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vergence proof is given along with physical motivation. Next, the network
architecture is generalized by allowing interconnections between oscillators
to be controlled in an adaptive fashion, and convergence of the generalized
network is proved. An example network is presented to illustrate the utility
of such networks and to show why the problem of undesired stable equilib-
ria must be addressed. Two alternative approaches are then presented which
overcome the problem of undesired stable equilibria appearing in the network
dyhamics. Finally, an analog VLSI approach to implementation of such net-
works is presented, and tradeoffs among power dissipation, bandwidth, and

network size are discussed.
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Chapter 1

Introduction

1.1 Background

Networks of coupled oscillators have been proposed for various applica-
tions, including locomotion (specifically, central pattern generators), pattern
recognition (for instance, distinguishing between different objects in view si-
multaneously), and biological information processing (as a solution to the
dynamic binding problem). There is evidence that coupled oscillator net-
works play a role in biological systems, but the point of view taken in this
work is that the mathematical analysis of coupled oscillator networks can
also yield networks which are useful in their own right for applications in

pattern recognition, control, and communications.

Experiments on the spinal cord of the lamprey (1], and the attempts to
model the experimental results using networks of coupled oscillators [2][3][4]
are a good illustration of how relatively simple coupled oscillator networks can
model a variety of observed behaviors in an actual biological motor-control

network. There has also been recent work in designing control systems based



on coupled oscillators for both hexapod and biped robotic locomotion [5][6].

Experiments on cats have revealed synchronous firings of neurons in
the cat visual cortex in response to visual stimulus [7][8]. Moreover, there
has been work in developing artificial pattern recognition systems based on
networks of coupled oscillators, in which synchronous oscillations serve as a
dynamic binding mechanism [9][10][11]. Moreover, a method of performing
systematic reasoning based on using synchronous oscillations as a dynamic
binding mechanism has been proposed, both for artificial information pro-
cessing and as a model sharing some features of human reflexive reasoning

[12].

Besides biologically inspired uses for coupled oscillator networks, there
are control problems for which periodic inputs have been proposed and stud-
ied [13] [14]. Central pattern generators based on networks of coupled oscil-

lators may prove useful as control systems for such problems.



1.2 Overview

The basic network examined in this work is given by

. X
¥ = —yj+7‘(ﬁ|xj|)|j"| (1.1)
J
T = D YWy J =1, (1.2)
k=1

where z; and y; are complex numbers Vj, wj, are complex interconnecting
weights with wj; = 0 Vj and wy, = wg; (i.e., the weight matrix is Hermi-
tian), 8 is a scalar parameter, and r(-) : [0,00) — R is a memoryless strictly
monotone increasing nonlinearity with 7(0) = 0 and lim,,_,. r(m) = 1 (later
to be specified precisely). r(-) is also assumed to be analytic, and the func-
tion r(ﬂ|z|)|—zT : © — C is a well-defined function which compresses the

magnitude of its complex argument while retaining its angle.

For the ;%" unit (or oscillator), y; may be thought of as its state, and
z; represents its input from the rest of the network. Because the states are
complex, each unit carries both phase and amplitude information, and it is
the phase information which is of primary interest. In the coupled oscillator
context, the relative phases of a network of oscillators oscillating at the same

frequency are represented.

The reason for choosing these dynamical equations is that they repre-



sent a very simple method of defining a coupled-oscillator network. The input
to each unit is the weighted sum of the states of the other units, where the
weights themselves are complex (and thus may alter the phase as well as the
amplitude of the signals they weight). The input to each unit is then passed
through a memoryless saturating nonlinearity whose gain is a parameter, and

the result is then low-pass-filtered to produce that unit’s state.

In Chapter 2, convergence of this network, in the spirit of LaSalle’s In-
variance Principle, is proved, and physical motivation for the proof is given.
Next, in Chapter 3, the weights (w,y,) are allowed to be units (y;) themselves,
and convergence of an adaptive control law for such systems is proved. In
Chapter 4, a 6-unit example circuit is presented illustrating how undesired
stable equilibria can arise. Then two alternative approaches are then pre-
sented which overcome the problem of undesired stable equilibria appearing
in the network dynamics. Implementation issues are addressed throughout,
and finally, an analog VLSI approach for implementing such networks is
presented in Chapter 5. In Chapter 6 actual VLSI circuits which could be
used to build a coupled oscillator network are described in order to permit
the tradeoffs among power dissipation, bandwidth, and network size to be

explored. Chapter 7 concludes with recommendations for future work.




Chapter 2

Fixed-Weight Network Analysis

2.1 Introduction

The dynamics under consideration are:

. T
Y = Wﬁ?”(ﬂl%l)ﬁ, y; € C (2.1)
J
g = Y wwh, G €C, j=1.,n (2.2)
k=1

where wj, = wi; € €, wj; =0 Vj, B € R is constant, and r(-) = %(l)
Here, I and I; are the modified Bessel functions of the first kind and of order
zero and one, respectively, and r(-) : [0,00) — R, is a memoryless strictly

increasing saturating nonlinearity with 7(0) = 0 and limy,_,o 7(m) = 1. (The

choice of this particular saturating nonlinearity will be motivated later).

The first step in the convergence analysis is to rewrite the dynamics in

terms of the x; variables:
T = ) Uwi
k

- ¥ (—yk +r<ﬂ|xk|>|—jf|) i
Tk

= - Zykw;k + Zr(ﬁlxkb“—w;k
% %

||



x

= T+ Er(ﬂlwkbﬁ’w}k- (2:3)
k

These dynamics were proposed and physically motivated by Zemel, Williams,
and Mozer [15]; however, their proof of convergence was incomplete. After

a review of the physical motivation, a rigorous proof of convergence of their

network using LaSalle’s Invariance Principle will be presented.
2.2 Physical Motivation

Zemel, Williams, and Mozer propose first a stochastic network of direc-
tional units (complex-valued random variables with magnitude one and an-
gle representing directional information) interconnected by complex weights
which are considered fixed [15]. The directional units evolve according to
probability distributions determined by the other directional units and in-
terconnecting weights. The stochastic network is then simplified using the
mean-field approximation to give a deterministic network. The purpose of
examining the stochastic network is that it provides insight for the stability

analysis of the deterministic network.

To begin the stochastic network analysis, consider a network of direc-
tional units, each represented by a random variable Z; taking values on the

unit circle in the complex plane. The directional units are interconnected



by fixed complex weights w;; satisfying w;; = 0 and wg; = w},. Defining
T; = >k 2kWjy, to represent the interaction of unit j with the rest of the net-
work, the mean value of Z; is determined by the angle of z;, and the variance
of Z; is inversely related to the magnitude of z; (the precise dependence to

be determined below).

Next, a quadratic form representing “energy” in terms of unit states
p g g

and interconnecting weights is defined:

1 1
E(z) = —=2z"Wz* = -3 > zizgwin, 2= (21,0 20)" - (2.4)

2 Jik
Because W is hermitian (i.e., wy; = wjy), E(2) is real-valued. (This defini-
tion of energy generalizes the Hopfield energy function for binary units [15].)
Using z; = ¥ ; 2zxwj, and changing to polar coordinates: z; = a;e'* and

zj = €% (recall that |z;| is constrained to equal 1), we define

Ei(z) = —%[zjx;+(zjx;)*]
= —ajcos(¢; — a;) (2.5)

as unit j’s contribution to the total energy. Then E(z) = 33, E;(2). (Ob-
serve that when the angle of z; is aligned with the angle of z;, unit j is in
a low-energy state.) Introducing a “Boltzmann factor” 3 (interpreted as the

reciprocal of temperature), and taking the probability that the jth unit is in



a state z; = €% to be proportional to e #Fi(®) we obtain:
o) oc Bret-o 25)

where Z;, the state of unit j, is a random variable taking values on the
unit circle in the complex plane and fz,(-) is a probability density function.

Appropriate normalization gives

52,00 = gy P =By, dy=a;  (21)
J

where Io(-) is the modified Bessel function of the first kind and order zero.
This is known as the Von Mises, or circular normal, distribution, and it is a
distribution for circular random variables having some characteristics similar
to the usual normal distribution for linear random variables [16]. A circular
normal distribution is completely characterized by two parameters: a mean
direction ¢ € [0, 27) and a concentration parameter m > 0 which corresponds

to the reciprocal of the variance of a linear normal random variable.

Next, Zemel, Williams, and Mozer apply a mean-field approximation to
come up with a deterministic network model. In the mean-field approxima-
tion, the random variables Z; are replaced by their means y; =< Z; > and
are treated as independent (even though they are, in fact, highly coupled).
The mean < Z; > of a Von Mises random variable is a complex number

y; = rje" with v; = Q_Sj and r; = %gimn-j%. Figure 2.1 shows r; as a function of



my;: it is strictly monotone increasing, passes through the origin, and satisfies

limpy, oo 7;(my) = 1.

15
0.84
0.6+
rj

0.4+
0.2+

0 T T T ] !

0 2 4 6 8 10

mj
: . — Di(my)
Figure 2.1: Plot of r; = Timj') (from [15]).
The dynamics for the deterministic network are chosen to be
dzx; .

so that at equilibrium, z; = 37, YxWjx, in analogy with the expression z; =
>k 2w} for the stochastic network. Furthermore, y; = 7‘(,8|:cj|)|—2-;—l, so that
if z; is viewed as determining the mean and concentration parameter of a

Von Mises distribution according to (2.7), y; will be the mean value of the

distribution. The deterministic dynamics can be expressed in terms of the



z; alone as:

dz;

"df = —:I:] + Z |fL‘k| k,wjk. (2.9)
The total energy for the deterministic network is found by taking the

mean of the total energy expression for the stochastic network (and assuming

the units are independent):

<E>=-Z Zyjykwjk (2.10)
J,k

Furthermore, the “entropy” for the deterministic network is found by sum-
ming the entropies of the individual units of the stochastic network (again

using the independence assumption):

H= Z ﬁjlogg §+log(27rlo(ﬂa])) (2.11)

With these definitions of < E > and H, a Lyapunov function corresponding
to what Zemel et. al. call “free energy,” FF =< E > -TH, T = %, can be
computed, and this Lyapunov function can be used to prove convergence of
the deterministic network using LaSalle’s Invariance Principle. The rigorous

arguments behind this are a main contribution of this thesis.
2.3 Proof of Convergence
As will now be shown, the deterministic dynamics (2.9) are conver-

10




gent: every trajectory converges to an equilibrium point. LaSalle’s Invari-
ance Principle is invoked to prove this, and a Lyapunov function based on

the physically motivated “free energy” is used.

The complex nonlinear dynamics are:

T & .
i;=—z;+ Zr(ﬂ]xkl)l—mk—lek, ji=1,.,n (2.12)
P

Ilfm!

where the z; are complex, r(m) = To(m)"

Wrj = Wiy, and w;; =0 Vj. Letting
R = Re(z;) and z} = I'm(z;) we can rewrite the dynamics as

I
xk w]k + ka]k

a:f = —iL' +z ﬂ]a:k|

il = —af +Z Blzx|) ki =1,.,n  (2.13)

These dynamics give a well-defined vector field on R2*. (If z; = 0, we take

I,yR R, I
+zkw k zkw.k—a:kw k

r(8|x kl)_Jf;TL = r(Blax]) "5 = 0.) The equilibrium points of
the dynamics are points where if = #{ = ... = #® = 4! = 0. For purposes

of the proof of convergence, the state space is taken to be R2".

At any point in the state space R*", except where ¥ and z} are both
zero for some j, we can define a valid (nonsingular) change of coordinates
by zf +izf = a;e®, j =1,..,n. In the new coordinates, the dynamics

become:

dj = —aj + Zr(ﬂak)bjk COS(CY/c — Q5 — jk) (2'14)
k

11




. 1 -
6= — > r(Bak)bjk sin(ay — o — b;1,) (2.15)
ik

R sod _ i9;
where wjy + iwj), = bjxe”i*.

At all points in 82" where the change of coordinates is valid, we define

the Lyapunov function:

_Z r(Ba;)r(Bax)bjk cos(ax, — aj — Ojr)

i<k
=T ) [-Bajr(Ba;) + log (2nIo(Bay))] (2.16)
J
where log denotes the natural log. (Keep in mind that w;, = wy;, wj; = 0,
and 8 = %) It turns out that V can be continuously defined even where the
change of coordinates is singular, because if either a; or aj is taken to be
zero in the above formula for V, the term r(8a;)r(Bax)bjx cos(ax — o — 0ji)

will be zero regardless of the value of o; or ay.

Calculating V (v) = 9, we obtain

V) = — ; {ﬂr’(ﬂaj) [—aj + zkj r(Bax)bjx cos(ay — aj — jk)r

( T{fa) [Z r(Bak)bjk sin(o — cj — 9:%)} } : (2.17)

a; k
Note that r(8a;) > 0 Va; > 0 and T(%L) >0 Va; > 0. Also, 7'(8a;) — £ as
]

a; — 0, and T(—z;’L) — pr'(Ba;) as a; — 0.

12



Thus, V(v) <0 VYa; > 0 Vo, and V(v) = 0 if and only if
—a, + Zr(ﬂak)bjk cos(ak - — jk) =0
k Vi=1,..,n. (2.18)

>_7(Bar)bji sin(a — ; — Bjx) = 0
k

But this will hold at a point 2; = a;€’® Vj where the change of coordinates

is valid if and only if it is an equilibrium point of the dynamics.

We now show that the Lyapunov function V(v) has bounded sublevel
sets, because this will enable us to exhibit compact sets which are positively
invariant under the dynamics, as required to apply LaSalle’s invariance prin-
ciple. Observe that the first term of V, — X, ,r(Ba;)r(Bay)bjx cos(cy —
a;j — 0jx), is bounded as a; — oo for any (or all) a;. A straightforward
but lengthy calculation (relegated to Appendix A) shows that Sa,r(Ba;) —
log (2mI(Ba;)) = oo as a; — co. Then because Ba;r(Ba;)—log (2rxIy(Baj)) >
0 Va; > 0, and because the terms fa;r(a;) —log (2mIy(Ba;)) appear summed
in V, it follows immediately that V is radially unbounded in the a; (where
by definition V' : R® — R is radially unbounded in its argument a € "
if V(a) = oo as ||a|]| — oo [17]). Moreover, since V' is continuous even at
points where the change of coordinates is singular, we can conclude that V

has bounded sublevel sets when viewed as a function of (zf,z!, ..., %, z1).

So far we have shown that there is a Lyapunov function V' continuous

on all of 2" which has bounded sublevel sets, and which has V(r) < 0

13



provided v is not an equilibrium point and provided v is not a point where
our change of coordinates is singular. What we will now show is that there
is no loss of generality in assuming that a trajectory will pass through points

where the change of coordinates is singular only at isolated points in time.

Specifically, we will show is that if a trajectory has zf(t*) = z(t*) = 0
for some j € {1,...,n} and for some ¢* then either ¢* is an isolated point in
time for which 2} = z] = Oorelse s} =2} =0 V¢ > 0. If s} = 2] =0 Vt >
0, then simply eliminate the z}* and =] coordinates and consider the reduced
system of dimension R?"~2. Repeating this test will reduce the system to a

R

new system with coordinates (2%, 27

AR /\I . A . .
5 Th £;) with # < n. The trajectories

of the reduced system will have 27(t*) = £{(t*) = 0 only at isolated time
instants ¢*, and hence we will have V = 0 only at equilibrium points and at
isolated times ¢*. (It is easy to verify that the reduced system has exactly
the same form in terms of dynamics, equilibria, and Lyapunov function as

the original system.)

Analyticity properties are the key to showing that the system can be re-
duced so that z} = 2} = 0 for some j only at isolated points in time. That the

right-hand-side of the differential equation for (zf(¢), zi(¢), ..., z2(¢), z1(2)),

r¥n

equation (2.13), is analytic in the variables ¥, z{, ..., 2 zf follows straight-

forwardly from basic properties of analyticity (using methods in, e.g., [18]).

14



This in turn implies that the trajectory (zf(t),zi(t),...,zR(t),zL(t)) is an
analytic function of ¢ (the necessary results on analyticity and differential
equations can be found in [19]). Therefore, for any j € {1,..,n}, (zf,z])

will be an analytic function of t. Hence if 2 (t*) = #](t*) = 0 then either ¢* is

an isolated point in time for which 2 = 2] =0 or else zf = 2l =0 V¢ > 0.

We have a well-defined, C* vector field (2.13) on %" and a Lyapunov
function V' which has bounded sublevel sets. For simplicity, think of the
vector field abstractly, as given by v = f(v), with Lyapunov function V(v).

Also, V(v) < 0 along trajectories.

Fix ¢ > 0 and let
Q.= {v e R*"|V(v) < c}. (2.19)

In order to apply LaSalle’s Invariance Principle, we need to show that €2, is a
compact positively invariant set. We have already shown that the Lyapunov
function has bounded sublevel sets, and hence €2, is bounded. In fact, it can
be easily shown that €2, is closed as well, and hence is compact. Positive

invariance of Q, follows from the fact that V() < 0 along trajectories.

Theorem 2.1 (LaSalle’s Invariance Principle): Let Q be a compact set
and suppose the solution v(t) starting in € stays in Q for all ¢ > 0. Let

V : Q — R be a continuous function such that V (v(¢)) is a monotone nonin-

15



creasing function of t. Let E be the set of all points in € where V (v) exists
and equals zero. Let M be the largest positively invariant set in E. Then

v(t) approaches M as t — oo.
Proof: (See [17].)
Theorem 2.2: The dynamics (2.13) converge to an equilibrium point.

Proof: For any initial condition vy, reduce the system if necessary
so that we may assume that the coordinate transformation is only singu-
lar at isolated points in time. Also, choose ¢ > 0 to be greater than or
equal to V(15). Then the set Q in Theorem 2.1 is taken to be (., as de-
fined earlier, which is a well-defined compact subset of 12" when viewed in

(z® zl, ..., 2R, zl) coordinates. Because the vector field is well defined, the

3 Ty Ty
Lyapunov function is monotone nonincreasing, and the set {2, is compact,
it follows that the trajectory v(t) exists and stays in €, Vt > 0. Thus, the
hypotheses of Theorem 2.1 are satisfied, enabling us to conclude that the
trajectory will converge to the largest positively invariant subset of the set
of points in €, such that V(v) = 0. But the positively invariant subset of

the set of points with V(1) = 0 are just the equilibrium points of the system

which lie inside Q..

LaSalle’s Principle thus enables us to conclude convergence of any tra-

16



jectory to the set of equilibrium points of the dynamics, but not to a specific
equilibrium point. We will now show, by appropriate choice of inner product,
that the system follows gradient dynamics except at isolated points in time.

At points v = (ay, ..., an, 04, ..., &y, ), define the inner product:

(v1,va) = v diag(Br'(Bar), .., Br" (Ban), arr(Bar), .., anr(Ban))ra  (2.20)

Then (0,{) = —d,V - { = (-VV,() so that ¥ = —VV; ie., the system
satisfies gradient dynamics (except at isolated time instants). Thus, we may

conclude that in fact the dynamics (2.13) converge to an equilibium point.

Q.ED.

Observe that we can define two different but related sets of dynamics.
As will be justified below, the following dynamics are more readily imple-

mentable:

i

Y=y + T(/B'xj,) |(L" (221)
j
n
Tj= Y YW (2.22)
k=1
at equilibrium, y; = r(ﬁlxﬁ)tx—Jl (2.23)
Zj

On the other hand, the following dynamics are more theoretically tractable:

Tj = —T; + ) yeWj (2.24)
p

Y = r(ﬂlle)% (2.25)

17



at equilibrium, z; = " yw}, (2.26)
k=1

(this is the network of Zemel et. al.)

The convergence result just proved applies directly to the second set of dy-
namics. For the first set of dynamics, the z, variables satisfy the same differ-
ential equation as the z; variables in the second set of dynamics. However,
an additional argument (given in Appendix B) is needed to prove that the y;
variables in the first set of dynamics converge to r(3 {:cjl)l%;—l at equilibrium

even if the weight matrix is singular.

The first set of dynamics is more readily implementable in an analog
system (for instance an analog VLSI circuit, but the same argument would
apply for a biological implementation) because there is a saturating summa-
tion followed by an integration (or low-pass filtering), with the state variables
y; constrained to lie inside the unit circle (for initial conditions inside the
unit circle). By contrast, the second set of dynamics requires the storage
and update of state variables taking values over a possibly much larger sub-
set of the complex plane, with different x; having possibly greatly different
dynamic range requirements. On the other hand, the second set of dynamics
is much easier to analyze, and the first step in the convergence proof was
basically to convert the first set of dynamics into the second set of dynamics.

A recurring theme in this work is that there are two ways of writing down

18



dynamics for what is essentially the same network (related by a change of
variables). One version of the dynamics is more readily implemented, and

the other is simpler to analyze mathematically.
2.4 Generalization to a Class of Networks

Although the choice of r(-) as the ratio of bessel functions enabled a
physical motivation to be given for the dynamics, careful examination of the
proof of convergence reveals that as long as r(-) satisfies certain properties,
the convergence result will still hold. First, the function 7(-) must be strictly
monotone increasing with 7(0) = 0. Second, r(-) must be analytic. Third, we

need to ensure that a suitable radially unbounded Lyapunov function exists:

V ==Y r(a;)r(ak)bjx cds(ak —a; — 0) + Zg(aj) (2.27)

i<k J

where lim,_, ;gé(% = 00, g& = ar'(a), and g(0) = constant.

The ability to generalize the convergence proof to a class of networks
in this manner is important when analog implementations of these networks
are considered. Although saturating nonlinearities can be achieved in analog
hardware, a saturating nonlinearity for the magnitude of a complex number

which leaves the phase unaltered is more complicated.
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Chapter 3

Adaptive Control Law for a Variable-Weight
Network

3.1 Introduction

The usefulness of the network presented in the last section would be
greatly enhanced if the weights were not constrained to be constant. An
adaptive control law for variable weights is now described which retains the
convergence properties of the fixed-weight network - namely, the variable
weight network with adaptively controlled weights is shown to converge to
an equilibrium point, again using LaSalle’s Invariance Principle. The utility
of the rigorous proof of convergence for the fixed-weight network is that it
can be extended to more general and useful networks, of which the adaptive

control law described in this chapter is an example.

3.2 Motivation for the Adaptive Control Law

We motivate the adaptive control law mathematically by viewing the

dynamics and Lyapunov function abstractly and performing some calcula-
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tions. Abstractly, for the fixed-weight case we have

7 = f(v,w) (dynamics) (3.1)
V (v, w) (Lyapunov function) (3.2)
Vi) = 2 fw)

— < ), f,w) > . (3.3)

Now letting some of the weights be feedback functions, we have

v = f(r,w(v))+g(v) (dynamics) (3.4)

V(v,w(v)) (Lyapunov function) (3.5)

Vo) = (55+ 5052 () +a0)

= — < Jw) + 9), fr () + g(v) > (36)

provided
oV ow
(a—wa)n=— <g(),n>. (3.7)

In the transformed coordinates, this condition becomes

dV dw

owov —(Br'(Ba1)gi(v) - - - Br'(Ban) gn(v)

a’l’r(ﬂal)gn+1(y) e an’l‘(,@an)gm(lj)]. (3'8)

Suppose unit j interconnects units [; and Iy, and all other weights are

constants. Furthermore, suppose b;,;, depends only on a; and 6;, ;, depends
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only on o;. Then

Vv duw ab,,
3_'11)5 - [0 0= T(ﬂall)r(ﬂah) 8lajl2 cos(alZ —ap - 011,12) 0---0
. 00y, 1,
0---0 —r(Bay)r(Bas,)bu i, sin(es, — o, ~ b1y,) 5~ 0--0]
J

(3.9)

where the first nonzero term is in position j of the row vector, and the second

nonzero term is in position j + n.

If we choose by, 4,(a;) = di, 1,7(Ba;) and 6y, 1,(0;) = «y, then ?%ijlz —
dl1,12:87',(ﬂaj) and 6_06%?2 =1, s0
aV ow
B_wa_u = _[0 00 /BT’(IBa’j)(dll,lzr(ﬂall)r(ﬂalz) COS(Oq2 —oy — aj)) 0---0

0---0 a;7(Bay) (%dtl,zﬂ(ﬂ%)r(ﬂazz) sin(on, — o, — aj)) 0---0]
J
(3.10)

where again the nonzero terms are in positions j and j +n of the row vector.

Thus, letting

gi(v) = di,r(Bay)r(Bay,) cos(au, — g, — o)
gi+n(v) = Zzl—jdlhlzr(,@all)r(ﬂab) sin(oy, — ay, — @) (3.11)
o) = 0, k#j,j+n
we then have

(%a—y)n =—<gv),n>. (3.12)
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Generalizing to an arbitrary number of variable weights, we have

i 1 bl 1 610’1"2 = dl 1 r(ﬂa-)emf
¥ —_ 1442 142 7
Ty, = { 0 : otherwise (3.13)
dj = —aj + Zr(ﬂak)bjk COS(CM}C —_ aj - jk)
k

+ Z If;’lzdll,lzr(ﬁall)r(ﬂalz) cos(ay, — oy, — ;) (3.14)

li,l2

. 1 .
a; = G—(Z 7(Bak)bjk sin(ox — o — k)
ik

+ Z Iljl,lzdll,lzr(ﬂall)T(:Balz) Sin(alz -y = aj)) (315)

l1,l2

which (provided the change of coordinates is nonsingular) is equivalent to

; 1wy, = diy g, (Bles]) o
7 — 1,2 1,2 IV =y .
fis, { 0 : otherwise (3.16)
. Tk &
T = —=y +Zr(ﬂ[mkl)|’x——wjk
k k|
+S° I dy (B Bl ) i (3.17)
Z ly,l2 ll,lzlr( |IE11|)7‘( |SII12|) .

ll,lz |.'L'l2| |$l1 |

where the conditions bl1,l2eioll’l2 = dl1,lzr(/6aj)eiaj and Wiy 1y = dh,lzr(ﬂ'a“jl)%
J

simply indicate that unit j is serving as the interconnecting weight between

units I; and I, with the sense of the connection (recall that wy; = wj;) taken

into account.

3.3 Proof of Convergence for the Adaptive Control

Law

To prove convergence of the adaptive control law, we start with the dy-
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namical equations just given, (3.13)-(3.17), along with the Lyapunov function

V = — Z;cr(ﬂaj)r(,@ak)bjk cos(ak - aj — jk)
—TZ [—Bajr(Ba;) + log (2n1y(Ba;))) (3.18)

where now we may have b, = d;xr(Ba;) and 6;;, = +oy for various j, k, [.

The new calculation of V' gives:

V(V) = — Z {ﬂr'(ﬂaj) [ — Qj + ; r(ﬂak)bjk cos(akl - aj — jk)

. 2
+ 31, di 1,7 (Bay, ) (Bay,) cos(au, — o, — aj)]
I1,l2
)

_*_C(_ﬂa_j [Zr(ﬁak)bjk sin{oy — o — jk)
aj k

. 2
+ Z Iijl,lzdll,lzr(ﬁall)T(/Balz) SiIl(CVl2 — oy — aj)] } (319)

l,l2

From this point on, the proof of convergence is basically the same as the
convergence proof for the fixed-weight case. The reason for labeling the
feedback law an adaptive control law is that the original dynamics were linear
in certain parameters (the weights), which are now adapted according to a
feedback law which guarantees convergence. In this way, coupled oscillator
networks can be designed to adapt in the presence of, for example, fixed but
(a priori) unknown weight values, as the 6-unit feedback network presented

in the next chapter will illustrate.

The implementable version of these dynamics is derived in Appendix
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C. The implementable dynamics are

. Z;
Ui =-y;+ T(ﬂl%’l)ﬁ (3.20)
x*
Z ykw]k + W Z lsz LYIL,T ﬂ|1‘11 |) (321)
I 2 |1"l1|
. j n Ty, mll
Wj = —Wj + Z (Ih,lzdll,lz + Ij,lgdj,lz) 7"(,8|113h|) (/B!mlzl)‘ | | I |
l1,l2 l2 1
(3.22)
at equilibrium, y; = r(8|z; 3.23
! sl JI
The theoretically tractable dynamics are
‘T =7 + Z ykw_)k + Z Il1,l2dll,l2ylzyll (324)
l1,l2
=r(B| ;I)— (3.25)

n .
at equilibrium, z; =) ywi, + Y I 1, di, LuLY5,- (3.26)
k=1 l1,l2

As was the case for the fixed-weight network, the implementable and
theoretically tractable dynamics share the same convergence properties. The
implementable dynamics still consist of a saturating summation followed by
a low-pass filtering, except that now some of the terms which are summed by
the saturating summer are low-pass filtered first. Furthermore, the function
r(-) may be generalized in the same way as for the fixed-weight network,
which in turn gives a convergent adaptive control law for a class of networks

of nonlinear coupled oscillators.
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Chapter 4
Eliminating Undesired Stable Equilibria
4.1 Introduction
To illustrate how coupled oscillator networks may be employed, and
to motivate why it is necessary to devise a method of eliminating undesired

stable equilibria, we now present and begin the analysis of the simple 6-unit

feedback circuit shown below:

+i
eW

Figure 4.1: 6-unit feedback circuit.
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0 represents an unkown phase shift between units 1 and 6, and as will
be shown, the circuit acts to align the phase of unit 6 with 7+, a reference
phase. Unit 5 interconnects units 1 and 2, and obeys the adaptive control

law.

Since we know the network will converge to an equilibrium point, the
first step is to find all of the equilibrium points and determine which are

stable. The equilibrium equations in transformed coordinates are

a1 = —ay +r(Ba)r(Bas) cos(ar — ay — as) + r(fag) cos(ay — oy — 7)

+7(Bag) cos(ag — g +6) =0

G = —az+r(Bay)r(Bas) cos(ar — ap + as) + r(Bas) cos(as — ag) = 0
G5 = —as+r(Bag) cos(as — as) + r(Bas) cos(as — az + ) =0

G = —ag+r(Bay)cos(ar — as — )+ r(Bas) cos(as — ag — ) = 0

is = —as+r(Bas) cos(as — as) + r(fax)r(Bar) cos( — o — as) = 0
G = —ag +r(Bay)cos(ay — o — 6) + r(Bas) cos(as — ag) = 0

G = ail (r(Bas)r(Bas) sin(az — a1 — as) + r(Bas) sin(as — oy — )

+7(Bag) sin{ag — a; +8)] =0

Gy = al? [r(Bay)r(Bas) sin(ay — o + as) + r(Bas) sin(az — 03)] =0
by = al3 [r(Bas) sin(as — o) + r(Bas) sin(as — as + )] = 0
Qg = a% [r(Ba1) sin(ar — as — ) + r(Bas) sin(as — as — ¥)] =0
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1

Gy = o [7(Bas) sin(ag — a5) + r(Baz)r(Bay) sin(ag — oy — )] =0
g = 31(; [r(Ba1) sin(a; — ag — 0) + r(Bas) sin(as — ag)] = 0.
(4.1)

The equilibrium phases we would like to show to be the only stable phases

satisfy
Oy — Q1 — Oy = 0
oy —oa;—7m = 0
g — o1 + 06 =0 (42)
a3 — Qg = 0

as—az+yY = 0

Og — O — 0.

The solution to this system of linear equations is

(641

(65)

0%}

Oy

Qs

&7}

O+ +m

0 + 2y

0 + 2y (4.3)
0+

b+

Y+,
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However, although we would like to proceed with the equilibrium point iden-
tification and stability analysis in the transformed coordinates, there are two
problems: first, there may be equilibria with one or more of the a; equal
to zero; and second, identifying all the equilibria (which means solving the
system of nonlinear algebraic equations) is not a straightforward problem.
Thus there may be undesirable stable equilibria in addition to the desired

stable equilibrium point.

There are two distinct approaches one could take to eliminate unde-
sired stable equilibria. The first approach is to use extra directional units
configured to prevent the original network of units from having equilibrium
points with one or more of the a; being zero. We will show that by coupling
one extra unit to each unit in the original network we can prevent any of the
a; from being zero at a stable equilibrium point. The second approach is to
modify the network dynamics so that the a; are constrained from being zero
at equilibrium without the need for extra units. We will show that by simply
assigning a value to the magnitude of a unit and eliminating the equation
for that unit’s magnitude from the dynamics, the same form of Lyapunov
function still works for proving convergence. Roughly speaking, the first ap-
proach (adding units) is more implementable for an analog system, while the

second approach (modifying the dynamical equations) is simpler to imple-
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ment in a digital system. Again, the arguments used in the rigorous proof of
convergence for the fixed-weight network will be instrumental in solving this
technical problem, which must be overcome if such networks are to be useful

in practice.
4.2 Digital Implementation Approach

The new dynamical equations, with the a;(t) = @; constant functions

of time, are

dj = &1—(2 T‘(,Bdk)bjk sin(ak — Q5 — jk) (4.4)
J k

+ Z Il];,lzdll,lzr(ﬁall)T(ﬂalz) Sin(alz — Q= aj))'

Iy,l2

The Lyapunov function has the usual form:

V = - %T(,@&j)’l’(ﬂak)bjk COS(Olk — Q5 — jk)
~T'Y [-Ba;r(Bd;) + log (2rIo(Ba;))] (4.5)

Because the term —T' Y-, [—fa,r(Bd;) + log (271y(B4;))] is constant, we

can just as well use the Lyapunov function

V=- Z T(,Baj)’f'(ﬂdk)bjk COS(O[k — Q5 — jlc)- (46)

j<k
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The convergence proof for this network is simpler than the general
adaptive control law proof, because the system is evolving on the n-torus,

T™, rather than on C". €, is now simply T™, which is a compact manifold.

V(v) for v = (oy, ..., ) is computed to be
ﬂag .

= Z { > r(Bax)bse sin(ax — a; — 0;i)

k

, 2
+ 3 I, di, 1,7 (Bay, )r(Bay,) sin(oy, — o, — aj)] } (4.7)

ll2

Thus, V < 0 and V = 0 only at equilibrium points of the dynamics.
Applying LaSalle’s Invariance Principle, we may conclude convergence to the
set of equilibrium points. Furthermore, the dynamics are gradient dynamics,

as we may define the inner product

(Vla V2> = V?diag(alr(ﬁal), ey &nr(ﬂdn))’/% (48)

As before, (#,() = —d,V - { = (-=VV,{) so that ¥ = —VV. Thus, we may

conclude that the system actually converges to an equilibrium point.

Observe that the dynamics (4.4) are readily implementable in digital
hardware, because the a; and ¢; remain bounded (with a bound which is

easily computed). Furthermore, r(-) only appears as its values at Bdy, ..., Bdy.

It may not always be desirable to prevent every unit in the network

from being able to approach zero. The above proof can easily be extended to
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accomodate having certain units’ magnitudes fixed, but allowing other units’

magnitudes to vary according to the adaptive control law.

4.3 Analog Implementation Approach

The dynamics (4.4), although easily implemented in digital hardware,
are poorly suited to analog implementation due to the need to calculate the
sine of various quantities. An alternative approach to modifying the dy-
namical equations (3.20) - (3.26) in order to eliminate the undesired stable
equilibria is to instead modify the network topology. As will now be shown,
by coupling an extra unit to each unit in the original network, stable equi-

libria with one or more of the a; equal to 0 can be eliminated.

To illustrate the idea behind the approach of eliminating undesired sta-
ble equilibria by coupling an extra unit to each unit in the network, consider

the following two-unit network:

-

Figure 4.2: 2-unit network.
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The complex dynamics for this system are

i = —$1+r(ﬁ]xgl)|z—z|fy (4.9)
By = —m2+r(ﬂ|x1|)£—|7. (4.10)

We can show that this system is unstable at the origin by linearization. The

Jacobian (found by expanding [y and I; about zero) is

-1 &
[ %1 _21 ] (4.11)

Thus, the origin will be unstable provided gy > 2.

Now we consider unit 1 to be connected to other units, and in addition

unit 1 is connected to an auxiliary unit, unit 1’, as shown:

Figure 4.3: Unit connected to auxiliary unit and to rest of network.
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The equilibrium equations for units 1 and 1’ are

Tyt
—$1+Z ,[3|:1ck|l |w1k+'r(,3|z1 |)W'y = 0 (4.12)
kA1
T
—x1,+r(ﬁ|$1|)ﬁfy = 0. (4.13)

If 31 7(Blws|) jiywiy # O then clearly the equilibrium equations cannot be

satisfied if either z; = 0 or z» = 0. On the other hand, if 3"y 7(8|2x]) 5% En |'w”c =
0 at equilibrium and we let 2; = 1, = 0, then we have an unstable linear sys-
tem subject to a nonlinear perturbation which converges to zero. Therefore,

we may conclude that the equilibrium point x; = z1+ = 0 is still unstable.

Since at no stable equilibrium point do we have z; = 0 or z¢v = 0,
we can perform the rest of the analysis in transformed coordinates. The

dynamics for oy is

. 1 .
Gy = a—llfyr(ﬂal) sin(ag — ayr). (4.14)

At equilibrium, this implies
sin(a; — ay) = 0. (4.15)

We would like to show that the only stable solution is a; — «;r = 0. However,
this will be a consequence of the following result, which can also be extended
to show that for the system of figure 4.1 with an additional unit coupled
to each unit shown, the only stable equilibrium point is the desired stable

equilibrium point:
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Theorem 4.1: (Result on stability of equilibrium points for fixed-weight

networks) If the following conditions are satisfied:

(1) The network consists of interconnected units and is such that no stable

equilibria exist with one or more a; = 0.

(2) The network is connected; i.e., the network cannot be separated into
two or more subnetworks whose convergence could be analyzed sepa-

rately.

(3) All equilibrium points satisfy sin(ax — @; — ) = 0 V3, k such that

bjk ;A 0.

(4) The interconnecting weights are fixed.

Then the unique stable equilibrium point satisfies cos(ax—a; —0,x) =1 V4, k

such that b, # 0.

Proof: Suppose for an n-unit fixed-weight network for which no stable

equilibria exist with one or more a; = 0, Jp, 1 < p < n, such that at

equilibrium
7=12..p
cos(ay —a;—0;) = —1forq k=p+1,..,n (4.16)
bir # 0
Il=p+1,..,n
COS(O[}C — O — Hlk) =1 fOI‘{ k= P+ 1, ey (417)
big # 0
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J=L2,..,p
cos(am — o —0j,) = 1 forq m=1,2,...,p (4.18)

bym # 0.

(To see that this covers all possible cases for undesired stable equilibria, en-
vision starting out with each unit satisfying the desired stable equilibrium
configuration, and then changing the phase of certain units by 7. This in-
volves no loss of generality because for fixed-weight networks the equilibria
are classified by phase differences rather than absolute phases. In other
words, if a given set of phases represents an equilibrium point, adding a
constant to each phase gives a different set of phases, but the new set also

represents an equilibrium point with the same stability properties.)

Let
CAVJ' = O!j + SjAa (419)
where
1j=1,..,p
S, = . ! 4.20
={s izt (4.20)

and 0 < |Aa| << 1. Letting AV =V (9) — V(v), we have
AV = Z r(ﬁaj)r(ﬂak)bjk[— COS((Oék - CM]' - jk) + (Sk — SJ)AOI)

i<k
+cos(ax — a; — 0j¢)] (4.21)
= Z%r(ﬂaj)r(ﬂak)bjk cos(ag — a; — 051) [1 — cos((Sk — S;)Ac)].

(4.22)
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Assumption (2) implies that the summation above must have at least one
nonzero term. Furthermore, [1 — cos((Sx — S;)Aa)] > 0 for j < p and k > p,
which is precisely when cos(ay — o; — 0,) = —1. Otherwise, [1 — cos((Sk —
S;)Aa)] = 0. Thus, AV < 0, which means there is a descent direction
at any equilibrium point which we desire to be an unstable equilibrium
point. Moreover, the dynamics in a neighborhood of one of these equilib-
rium points are gradient dynamics (assumption (1) guarantees the metric is
well-defined in a neighborhood of the equilibria). Thus, all equilibria not
satisfying cos(ox — o — ;1) = 1 Vj, k such that b; # 0 must be unstable.

Q.ED.

Theorem 4.2: The network of figure 4.1, with an auxiliary unit con-
nected to each unit shown to preclude stable equilibria with one or more

a; = 0, has the unique stable equilibrium point given by (4.3).

Proof: The proof of theorem 4.1 must be generalized slightly for the
case at hand, in which one of the weights is nonconstant and is adaptively
controlled. (4.16) - (4.18) still apply, exluding the case when w,y, is the adap-
tively controlled weight in (4.16), when wyy is the adaptively controlled weight
in (4.17), and when wj,, is the adaptively controlled weight in (4.18). The
justification for using (the modified) (4.16) - (4.18) can no longer be based on

the fact that for fixed-weight networks only the relative phases matter, be-
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cause the absolute phases are important in the adaptively-controlled-weight
case. Here we can use the fact that sin(¢) = 0 implies cos(¢) = +1, and view
(4.16) - (4.18) as simply an enumeration of which cosine terms are 1 and
which are -1. (The relatively simple interconnection of units in this network

makes it easy to see that this is possible.)

We define & as in (4.19). However, S; must now be chosen based on
whether cos(ax—a;—a;) = 1 or —1, where unit [ is the adaptively controlled

interconnecting weight for units j and k. The equation for AV is now

AV = Z r(ﬁaj)r(ﬂak)bjk COS(CM/c - Q; — jk)[l — COS((S}C — Sj - S]k)AO[)]

i<k
(4.23)
where Sj; = S; if unit [ is the adaptively controlled weight and S;; = 0

otherwise.

If cos(oy, —o; —y) = —1, then S; may be defined as in (4.20). However,
if cos(ax — o; — oy) = 1, then S; must be chosen to make Sy — S; =S =0.

S; must also satisfy

o C1 j=1,...,p
5 “{ ¢ j=p+1,.um (4.24)

where ¢, and c, are constants with ¢; # c,. (Regardless of the values of ¢;
and ¢y, the fixed-weight terms of AV will be nonpositive.) Given whether 7,

k, and [ are greater than or less than p, it is clearly possible to find ¢; and
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¢z so that Sy — 5; — S; = 0 is satisfied.

(There is one final special case to take into account: the p = 0 case
with cos(ax — @ — o) = —1. An appropriate function S; giving AV < 0 is

readily obtainable in this case as well.)

Hence, as in the proof of Theorem 4.1, AV < 0, which implies that all
equilibria not satisfying cos(ay — a; — 6;5) = 1 V3, k such that bj, # 0 must
be unstable. Therefore, the unique stable equilibrium phases for the system

of figure 4.1 are given by (4.3). Q.E.D.

Thus, as claimed, the circuit of figure 4.1 acts to align the phase of
unit 6 with 7 + 1, a reference phase, regardless of the unknown phase shift

6 between units 1 and 6.
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Chapter 5

Analog VLSI Implementation

5.1 Introduction

There are several reasons to consider attempting to implement these
networks of coupled oscillators in analog VLSI hardware. Analog processing
at the output of receivers for communications or radar, or at the output of
smart sensors, can improve system performance if the analog processing can
be made to work well enough. The principle limitation for analog continuous-
time silicon CMOS circuits is generally threshold voltage mismatch between
nominally identical transistors. Such threshold voltage mismatches, or off-
sets, will affect how these coupled oscillator networks perform. However,
the advantage the network of coupled oscillators possesses is that by keep-
ing the unit magnitudes fairly large (at least around stable equilibria), the
signal levels within the coupled oscillator network can be maintained at a
high enough level that the offsets only introduce a small relative error. Fur-
thermore, expressing the dynamics in the implementable form (2.21)-(2.23)
or (3.20)-(3.23) aids in analyzing offset effects, in contrast to the theoreti-

cally tractable form (2.24)-(2.26) or (3.24)-(3.26) which fails to indicate the
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dynamic range requirements of the x;.

Analog VLSI is the most realistic option for implementing these net-
works in an analog form, because the number of multipliers required is fairly
large even for networks consisting of a modest number of units. Only sili-
con CMOS implementation will be considered in this work, because silicon
CMOS is the most widely used and available technology for prototyping ana-
log VLSI circuits. Furthermore, to make the discussion more concrete, the

MOSIS 2 pm technology will be considered [20].

Processing nonuniformities cause slight variations in threshold voltage,
even for nominally identical transistors located in close proximity. Based on
the author’s experience in testing analog CMOS circuits at the U.S. Naval
Research Laboratory’s Microelectronic Device Physics Section as part of the
analog VLSI adaptive filter project [21][22][23][24], it was generally found
that nominally identical transistors within a circuit (i.e., transistors not wire-
bonded to package leads) and located in close proximity had threshold mis-
matches in the 2mV to 3mV range. However, transistors with gates bonded
to package leads regularly exhibited threshold mismatches as high as 200mV.
One possible conclusion from this observation is that during the wire-bonding

process, charge gets trapped in the gate oxide, causing a threshold voltage

shift. For design work, the threshold mismatch between nearby identical
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transistors was taken to be 10mV, as recommended in [25], since nearly all
threshold offsets would be expected to be below that value, and care was

taken with respect to how transistor gates were brought to bonding pads.

The purpose of this chapter is to sketch out an approach for imple-
menting networks of coupled oscillators in analog VLSI in order to illuminate
important practical issues. Two methods of producing the complex saturat-
ing nonlinearity are presented, and the extra dynamics they introduce are

discussed.

5.2 Complex Saturating Nonlinearities

5.2.1 Introduction

The first challenge in devising an analog implementation of either the
fixed-weight dynamics (2.21)-(2.23) or the adaptively controlled dynamics
(3.20)-(3.22) lies in how to effect the complex saturating nonlinearity z; —
r(ﬁ|le)|%j—| Two quite different approaches will be presented: a quadra-
ture oscillator approach and an automatic gain control approach. In both
cases, it will be shown that the complex saturating nonlinearity introduces

a high-frequency pole into the dynamics, and that this pole will limit the
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maximum corner frequency of the network low-pass filters (to a corner fre-
quency well below the corner of the high-frequency pole). The situation is
similar to voltage op-amp design, where the ultimate bandwidth limitation
of a normal voltage op-amp is due to the high-frequency non-dominant pole
rather than the low-frequency dominant pole [26]. The quadrature oscillator
approach has the advantage of being conceptually simple, but the automatic

gain control approach will be shown to require fewer components.

5.2.2 Quadrature Oscillator Approach

The quadrature oscillator approach for producing the complex saturat-
ing nonlinearity is shown in figure 5.1. A reference oscillator generates I (in-
phase) and Q (quadrature) signals, which are 90 degrees out of phase. These
high-frequency signals multiply the real and imaginary parts of each y,w},
term, and summing the high-frequency signals produces a high-frequency sig-
nal whose phase contains the directional information present in the real and
imaginary parts of yywj,. For each unit j, the high-frequency signals Yr W)y
are summed (to produce z;) and passed through a real saturating nonlin-
earity. At the output of the real saturating nonlinearity, the high-frequency
sum signal for each unit (which is now a distorted sine wave) is multiplied

by I and Q again, and low-pass-filtered to give the real and imaginary parts
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This approach has the advantage of being conceptually simple, but
there are two drawbacks. The first drawback is that the yyw, signals must
be mixed up to the carrier frequency before they can be summed over k for
each j. It is not possible to first sum the Yrwy, over k to produce the z;
and then mix the z; up to the carrier frequency to be passed through the

saturating nonlinearity, because the saturation operation must take place at
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Figure 5.1: Quadrature oscillator approach.
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the point where the y,wj, are summed. (Otherwise, the real and imaginary
parts of 35 yrw}; will saturate individually and the phase information in z;
will be lost.) As will be shown when actual circuits are considered, what
are summed are currents, and the sum current can be converted to a voltage

using a nonlinear resistance to produce the saturating nonlinearity.

The second and more subtle drawback is the need to properly handle
the high-frequency signals as the yywj, are being summed and saturated to
produce the r(ﬁxj)[%—l. Any phase shift of the high-frequency signal as it
is being passed through the saturating nonlinearity will result in a phase
error once the r(ﬂxj)l%—' are demodulated. If too great, the high-frequency
phase shift can cause the network of directional units to become unstable (or
more specifically, to oscillate with a stable limit cycle solution). Therefore,
there is a limit to how high the I-Q frequency can be for the network to still
converge to a stable equilibrium point of the dynamics. Furthermore, since
the high-frequency content of the r(ﬂxj)%;—l signal must be stripped so that
it will not appear on y;, the network low-pass-filter corner frequency must
be significantly lower than the I-Q frequency. Either the network low-pass-
filter corner frequency must be so low that there is sufficient attenuation of

the high-frequency signal with only the 20dB/decade rolloff of a simple pole,

or else a higher-frequency pole can be introduced to strip the double-carrier-
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frequency component before the r(ﬁxj)li;ﬁ signal is low-pass filtered. In either
case, the network low-pass-filter corner frequency must be considerably lower
than the bandwidth of the components used in the circuit. Even if no high-
frequency pole is explicity introduced, there will still be high-frequency poles

where the limitations of the multiplier and saturating nonlinearity bandwidth

are reached.

5.2.3 Automatic Gain Control Approach

The automatic gain control approach for producing the complex satu-

rating nonlinearity is shown in figure 5.2:

_>—"\ > v,
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Zu '§YKVYJ;( ) — :X‘ |z, ]
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&
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Figure 5.2: Automatic gain control approach.
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It is a nonlinear feedback circuit acting like an automatic gain control for the
signal entering the low-pass filter. The advantage of this approach over the
quadrature oscillator approach is fewer components, since no oscillator and
fewer multipliers (only four per unit) are required. However, some effort is
needed to verify that the automatic gain control circuit serves as an appro-
priate complex saturating nonlinearity, and that as a subsystem it is stable

in its own right.

The reason for choosing this particular form for the automatic gain
control circuit is that it uses only multipliers, summers, and low-pass filters
(the gain block labeled o can be incorporated into the other components).
As will be shown, the low-pass filter in the feedback loop is required for the
automatic gain control loop to remain stable. The location of the low-pass
filter within the feedback loop has been chosen to help maintain the stability

of the overall network of units.

The dc transfer characteristic of the automatic gain control circuit will
now be shown to satisfy the requirements of the function r(-) enumerated in

section 2.4. Referring to figure 5.2,

T = Eiptad -5 (5.1)

Si(l—ad+alS;?) = T (5.2)
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51— ad+alZ?) = [Zjl. (5-3)

Therefore, we can write r(a) as an implicit function of a:

r(@)(1—ad+ar’(a)) = a (5.4)
ar®(a)+ (1 — ad)r(a) —a = 0 (5.5)
r(a) + (% ~r@-2 =0 (5.6)

The above is a cubic polynomial, which can be solved as follows [27]: We
assume that (é — &) > 0. Then since —2 < 0, we can conclude that there is

a unique real solution for r(a). This real solution is given by

_da a2 (2-0) il a \/a2 (L —6)3
T(“)_\J% \/4012Jr 57\ Va2t G

Using the binomial formula and the fact that the composition of analytic

functions is analytic, it is easy to see that this function r(-) is analytic.
Furthermore, r(0) = 0 and r(-) is strictly monotone increasing. Also, we can

take 22 = ar'(a), with g(0) = constant, and for large a approximate:

a1/
r(a) ~ A5 (5.8)
We can then further approximate:
1 a—2/3
Tl(a’) ~ 5 a1/3 (59)
o 1 1/3
I N 22 (5.10)

da  3all3
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1 a4/3

9@) = ;o7 (5.11)
g(a) ~ 1 1/3 2/3 -
G AL (5.12)

Thus, we may conclude that lim,_, ;%% = 00, and hence that the function

7(-) produced by the circuit of figure 5.2 indeed leads to a convergent network

of nonlinear coupled oscillators.

Next we need to show that the automatic gain control subcircuit viewed
as a nonlinear feedback circuit is stable. It turns out this can be shown
by a LaSalle’s Invariance Principle argument along the lines of the proof of
Theorem 2.2. To simplify notation for the stability proof, the circuit of figure

5.2 is redrawn in figure 5.3, with u and z complex:

z
+
u 3(T) —
* LPF
CORNER = Wp
& &=

Figure 5.3: Automatic gain control circuit for stability proof.

Theorem 5.1: The circuit of figure 5.3 converges to the unique desired

stable equilibrium point expressed in equation (5.7).
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Proof. The complex dynamics are
1. 9
—z=—z+az(d — |2|°) + u. (5.13)
Wp

If we let 2 = pe? and u = o€, we can rewrite the dynamics in polar

coordinates as follows:

i(pew +i0pe®) = —pe?® + ape? (5 — p?) + o0 (5.14)
P
|
—(p+ibp) = —p+ap(d—p°)
Wp
+o(cos(yp — 8) + isin(y — 9)) (5.15)
1
w—/) = —p+ap(d—p*) +ocos(yp — ) (5.16)
14
ipé = osin(y — 0). (5.17)
Wp

Thus, provided p # 0, we can express the dynamics as

p = wpl—p+ap(—p*)+ocos(y —0)] (5.18)
6 = w,,;[a sin(y) — 6)]. (5.19)

The Lyapunov function is

0 o

V(p,6) = %p"’ -« (gp - iﬁ‘) — po cos(yp — 0). (5.20)

The Lyapunov function is radially unbounded because of the %p‘* term and
therefore has compact sublevel sets. The derivative of the Lyapunov function

along trajectories is computed as follows:

V(p,0) = —pp+—é (5.21)
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= —(=p+ap(d—p?) +ocos(sp - 0)p
—(posin(y — 6))6 (5.22)
= —wp[—p+ap(d - p*) +ocos(v - O)

—wyosin(y — 6)]2. (5.23)

Thus, V(p,0) < 0 and V(p,8) = 0 only if (p,6) is an equilibrium point of
the dynamics, or else p = 0. But if p = 0, then examination of the original
complex dynamics (5.13) reveals that the origin is only an invariant point
of the dynamics if u = 0, in which case p = 0 is the unique desired stable
equilibrium point. Otherwise, it is clear from the complex dynamics (5.13)
and the assumption that (3 — &) > 0 that the unique equilibrium point of the
system has # = v and p(c) equivalent to r(a) given in (5.7) for r(-) = p(:)

and a = 0.

So by Theorem 2.1 (LaSalle’s Invariance Principle), and the fact that
the dynamics can be written as gradiant dynamics, we may conclude that

the system (5.13) converges to the unique desired equilibrium point. Q.E.D.

In practice, the circuit of figure 5.3 will have additional dynamics be-
sides the low-pass filter shown, since the multipliers have finite bandwidth. If
there is some frequency at which the feedback loop has an overall gain greater

than unity but the phase shift through the loop exceeds 180 degrees, then
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clearly the circuit will be prone to oscillate. Therefore, the pole frequency
w, must be chosen low enough that the unmodeled dynamics do not cause

the feedback loop to go unstable.

5.3 Summary

Two methods of performing the complex saturating nonlinearity func-
tion for an analog continuous-time implementation of the network of cou-
pled oscillators have been presented. The first, the quadrature oscillator
approach, is conceptually simple, but requires two multipliers per unit and
two multipliers per interconnecting weight for each nonzero interconnecting
weight in the network. The second approach, the automatic gain control
circuit, requires effort to prove that it can serve its purpose, but it requires
no oscillator and only four multipliers per unit, substantially fewer than the
quadrature oscillator approach even for the relatively sparcely interconnected
circuit of figure 4.1. Either approach introduces a non-dominant pole, either
explicitly or implicitly, which in turn determines the maximum network low-
pass-filter corner frequency for which the overall network of units will be
stable. Because of the complicated nonlinear nature of the network of cou-
pled oscillators with additional dynamics due to the limited bandwidths of

the consituent components, a precise formula for determining the maximum
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stable network low-pass-filter corner frequency would be at best very difficult
to derive. Therefore, the choice of network low-pass filter corner frequency
must be made conservatively, and it should at a minimum be verified that
with a given dominant pole and non-dominant pole, each pair of connected
units taken pairwise will not have an obvious stable limit cycle solution at

any frequency.
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Chapter 6

Analog VLSI Circuits

6.1 Introduction

The goal of this chapter is to combine the practical issues of analog VLSI
implementation discussed in the last chapter with actual circuit building
blocks in order to explore tradeoffs among network size, low-pass-filter corner
frequency, and power dissipation. Using this information the decision can
be made as to whether an analog VLSI coupled-oscillator network is worth

considering for a given application.

As demonstrated in the last chapter, analog multipliers are required
even for implementing the fixed-weight dynamics (2.21)-(2.23), because even
if the fixed weights are implementated as fixed-gain amplifiers, multipliers are
still needed for producing the complex saturating nonlinearities. Therefore,
a multiplier circuit is described which could be used with either complex
saturating nonlinearity approach described in the last chapter, as well as
to multiply the yx by either fixed or variable weights w},. Next, another

required circuit building block, the low-pass filter, is considered, and finally
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the network size, corner frequency, and power dissipation issues are discussed.

6.2 Analog Multiplier Design

Among the options for an analog integrated multiplier circuit, I have
chosen to describe one which is relatively simple to design, simple to under-
stand, and has a wide bandwidth: the wide-range Gilbert multiplier of figure

6.1:

Vopm 10V |

Vy

.V1
+V +V
REF ‘ tM1 sz ' REF

(il ] [
+V

REF .
v2

+Vrer

H o ] H [

Figure 6.1: Wide-range Gilbert multiplier circuit.
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This multiplier circuit has performed well in the adaptive filter project
of the Microelectronic Device Physics Section at the Naval Research Lab-
oratory [21],(23]. The wide-range Gilbert multiplier circuit has the feature
that both differential inputs can be biased at the same dc véltage mid-range
between the 0V and 10V power supplies, with a couple of volts of common-
mode input range; therefore, the multiplier is easy to incorporate into a
larger circuit. Furthermore, by adjusting the current and W/L values, a va-
riety of input ranges, gains, and bandwidths can be obtained. The multiplier
output is a differential current, which can be converted to a differential or
single-ended voltage by using appropriate load devices (shown in figure 6.2),
and the outputs of several multipliers can easily be summed simply by tying

together the output current lines (as in figure 6.3).

| = 2. 2
j TS T
;
Vo Vo
—_— .
bo
low lo. 'eias los 'o.
7 4 4 4

Figure 6.2: Multiplier load devices (left: single-ended, right: differential).
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Figure 6.3: Summing the outputs of several multipliers.

To demonstrate how the circuit of figure 6.1 performs a multiplication
operation, refer to figure 6.4 for the following first-order analysis of the stan-
dard Gilbert multiplier. All transistors are assumed to be in saturation,

where the following (approximate) equation holds:
Ip = K(Vgg — Vp)? (6.1)

where K = % nCos W/ L, with u the carrier mobility, C,, the oxide capacitance
per unit area, W the channel width, and L the channel length. I is the drain

current, Vg5 is the gate-source voltage, and Vr is the threshold voltage for
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turning on the transistor. Transistors M1 and M2 are assumed to be identical
with K = K, and transistors M3 through M6 are assumed to be identical

with K = K.

o | s

I'3

4 g
il
.V2

vy —{ ]

e

Figure 6.4: Standard Gilbert multiplier circuit.

The currents I; and I, satisfy

L = K (Vi +Vy)? (6.2)

I, = Ki(—Vi+Vy)? (6.3)
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Is = Li+1 (6.4)

where Vp; = 2—1% — V{2 incorporates the shift in source voltage of M1 and
M2 when the input V; is applied. Similarly, we can write equations for the

currents I3 through Ig:

Iy = Ky(Va+ Vps)? (6.5)
I = Ky(—Va+ Vi) (6.6)
Iy = Ky(—Va+ Vos)? (6.7)
Iy = Ky(Va+ Vis)® (6.8)
L = L+, (6.9)
L = I+I (6.10)

where V3 = ,/2—?{; — VZ# incorporates the shift in source voltage of M3 and
M4 when the input V; is applied with I; flowing through M1, and Vy5 =
,/2—% — Vi incorporates the shift in source voltage of M5 and M6 when the

input V; is applied with I, flowing through M2. Noting that

Vig = 21_11{2 —vg (6.11)
= e+ Ve - 7 (6.12)
Voo = \3 - V2 (6.13)
= %(—Vl +Vo)? = V3§ (6.14)
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we can rewrite the equations for the currents I3 through I as

2

K

I; = K, (‘/24- 2}_;2(‘/1‘{"/01) V2)
L = K(-V+ ﬁ(v+V) V22
4 = 2 2 2K2 1 01 2

K 2
Iy = Kz(—V2+ 2K2( Vi + Vor)? V)
I = K, (Va+t ﬁ(—v+V)2—V 2
6 — 2 2 2K2 1 01 2

We can now derive the output current.

Io = Ioy—1Io-

= L—ILi+I;—1Ig
2

K
= K (V2+ 2—K12(V1+V01) V)
7 2
(V2+ ﬁ(vl‘{'%l) V)

2
K
—<V2+ 2—K12(—v1+%1)2—vz)
K
= Kz[zvz 2K12(V1+V01) — Vs
K
—2V, 2Kf2( Vi + Vo) v]

K 1 2K, V2
= 2K,Vp |1/ 5o (Vi + Ver) — =4/ +
2 2[ 2K( 1 01) 2\ &, (V1+VE)1)

K 1 2K, V2
Vi + Von) + =4/
B AR R o vare 7
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(6.16)
(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)
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K
_ 2K2V2[2 il
1 2K, 2( 1 1 )
— V. — 6.24
VK P\ T Ve Vitve) T (6.24)
2K, 9K, W
= 2K,V; —W; V. 6.25
22[ %, 1+ 7é 2%21_‘/12‘*' (6.25)

Q
[\&)
[\
X
=
=
~

(6.26)

The final approximation is valid provided V] is small compared to Vi, Vo1 >
1, V, is small, and % is modest. Thus, the circuit does indeed approximate

a multiplier, with the output current as a function of input voltage given by

Ip = 24/2K, Ko Vo V.

Figure 6.5 shows how the wide-range Gilbert multiplier circuit compares
to the standard Gilbert multiplier of figure 6.4. Transistors M1 through M6
serve as M1 through M6 of figure 6.4. Transistors M7 and M8 form a current
mirror acting as the current source Is of figure 6.4. M9 and M10 form a
current mirror to drive the sources of M3 and M4 with I; from M1. Similarly,
M11 and M12 form a current mirror to drive the sources of M5 and M6 with

I, from M2.
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Figure 6.5: Wide-range Gilbert multiplier circuit for analysis.

Deviations from the ideal multiplier characteristic are caused by the
terms neglected in the derivation of the multiplier characteristic, Early effect,
nonideal characteristics of the current mirrors, and threshold mismatches
(offsets) among the multiplier core transistors M1 through M6. Body effect
will also cause deviations from the ideal characteristic, but can be reciuced

by putting as many of M1 through M6 as possible in their own wells. For
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the circuit of figure 6.5 in a 2 yum MOSIS p-well technology, M3-M6 can be

placed in separate p-wells.

6.3 Analog Low-Pass Filter Design

The analog building blocks needed for the implementation of the net-
work of oscillators based on either the quadrature oscillator approach of figure
5.1 or the automatic gain control approach of figure 5.2 for the complex satu-
rating nonlinearity include multipliers, summers, low-pass filters, and in the
case of figure 5.1, a real saturating nonlinearity as well. Multiplier design
has already been discussed, and summation of currents at multiplier outputs
has been shown to not require any extra circuitry. (Voltages can be summed
using a circuit even simpler than the multiplier circuit of figure 6.4, so even
though summing currents is trivial, summing voltages is not difficult.) Real
saturating nonlinearities for the quadrature oscillator approach can take the
form of nonlinear resistive elements (such as MOS diodes or p-n diodes), or
can consist of a small circuit. However, the low-pass filter design requires
some consideration, because a low-pass filter can take up much more silicon
real estate than a multiplier. Furthermore, there are constraints on what

approaches can be used to achieve various time constants.

As a starting point for design of a low-pass filter in MOSIS 2 pm
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double-polysilicon p-well technology, we will take the maximum size of a
poly-poly capacitor (a subjective decision based on keeping the capacitor
size on roughly the same scale as two multipliers) to be 3pF. Using a p-well
resistor, resistances up to about 3M() can be achieved in a reasonable area
for this application. Thus, a direct RC time constant down to about 20 kHz

can be achieved.

Another approach for implementing the low-pass filter is to use the
transconductance-C circuit of figure 6.6. The time constant for this circuit is
approximately given by g¢,,/C where g,, is the small-signal transconductance
of M3 and M4. An advantage of the transconductance-C circuit over the
direct RC circuit is that the transconductance-C circuit can provide voltage
gain. The circuit of figure 6.6 can be used to generate time constants down

to the 10s of kHz range.

V. =10V
[s]3]

il
T

Ei——ﬂg o

Figure 6.6: Transconductance-C low-pass filter.
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The circuit of figure 6.7, known as a transconductance-killer circuit
because the cross-coupled input stage acts to reduce the overall transcon-
ductance below that of the individual transistors, has been used to produce
time constants down to 1 kHz. For lower corner frequencies, continuous-
time approaches tend to require too much chip area, and switched-capacitor

circuits should be considered.

J vDD- 1Io \%
i} e

IS =200 UA M3

VN

WiL Vour
M1-M2  4/40 - |
M3-Md4 480 M7 _“)'18 —r o'
M5-M6  4/76 ' |
M7 -M10  4/100 L

M9 M10
r _)l Veou =0V

Figure 6.7: Transconductance-killer low-pass filter.

Of course, the low-pass filter design must be a simple pole. Any pro-

posed low-pass filter design must be analyzed or simulated to make sure it will

behave as a single-pole filter out to a high enough frequency. P-well resistors
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have distributed capacitance, and the transconductance-C circuits of figures
6.6 and 6.7 have additional dynamics which must be taken into account. Ob-
viously the low-pass filters just listed are by no means the only ones which
could be considered. For example, an active op-amp low-pass filter can trade

off increased power dissipation to produce a more ideal single-pole filter.

6.4 Tradeoffs among Power Dissipation, Network Low-

Pass-Filter Corner Frequency, and Physical Circuit Size

The purpose of describing the multiplier circuit at length and of intro-
ducing some low-pass-filter circuits is that they enable tradeoffs among power
dissipation, network low-pass-filter corner frequency, and physical circuit size
to be explored. This is a first step toward determining potential applications

for analog implementations of such networks.

To consider the tradeoff between power dissipation and network low-
pass-filter corner frequency, some assumptions are needed. First, it will be
assumed that the multipliers dominate the power dissipation. Second, the
total power dissipation allowed will be taken to be 1 W (roughly the power
level at which in a room temperature environment without heat sinking the

package will feel warm to the touch, but not actually hot enough to burn a
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finger). Finally, for the circuit of figure 6.1, with I, = 200pA corresponding
to a power dissipation of 4 mW per multiplier, the bandwidth at which
“slight” deterioration of the frequency response is seen to occur is taken to
be 20 MHz (multiplier circuits cannot be characterized by a single 3dB point,
because the frequency response is different for the two inputs). This estimate
is based on testing larger adaptive filter circuits of which the multiplier of

figure 6.1 was a subcircuit.

As the multiplier current is decreased, its bandwidth will also decrease,
but because reducing the current level requires changing the transistor sizes
in order to maintain the same input signal range, the relationship between
multiplier current and bandwidth can only be understood with the aid of the
derivation of the multiplier characteristic given in section 6.2. The relation-
ship between current and bandwidth can be estimated by taking bandwidth
to be proportional to g,,, which depends both on transistor W/L and on
drain current according to gm = 2v/KIp = 1/2uCo, " Ip. But in order for
the approximation (6.26) to be valid, Vp; = \/W must remain constant
as I is decreased; therefore, K; must decrease in proportion to Is. But to
keep the multiplier gain constant, K, must then also decrease in proportion
to Is. Hence the W/L of all the multiplier core transistors must be reduced

in proportion to the reduction in Ig in order to maintain the same range
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and gain. Therefore, since K is proportional to Ip and g, is proportional to
VvKIp, g is proportional to Ip. Thus, for the rﬁultiplier circuits of figures
6.4 and 6.5, bandwidth reduction is approximately linear with decreasing

current.

Changing W/L will have an effect on transistor capacitances as well
as on g, but the bandwidth changes due to decreasing Ip (using the 4mW
multiplier as a starting point) will be primarily due to the change in g,,.
However, as I is increased, there comes a point where due to Early effect or
short-channel limitations L cannot be decreased any further so that increasing
W/L means increasing only W. Overlap capacitances increase linearly with
W, so increasing current increases both g, and the transistor capacitances.
Therefore, instead of bandwidth increasing linearly with Ip, it will increase
only as the square root of Ip. Moreover, finite driving impedances and
Miller effect act to prevent further increase in bandwidth with increasing
current after a certain point. The 20MHz multiplier is probably near the
point of diminishing returns so that increasing multiplier power above 4mW
for the wide-range Gilbert configuration would not substantially improve its

bandwidth performance.

If we assume a sparcely interconnected network of coupled oscillators,

and assume four multipliers per unit are used to effect the complex saturating
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nonlinearity while an average of four more (real) multipliers per unit are
used for the complex interconnecting weights, then with a maximum power
dissipation of 1 W, at 4mW per multiplier we can build roughly a 30-unit

network.

It is more difficult to give a clear-cut tradeoff between number of mul-
tipliers and total silicon real estate than was the case for power dissipation.
This is because low-pass filters tend to require more area than multipliers
due to the capacitors, and interconnections can also consume a significant
amount of area for a large number of units. For the adaptive filter project,
two multipliers and two low-pass filters with 3pF capacitors (accompanied
by switching and biasing circuitry) were integrated in a 250pm x 1185um cell
size. Therefore, Imm? per unit would be a reasonable estimate of space re-

quired. A 30-unit network would therefore fit on a 6mm x 6mm chip, which

can be accomodated by MOSIS.

Now that the tradeoffs between component bandwidth, power dissipa-
tion, and circuit size have been given some perspective, the relationship be-
tween component bandwidth and network low-pass-filter corner frequency is
all that remains to describe. There are several factors which need to be taken
into account, because how far the automatic gain control loop pole must be

below the multiplier bandwidth depends on the gain of the automatic gain
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control loop, and how far the network low-pass-filter corner frequency must
be below the non-dominant network pole depends on the gain of the function
r(+) near zero and on the weight values. A very rough estimate, for purposes
of determining potential applications only, is that the non-dominant network
pole (or the automatic gain control loop pole) should be down a decade
from the frequency at which the multiplier begins to show “slight” frequency
response deterioration, and the dominant pole (the network low-pass-filter
corner frequency) should be down a decade from the non-dominant pole fre-
quency. Thus, the 4mW multiplier would give roughly a 200kHz network. Of
course, with good simulation tools and higher-speed processes than MOSIS,

much higher bandwidths could ultimately be obtainable.
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Chapter 7

Conclusions and Recommendations for Future
Work

To summarize, convergence results for a class of networks of nonlin-
ear coupled oscillators (or directional units, depending on the point of view
taken) have been presented. Physical motivation has been given for the
simplest network considered, but the convergence results for the rest of the
networks are based solely on the adaptability of the original Lyapunov func-
tion arguments to the various networks. Also, a simple example circuit il-
lustrates that such networks can be used in feedback configurations, with
convergence properties that can be deduced simply if the circuit design fol-
lows certain rules. In particular, two distinct approaches for eliminating
undesired stable equilibria due to unit amplitudes going to zero were pre-
sented. Next, analog VLSI implementation considerations were discussed for
such networks. Tradeoffs among power dissipation, bandwidth, and network
size were presented to assist in determining potential applications for analog

VLSI networks of coupled oscillators.

One contribution of this work was to point out that the dynamics (1.1)-
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(1.2) converge as a consequence of the convergence properties of the dynamics
(2.12). One direction for future work would be to undertake a study of to
what extent, if at all, other types of coupled oscillator networks can be made
to conform to the convergence results presented here. In particular, one
could attempt to extend the convergence results to the situation where the

oscillators do not share a common frequency for all time.

Another direction for future work could consist of developing more gen-
eral techniques (than Theorems 4.1 and 4.2) for determining the equilibrium
points and whether they are stable. Then the dependence of the equilibria
upon external weight controls could be specified so that the stable equilibria
of the network could be programmed using control inputs. An example of
a situation where this might be useful would be in smoothly transitioning

between different gaits in a walking robot.

Finally, there is an interesting implication of the adaptively controlled
network convergence result in terms of hierarchical control of coupled oscilla-
tor networks. If two or more networks are arranged in a hierarchical fashion,
with the units of one network serving as the weights for the next network
in the hierarchy, the convergence result implies that feedback can be applied
from lower levels to higher levels and stability will be maintained, as long as

the adaptive control law is obeyed. Consideration of networks of coupled os-

72



cillators for hierarchical control systems with local and global feedback might

therefore be worthwhile.
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Appendix A
Calculation: (a;r(Ba;) — log (2mly(Ba;)) — oo as aj — o

To summarize the calculation, first, we let m = (a;, and rewrite the

expression ignoring the constant term — log 27:
mr(m) — InIy(m) = fi(m). (A.1)

Clearly Ba;jr(Ba;) — log (2m1y(Ba;)) — oo as a; = oo if and only if f,(m) —

oo as m — oo. Next, we split f;(m) into two terms, as follows:

film) = mr(m) — lnIy(m)
= (m—InIy(m)) —m (1 —r(m)) (A.2)

= fa(m) — fa(m).

Then we show that fo(m) — oo as m — oo and f3(m) <1 Vm. Then we

may conclude that f;(m) — oo as m — oo.

Now we show that fo(m) = m — Inly(m) = mlne — Inly(m) =
—Ine ™Ip(m) — oo as m — oo. The asymptotic behavior of Iy(m) as

m — oo is given by [28]:

Io(m) ~ — {1+—1—+ ) +} (A.3)

2mm 8m  2!(8m)?
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Thus, for m large enough, e~™Iy(m) behaves like —=—.

We can proceed rigorously as follows: For M sufficiently large, we have

form > M,

e ™hh(m) < 2 (assume M > 1)
° V2rm
1 S 2rm _ [mm

e~mIy(m) 2 V2
1 mTm 1. mm

_ 3 AL L (A
fa(m) lne‘mlo(m) > In 5 5 In—— = coasm— oo (A.4)

Thus, fo(m) — 0o as m — co.
Next we show that fs(m) =m (1 —-r(m)) <1 Vm.

fa(m) = m(1-r(m))

dfs _ (L) | (=am (hm) (m) + B (m)
dm (1 Io(m))+ ( 13(m) )
(note & (mI;(m)) = mIo(m))
_ _hm) mg(Lm) (L(m))?
T T R T (Io(m>)
B L(m) _mly(m) —I(m)  (1(m) ?
) Wm) (Io<m)>
= 1—m+mri(m)
= 1-m(1-r*(m)) (A.5)
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Observe that:

1- % > fa(m)
% < 1— fa(m). (A.6)
Let f4(m) be defined by:
Bo o1 fum) (A7)

f4(0) = f5(0) = 0.

Then by a simple integration, fs(m) =1 — e™™. Since f3(0) = £4(0), fa(m)

is continuously differentiable, and g{% < g{% Vm, it follows that
fa(m) < fam)=1—-e™ <1 Vm. (A.8)
Thus, f3(m) <1 Vm.

By having shown fa(m) — oo as m — oo and f3(m) < 1 Vm, we may

now conclude that, indeed,

Ba;r(Ba;) — log (2mIo(Ba;)) — oo as aj — oo. (A.9)
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Appendix B

Convergence property shared by fixed-weight networks

Two sets of dynamics for fixed-weight networks of coupled oscillators

were presented. The first set was (2.21)-(2.23), repeated below:

. T4
Ui =y + T(ﬂl%‘l)ﬁ (B.1)
i
T = Y YW (B.2)
k=1
at equilibrium, y; = r(ﬂ|xj|)|%]—| (B.3)
J

The second set was (2.24)-(2.26), repeated below:

Tj =~z + ) Yswjy (B.4)
k
x .
Yj = T(ﬁl%‘l)ﬁ (B.5)
j
at equilibrium, z; = ) YeWk (B.6)
k=1

(this is the network of Zemel et. al.)

The convergence proof of section 2.3 applies directly to the second set of
dynamics; thus, the z; and y; variables in the second set of dynamics converge
to an equilibrium point. As shown by equation (2.3), the z; variables in

the first set of dynamics satisfy the same differential equation as the z;

7



variables in the second set of dynamics. Therefore, all that needs to be
proved to conclude that the first set of dynamics converges to an equilibrium
point is that z;(t) — z} as t — oo with g; = —y; + r(ﬂ|le)ﬁﬁ implies
yi(t) = yf = r(ﬂ]x;l)l—:ﬁ as t — o0o. This will follow from the following

lemma:

Lemma B.I: Let % = —u + f(t), where limy,o f(t) = 0. Then

limy o0 u(t) = 0.

Proof: Observe that if |f(t)| < e V¢t > T, then for t > T,

u(t) = e EDy(T)+ /Tt == f(7)dr (B.7)
uOl < D) +e [ e ar (B.5)
= DT+ o1 - D) (B.9)
< e D(T)| + e (B.10)

So given €, we can find T; such that |f(t)| < ¢ V¢ > Ti. For any initial

condition u(0), we can compute
Ty
u(fy) = e Mu(0) + [ e B f(r)dr (B.11)

and then take T > T} large enough that e~("2=T)|u(T3)| < . Then V¢ > T,

|u(t)] < €;. Hence, lim; ,o u(t) = 0. Q.E.D.
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To apply this lemma, let u(t) = yj(t)—r(ﬂ|x;|)|—:§—| and f(t) = r(,8|:rj|)|—z1:L|—

r(ﬂ|av;‘|)|i;1—l Then u(t) satisfies 4(t) = —u(t) + f(¢), and f(t) = 0 as t — oo.

T*

Hence, u(t) — 0 as t = oo, and we may conclude that y;(t) — r(8|z}|) %

Izj'

as t — oo.
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Appendix C

Derivation of the Implementable Version of the Adap-
tively Controlled Network

Let
Zj
Ui = —y; +7(Blz;l) , (C.1)
|51
T, = Zykwk-l-U (C.2)
j oWy, = dl1,lzr(ﬁ‘xj|)%.L|
T g { otherwise. ’ (C.3)
Then
= Zykwjk + Z ]lzylz jlg + U]
l1,l2
= Z( yk+"'(ﬂ|xkl | ) ]k+z lzyl2 Jl2+U
k h,lg
= —x;+ Z ﬂkaI wh + S Iy, + Uy + Uy (CA4)
I1,l2
If we define the dynamics of U; as
Uj = _Uj - Z jlzylz J,l2 + ZIll,lzdll,lz (/3|xll|) (ﬂ|xl2')‘ (0'5)

l1,l2 I1,l2 | |.’L‘ 1|
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we obtain

. Tk ; xj
&5 = —z;+ > r(Blar]) wh + 3 I di i (Blan, )r(8lz, ) T i
k |z I e |2, | |22, |
(C.6)

Because we wish to rewrite the dynamics in a form homogeneous in the x

variables, let

I1,l2

Then

I —_ 77 iy * l1 .k
Wy = Ui+ Lhanwi, + Y L ynti)y,

l1,l2 l,l2
B xl
= _Uj + Z Iijl,lzdlhlzr(ﬂlxll|)’r(ﬂ|xlz| ! 2| | | Z jlzyl2w;,lz
Il TellTul g
J Liy ml1
= _Wj + Z Ill’l2dzl,[2r(ﬂ!$11|)’I’(,B|IL'[2|)—
l,l2 lezl |ml1|
l
+ Z Ij,llz ylz + ylz 7y l2
h,l2
T,
= _W + Z l1,l2dll,l2 /leh') (/8’11"12') 2ty T
l1,l2 | | lxlll
Z le r(Blz1,) | ‘ J,lz
I1,l2
; Xy, I
= Wi+ 3 (B die + I dis) r(Blaw r(Blan)) 45— (C.8)
l1,l2 lxl2| | l1|
Thus, the implementable dynamics are
. CL‘]'
Yj =—y; + T(ﬁl“’jl)ﬁ (C.9)
x*
Z ykwjk + W Z 7 lzd il YT /8|.’L'l1|) lml ’ (C].O)
l1>l2 1
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W = —W, j .
! Wi+ Z (Iljl’lzdll"z + IJl',llzdj,lz) r{( Bz, |)r(Blz,]|) Ti, Ty

|ml2| ‘xh'

l,l2
(C.11)
at equilibrium, y; = Nz
Ui T(ﬂlwal)lmjl- (C.12)
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