
INTRODUCTION
The need for better information visualization and
navigation tools is widely recognized [1], [2], [7],
[8], [10]. It is difficult to sort and resort tables or
listings by more than one attribute and still maintain
an understanding of the origin/position of items.
The concept of "value bars" was created to help users
visualize and navigate large information spaces that
have characteristics of a line-oriented listing with
multiple, quantifiable attributes. Value bars provide
a graphical means of displaying quantifiable attribute
values and can be thought of as a cross between a
scroll bar and a vertically-oriented stacked bar chart
(or one-dimensional tree-map [6], [9]). This unique
combination provides navigation and information
visualization techniques that may allow for a more
comprehensive understanding of a large multi-
attribute listing. The general idea of value bars was
developed by Shneiderman as part of ongoing data
visualization research at the Human-Computer
Interaction Laboratory. The specific design,
terminology, interaction techniques, implementation,
and future research ideas for value bars are this paper's
contributions. An implementation is written on
Unix in the OpenWindows environment on a Sun
SparcStation.

DESCRIPTION
A value bar is a thin stripe added to a text window
(figure 1), placed next to the scroll bar if one exists;
any number of value bars may be added as screen
space allows. Each value bar maps one specific
attribute shared by items. The attribute must be
quantifiable through some mechanism because each
item gets assigned a weight for its attribute value.
The weight can be assigned linearly or other methods
can be used if the attribute value range is especially
small, large, or unevenly distributed. The
partitioning algorithm equates the sum of the items'
weights to the value bar height. Each item is given
a height in the value bar proportional to its part of
the total weight of all items. Each varying height
region is placed vertically in the value bar from top
to bottom in the same order that its item appears in
the listing sequence. The end result is a graphic
image that looks like a ladder with varyingly spaced
rungs. Once partitioned the value bar regions are not
changed, moved, or scrolled, all regions are always in
view. A minimally useful height is set such that
shorter rectangles are not given value bar regions,
though their region heights are still accounted for in
the partitioning algorithm. Items represented in the
value bar provide a global view of the distribution of
an attribute's values in the listings. This provides

for another variant of the much heralded fisheye view
[3], [5]. An item is represented by differing height
regions in distinct value bars; it is possible an item
may not be represented in every value bar.

When an item becomes selected either by a mouse
click in the text window or in any value bar, all
representations of that item must be highlighted to
provide visual feedback as to everywhere that item is
represented. There are many sensible ways to
highlight a value bar rectangle, the current
implementation inverts the rectangle from white to
black. The item in the text window is also
highlighted with inverse video to be in harmony with
both value bar rectangle highlighting and routine text
selection.

Another value bar artifact is the "visibility marker."
Many scroll bars provide an indicator of how much
of the entire listing is currently in view, this concept
is a requirement of a good value bar implementation.
The current implementation uses exactly the same
graphic characteristics as the OpenWindows scrollbar:
the solid black part of the gray stripe shows which
part of the whole is currently in view. Whenever the
text window is scrolled, visibility markers in each
value bar are moved independently to show which
rectangles represent the text items currently in view.

APPLICATION TO UNIX DIRECTORY
LISTINGS
Consider a Unix directory listing with value bars for
file size and file age (figure 1). Along the right side
of the window are two value bars. The "S" value bar
maps file size largeness (Size) and the "Y" value bar
maps file modification recency (Youth). The rest of
the window is a normal scrolling textpane devoted to
the directory listing. Each value bar is partitioned
into individual rectangular regions. A region's height
represents that part of the attribute total for a
particular listing item; both value bars use a linear
weighting assignment. The partitioning concept
should be easy to comprehend for the Size value bar,
for the Youth value bar the concept is less clear. Each
listing item gets assigned a weight that is the
number of days from February 8, 1990, that the file
was last modified; this date was chosen because that
is the oldest modification date for any file. More
recently modified files have a larger weight associated
with them. The Size value bar has a bigger variance
in region heights than the Youth value bar because
its values vary more widely. The mapped size values
vary from 60,000 - 1,000,000 (factor of 16), the
mapped age values vary from 147 - 460 (factor of 3).

1

DISCUSSION
One of the most important value bar advantages is its
ability to provide a global distribution overview of
attribute values in a single view. Users are able to
compare an item’s attribute value to other items in
the value bar without the need to scroll the text items
or rearrange the sort order many times. Users receive
many attributes' distribution overviews at the same
time in the same view. Noticing that one item has
large regions for many attributes may be
enlightening. Within one value bar, noticing
clusters of large regions together may be an
important insight to users. The fact that an attribute
has values that are relatively equal throughout the
items (e.g. all files are similar in size) can be
recognized easily; this knowledge might allow users
to realize that attribute is not of interest to them
since the values do not vary significantly and will
not be helped by a value bar. There are many ways
the single view of multiple attribute distributions can
help users distill trends or notice interesting clusters.
This also may allow new discoveries that couldn't
have been made due to the high cognitive load of
resorting a list many times while retaining acquired
knowledge about items. Sorting by one attribute at a
time has several disadvantages that value bars
overcome:

• a completely different view of items for each
sort,

• no external memory aid for remembering
interesting items from a previous sort, and

• no overview to gauge how one item's values for
multiple attributes compare simultaneously
to other items' values.

The general concept of the value bar with its unique
combination of information visualization and
immediate navigation makes the contribution, not
the physical characteristics of this implementation.
The highlighting characteristics of the selected region
and of the visibility marker need only follow
reasonable principles of user interface design; the
black triangle and the thick lines are simply two
choices. The width of the value bar is not relevant to
its semantics. Being able to fit a horizontal text
label above the value bar seems logical, but other
methods could be as effective. An early user has
suggested that a wider value bar would bring more
attention to it, though the value bar's usefulness and
the identifiability of the individual regions seem
independent of width. Having a minimum region
height is an issue of information complexity
reduction and of interaction convenience. Only the
bigger regions (more important values of a certain

attribute) are of interest to users and not the small
ones. If the small regions are of interest, then the
inverse attribute should be mapped in its own value
bar; file size smallness instead of largeness, for
example. Value bars work well for hundreds of items
that requires several screenfuls to view, but could
really be helpful for very large information spaces on
the order of thousands or hundreds of thousands of
items when scrolling or even resorting become
unwieldy.

The immediate navigation provided by value bars
allows users to jump around and examine individual
items as the need arises. There is no guess work as to
how much scrolling needs to be done to view an item
nor clumsy search specification. There is low
likelihood of becoming lost; but should that happen,
a single click will reposition the items with
certainty. There is a natural blend of task with
interface that allows users to continually concentrate
on the task with minimal interface effort.

Some interesting issues arise when several value bars
are attached to a multi-attribute listing. Some items
won't be represented in all value bars. Users can
compare an item's mix of different attribute values to
other leading items for each attribute to decide how
interesting is an item. The ability to compare
multiple attributes' distributions in one view has
great information analysis potential. Users can see
that some attributes have values that are relatively
equal among the items mapped, while other
attributes' values have a wide range.

An item has different values for each attribute and
therefore is represented by different size regions in
different value bars. Specifically, those items in
view in the text window are marked by a visibility
marker in each value bar; each visibility marker will
almost assuredly be of different height. As the text
window is scrolled with the normal scroll bar, the
visibility markers move along their respective value
bars in varying size jumps. More importantly, each
visibility marker changes size with each scroll
because there is a new set of items visible in the text
window with a different set of varyingly sized value
bar regions representing them. The changing size
visibility marker helps users understand where a
certain set of contiguous value bar regions are in the
listing. This concept and its usefulness may be
difficult to visualize without seeing a value bar in
action.

2

APPLICATION SUITABILITY
In general, value bars are useful for analyzing multi-
attribute listings and tables where a particular sort
order should be maintained and analysis of the top
percentage of items for each attribute is beneficial.
The main features of the value bar are:

• the ability to see in one view an attribute
distribution overview for the "important"
items (as defined by attribute values) in a
fisheye view variant,

• very small screenspace footprint,
• the ability to see at once many attribute

overviews,
• the ability to locate outliers and exceptions, and
• low cognitive load navigation.

Some of the task domains for which value bars are
well suited include directory listings, stock market
tables, inventory systems, medical information, and
database search output. To expand on the last
domain, consider the hierarchical text browsing
system SuperBook [4]. Users of Superbook specify
a query and the number of paragraphs that match the
query are displayed next to table of contents entries.
A good strategy for users to follow is to find the
section with the highest number of hits and then
browse that section for relevant information. Value
bars could be used here beneficially when the table of
contents (TOC) is large. Without the value bar,
users may not know that an item(s) several screenfuls
away in the TOC actually has more hits than a TOC
item currently on the screen. Users seeing a high
number of hits for a TOC item currently on the
screen would likely begin to browse that item rather
than scroll through the TOC (probably fruitlessly) to
make sure no other items have more hits. However,
a value bar mapping the number of hits for each
TOC item would allow users to see in a glance how
the distribution of hits occur within the TOC,
navigate quickly to those locations, and use
SuperBook conventionally from there.

USABILITY STUDY
A usability study was conducted with seven
participants from the computer science department at
the University of Maryland familiar with UNIX. A
within-subjects design had them perform the exact
same set of tasks on two different directories, /usr/lib
and /usr/include as can be found on any UNIX
system. The first iteration of the task set was
performed with the UNIX command line in a
scrolling text window, the second iteration was
performed using a value bars interface (figure 1).
Seven tasks were performed; they were tasks for

finding the largest file, the newest file, identifying
file names directly before and after (alphabetically)
the largest and newest files, deciding if there were
"clusters" of "large" and "new" files (quotes appeared
this way in the task descriptions allowing
participants to define these terms), and for deciding if
any of the top five large files were also in the top
five newest files. The use of the word file implies
both file entries and directory entries; participants
were directed to interpret the size of directories to be
the number shown in the ls -l listing and not to
consider the sum of file sizes within the directory.
The domain of directory listings and tasks performed
therein may not be rich enough to show adequately
the power of value bars. However, with the
resources available this domain was the only feasible
choice. Future formal experiments will use a richer
domain, more participants, and better high-level
tasks.

These tasks were chosen to investigate a number of
hypotheses about using a value bars interface:

• seeing an attribute value distribution overview
while maintaining the original sort order is
helpful,

• there is greater analysis potential seeing many
attribute value distributions than in seeing
one at a time, and

• immediate navigation to interesting items is
useful.

Again, this domain is not very rich and system
administrators would be the users most likely to
benefit from the application of a value bars interface
in this domain. But imagine a sales organization
domain where there exists a listing of sales people
with attributes for sales, number of customers, phone
bills, hotel bills, etc. A manager could view these
attributes and determine, without even thinking about
the fact that a database of attribute values is being
"queried," interesting trends and exceptions to trends
in combinations of attribute values. The manager
could discover that a certain salesperson has high
sales volume but a low number of customers and
hotel bills (by mapping in value bars the attributes
sales largeness, customer number lowness, and hotel
bill lowness, respectively). This could be an
exception to a trend that no one else has high sales
and low bills, therefore sparking motivation to spread
this combination of attributes. In this way, value
bars act as a database engine that has precomputed all
the single attribute queries which result in the
topmost valued items to be represented (as relatively
sized box heights). The combined view of all these
single attribute queries allows for serendipitous

3

discovery of interesting items by virtue of their
combinations of attribute values.

General Interaction Observations
Most participants during the UNIX phase performed
ls -l commands (- l lists in long format providing
permissions, number of links, owner, size in bytes,
and file modification time), some adding the options
-s (- s precedes the file name with size in number of
blocks) and -1 (“one”, which forces output into one
column), with only two using the - t option (- t
sorts by file modification time). Most used the
scrollbar to review the same directory listing for
many tasks, while one participant refused to use the
scrollbar. Each directory contains on the order of 150
entries, most participants felt comfortable scrolling
and scanning rather than feeling compelled to using
the most efficient methods which likely involve
many (somewhat obscure) commands and pipes.

During the value bar phase, participants used the
value bars as expected for a first time encounter.
Most tasks were biased towards finding files that
were represented by the tallest boxes in the value
bars, participants realized this relationship and
successfully took advantage of it. Task completion
times did not vary from the range of 10 to 60
seconds, regardless of the complexity of the task.
Generally, they thought the value bars showed
attribute value information uniquely, concisely, and
interestingly, but weren’t sure of their utility. One of
the higher level information visualization aspects of
a value bars interface rarely was used effectively;
namely, the attribute value distribution overview. By
the time participants reached the tasks for
determining if “clusters” of files existed for the two
attributes, they should have had enough experience to
realize they could study the overview and clearly state
that no clusters existed (in one of the conditions) by
noticing there were never two or more tall boxes
stacked upon each other. However, one participant
did realize the converse--that the presence of tall
boxes stacked on each other did not guarantee that
they were clustered in the full listing because some
items may not have boxes representing them in the
value bar.

Observation by Task
The most startling fact discovered is that most of the
participants were not aware of the - t option for the
UNIX command l s, the option which sorts the
directory listing by file modification date
automatically. When asked to find the newest file,
those participants simply scrolled an ls -l listing

keeping track of the newest file. However, this is not
so striking when one considers that l s has the most
options of any UNIX command and that most people
don't look at directories other than their own in
everyday situations. Participants took about 60
seconds solving this task with UNIX. One
participant issued a plethora of convoluted pipes from
l s to s o r t in an attempt to solve this task, but fell
back to the certainty of redirection into files and
using d i f f. In contrast, when using the value bars
interface, all participants easily identified the newest
file by locating the tallest box in the Youth value bar
in about 10 seconds on average. Participants had
absolutely no comprehension problem with realizing
the tallest box represented the newest file. The only
problem encountered was determining which box was
the tallest, this is elaborated later.

The task to find if any of the top five largest files
was also among the top five newest files proved to
be the most interesting, as expected. Proficient
UNIX participants were able to complete this task
successfully in about 10 seconds with the help of the
- t option to l s. The rest took about 60 seconds,
scanning up and down an ls -l listing while trying to
determine and remember the cutoff points for the top
five of each attribute. One participant took over five
minutes to accomplish the task using UNIX. With
the value bars interface, all participants quickly
formulated a plan and carried it out straightforwardly
without problems in about 45 seconds on average.
The plan (apparently) used by all was to locate the
five tallest boxes in a value bar, click in them, and
determine if any (items represented by that box in
that value bar) had any boxes in the other value bar
that were among the top five tallest. This is how it
was thought participants would put a value bars
interface to work. The task was biased to be solved
more straightforwardly by the value bars interface,
but the plan and interaction success thereof was
independently carried out by all participants. Upon
reading the task description during the UNIX
command line phase, most participants (those not
knowing the - t option to l s) grunted or moaned
probably because they felt it may be a difficult or
tedious task. However, quite oppositely, during the
value bars interface phase most participants made an
audible or visual cue that suggested they suddenly
realized the potential power of a value bars interface.

It is interesting to discover that only one participant
attempted to sort a directory listing by size to solve
the task of finding the largest file using the UNIX
command line. The others were content to scan.

4

That same participant failed for 60 seconds trying
many advanced uses of commands to name the two
files alphabetically before and after the largest file
just found. That task was created exactly to see how
re-sorting in UNIX might effect sequential tasks
involving different attributes. This may be a strong
indication for the value of a value bars interface
which preserves the primary sort, alphabetical for
this domain. One last curiosity is to note that this
singled out participant using advanced commands and
pipes did not know about the - t option to l s. This
can only strengthen the case for applying simple to
use value bars to complex interfaces on multiple
attribute domains.

Subject ive Data
When asked to identify the best feature about value
bars, most participants decided it was the ability to
locate the tall boxes representing the topmost valued
items for an attribute. One participant went further
to say it’s not just locating the tall box but the
immediate navigation to viewing the item (file) in
context (of the full directory listing) that makes value
bars useful. One participant mentioned the best
feature is the ability to see multiple attributes for a
single item in comparison to other items’ values and
the whole.

When asked to identify the worst feature about value
bars, three participants mentioned that it is hard to
distinguish the difference in values for similarly sized
boxes in the value bar. In this situation, users are
forced to click in the box to navigate to the file in
the listing to look up the attribute value. This is a
known difficulty with the information presentation
but only affects certain categories of tasks. There are
several ways to assist users in this regard, one that
could be quite helpful would be to display
temporarily the actual value directly above the mouse
pointer upon a different input event than normal. In
this situation, users are interested first in the absolute
value and are interested second (if at all) in navigating
to the item to see the other attribute values. Another
solution to this problem is discussed two paragraphs
below. One participant thought having more than
one value bar was not useful; this is interesting since
a different participant found that having more than
one value bar was the best feature. One participant
thought that items not given boxes is confusing and
suggested the “zoom” feature elaborated in the future
research section below.

Participants were also asked to describe an additional
feature that could be added to value bars to make

them more useful. Only one suggestion was not
previously thought of and elaborated in the future
research section below. The novel suggestion was to
help with determining the difference in similar height
boxes by marking the next N taller and next N
shorter boxes on demand, perhaps by placing the
numbers 1..N and -1..-N in the appropriate taller and
shorter boxes, respectively. In this way, it is easy to
locate and rank the N similarly sized boxes which are
indeed shorter and taller than the current box.

FUTURE RESEARCH
There are a large number of exciting avenues to
explore further with the value bar concept. One is to
employ smarter algorithms for various aspects of
value bar graphic representations. Determining the
nature of value ranges and distributions may lead to
automatic selection of weight assignment mappings
other than linear. One could imagine various data
transformations, logarithmic mappings, step
functions, etc. Another aspect is how to determine
the initial number of items to be given regions in the
value bar.

Perhaps users may not always be interested in the
topmost valued items, the "middle" items may be of
concern to users. Items can be mapped that would
have been left out of value bars mapping only the
topmost items. Also, "zoom" regions could be
introduced for items that would normally not be
mapped in the value bar due to a combination of their
value, the mapping algorithm for assigning region
heights, and the minimum value bar region height.
When users select a zoom region, any of several
actions may occur with the common characteristic
that it is expanded into value bar regions for its
constituent items. The scale for the new value bar
regions is different, but since relative comparison is
the value bar paradigm the scale factor should not
cause a problem.

Additional graphic features could help users
understand where and which items are being mapped
in a value bar. A thin line could be drawn between
all value bars intersecting each where the selected
item would (or does) appear, removing cognitive load
users may expend toward such a determination.
Another graphic feature could be to allow users to
mark uniquely items' value bar regions so that as
selections occur users can stay focused on those
particular marked items' value bar regions.

It may not always be desirable to scroll the text
window to find out about an item the interest in

5

which was triggered by its value bar region height.
Other styles of information presentation could be
used to display information about an item.
Immediate navigation is not a necessary component
of interacting with value bars, just a convenient and
powerful component in many situations.

Color could be introduced as an additional coding
factor for value bar regions. An item can have
attributes displayed within value bar regions that are
not naturally quantified. Such attributes could be
type (e.g. file type for a directory listing), ownership,
etc.

Control panels can be used for interactive control of
value bars. Control panel functionality could include
the ability to choose which attributes are mapped;
which function to use to map item values to region
heights (linear, logarithmic, etc.); the exclusive
choice among:

• percentage of items given regions (e.g. top
20%),

• absolute number of items (approximately) to be
given regions (e.g. 40), or

• item values given regions (e.g. items with size
> 50);

switching to different input data; and there are surely
more.

Value bars could be applied to many domains if there
existed an application programmer's interface.
Options that could be parametrized include vertical or
horizontal orientation, size dimensions, graphic
characteristics for selection, etc. More importantly,
there must be facilities for linking value bar regions
with the actual data items and specifying when and
how interaction events invoke value bar updates.

CONCLUSION
The value bar represents a unique combination of
information visualization and navigation for multi-
attribute listings and tables. The information
visualization is powerful providing items' local detail
in a global context for attribute values and their
distributions. Navigation and interaction are simple,
clean, and builds on generic GUI concepts. Value
bars can be applied in many diverse domains that
have data with characteristics similar to multi-
attribute listings or tables. Value bars are a useful
tool which can be integrated unobtrusively into
existing application environments with ease.

ACKNOWLEDGEMENTS
This research was supported by Sun Microsystems,

Inc. I’d also like to thank the ongoing contributions
by my colleagues at the Human-Computer
Interaction Laboratory at the University of Maryland,
especially Ben Shneiderman and Brian Johnson.
Discussions among us three about visualizing large
hierarchical information spaces using two-
dimensional graphic displays ([6], [9]) laid the
groundwork for research on value bars.

REFERENCES
1. Beard, D., and Walker, J. Navigational

Techniques to Improve the Display of Large
Two-dimensional Spaces. Behaviour &
Information Technology 9, 6 (June 1990), 451-
466.

2. Card, S., Robertson, G., and Mackinlay, J. The
Information Visualizer, an Information
Workspace. In Proceedings ACM CHI'91
Human Factors in Computing Systems
Conference (New Orleans, LA, April 27 - May
2). ACM, New York, 1991, pp. 181-188.

3. Chimera, R., Wolman, K., Mark, S., and
Shneiderman, B. Evaluation of Three Interfaces
for Browsing Hierarchical Tables of Contents.
University of Maryland Human-Computer
Interaction Laboratory technical report CAR-TR-
539, CS-TR-2620.

4. Egan, D., Remde, J., Gomez, L., Landauer, T. ,
Eberhardt, J., and Lochbaum, C. Formative
Design Evaluation of SuperBook. ACM
Transactions on Information Systems, 7, 1
(January 1989), 30-57.

5. Furnas, G. Generalized Fisheye Views. In
Proceedings ACM CHI'86 Human Factors in
Computing Systems Conference (Boston, MA,
April 13 - 17). ACM, New York, pp. 16-23.

6. Johnson, B., and Shneiderman, B. Tree-Maps:
A Space-filling Approach to the Visualization of
Hierarchical Information Structures. To appear
in Proceedings of ACM Visualization '91
Conference (San Diego, CA, October 22 - 25).
ACM, New York.

7. Mackinlay, J., Robertson, G., and Card, S. The
Perspective Wall: Detail and Context Smoothly
Intergrated In Proceedings ACM CHI'91
Human Factors in Computing Systems
Conference (New Orleans, LA, April 27 - May
2). ACM, New York, 1991, pp. 173-179.

6

8. Robertson, G., Mackinlay, J., and Card, S.
Cone Trees: Animated 3D Visualizations of
Hierarchical Information. In Proceedings ACM
CHI'91 Human Factors in Computing Systems
Conference (New Orleans, LA, April 27 - May
2). ACM, New York, 1991, pp. 189-194.

9. Shneiderman, B. Tree Visualization with Tree-
maps: A 2-d Space-filling Approach. To appear
in ACM Transactions on Graphics.

10. Spence, R., and Apperley, M. Database
Navigation: an Office Environment for the
Professional. Behaviour & Information
Technology, 1, 1 (January 1982), 43-54.

7

