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Abstract

Participation factors are nondimensional scalars that measure the interaction be-

tween the modes and the state variables of a linear system. Since their introduction

by Verghese, Pérez-Arriaga and Schweppe, participation factors have been used for

analysis, order reduction and controller design in a variety of fields. In this paper,

participation factors are revisited, resulting in new definitions. The aim of these defi-

nitions is to achieve a conceptual framework that doesn’t hinge on any particular choice

of initial condition. The initial condition is modeled as an uncertain quantity, which

can be viewed either in a set-valued or a probabilistic setting. If the initial condition

uncertainty obeys a symmetry condition, the new definitions are found to reduce to

the original definition of participation factors.

Keywords: participation factors, linear systems, modal analysis, stability, dynamics, prob-

ability

1 Introduction

Since its introduction by Verghese, Pérez-Arriaga and Schweppe [9],[5],[10], Selective Modal

Analysis (SMA) has become a popular tool for system analysis, order reduction and actuator

placement. In particular, this tool is extensively used in the electric power systems area [4].
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Participation factors, a key element of SMA, provide a mechanism for assessing the level of

interaction between system modes and system state variables.

In this paper, participation factors are revisited, resulting in new definitions. The pur-

pose of these definitions is to achieve a conceptual framework that doesn’t hinge on any

particular choice of initial condition. The initial condition is modeled as an uncertain quan-

tity, which can be viewed either in a set-valued or a probabilistic setting. If the initial

condition uncertainty obeys a symmetry condition, the new definitions are found to reduce

to the original definition of [9],[5],[10]. Since the initial condition is viewed as uncertain,

the definitions model its effect on the level of mode-state interaction in an average sense.

(For simplicity, the term “state” is used here interchangeably with “state variable.”) This

work provides a framework for a deeper appreciation of participation factors, as well as an

opening to further useful generalizations of the concept in various directions. For instance,

generalizations to other system types can be pursued. Also, definitions along the same lines

could facilitate analytical treatment of the relation between control inputs and states/mode

interaction, which in turn would have implications for actuator and sensor placement.

Fowllowing Verghese, Pérez-Arriaga and Schweppe [9],[5],[10], participation factors are

considered in two basic senses. In the first sense, a participation factor measures the relative

contribution of a mode to a state. In the second, a participation factor measures the relative

contribution of a state to a mode. It isn’t clear at the outset that these two senses should lead

to identical formulas for participation factors. However, the precise definitions in [9],[5],[10]

for these two senses of participation factors did indeed result in identical mathematical

expressions. The same conclusion is found to apply in the present paper, under assumptions

valid for a large class of problems.

It should be noted that there have been other interpretations of participation factors

since the original work of [9],[5],[10]. For example, participation factors are often viewed as

sensitivities of eigenvalues to changes in the diagonal entries of the state dynamics matrix

(see, e.g., [8]). Interpretations in terms of modal energies are also common (see, e.g., [1]).

Still another interpretation relates to eigenvalue mobility under state feedback [6].

The remainder of the paper is organized as follows. In Section 2, the original definition of

participation factors [9],[5],[10] is recalled, and motivation for the work of this paper is given.

In Section 3, the new definitions of this paper that address participation of modes in states
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are given. The relationship with the original definition is shown. Section 4 contains the new

definitions that address participation of states in modes along with their relationship to the

original definition in [9],[5],[10]. Concluding remarks are given in Section 5.

2 Background and Motivation

Participation factors were introduced by Verghese, Pérez-Arriaga and Schweppe [9],[5],[10]

as a means for ranking the relative interactions between system modes and system states.

The concept is one element of the Selective Modal Analysis (SMA) approach introduced by

these authors, and its first applications were in the field of electric power systems. This

section recalls the original definition of participation factors.

Consider a general continuous-time linear time-invariant system

ẋ(t) = Ax(t), (1)

where x ∈ IRn, and A is a real n × n matrix. Suppose for simplicity that A has a set

of n distinct eigenvalues (λ1, λ2, . . . , λn). Typically the evolution of each state variable is

influenced by all the eigenvalues (λ1, λ2, . . . , λn). However, it is often desirable to quantify

the participation of a particular mode (i.e., eigenmode) in a state variable. If the state vector

is composed of physically meaningful variables, such a quantification leads to conclusions

regarding the influence of system modes on physical components.

It is at first tempting to base the association of modes with state variables on the magni-

tudes of the entries in the right eigenvector associated with a mode. Let (r1, r2, . . . , rn) be

right eigenvectors of the matrix A associated with the eigenvalues (λ1, λ2, . . . , λn), respec-

tively. Using this criterion, one would say that the mode associated with λi is significantly

involved in the state xk if rik is large. As pointed out in [9],[5],[10], this approach has two

main disadvantages. The first is that it requires a complete spectral analysis of the system,

and is thus computationally expensive. The second, which is the more serious flaw, is that

the numerical values of the entries of the eigenvectors depend on the choice of units for the

corresponding state variables. This renders the criterion unreliable in providing a measure

of the contribution of modes to state variables. This is true even if the variables are similar

physically and are measured in the same units.
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The foregoing was the motivation for the approach taken in SMA to quantify the rel-

ative contributions of modes to state variables. In SMA the entries of both the right and

left eigenvectors are utilized to calculate “participation factors” that measure the level of

participation of modes in states and the level of participation of states in modes. The par-

ticipation factors defined in SMA are dimensionless quantities that are independent of the

units in which state variables are measured.

Next, a brief summary of the original definition of participation factors in the sense

of participation of modes in states is given. As noted earlier, the original definition also

encompasses participation of states in modes.

Let (l1, l2, . . . , ln) denote the left (row) eigenvectors of the matrix A associated with the

eigenvalues (λ1, λ2, . . . , λn), respectively. The right and left eigenvectors are taken to satisfy

the normalization [3, p.154]

lirj = δij , 1 ≤ i, j ≤ n, (2)

where δij is the Kronecker delta symbol:

δij =
{

1 if i = j,
0 if i 6= j.

In the remainder of the paper, the i-th mode refers to the mode associated with λi, indeed

specifically to the eλit terms in the state trajectory (and not, for simplicity, to the conjugates

of these terms in case of a complex eigenvalue; see Remark 2 below).

In [9],[5],[10], the participation factor of the i-th mode in the k-th state xk is defined to

be the complex number

pki := likr
i
k. (3)

The motivation for this definition given in [9],[5],[10] is as follows.

The solution of the dynamic system equation (1) satisfying the initial condition x(0) = x0

is

x(t) = eAtx0. (4)

Since the eigenvalues of A are assumed distinct, A is similar to a diagonal matrix. Using

this, Eq. (4) gives

x(t) =
n∑
i=1

(lix0)eλitri. (5)
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This formula is alternatively (and conveniently) viewed as the superposition of solutions

corresponding to initial conditions along the eigenvectors, where each such initial condition

is the projection of x0 along the eigenvector.

Now suppose the initial condition x0 is ek, the unit vector along the k-th coordinate axis.

Then the evolution of the k-th state becomes

xk(t) =
n∑
i=1

(likr
i
k)e

λit

=
n∑
i=1

pkie
λit. (6)

Eq. (6) indicates that pki can be viewed as the relative participation of the i-th mode in the

k-th state at t = 0.

Remark 1. The quantities defined in Eq. (3) are also used in [9],[5],[10] to measure rela-

tive participation of states in modes. The motivation for this interpretation given in [5] is

somewhat similar to the above and need not be reproduced here.

As noted above, any notion of participation factors is useful only if it results in quantities

that do not depend on the units in which state variables are measured. In this remark, we

record for later use the effect of changes in units on right and left eigenvectors. A general

change in units is represented by a transformation x̃j = αjxj , j = 1, . . . , n, where the αj are

positive constants. Let ri and li be right and left eigenvectors, respectively, corresponding

to eigenvalue λi, in the original units. It is straightforward to show that these eigenvectors

become, in the new units, r̃i and l̃i with components r̃ij = αjr
i
j and l̃ij = α−1

j lij. In particular,

it is clear that the quantities pki defined in (3) above are independent of units.

The approach of the present paper to defining participation factors builds on the original

work in [9],[5],[10]. The focus is on extending the participation factors concept of [9],[5],[10]

to explicitly incorporate the effect of uncertainty in the initial condition x0.

The reconsideration of modal participation in this light is motivated by the following

simple observations for the linear system (1) and its solution (5). If the initial condition

x0 lies along the i-th eigenvector, then the only mode that participates in the evolution of

any state is the i-th mode (i.e., the eλit mode). On the other hand, if the initial condition

lies along the k-th coordinate axis, then the evolution of the k-th state involves all system
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modes according to Eq. (6) above. Clearly, then, the degree to which a mode participates

in a state depends on the initial condition. Similar considerations can be given regarding

participation of states in modes.

In the next section, a new approach to defining participation factors is given for the case

of participation of modes in states. Section 4 gives the corresponding results for participation

of states in modes. Both sections rely on explicitly incorporating the effect of uncertainty in

the system initial condition x0 through an averaging operation.

3 Participation Factors: Modes in States

The linear system (1) usually represents the small perturbation dynamics of a nonlinear

system in the neighborhood of an equilibrium. The initial condition for such a perturbation

is naturally viewed as being an uncertain vector of small norm.

There are several ways in which the foregoing comments can be implemented to result in

definitions of participation factors. For example, one can suppose that the initial condition

is known to lie in a specified symmetric set in IRn and calculate “average participations” of

modes in state variables by averaging over the set. This is done in Subsection 3.1. If the

initial uncertainty set is not symmetric according to Definition 1 below, then the set-theoretic

approach of Subsection 3.1 does not lead to a useful notion of participation factors. In some

applications, such as ecological modeling, it is natural to restrict the initial condition to lie

in a sector and not in a full neighborhood of the equilibrium. A formalism that allows such

settings is given in Subsection 3.2. The approach of Subsection 3.2 entails modeling the

initial condition uncertainty probabilistically. This technique is used again in Section 4 to

streamline the analysis of participation of states in modes.

3.1 Set-Valued Initial Condition Uncertainty

In this subsection, the initial condition x0 is taken to lie in a connected set S containing the

origin:

x0 ∈ S. (7)

In fact, the case of greatest interest is when S = IRn.

Sets S that are symmetric in the sense of the next definition are of particular significance.
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Definition 1. The set S is symmetric with respect to each of the hyperplanes xk = 0,

k = 1, . . . , n. That is, for any k ∈ {1, . . . , n} and z = (z1, . . . , zk, . . . , zn) ∈ IRn, z ∈ S

implies that (z1, . . . ,−zk, . . . , zn) ∈ S.

Although probabilistic arguments aren’t used until the next subsection, intuitively, Def-

inition 2 below is consistent with assuming a uniform density for the initial condition and

computing the expectation of the relative contribution of the i-th mode in the k-th state at

time t = 0. Note that the average contribution at time t = 0 of the i-th mode to state xk

vanishes and so is not useful as a notion of participation factor:

avg
x0 ∈ S

(lix0)rik = 0. (8)

Definition 2. The participation factor for the mode associated with λi in state xk with

respect to an uncertainty set S symmetric according to Definition 1 is

pki := avg
x0 ∈ S

(lix0)rik
x0
k

(9)

whenever this quantity exists. Here, “avgx0∈S” is an operator that computes the average

of a function over the set S. (In computing the implied multidimensional volume integral,

the argument function is undefined for x0
k = 0, and the Cauchy principal value [7] of the

integral is to be used. For example, if the uncertainty set is IRn, then a limit is taken over a

symmetric set S that tends to IRn. The limit is taken in a symmetric way as the states tend

to ∞ at the upper integration limits and to 0 at the lower integration limits.)

This quantity measures the average relative contribution at time t = 0 of the i-th mode

to state xk. In the definition, the i-th mode is interpreted as the eλit term in (5). Also, the

denominator on the right side of (9) is simply the sum of the contributions from all modes

to xk(t) at t = 0:

x0
k =

n∑
j=1

(ljx0)rjk. (10)

Remark 2. When λi is complex its conjugate is also an eigenvalue, and one naturally views

the mode as consisting of both the eλit term and the eλ̄it term in (5). Because of this, it
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would also be reasonable to define the participation factor for complex modes as the twice

the real part of the quantity defined in (9), i.e., 2Re(likr
i
k). This is not done here for two

reasons. The first is to simplify the presentation. The second, which is the more important of

the two, is to ensure that the new definitions not differ from the original one merely because

of a convention such as whether a mode includes just one exponential term or also includes

its conjugate.

Next, the expression on the right side of Eq. (9) is simplified for the case of a symmetric

set S according to Definition 1. Let

Vol(S) :=
∫
x0∈S

dx0 (11)

denote the volume of the set S. If the set S has infinite volume, then the construction below

is performed for a finite symmetric subset, and then a limit is taken as discussed in Definition

2. From Eq. (9), pki is given by

pki = avg
x0 ∈ S

(likx
0
k)r

i
k

x0
k

+ avg
x0 ∈ S

n∑
j = 1
j 6= k

(lijx
0
j)r

i
k

x0
k

= likr
i
k +

∫
x0∈S

n∑
j = 1
j 6= k

(lijx
0
j)r

i
k

x0
k

dx0/Vol(S)

= likr
i
k +

n∑
j = 1
j 6= k

lijr
i
k

∫
x0∈S

x0
j

x0
k

dx0/Vol(S)

= likr
i
k. (12)

The last step follows from the observation that, because S is symmetric according to Defi-

nition 1,

∫
x0∈S

x0
j

x0
k

dx0 = 0 (13)

for any j 6= k, where the integral is interpreted in the sense of the Cauchy principal value.

Summarizing this result, it has been found that for a set-valued uncertainty for the initial
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condition with a symmetric uncertainty set S, Definition 2 for pki reduces to

pki := likr
i
k. (14)

This result for pki agrees with the original definition of Verghese, Pérez-Arriaga and

Schweppe [9],[5],[10]. However, Definition 2 is based on the symmetry condition as given

in Definition 1. Without this symmetry condition, the integral implied in the definition (9)

becomes cumbersome to evaluate, and its Cauchy principal value may fail to exist.

The symmetry assumption on S is reasonable for typical engineering system models.

However, there are important examples of system models for which the state vector is re-

stricted. For example, in population dynamics and chemical process dynamics, state vari-

ables are often restricted to be nonnegative. If the origin is an equilibrium for such a system,

then initial conditions near the origin must be restricted to have nonnegative components.

In part to accommodate such settings, a probabilistic framework to studying participation

of modes in states is pursued in the next subsection. This probabilistic framework will be

found in Section 4 to greatly facilitate the study of participation of states in modes. Indeed,

the set-valued approach was found to be cumbersome for the study of participation of states

in modes, and will not be discussed in that context.

3.2 Random Initial Condition Uncertainty

Next, a probabilistic definition of participation factors for participation of modes in states

is given. This is achieved by letting the initial condition x0 be a random vector and then

taking the expectation of the relative contribution of a mode to a state. The initial condition

is assumed to be a random vector satisfying the following assumption of independence.

Assumption 1. The components x0
j , j = 1, . . . , n, of the initial condition vector x0 are

independent random variables with probability density function fX0
j
(x0

j).

The probabilistic notion of participation factors for participation of modes in states fol-

lows. Denote by E the expectation operator.

Definition 3. Suppose Assumption 1 holds. Define pki, the participation at time t = 0 of

the mode λi in state xk, as the expectation

pki := E {
(lix0)rik
x0
k

} (15)
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whenever this expectation exists.

In applications of this definition to specific problems, it is useful to rewrite the defining

formula (15) as follows:

pki = E {
(lix0)rik
x0
k

}

= E {
n∑
j=1

(lijx
0
j)r

i
k

x0
k

}

= E {
(likx

0
k)r

i
k

x0
k

}+ E {
n∑

j = 1
j 6= k

(lijx
0
j)r

i
k

x0
k

}

= likr
i
k +

n∑
j = 1
j 6= k

lijr
i
kE {

x0
j

x0
k

}. (16)

To verify that the quantities pki of Definition 3 do not depend on the units of the state

variables xj , j = 1, . . . , n, invoke Assumption 1 in Eq. (15) and expand the dot product in

the numerator, to get

pki = E {
(lix0)rik
x0
k

}

=
∫ ∞
−∞

∫ ∞
−∞
· · ·

∫ ∞
−∞

fX0
1
(x0

1)fX0
2
(x0

2) · · · fX0
n
(x0

n)(
n∑
j=1

(lijx
0
j)r

i
k

x0
k

)dx0
1 · · ·dx

0
n−1dx

0
n. (17)

As in Section 2 (comments following Remark 1), consider a change of variables x̃j = αjxj ,

j = 1, . . . , n. In the new coordinates, the right and left eigenvectors corresponding to

eigenvalue λi have components r̃ij = αjr
i
j and l̃ij = αj

−1lij. Also, clearly, the initial condition

components become x̃0
j = αjx

0
j , j = 1, . . . , n. The density functions for the initial condition

components are given in the new coordinates by

fX̃0
j
(x̃0

j) =
1

αj
fX0

j
(x0

j). (18)

The differentials scale as

dx̃0
j = αjdx

0
j , j = 1, . . . , n. (19)
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Denote by p̃ki the participation factors computed in the new coordinates using Eq. (17).

Using the facts noted in the preceding paragraph, it follows immediately that p̃ki = pki, i.e.,

the participation factors defined in Definition 2 are indeed independent of the choice of units

for the system state variables.

The following well-known fact from probability theory will be useful in the examples

below. It will also be employed in Section 4 for the study of participation of states in modes.

Lemma 1. (See, e.g., [2, pp. 163-164].) Let X and Y be random variables and let g(X, Y )

be a function of X and Y . Then

E {g(X, Y )} = EY {EX{g(X, Y )|Y } }, (20)

where the notation EX and EY is used to emphasize that the inner expectation is conditioned

on Y and taken with respect to X, and the outer expectation is unconditional and taken

with respect to Y .

For the purposes of this paper, the following observation, based on Lemma 1, is particu-

larly valuable.

Remark 3. If X and Y are independent random variables and the probability density of at

least one of X or Y is symmetric with respect to the origin, then:

E {XY } = 0, and (21)

E {
X

Y
} = 0. (22)

Two examples of the use of Definition 3 are given next.

Example 1. Suppose that the marginal densities fX0
j
(x0

j) are symmetric with respect to

x0
j = 0, i.e., that they are even functions of x0

j , for j = 1, . . . , n. With this assumption, Eq.

(16) gives

pki = likr
i
k +

n∑
j = 1
j 6= k

lijr
i
kE {

x0
j

x0
k

}

= likr
i
k (23)
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by Remark 3, Eq. (22). Thus, in this setting, the participation factors (15) of Definition 3

reduce to those of the original definition (3) of [9],[5],[10]. It is also interesting to note that

the calculations above are still valid for a particular state xk for which the corresponding

initial value x0
k is known to be distributed symmetrically, even if the other initial conditions

are not distributed symmetrically.

Example 2. Suppose that the state variables are restricted to be nonnegative, and, more

specifically, that the density functions fX0
j
(x0

j) are Rayleigh:

fX0
j
(x0

j) =


x0
j

bj
e
−

(x0
j
)2

2bj if x0
j ≥ 0,

0 if x0
j < 0,

(24)

for j = 1, . . . , n. Here the bj are positive parameters of the individual Rayleigh densities.

The mean of X0
j is E {X0

j } =
√

πbj
2

, j = 1, . . . , n. The participation factors pki of Definition

3 are evaluated using (16) as follows (Lemma 1 is not used in the following calculation,

though it is easy to check that it would give the same result):

pki = likr
i
k +

n∑
j = 1
j 6= k

lijr
i
k

∫ ∞
0

∫ ∞
0
· · ·

∫ ∞
0

x0
j

x0
k

x0
1x

0
2 · · ·x

0
n

b1b2 · · · bn
e
−

(x0
1)2

2b1
−

(x0
2)2

2b2
−...−

(x0
n)2

2bn dx0
1 · · ·dx

0
n−1dx

0
n

= likr
i
k +

n∑
j = 1
j 6= k

lijr
i
k

∫ ∞
0

∫ ∞
0

(x0
j)

2

bjbk
e
−

(x0
j
)2

2bj
−

(x0
k

)2

2bk dx0
jdx

0
k

= likr
i
k +

n∑
j = 1
j 6= k

lijr
i
k

∫ ∞
0

e
−

(x0
k

)2

2bk

bk

∫ ∞
0

(x0
j)

2e
−

(x0
j
)2

2bj

bj
dx0

jdx
0
k

= likr
i
k +

n∑
j = 1
j 6= k

lijr
i
k

∫ ∞
0

e
−

(x0
k

)2

2bk

bk
E {X0

j } dx
0
k
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= likr
i
k +

n∑
j = 1
j 6= k

lijr
i
k

∫ ∞
0

e
−

(x0
k

)2

2bk

bk
(

√
πbj
2

)dx0
k

= likr
i
k +

n∑
j = 1
j 6= k

π

2

√
bj

bk
lijr

i
k. (25)

Thus, the participation factors obtained for this example differ from those of the original def-

inition of [9],[5],[10]. This illustrates the importance of initial condition uncertainty models

in the study of mode-state interaction.

4 Participation Factors: States in Modes

In the foregoing section, the emphasis was on participation of modes in states. In the present

section, attention is focused on assessing the other aspect of mode-state interaction, namely

participation of states in modes. The development in this section continues to address the

effect of initial condition uncertainty on mode-state interaction. The uncertainty is modeled

probabilistically rather than set-theoretically, since the authors have found the probabilistic

approach to lead to simpler analysis.

Consider again Eq. (1), repeated here for convenience:

ẋ(t) = Ax(t). (26)

Denote by V the matrix of right eigenvectors of A:

V = [r1 r2 · · · rn]. (27)

Recall that the corresponding left eigenvectors are row vectors denoted as l1, l2, . . . , ln. From

the normalization (2) and the orthogonality of left and right eigenvectors corresponding to

distinct eigenvalues, it follows that

V −1 =


l1

l2
...
ln

 . (28)
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Perform the change of variables

z := V −1x. (29)

Then z follows the dynamics

ż(t) = V −1AV z(t)

= Λz, (30)

where Λ := diag(λ1, λ2, . . . , λn). This implies that the new states zi, i = 1, . . . , n evolve

according to

zi(t) = eλitz0
i , (31)

where z0 = (z0
1 , . . . , z

0
n)
T := z(0). It is clear that zi(t) represents the evolution of the i-th

mode. To define the participation of the original states xk, k = 1, . . . , n in zi, z
0
i is written

in terms of x0 and then an appropriate expectation is taken. This is done next.

From Eqs. (29) and (28), zi(t) is given by

zi(t) = eλitlix0

= eλit
n∑
j=1

(lijx
0
j). (32)

This equation, which shows the contribution of each component of the initial state x0
j , j =

1, . . . , n, to the i-th mode, motivates the following definition for the participation factor

governing participation of states in modes.

Definition 4. Suppose Assumption 1 holds. Define pki, the participation at time t = 0 of

the state xk in the mode λi, as the expectation

pki := E {
likx

0
k

z0
i

} (33)

whenever this expectation exists.

Eq. (33) can be rewritten in a form that can be directly applied depending on the

probability distribution of the initial condition, much in the same way as was done for Eq.
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(15) of Definition 3. To wit, rewrite x0
k in terms of the components of z0. From Eq. (29), it

follows that

x0 = V z0. (34)

Thus,

x0
k =

n∑
j=1

rjkz
0
j . (35)

Using Eq. (35) in Definition 4 gives the following result, analogous to Eq. (16) for the case

of participation of modes in states:

pki = E {
likx

0
k

z0
i

}

= E {
lik
∑n
j=1 r

j
kz

0
j

z0
i

}

= E {
likr

i
kz

0
i

z0
i

} +
n∑

j = 1
j 6= i

likr
j
kE {

z0
j

z0
i

}

= likr
i
k +

n∑
j = 1
j 6= i

likr
j
kE {

z0
j

z0
i

}. (36)

The general result (36) along with Lemma 1 imply that Definition 4 reduces to the

original definition of participation factors (3) under Assumption 1 and under the assumption

of symmetric probability densities for the initial condition components x0
k. This is illustrated

in the following example, which is analogous to Example 1. If the densities for the initial

condition components x0
k are not symmetric, then the corresponding densities for the z0

i

would need to be calculated and used in the formula (36).

Example 3. Suppose that the marginal densities fX0
j
(x0

j) are symmetric with respect to

x0
j = 0, i.e., that they are even functions of x0

j , for j = 1, . . . , n. Since z0 is given by a

linear transformation of x0, E {x0} = 0 implies that E {z0} = 0 also. Therefore, under the

15



symmetry assumption, Eq. (36) along with Remark 3, Eq. (22) give

pki = likr
i
k +

n∑
j = 1
j 6= i

likr
j
kE {

z0
j

z0
i

}

= likr
i
k. (37)

5 Conclusions

A new approach to the definition of participation factors has been given. The approach

does not assume any particular choice for the system initial condition. Rather, the initial

condition is taken to be an uncertain quantity and the participation factor is defined as an

average contribution of a mode to a state, or of a state to a mode. The averaging is taken over

the set of possible initial conditions, in either a set-theoretic or a probabilistic framework.

The results of this paper were shown to generalize the original definition of participation

factors as given in references [9],[5],[10]. This work can lead to further useful generalizations

of the participation factors concept in various directions. For instance, generalizations to

other system types can be pursued. Also, definitions along the same lines could facilitate

analytical treatment of the relation between control inputs and states/mode interaction,

which in turn would have implications for actuator and sensor placement. The authors are

pursuing such generalizations.
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