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Theories of sparse signal representation, wherein a signal is decomposed as the

sum of a small number of constituent elements, play increasing roles in both math-

ematical signal processing and neuroscience. This happens despite the differences

between signal models in the two domains. After reviewing preliminary material on

sparse signal models, I use work on compressed sensing for the electron tomography

of biological structures as a target for exploring the efficacy of sparse signal recon-

struction in a challenging application domain. My research in this area addresses a

topic of keen interest to the biological microscopy community, and has resulted in

the development of tomographic reconstruction software which is competitive with

the state of the art in its field. Moving from the linear signal domain into the

nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in

neuroscience and its relationship with olfaction in locusts. I implement a numerical

ODE model of the activity of neural populations responsible for sparse odor coding

in locusts as part of a project involving offset spiking in the Kenyon cells. I also

explain the validation procedures we have devised to help assess the model’s simi-



larity to the biology. The thesis concludes with the development of a new, simplified

model of locust olfactory network activity, which seeks with some success to explain

statistical properties of the sparse coding processes carried out in the network.
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Chapter 1: Introduction

The theme of sparse signal representation has attracted broad interest over

the past few decades, as researchers in information processing fields realize the im-

portance and the utility of describing complex patterns in terms of a small number

of meaningful components. Sparse signal methods demonstrate how proper choices

of measurement, exploiting the statistical structure of signal ensembles, force signal

representations to lie along low-dimensional manifolds within a larger measurement

state space. Sparse representations are a useful intermediate step within larger sig-

nal processing pipelines. Collections of these representations will exhibit less overlap

than dense representations, useful for categorization and classification. Sparse de-

compositions are a useful component of both digital and biological feature extraction

systems, and can be used to improve a variety of other signal processing techniques

such as image denoising or deconvolution.

The linear signal models predominantly used in digital signal processing are

a primary focal point for the theory and practice of sparse representation, but the

ideas are more broadly applicable as well. Abandoning linearity loses a great deal

of the theoretical machinery commonly associated with sparse signal representation,

but the phenomenon plays an important role in more complex systems such as neural
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sensory processing. The importance of better understanding neural activity is itself

reason enough to seek to understand a broader notion of signal sparsity, and this

application is a key motivation for the work in this thesis.

In Chapter 2, I introduce the mathematical background required to understand

sparse signal representation phenomena in the following chapters - compressed sens-

ing and signal sparsity for Chapter 3, dynamical systems and the analysis of state

space trajectories for Chapter 4. Chapter 2 contains numerical background as well,

detailing the core algorithms that support the computational work done in this

thesis. An important goal of my work over the past several years has been the

implementation of efficient numerical techniques to quickly solve problems, and the

fundamental algorithm design choices detailed in Sections 2.2.5 and 2.3.2 play an

important role in that.

Chapter 3 details the results to date of an ongoing collaboration with Dr.

Richard Leapman’s lab within the National Institute for Biomedical Imaging and

Bioengineering (NIBIB), an institute of the NIH. Working with this lab and its

electron tomography data, we sought to investigate the effectiveness of compressed

sensing for the 3D imaging of biological structures. We developed a software package

to run compressed sensing reconstructions from this data, and applied it to several

simulated and experimental datasets. We clarified the ways in which deterministic

tomographic sampling is incompatible with the randomized measurement theories

which are crucial to theoretical guarantees of signal recovery via compressed sensing,

and we analyzed how the statistics of images of cellular structures deviate from the

sparsity assumptions underlying compressed sensing reconstruction. Ultimately, we
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addressed an important topic of interest within the electron microscopy community,

and produced a numerical technique which matches or exceeds the state of the art

in the field. The trifecta of scientific, mathematical, and computational knowledge

required to develop this project is characteristic of the broad interdisciplinary skill

set I have sought to cultivate in my time as a graduate student researcher.

My work with Dr. Mark Stopfer’s lab within the National Institute for Child

Health and Human Development (NICHD) sought to combine these skills for a

different goal. This lab studies the fundamental mechanisms underlying sensory

processing in insects, and one aspect of this sensory processing is a sparse neural

code which is employed within the olfactory processing hierarchy. The Hodgkin-

Huxley-type ODE dynamical systems, which describe the portions of the olfactory

system that we studied, operate according to principles which differ radically from

the digital signal processing models employed for CS-ET in Chapter 3. An important

goal of my collaboration with this lab was to gain experience with the biological

system being studied, in order to appreciate the subtleties of its operation which are

responsible for important network-level activity features. To this end, the bulk of my

research involved implementing a numerical ODE model for neurons and synapses in

locust olfactory networks, and working with experimentalists to devise procedures

to ensure the computational model’s agreement with the biology. This was part

of a project researching the offset spiking phenomenon in locusts. Participating in

this project afforded me the opportunity to develop a new numerical protocol for

investigating the network behavior associated with Kenyon cell offset spiking, and it

was also important for understanding the temporal aspects of Kenyon cell activity
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sparsity which are one focus for Chapter 4. My work in Chapter 4 concludes with

the creation and analysis of a simplified network population model of the locust

projection neurons and Kenyon cells, which demonstrates that important properties

of the activity of these neurons may be accounted for by simple features of the

neurons and their synapses.
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Chapter 2: Preliminary Material

2.1 Overview

This thesis concerns itself with the forms which sparse signal representations

take in vastly different systems - image processing on a digital computer using

linear algebra and convex optimization in Chapter 3, and neural sensory processing

in the olfactory system of locusts modeled as the evolution of a dynamical system in

Chapter 4. To understand the commonality between these systems, it is necessary

to define what is meant by “sparsity”, “signal”, and “representation”. Therefore,

the primary goal of this chapter is to define these terms in the contexts encountered

in Chapters 3 and 4. For Chapter 3, this requires an explanation of linear signal

models and the theory surrounding the development of compressed sensing. For

the dynamical systems in Chapter 4, signals in network populations are nonlinear

functions of their inputs. For systems of this form, sparsity amounts to a constraint

on the number of neurons active at each time, and information transfer must be

described without the machinery of linear transforms.

Additionally, this chapter explains the algorithms which underlie the numerical

methods used in this thesis. The convex optimization routine used in Chapter

3 makes use of the split Bregman algorithm, a technique well-suited for the `1-
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penalized least-squares problems associated with compressed sensing. In Chapter

4, the simulation of a system of ODEs is carried out using a 4-step Runge-Kutta

method, a standard numerical ODE algorithm.

2.2 Compressed sensing and linear signal representation

The field of compressed sensing (CS) gained prominence starting around

2006, with seminal works by Candès and Tao [23], [22] indicating that sparse vec-

tors could be recovered with high probability from a number of measurements far

smaller than the bound prescribed by the classic Shannon sampling theorem [95].

Introductions to the general theory of CS can be found in e.g. [11], [35]. In this

section, we highlight the aspects most relevant to the analysis in this thesis.

2.2.1 The linear signal model

A (finite) signal modelled as a vector x ∈ RM consisting of M data points

may be decomposed as a linear combination [102] of other, simpler vectors using

the tools of linear algebra. A basis decomposes x into a linear combination of M

linearly-independent [102] vectors {ψi}Mi=1 ⊆ RM . A frame generalizes the idea of a

basis, and decomposes x into a linear combination of N ≥M vectors {ψi}Ni=1 whose

members span [102] RM but cannot be linearly independent.

Definition 1. A finite frame for a vector space RM is a set of N vectors {ψi}Mi=1

which span RN .

The elements of this frame can be stacked as rows of a change-of-basis matrix
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Ψ.

Definition 2. A change-of-basis matrix for a frame {ψi}Ni=1 for RM is a matrix

Ψ ∈ RN×M defined by

Ψ =

[
ψ1 · · · ψN

]T
, (2.1)

each frame element forming a row of Ψ,

and it is notationally convenient to identify the frame {ψi}Ni=1 with Ψ. This

matrix can be used to compactly write the representation of a signal x with regards

to the frame Ψ, which consists of the inner products [102] of x with each vector in

the frame.

Definition 3. A representation of a vector x ∈ RM with respect to a frame Ψ is

the vector c = Ψx ∈ RN . Note that ci = 〈x,ψi〉.

Inner products also form the basis for the measurement model used in this

thesis.

Definition 4. A measurement y ∈ R of a signal x ∈ RM is the inner product of

a measurement vector ϕ with x:

y = 〈x,ϕ〉 . (2.2)

A vector of m measurements y ∈ Rm can be produced by forming the inner

product of x with a collection of m measurement vectors {ϕi}Mi=1. The measurement

process may be written succinctly using the change-of-basis matrix Φ for these
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measurement vectors:

y = Φx (2.3)

2.2.2 Signal sparsity

The role of sparsity in CS theory is crucial to understanding CS-ET in Chapter

3 and gauging its limitations as a reconstruction method for biological data.

Definition 5. A vector x ∈ RN is k-sparse if only k components of x are nonzero.

The sparsity of a vector x is quantified by its number of nonzero entries, called

the `0 “norm”

||x||0 = #{i : xi 6= 0}.

When contrasted with more general notions of signal sparsity, this value is also

called identity sparsity.

Alternately, x may be sparse in another basis or frame.

Definition 6. A vector x is k-sparse in frame Ψ if ||Ψx||0 ≤ k.

Under this condition, the mapping x→ Ψx is also referred to as a sparsifying

transform for x. For STEM tomography and other imaging fields, commonly-used

constructions include wavelet bases and discrete cosine bases, though others exist.

In this chapter, we use Daubechies’ DB8 wavelet basis [34] as a putative sparsifying

transform for our datasets.

One may attempt to push this approach further, and assume that Ψx be sparse

for certain nonlinear transformations Ψ. This is the case of interest for this chapter,
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in which we assume a TV sparsity signal model. TV is the 2D total variation

operator, a discrete analogue of the magnitude of the 2D gradient. The continuous

gradient operator is approximated in the discrete setting by forward differences

∆+
xx(i, j) = x(i+ 1, j)− x(i, j) (2.4)

∆+
y x(i, j) = x(i, j + 1)− x(i, j), (2.5)

where we have indexed x with two spatial coordinates for notational simplicity. A

vector x ∈ RN may be visually interpreted as an m×n array for any m,n ∈ N such

that mn = N , and vice-versa. Given this, we can define the isotropic total variation

operator [49]:

Definition 7. For a signal x interpreted as an m×n 2D array, the isotropic total

variation operator TV x is defined for each (i, j) ∈ [1,m]× [1, n] as

TV x(i, j) =
√(

∆+
xx(i, j)2 + ∆+

y x(i, j)2
)
, (2.6)

where ∆+
x and ∆+

y are the forward spatial difference operators defined in Equations

(2.4) and (2.5).

Letting Ψf = TV f , corresponds to an assumption that a signal has a 2D

spatial organization and its gradient is sparse, which is satisfied by signals whose

dominant features are piecewise-constant regions separated by sharp boundaries.

This model is chosen in Chapter 3 as representative of tomograms dominated by

membranous features such as cell boundaries and organelle structures.
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In application, the term sparse is often used to refer to vectors for which k/N

is “small enough”. The threshold for this qualification is vague and varies between

application domains. Given a signal x∗ to be recovered from measurements, a

sparse signal model is an a priori assumption that Ψx∗ is sparse from some

sufficiently small k and appropriate transform Ψ. In this chapter we investigate the

use of identity, wavelet, and TV sparsity models.

For applications in which data is contaminated by noise or other sources of

error, exact sparsity may not be feasible, but sparse approximations may suffice. To

gauge this possibility, one may measure a signal’s compressibility instead of sparsity.

Definition 8. For a fixed ε > 0, the ε-compressibility of x, equal to the number

of components of x with magnitude greater than ε.

Equivalently, one may quantify compressibility in a relative fashion using com-

pressibility ratios.

Definition 9. The p% compressibility ratio of a signal x equals the proportion

of components of x whose magnitude is at least p% of the largest magnitude among

the components of x.

These more flexible notions of sparsity are useful in application, when noise

and approximation error are inevitable. When signals are compressible, the sparse

approximations reconstructed via CS have low error, and may be appropriate for

imaging needs.
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2.2.3 Sparse vector reconstruction

2.2.3.1 Mutual coherence

Given a collection of measurements {ϕi}mi=1 and a basis for a sparsifying trans-

form {ψj}Nj=1, the theoretical results of compressed sensing focus on the recovery of

x from Φx with underdetermined measurements (m << N). Concrete results are

possible when Ψx is sparse and Φ and Ψ are incoherent.

Definition 10. Given an orthogonal measurement matrix Φ, ||ϕi||2 =
√
N for all

i ∈ [1,m], and an orthonormal sparsity basis Ψ, the mutual coherence of Φ and

Ψ is defined as

µ(Φ,Ψ) = max
i,j
| 〈ϕi,ψj〉 |. (2.7)

The mutual coherence of a measurement and representation system can be

understood as a characterization of how “spread out” the measurement vectors are

in the sparsity basis. When this value is small, CS theory guarantees recovery of

sparse images: If x is k-sparse in Ψ, it may be recovered from m measurements

where

m ≥ C · k · µ2(Φ,Ψ) · logN (2.8)

for some (small) constant C [20], via a nonlinear convex optimization problem intro-

duced in the next section. Proving that a CS recovery will work for suitably small

m requires the use of representation and measurement systems with low mutual co-

herence - as we will see in Chapter 3, this assumption is often not met for real-world
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measurement systems.

2.2.4 Compressed sensing and `1-regularized least-squares recovery

Under ideal conditions, a signal x ∈ RM can be recovered exactly from mea-

surements by M linearly-independent measurement vectors - under these conditions,

Φ is an invertible matrix, and x = Φ−1y. If there is any uncertainty or noise in the

obtained measurements, a least-squares regression technique may be used instead

[8], recovering an approximation x∗ of x as

x∗ = argmin
z∈RM

||Φz − y||22. (2.9)

When the number of measurements is smaller than M , Equation (2.9) will not have

a unique solution, and in general it will not be possible to recover x. However, when

a priori information about the structure of x is available, it is possible to add cost

functions to the RHS of Equation (2.9) which penalize improper reconstructions and

can ensure better reconstruction accuracy from limited measurement data. These

regularized least-squares equations take the form

x∗ = argmin
z∈RM

||Φz − y||22 + λC(z), (2.10)

for an appropriate cost function C(z) and regularization hyperparameter λ. The

study of these equations is deep and wide, and an introduction to their general

study may be found in [84]. Multiple penalization terms can be used concurrently,
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so that for some n ≥ 1 and i ∈ [1, n], cost functions Ci(z) and regularization

hyperparameters λi can be used to formulate the minimization problem

x∗ = argmin
z∈RM

||Φz − y||22 +
n∑
i=1

λiCi(x). (2.11)

For CS, one wishes to use the prior knowledge that Ψx is sparse to leverage

reconstructions of x from measurements Φx where m < N . An `0 norm term can

be added to Equation (2.9) to penalize non-sparse reconstructions, resulting in

x∗ = argmin
z∈RM

||Φz − y||22 + λ||Ψz||0. (2.12)

However, it has been proven that this is an NP-hard combinatorial optimization

problem [48]. Its solutions will be computationally intractable in general, so that an

alternate formulation is required. One approach is to consider a convex relaxation

of Equation (2.12), replacing the non-convex `0 norm with an `1 norm term:

x∗ = argmin
z∈RM

||Φz − y||22 + λ||Ψz||1. (2.13)

This is the basis pursuit denoising problem (BPDN) [24]. The coherence bounds on

measurement and representation systems in Equation (2.8) define conditions under

which BPDN yields the same solution as Equation (2.12).
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2.2.5 The split Bregman algorithm

Equation (2.13) is convex, but the ||Ψz||1 is not differentiable everywhere.

This lack of differentiability poses a challenge for convex optimization techniques

which rely on gradient descent to converge to local or global minima. The growth

in interest in sparse signal reconstruction methods has fueled interest in convex

optimization algorithms designed for cost functions which are sums of `2 and `1

norms. In Chapter 3, we make use of one such algorithm for our CS-ET work, the

split Bregman algorithm.

The split Bregman algorithm, equivalent to the alternating direction method

of multipliers discovered by Glowinski [46] and rediscovered and popularized by

Osher and Goldstein in [49], seeks to compute the minima of objective functions of

the form

J(z) = ||F (z)||1 +H(z), (2.14)

where both terms in the sum are convex. By introducing additional “dummy”

variables into the optimization equation, one is able to split the objective function

into separate `2 and `1 minimization problems. The `2 subproblem may be attacked

by a number of standard methods, while the `1 problem can be solved by a so-called

shrinkage operation introduced below.

This general functional J(z) in Equation (2.14) includes Equation (2.13) for

all of the Ψ investigated in Chapter 3 - the linear transforms, as well as the nonlinear

TV transform. For these BPDN problems, the split Bregman works by decoupling
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the `1 and `2 minimizations from each other. Equation (2.13) is trivially equivalent

to

(x∗,d∗) = argmin
z∈RM ,d∈RN

||Φz − y||22 + λ||d||1 such that d = Ψz. (2.15)

One can then convert this constrained optimization problem into an unconstrained

one, with the equality of d and Ψz enforced weakly:

(x∗,d∗) = argmin
z∈RM ,d∈RN

||Φz − y||22 + λ||d||1 +
γ

2
||d−Ψz||22. (2.16)

The split Bregman iteration for solving this problem is

(
zk+1,dk+1

)
= argmin

z,d
λ||d||1 + ||Φz − y||22 +

γ

2
||d−Ψz − bk||22 (2.17)

bk+1 = bk +
(
Ψ(zk+1)− dk+1

)
. (2.18)

The minimization in Equation (2.17) can be rapidly solved by iteratively minimizing

with respect to z and d individually:

Step 1: zk+1 = argmin
z
||Φz − y||22 +

γ

2
||dk −Ψz − bk||22 (2.19)

Step 2: dk+1 = argmin
d

λ||d||1 +
γ

2
||d−Ψzk+1 − bk||22. (2.20)

Equation (2.19) is differentiable, and in this thesis we solve it using the conjugate

gradient method [97], a standard technique for the minimization of sums of `2 norms

of differentiable functions. Equation (2.20) is minimized using an componentwise
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shrinkage operation. For each component dk+1
j of dk+1,

dk+1
j = shrink([Ψz]j + bkj , 1/γ), (2.21)

where the shrinkage operation shrink(x, τ) is defined by

shrink(x, τ) =
x

|x|
·max(|x| − τ, 0). (2.22)

This operation is easily computed, as well. In all, the iterative variables uk+1, dk+1,

and bk+1 are all computable using simple linear algebra, and Equation (2.13) may

therefore be minimized efficiently using this method.

2.3 Signal processing in dynamical systems

In chapter 4, we model the activity of collections of neurons as a dynamical

system. Dynamical systems may be formulated mathematically in multiple ways;

for this thesis, the following definition suffices:

Definition 11. For a given state space RM , a continuous-time dynamical system

is a family of functions Θt on RM which are the solution to the ordinary differential

equation

dx

dt
= F (x), (2.23)

for x ∈ RM and some suitably-smooth function F (x).

A general introduction to dynamical systems may be found in [10]. Dynam-
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ical systems can perform signal processing functions, in which the state of certain

system elements reflects a constant or time-varying signal, and those states govern

the evolution of other downstream system states over time. F (x) may be nonlinear,

and an input signal will generally not be a linear combination of the system’s down-

stream states, but the neurons which are described by this model nevertheless carry

out the information processing of neural systems. How can the activity of neuron

populations be understood from an information processing perspective?

2.3.1 Low-dimensional activity

The definition of sparsity given in Section 2.2.2 may be applied to the state of

a dynamical system at a given point in time. This activity may not carry the same

meaning as the sparse coefficients in a linear signal representation, but sparse pop-

ulation activity in dynamical systems can convey similar functional benefits, as de-

scribed further in Chapter 4. The tools of dimension reduction can be used to better

make sense of the simultaneous activity of the elements of large dynamical systems

governed by complicated or possibly unknown equations. Instead of predicting the

evolution of the system based on its governing equations, we can measure the system

state across time and analyze the volume of the state space which these measure-

ments occupy. One hypothesis, popular in both machine learning and neuroscientific

communities, is that “natural signals”, i.e., signals generated by measurement de-

vices exposed to ambient natural environments, occupy low-dimensional subspaces

of the system’s state space [87]. Activity states lying within low-dimensional sub-
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spaces may be more easily distinguished from one another, aiding categorization

and the extraction of features from an input signal.

2.3.2 Numerical simulation of dynamical systems

To simulate the evolution of a dynamical system (or other system of ODEs)

on a computer, it becomes necessary to discretize the system in time. There exist

many techniques to accomplish this goal, each suited to certain classes of problems.

For the equations encountered in Chapter 4, the classic four-step Runge Kutta

(RK4) method suffices [2]. The RK4 method can be used to compute an approximate

solution to first-order initial value problems of the form

dy

dt
= f(t,y), y(t0) = y0. (2.24)

Numerical solutions are computed as values yn ≈ y(tn) for a sequence of times

tn = nh as

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4), (2.25)

where

k1 = f(tn,yn), (2.26)

k2 = f

(
tn +

h

2
,yn +

h

2
k1

)
, (2.27)

k3 = f

(
tn +

h

2
,yn +

h

2
k2

)
, (2.28)

k4 = f(tn + h,yn + hk3). (2.29)
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This method has O(h4) accuracy.
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Chapter 3: Compressed Sensing Electron Tomography

3.1 Overview

Electron tomography (ET), as performed in the transmission electron micro-

scope (TEM) or the scanning transmission electron microscope (STEM), has the

unique capability of providing three-dimensional ultrastructure of cells and tissues

in a native context, thus revealing important constituents such as membranes, cy-

toskeletal fibers, and protein complexes, on a macromolecular scale. These 3D visu-

alizations are obtained from multiple 2D projections of a biological specimen when

it is tilted through a wide range of angles relative to the incident beam direction.

Currently, most ET reconstructions of cells are obtained using the weighted back-

projection (WBP) algorithm, or the simultaneous iterative reconstruction technique

(SIRT) algorithm. Electron tomography can be applied to specimens prepared by

rapid freezing in a vitrified frozen hydrated state, or by fixation with cross-linking

agents followed by plastic-embedding and staining with heavy metals to enhance

ultrastructural contrast. The choice of specimen preparation depends on the struc-

tures that need to be visualized: whereas it is generally preferable to image bacteria

and small eukaryotic cells in a frozen hydrated state using cryo-TEM, larger eukary-

otic cells and tissues are often best visualized in specimens that have been stained
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with heavy atom contrast agents, due to limitations in cryo-preparation of large sam-

ples. ET can be performed on both types of specimen but with different imaging

modes: phase contrast TEM for frozen hydrated specimens; and amplitude contrast

TEM, bright-field STEM, or dark-field STEM for stained specimens. In this work,

we apply compressed sensing (CS) recovery algorithms to bright-field and dark-field

STEM datasets, and detail their equivalence to certain regularized least-squares

reconstruction problems.

With the continuing development of electron tomographic techniques and their

widespread adoption by structural and cell biologists, there has been an impetus to

enhance the quality of 3D visualizations to discern smaller structures within the

complex milieu of the cell. Developing improved 3D reconstruction algorithms of-

fers one potential route to better visualization of cellular ultrastructure. It has been

well established that the quality of a tomographic reconstruction can be improved

through the incorporation of prior knowledge about the specimen, i.e., through reg-

ularized image reconstruction. In this chapter, prior knowledge manifests through

sparse signal models, which represent assumptions about image pixel statistics. Reg-

ularization takes the form of penalty functions on a least-squares optimization prob-

lem, designed to enforce sparsity in reconstructed images. More recently CS, which

exploits sparse signal structure to reconstruct a signal from undersampled measure-

ments via regularized recovery, has attracted increasing attention for a number of

data processing applications. The recent success of CS and related mathematical

techniques in medical imaging - particularly magnetic resonance imaging (MRI)

[75, 27, 4, 58, 59, 28] and more recently x-ray computed tomography [112] - have

21



led to a growing interest in using CS methods in the field of electron tomography

(ET). Most reports of CS applications in ET have involved the imaging of inorganic

materials, e.g., STEM dark-field tomography of iron oxide nanoparticles [94, 73, 51].

There have also been studies aimed at applying regularization and CS methods to

cryo-TEM [1, 99]. Here, we consider the application of CS to improve the quality of

3D cellular ultrastructure imaging in electron tomography of cells and tissues which

have been prepared using heavy atom staining to enhance contrast. This type of

specimen preparation is the technique that is most widely used among cell biologists

because it enables the analysis of large eukaryotic cells.

To gauge what advantages CS might offer, we first examine how the sampling

assumptions of CS relate to the mathematical models of tomographic sampling, and

how CS image recovery relates to regularized least-squares recovery [108, 84]. From

a computational perspective, the tools of CS and regularized recovery have much in

common, and one of our aims is to clarify their relationship.

There remain important unsolved problems in rigorously grounding a theory

of compressed sensing electron tomography (CS-ET). First, mathematical proofs

of the efficacy of CS for undersampled recovery in biomedical imaging rely heav-

ily on randomized Fourier sampling in order to obtain probabilistic reconstruction

error bounds. The measurement process of STEM tomography can be interpreted

theoretically as acquiring Fourier data, but the manner of acquisition violates CS

sampling assumptions. In this chapter, we clarify the nature of this obstacle. A sim-

ple randomized variant of this procedure, in which ET projection angles are chosen

randomly within a mechanically-feasible range, is a natural topic of investigation
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for a new measurement procedure. However, numerical results from simulated data

indicate that this strategy is inferior to traditional uniform sampling, as illustrated

in Figure 3.9.

Second, the performance of sparse reconstruction methods depends on the

structural complexity of the specimen being imaged. This may lead to different

relative performance gains by CS-ET recovery depending on the application domain

in question and the sparsity model chosen. In this chapter, we analyze the standard

(identity) sparsity model as well as the wavelet sparsity and TV sparsity models [109,

108], which have previously been used in CS applications including work by [1, 75, 7,

51, 73, 63]. Simulated datasets and experimental datasets from nanoscale inorganic

materials are often more sparse in common transform domains than experimental

datasets from biological structures, with implications for the relative advantage of

CS-ET recovery for each type of structure.

After reviewing pertinent aspects of numerical ET and CS theory, we examine

CS-ET recovery for simulated membrane-bound compartments within cells; in these

simulations statistical properties ensure a high degree of compressibility in the TV ,

wavelet, and identity domains. We also demonstrate that our CS-ET recovery on

simulations of nanoscale inorganic materials gives results that are consistent with

previous work. Under such conditions, the advantages of CS-ET relative to WBP or

SIRT reconstructions are substantial. Reconstructions from a membrane phan-

tom, a simulated dataset comprised of randomly-distributed ellipsoids and spheres

at multiple scales, eccentricities, and orientations are used to characterize the per-

formance of CS-ET under a range of noise and measurement conditions. In these
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simulated membrane reconstructions, we find high correlation between sparsity and

reconstruction error, significant performance advantages of CS-ET relative to WBP,

and consistent superiority of uniformly-sampled CS-ET to random-angle CS-ET.

We then analyze experimental STEM tomographic tilt series acquired from

plastic-embedded, heavy metal stained sections of fixed cells. Our simulations and

experimental results indicate that although CS reconstructions substantially out-

perform the commonly-used WBP and SIRT methods for highly-sparse objects, CS

generally provides a smaller or no advantage for reconstructions of biological struc-

tures. We attribute the difference this disparity in performance to the significant

difference in sparsity between simple phantoms and complex biological structures.

We discover that the relationship between data sparsity and the performance of CS

reconstruction on the one hand, and between specimen structure and data sparsity

on the other, can complicate a thorough understanding of the effectiveness of CS-ET

under all potential imaging conditions. However, in application domains for which

accurate sparse signal models can be established, there is increasing evidence for the

efficacy of CS-ET in both fully-sampled and undersampled tomogram recovery.

3.2 Background

3.2.1 STEM tomography

In general, tomography refers to methods for constructing a 3D reconstruc-

tion of an object and its interior from 2D projections. These projections are created

by measuring changes in penetrating waves or particles which are sent through the

24



imaging specimen. There are several imaging modalities which perform this function

using many different projection geometries, producing 3D structural information at

different spatial and temporal resolutions. With electron tomography (ET), 3D re-

construction of the electron density function f(x) : Ω→ R, Ω ⊆ R3, of microscopic

structures are created from electron beams using a transmission electron microscope

(TEM) [111] or scanning transmission electron microscope (STEM) [83]. A thor-

ough introduction to the theory and practice of electron tomography may be found

in [47], the most essential points of which are highlighted here. Both the TEM

and STEM produce images by measuring changes in incident electron beams passed

through the imaging specimen. STEM images are produced using a single beam

emitter that is scanned over the surface of the specimen to acquire each spatial data

point in a 2D projection.

In amplitude contrast imaging modes, structural information with roughly 1

nm spatial resolution is obtained by measuring the scattering of electrons along

beam paths, comparing the number n0 of incident electrons with the number n of

electrons which pass through the specimen unscattered. Two imaging modes which

fall into this category are explored in this chapter. The two modes, bright field

(BF) STEM tomography and dark field (DF) STEM tomography, differ in how

electron scattering measurements are acquired, but both can be analyzed with the

same mathematical theory. In sufficiently-thin specimens, the quantities n and n0

for a given beam L are related by the equation

n = n0 exp (−CµL) , (3.1)
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where C is a positive constant and µL is the integral of the specimen’s electron

density function f(x) along the beam path L. As discussed in the next section, this

quantity is the Radon transform Rf(L) of f(x) along L, so that

Rf(L) ∝ − log(n/n0). (3.2)

In this way, BF and DF STEM projections become related to the Radon transform

of the specimen’s density function f(x), and this density function may be recovered

from the computed Radon transforms.

3.2.2 The Radon transform

Mathematically, the problem of electron tomogram reconstruction can be cast

numerically as an inverse problem for the Radon transform:

Rf(L) =

∫
L

f(x)|dx|, (3.3)

a line integral defined for any line L ∈ L, the space of all lines in R3. The no-

tation |dx| refers to the standard 1D Lebesgue measure on the line L. Though

intrinsically a 3D problem, the parallel-beam measurement process used in STEM

tomography samples the Radon transform along sets of parallel lines orthogonal to

a fixed axis of rotation. This effectively decomposes pre-processed projection data

into independent 2D sets, each containing samples of Radon transform data defined

on the space of lines in R2. The sampling space, a proper subset of L, can then
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be explicitly parametrized by a normal vector α, a distance coordinate s equal to

the minimum distance between L and the origin (0, 0), and a depth coordinate z

indexing the planes normal to the axis of rotation:

Rf(α, s, z) =

∫ ∞
−∞

f(t sinα + s cosα,−t cosα + s sinα, z) dt. (3.4)

After preprocessing, the data created by the microscope is interpreted as a T×S×P

array sample set

y(i, j, k) ≈ Rf(αi, sj, zk), (3.5)

with a finite set D of Radon sampling parameters:

D = {(αi, sj) | i ∈ [1, T ], j ∈ [1, S]}, (3.6)

as well as depth samples {zk}Pk=1. Approximation error stems from several sources:

the most pertinent to our analysis is the shot noise inherent in the computation of

y via discrete electron emissions [47]. In areas of ET such as cryo-ET where low

electron doses are required, the deviation of this noise behavior from Gaussian noise

models can be significant, and this presents a particular complication for CS - see

e.g. [91] for a recent perspective on the problem of CS reconstruction in the presence

of Poisson noise. For our analysis, we avoid this problem by using datasets obtained

from larger electron doses, allowing the Gaussian noise model to suffice.

An additional complication arises from approximating the operatorR digitally

as a computational process. For iterative reconstruction methods such as CS-ET, it
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is necessary to compute the forward and adjoint measurement operators. Multiple

algorithms exist to tackle this problem, each performing a slightly different linear

transformation on discrete images. For our analysis, the digital Radon trans-

form R implemented using the ASTRA toolbox for MATLAB [88]. For the M and

N values used for practical purposes, this approximation of R by R contributes

negligibly to the error in (3.5). See [39] for further considerations on digital Radon

transforms.

Despite these and other complications, the equation in (3.5) can be made

sufficient for the purposes of numerical reconstruction. The measurement set y is

received as a T × S × P array of preprocessed electron counts. The 2D subsets for

fixed z values:

yκ(i, j) = y(i, j, κ),

where i ∈ [1, T ] and j ∈ [1, S], are reconstructed independently. For the remainder

of the chapter we will focus on these 2D reconstruction problems.

The solution to each such reconstruction is a vector f ∗κ , a 2D slice of the full

3D digital tomogram f ∗ which itself is a finite M × N × P approximation of f .

Each reconstructed f ∗κ is an x − z slice of the digital tomogram, with a height of

P and a width of M pixels, and can thus be considered a vector f ∗κ ∈ RMP . The

choice of coordinate axis alignment, as well as a representative f ∗κ , are illustrated in

Figure 3.1.
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Figure 3.1: Simulated tomographic reconstructions from a phantom con-
sisting of stained membranes embedded in a uniform matrix. (a) Slice
through phantom in x− z plane with coordinate axis orientation indicated.

3.2.3 CS-ET signal recovery

The problem of recovering f from tomographic measurements can be ap-

proached in many ways, but the approach most relevant here is to work explicitly

with the digital Radon transform R and its linear algebra. For a fixed sample set D,

the digital Radon transform R for M × P images can be realized as a (TS ×MP )

measurement matrix RD. For any set D one obtains through tomographic mea-

surement, RD will not be invertible. This means that the problem:

Find f ∗κ ∈ RMP such that RDf
∗
κ = yκ (3.7)

is ill-posed, multiple f ∈ RMP satisfy this equation and the desired solution cannot

be distinguished among them. To overcome this limitation, we recast the recov-

ery of f using the regularized least-squares techniques introduced in Section 2.2.4.

We seek a least-squares reconstruction of fκ while enforcing sparsity in a combina-
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tion of the TV , identity, and wavelet domains. For some choice of regularization

hyperparameters λTV , λI , and λW :

f ∗κ = argmin
f∈RMP

||RDf − yκ||22 + λTV ||TV f ||0 + λI ||f ||0 + λW ||Wf ||0. (3.8)

As stated, however, this is an NP-hard problem, and we replace the `0 norm terms

with `1 norms to obtain the objective function minimized by the CS-ET algorithm:

f ∗κ = argmin
f∈RMP

||RDf − yκ||22 + λTV ||TV f ||1 + λI ||f ||1 + λW ||Wf ||1, (3.9)

It is worth noting that in practice, useful mutual coherence bounds are not

known for measurement and sparsity models of interest in ET. Radon analysis in

particular remains limited, with respect to any sparsity model. Theoretically rigor-

ous reconstruction guarantees depend delicately on the structure of the measurement

matrix Φ and sparsifying matrices Ψ [35, 11, 21], and the conditions under which

sparse reconstruction is guaranteed do not coincide with measurement schemes

which STEM instrument limitations impose. Traditional tomographic sampling

involves acquiring projections at a range of tilt angles, approximately uniformly-

spaced within a mechanically feasible range.

This range is chosen deterministically, with small machine misalignments mea-

sured and reported after the fact. Therefore, for traditional tomography, RD is a

deterministic measurement matrix. The majority of CS recovery results rely on

measurement matrices chosen from a random ensemble. See, e.g., [15, 41, 110] for
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recent developments in deterministic measurement matrix design and analysis, but

the theoretical results are as yet inadequate to address the RD matrix structure.

Moreover, work guaranteeing TV -sparse signal reconstruction is currently unable to

say anything about solutions of equations such as (3.9) [19]. In a simple attempt to

investigate the former issue, we perform random-angle tomography experiments on

simulated datasets, choosing tilt angles uniformly at random within a mechanically-

feasible range.

3.3 Methods

Pragmatically, the aim of this work is to implement a CS-ET algorithm for

the regularized reconstruction of STEM tomograms and compare its performance

to other reconstruction approaches. Evaluating this performance hinges on under-

standing how well the images encountered in biological STEM tomography satisfy

the assumptions for sparse signal reconstruction problems; to this end we also at-

tempt to quantify the sparsity of image specimens in multiple transform domains

and relate these values to reconstruction performance.

3.3.1 Compressed sensing approach

Compressed sensing, strictly speaking, refers to the recovery of a signal from

a small number of appropriately-chosen linear measurements. This achievement has

become a popular focal point for a novel mathematical perspective on the recov-

ery of signals from measurements. An understanding of the appropriateness of CS
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methods for any physical measurement procedure must begin with a recasting of the

measurement process into the language of CS theory. Recent work by [73] provides

a comprehensive reinterpretation of the ET recovery problem, and here we therefore

keep our development brief.

Any digital signal, including the tomogram images reconstructed by ET, can

be understood as a vector of data points f . A 2D digital tomographic image with

N pixels is a (column) vector f with N entries, each entry containing a grayscale

pixel value. This is a discrete approximation to the potential function f(x, y) and

is ultimately the mathematical object recovered via computational tomographic re-

construction.

Recall that for each 2D subproblem of tomographic reconstruction, tilt series

data consists of T detector counts at each of S angles, as indexed by the set D in

(3.6). There are therefore ST corresponding measurement vectors ϕi, each evalu-

ating to a particular tilt series pixel value when an inner product is taken against

image f ∗κ . The rows of the measurement matrix RD are built from these vectors:

for each i ∈ [1, T ] and j ∈ [1, S], row (i − 1)S + j of RD is a measurement vector

ϕij ∈ RMP , such that 〈ϕij,x〉 is pixel (i, j) of the tilt series data. Given these mea-

surements and the sparsity models introduced in the previous section, we can seek

to recover a 3D tomogram as a collection of 2D solutions to Equation (3.9).
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3.3.2 Sparsity and incoherence for biological structures

In Section 3.4 of this chapter, we analyze the compressibility of an experi-

mental biological dataset in the identity, wavelet, and TV domains. Though the

appropriateness of each choice is dataset-dependent, all three are common in recent

work in CS and regularized recovery [73, 94, 52, 75, 7], and our CS-ET implementa-

tion is capable of using any combination of the three. This analysis is performed by

computing the 2.5% compressibility ratios of the experimental dataset in the three

transform domains. See Section 2.2 for the definition of percent compressibility ra-

tios. These values are expressed as a multiple ρ of the 2.5% compressibility ratios

of the membrane phantom in each transform domain, for ease of comparison.

Additionally, we quantify the coherence of Radon transform measurements

and the mutual coherence of Radon transform measurements with a DB8 wavelet

representation system in order to gauge the discrepancy between this measurement

system and the theoretical requirements imposed by CS theory for sparse signal

reconstruction. The results of this can be seen in Figures 3.2 and 3.3.
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Figure 3.2: A histogram of the magnitudes of the components of Radon transform
measurement vectors, taken from a Radon transform of a 256× 256 image at angles
from −70◦ to 70◦ at 5◦ increments. The coherence of a measurement dictionary
containing vectors of length M is defined as

√
M times the largest magnitude among

the vectors’ components, and is used as a convenient but conservative bound for the
restricted isometry property (RIP) of a measurement system. For the measurement
dictionary displayed here, consisting of 7424 length-65536 vectors, the coherence
value is approximately 0.1188 · 256 = 30.4128. This value is too large to be of use
for a theoretical analysis, suggesting the need for new analytic tools for real-world
measurement systems.
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Figure 3.3: A histogram of the correlation values between normalized discrete Radon
transform measurement vectors and elements of a DB8 wavelet basis, each for a 256×
256 image and sampling 10% of the vectors in each dictionary. The Radon transform
used consists of projections at angles from −70◦ to 70◦ at 5◦ increments. The mutual
coherence of a measurement dictionary and representation basis for vectors of length
M is defined as the

√
M times the magnitude of the largest correlation between

their elements, and is used as an upper bound for the restricted isometry proprty
(RIP) of a measurement system for signals with sparse representations in the given
representation basis. For the dictionaries displayed here, a mutual coherence of
approximately 0.15 · 256 = 38.4 is too large to be of use to a theoretical analysis of
the optimization routine, suggesting the need for new analytic tools for real-world
measurement systems.

Since the number of vectors to check grows linearly with image size, all calcu-

lations were performed using a test system which assumed a 256x256 image. The

coherence of the Radon measurement vectors is equal to the largest component of

any of the vectors, while the mutual coherence between Radon measurements and

35



wavelet representations is equal to the largest magnitude of any inner product be-

tween the two, with Radon measurement vectors all normalized to have Euclidean

norm equal to the square root of the number of pixels in the test system, which in

this case equals 256. The values obtained in this manner, approximately 30.4 for the

Radon measurement coherence and 38.4 for the Radon-wavelet mutual coherence,

are too large to be of use for theoretical justifications for the efficacy of CS-ET. To

quantify the discrepancy, note that according to Equation (2.8) in chapter 2, we

would require a mutual coherence of approximately 2.8 between our measurement

system and wavelet representation system in order to provably recover a 256x256 im-

age composed of 100 nonzero wavelet coefficients from 70 tomographic projections.

The empirical efficacy of the CS-ET algorithm therefore suggests the development

of improved theoretical tools for understanding when CS recovery does and does not

succeed for deterministic measurement systems.

3.3.3 CS-ET reconstruction

Following the developments discussed in Section 3.3.1, tomograms were recon-

structed in independent 2D slices as solutions to the equation

f̂ = argmin
g∈RN

||Rg − y||22 + λTV ||TV g||1 + λI ||g||1 + λW ||Wg||1, (3.10)

where matrix R has Radon measurement vectors as its rows, W is a DB8 wavelet

transform [34], and (λTV , λI , λW ) is a collection of regularization hyperparameters.

By exploiting the Fourier Slice Theorem [62], one may treat STEM tilt series data as
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samples of either the Radon or Fourier transform, and choose to work in the Radon

domain as we have, or in Fourier space [53]. The latter approach has been devel-

oped and used successfully for CS-ET, [73, 45, 78], but working in the Fourier do-

main requires numerical overhead in the form of non-uniform fast Fourier transform

(NUFFT) operators [45] which may be avoided in the Radon domain. We pursue

a Radon domain reconstruction for this reason, although the overall methodology

closely parallels the development described by [73].

For various integer values of k, k-fold undersampled or simply kx undersam-

pled tilt series were created by keeping every kth projection and additionally the

last projection from a full tilt series.

3.3.4 Comparisons between reconstruction methods

Experimental dataset CS-ET reconstructions were compared against WBP

and SIRT reconstructions of the same projections. WBP reconstructions were im-

plemented in MATLAB using the MATLAB Imaging Toolbox’s iradon command.

SIRT reconstructions were written in MATLAB and Fortran and run on the high-

performance Biowulf Linux cluster at the National Institutes of Health (http:

//biowulf.nih.gov). Simulated dataset CS-ET reconstructions were compared

against WBP reconstructions performed in MATLAB with the imaging toolbox’s

iradon command.
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3.3.5 CS-ET numerical implementation

Equation (3.10) is a convex optimization problem, but the `1 norm is not a

globally differentiable function which presents an obstacle to efficient optimization.

In recent years, several efforts have been made to create algorithms for rapidly

solving `1-regularized least-squares problems. We choose to use the split Bregman

algorithm [49], in contrast to the conjugate-gradient and interior-point methods used

in prior studies [73, 52, 18]. See Section 2.3.1 for more details on the split Bregman

algorithm.

In addition to the λTV , λI , and λW regularization parameters in (3.10), the

split Bregman method requires the specification of a data fidelity parameter µ.

A convenient method of parameter specification is to fix a value of µ and write

(λTV , λI , λW ) as multiples of the µ value. In this way, µ can be viewed as controlling

the size of each update of the iterative split Bregman procedure. This method

allowed us to make simple changes to the hyperparameter sets used for each level of

undersampling in the experimental reconstructions.

The bright-field dataset used the following parameter values. For the 1x re-

construction, µ1 = 5×10−6. The 3x, and 6x reconstructions had µ3 = µ6 = 1×10−5.

All bright-field reconstructions had (λTV , λI , λW ) = µi · (1.2, 6, 4) for i = 1, 3, 6.

The dark-field dataset used different parameter sets. For all three reconstruc-
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tions, µ1 = µ3 = µ6 = 10−6. Then,

(λTV,1, λI,1, λW,1) = µ1 · (4, 8, 10), (3.11)

(λTV,3, λI,3, λW,3) = µ3 · (6, 2, 6), (3.12)

(λTV,6, λI,6, λW,6) = µ6 · (4, 2, 4). (3.13)

As an iterative method the split Bregman algorithm also requires the speci-

fication of a number of iterations, in this case divided into “inner” loop iterations

and “outer” loop iterations. All experimental reconstructions used 12 inner loop

iterations and 10 outer loop iterations.

The core CS-ET algorithm derives from the mrics.m MATLAB function devel-

oped by Tom Goldstein in conjunction with [49]. A repository containing this algo-

rithm as well as supplementary utilities is available at https://github.com/norbert-

wiener-center/cset. Our algorithm differs from mrics.m by using a Radon measure-

ment matrix instead of a Fourier measurement matrix in the least-squares term of

Equation (3.10). This modification bars the solving of the intermediate `2 mini-

mization problem through Fourier methods, and so we use a conjugate gradients

implementation tailored to ASTRA’s Radon transform code.

Reconstruction of 3D volumes through independent 2D problems lends itself

naturally to parallelization to improve reconstruction times. This was implemented

in a simple way in MATLAB using the parfor loop structure, reducing the fully sam-

pled reconstruction time to under 20 minutes. Experimental dataset reconstruction

was carried out on a Windows 7 PC with dual 8-core Intel R©Xeon R©3.40GHz CPU’s,
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using a MATLAB parallel pool using 26 workers.

3.3.6 Datasets used

Experimental data

The three experimental datasets used in this chapter are tomographic tilt se-

ries acquired from a stained beta cell in a plastic-embedded mouse pancreatic islet

of Langerhans. The three tilt series were acquired on an FEI Tecnai TF30 TEM

operating at 300kV (FEI Inc., Netherlands). Images were acquired in the STEM

mode, using a high-tilt tomography holder (Fischione Instruments, Inc., Export,

PA), in conjunction with an on-axis bright field detector (Gatan Inc., Pleasanton

CA) and in-column high-angle annular dark-field STEM detector (Fischione In-

struments, Inc., Export, PA). For each dataset, a single tilt series was acquired

automatically with a tilting range of ±78◦ and increments of approximately 2◦, re-

sulting in 79 projections. Each projection was 2048× 2048 pixels, with a pixel size

of 1.67nm (BF) and 1.4nm (DF). Two tilt series were acquired in the DF-STEM

mode - one with a standard dose of 24 nA probe current and one with 10% of the

standard dose, to test the reconstruction algorithms under noisy conditions. The

tilt series were aligned using IMOD software [68] and binned by 2. An example of

a binned projection is shown in Figure 3.4.
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Figure 3.4: Comparison of bright-field STEM projections and x− y recon-
struction slices. (a) The STEM projection of a biological sample at 0◦ tilt after
initial preprocessing in IMOD. This provides a “ground truth” that serves as a point
of reference for the broad morphological structure of reconstruction volume data.
Reconstruction x − y slices from fully sampled data are displayed in (b) for the
CS-ET volume, (c) from the SIRT volume, and (d) from the WBP volume. The
reconstruction slices resolve small-scale features not apparent in the overhead pro-
jection alone, and are free of interference from the high-contrast gold nanoparticles
present near the upper and lower boundaries of the sample.

Each reconstructed volume of 1024 independent reconstructions of 1024 ×

100 2D images (N = 102400). Figure 3.1 demonstrates this chapter’s choice of

orientation for the coordinate axes, consistent with common nomenclature in the

ET community. Each reconstruction generates x− z data of the tomogram volume

for a fixed y value, but the perspective most commonly used for examining imaged
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specimens is the orthogonal x− y view.

The use of the identity sparsity model with the experimental images requires

background subtraction from the resulting reconstructions before evaluating the

reconstruction sparsity. Background values are estimated by averaging over patches

of manually-observed background areas in an initial WBP reconstruction.

Simulated data

A key difference between the imaging of biological and nanometallurgical spec-

imens is the complexity of the resulting volumes. Tomograms of assemblies of

nanoparticles may be highly sparse or TV-sparse, in comparison with the decreased

sparsity of biological tomograms. In addition to the evidence from experimental

reconstructions for the decreased utility of undersampling for biological CS-ET, we

consider the problem numerically using a mock-nanometallurgical phantom shown

in Figure 3.5.

The construction of this phantom is intended to draw on the statistical prop-

erties of datasets observed [73, 94], and others - high contrast, piecewise constant

components with sharp edges. Projections of the nanoparticle phantom are sim-

ulated in MATLAB. Poisson noise with a rate parameter of 5500 is added to the

projections, which are then corrupted with Gaussian noise with standard deviation

equal to 10% of the projections’ mean.

The membrane phantom is a 256× 100× 256 array taking values in [0, 1]. On

top of a non-zero background, multiple ellipses of random sizes, locations, eccentrici-
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ties, orientations, and contrasts are superimposed to imitate observed arrangements

of membranous bodies in heavy metal-stained cellular preparations. This phantom

provides contrast and structural conditions more akin to those encountered in bio-

logical imaging, and sparsity levels between those found in the nanoparticle phantom

and the experimental datasets. Both noiseless and noisy projection data are tested;

the noisy projections are corrupted with Poisson noise and have a Gaussian noise

level equal to 10% of the projection’s mean after background subtraction.

3.3.7 Data analysis

Reconstruction of experimental tilt series

The experimental datasets were reconstructed using CS-ET, SIRT, and WBP al-

gorithms from 1x, 3x, and 6x projection data. For the bright-field dataset, these

contained 79 tilts, 27 tilts, and 14 tilts respectively. For the dark-field dataset, these

contained 77, 26, and 13 tilts. Figure 3.11 illustrates the results of this procedure

for x−z slices of the reconstructions, comparing the same slice across multiple levels

of undersampling.

Figure 3.12 gives a comparison of several fully-sampled x − z slices from the

high-dose DF reconstruction. Figure 3.13 shows representative overhead x−y slices

from reconstructions of the low-dose DF dataset at multiple levels of undersampling.

After reconstructions were performed, all tomogram volumes were whitened

(scaled to zero mean and unit variance) and then uniformly scaled for better image

contrast for visualization purposes.

43



All regularized reconstruction methods require a choice of hyperparameter

“weights”, and many open problems remain for obtaining good a priori estimates of

weight values in experimental application conditions. Parameter combinations used

in this chapter were found heuristically based on experience with the datasets. See

[73] for a more in-depth discussion of hyperparameter tuning concerns.

The sparsity of the experimental datasets was quantified via the n%-compressibility

ratio defined in Section 1.2 for n = 2.5 represented as a distribution of multiples ρ

of the 2.5%-compressibility ratios of the 256 membrane phantom x− z slices. This

distribution gives an indication of the relative compressibility of the experimental

and phantom datasets.

Reconstruction of simulated tilt series

The goal of reconstructing the nanoparticle phantom was to establish a baseline

comparison between our CS-ET implementation and the Fourier-based method used

in [73]. The full set of data analyzed in this work supports a conclusion that CS-ET

does not substantially outperform alternative methods such as SIRT and WBP for

less-compressible signals, so we seek to eliminate algorithm implementation errors

as a source of performance degradation. See Figure 3.5 for a description of the

nanoparticle phantom reconstruction procedure.

For the membrane phantom, reconstructions f̂ were analyzed in a standard

manner via their root mean squared error : ||f̂ −f ||1/22 /
√
M ·N , calculated for each

2D x − z phantom slice f . Root mean square error (RMSE) was calculated for all

reconstructions, and the CS-ET results were compared with the identity, wavelet,

and TV sparsity of each slice of the 3D phantom to examine the correlation between
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them. See Figure 3.8 for the results of this analysis.

Reconstructions are computed for the membrane phantom using both ran-

dom and traditional tomographic sampling schemes, to test the performance of this

mechanically-feasible randomized sampling strategy. The uniform tilt angles were

chosen to coincide with the tilt series angles reported for the bright-field experi-

mental dataset. Random tilt angle vectors were chosen to have the same number

of projections as the uniform series, chosen uniformly at random from the same tilt

range as the uniform angles. The results of this analysis are displayed in Figure 3.9.

To test the stability of the reconstruction algorithm, all reconstructions were

repeated under two different noise conditions. First, reconstructions were made from

projection data free of noise. Second, reconstructions were made from projections

corrupted by Poisson noise with a rate parameter of 5500 and Gaussian noise with

standard deviation equal to 10% of the projection mean. Since the noisy conditions

are more relevant to experimental measurement conditions, images of those results

were included in Figure 3.6. Noiseless reconstruction results can be found in Figure

3.7.

3.4 Results

In this section, we present the reconstruction results for the CS-ET and com-

parison methods on the simulated and experimental datasets. We also present our

analysis of the compressibility of the simulated and experimental datasets, how they

compare, and how they are correlated with reconstruction accuracy.
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3.4.1 Tests on simulated tomographic data

We first applied the CS-ET reconstruction technique to a tilt series of sim-

ulated dark-field STEM images of circular and crescent-shaped objects, as from a

cross-section of inorganic nanoparticles. This model of simple, high-contrast struc-

tures reflects the image statistics present in certain materials science applications of

STEM tomography (Figure 3.5a). As shown in Figure 3.5b-j, the resulting CS-ET

reconstructions are significantly clearer than their SIRT and WBP counterparts, in

agreement with previous work of [73]. This type of simple nanoparticle specimen is

ideal for application of the CS reconstruction approach; the results show that our

novel real-space CS algorithm gives the expected result.
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Figure 3.5: Comparison of reconstruction techniques for undersampled re-
covery of an inorganic nanoparticle phantom. Simulated projections at 5◦

increments between −70◦ and 60◦ are 2x and 3x undersampled to produce recon-
structions from 27, 15, and 9 projections respectively. (a) simulated mass dis-
tribution in x − z plane of single-phase nanoparticle phantom showing piecewise
constant particles, (b-d) CS-ET reconstructions, (e-d) SIRT reconstructions, and
(h-j) WBP reconstructions. Note the higher performance of CS-ET reconstruction
for this simple, sparse model, in agreement with the earlier work of Leary et al.
(2013).

We next tested the CS-ET technique on a simulated tomographic STEM

bright-field tilt series generated from a 3D phantom imitating a collection of stained

membrane-bound cellular compartments.
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Figure 3.6: (b) CS-ET reconstruction of x − z slice from simulated projections
at ±70◦ with 2◦ angular increment, (c) CS-ET reconstruction of x − z slice with
3x undersampling of tilt angles, (d) CS-ET reconstruction of x − z slice with 6x
undersampling of tilt angles, (e) WBP reconstruction of x − z slice with all tilt
angles, (f) WBP reconstruction of x− z slice with 3x undersampling of tilt angles,
(g) WBP reconstruction of x − z slice with 6x undersampling of tilt angles, (h)
Slice through phantom in x − y plane, (i) CS-ET reconstruction x − y orthoslice
with all tilt angles, (j) CS-ET reconstruction x−y orthoslice with 3x undersampling
of tilt angles, (k) CS-ET reconstruction x− y orthoslice with 6x undersampling of
tilt angles, (l) WBP reconstruction x− y orthoslice with all tilt angles, (m) WBP
reconstruction x − y orthoslice with 3x undersampling of tilt angles, (n) WBP
reconstruction x− y orthoslice with 6x undersampling of tilt angles.

2D slices of this phantom are shown along the x − z axis in Figure 3.1 and

along the x− y axis in Figure 3.6(h). Simulated projections were acquired indepen-

dently for each x− z slice and consisted of Radon transform data over a tilt range

of ±70◦ with an angular increment of 2◦. As described in the Methods, Poisson
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noise simulating typical high-dose STEM measurement conditions was added to the

projections. The projections were then further corrupted with Gaussian noise. The

membrane phantom x− z reconstructions were performed with noisy 1x, 3x, and 6x

undersampling of the tilt angles, using CS-ET (Figure 3.6(i-k)) and WBP (Figure

3.6(l-n)). See Figure 3.7 for results from noiseless membrane phantom reconstruc-

tions.

Figure 3.7: CS-ET and WBP reconstructions from noiseless membrane
phantom projections. The figure layout is identical to Figure 3.6, but all recon-
structions are shown from noiseless projection data. As expected, CS-ET substan-
tially outperforms WBP and reconstruction quality is higher than that from noisy
data.

It is evident that the performance of CS-ET exceeds that of WBP for the fully-

sampled and undersampled tilt series, but the advantage of CS is greatest for the
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6x undersampled tilt series. Figure 3.8 corroborates this observation with RMSE

calculations for both reconstruction methods.

Figure 3.8: Membrane phantom reconstruction x − z slice RMSEs. RMSE
values are displayed for CS-ET and WBP reconstructions from noiseless and noisy
(a) fully sampled tilt series (b) 3x undersampled tilt series, and (c) 6x undersampled
tilt series. Note that CS-ET reconstructions consistently outperform their WBP
counterparts in RMSE value. Moreover, CS-ET reconstruction volumes are more
robust to the addition of Gaussian noise, with smaller relative and absolute increases
in error values than those observed with WBP.

These results are in agreement with known results for CS recovery of sparse

signals from undersampled data. However, the advantage of CS relative to WBP

is not as significant for the membrane phantoms as it is for the nanoparticle phan-

tom (Figure 3.5). We attempt to improve these results by creating projections at

randomly-sampled angles over a tilt range of ±70◦, but our numerical results shown

in Figure 3.9 indicate that this sampling strategy performs worse than traditional

uniform sampling with high probability.
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Figure 3.9: Comparison of reconstruction errors from simulated STEM
tomographic data based on uniform versus random sampling of tilt an-
gles. A simple variant of traditional, uniformly-sampled tomographic measurement
is to choose tilt angles at random within the mechanically-feasible range. Numeri-
cally, this approach performs worse than uniform sampling for the membrane phan-
tom. For the three membrane phantom reconstructions from fully sampled (1x),
3x undersampled, and 6x undersampled tilt series, 30 random reconstructions were
performed using the same number of tilts at angles chosen uniformly at random
between −70◦ and 70◦. This procedure was repeated using both noiseless and noisy
projection data. The difference between 30 random reconstruction RMSEs and uni-
form reconstruction RMSEs for the 1x and 6x trials are plotted above for each x−z
reconstruction slice, indexed along the x axis. A positive RMSE difference indicates
that random sampling performed worse than uniform sampling.

Since CS performance is dependent on signal sparsity, we quantify this phe-

nomenon by comparing the sparsity of the nanoparticle and membrane phantoms

in the TV , identity, and wavelet domains in Figure 3.10, which shows that the

membrane phantom is substantially less sparse than the nanoparticle phantom.
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Figure 3.10: Sparsity comparison for the membrane and nanoparticle phan-
toms. The 1%-compressibility ratios of each of the 256 x−z slices of the membrane
phantom are calculated in each transform domain and plotted as a multiple ρ of
the nanoparticle phantom’s 1%-compressibility ratio. (a) ρ in the TV domain, with
average equal to 12.7, (b) ρ in the identity domain, with average equal to 11.8,
(c) ρ in the DB8 wavelet domain with average equal to 54.4. Note that the mem-
brane phantom, significantly more simple in structure than experimental biological
datasets, is markedly less compressible than the nanoparticle phantom.

3.4.2 CS-ET reconstructions of experimental tomographic tilt series

To test the CS-ET reconstruction algorithm on experimental data, we recorded

STEM tomographic tilt series from insulin-secreting beta cells in a specimen of iso-

lated mouse pancreatic islets of Langerhans, which was conventionally prepared by

fixation with osmium tetroxide, dehydration, embedding and staining with uranium

and lead [14, 100]. Cellular ultrastructure prepared in this way is rich in stained

membranes, which are visible as dark lines in bright-field STEM images or bright

lines in dark-field STEM images. Islet beta cells contain many internal structures of

this type, including outer membranes of secretory granules, nuclear inner and outer

membranes, mitochondria, and endoplasmic reticulum. In addition, there are many

other structures such as ribosomes, cytoskeletal filaments, and other macromolecu-
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lar assemblies. The sample represents a complex biological object on which different

reconstruction techniques can be tested. Single-axis tilt series were reconstructed as

1024 independent x − z slices, perpendicular to the y-axis, each containing images

of size 1024× 100 pixels, using CS-ET, SIRT, and WBP for fully sampled tilt series

as well as 3x and 6x undersampled tilt series.

The reconstructions of bright-field STEM and dark-field STEM tomographic

tilt series in Figure 3.11(a) and Figure 3.11(b), respectively, indicate that there is a

significant reduction of noise in CS-ET and SIRT reconstructions relative to WBP.

The distinction between CS-ET and SIRT reconstructions is less pronounced, though

SIRT structures overall exhibit some blurring that is less apparent in CS-ET results.
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Figure 3.11: Comparison of CS-ET, SIRT, and WBP reconstruction x− z
slices through mouse beta cell tissue. a Reconstructions from high-dose BF
STEM tilt series, (b) reconstructions from high-dose DF STEM tilt series.

Next, we compare CS-ET, SIRT, and WBP reconstructions from dark-field

STEM tilt series recorded at low electron dose. The eight x− z slices in Figure 3.12

indicate that both CS-ET and SIRT perform substantially better than WBP, and

again CS-ET structural boundaries appear less diffuse than their SIRT counterparts.
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Figure 3.12: Comparison of multiple CS-ET, SIRT and WBP reconstruc-
tion x − z slices through mouse beta cell tissue. This figure demonstrates
multiple x− z reconstruction slices from the high-dose DF dataset, to give a better
sense of the differences in reconstruction quality between the three reconstruction
methods.

In Figure 3.13, we compare CS-ET, SIRT, and WBP reconstruction x−y slices

from fully sampled, 3x, and 6x dark-field STEM tilt series recorded at low electron

dose.
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Figure 3.13: Comparison of CS-ET, SIRT, and WBP reconstruction al-
gorithms from dark-field STEM tilt series of mouse beta cells recorded
at low electron dose. (a) Reconstructed x − z slices, (b) reconstructed x − y
slices from fully sampled, 3x undersampled, and 6x undersampled tilt series. Note
that due to differing reconstruction procedures, a small discrepancy exists in the
z coordinates of the CS-ET and SIRT x − y slices, manifesting as small structural
differences between the images.

Additional x−y reconstruction slices from the high-dose BF and DF tilt series

can be seen in Figures 3.14 and 3.15.
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Figure 3.14: Reconstruction x − y slices from high-dose bright field tilt
series. For all three algorithms, the 3D tomogram volume is assembled as a series
of independent 2D reconstructions in the x− z plane. The orthogonal x− y planes
provide the highest resolution and are the most common human vantage point for
the analysis of 3D ET data. Each row of the x− y reconstruction view comes from
a separate image reconstruction. This figure demonstrates x−y reconstruction slice
from the high-dose BF tilt series from 1x, 3x, and 6x undersampled data.
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Figure 3.15: Reconstruction x − y slices from high-dose dark field tilt se-
ries. This figure has the same layout as the previous figure. Visualized are x − y
reconstruction slices from the high-dose DF tilt series from 1x, 3x, and 6x sampled
data.

From the x− y perspective, the advantages of the CS-ET algorithm are more

apparent. The WBP reconstruction becomes heavily degraded by noise with in-

creased undersampling. A significant portion of this noise is absent from the SIRT

reconstructions, but CS-ET exhibits still lower noise levels in the 3x and 6x under-

sampled reconstructions.
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3.4.3 Comparisons between experimental and phantom sparsity

We expect that the advantage of CS methods for reconstructing sparse ob-

jects in electron tomography should manifest in a correlation between the root mean

square error (RMSE) and the compressibility of each of the different x − z planes

in the reconstruction. We measure compressibility as p% compressibility ratios as

defined in Section 2.2. The more compressible an image is, the smaller the compress-

ibility ratio. This relationship is shown in Figure 3.16 for the membrane phantom,

calculating a 5% compressibility ratio in the three sparsity domains analyzed in

this study (TV , identity, wavelet). In all three transform domains, there is a clear

positive correlation between reconstruction error and compressibility ratio for fully-

sampled and 6x undersampled tilt series. This demonstrates the importance of

signal sparsity for CS reconstruction methods.
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Figure 3.16: Correlation between RMS error and compressibility ratio for
CS-ET reconstructions of the membrane phantom. The n%-compressibility
ratio of an image is defined as the proportion of pixels with magnitude larger than
n% of the maximum-magnitude pixel’s magnitude. This can be calculated in any
transform domain by applying the same procedure to the transformed image. The
higher an image’s compressibility ratio, the less compressible the image is. Plots
show root mean square error (RMSE) versus 5%-compressibility ratio for (a) TV
transform, (b) identity transform, and (c) DB8 wavelet transform.

Our lack of prior knowledge about the experimental data structure complicates

any analysis of the dataset’s compressibility in any of the transform domains. Nev-

ertheless, we can estimate this by calculating the compressibility of a high-quality

reconstruction obtained from a fully sampled tilt series across several relative com-

pressibility thersholds. This is shown in Figure 3.17, which displays ρ: the 2.5%

compressibility ratios of the high-dose bright-field and dark-field datasets as a mul-

tiple of the 2.5% compressibility ratios of the membrane phantom.
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Figure 3.17: Compressibility of CS-ET reconstructions relative to the
membrane phantom. 2.5% compressibility ratios of the high-dose bright-field
and dark-field reconstructions’ x − z slices are expressed as a multiple of the 2.5%
compressibility ratios of the membrane phantom; we denote this multiple as ρ. For
each experimental x− z slice, a distribution of ρ values are obtained for each of the
256 membrane phantom x− z slices. The mean of ρ plus or minus one sample stan-
dard deviation is then plotted in each transform domain. Larger ρ values indicate
a less sparse experimental x − z slice, and the minimum number of measurements
required to reconstruct an image scales linearly with ρ. A dashed line at ρ = 1 is
included in each figure as a point of reference. (a) ρ values in the TV domain, (b)
ρ values in the identity domain, (c) ρ values in the DB8 wavelet domain.

For each of the 1024 x − z slices of each experimental reconstruction, a dis-

tribution of ρ values is calculated using each of the 256 membrane phantom x − z

slices; for each transform domain the mean of these distributions plus or minus one

standard deviation are plotted in Figure 5a-c. Both experimental datasets are sub-

stantially less compressible than the membrane phantom in the TV and identity

domains, while in the wavelet domain the opposite is true. This is likely due to the

presence of sharp boundaries in the membrane phantom, leading to the slow decay

of its wavelet coefficients. Regardless, while a wavelet regularization term does im-

prove the experimental data reconstructions, even a large value is insufficient for

regaining the CS-ET performance improvements exhibited in the phantom studies.
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3.5 Discussion

Previous work has established that, at least in some imaging applications, CS

techniques allow for high-quality recovery of tomograms from highly-undersampled

data [73, 94]. Our work corroborates these results, and provides evidence that the

quality of CS-ET matches or exceeds that of other recovery techniques for under-

sampled recovery of more complex images. However, the results also challenge the

notion that undersampling is necessarily an attractive goal for CS techniques ap-

plied to STEM tomography of biological specimens. Figures 3 and 4 show that even

moderate undersampling creates structurally-significant degradation of reconstruc-

tion resolution, likely a result of the significantly decreased compressibility of the

biological data. A microscopist not constrained by electron dosage therefore has

no incentive to perform undersampled measurements. When evaluating each algo-

rithm’s performance on fully sampled high-dose biological tilt series, the resolutions

of all three reconstruction volumes are closely-matched. See Figures 3.4 and 3.14

for additional x− y views of fully sampled reconstruction volumes.

Instead the CS-ET algorithm as a regularized reconstruction method appears

to be more useful for improving reconstructions of noisy images in lower dosage

conditions, a context in which the closely-matched CS-ET and SIRT reconstruction

volumes provide marked improvement over WBP. The performance of CS-ET in

undersampled noisy conditions suggests future utility in dosage-constrained imaging

conditions.

Moreover, randomized sampling of projections in the feasible tilt angle range
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does not appear to provide a superior randomized alternative to the traditional tilt

series acquisition process. Open questions remain in the mathematical underpin-

nings of the recovery of sparse images from tomographic tilt series of either type,

but this finding is contrary to the prevailing trends in existing CS application re-

sults, wherein random measurement ensembles are found to recovery sparse images

with high probability. Therefore, a more careful exploration of this randomized

measurement variant by acquiring new randomized STEM tilt series does not seem

warranted, especially when weighed against investigating other developments. The

application of the CS-ET algorithm to fully sampled, uniform tilt series is thus not

compressed sensing in the strictest definition of the term, and is better understood

as a TV− and `1−regularized least-squares recovery algorithm.

Regardless of the terminology used, the results of this chapter show that

optimization-based regularized image recovery algorithms taking advantage of prior

structural knowledge may be feasibly applied to experimental STEM datasets from

biological specimens, and offer performance competitive with or exceeding other

common reconstruction algorithms.

This chapter focused on the recovery of TV-, identity-, and wavelet-sparse

tomograms, but there are many natural variations based on alternative sparsity

models which might be relevant to STEM imaging. Wavelet bases and frames have

long been known to yield sparse representations of natural images, and more recent

developments in sparse imaging via anisotropic frame representations (e.g., curvelets

[16, 38], shearlets [69, 29]) may prove well-suited to CS-ET. Data-driven representa-

tion methods are another possible avenue of development, tailored to dataset struc-
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ture and learned during the reconstruction procedure. Xu et al. (2012) demonstrate

a similar idea for CT, while Gopinath et al. (2012) discuss a shape-based regular-

ization procedure tailored to 3D tomogram structure.

Rather than decomposing the 3D reconstruction problem into 2D slices, the CS

reconstruction theory is equally applicable to the recovery of 3D regions considered

as a single domain. Currently, the memory requirements for large volumes prevent

the creation of efficient fully-3D reconstruction algorithms, but that may change

with the advance of computing technology. In terms of reconstruction quality, fully-

3D sparse reconstructions are likely to be superior to their 2D equivalents, due to

the added structural regularity information supplied by the spatial relationships

between the x− z slices.

Beyond these implementation details, the analysis in this chapter confronts in-

teresting and challenging open questions in the theory of compressed sensing. The

recovery of sparse images from non-RIP measurement matrices, such as those cre-

ated by tomographic sampling, is still poorly-understood. Further research into

understanding its empirically-observed efficacy would shed valuable light on inter-

preting experimental measurement procedures from many imaging domains in the

CS framework.
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Chapter 4: Sparse Olfactory Coding in the Locust

4.1 Overview

The contributions to signal processing and machine learning heralded by com-

pressed sensing and the wider body of sparse signal representation research are

remarkable. These concepts play an important role in a growing wave of techno-

logical advancement which promises to make our creations more intelligent, more

responsive, and more productive. But our progress in creating a digital understand-

ing of the world around us is still dwarfed by nature’s achievement of intelligence

in animal life. Even simple insects possess a brain which is capable of extract-

ing complex information from its environment, and integrating that information

with instinct and memory to execute the control processes governing movement and

behavior. For most of history, the small size and complexity of the constituent ele-

ments of nervous systems have prevented us from understanding the physical basis

by which natural intelligence is effected, and much remains unknown today. Still,

we now possess the capability to measure neural activity at single-neuron resolution,

across ever-growing spatial extents. Tetrode recorders, specialized microelectrodes

inserted into neural tissue, can record the electrical activity of neurons within a

radius of roughly 100-200µm [13]. Simultaneous recording of this electrical activity
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from multiple locations allows the signal to be sorted into contributions from dis-

tinct neurons [13]. These recordings provide a window into how neural information

is processed within interconnected clusters of neurons, and are vital to discovering

the fundamental governing principles for biological neural networks.

The neural sparse coding hypothesis aims to describe one such governing

principle. This hypothesis concerns itself with the networks of neurons devoted to

the processing of sensory information, and states that populations of these neurons

use an information encoding strategy whereby only a small percentage of the neu-

rons are active at any point in time [87]. Support for this hypothesis as a general

organizational strategy for at least certain portions of sensory processing networks

has emerged from observations that, as one moves through the hierarchy of sensory

processing centers, from the input receptors deeper into the brain, neural activity

levels decrease [5]. To date, this pattern has been observed in vision, audition,

and olfaction across animals at every level of complexity, from the simple nematode

Caenorhabditis elegans [113] to insects and mammals [87]. In addition to lowering

energy expenditure by the brain, sparse sensory codes create fewer collisions between

different information states, a boon to associative memory processes. By decompos-

ing environmental information into a small number of features, sparse sensory codes

may also learn features which explicitly take into account environmental statistics

[87]. It is also a predictive hypothesis; a highlight of this line of inquiry was the

work of Olshausen and Field in the mid 90’s, wherein they demonstrated that a

population of simulated neurons trained to produce a sparse encoding of natural

images learned receptive fields highly similar to the ones found in neurons in V1, a
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visual processing area of the mammalian brain [85, 86].

The “codes” created by neural activity, carried by the membrane potential

of participating neurons, differs in important ways from the signal decompositions

via linear algebra performed in signal processing as in Chapter 2. Neural membrane

potentials may be modelled computationally in multiple ways, depending on desired

spatial resolution and population size. In this chapter I make use of Hodgkin-

Huxley-type ODE models, which consider each neuron and synapse in a network as a

single-point entity with a collection of time-varying states. The differential equations

describing the membrane potential are highly nonlinear. Still, both encodings offer

similar benefits to the systems which employ them - increase in coding capacity,

better extraction of features of interest from signal data - but in order to understand

how far this analogy can be carried, it is crucial to better understand the nature of

neural activity dynamics in biology.

One important model biological system for understanding neural sparse cod-

ing is insect olfactory processing. Many features of olfactory processing networks

are highly similar across insects, and even between invertebrates and vertebrates

[42], but the olfactory system of the locust has emerged as a commonly-used model.

This system is the focus of the work done in this chapter. After a brief introduction

to neurons and neural networks in general, I explain a derivation of the Hodgkin-

Huxley model of neuron activity, and give an overview of the aspects of locust

neuroanatomy most relevant to my own research. Working with Dr. Mark Stopfer’s

Section on Sensory Coding and Neural Ensembles in the NICHD, I implemented

and adapted a computational model of the Kenyon cells, the neurons responsible for
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sparse olfactory coding in locusts. This model was used as part of a larger project

to better understand the network structures responsible for the temporal patterning

of Kenyon cell activity. In order for the computational model to be useful for that

project, it is important that the simulated cells mimic their biological counterparts

as closely as possible. To that end, we have worked to establish biological bench-

marks by which the model’s output may be judged. In addition to this detailed

computational modeling, I created a simplified combinatorial probabilistic model

of the activity of the networks responsible for producing sparse olfactory codes,

guided by the lessons learned from the more granular computational modeling. In

this chapter, I demonstrate that this model creates a framework which can explain

important properties of the sparse olfactory codes observed in locusts.

4.2 Neurons and biological neural networks

4.2.1 The neuron, in brief

The research in this chapter requires a basic understanding of neuroanatomy

and electrophysiology, and this is the goal of Sections 4.2-4.5. Much of this material

is standard in the field, and my exposition is derived primarily from the excellent

textbook Theoretical Neuroscience, by Dayan and Abbott [36], unless noted other-

wise.

The neuron is a specialized cell found within the nervous system of most ani-

mals, which generates electrical pulses to rapidly communicate information through-

out the body. These signals are generated in response to input from the external
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environment or other neurons, and take the form of time-varying changes in the elec-

trical potential of the neuron’s interior relative to the exterior cellular environment,

also called the membrane potential. Clusters of interconnected neurons govern

the behavior of animals, and the processes of learning and memory are assumed to

be governed by the changing of interconnection strengths over time.

The structure of a neuron can vary widely, within one organism and across

multiple species. The locust neurons of interest in this chapter are all termed pseu-

dounipolar neurons, see Figure 4.1 for a diagram.

Figure 4.1: A diagram of a pseudounipolar neuron. Neural input arrives at the
dendrites, while any generated output travels along the axon to the axon terminals.
All three structures exist as part of a single process extending from the cell body
(soma), which contains the cell nucleus.
Adapted from original work by Juoj8, CC BY-SA 3.0 licensed,
https://commons.wikimedia.org/w/index.php?curid=17204559

For these neurons, the dendrites and axon terminals are connected by an axon

which forms from a single process extending from the cell body. Dendrites receive

input from upstream neurons across junctions called synapses. The activity of

the synapses creates small changes in the membrane potential at the dendrites of

the neuron, and these postsynaptic potentials sum and propagate towards the axon.
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The potentials may be inhibitory - hyperpolarizing (decreasing) the membrane

potential of the postsynaptic neuron, or excitatory - depolarizing (increasing) the

postsynaptic neuron’s membrane potential. If the summed synaptic inputs depolar-

ize the membrane sufficiently, a feedback process generates an action potential,

or spike. An action potential is a brief but rapid increase in the cell’s membrane

potential that persists for roughly 1 ms. The action potential travels along the axon

to the axon terminals. At the axon terminals, the neuron forms synapses with

dendrites of downstream neurons. Action potentials arriving at axon terminals most

commonly trigger the release of chemicals across synaptic junctions, but may also

form direct electrical connections with postsynaptic neurons.

Not all neurons receive input exclusively from other neurons. Some, the sense

receptors, receive input from bodily structures outside the nervous system, or

interactions between an organism and its exterior environment. These receptor cells

are ultimately responsible for the senses of touch, taste, sight, hearing, and olfaction,

in addition to several others. Each type of receptor cell possesses special structures

for transducing environmental stimuli into the electrical signals used by neurons.

4.2.2 Neuron electrochemistry

The membrane potential of a neuron is governed by the relative concentration

of ions between the cell’s interior and the extracellular medium, most commonly

Na+, K+, Ca2+, and Cl−. Specialized sodium-potassium ion pumps across the

cell membrane actively transport Na+ ions out of the cell and K+ ions into the
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cell. Without additional modulation, these pumps maintain an equilibrium (resting)

membrane potential of approximately -70 mV relative to the extracellular medium,

indicating an excess of negative charge within the cell and positive charge external

to the cell. Ion channels across the cell membrane, when open, selectively permit

different ion types to passively enter and exit the cell as dictated by the voltage and

concentration gradients these pumps create. The control of the opening and closing

of ion channels forms the basis for changing the neuron’s membrane potential over

time. Whether a class of ion channel is open or closed depends primarily on the cell’s

membrane voltage, but can also respond to other cellular signals (e.g. the presence of

Ca2+ ions). Ion channel activity may also be controlled within the dendrites by the

release of specialized chemicals called neurotransmitters from upstream synapses, as

well as the action of special environmentally-sensitive cellular structures in receptor

neurons.

4.2.3 Adaptation and learning in biological neural networks

A biological neural network is a collection of neurons which influence each

other via synaptic interconnections. Taken as a whole, the nervous system of an

animal may be considered as a neural network. However this network exhibits a

modular structure, in which clusters of interconnected neurons share a functional

role and share input and output targets within the brain at large. Therefore, efforts

to understand the structure and function of the brain largely focus on delineating its

regions into these network clusters, investigating the structure and function of each
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such network, and understanding how each network’s processing operations relate

to the activity of the its upstream input network and downstream output network.

A fundamental feature of neural networks is their ability to alter their opera-

tion in response to environmental information. Many forms of learning are rooted

in structural changes to synaptic connection strengths, which may increase or de-

crease the efficacy of a presynaptic neuron’s action potential in eliciting changes in

postsynaptic neuron membrane potentials. These changes may persist across a vari-

ety of time scales, from seconds to days or even longer, depending on the underlying

synaptic mechanisms at hand. A classical example of this nature is Hebb’s rule,

which states that the strength of a connection between two neurons increases when

both neurons fire within a short time interval. An extension of this rule proposes

that synaptic strengths weaken when the firing of the neurons is not contiguous in

time. Evidence from experiments exists for synaptic processes obeying this hypoth-

esis in many parts of the nervous system.

In addition to dynamic processes governing synaptic strength, individual neu-

rons themselves undergo adaptive processes in response to spiking activity. An

example of this is given in Section 4.6.1 of this chapter, in which locust olfactory

receptor cell firing rates decrease during prolonged repetitive stimulation. The com-

bination of adaptive processes occurring within cells and adaptive and facilitatory

processes occurring within synapses gives the brain its remarkable capacity for un-

derstanding and reacting to a changing environment over time.
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4.3 Modeling neurons

As a biological system, neurons exhibit complex structure from the atomic

level up to macroscopic scales across the entire nervous system. At the finest scales,

one may model each neuron in a network as a collection of spatially-distributed com-

partments or a spatial continuum. At the coarsest scales, entire groups of neurons

may be abstracted into single functional units. Each model scale comes with its own

advantages and drawbacks. Fine-scale models accurately reproduce a wide range of

individual neuron functions, but are computationally inefficient for modeling large

collections of neurons and their large numbers of model parameters may be difficult

to fit to limited data from experiments. Coarse-scale models allow for the model-

ing of large brain regions or entire brains, but may fail to capture the full range

of computational activities performed by its constituent neural clusters. A com-

mon class of models for investigating the single-neuron-level activity for collections

of thousands or millions of neurons are the single-compartment models, which

treat each neuron and each synapse as single spatial points, each with associated

collections of state variables. My research makes use of the Hodgkin-Huxley-type

model, a single-compartment model offering an effective compromise between bio-

physical fidelity and computational tractability. A derivation of this model is the

first objective of this section, followed by a derivation of a synaptic model used in

tandem.
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4.3.1 Modeling ion flow

A neuron whose membrane potential does not vary significantly across its

spatial extent is termed electrotonically compact. Neurons approximating this char-

acteristic are most amenable to accurate single-compartment modelling. In such

models, the cell membrane acts as a single capacitor, separating the internal neg-

ative charge from the external positive charge and creating a capacitance constant

Cm for the cell. The membrane potential V , capacitance Cm, and excess charge

within the cell Q are then related by the equation Q = CmV , and therefore the

change in voltage over time is related to the change in charge over time as

Cm
dV

dt
=
dQ

dt
. (4.1)

The dQ
dt

term is equal to the current passing into the cell, and the Hodgkin-Huxley

model (among others) is created by constructing an appropriate model of those

currents.

Two forces govern the flow of ions across neural membranes, and therefore

govern the ionic currents a neuron experiences. Electrical forces drive ions away from

regions of like charge and towards regions with an excess of the opposite charge, while

diffusion drives molecules (charged or otherwise) from regions of high concentration

to low concentration. Therefore for each type of ion channel, indexed by j, that a

neuron possesses, there is a membrane reversal potential Ej at which the opposing

diffusive and electrical forces are balanced, and the net ionic flow into the cell is 0.
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When the membrane potential differs from this value, a nonzero flow of ions into

or out from the cell then creates an ionic current Ij, equal to −1 times the voltage

difference (driving force) (V −Ej) multiplied by a conductance constant gj controlled

by the distribution of type-j ion channels across the membrane: Ij = gi(V − Ej).

The basic single-compartment model form is thus

Cm
dV

dt
= −

∑
j

gj(V − Ej). (4.2)

Additionally, an external current Ie is typically included in simulations, allowing the

user to stimulate the neuron as with an electrode.

4.3.2 Modeling channel conductance

Individual ion channels toggle between open and closed states in a stochastic

manner which may be dependent on membrane potential, or the presence of Ca2+

ions or other ligands. The following exposition develops conductance models under

the assumption of voltage dependence, but Ca2+-dependent models may be devel-

oped in a similar way with Ca2+ concentration replacing membrane potential as an

independent variable. Due to the large number of each type of ion channel across a

neuron membrane and the essentially-independent operation of the channels, their

aggregate activity may be accurately modeled deterministically as gj(t) = ḡjPj(t),

where ḡj is a constant maximal conductance for the channel type and Pj(t) is the

proportion of open channels at time t. There are several mechanisms which may

govern the evolution of these Pj(t) functions; the ones relevant to my work here are
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constant, persistent, and transient conductances.

4.3.2.1 Constant conductance

For the simplest conductance models, Pj(t) = 1 for all t, and gj = ḡj. This

type of conductance accurately models the activity of sodium-potassium ion pumps,

for instance. The net effect of constant conductance flows across a neuron membrane

are typically aggregated into a single leakage current,

IL = gL(V − EL). (4.3)

In practice, the leakage current term also compensates for small model errors, and gL

and EL are treated as free parameters which may be tuned to match model behavior

to biological data after other, more principled parameter choices are made.

4.3.2.2 Persistent conductance

An ion channel exhibiting persistent conductance behaves as if its state is

controlled by a single type of gate, with its probability of being open increasing

as membrane potential increases. More generally, it is often convenient to under-

stand such conductances as being gated by k identical independent subunits, so that

the activation probability takes the form Pj = nkj for some activation variable nj

denoting the probability of a single gate being open. While this k value may be

determined in principle from the ion channel structure, in practice it is fit to data

from experiments.
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The single-gate transition probability nj is modeled such that the closed →

open transition occurs at a voltage-dependent rate αn(V ) and the open → closed

transition occurs at a rate βn(V ):

dn

dt
= αn(V )(1− n(t))− βn(V )n(t). (4.4)

A useful equivalent formulation divides both sides by αn(V ) + βn(V ) and results in

dn

dt
=
n∞(V )− n(t)

τn(V )
, (4.5)

where n∞(V ) is a voltage-dependent steady-state activation probability and τn(V )

is a voltage-dependent time constant. The forms of αn(V ) and βn(V ) may be esti-

mated from first principles using a thermodynamic argument, but in practice these

functions are fit parametrically from biological data.

4.3.2.3 Transient conductance

For persistent conductances, channel activation probabilities are monotonically

increasing with depolarizing membrane potentials and independent of time. Tran-

sient conductances on the other hand remain open only transiently as the membrane

potential is depolarized. This is described in terms of competing effects of an acti-

vation variable mj and an inactivation variable hj, which have opposite behaviors

with regard to depolarization. For such a conductance, Pj = mk
jh

`
j for some integers

k and `. The values of mj and hj are governed by rate functions αm, βm, αh, βh

77



as in (4.4) and may also be written in terms of voltage-dependent steady state and

time constant functions as in (4.5).

4.4 The Hodgkin-Huxley model

Most specifically, the Hodgkin-Huxley model of a single neuron refers to

a particular system of nonlinear ODEs developed by Alan Hodgkin and Andrew

Huxley in 1952 for modelling the membrane potential of the squid giant axon, a

particularly large neuron well-suited to experimentation [60]. In this model, the

neuron’s ionic currents are modeled as a sum of a leakage current, a delayed-rectified

K+ current, and a transient Na+ current. Additionally, capacitance and conductance

variables were expressed as ratios per unit area.

Cm
dV

dt
= −

(
ḡL(V − EL) + ḡKn

4(V − EK) + ḡNam
3h(V − ENa)

)
, (4.6)

where constants have the following values:

Constant Value Constant Value

Cm 0.01 nF/mm2

ḡL 0.003 mS/mm2 EL -52.402 mV

ḡK 0.036 mS/mm2 EK -77 mV

ḡNa 1.2 mS/mm2 ENa 50 mV

and the rate functions take the following forms:
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Function Form Function Form

αn(V ) 0.01(V+55)
1−exp(−0.1(V+55))

βn(V ) 0.125 exp(−0.0125(V + 65))

αm(V ) 0.1(V+40)
1−exp(−0.1(V+40))

βm(V ) 4 exp(−0.0556(V + 65))

αh(V ) 0.07 exp(−0.05(V + 65)) βh(V ) 1
1+exp(−0.1(V+35))

More generally, Hodgkin-Huxley-like models refer to systems of ODEs, sim-

ilar to Equation (4.6), which take into account the activity of additional ion channels.

The system used here in Section 4.7.2 is a model of this form.

4.5 Modeling synaptic activity

An additional term which must be added to Hodgkin-Huxley-like equations

for modeling networks of neurons are synaptic currents. As with neurons there

are many types of synapses throughout the nervous system which perform slightly

different functions, but for the purposes of this chapter it mostly suffices to consider

spike-mediated chemical synapses. See Figure 4.2 for an illustrative diagram of their

action.
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Figure 4.2: An illustrative diagram of a spike-mediated chemical synapse. A presy-
naptic action potential triggers the release of Ca2+ ions from voltage-dependent Ca2+

channels, which in turn causes the release of neurotransmitter molecules by vesicles
into the synaptic cleft. These neurotransmitters diffuse across the cleft and bind
to receptors on the postsynaptic neuron’s cell membrane. This binding then alters
the conductance of ion channels in the postsynaptic neuron, eliciting a change in
membrane potential and effecting a transmission of the presynaptic action potential.
Synapse diagram picture.jpg by Lhunter2099 is licensed under the CC BY-SA 4.0.

The activation of these synapses begins when an action potential in the presy-

naptic neuron enters the axon terminal connected to the synapse. This wave of depo-

larization causes the release of Ca2+ ions through voltage-dependent Ca2+ channels.

The increase in Ca2+ concentration then causes presynaptic vesicles within the ter-

minal to release molecules known as neurotransmitters into the synaptic cleft - the

junction between the presynaptic neuron’s axon terminal and postsynaptic neuron’s

dendrite. These neurotransmitters cross the cleft via diffusion, and bind to receptor

sites on the postsynaptic neuron. This binding alters the conductance of postsynap-

tic ion channels which in turn creates an ionic current which alters the postsynaptic

neuron’s membrane potential. Depending on the neurotransmitter and synaptic re-

ceptors involved, the effect may be to depolarize or hyperpolarize the postsynaptic
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neuron. If the postsynaptic neuron is depolarized, the synapse is termed excita-

tory. If the postsynaptic neuron is hyperpolarized, the synapse is inhibitory. An

important property of the nervous system is that each neuron creates only inhibitory

or excitatory connections with downstream neurons, never both.

As with neurons, synaptic activity may be modeled with varying levels of

fidelity or abstraction. My research makes use of a common model as described in

[89]. The ionic current generated by a synapse is modeled as

Is = ḡs[O](V − Es), (4.7)

where ḡs is the maximal conductance of the synapse, [O] is the proportion of open

synaptic channels, and Es is the reversal potential of the synapse. The evolution of

[O](t) is governed by an ODE akin to (4.4):

d[O]

dt
= α(1− [O])[T ]− β[O], (4.8)

where α and β are activation and inactivation constants respectively, and [T ] is a

time-varying neurotransmitter concentration. Here, the form of [T ] is defined phe-

nomenologically as a square pulse of fixed duration that begins when the presynaptic

neuron generates an action potential:

[T ](t) = AH(t0 + tmax − t)H(t− t0), (4.9)

where A is a constant, H(t) is the Heaviside function, tmax is the neurotransmit-

81



ter pulse width, and t0 is the most recent time at which the presynaptic neuron

generated a spike.

4.6 Olfaction in locusts

The details of sensory processing are studied across many animals and all sen-

sory modalities, but certain animal/modality pairs are particularly fruitful. One

such pair commonly studied is olfaction in the locust (Schistocerca americana).

The insect’s relatively large size makes it amenable to electrophysiological exper-

imentation, and its olfactory system contains relatively few neurons and is well-

characterized compared with that of mammals. An excellent overview of this system

is presented in Chapter 11 of Spike timing: mechanisms and function, and much of

the overview in this section is derived from there.

Research into locust olfaction to date focuses on the first three processing

layers, as illustrated in Figure 4.3.
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Figure 4.3: An illustrative diagram of the first three layers of olfactory processing in
the locust. Olfactory receptor neurons (ORNs) transduce environmental information
about chemical identity and concentration into neural firing rate activity. The out-
put of the ORNs enters the antennal lobe (AL), where ORNs synapse onto excitatory
projection neurons (PNs). In the AL, stimulus responses are formatted into a spa-
tiotemporal code, distributed across the PNs and also segmented into temporal bins
via oscillatory activity induced by feedback inhibition from reciprocally-connected
local interneurons (LNs). The output of the PN activity is received by Kenyon cells
(KC) in the mushroom body (MB), which produce output that is highly sparse both
collectively in space across the population, as well as individually in time for any
active neuron. The KCs are reciprocally connected with a single inhibitory neuron,
the giant GABA-ergic neuron (GGN), which provides feedback inhibition to the KC
population. The activity of the KCs also travels further downstream into the brain,
to areas whose structure and function are less well-characterized.
Image adapted from Figure 11.1 in [42].

In brief, the ∼ 50, 000 excitatory olfactory receptor neurons (ORNs) in the

antennae respond to the concentration and identity of chemicals in the environment,

forming the first layer of the olfactory processing hierarchy. The ORNs synapse onto

∼ 830 excitatory projection neurons (PNs) in the antennal lobe (AL). The PNs serve

to average the noisy ORN inputs, but also perform additional, complex reformatting

with the help of feedback connections with ∼ 300 local neurons (LNs), most of which

are inhibitory. The PNs synapse onto ∼ 50, 000 excitatory Kenyon cells (KCs) in the

mushroom body (MB). The MB is a center of associative learning in the olfactory
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system, and the KCs are noted for their highly-sparse activity. In response to a

given odorant, only a handful of the roughly 50,000 KCs will respond, emitting

only a few spikes at odor onset and, under certain conditions, at odor offset. Thus,

the KCs exhibit both population sparsity (few responses across the population) and

lifetime sparsity (responding KCs emit few spikes), forming a useful model system

for investigating sparse sensory coding in general.

4.6.1 Olfactory receptor neurons

As with all receptor neurons, olfactory receptor neurons (ORNs) possess

specialized structures for transducing environmental information into neural activ-

ity. In this case, these structures are olfactory receptors (ORs) - proteins embedded

in the membrane of ORN dendrites. Unlike vision and audition, where receptor

neurons must be sensitive to two dimensions of stimulus structure (frequency and

intensity), the stimulus space for olfaction is high-dimensional, reflecting the variety

and complexity of biologically-relevant volatile molecules. Correspondingly, there

are a large number of different OR types, approximately 60 in insects. Each ORN

expresses a single OR type, or two working in concert [66]. In the absence of stimu-

lation, ORNs will fire at a base rate of ∼ 1−30 Hz. When stimulated, depending on

the concentration and identity of the stimulus odorant and the type of OR expressed,

the ORN firing rate may increase, decrease, or sometimes combinations of the two.

The time scale, latency, and amplitude of these effects depend on the combination

of odorant and ORN, and in both cases prolonged exposure to a simulus can result
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in a sensory adaptation effect, whereby the firing rate of excited ORNs decreases

and the firing rate of inhibited ORNs increases. The magnitude of this effect is also

varies with stimulus and OR types.

There are additional important variants between ORN types that serve to

increase the encoding capacity of the olfactory system. Some ORNs may be broadly

tuned, responding to many types of odorants. Others are narrowly tuned, and

respond only to a single or a few types of stimuli. In general, higher concentrations

of an odorant elicit activity from more ORN types. These properties serve to create

a combinatorial code of odorant concentration and identity among the ORNs - by

distributing a stimulus representation across multiple neurons, each receptive to

different properties of the stimulus, N neurons can encode up to 2N different stimuli.

This ORN activity is then passed to the second layer of olfactory processing, in the

antennal lobe.

4.6.2 The antennal lobe

The antennal lobe (AL) consists of two neuron populations. Both the excita-

tory projection neurons (PNs) and the predominantly-inhibitory local neurons

(LNs) receive output from the ORNs, but only the activity of the PNs is relayed

downstream outside of the AL. The tuning profiles of PNs are broader than those of

ORNs, but their spiking activity is more reliable - each PN receives direct synaptic

input from multiple ORNs expressing the same set of ORs, and so signal averaging

is one function of the PNs. PNs also get input from other ORNs through excita-
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tory and inhibitory lateral connections through local neurons. However, PNs serve

a more complex role than just averaging their ORN inputs - the AL gives rise to

oscillatory activity which creates a spatiotemporal encoding of stimulus informa-

tion, distributed both across space among the PN population and in time across

successive oscillation windows.

The oscillatory activity of the AL stems from the reciprocal connections be-

tween the PN and LN populations. The action potentials generated by stimulated

PNs elicit increased electrical activity in the nonspiking inhibitory LNs, which in

turn stimulates a release of inhibitory neurotransmitters that hyperpolarize targeted

PNs. This cycle generates oscillations in PN activity at roughly 20 Hz. This oscil-

lation pushes stimulated PNs to spike closely-together in time, creating synchrony

in PN responses within an oscillation window. Each active PN reliably phase-locks

to these oscillatory windows for only a subset of the full AL response to an odor.

The nature of the AL’s encoding of odor information can be interpreted by

examining the trajectory of large PN populations over time via dimension reduction

techniques [79]. Given repeated recordings from N PNs, the results can be averaged

per-PN and binned across time to give average firing rates in each bin for each PN.

This procedure results in a trajectory in an N -dimensional population state space.

These high-dimensional trajectories lie within low-dimensional manifolds in the am-

bient population space, and may be visualized in 3D using nonlinear dimension

reduction techniques such as locally-linear embedding (LLE) [92].

The results of this analysis are striking - population responses reliably fall along

odorant-specific manifolds, while odorant concentration determines the position of
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the trajectory within the manifold. During prolonged stimulation, the population

trajectory moves from an initial point along a stereotyped path to another fixed point

in the state space, and then returns to the initial point via a different stereotyped

path [79]. These results illustrate the efficacy of the odor encoding within the AL

- the intrinsically-high-dimensional odor stimuli are reliably encoded in a higher-

dimensional representation with both spatial and temporal components, allowing

different stimuli to be well-separated in their representations for further parsing

downstream in the Kenyon cells.

4.6.3 The mushroom body

The mushroom body (MB) contains the third layer of the olfactory processing

hierarchy. Here, the roughly 830 PNs of the AL synapse onto some 50,000 Kenyon

cells (KCs), whose activity greatly differs from the PNs’ output. The KCs are tuned

more narrowly than PNs and ORNs, responding to far fewer odors each. Moreover,

the KC population has a much more sparse response to stimuli, with only a handful

of the neurons responding to any given odorant. KCs that do respond to a stimulus

emit only a small number of spikes following odor onset, and following odor offset

under certain conditions as well. These properties, as well as the amenability of

the locust MB to physiological recordings, make the KCs an ideal model system for

studying the sparse sensory coding phenomenon.

The sparsity of the KC responses derives from cellular as well as network

factors. Intrinsic cellular properties conspire to give KCs high firing thresholds -
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each KC in the locust receives synaptic input from approximately half of the 830

PNs, and roughly 100 of these PNs must spike nearly simultaneously to elicit a spike

from the KC. The synchronized oscillatory behavior of PNs allows for this to occur

during stimulation, but the decrease in firing rates following sensory adaptation of

the ORNs drops PN activity levels below the threshold required for KCs to fire.

Network mechanisms assist in achieving this behavior within the mushroom

body. All KCs in the mushroom body synapse onto a single inhibitory neuron,

the giant GABAergic neuron (GGN), which in turn synapses onto each KC

in the population. This provides feedback inhibition to the KCs - the first KCs

to spike stimulate the GGN, which in turn creates a powerful wave of inhibition

to silence the KCs. This process creates a window within each larger oscillation

cycle in which sufficiently-stimulated KCs may fire. The idea of winner-take-all

competition in neural networks via lateral or feedback inhibition has been studied

for some time [31], but differs in important ways from the process taking place in

the MB. A generalization of the winner-take-all model, the E%-max winner-take-

all model [37], is more relevant. In this model, the time delay between initial KC

activation and the return of inhibitory signals from the GGN to the KC population

creates a small window in which those KCs whose input is at least some percentage

of the input to the maximally-driven KC (E% of the maximum), fire as well. The

value of E is determined by the travel time of the action potentials to and from the

GGN. This can be likened to an adaptive filter in signal processing, which instead

of preserving a fixed number of the largest coefficients of a signal’s representation

in some dictionary, preserves a varying number of coefficients with sufficiently large
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energy.

Moving further downstream, the KCs synapse onto other targets within the

MB, the so-called α- and β-lobe neurons. Current knowledge of the function of

these networks and those further downstream is tenuous compared to the levels

of the processing hierarchy described here. Further investigations of these areas,

as well as their inevitable pathways into the more generalized multimodal sensory

integration regions which must underlie the decision-making and behavior of even

relatively-simple creatures such as locusts, will doubtlessly further illuminate the

physiological basis for sensory perception. Until then, the earlier layers continue

to provide challenging problems in understanding the efficient representation and

analysis of the complex, high-dimensional signals which olfaction creates.

4.7 Offset spiking in the locust mushroom body

Olfaction serves many purposes for insects - finding food, finding mates, and

sending messages among them. In a turbulent medium, e.g., wind in air or waves in

water, odors emitted from a point source do not diffuse evenly into the surrounding

space. Instead they exhibit complex plume patterning, in which packets of odorant

molecules extend through the environment. Within a plume, odorant concentration

may vary significantly over millimeter and smaller spatial scales [81]. Insects must

navigate these plumes, and there is evidence that they do so by zig-zagging across

them, seeking out the transition boundaries between plume and ambient space [81].

How does an insect parse this information from the patterns of activity created in
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the ORNs? KCs are active predominantly at the beginning of a prolonged stimulus,

and are also observed to fire following the cessation of a stimulus under certain

conditions, as demonstrated in Figure 4.4.

Figure 4.4: An illustration of the offset spiking phenomenon in Kenyon cells, using
peristimulus time histograms (PSTHs), which plot neuron firing rates over time,
averaged across a population of neurons. When a brief odor pulse, indicated in
red on the x axis, is repeated with a long inter-pulse interval (IPI), little activity
occurs after the final odor offset. When the odor pulses are presented in more rapid
succession, offset spiking activity increases.
Image taken with permission from unpublished work in a presentation by Joby
Joseph, Stacey Daffron, and Mark Stopfer to the Stopfer lab in NICHD.

This indicates that one function of the KC odor encoding is a sort of temporal

feature extraction, revealing the concentration boundaries relevant to the insect’s

plume navigation. What is the origin of this functionality within the olfactory

processing networks? The case for onset spiking is clear-cut - sensory adaptation

in the ORNs drives down activity levels after the first second or so of a stimulus
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response, in turn driving down PN activity levels below the threshold required for

KCs to fire. What is the analogous explanation for offset spiking? That is the

question we seek to address with this project.

4.7.1 Relevant network properties

Understanding the genesis of this offset spiking phenomenon is an important

aspect of understanding the network and cellular factors that cause KCs to respond

to changes in a stimulus, as opposed to the ongoing state of the olfactory stimulus

itself. For this reason, I set out along with the Stopfer Lab to investigate the causes

of this phenomenon and to model it in simulation. A computational model with

adequate fidelity to the biological behavior of KCs allows us to test hypotheses

about network structure and function relevant to this behavior.

The simplest explanation for this behavior is that it is a consequence of stim-

ulus offset activity in the PNs. Both PN and LN populations receive input from

ORNs, but it is known that LN activity tracks stimulus intensity closely, while ORN

→ PN activity persists for some time, or even begins only at offset. See Figure 4.5

for an example of this discrepancy.
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Figure 4.5: A demonstration of the difference between LN responses and PN re-
sponses to a stimulus. The stimulus window is indicated by a horizontal red bar
beneath the LN and PN responses.
Image taken with permission from unpublished work in a presentation by Joby
Joseph, Stacey Daffron, and Mark Stopfer to the Stopfer lab in NICHD.

Indeed, PN activity can be divided into two classes - one in-phase with stim-

ulus presentation and one in anti-phase with the stimulus. The latter category

underlies this PN offset activity. ORNs whose firing rates are inhibited by a stimu-

lus presentation will briefly overshoot their baseline firing rates when the stimulus

is withdrawn, providing a potential foundation in the antennae for the anti-phase

category of PNs.

This burst of PN offset activity is a plausible origin for KC offset spiking, but

without inhibitory input from the LNs, which ends promptly with the stimulus,

it lacks the precise temporal coordination of the oscillatory PN activity during a

stimulus presentation. This must be addressed on two levels to fully explore its

importance to KC offset spiking. First, is the bump in PN offset activity sufficient

to make up for the decreased temporal coherence, in order to generate KC action
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potentials? Second, how do adaptive processes in the AL shape this offset PN

activity, both in terms of its intensity and temporal coherence?

There is less data from experiments to draw upon to answer this second ques-

tion. It is known that an adaptive process known as fast learning shapes the

coherence of PN activity during a stimulus presentation [6]. The first time a new

odor is presented to a locust, the LNs’ and PNs’ responses do not display oscilla-

tory behavior; this only manifests after repeated presentations of the odor. The

biological mechanisms which cause this adaptation are not fully known, but it is

hypothesized to involve the facilitation (increase in strength) of PN ↔ LN synaptic

interconnections, and potentially the existence and facilitation of PN ↔ PN in-

terconnections as well. This is supported by computational simulations in [6], but

biological evidence is lacking. If fast learning does indeed work in this manner, offset

activity following adaptation should increase in intensity, conditions more appropri-

ate for downstream coincidence detection. More information from experiments is

needed to fully understand the effects of this adaptation, but it provides a plausible

mechanism for the appearance of KC offset spiking under a more narrow range of

stimulus conditions which bears further study. In the meantime, the first question

of the tradeoff between increased activity and decreased temporal coherence can be

explored via computational modeling.
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4.7.2 Computational modeling of KC offset spiking

The computational modeling done in this section seeks to answer one ques-

tion: if N PNs spike while connected to a single KC, how close together in time

must they do so to elicit a spike from the KC? Solving this problem would help

in determining the relationship between offset PN activity and offset KC activity.

Beyond the model implementation, this arrangement implies another difficult prob-

lem: How can we determine if the model’s output is similar to the behavior of the

corresponding biological system? I propose several benchmarks to better establish

comparisons between simulated and biological behavior. Ultimately, the model ap-

pears to still exhibit discrepancies with its biological counterpart, but there is value

in this result, too. Inferring biological behavior from simulation is complicated, and

too often there is a divide between experimentalists uninterested in simulation and

theoreticians unconcerned with the full consequences of modeling abstractions. The

model exhibited here is an iteration of a work in progress. It is a focal point for

devising better procedures for effectively matching neural simulation with reality.

The modeling of KC offset spiking starts simple: we can ignore the effect

of the GGN’s feedback inhibition, which cannot factor into the initiation of KC

offset spikes (though may curtail them afterward). Then, an absence of KC ↔ KC

synapses means KC responses are only correlated through their shared PN afferents.

So, we only need to model one KC and its upstream PN synapses. In accordance

with estimates obtained from experiments, we model 415 PN → KC synapses as in

Section 4.5, connected to a single KC using a Hodgkin-Huxley-like model derived
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primarily from [89]. At a high level, the KC membrane potential V is modeled as

Cm
dV

dt
= −(Ileak + Iionic + Isyn + Inoise). (4.10)

Ileak consists of two components: a “general” leakage current IL and a potassium

leakage current IKL. The intrinsic ionic current Iionic has five components: a fast

sodium current INa; a delayed rectified potassium current IK ; a Ca2+-dependent

potassium current IK(Ca); a transient, so-called A-type potassium current [56] IK,A;

and a transient calcium current ICa. The synaptic current Isyn is a sum of 415

individual synaptic currents, one per upstream PN, each of the form described in

Equation (4.7). Inoise is a random variable, with Inoise(t) being sampled from a

normal distribution with mean 0 and standard deviation of 1.5 (nA). In all, V is

governed by the equation

−Cm
dV

dt
= gL(V − EL) + gKL(V − EKL) + gNam

3
NahNa(V − ENa)

+ gKm
4
KhK(V − EK) + gK(Ca)n

2
K(Ca)(V − EK) + gK,AnK,A(V − EK)

+ gCam
2
CahCa(V − ECa) +

415∑
j=1

gsyn,j[O]j(V − Esyn) + Inoise(t), (4.11)

where Cm = 2.9 × 10−4 µF, and the leakage and ionic conductance variables take

the values
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Variable Value (µS) Variable Value (µS)

gL 2.9× 10−2 gKL 1.16× 10−3

gNa 26.1 gK 2.9

gK(Ca) 2.9× 10−1 gK,A 1.45× 10−2

gCa 2.9× 10−2

and the reversal potentials take the values

Variable Value (mV ) Variable Value (mV )

EL −65 ENa 50

EK −95 ECa 12.8 log(2/[Ca2+])

where [Ca2+] is the concentration of Ca2+ ions (in mmol) and is updated via the

first-order ODE

d[Ca]

dt
= −1.7862ICa −

([Ca]− 2.4× 10−4)

100
. (4.12)

The gating variables n·, m·, and h· are updated via ODEs of the forms described in
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(4.4) and (4.5).

dmNa

dt
= αmNa

(V )(1−mNa)− βmNa
(V )mNa (4.13)

dhNa
dt

= αhNa
(V )(1− hNa)− βhNa

(V )hNa (4.14)

dmK

dt
= αmK

(V )(1−mK)− βmK
(V )mK (4.15)

dhK
dt

= αhK (V )(1− hK)− βhK (V )hK (4.16)

dnK(Ca)

dt
=
n∞,K(Ca)([Ca2+])− nK(Ca)

τnK(Ca)
([Ca2+])

(4.17)

dnK,A
dt

=
n∞,K,A(V )− nK,A

τnK,A
(V )

(4.18)

dmCa

dt
=
m∞,Ca(V )−mCa

τmCa
(V )

(4.19)

dhCa
dt

=
h∞,Ca(V )− hCa

τhCa
(V )

(4.20)

Each of these ODEs defines two additional functions - activation and inactivation

functions for INa and IK , steady-state and time-constant functions for the other

currents. The form of those functions is described below.
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Function Form

αmNa
(V ) 0.32(13−V−65)

e(13−V −65)/4−1

βmNa
(V ) 0.28(V−105)

e(V −105)/5−1

αhNa
(V ) 0.128e(17−V−65)/18

βhNa
(V ) 4

e(40−V −65)/5+1

αmK
(V ) 0.032(15−V−65)

e(15−V −65)/5−1

βmK
(V ) 0.5e(10−V−65)/40

αhK (V ) 0.028e(15−V−65)/15 + 2
e(85−V −65)/10+1

βhK (V ) 0.4
e(40−V −65)/10+1

n∞,K(Ca)([Ca2+]) 3333[Ca2+]2

3333[Ca2+]2+1

τnK(Ca)
([Ca2+]) max

(
0.1, 0.896

100[Ca2+]2+0.03

)
n∞,K,A(V ) 1

1+e−(V +60)/8.5

τnK,A
(V )

(
1

e(V +35.82)/19.69+e−(V +79.69)/12.7 + 0.37
)
/3.74

m∞,Ca(V ) 1
1+e−(V +52)/7.4

τmCa
(V )

(
3 + 1

e(V +27)/10+e−(V +102)/15

)
/9.9

h∞,Ca(V ) 1
1+e(V +80)/5

τhCa
(V )

(
85 + 1

e(V +48)/4+e−(V +407)/50

)
/3.74

The remaining variables to be accounted for are the synaptic conductance variables,

{gsyn,j}415j=1. The strengths of the PN → KC synaptic connections are not uniform.
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Experiments done by Jortner et al. as described in [64] Figure 6A have provided

an empirical characterization of the distribution of synaptic strengths, as measured

by a distribution of peak EPSP amplitudes. We were able to recreate this distri-

bution, linearly interpolating between the normalized histogram values to create an

empirical probability distribution. It is not obvious a priori that using this same

distribution for synaptic conductances will result in simulated peak EPSPs match-

ing the distribution described in Jortner et al. This simulated EPSP distribution

can be calculated, and indeed it closely matches the results from [64]. See Figure

4.6 for a comparison of the distributions.
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Figure 4.6: A comparison of the empirical peak EPSP distribution generated by
PN → KC synapses and its simulated counterpart. Simulated synaptic conduc-
tances were drawn from an empirical distribution as described in [64] Figure 6A,
reproduced on the right side of this figure, but simulated peak EPSP measurements
were measured as in the Jortner et al. experiment - activating a single synapse
and measuring the peak depolarization of the simulated KC. This was repeated for
10000 trials to generate the histogram on the left of this figure. The close agree-
ment between the two indicates that this distribution is a suitable characterization
of synaptic conductances.

While [89] provided the majority of the parameters and functions used in this

model, several alterations had to be made, due to errors we discovered in the paper

as well as disagreements between the model’s initial behavior and data from exper-

iment. The ICa term derives from unpublished code written by Maxim Bazhenov,

generously shared with us. The parameters used in Equation (4.12) stem from the

values used in that code, as well. Additionally, the leakage conductance gL was

changed from 2.9 × 10−3 to 2.9 × 10−2. While the previous value is a valid model
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parameter, this change improved the behavior of the KC model. The KC resting

potential increased from ∼ −90mV to ∼ −68mV, and the KC became less quiescent.

fixed the simulated KC resting potential and brought its responses to stimu-

lation in line with experiment.

4.7.3 Simulation procedure

Using this model, we devised a protocol for testing the relationship between

the temporal coherence of PN → KC activity, the number of active PN → KC

synapses, and spiking activity in the KC. A variable number N of the 415 synapses

were designated as “active”, spiking at a time drawn uniformly at random from an

interval [t0, t0 + ∆t] for some choice of interval width ∆t. In addition to these active

spikes, it is known that PNs have a baseline firing rate of approximately 2.5 Hz

[79]. This was modeled as a Poisson process in the remaining 415−N synapses by

generating spike times with inter-spike arrival times, measured in ms, drawn from

an exponential distribution with rate parameter λ = 0.0025. With the spike times

generated, the synapses and KC are simulated for t0+∆t ms, plus a short additional

amount of time.

This procedure was repeated for K = 100 trials for each N ∈ {50 + 10i}15i=0

and each ∆t ∈ {10 + 10i}5i=0 ∪ {100 + 15i}20i=0. For each combination of N and ∆t,

a peristimulus time histogram (PSTH) was constructed to quantify the average

KC activity over the K trials. To construct a PSTH, the time course of a simulation

is divided into bins of width δ ms. For each bin i, the average spike count si equals
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the sum of the number of spikes on the interval [iδ, (i + 1)δ) across all K trials,

divided by K. The PSTH then plots each si, and this information may be used to

determine which combinations of N and ∆t are sufficient for generating consistent

KC spike activity.

4.7.3.1 Numerical implementation

To perform the KC offset spiking simulations, an explicit four-step Runge-

Kutta (RK4) method [2] is used, as described in Section 2.3.2, with a timestep

of h = 0.03 ms. For this model, the components of y are V (t), [Ca2+](t), the

gating variables mNa(t), hNa(t), mK(t), hK(t), nK(Ca)(t), nK,A(t), mCa(t), hCa(t),

and the synaptic activation variables {[O]j(t)}415j=1. f(t,y) is defined component-wise

in Equations 5.11-5.20, as well as Equation (4.8) with α = 0.94 and β = 0.18 for the

synapses. An example of a V (t) generated by this model can be seen in Figure 4.7.
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Figure 4.7: An example of a numerical solution to Equation 5.11, produced using an
RK4 integration scheme with a C++ implementation. This demonstrates the time
course of a typical KC action potential.

To perform the simulation procedure, along with the biological benchmarking

described in Section 4.7.5, the RK4 method detailed in Section 2.3.2 was imple-

mented in C++. The relevant biological structures were modeled as objects which

implemented RK4 updates of their dynamic parameters. A Network object com-

posed of a KenyonCell object and CholinergicSynapse objects forms the basis of

the code, allowing for functions to be written to create and manipulate Networks

and save their state information. In this way, quantitative analyses of the simulated

Network state may be performed, leading to both the conclusions of this section

and the possible biological validation tests. Creating the simulated KC PSTHs in

Section 4.7.4 required running many instances of these Networks to generate trial
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data. To improve performance, the simulation protocol ran these trials in parallel,

making use of OpenMP [33] to distribute the trials across multiple threads.

4.7.4 Results

The results of this procedure can be seen in Figures 4.8 - 4.10.

Figure 4.8: PSTHs of KC activity for variable numbers of coordinated PN → KC
synapse activations within 20 ms (left) and 50 ms (right) activation windows.
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Figure 4.9: PSTHs of KC activity for variable numbers of coordinated PN → KC
synapse activations within 100 ms (left) and 130 ms (right) activation windows.
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Figure 4.10: PSTHs of KC activity for variable numbers of coordinated PN → KC
synapse activations within a 160 ms activation window.

The combination of N and ∆t values most relevant to understanding the KC

input conditions during a stimulus offset can be estimated from [79], which shows

that 40% of recorded PNs were not silent during the roughly 300ms spike in activity

at stimulus offsets, and approximately 10% of recorded PNs were responsive in

any single 50ms window. Assuming, as suggested by experiments, 50% PN →

KC connectivity with synaptic connections distributed uniformly across the PN

population, we are interested in the outcome of 40-50 neurons spiking in a 50ms

window, and 180-200 neurons spiking in a 300ms window. According to the tests
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performed, these activity levels are insufficient to consistently elicit spikes in the

simulated KC - with a 160 ms activation window very little activity at all is elicited,

and with a 205 ms window (not shown), no KC spikes are generated at all.

The implications of this result on our understanding of offset activity in bio-

logical KCs hinges on the fidelity of this computational model to the corresponding

biology, as well as our assumptions about the statistics of PN→ KC activity derived

from [79]. Does this result imply that we are missing some important factor gov-

erning KC offset spiking, or must the model be improved? We conclude Section 4.7

by discussing the measures taken to ensure biological fidelity so far, and the future

additions that can be made as more biological data is obtained.

4.7.5 Biological fidelity

Comparing our computational model with experiments, and using that com-

parison to update our model, is an ongoing process. The easiest comparison to draw

between the two is the match for the KCs’ equilibrium potentials. According to [65],

a KC receiving no input activity has an equilibrium potential of approximately −68

mV. Our model KC does as well, though this is unsurprising since one aspect of

model tuning explicitly addressed this. Similarly, the use of the empirical synaptic

conductance distribution allows the inputs to the KC to more closely emulate their

biological counterpart, and we confirmed in Figure 4.6 that the resulting peak EPSP

amplitude distributions match.

We can also use [64] to compare our KC’s firing threshold with those observed
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biologically. The firing threshold of a neuron is defined to be the difference between

its resting potential and the highest potential the cell may attain before a spike

is generated. In Figure 4.11, we show that our KC’s observed firing threshold of

approximately 12mV falls squarely within the distribution observed in [64].

Figure 4.11: A comparison of our simulated KC’s firing threshold and the distribu-
tion of this quantity observed in [64]. Note that the simulated value falls within the
support of the empirical distribution. Inset figure is adapted from [64].

These measures provide some benchmarks for assessing our model, but further

feedback from new experiments will provide additional, more powerful measures to

aid with validation. One example of this will be measuring the membrane time

constant of the locust KC. This constant is defined as the amount of time required

for a neuron to transition (1 − 1/e) ≈ 63.2% of the distance from a membrane
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potential depolarized by a square current pulse, back to equilibrium. This can be

done easily in simulation, and the results of this process can be seen in the following

table, for various current pulse amplitudes.

Current (nA) 0.025 0.05 0.1 0.2 0.25

STC (ms) 6.89 6.83 6.77 6.89 7.37

Comparing these values with those derived from experiment will tell us whether our

simulated KC responds to input current on the same time scales as biological KCs.

The previous benchmarks provide a series of tests for assessing how much our

KC membrane potential behaves like biological KCs, but membrane potential is

only one of the several states associated with the simulated KC. This cell also has

multiple ion channels whose behavior is responsible for the time course of membrane

potential activity, and it would be greatly beneficial to assess the similarity of our

simulated ion channels to the biological ones. In a voltage clamp experiment, a

control loop feedback mechanism is used to inject varying amounts of current into a

neuron in order to clamp its membrane potential at a desired constant level. Using

this setup, we can quantify the magnitude of various ionic currents through a KC at

several voltages, and compare them with its simulated counterpart. I have added a

simulated voltage clamp procedure to our project’s codebase; once a suitable voltage

clamp experiment has been performed, I will be able to replicate its conditions to

obtain a comparison of ionic current flows. Using this, in combination with the other

benchmarks established for determining biological fidelity, will make our model more

informative for understanding the KC offset spiking phenomenon.
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4.8 Understanding sparse olfactory codes in Kenyon cells

In this section, we account for the ways in which the network activity among

the PNs and KCs following an odor stimulus generates KC activity that exhibits

population sparsity and is an encoding of odor state information. Remarkably, both

of these properties can be accounted for using a simple combinatorial model of the

network activity, relying on two assumptions about the working of locust olfaction:

(1) Each KC is connected to approximately 50% of the PN population [42].

(2) The oscillatory activity of the PN population in response to an odor stimulus

segments PN activity into temporal integration windows. A KC spikes if

approximately 100 of its connected PNs spike within one of these integration

windows.

We show that, in this model, PN stimulus response activity levels within the range

observed experimentally generate information-preserving activity patterns in the

KCs using only a small number of the 50000 KCs.

4.8.1 Network model specification

PN population: The collection of PNs is a set of points XPN , with |XPN | =

NPN = 830.

KC population: The collection of KCs is a set of points XKC , with |XKC | =

NKC = 50000.

PN→KC synapses: The PN→KC synapses are modeled as a set of EKC
PN of
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pairs (x, y), where x ∈ XPN and y ∈ YPN . We assume each of the KCs has K = 415

(50% of NPN) such synapses, for a total of KNKC synapses.

Synapse distribution: For each KC yj, the collection of K synapses target-

ing yj has as sources K PNs chosen uniformly at random from XPN , independently

for all KCs yj. Each KC is therefore associated with a subset Ij ⊆ XPN of source

PNs it is connected to.

Stimulus responses: Following the introduction of olfactory stimulus i into

the locust headspace, the PNs and KCs emit a series of spikes at recorded times.

These responses are aggregated into T disjoint time windows of length δt ms to form

response activity vectorsAi(t) ∈ {0, 1}NPN andBi(t) ∈ {0, 1}NKC , where Aj,i(t) = 1

if PN j emitted a spike in time bin t and Bj,i(t) = 1 if KC j emitted a spike in

time bin t. In the following analysis, we assume that the PN response activities are

independently and identically distributed across all time bins, and it is therefore

convenient to fix t and analyze

ai = Ai(t) (4.21)

and

bi = Bi(t). (4.22)

PN active sets: Since ai is a binary vector, it partitions XPN into two sets,

an active set Si and its complement, so that for all xj ∈ XPN , aj,i = 1 if xj ∈ Si

and aj,i = 0 otherwise. Define Mi = |Si| to be the size of this active set.

KC activity: In this model, KC j spikes if τ or more of its upstream PNs

are active in the same time bin. In the development to follow, we set τ = 100.
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Therefore,

bj,i =


1, |Si ∩ Ij| ≥ τ

0, |Si ∩ Ij| < τ

(4.23)

4.8.2 Explaining KC population sparsity

The activity of the KCs exhibits population sparsity in its response to

stimuli as well. On the order of 10 KCs out of a population of approximately 50,000

will respond to a given stimulus presentation, yet the identity and concentration of

a stimulus’ odorants can be inferred from KC population activity at least as well as

from PN population activity [96]. The population of KCs in the MB is also the center

of associative olfactory learning in the locust [70], lending weight to the theoretical

results concerning the efficacy of sparse coding for associative learning. The ability

to construct such a low-dimensional representation of olfactory state is remarkable,

given the intrinsically-high-dimensional nature of olfactory signals [76]. What is

the relationship between PN activity and number of active KCs in the model we

have introduced? As we demonstrate below, an interesting pattern emerges when

K = 415 and τ = 100. When Mi < 150, the probability of observing one or more

spikes across the NKC KCs is very low; when Mi = 150 this probability is 0.2. As

Mi increases from 150 to 160, the KC spike count distribution changes, so that when

Mi = 160 a mean of 13 spiking KCs are expected. This relationship between active

PN count and the number of responding KCs fits closely with observations from

experiments [79, 42]. Figure 4.12 provides a visualization of the evolution of the KC

spike count distribution, Figure 4.13 shows the change in the expected KC spike
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count, and Figure 4.14 shows how the probability of observing more than 0 spikes

increases with Mi.

Figure 4.12: Examples of single time bin KC spike count distributions for varying
values of M , the number of active PNs. Illustrated is an overlay of spike count dis-
tributions with M varying from 148 to 165. Small M values are in red, transitioning
to blue as M increases. M = 150 marks an important transition between no KC
activity and biologically-plausible levels of KC activity.

Figure 4.13: A plot of the expected number of spiking KCs as a function of the
number of active PNs.
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Figure 4.14: A plot of the probability of observing more than 0 spiking KCs as a
function of the number of active PNs.

The derivation of this family of distributions follows. If a KC receives K

synaptic inputs, there are
(
NPN

K

)
distinct input configurations. If in a given time bin

there are M active PNs, we calculate that the probability of a KC having exactly k

active inputs is is

ρk(M,NPN , K) = P (k active inputs) =

(
M
k

)(
NPN−M
K−k

)(
NPN

K

) , (4.24)

and refer to this probability as ρk when there is no danger of ambiguity due to the

omission of parameters. Therefore, the probability ρ(M,NPN , K) of a KC spiking

is the probability of receiving τ or more of the M active inputs.

ρ(M,NPN , K) = P (KC spikes) =
M∑
k=τ

ρk(M) =
M∑
k=τ

(
M
k

)(
NPN−M
K−k

)(
NPN

K

) . (4.25)

The value of ρ is highly sensitive to the value of M ; ρ(140) ≈ 1.5×10−8, while

ρ(160) ≈ 2.9×10−4. Figure 4.15 illustrates the relationship between ρ and M . Note
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that ρ(M) scales at least exponentially with M across this range.

Figure 4.15: Single Kenyon cell spike probabilities ρ as a function of active projection
neuron counts M , displayed as a log plot.

If each of NKC KCs receives synaptic input according to this same random

model, we can compute the distribution of population-wide spike counts in a single

time bin. For a fixed M and ρ = ρ(M),

P (s total KC spikes) =

(
NKC

s

)
ρs(1− ρ)NKC−s. (4.26)

This is the family of distributions, parameterized byM , which is described in Figures

4.12, 4.13, and 4.14. Again, note that 150 active PNs marks the transition from little-

to-no KC activity to KC activity levels in line with observations from experiments.

The small fluctuations ofM between successive time bins then elicit substantial

changes in KC population activity during the PNs’ stimulus response. Deriving an

exact estimate using Equation (4.26) depends on the exact time course of M over

a response, but across the ten 50ms time bins that comprise the first 500ms of
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a stimulus response, this method predicts an observation of approximately 10-100

active KCs across the PN response trajectory. Therefore, this random PN→KC

synaptic model agrees well with biological data about the firing threshold of each

KC and the response statistics of the PN population, and we may understand this

combination of factors as the origin of the sparsity in the KCs’ sparse population

code.

4.8.3 Explaining KC olfactory encoding

The fact that the KC population is able to preserve the olfactory information

encoded in the PNs is perhaps not surprising - the 60-fold expansion in population

size provides greatly increased coding capacity, even given the temporal aspects of

PN stimulus responses. Here, we provide one demonstration of this network model’s

ability to explain KC olfactory coding capabilities by bounding the distribution of

DKC = ||B1 −B2||1 for two KC stimulus responses following distinct PN stimulus

responses, conditioned on the size of the overlap of the stimulus responses. In this

way, we characterize how easily discriminated two KC population responses are,

depending on the similarity of the PN upstream activity.

Given two single-time PN activity states a1 and a2 with active sets S1 and

S2, |S1| = M1 and |S2| = M2, we are interested in the probability that a single

downstream KC will spike in response to one of a1 and a2 but not both, as this

event allows us to use that KC to distinguish between the two.

The sets S1 and S2 share S12 = S1∩S2, an overlap representing PNs which are
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active in both a1 and a2. Assume |S12| = L. For convenience, define σ1 = S1−S12,

|σ1| = m1 = M1 − L, and σ2 = S2 − S12, |σ2| = m2 = M2 − L. Define also

ν = NPN − L, the number of PNs outside of S12. A diagram of these sets and their

labels can be seen in Figure 4.16.

Figure 4.16: A diagram of the subsets of XPN associated with a pair of single-time
PN response states a1 and a2. For either ai there is an active set Si such that aj,i = 1
if and only if PN xj ∈ Si. Their intersection is labeled S12, and σi = Si − S12. Set
sizes are |XPN | = NPN , |Si| = Mi, |S12| = L, |σi| = mi, |XPN − S12| = ν.

To analyze the activity of KC yj in response to the PN states a1 and a2,

consider the intersection of Ij, the set ofK PNs that form the sources of yj’s incoming

synapses, with S1 and S2. The members of Ij are chosen uniformly at random from

XPN in the same way as S1 and S2, and we can compute the distribution of sizes of

the overlap sets λj = Ij ∩ S12, ιj,1 = Ij ∩ σ1, and ιj,2 = Ij ∩ σ2. A diagram of these

sets can be seen in Figure 4.17.
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Figure 4.17: A diagram of the subsets of XPN associated with a pair of active PN
sets S1 and S2 and KC yj’s source PN set Ij. Subscript j’s for λj, ιj,1, and ιj,2 are
omitted for visual clarity.

To understand the relationship between PN response overlap S12 and the dis-

tribution of DKC , we seek to calculate the KC response difference probabilities

ΠL,`,j = PL,`(bj,1 6= bj,2) = P
(
bj,1 6= bj,2

∣∣∣ |S12| = L, |λj| = `
)

(4.27)

for any j and a range of values of L and `. Similar conditional probabilities show

up in further calculations, so for any event Ej depending on KC j define

PL,`(Ej) = P
(
Ej

∣∣∣ |S12| = L, |λj| = `
)
. (4.28)

To compute the quantity in Equation (4.27), note that if the firing threshold for any

KC is τ active upstream PNs, PN state ai will generate a spike in KC yj if at least

τj = τ − `j elements of Ij are contained within σ1, i.e., |ιi| ≥ τj. Conversely, there
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will be no spike if |ιi| < τj. Since bj,i ∈ {0, 1} for all j and i, we compute that

ΠL,`,j =PL,`(bj,1 = 1 ∧ bj,2 = 0) + PL,`(bj,1 = 0 ∧ bj,2 = 1) (4.29)

=PL,`(|ι1| ≥ τj ∧ |ι2| < τj) + PL,`(|ι2| ≥ τj ∧ |ι1| < τj). (4.30)

Each term in this sum can be analysed in the same way, so we now focus on

the first of them.

PL,`(|ι1| ≥ τj ∧ |ι2| < τj) =

m1∑
k1=τj

τj−1∑
k2=1

PL,`(|ι1| = k1 ∧ |ι2| = k2). (4.31)

Each term of the sum in the RHS of Equation (4.31) can be computed combinato-

rially. There are
(
m1

k1

)
ways to choose k1 elements from σ1,

(
m2

k2

)
ways to choose k2

elements from σ2 and
(
ν−m1−m2

κ−k1−k2

)
ways to distribute the remaining PN→KC synapses

to the elements of XPN − S12. There are
(
ν
κ

)
ways to distribute the κ synapses

amongst all ν elements of XPN − S12. Therefore,

PL,`(|ι1| = k1 ∧ |ι2| = k2) =

(
m1

k1

)(
m2

k2

)(
ν−m1−m2

κ−k1−k2

)(
ν
κ

) , (4.32)

so

PL,`(bj,1 = 1 ∧ bj,2 = 0) =

m1∑
k1=τj

τj−1∑
k2=1

(
m1

k1

)(
m2

k2

)(
ν−m1−m2

κ−k1−k2

)(
ν
κ

) . (4.33)

Combining Equations (4.29) and (4.33), we get that

ΠL,`,j =

m1∑
k1=τj

τj−1∑
k2=1

(
m1

k1

)(
m2

k2

)(
ν−m1−m2

κ−k1−k2

)(
ν
κ

) +

m2∑
k1=τj

τj−1∑
k2=1

(
m2

k1

)(
m1

k2

)(
ν−m1−m2

κ−k1−k2

)(
ν
κ

) . (4.34)
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An example plot of this quantity, computed with L = 30, M1 = M2 = 160, and

` ∈ [10, 20], can be found in Figure 4.18.

Figure 4.18: A plot of ΠL,`,j = PL,`(bj,1 6= bj,2) for L = 30, M1 = M2 = 160, and
` ∈ [10, 20].

Note that when ` is constant across a KC population, ΠL,`,j is constant across

its j index, and the mean population KC response difference will be ΠL,`,j · NKC .

While it is unlikely that ` would be constant across a population, this figure gives a

way to estimate the relationship between ΠL,`,j and the difference in activity levels

between two KC population responses.

We can compute this for ranges of M1, M2, L, and ` matching the ranges

observed or predicted from experiments. Given S1 and S2 distributed uniformly at

random in XPN , we have

P (|S12| = k) =

(
M1

k

)(
NPN−M1

M2−k

)(
NPN

M2

) . (4.35)

An example of this distribution with M1 = M2 = 150 can be seen in Figure 4.19.
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Figure 4.19: An overlap probability distribution for two populations of 150 PNs
chosen uniformly at random from a population of 830. Approximately 98.6% of this
distribution is contained in the interval [17, 37].

Slightly more than 98.6% of this distribution is supported on the interval

L ∈ [17, 37]. We therefore focus on L of this size in the following analysis, though

there may be reason to consider other ranges since true PN response distributions

are unlikely to be well-described by this model.

For a choice of L, one next considers the distribution of λj = |S12 ∩ Ij|. Since

K = 0.5NPN and the elements of Ij are selected uniformly at random from XPN ,

we expect that ` ≈ 0.5L when L is large. For smaller L, deviations from this mean

may be more substantial. To understand the values of ΠL,`,j produced by our model

in the parameter ranges suggested by experiment, we plot ΠL,`,j for M1 = M2 = M

in the range [140, 160], for L ∈ {20, 30, 40} and ranges of ` distributed around 0.5L.

The results can be seen in Figures 4.20, 4.21, and 4.22.
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Figure 4.20: A family of ΠL,`,j distributions over ` ∈ [5, 14]. For reference, if Π`,j =
0.0015 for each yj ∈ XKC , the mean of DKC = 75.

Figure 4.21: A family of ΠL,`,j distributions over ` ∈ [10, 19]. For reference, if
Π`,j = 0.001 for each yj ∈ XKC , the mean of DKC = 50.
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Figure 4.22: A family of ΠL,`,j distributions over ` ∈ [13, 26]. For reference, if
Π`,j = 0.002 for each yj ∈ XKC , the mean of DKC = 100.

Having computed Π`,j, one would like to use this quantity to calculate DKC .

Keeping in mind the choice of notation that bi = Bi(t) for some fixed t, and defining

Π`,j(t) to be Π`,j in time bin t, we note that

DKC =
T∑
t=1

||B1(t)−B2(t)||1 (4.36)

=
T∑
t=1

NKC∑
j=1

|Bj,1(t)−Bj,2(t)| (4.37)

and |Bj,1(t)−Bj,2(t)| Bernoulli(Π`,j(t)). Given the assumptions of independent and

identical distributions of each KC’s synaptic connections, and each time bin’s PN

responses, it follows that DKC is a sum of these Bernoulli distributions. Since each

Π`,j(t) is small, one may try and use Le Cam’s theorem to approximate DKC as a

Poisson distribution with parameter µ =
∑T

t=1

∑NKC

j=1 Π`,j(t) [72]. However, since

the goodness of fit for this approximation depends on the particular ranges chosen

for M1, M2, L, and `, a useful but simpler approach is to compare DKC with the
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binomial distributions B(NKCT,Π), where Π < Π`,j(t) for each j and t. Then for

any k > 0,

P (DKC < k) ≤ P (B(NKCT,Π) < k) . (4.38)

Equation (4.38) lets us perform the final computations to characterize the

capacity of the KC responses to distinguish PN population states. We will use the

following definition in that process:

Definition 12. Two binary random vectors v1 and v2 are (d, ε)-distinguishable

if

P (||v1 − v2||1 < d) < ε. (4.39)

In effect, one sets a threshold d which determines when two vectors are “dif-

ferent enough” to be distinguished, and then calculates the probability that the

vectors will be indistinguishable by that criterion. There is limited evidence from

experiment for the values of d most relevant to the decoding of KC activity by

downstream processing centers, but here we can present the relationship between d

and the maximum values of ε for which the (d, ε)-distinguishability of B1 and B2

holds. To use Equation (4.38) to get a lower bound on the distinguishability of B1

and B2, we must choose a value for Π. Appropriate choices may be made using

the information from Figures 4.20, 4.21, and 4.22. For values of ` close to 0.5L, it

appears that Π`,j ranges from 0.00001 to 0.0001. Additionally, since B1 and B2 are

time series of KC states, we must choose a value for T , the number of time bins

to use. According to [79], KC activity rates significantly diminish after the first
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500ms of an odor response, so given that δt = 50ms we choose T = 10 to model

the distinguishability of this initial response trajectory. Figures 4.23, 4.24, and 4.25

show binomially-distributed lower bounds for P (DKC < d) for T = 10 and a range

of d values using Π = 0.00001, Π = 0.00005, and Π = 0.0001 respectively. Note the

different scales on the horizontal axes.

Figure 4.23: A plot of B(NKCT,Π) for T = 10 and Π = 0.00001. This quantity
provides a lower bound for the (d, ε)-distinguishability of B1 and B2.

Figure 4.24: A plot of B(NKCT,Π) for T = 10 and Π = 0.00005. This quantity
provides a lower bound for the (d, ε)-distinguishability of B1 and B2.
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Figure 4.25: A plot of B(NKCT,Π) for T = 10 and Π = 0.0001. This quantity
provides a lower bound for the (d, ε)-distinguishability of B1 and B2.

Thus, if we can only bound Π`,j(t) from below by 0.00001, there is a high

probability that DKC will be concentrated near 0 and therefore B1 and B2 will be

difficult to distinguish. A bound of Π = 0.00005 assures us that at least B1 and

B2 will differ by at least 10 with very high probability. For a bound of Π = 0.0001,

there is a high probability of B1 and B2 differing in at least 30 locations.

This analysis demonstrates that the KC activity trajectories created by the

combinatorial network model introduced in this chapter are capable of distinguishing

between dissimilar PN activity trajectories.

4.9 Discussion

The Kenyon cells in the locust exhibit two patterns of activity deemed “sparse”.

As far as they are responsive primarily to changes in odor state, spiking mainly at

onset and offset of a stimulus, the KCs exhibit lifetime sparsity. This behavior allows
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for the detection of environmental concentration gradients across time, effectively

providing a temporal counterpart to the spatial edge detectors common to models of

visual processing. This selectivity is evidently rooted in the sensory adaptation pro-

cess in ORNs, which reduces ORN and PN activity shortly after a stimulus change

to drive PN activity below the KCs’ firing thresholds. However, the absence of syn-

chrony in PN activity upon offset calls into question contemporary understanding

of the role of oscillations in eliciting a KC spike. We sought to supplement an in-

vestigation of this phenomenon via electrophysiological experimentation by using a

computational model of these networks as dynamical systems. Model adjustments

are still underway, but the validation process has developed into an effective collab-

oration for creating neuron population models with descriptive value for biological

systems.

As far as olfactory information is carried in only a small percentage of the

KC population at any point in time, the KCs also serve as a hallmark example of a

network which exhibits population sparsity. While the processes governing biologi-

cal neural network evolution bear little resemblance to the computational processes

employing linear algebra to produce sparse signal decompositions, the advantages

to each type of system are similar. Using the information learned during my collab-

oration with Dr Stopfer’s lab, I devised a simplified binary activity model for the

PN and KC populations in the locust. The behavior of this model is dependent on

several parameters, but by investigating ranges of parameters most closely matching

current biological data, I demonstrated that the model system produces KC output

with activity levels in line with experiment, when PN activity levels are in the range

127



observed in experiment as well.

I also computed dissimilarity distributions for KC population responses to

different PN trajectories, and showed that KC population activity in this model

distinguishes between different stimuli with high probability. The discrimination

analysis relied on additional assumptions which do not fully capture the range of

conditions that the locust olfactory system may operate under, but given time and

interest this model could be easily extended to accommodate more elaborate PN

response and population-wide synaptic distribution models. Ultimately though, this

model provides an increased understanding of how the nonlinear dynamical systems

describing neural activity produce activity patterns which are sparse, and which are

also representations of sensory signal information.
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