = 

0.01 

34.5 
Prob. = 

0.81 

-117.2 
Prob. = 

0.24 

∑Bt,M    t=1,..,12 
M={Eur, Jap, US} US 

36.2 
Prob. = 

0.32 

15.5 
Prob. = 

0.80 

14.1 
Prob. = 

0.76 
   

Number of obs. 600 648 648 
* t-statistics based on robust standard errors are in parenthesis, estimates in bold 
imply 5% significance, in italic – 10% 
  
 



The results on the importance of bilateral trade linkages indicates that their

role are crisis specific. They are insignificant in the case of the Asian crisis.

This result is consistent with Baig and Goldstein (1998) who found that bilateral

trade cannot explain contagion during the Asian crisis. It also follows from the

table that during the Russian crisis bilateral trade linkages were important in

propagation of a shock. This is somewhat surprising since for this particular

crisis episode the bilateral trade channel has not been much emphasized in the

cross-sectional contagion studies. The reason for such finding is that our sample

contains many countries that have strong trade ties to Russia, namely, those from

Eastern Europe and the former Soviet Union. In other studies these countries

were often underrepresented in the sample due to data considerations. This result

underscores the importance of sample selection issues in cross-sectional contagion

studies.

In the case of the Brazilian crisis bilateral trade spill-overs also played a

significant role. These results can be attributed to the fact that similar to Russia

Brazil is a major country in its region. It is the biggest economy in Latin America

and a major trading partner in the MERCOSUR trade agreement while Russia

is a major economy among the former Soviet republics. In contrast, the South

East Asian countries are not as much integrated among themselves in term of

bilateral trade (see Kaminsky and Reinhart (2000) for more detailed discussion).

There is a clear evidence of the importance of the bank lending channel. It is

significant in all crisis episodes! (See coefficients corresponding to the financial

link in Table 3.5.) We note that in our results the relevance of all the other

channels is crisis specific while the bank lending channel is relevant in all the

considered crisis episodes. This result confirms the findings of many empirical
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studies that consider financial links as a propagation mechanism of a crisis.

The risk similarity channel does not seem to be important in any of the crisis

episodes. The coefficient before the risk similarity matrix is never significant at

5% level, and significant at 10% level only in the Asian crisis episode. This result

goes in line with Eichengreen Rose and Wyplosz (1996) and De Gregorio and

Valdes (2001) who did not find similarities among countries to be a significant

explanation of contagion.

The neighborhood matrix is significant at 5% level in Asian and Brazilian

crisis episodes, and at 10% in the Russian crisis. This result suggests that the co-

movements of stock market returns are regional and this regional pattern is not

explained by the other links in the regression. The source of neighborhood effect

may stem from bilateral financial links, residual trade effects, or other relevant

regional connections between countries that are difficult, if not impossible, to

account for in an aggregate empirical model.

An important implication of the above results is that the channels of contagion

are specific to each crisis. This finding suggests that an empirical model that

utilizes pooled data from several crisis episodes may lead to unreliable inferences.

The next block of Table 3.5 shows the results for the financial spill-overs from

the major economies through their banking systems. None of the coefficients

corresponding to this factor turns out to be significant. This suggests that there

were no such financial spill-overs that were a consequence of domestic shock to

Japan, Europe or US. This result come at odds with some observers’ claims that

contagion during the Asian crisis was largely attributed to the sluggish Japanese

economy and, in particular, to the troublesome Japanese banking system.

In order to assess the common factors that spread through the trade channel
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we summed up the coefficients Bt (“quasi-fixed effects”) for each crisis episode.

This sum represents estimated spill-overs over the chosen time window. Then we

tested a null hypothesis that the sum of “quasi-fixed effects” corresponding to

each major economy is equal to zero. The last block of Table 3.5 report these

sums and the tail probability of the hypothesis that they are equal to zero. It

is readily seen that the trade spill-overs from Japan during the Asian are highly

significant and negative. The interpretation of this coefficient is that if a country

has a 10% share of Japan in its exports, then ceteris paribus the stock market

index would go down by 28% over the three months of the Asian crisis. However

the exact source of these spill-overs cannot be determined. Given the nature of

our empirical model it is not possible to say whether the spill-overs were due to a

domestic shock to the Japanese economy or to the competition among countries

in the Japanese market. Furthermore, it may be the case that the trade statistics

would better capture financial links than BIS statistics, and the above result is

just a reflection of the financial difficulties of Japan.

We also note that all the other indicators of trade spill-overs are insignificant

except for the case of the Russian crisis where the spill-overs from Europe are

positive and significant at 10% level.

Finally, the last set of results tests the financial spill-overs from Japan, Europe

and the US for endogeneity. In other words, it tests whether the stock markets in

these countries were significantly affected by the stock markets from outside in the

context of our empirical framework. We conduct a Hausman test for endogeneity

of the variables that correspond to financial spill-overs from the major financial

centers (Z in (3.2)). The results are reported in Table 3.6. In none of the cases

these variables are endogenous. This implies that the major financial centers
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were not significantly affected by the economic conditions of the countries in

the sample. However, that does not mean that the financial centers were not

transmitting the shocks from one country to another.

Now (3.2) can be reestimated with Z as exogenous variables. Table 3.7 shows

that when (3.2) is reestimated with Z, the conclusions do not change.
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Table 3.6. Hausman test for endogeneity of financial spillovers from the major 
economies.* 

 Asian 
Crisis 

Russian 
Crisis 

Brazilian 
Crisis 

Chi2( 3) 2.74 3.22 5.78 
Prob > Chi2 0.43 0.36 0.14 

Number of 
obs. 

600 648 648 

 
Table 3.7. Summary of the results of the specification with exogenous financial 
spillovers.* 
  Asian 

Crisis 
Russian 
Crisis 

Brazilian 
Crisis 

Coefficients Trade 0.22 
(1.21) 

0.49 
(2.32) 

0.51 
(2.30) 

before the weighting Financial Link 0.81 
(3.35) 

1.10 
(4.73) 

1.04 
(4.41) 

matrices Similarity 0.88 
(1.76) 

0.28 
(0.70) 

0.95 
(1.42) 

 Neighborhood 0.39 
(2.70) 

0.27 
(1.53) 

0.46 
(2.59) 

Coefficients 
Europe -0.14 

(-0.51)
-0.08 

(-0.30) 
-0.22 

(-0.46) 
corresponding to 

financial Japan 0.09 
(0.16) 

0.51 
(0.87) 

0.61 
(0.79) 

spillovers US -2.13 
(-0.75)

-0.06 
(-0.04) 

-1.39 
(-0.55) 

Sum of the coefficients 
corresponding to  

Europe 
6.1 

Prob. 
= 0.83 

69.4 
Prob. = 

0.08 

-17.5 
Prob. = 

0.43 
trade spillovers of 

each major economy Japan 
-277.8 
Prob. 
= 0.01 

37.1 
Prob. = 

0.80 

-113.7 
Prob. = 

0.26 

∑Bt,M    t=1,..,12 
M={Eur, Jap, US} US 

40.3 
Prob. 
= 0.27 

13.0 
Prob. = 

0.83 

18.2 
Prob. = 

0.69 
 

Number of obs. 600 648 648 
* t-statistics based on robust standard errors are in parenthesis, estimates in bold 
imply 5% significance, in italic – 10%, Prob. denotes tail probability of F-test 
 

 
 
 

 
 



3.8 Concluding remarks

This paper analyzed channels of contagion by employing a spatial modelling

technique to explain co-movements of stock market returns across countries in

crisis periods. We considered three recent crisis episodes — the Asian, the Russian

and the Brazilian crises.

It was shown that the estimation procedure for spatial models used in the

previous literature on contagion leads to inaccurate inferences. Furthermore, it

was also shown that improper accounting for common shocks and the presence

of sample selection may aggravate potential biases.

This paper corrects for these problems in the following ways. First, it intro-

duces a consistent estimation procedure for this type of model which is a variant

of the generalized spatial two stage least squares estimator suggested by Kelejian

and Prucha (1998). Second, it proposes a comprehensive way of accounting for

common shocks. Third, it considers a larger sample of countries which helps to

alleviate sample selection biases.

The results confirm the importance of the bank lending channel which was

found to be important in previous studies. It is significant in all crisis episodes. In

contrast, the role of the bilateral trade channel varies across crises. It is found to

be significant during the Russian and Brazilian crises, but not significant during

the Asian crisis. The results on risk similarity channel suggest that it was not

present during the Russian and the Brazilian crises, and had only marginal effect

during the Asian crisis. Finally, neighborhood effects are found significant in

Asian and Brazilian crises and marginally significant in Russian crisis.

It is important to note that some channels of transmission are not present in

all crises and are rather crisis specific. Therefore, one should be cautious before
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obtaining estimates based on a pooled data set of different crises.

We did not find evidence of a common shock spreading through financial

ties to the major world economies. Furthermore, the results suggest that the

stock market returns of the major economies were not significantly affected by

other countries in the considered crisis episodes. There is evidence that during

the Asian crisis countries that had higher trade with Japan experienced lower

stock market returns. It is not clear whether this result is due to domestic

shock to the Japanese economy, or to the competition among countries in the

Japanese market. However, the former seems to be more likely since Japan

was experiencing recession during that time. On the other hand, one should

be careful in “blaming” trade for the transmission of shocks. The reason for

this is that bilateral trade links may also reflect financial constraints which can

be triggered in crisis times and are best captured by statistics on trade flows13.

In general, it should also be noted that one should not overemphasize a certain

channel based on significance of a corresponding coefficient since a measure of each

channel may reflect other channels as well. In this respect the econometric results

would be useful for determining vulnerability of certain countries to contagion

rather than for discriminating among different theories. In order to distinguish

between different theories one would have to construct a general equilibrium

model incorporating different links among countries and specify an empirical

model on the basis of first order conditions derived from the model. This should

be a major challenge for future research on contagion. The empirical strategy

employed in this paper will be a useful tool for further research in this area.

13For illustration see Paasche (2001). In his model a terms of trade shock is amplified by

collateral constraints in the economy.
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Chapter 4

Appendix to Chapter 3

4.1 Absolute Summability Of TheWeighting Ma-

trices

Definition. Let WN = (wij) be N × N matrix. We say that WN is absolutely

summable if maxi
NP
j=1

|wij,N | < cw and maxj
NP
i=1

|wij,N | < cw for all N ≥ 1 where
cw is a finite constant.

Observe that in the case of nonnegative elements of matrix WN we can say

that WN is absolutely summable if the row and column sums of this matrix are

uniformly bounded. Given the fact that the weighting matrices in this paper do

not contain negative elements we will use this property throughout the appendix.

In order to facilitate the proof of absolute summability it is necessary to make

several assumptions related to the economic indicators used in the construction

of the weighting matrices. Most of these assumptions are related to the behavior

of the economic indicators when the number of countries increases. We note

that the increase in the number of countries is purely hypothetical and serves for

interpretation of the consistency of the estimators used in our analysis.
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Assumption 1. The world GDP does not change as the number of countries

increases. Formally:

NX
i=1

GDPi,N = GDP, for all N ≥ 1 (4.1)

whereGDPi,N is aGDP of country i, andGDP is the world GDP. Put differently,

this assumption says that the number of countries grows due to division of the

existing countries into several regions, rather than due to the addition of new

territories.

Assumption 2. As the number of countries increases no country becomes

dominant relative to the others and no country becomes infinitely small relative

to the others. This statement is formalized by the following inequalities:

0 < K1 ≤ N ∗ GDPi,N
GDP

≤ K2 <∞ for all i = 1, ..., N, and all N ≥ 1, (4.2)

where K1 and K2 are finite positive constants invariant to N .

Other assumptions are formulated as we proceed to the proof of the absolute

summability of the weighting matrices.

Trade weighting matrix
The trade weighting matrix is row-normalized, which implies that row-sums

are uniformly bounded by construction. Thus, in order to prove absolute summa-

bility it is sufficient to show that the column sums are uniformly bounded. For

this purpose we make the following assumptions related to the trade variables:

Assumption 3. Export cannot exceed country’s GDP:

NX
i=1

Expij,N = Expi,N ≤ GDPi,N for all i = 1, ..., N, and all N ≥ 1. (4.3)

where Expij,N is an export from country i to country j, Expi,N and GDPi,N are,

respectively, the total export and GDP of country i.
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Assumption 4. All countries have a positive export, and

0 < C1 ≤ Expi,N
GDPi,N

≤ 1 for all i = 1, ..., N, and all N ≥ 1, (4.4)

where C1 is a finite and positive constant invariant to N . The inequalities in

(4.4) imply that all the countries are integrated into the world economy by trade.

Using (4.1)-(4.4)we can write the following inequalities related to the j-th

column sum of the trade weighting matrix:

NX
i=1

wTradeij =
NX
i=1

Expij,N
Expi,N

=
NX
i=1

Expij,N/GDPi,N
Expi,N/GDPi,N

≤ 1

C1

NX
i=1

Expij,N
GDPi,N

=
1

C1

NX
i=1

Expij,N/GDP

GDPi,N/GDP
≤ N

K1C1

Expj,N
GDP

≤ 1

K1C1
∗NGDPj,N

GDP
≤ K2

K1C1

Thus,

NX
i=1

Expij,N
Expi,N

≤ const for all j = 1, ..., N, and all N ≥ 1.

which implies that column sums are uniformly bounded.

Absolute and relative competition for funds fi-
nancial weighting matrices
The following assumptions are related to the variables involved in the financial

weighting matrices. They ensure that the countries are also financially integrated

into the world economy.

Assumption 5. All the countries have a positive external debt which satis-

fies:

0 < B1 ≤ bi,N
GDPi,N

≤ B2 for all i = 1, ..., N, and all N ≥ 1, (4.5)
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where B1 and B2 are finite positive constants invariant to N .

Assumption 6. All the countries have a positive debt to the financial centers

under consideration which satisfies

0 < D1 ≤ bi,C,N
bi,N

≤ 1 (4.6)

for all i = 1, ..., N, all N ≥ 1, and C = {Europe, Japan, US}.

where D1 is a finite positive constant invariant to N .

It is readily seen that (4.6) implies that

0 < D1 ≤ bi,C,N + bj,C,N
bi,N + bj,N

≤ 1 (4.7)

for all i, j = 1, ..., N, all N ≥ 1, and C = {Europe, Japan, US}

Utilizing (4.5)-(4.7) we can write the following inequalities related to the j-th

column-sum of the absolute competition for funds weighting matrix:

NX
i=1

wFinij,Abs =
1

3

X
C

NX
i=1

bj,C,N+bi,C,N
bj,N+bi,N

µ
1− |bj,C,N−bi,C,N |

bj,C,N+bi,C,N

¶
NP
j=1

bj,C+bi,C
bj+bi

µ
1− |bj,C−bi,C|

bj,C+bi,C

¶

≤ 1

3

X
C

NX
i=1

bj,C,N+bi,C,N
bj,N+bi,N

NP
j=1

bj,C,N+bi,C,N
bj,N+bi,N

µ
1− |bj,C,N−bi,C,N |

bj,C,N+bi,C,N

¶
≤ 1

3

X
C

1

D1

NX
i=1

1
NP
j=1

µ
1− |bj,C,N−bi,C,N |

bj,C,N+bi,C,N

¶
≤ 1

3

X
C

1

D1

NX
i=1

1
NP
j=1

³
1− bj,C,N+bi,C,N

bj,C,N+bi,C,N

´ ≤ 13X
C

1

D1(1−D1)

=
1

D1(1−D1)
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Thus, we showed that the column-sum of the absolute competition for funds

weighting matrix does not exceed a sample invariant constant, which implies that

it is uniformly bounded. We can perform similar manipulations with the column

sum of the relative competition for funds weighting matrix :

NX
i=1

wFinij,Re l =
1

3

X
C

NX
i=1

bj,C,N+bi,C,N
bj,N+bi,N

µ
1− |bj,C,N/bj,N−bi,C,N/bi,N |

bj,C/bj+bi,C/bi

¶
NP
j=1

bj,C,N+bi,C,N
bj,N+bi,N

µ
1− |bj,C,N/bj,N−bi,C,N/bi,N |

bj,C,N/bj,N+bi,C,N/bi,N

¶

≤ 1

3

X
C

NX
i=1

bj,C,N+bi,C,N
bj,N+bi,N

NP
j=1

bj,C,N+bi,C,N
bj,N+bi,N

µ
1− |bj,C,N/bj,N−bi,C,N/bi,N |

bj,C,N/bj,N+bi,C,N/bi,N

¶
≤ 1

3

X
C

1

D1

NX
i=1

1
NP
j=1

µ
1− |bj,C,N/bj,N−bi,C,N/bi,N |

bj,C,N/bj,N+bi,C,N/bi,N

¶
≤ 1

3

X
C

1

D1

NX
i=1

1
NP
j=1

³
1− bj,C,N/bj,N+bi,C,N/bi,N

bj,C,N/bj,N+bi,C,N/bi,N

´
≤ 1

3

X
C

1

D1(1−D1) =
1

D1(1−D1)

This completes the proof of the absolute summability of the first two financial

weighting matrices.

Asymmetric financial weighting matrix
In contrast to the other weighting matrices the asymmetric weighting matrix

is not row normalized. Therefore we have to demonstrate that both row and

column sums are uniformly bounded.

The following series of inequalities shows that the row-sums of the asymmetric
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weighting matrix are uniformly bounded. For the i-th row-sum:

NX
j=1

wFinij,Asym =
1

3

X
C

1

1
N

NP
i=1

NP
j=1

bi,C,N
GDPi,N

∗ bj,C,N
bC,N

NX
j=1

bi,C,N
GDPi,N

∗ bj,C,N
bC

=
1

3

X
C

1

1
N

NP
i=1

bi,C,N
GDPi,N

∗
NP
j=1

bj,C,N
bC,N

∗ bi,C,N
GDPi,N

NX
j=1

bj,C,N
bC

=
1

3

X
C

1

1
N

NP
i=1

bi,C,N
GDPi,N

bi,C,N
GDPi,N

≤ 1

3

X
C

N

NB1
=
1

B1

Similarly, for the j-th column-sum:

NX
i=1

wFinij,Asym =
1

3

X
C

1

1
N

NP
i=1

NP
j=1

bi,C,N
GDPi,N

bj,C,N
bC,N

NX
i=1

bi,C,N
GDPi,N

∗ bj,C,N
bC

=
1

3

X
C

1

1
N

NP
i=1

bi,C,N
GDPi,N

∗ bj,C,N
bC

NX
i=1

bi,C,N
GDPi,N

≤ 1

3

X
C

N

NB1

NX
i=1

bi,C,N
bi,N

bi,N
GDPi,N

≤ B2
B1

Thus, the row and column sums of the asymmetric financial weighting matrix

are uniformly bounded, and, thus, this weighting matrix is absolutely summable.

Similarity matrix
The elements of the similarity matrix represent a measure of distance between

countries. Let dij,N be the risk distance between countries i and j. Note that dij,N

are bounded by construction, i.e. there exists constant D such that dij,N < D for

i, j = 1, ..., N , and for all N ≥ 1.
Assumption 7. There exist 0 < A < ∞ and 0 < α < 1 such that for any

1 ≤ i ≤ N, and for all N ≥ 1 there are at least αN countries in the set Bi,N ,
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where

Bi,N = {j : dij,N > A}

In words, it says that there is proportion α of all countries that does not get

closer to any given country in term of risk.

Assumption 7 also implies

NX
j=1

dij,N ≥
X
Bi,N

dij,N > αNA

Now, the proof of the uniform boundedness of j-th column-sum is evident:

NX
i=1

wSimilij =
NX
i=1

dij,N
NP
i=1

dij,N

≤ 1

αNA

NX
j=1

dij,N ≤ N

αNA
=

1

αA

Neighborhood matrix
The neighborhood weighting matrix is a symmetric row-normalized block-

diagonal matrix. It can be easily seen that column-sums as well as the row-sums

are equal to one. This ensures absolute summability of this matrix.
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