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Abstract

The concept of struclured singular velue was recently introduced by Doyle as a
tool for analysis and synthesis of feedback systems with structured uncertainties. It
is a key to the design of control systems under joint robustness and performance
specifications and it nicely complements the H® approach to control system design.
This report proposes an algorithm to compute the structured singular value.



1. Introduction and preliminaries

The concept of structured singular value was recently introduced by Doyle (1] as
a tool for analysis and synthesis of feedback systems with structured uncertainties.
It is a key to the design of control systems under joint robustness and performance
specifications and it nicely complements the H approach to control system design.
(2]

Throughout the note, given any square complex matrix M, we denote by p(M)
its spectrum radius, by a(M) its largest singular value and by M its complex conju-
gate transpose. Given any complex vector z, z/ indicates its complex conjugate
transpose and ||r Il its Euclidean norm. We also make use of the following notation
and nomenclature, largely inspired from that uscd in. [1] We will call block-struclure

of size m any m-tuple .IC ==(k,, " k) of positive integers., Given a block-

structure k of size m, we will make use of the family of diagonal matrices
d = {plock diag(d J; , -+ - .dy [ )| & ERY ; (1.1)
and, for any positive scalar é (possibly ), of the family of block diagonal matrices
X5 = {block diag(a,, - -+ ,4,,) | &; is a k; Xk; complex matrix satisfying o(A; ) <6}(1.2)

All of the above have dimension n Xn, where

m

no== S3k; . (1.3)

i=1

The following definition corresponds to the case of “no repeated blocks” in. [1]



[ ]

Definition 1.1

The structured singular value p(M) of a complex » Xn matrix M with respect

to block-structure ]C is the positive number g having the property that
det(] +M A)5£0 for all AEN (1.4)
if, and only if,
o < 1. (1.5)

In other words, pu(M) is 0 if there is no A in X such that det ([ +M A)=0, and

( min {5(A) | det(I+M A)=o0 })™" otherwise.
AEX o

It should be noted that d X5 , and p(M) all depend on the underlying block-

structure. In most instances, we will not explicitly specify this block-structure.

We will make repeated use of the following easily derived fact. [1]

Fact 1.0 Forall D Ed,

M) = pu(e? Me™?) (1.6)

In order to evaluate the structured singular value, more manageable expressions
than those provided in Definition 1.1 are desirable. Such expressions are provided by

the following fact. {1]

Fact 1.1 For block-structures of size less than 4,

wW(M) = inf o(e DpfeP)

ped (1.7)



In fact, in many (but not all) cases, (1.7) is correct with block-structures of larger
size. A counterexample, due to Doyle, {3] which shows that (1.7) is violated, is given
in Appendix A.

In, [1] Doyle proposed an algorithm, which is essentially based upon first deriva-

tives, to solve problem (1.7). Since when the largest singular value of ¢? Me™? is sim-
ple, the square of o(e? Me~?) is continuously differentiable in D . Hence it is possible
to express the flrst and second derivatives analytically such that, locally, Newton’s
method could be applicd to solve problem (1.7). This report proposes a modified
algorithm to compute the structured singular value hased upon the first and second
derivatives. In section 2, we will discuss a [lirst order algorithm which mostly follows

the line in. [1] In section 3, we will discuss the continuity properties of hermitian

matrices. Finally, in section 4, a second order algorithm is presented.



2. A first order algorithm

In this section, we will discuss algorithms to solve the right hand side of (1.7)

or, equivalently,

2

inf e P Me -b
ped

(2.1)

by means of (generalized) gradient search method. Since fle® Me™ |? is convex [4] in
D, it results that all stationary points are global minima. Since for any o€RR,
ePMe™ = ¢*"*P Me -9I-P | without loss of generality, we assume that d,, =0.
Recall  that D = blockdiag {d,J,, " - .dy1, }.  Define d=I[d, - dy_)",

g(d)=|e®Me®F and H() = (e®Me™). Note that ¢(d) is continuous but not
always differentiable. However the following property holds
Proposition 2.1 For any L, the following expression exists

lim g (th) - g(0) _

t —ot ¢

Definition 2.1 L is said to be a descent direction for ¢ (d) at d =0 il there exists a

§ > o such that for every ¢ €(0,8)

g (th) < g¢(0)

Definition 2.2 A unit norm vector L is said to be a steepest descent direction for

g(d)at d=0if I is a descent direction and a solution of

t —ot

min { lim M ol = 1} .



a
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Suppose that H (0) has a simple largest eigenvalue X\,, we denote v, the unit
norm eigenvector corresponding to X\,. Thus gradient of ¢(d) at d = 0 can be com-

puted component-wise as follows. For j=t, - ,m-1,
vg;(0) = v{H;v, (2.2)

where H; = 2Re (H (0)7 _0_21;-]7(0_))' So —wy¢ (0)/lvyg (0)] is a (steepest) descent direction
;

for g (d) at d ==o0.

Proposition 2.2 If ), is simple and g (0) == 0, then (M) = o(M).

Proof. See. [1, 4]

Corollary 2.1 If (2.1) is achievable and the corresponding largest singular value is

simple, then (1.7) holds (m necds not to be less than four).
]

In the case that the largest eigenvalue of H (0) has multiplicity ¢, ¢ >1, g(d) is
then not continuously differentiable at d=o0. Thecrefore the gradient is not well
defined. In order to find a descent direction for ¢ (d), a generalized gradient is intro-
duced. Let P, denote the set containing all the unit norm eigenvectors correspond-

ing to X\,. Deflne
Ve = {ﬂ:(yl’ e vym~1) l Yi :'-_7".” jl[j:/l_"- IEP1} . (2~3)
Clearly, if X\, is simple, v, reduces to {7¢ (0)}.

Proposition 2.3 When m <3, v, is convex.

Proof. See. [1]



Proposition 2.4 p(M) = (M) if and only if 0€,.

Proof. See. [1]

Proposition 2.5 Suppose 0¢cow, and vector i has the property that
<h,y> <0 forall y€vy, , (2.4)

then & is a descent dircction of g (d) at d =0, where coy, denotes the convex hull of

V-

Proof. See. [1]

Corollary 2.2 Assume that (2.1) is achievable and m <3, then (1.7) holds.
Proof. Assume that D" solves (2.1). By Proposition 2.5, we have 0&covy, Where v, is
defined in terms of e? Me™". By Proposition 2.3, since v, is convex, 0€vy,. Finally,

by Proposition 2.4, since 0€s7,, we conclude that

w(M) = u(eD'Me*D*) = o(e D*Me"D*) = inf&e? Me™) .

ped (2.5)

Proposition 2.6 Lct B = — Nr(cow,), then L /[ ] is a steepest descent direction of

g (d) at d =0, where Nr (coyy,) denotes the nearest point to the origin in cowy,.

We now are ready to state a first order algorithm for computing (2.1).

Algorithm 2.1



Step 1.
Data My =M, Dy, =0 (d, = 0).
k =o0.
Step 2.
Set My, — ¢ *M,e k.
Define search direction & to be - Nr(cowy,) where v, is defined in terms of
M 4,
Step 8.
Perform line search to find the step size a.
Step 4.
iy = dp +ah (Dp 4, is therelore updated).

Set k = k+1, go to step 2.

o0
Proposition 2.7 Let D* = 3D, where {D, } is the sequence generated by Algo-
k=1

rithm 2.1. Then

E(cD*Mc‘D‘) = infa(c? Me Py .

ped
[
Let {v,, - - - 2y } be a basis for P,. (recall that P, denotes the set containing all
the wunite norm eigenvector corresponding to ;) Define V =[v,, - ,7,],

Hy = VPH; V and P,= {z€C’ | 2% 2 = 1}. Note that Hj is of size ¢ X¢q. By

using these notation, w7, could be expressed in a more manageable way as follows



Vo= {f@)|fi@)=a"Hjz, j=1. - .m-1, 2€P,} (2.6)

The following algorithm, {1] which is based upon (2.6), is to find Nr (coy,).

Algorithm 2.2

Step 1.
Pick any v,€P, and let 24 = f (v,). Set kb == 0.
Step 2.

Set Ty 1 = N" (CO{&']; vf (U: )])

Step 8.
m-1
Let v,y be any unit vector for Ayi( 33 274, H; ), where \;, denotes the smallest
Jj=1
eigenvalue.
Step 4.

Set k = k +1, go to step 2.

Proposition 2.8 Let {2, } be the scquence generated by Algorithm 2.2, then {a; }

converges to Nr (coy,). Furthermore, let g;' denote the limit and suppose that g*%o,
m-l
then 1z HJ- is a strictly positive definite matrix.
=1
Proof. 1t is shown in [1] that any convergent subsequence of {a; } converges to
Nr (cow7,). Since the sequence {lu [} is bounded and Nr(cow,) has a unique solution,

it is true that {z } itsell converges and the limit is Nr (cow,). Furthermore, let v be

any accumulation point of the sequence {'z); } By the algorithm and the definition of

m-1 _ m-1 —
limit, we have <z ,f (v")> = A\l E;_v”Hj). It A Eg”j:fj) is not greater than
j=1 j==1



zero, we have z “ 4N (colz *,f (v ")]) which leads to a contradiction.

[

As mentioned above, when X\,, the largest eigenvalue of H(0), is simple, i.e.
g =1, v, reduces to {vg(0)} and, therefore, Nr(coy,) = vg(0). In the case that
¢ =2, it can be shown that the boundary of coy, is a second order curve (or surface),
possibly degenerate, in IR™™. Hence, Nr(coy,) could also be solved analytically.
Based on this observation, for any ¢, we will propose another algorithm to compute
Nr(cov7,). Now we proceed this by giving more details about the case ¢=2. For

Jj=1, - ,m-1, let

— a; b;
H; = |:I)JJ-” cj} (2.7)

where a;,c; ER and b; €C. Define v, accordingly. Also define L to be the vector in
R™* such that the jth component of £ is (¢; +¢;)/2, and, define A to be the matrix
in RU"D>X2 with the jth row being [(a; ~ ¢;)/2 Re(b;) Im(b;)]. Recall that, for ¢ =2,
P,= {z€C?| zfe =1}. Let § = {z €R®| 2Tz = 1}. We define ¢ (z) to be an affine

function such that g (z) = Az +!.

Proposition 2.9 v, = g¢(5).

Proof. See. [1]

By the Proposition 2.9, it becomes possible to image how the set ¥, looks like
for the case ¢=2 and, fortunately, in this case the boundary of cov, is either a
point, an interval, an ellipse in IR? or an ellipsoid in W3 Therefore, finding the
nearest point to the origin in covy, is straightforward. Perform the singular value

decomposition of A such that
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then Nr(cow,) = U, Nr(Q,+UfL).

We now state another algorithm to compute Nr (cows).

Algorithm 2.3

Step 1.

Pick any v,€P, and let 2z, = [ (¥,). Set L = o.

Step 2.

m-1
Let w, be any unit vector for X, ( 33 adH;).
i=1

Step 8.

Define
— :QkH .
Hy = ™"y | H; l:ﬂk ay ] Jj=1," " ,m-1

Define f in terms of 17} Analytically find the solution w such that f (w) is
the nearest point to the origin in set P, Set ., = [y ulw and
o= [ (0 40)-

Step 4.

Set k == k41, go to step 2.

Proposition 2.11 Proposition 2.8 also holds for Algorithm 2.3.

Let



A = UAEA ‘/AT

where U, and V, are orthogonal matrices in IR (-1 and R®*® respectively, and

o 0 O
0 g, O
0 oy
Y‘ ==
0 0 O

provided that £, has appropriate dimension. The following Proposition gives the

solutions for all cases in terms of the rank of A .

Proposition 2.10

case 1. rank(A) =0

Nr (covy) = L.
case 2. rank(A) =1

Nr (coy,) = U, Nr(co[(e,0, + 00T +ULL. (-0,0, - -+ 00T +UFY).
case 8. rank(A) =2

Let @, denote the set

v T
{.’_L‘_ = (2,250, " - ,0) lﬁelmel, —t— < 1} ,
o° o5
then Nr(covs) == Uy Nr(Q +ULL).
case 4. rank(A) =3
Let @, denote the set
I R
(& — (2,825,250, .0) |2ER" ™, —+—+— <1},

oy 05 O




gl(_{l) = >‘max([u 1 ’Uq]”D [ulr e ’uq] e AT rvq]HD (vy oo »vq]) (2'10)

where A, (A ) denotes the largest eigenvalue of A, and ¢ is the multiplicity of H (0).

Proposition 2.12 If g,(L)<0, then & is a descent direction. I g.(k)>0, then b is

not a descent direction.

Proposition 2.13 The following three statements are equivalent.

1. h is a steepest descent direction of g (d) at d =o0.
9. h — 2 where J Nr (cov,)
. h = where b, = — Nr(coyy).
A, '
3. bk is a unit norm descent direction and h solves

min{g,(¢) | =1} . (2.11)
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3. Continuity properties of hermitian matrix

Suppose H(t) is hermitian and real analytic in ¢, it is well-known that by
appropriate ordering of cigenvalues {)\,-} and seclection of eigenvectors {v; }, it is pos-
sible to pair eigenvalues and eigenvectors {X;(t),v,-(t)}, such that both X\;(¢) and
v;(t) are analytic in ¢ and H(¢)v; (£)=X;(t)v;(¢t) for all t and ¢. At values of t,
where H(t) has simple eigenvalues this is trivial. At degenerate points, it require
selection of the A; and »; such that analyticity is retained through (isolated) point
where eigenvalues coalesce. Note that with this ordering, the {k,-} are not necessarily
linearly ordered. In this section, we will explore the continuity properties of hermi-
tian matrix such that by using these properties, we could derive a second order algo-

rithm in the next section for computing (2.1).

Let H(t) be an n Xn hermitian matrix and suppose that it is real analytic in ¢.
We denote X\,(¢t) the cigenvalue corresponding to the spectral radius of H(¢t) and

v,(t) the corresponding eigenvector such that,
H(t)v (1) = N(E)u(t) (3.1)

We assume that A\, = X,(0) is simple. Since IT(L), M (¢t) and »,(¢) are analytic, we

could express them in the form of Taylor series of ¢t at ¢t =0 as follows

H(t)= HottH+ %[ +0 (17) (3.2)
A(L) = x1+txl+%ﬂXl+o(t2) (3.3)

and
2,(¢) =ﬁ1+tvj_ﬂi+%tgﬂ+0([2) : (3.4)

where g €C"7, y€C"® and [v, | V|) is a unitary matrix such that
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H, V= VA . (3.5)

where Ay is a diagonal matrix with all eigenvalues of I, except X, in the diagonal.

Therefore we have

(HottH +tH 40 (1) (2, +V)z +21% +0 (£7)
= (\+t >.\1+-{1)—t2‘>\.1+o (t%) (v, +tVi2 +%t2y+o (t?) . (3.6)

Since (3.6) is true for all ¢, we could expand it and have equalities for its constant, ¢

and ¢? terms individually. Thus for constant term, we have

Hop, = Mo, ; (3.7)
for t term, we have
Hy +HoVizg — o, +\Viz (3.8)
and for t? term, we have
HVig+ T+ S Hoy = 3Vig+ 280, She (3.9)

Now we could express A and X in terms of known quantities by performing some sim-

ple manipulations. Multiply ¢ term on left by »/ and yield

of (Hu,+HoVig) = v Ou,+0 Vig) (3.10)
and
v Hy o lH Vg = 2 o 0N\ Vig (3.11)

Since
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viH Vg =2\ Viz =0 (3.12)
We then have
\ = viHy, (3.13)

Mulstiply ¢ term on left by V[ and yield

Viiy,+Az = Nz (3.14)

Hence

z =\ - AV, (3.15)

Multiply ¢2 term on left by »¥ and yield

. 1 e 1 . s
ofHV g + oty + =0 Hey = Vi +%>\2{’y1+%>\12{’ﬂ (3.16)

Since for any y

wiHoy = Muly (3.17)
thus we have
N = oy o0 Ve = o +20 THV (NI - A)V He, (3.18)

Note that, as long as that [v, | V)] is unitary and (3.5) holds, X\ is independent of the
choices of V| and Ay, By the assumption that X, is simple, (3.13) and (8.18) give the
explicit expressions for X and X respectively. Since the matrix (\,J - 4Ap) in (3.18) is

not invertible when X\, is not simple. As mentioned in the bheginning of this section,
it amounts to the choices of cigenvectors for the case when eigenvalues coalesce, such

that, V_f’Hgg_l is in the range space of (A, —A}). Thus a solution of z could be

z = O —-A)* V[, (3.19)
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where the superscript ‘+’ denotes pseudo-inverse. Therefore, (3.18) becomes valid
after (\,J —A))™" is replaced by (M I - A)*. For simplicity of discussion, we assume

that
A= Xg= " =) (3.20)

and ¢;, ¢=1, - - ,q, are ¢ mutually perpendicular unit norm eigenvectors associated

with eigenvalue X,.

Proposition 3.1 There exists a choices of mutually perpendicular unit norm eigen-
vectors u;, ¢==1,---,q, in the space spanned by {_Ql Gy v Qq} such that for all
1=1,""",q, Vf‘,flgg lies in the range space of (M\; [/ —AJ_”.) where V_L,,- and A_L,,- are
defined similarly to Vi and Aj.

Proof. 1t is easy to show that it suflices to prove that there exists a unitary matrix

W, WeC?*?, such that

WHigy s -+ 8,17 Hldy o -+ &)W (3.21)

is diagonal. Since matrix (¢, d, - - - &, 17 H[d, ¢, - - - &, is hermitian, it is always
possible to change (3.21) to diagonal form by performing a unitary transformation.

It should be noted that the choice of matrix W is dependent of matrix H.



4. A second order algorithm.

17

In this section, we will make use of the properties discussed in the previous sec-

tion to derive a second order algorithm to solve (2.1). Define
H(t)=(e® Me™P)¥ (e Me™")
and let the singular value decomposition of M bhe
M =Uzv!

where

Vi=lv, 9]

S =diag {0, "0, }.

Then it is easy to get the following cqualities

Hy=M"M

H — -DM¥" M +oM¥ DM - MH¥ MD

H = DM M — 4DM¥ DM +4M Y D2M +2DM " MD — aM¥ DMD +M¥ MD®

If X, is simple, we have

A, = 20, %(wDu, ~ vDv )

”P 1Moy 1"2 - "Ah 1“2”P 1Y 1“3

20[(11 toe dm]

2

"Pm Mv, F - "1\/[1} 1

Pm vllP

(4.1)

(4.3)
(4.4)

(4.5)

(4.6)
(4.7)

(4.8)
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>

leu 1"2 - ”Plvl

= 20’12[(11 T dm] ’ (4,9)

"Pm u 1"2 - "Pm v 1”2

and
.. Dlt
A = [ufD VIDVE|, "
1 K v D] Dv, (4.10)
where
P,- = block diag (Okl’ cr ’Ok;—l’ll";’ok;+1’ o ’Okm) s (4.]_1)
| 40T o, M
E = LwlM” 201 +2M P M|
20, U2 Uix !
20,U |15 . - 200U 120
e sd) | O BT vieeresy | (4.12)
Up=[ug" " u,l, (4.13)
Vi=1[ve " wl, (4.14)
and
5| = diag {oo, "+ " .0, } .
Proposition 4.1
1 sy 2f 1 |2
M) =M+t < vg(0), d >+t7d T Bd+o( t*d[F) (4.15)
where d = [d, - - - d,,,)¥, vy (0) is defined in Scction 2 and
Pyu, - Py u, i Pyu, - Py,u, ( )
— . ; 4.16
B real part of Py, - P, v, E Plvl cr Ppovy

Furthermore, B is non-negative definite.

1

The first three terms in the right hand side of (4.15) gives a second order model of

A\ (t) when X, is simple and ¢[d] is small. Since B is non-negative definite, the solu-
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tion with minimum norm for the model is

tld] = - B*vyg(0) (4.17)

and also -B*g(0) is a descent direction of ¢ (d) at d ==0, where B~ denotes the

pseudo-inverse of B. We now state the algorithm to solve (2.1).

Algorithm 4.1

Step 1.
Data My= M, D, =0 (d, = 0).
k =o0.
Step 2.
Set My, — ¢ FMye ot
If the largest singular value of M, is simple, define search direction h to be
— B*<yg(0), otherwise define search direction & to be — Nr(coxy,) where 7, B
and ¢ (0) are defined in terms of My 4,.
Step 3.
Perform line search to find the step size «.
Step 4.
dy o, = dp +ah (Dy,, is therefore updated).

Set b = Lk +1, go to step 2.



Appendix A. Counterexample of u(M )£ inf (e? Me™P)

ped
— LISV NV |
Let a = (1—(—5)1 W2 b = o7E and
[ a 0
r o ab ab
My= abi
B a?(1+1)

124 2)1/2
(-2¢3 2(1-2¢%)"*

[ 0 a
o ab —~ab
M, = ab —abi
a®(1-%)

(1-2a2)V?

2(1-2a2)/2

Define M = M MY and structure k — (1,1,1,1), then 5(M) =1 and

7 o__,2|1 O 7 o .210 1 7o 2|0 ¢
Hl——a[o_l], Hz_a[l 0], H“—a[—io]‘

It is easy to check that vy, is a circle with radius «? centered at origin. Thus

Va2 7% €0V, 0€coy, and 0¢vy,. Therefore pu(M)<1 but

inf(e? Me™?)=1
ped

For this example, by using the formula in, [5] we can show that p(M)>0.87.
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