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This thesis is an extension of the longitudinal data analysis of the association 

between externalizing behavior in early childhood and body mass index (BMI) 

from age 2 to 12 years conducted in Anderson et al. (2010). Externalizing 

behaviors problems are characterized by aggressive, oppositional, disruptive, or 

inattentive behaviors beyond those that would be expected given a child’s age and 

development. The aim of the thesis is to estimate the children's BMI trajectory and 

to evaluate to what extent the externalizing behavior is related to BMI using 

semiparametric and nonparametric time-varying coefficient models. Some valuable 

insights into how the externalizing behavior and BMI are associated will be 

provided.  
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Chapter 1: Introduction 

Longitudinal data, which involve repeated measurements that are recorded on 

the same subject over a certain time period, are frequently encountered in 

epidemiological studies. Parametric generalized estimation equation (GEE) based 

marginal models (Liang & Zeger, 1986; Zeger et al., 1988) and general linear mixed 

effects models (LME) (Harville, 1976, 1977; Laird & Ware, 1982) are the 

predominant approaches for analyzing longitudinal data. Parametric models are a 

powerful tool for modeling the association between the outcome and covariates, but 

fully parametric models may also be too restrictive or limited to be adequate, and 

subject to model misspecification (Hoover et al., 1998; Wu & Yu, 2002). 

Nonparametric regression, which is well known to be more data adaptive and less 

restrictive than parametric approaches, thus emerges as a promising alternative to 

handle longitudinal data. Because of the flexibility in the form of regression models, 

nonparametric modeling approaches can play an important role in exploring 

longitudinal data similarly as their applications in cross-sectional studies. 

Nonparametric models are more robust against the model misspecification, but they 

are more complex and less efficient than parametric models. Semiparametric 

models, which include both parametric and nonparametric components, retain 

advantages of both parametric and nonparametric models (Wu & Zhang, 2006).  

Nonparametric models make no assumption on the functional form of the 

model, but it may fail to incorporate some prior information, thus the resulting 

estimator of the unknown function tends to incur a greater variance. In addition, the 
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standard nonparametric method is practically impotent when the dimension of the 

covariates is high. Varying-coefficient models, a class of structural nonparametric 

models, can effectively relax the conditions imposed on traditional parametric 

models and explore the hidden structure. They help one explore the dynamic feature 

that may exist in the dataset as well as to make the model fit the data better (Fan & 

Zhang, 2008).  

1.1 Background  

Behavior problems and obesity are very important factors that affect the health 

of children. Some evidence suggests that obesity is associated with childhood 

externalizing behavioral problems (Lumeng et al., 2003; Datar & Sturm, 2004; 

Mamun et al., 2009). But this association has not been observed in all studies or in 

children of both sexes (Lawlor et al., 2005; Datar & Sturm, 2006; Drukker et al., 

2008; Bradley et al., 2008). There is controversy regarding the direction of the 

association (Lawlor et al., 2005; Datar & Sturm, 2006; Mamun et al., 2009). 

Previous studies show that children who experience maltreatment or neglect, 

bullying, social marginalization, or academic difficulties are more likely to have 

externalizing behavior problems (Strauss & Pollack, 2003; Deater-Deckard et al., 

1998). These factors are also related to obesity (Lissau & Sorensen, 1993, 1994; 

Strauss & Pollack, 2003; Janssen et al., 2004), and this association appears to be 

stronger among African American females (Anderson et al., 2006). Accumulating 

evidence indicates that the pathways in the brain governing appetite and emotion 

regulation are interrelated and may be impacted by stress (McEwen, 2008). Also, it 
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is suggested that alterations in developmental weight trajectories are associated with 

indicators of psychopathology. In clinical samples of adolescents and adults, both 

overweight and underweight are associated with significantly increased levels of 

psychopathology (Maddi et al, 1997; Vila et al., 2004; Kaye et al., 2004; Bollen & 

Wojciechowski, 2004). The findings from previous analyses suggest the need to 

study the associations between externalizing behavior and weight status in a diverse 

cohort observed from an early age, in which height and weight are measured 

repeatedly throughout childhood (Anderson et al., 2010). 

In Anderson et al. (2010), the main aim is to examine the extent to which 

externalizing behavior in early childhood is related to body mass index (BMI) and 

to their BMI trajectory through 12 years of age, and to evaluate whether these 

associations differ by sex and race. In this thesis, we will consider similar research 

questions but use more general statistical models. 

1.1.1 Study Population 

The study data were collected by the National Institute of Child Health and 

Human Development (NICHD) Study of Early Child Care and Youth Development 

(SECCYD). NICHD, which is part of the National Institutes of Health (NIH) within 

the U.S. Department of Health and Human Services, began a study in 1991 to 

collect information about different non-maternal child care arrangements, and about 

children and families who use child care as well as those who do not. The major 

goal of the NICHD study is to examine how differences in child care experiences 

relate to children’s social, emotional, intellectual, and language development, and to 
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their physical growth and health (National Institute of Health, 2006).  

The NICHD Study of Early Child Care and Youth Development (SECCYD) is a 

large-scale prospective longitudinal study. Since 1991, the study has followed the 

development of children from the time they were 1 month of age until 15½ years. 

Participants in the study were recruited from 24 hospitals in the vicinity of 10 data 

collection sites around the country (e.g., Charlottesville, VA; Irvine, CA; Lawrence, 

KS; Little Rock, AR; Madison, WI; Morganton, NC; Philadelphia, PA; Pittsburgh, 

PA; Seattle, WA; and Wellesley, MA). Researchers have used multiple methods to 

assess children's development (e.g., trained observers, interviewers, questionnaires, 

and testing), and measured many aspects of children's development (e.g., social, 

emotional, intellectual, and language development; behavioral problems and 

adjustment; and physical health).  

During the selected sampling periods, study personnel visited new mothers in 

hospital. To be eligible, the mother had to be 18 years of age or older, healthy, and 

conversant in English, and the infant had to be a singleton. The collection of data 

from parents, children, and other adults in home, laboratory playroom, child care, 

and school visits proceeded in several stages from birth and is ongoing (Bradley et 

al., 2008). In its initial phase (1991–1994), the NICHD Study of Early Child Care 

followed the development of 1,364 families with healthy newborns at 10 sites with 

approximately equal numbers of families at each site in United States from birth 

through age 3. Phase II of the study (1995–1999) followed the same children’s 

development through first grade (with 1,226 children participated in the study). 

4 
 



 

Phase III of the study (2000–2004) followed the same children through sixth grade 

(with 1,100 children participated in the study). Phase IV of the study (2005-2007) 

followed the same children through ninth grade (with 1,056 children participated in 

the study). The detailed recruitment and selection procedures can be found in a 

previously published NICHD Early Child Care Research Network study (NICHD 

Early Child Care Research Network, 2001). The study procedure is also available at 

http://secc.rti.org.  

1.1.2 Childhood Externalizing and Internalizing Behavior 

Externalizing and internalizing behaviors comprise the most common children’s 

reactions to the experience of stress (Achenbach & Edelbrock, 1981; Rutter & 

Garmezy, 1983). While externalizing behaviors are reactions that are directed 

toward others, including delinquent behavior and aggressive behaviors; 

internalizing behaviors, such as anxiety, withdrawal, somatic complaints, are 

mainly directed toward the self. The Child Behavior Checklist (CBCL) is a widely 

used standardized form that parents fill out to describe their children’s behavioral 

and emotional problems (Achenbach, 2000),  and the reliability and validity of the 

instrument are well-established (Achenbach & Edelbrock 1983; Achenbach, 1992; 

Achenbach, 2000). It contains 100 items to evaluate whether the child’s exhibited 

behaviors are consistent with emotional or behavioral difficulties currently or in the 

past two months (Achenbach, 1992). Age-normed scores (T scores) for 

externalizing behaviors and internalizing behaviors are calculated from the 

aggressive and destructive behavior scales (externalizing) and the 
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anxious/depressed and withdrawn scales (internalizing) (Achenbach, 1992). In 

Anderson et al. (2010), the Child Behavior Checklist (CBCL-2/3) was completed by 

mothers at their child's laboratory study visits. Mothers rated the extent to which 

each behavior described their child using the following three-level scale: "not true" 

(coded as 0), "somewhat true" (coded as 1), or "very true" (coded as 2). Six scales 

were derived from these rating: aggressive behavior (15 items), destructive behavior 

(11 items), anxious/depressed (11 items), withdrawn (14 items), sleeping problems 

(7 items), and somatic problems (14 items). 

Although the externalizing behavior T score is a continuous measurement, but 

to determine whether covariates were associated with high levels of externalizing 

problems and to assess confounding, children were categorized as having high 

levels of externalizing behavior if their CBCL T score was ≥65 (which is the 95th 

percentile of externalizing behavior at the measurement time within the cohort, and 

is a cut point above which children's symptoms would be considered in the clinical 

range) (Achenbach, 1992). 

1.1.3 Body Mass Index 

Children's heights and weights have been measured during laboratory visits at 

24, 36, and 54 months, and when children were in the 1st, 3rd, 5th, and 6th grades. 

The standardized protocol is used at all time periods and all sites. Body mass index 

(BMI) is calculated from height and weight (BMI = weight (kg)/height (m)2). 

Obesity is defined as BMI-for-age above the 95th percentile of the Centers for 

Disease Control and Prevention (CDC) sex-specific BMI-for-age growth charts 
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(Kuczmarski et al., 2002).  

1.1.4 Covariates  

As described in Anderson et al. (2010), the covariates included in the study 

were children’s race, sex, maternal depression, household poverty status, and 

maternal education attainment. Race was reported by mothers and was categorized 

as White and non-White. Maternal depression defined as CES-D score>16 (Radloff, 

1977). Household poverty status is an indicator for whether or not household 

income-to-needs ratio was less than the federal poverty threshold. Mothers reported 

their educational attainment at the time of their child’s birth, which was categorized 

as “<= high school graduate”, “some college” and “>= college degree” (reference 

group).  

1.1.5 Key Analyses and Findings  

In Anderson et al. (2010), logistic regression was conducted to estimate odds 

ratios and 95% confidence intervals for the cross-sectional association between 

obesity and high levels of externalizing behavior at 24 months overall and stratified 

by sex and race (α<0.05 as the significance level). Linear mixed effects models 

were used to estimate the average BMI trajectory and to test the extent to which 

externalizing behaviors at 24 months were related to children's BMI trajectory. To 

determine the BMI trajectory pattern relative to age, models were fitted with age as 

linear, quadratic, and cubic terms. The study also tested whether externalizing 

behaviors at 24 months were associated with the average BMI and the linear change 

in BMI with age by including the corresponding interaction terms in the model. The 
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summary table of all the variables is given by Table 1. 

The results in Anderson et al. (2010) suggested that cross-sectionally at 24 

months, children with high levels of externalizing behavior had odds of obesity that 

were 2.9 (95% CI: 1.3, 6.5) times as high as children with lower levels of 

externalizing behavior. Race, maternal education, household poverty status, and 

maternal depression were all associated with differences in prevalence of high 

externalizing behavior at 24 months. Children's BMI trajectory from age 2 to 12 

years was modeled as a cubic function of age. Externalizing behavior at 24 months 

was associated with the BMI trajectory ( p =0.02), but there was little evidence 

overall that this association differed by age ( p =0.38). Among two-year-old 

children, irrespective of race, and the result predicted an average difference of 

three-quarters of a BMI unit between children with high levels of externalizing 

behavior and children with low levels of externalizing behavior. 

Anderson et al. (2010) applied linear mixed effects models to estimate the 

average BMI trajectory and to test the extent to which externalizing behaviors at 24 

months were related to the differences in children's BMI. The linear mixed effects 

models used were parametric models under the assumption that the effects of 

externalizing behaviors on BMI are constant over time, which might not be true. 

Thus the parametric models might not be the most appropriate choice for that 

specific research question. Semiparametric models, which retain the advantages of 

both parametric and nonparametric models, will be considered as an alternative in 

this thesis.  
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1.2 Research Questions 

The objective of this research is to model the trajectory of BMI using 

semiparametric models, and to evaluate the time-varying effects of childhood 

externalizing behaviors on body mass index (BMI) using nonparametric 

varying-coefficient models. 

In chapter 2, we give an overview of semiparametric and nonparametric 

regression methods for longitudinal data, and briefly review the penalized spline 

method used in the estimation procedure. Two semiparametric models and two 

nonparametric time-varying coefficient models will be introduced. In chapter 3, we 

apply the proposed method to the NICHD SECCYD dataset. The results will be 

compared between boys and girls. In chapter 4, some concluding remarks will be 

given with respect to semiparametric models and nonparametric time-varying 

coefficient models. The strengths and weaknesses of this research will also be 

discussed. 



 

Chapter 2 Semiparametric and Nonparametric Models for 

Longitudinal Data 
 

In biomedical and epidemiological studies, interests are often focused on 

evaluating the effects of treatment, dosage, risk factors or other covariates on the 

outcomes, such as disease progression and change of health status of a population, 

over time (Wu & Yu, 2002). The key difference between longitudinal and 

cross-sectional data is that longitudinal data are usually correlated within an 

individual and independent between subjects, while cross-sectional data are often 

independent (Wu & Zhang, 2006). Thus, how to take into account for the 

within-subject correlation becomes a challenge for longitudinal data analysis.  

Parametric models, such as linear mixed effects models and nonlinear models 

are frequently used in analyzing longitudinal data, by including random effects to 

take into account for the within-subject correlation. However, the model 

specification is often hard to verify, which may lead to biased results. Therefore, 

there is a need to release the parametric assumption on the functional form of the 

model to get a more precise estimation. Various nonparametric models, such as 

nonparametric population mean models and nonparametric mixed effects models 

have been proposed for longitudinal data (Hoover et al., 1998; Wang, 1998a, b; Wu, 

Chiang; Fan & Zhang, 2000; Chiang, Rice & Wu, 2001). 

Although nonparametric models are more robust against the model 

assumptions, they are usually more complex and less efficient than parametric 

models. semiparametric models are often used to compromise and retain the 
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advantages of both parametric and nonparametric models,. The most commonly 

used semiparametric models include semiparametric population mean models 

(Martinussen & Scheike, 1999; Cheng & Wei, 2000; Lin & Carroll 2001a, b; Lin & 

Ying, 2001; He et al., 2002; Fan & Li, 2004, Hu et al., 2004; Lin & Carroll, 2005) 

and semiparametric mixed effects models (Zeger & Diggle, 1994; Zhang et al., 

1998; Tao et al., 1999; Jacqmin-Gadda et al., 2002; Ruppert, Wand & Carroll, 2003; 

Durban et al., 2005). 

 Semiparametric mixed effects models (SPMEs) extend LMEs by modeling a 

covariate effect (e.g., time effect), using a nonparametric function (Zeger & Diggle, 

1994; Zhang et al., 1998) and modeling other covariate effects parametrically. Also, 

a random effect component will be added to the LMEs to account for the 

within-subject correlation.      

2.1 Overview 

Semiparametric and nonparametric regression methods for longitudinal data 

have been well developed during the last two decades. Nonparametric regression 

methods can be broadly classified as kernel methods (Gasser & Muller, 1979; 

Gasser & Rosenblatt, 1984; Hart & Wehrly, 1986; Wand & Jones, 1995; Fan & 

Gijbels, 1996; Lin & Carroll, 2000; Chiou et al., 2002), spline methods, which 

consist of smoothing splines (Wahba, 1990; Green & Silverman, 1994), penalized 

splines (Eilers & Marx, 1996; Ruppert et al., 2003), and regression splines (Stone et 

al., 1997). Smoothing splines and penalized splines are based on penalized 

likelihoods. The traditional local likelihood based kernel methods are not able to 
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account for the within-subject correlation effectively (Lin & Carroll, 2000).  

 
• Spline Methods 
 

Spline, which is a special function defined piecewisely by polynomials, play a 

central role in semiparametric and nonparametric modeling (Wand & Ormerod, 

2008). Splines are often preferred than polynomials when doing interpolation, since 

they yield simpler results. There are several varieties of spline approaches, 

including smoothing spline (Wahba, 1990; Green & Silverman, 1994), regression 

spline (Eubank 1988, 1999), B-spine (De Boor, 1978; Dierckx, 1993), and 

penalized spline (P-spline) (Eilers & Marx, 1996). B-spline stands for basis spline, 

which is constructed from polynomial pieces and joined at the certain value of the 

knots (Eilers & Marx, 1996). 

In regression spline smoothing, local neighborhoods are specified by a group 

of locations: 0, 1, 2, , , 1... K Kτ τ τ τ τ +

]

, where  is the number of knots. Then in the 

interval , where

K

[ ,a b 0 1 1... K Ka bτ τ τ< τ +< < == < , 1, 2, ,...τ τ τ K are called interior 

knots. These knots divide the interval into subintervals (local neighborhoods). 

Within each subinterval, Taylor’s expansion up to some degree can be applied. A 

regression spline can also be described as a piecewise polynomial within any two 

neighboring knots 

K

rτ  and 1rτ +  for 0,1,...,r K= . A regression spline can be 

constructed using the -th degree truncated power basis with  knots k K

1, 2, ,... Kτ τ τ : 

11, ,..., , ( ) ,..., ( )k k
Kt t t t kτ τ+ +− −

w +

, where  denotes the power  of the 

positive part of  with

[ ]kw w+ +=

)w

k k

max(0,w = . For convenience, the truncated power 
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basis is often denoted as 

1Φ ( ) [1, ,..., , ( ) ,..., ( ) ]k k
p t t t t tτ τ+= − − k T

K + ,                 (2.1) 

where 1p K k= + +  (Wu & Zhang, 2006). 

• Penalized Spline Method 

Good performance of regression splines strongly relies on the location of knots 

and the number of knots. To overcome this drawback, smoothing splines take all of 

the distinct time points as knots, and use a roughness penalty to control the 

smoothness of the estimated curve. However, smoothing splines are expensive to 

compute. When the number of distinct time points is large, the number of the 

parameters to be estimated is large. Moreover, we need to compute the roughness 

matrix for cubic smoothing splines or the roughness matrix based on a pre-specified 

basis for a general degree. 

Eilers & Marx (1996) introduced the penalized spline (a combination of 

B-spline and difference penalty on the estimated coefficients), which overcomes 

these drawbacks by using the truncated power basis of some degree with a 

pre-specified number of knots that is much smaller than the total number of distinct 

design time points (Wu & Zhang, 2006). Also, a penalized spline avoids direct 

calculation of the roughness matrix by specifying a simple roughness matrix (a 

diagonal matrix), indicating that some coefficients of the basis functions are 

penalized and some are not (Ruppert et al., 2003). 

Penalized spline is one of the most powerful smoothing techniques for 

uncorrelated or independent data, which has gained much popularity in the last 
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decade. It has many attractive properties, including no boundary effects and 

straightforward extension of generalized linear regression models, and is relatively 

inexpensive in computation and cross validation compared to smoothing spline. 

Similar to the regression spline method, penalized spline uses the truncated power 

basis described in (2.1). Consider the following nonparametric population 

mean model:        

Φ ( )p t

    ( )ij ij ijy t eη= + ,                           (2.2) 

Given the longitudinal dataset ,( , )ij ijy t 1,2,..., ; 1,2,...,= =ij n i n

n

,  is the number 

of observations for the -th subject, and  is the number of subjects. 

in

i ( )tη is the 

smooth function over time, and  is the error term. Using the penalized spline 

method, 

ije

( )tη can be approximately expressed as 

0 1
( ) Φ ( ) ( )

k K
T k

p r k l
r l

t t t tτ
lη β β β τ+ +

= =

= = −∑ ∑                (2.3) 

where β is the coefficient vector that can be estimated by the following penalized 

least squares (PLS) criteria:  

2

1 1

( )
inn

T T
ij ij

i j

y x Gβ λβ β
= =

− +∑∑ , 

where Φ ( )ij p ijx t= , λ  represents the smoothing parameter, and G is the 

roughness matrix based on  (Wu & Zhang, 2006).  Φ ( )p t

In this thesis, penalized spline method will be used to estimate the BMI 

trajectory using semiparametric population mean model and semiparametric mixed 

effects model, and to evaluate the time-varying effect of externalizing behavior via 

nonparametric varying-coefficient models. 
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2.2 Semiparametric Models 

To estimate the BMI trajectory in this thesis, both semiparametric population 

mean model and semiparametric mixed effects model will be considered. First, the 

time effects on BMI will be estimated using nonparametric methods, while the 

effects of externalizing behavior and other covariates will be modeled 

parametrically. 

2.2.1 Semiparametric Population Mean Model 

A semiparametric population mean model is given by 

( ) T
ij ij ij ijy f t w β ε= + + ,   1, 2,..., ij n= , 1, 2,...,i n= ,         (2.4) 

where  is the BMI measured for subject  at , the effect of time on BMI is 

modeled by the smooth function

ijy i ijt

( )ijf t , is a vector of children’s 

externalizing behavior T score and the other 

1 ]T
ij ij rijw[w w= ,...,

1r −  covariates (i.e., sex, race, 

maternal education, household poverty status, and maternal depression) for subject 

 observed at , i ijt 1[ ,... r ]Tβ β β=  represents the corresponding coefficient vector, 

and ijε is the error term. 

Model (2.4) consists of two parts: 

• Parametric component T
ijw β  

• Nonparametric component ( )ijf t  

Using the penalized spline method, ( )f t  can be expressed as a regression 

spline Φ ( )T
p t α , 1p K k= + +

( )p tΦ k

, where  is the associated 

coefficient vector.  is a -th degrees truncated power basis with  knots 

1[ ,..., ]T
pα α α=

K

1,..., Kτ τ (described in (2.1)). Then the penalized spline smoother β̂  and α̂  can be 

obtained by using the penalized least square criterion (Wu & Zhang, 2006): 
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2

1 1

( )
inn

T T T
ij ij ij

i j

y w x Gβ α λα
= =

− − +∑∑ α , 

where Φ ( )ij p ijx t= , λ  is the smoothing parameter, and G is the roughness matrix 

for the penalized spline based on . G is defined as Φ ( )p t ( 1) ( 1) ( 1)

( 1)

0 0
0

k k k K

K k KI
+ × + + ×

× +

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

where KI  denotes the  vector of one. 1K ×

2.2.2 Semiparametric Mixed Effects Model 

In the following model, we incorporate the subject specific effects by adding 

the random effect function of time 

( ) єT
ij ij i ij ijy w v tγ= + + ,    1, 2,..., ij n= , 1, 2,...,i n= ,    (2.5) 

where is the same as that in (2.4), 1[ ,..., ]T
ij ij rijw w w= 1[ ,..., ]T

rγ γ γ=  represents the 

corresponding coefficients, denotes a smooth process over time, and  is 

the error term. 

( )i ijv t єij

Model (2.5) consists of two parts: 

• Parametric component T
ijw γ  

• Nonparametric component ( )i ijv t  

Let , Ψ ( )T
ij qz t= 2

i NR Iσ=

1,..., v

, where is the a -th degree truncated 

power basis with  knots 

Ψ ( )q t vk

vK Kδ δ : 

1Ψ ( ) [1, ,..., , ( ) ,..., ( ) ]v v

v

k k T
q Kt t t t tδ δ+= − − vk

+                 (2.6) 

(t)=Ψ ( )T
i qv t ib 1[ ,..., ]T

i i iqb b b=, , 1, 2,...,i n= , 1v vq K k= + +

єT
ij ij iy w z bγ

, ,  or in 

other words, the coefficient  is independently and identically distributed with 

mean 0 and covariance matrix . Model (2.5) can be approximately expressed as a 

standard linear mixed effects model: 

~ (0, )ib N D

j

b

ib

Db

ij i= + + , and the vector of 
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measurement errors  is assumed to be normal with covariance matrix єi iR , then 

 and ib γ  can be obtained by minimizing the following penalized generalized 

log-likelihood (PGLL) (Wu & Zhang, 2006): 

1 1
1 1
{ }

i

n nT T T
i i i i b i v v ii i
R b D b b G bλ− −

= =
Δ Δ + +∑ ∑ ,     

where γ− T T
i i i iΔ = − iy w z

G

b ], , , and the roughness 

matrix  is defined as: 

1,...,[ ]
i

T
i i inw w w=

( 1) ( 1)

( 1)

0 0

0
v v

v v

k k

K k

+ × +

× +

1,...,[
i

T
i i inz z z=

( 1)v v

v

k K

KI
+ ×

v

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

.      vG

2.3 Nonparametric Time-varying Coefficient Models 

Time-varying coefficient models are a class of structural nonparametric 

models which are particularly useful in longitudinal analyses. West et al. (1985) 

first introduced a “dynamic generalized linear” model, known as the time-varying 

coefficient (TVC) model. Time-varying coefficient models are a special case of the 

general varying coefficient models introduced by Hastie & Tibshirani (1993). 

Research on TVC models to longitudinal data analysis have been conducted by 

Brumback & Rice (1998), Hoover et al. (1998), Wu et al. (1998), Fan & Zhang 

(1998), and among others. The nonparametric time-varying coefficient model can 

be expressed as: 

( ) ( ) ( ) ( )T
i i iy t x t t e tβ= +      

1, 2, i...,j n= , , with  denoting the number of measurements of the 

-th subject, and  denoting the number of subject. Let

1,2i n=

n

in,...,

i ( )ij i ijy y t= , , 

where  denotes the time of the 

( )ij ijtie e=

ijt j -th measurement of the -th subject, then the 

above model can be re-written as a discrete version: 

i

( ) ( )T
ij i ij ij ijy x t t eβ= +        
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for 1, 2,..., ij n= ,  . 1, 2,...,i n=

To account for the within-subject correlation, one can apply parametric or 

nonparametric techniques. When the parametric models do not fit well, 

nonparametric techniques can be used. Research has been done to model the 

within-subject correlation nonparametrically (Shi et al., 1996; Rice & Wu, 2001; 

Wu & Zhang, 2002; Liang, Wu & Carroll, 2003).  

In this thesis, nonparametric time-varying coefficient population mean model 

and mixed effects model will be proposed to estimate the effects of childhood 

externalizing behavior on BMI. 

2.3.1 Nonparametric Time-varying Coefficient Population Mean Model  

The following model estimates the effects of predictors by including the 

time-varying coefficient function 

( ) ( )T
ij i ij ij ijy x t t eλ= +   1, 2,..., ij n= , 1, 2,...,i n= ,        (2.7) 

where  denote the time when the ijt j -th measurement of the -th subject was 

recorded, 

i

1,2,..., ij n=

( )ijt

 with  denoting the number of measurements of the i -th 

subject, 

in

λ  denotes the coefficient function at time , and ijt ( )i ijx t  denotes the 

time dependent covariate vector. 

 Penalized spline method will be used to express the coefficient function ( )r tλ , 

0,1,...,r = d , where  is the number of basis function, with regression splines 

using the same truncated power basis (as described in (2.1)) and penalize 

the highest order derivative jumps of the regression splines, 

d

Φ ( )T
p t

1p K k= + + . Then 

( )r tλ can be approximately expressed as regression 

18 
 



 

spline , , .  ( ) Φ ( )T
r pt tλ =

G

ra 0,1,...,r d=

G

1,...,[ ]T
r r rpa a a=

( 1) ( 1) ( 1

( 1)

0 0
0

k k k

K k I
+ × + +

× +

Let  be the roughness matrix that associated with  to penalize the 

-th time derivative jumps, 

Φ ( )p t

k ) K

K

×⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. rα can be obtained by 

using the penalized weighted least square (PWLS) criterion (Wu & Zhang, 2006): 
2

0 0
( )

n d

rij r
r r

x
1 1

in

i ij
i j

w y
d

T T
r r rGα λ α α

= =
∑∑

)

= =

− +∑ ∑ , 

    where ( )Φ (
ijrij ri t p ijx x t= , ( )ri tx  denotes the -th entry of r ( )ix t , and rλ , 

, is the smoothing parameter.  0= ,1,...,r d

( )ij i ijy x t ϕ

2.3.2 Nonparametric Time-varying Coefficient Mixed Effects Model  

In the following model, we incorporate the subject specific effects by adding 

the random effect function of time 

       ( ) ( )T T
ij i ij it z t= + ( ) є ( )ij i ijr t t+ j 1,2,..., in= ,   (2.8)  1, 2,...,i = n

Let 0 1), ( )...ij i ij d( ) [ (i ij i ( )]T
i ijx t x=

0[ ( ),..., (ij d ijt tϕ ϕ ϕ=

z t

( ) [i ij r=

*d =

t x t

)]Tt

( ) [ ( ),i ij i ijz t=

0 1( ), ( )...i ij i ijt r t

d

x

0 1

r

t

*( )... ( )]T
i ij d i ijz t z t

* ( )]T
d i ijt

 denote the fixed effect covariate vector. 

is the fixed effect coefficient function,  

represents the deviation from the population mean function, or random effect 

component, where  is a -dimensional covariate 

vector, and r t denotes the random effect coefficient 

function. When , the fixed effect covariates 

( )ij ( ) ( )T
i ij i ijz t r t

*d

(i i )jx t  and random effect 

covariates  are the same. Let  be the truncated power basis of degree 

 with  knots 

( )iz t

K 1,...,

Φ ( )p t

1p K k + ( )q t

v

k = +

.,

, Kτ τ  and Ψ  be the truncated power basis 

of degree  with  knots vk Kv 1,.. Kδ δ q K, 1v vk= +

( )t

+  (as described in (2.6)). 

Then the fixed effect coefficient function ϕ  and the random effect coefficient 

function  can be expressed as regression splines: ( )ir t
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( ) Φ ( )T
m pt t mϕ α= , where 0,1,...,m d= , ; 1[ ,..., ]T

m m mpα α α=

( ) ( )T
si qv t t b= Ψ si

T

, where , . *0,1,...,s d= 1,...,[ ]T
si si siqb b b=

   Let Φ  and Ψ  be two block diagonal matrices with  blocks of 

 and  blocks of , respectively. Let , 

, then the coefficient vector can be denoted as 

( )t

0 1, ,T T
ib

Φ( )Tt

( )t

1)

]T T

( 1)d +

0 1, ,T Tα α αΦ ( )p t

[b b=

( )t

*(d +

*...,
d i

b

Ψ ( )q t [ ..., ]T
dα=

i i

ϕ α=  and , ( )v t ( )Tt= Ψi ib 1,2,...,i n= , and the model in (2.8) can be 

approximately expressed as: 

  , єT T
ij ij ij i ijy x z bα= + + 1,2,..., ij n= , 1, 2,...,i n= .            (2.9) 

Let and , then the model in (2.9) can be further 

written as: 

1[ ,..., ]
i

T
i i inX x x= 1[ ,..., ]

i

T
i i inZ z z=

єi i i iy X Z b iα= + + , 1, 2,...,i n= .                    (2.10) 

The estimate of α and  can be obtained by using the following penalized 

generalized log-likelihood criterion (Wu & Zhang, 2006):  

ib

*

1 1
1

1 0 0

{( ) ( ) }

,

n T T
i i i i i i i i i i ii

n d dT T
sv si v si m m mi s r

y X Z b R y X Z b b D b

b G b G

α α

λ λ α α

− −
=

= = =

− − − − +

+

+∑
∑ ∑ ∑

 

where and  are two P-spline roughness matrices associated with and 

, , a

G vG

ia

Φ ( )T
p t

( )T
q tΨ (0,...,0,1,...,1)G d g= p p× diagonal matrix with the last diagonal 

entries being 1, and , a 

K

(0vG diag= , 1)...,0,1,..., q q× diagonal matrix with the last 

 diagonal entries being 1. The smoothing parametervK K mλ ,  and 0= ,1,...,m d

svλ ,  can be used to trade off the goodness of fit with the roughness of 

the regression splines.  

*0,s = 1,...,d
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Chapter 3 Results 

The four proposed models (2.4), (2.5), (2.7), and (2.8) are fitted to the dataset of 

the NICHD SECCYD using Matlab R2007b. We fit these four models using the 

penalized spline method described in Section 2.1, and also stratify each model by 

gender. 

There are 1,364 subjects included in the dataset for analysis. Due to missing 

data, there are 1,103 subjects with the full observed information of baseline 

covariates (e.g., race, sex, maternal education, maternal depression, and household 

poverty level at 24 months), partial or complete records of BMI, externalizing 

behavior, and internalizing behavior at seven time points. In total, 563 boys and 540 

girls have been considered in the analysis.  

  We first fit the model (2.4) among boys and girls using semiparametric 

population mean model. 

1 24 2 24 3 4

5 6 1 7 2

( )

+ є

β β β β

β β β

= + + + +

+ +
ij ij i i i i

i i i ij

+BMI f t Ex In White Depre

Poverty Edu Edu
   (3.1) 

1, 2,..., ij n= , , where 1,2,...,i = n ijBMI

i

 denotes the BMI for subject  at time 

. The baseline covariates for subject  included in the model are externalizing 

behavior, internalizing behavior, race, maternal depression, household poverty 

status, and maternal education measured at 24 months. The covariates and 

are indicators for whether or not maternal education level is “<=high school 

graduate” or “some college”. The coefficients 

i

ijt

2Edu

1Edu

1 2 3 4 5 6, , , , ,β β β β β β and 7β are used 

to model the constant effects of these covariates on the BMI trajectory. ( )ijf t  is a 

nonparametric function which is used to model the age effect on BMI trajectory. 
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The error follows an independent and identical normal distributionije 2(0, )N σ . 

The number of knots for the quadratic truncated power basis is taken as K=3, and 

the knots are scattered using the “equally spaced sample quintiles as knots” method. 

Under the generalized cross-validation rule (Wahba, 1977; Craven & Wahba, 1979), 

the smoothing parameter λ  is 13.269 and 13.307 for boys and girls, respectively.  

The covariate estimates for model (3.1) fitted among boys and girls are 

described in Table 2 and Table 3. Except for household poverty status, all the other 

covariates are significantly associated with BMI trajectory for boys. Externalizing 

behavior is significantly associated with BMI trajectories for both boys and girls. 

But the direction of association is different. For boys, BMI decreases 0.02 kg/m2 

per unit increase in externalizing behavior T score controlling for other covariates. 

For girls, BMI increases 0.03 kg/m2 per unit increase in externalizing behavior T 

score controlling for other covariates. The BMI for White boys is 0.7 kg/m2 lower 

than that among non-White boys controlling for other covariates. The BMI of 

children whose mothers have depression are 0.67 kg/m2 higher than that of children 

whose mothers do not after controlling for other covariates. Among girls, 

internalizing behavior, race, maternal depression are not significantly associated 

with BMI trajectory. High level of maternal education is positively associated with 

BMI trajectory for both girls and boys. On average, boys have higher BMI 

trajectory than girls (Figure 1), and the BMI trajectories are quite similar to that in 

Anderson et al. (2010), which were estimated by applying cubic function of age. 

We fit the model (2.5) using semiparametric mixed effects model among boys 
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and girls. A random effect function has been included in the model to incorporate 

the time-varying subject specific effects in the following model:  

0 1 24 2 24 3 4

5 6 1 7 2

( )

( ) є
ij ij i i i i

i i i i ij ij

BMI t Ex In White Depre

Poverty Edu Edu v t

β β β β β

β β β

= + + + +

+ + + +

+
  (3.2) 

1, 2,..., ij n= , . 1, 2,...,i n=

The nonparametric random component  denotes a Gaussian process with 

mean zero and covariate function

( )i ijv t

( , )s tγ . The smoothing parameter vλ  is used to 

control the roughness of the random effect functions .  ( )i ijv t

Table 4 and Table 5 give the parametric component estimation results of 

model (3.2) for boys and girls separately. Still, boys have a higher average BMI 

trajectory than girls (Figure 2). The quadratic polynomial model for the intercept 

BMI trajectory among boys is fitted as . 

Externalizing behavior is not significantly associated with BMI trajectory among 

boys. Race and Maternal depression are significantly associated with BMI 

trajectory among boys, but are not significant among girls. The quadratic 

polynomial model for the intercept BMI trajectory among girls is fitted 

as . Among girls, externalizing behavior, household 

poverty status, and higher level of education are significantly associated with BMI 

trajectory, which are consistent with model (3.1).  

2
0 ( ) 18.393 1.576 0.312t tβ = − + t

t 2
0 ( ) 17.305 1.274 0.271t tβ = − +

 Comparing models (3.1) to (3.2), we can notice that the significant predictors 

for BMI trajectory are quite consistent for girls, but are not that consistent for boys. 

Model (3.1) identifies more significant predictors than model (3.2) for boys. In 

models (3.1) and (3.2), we assume that the effects of all the covariates are constant 
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over time, which may not provide the best fit. Thus, in models (3.3) and (3.4) the 

covariate effects will be treated as time-varying functions.  

We fit model (2.7) using nonparametric time-varying coefficient population 

mean model among boys and girls. Externalizing behavior and internalizing 

behavior are treated as time-dependent covariates, which are repeatedly measured at 

seven time points. All the covariate effects are modeled as nonparametric 

time-varying coefficient functions in the following model: 

1 2 3

4 5 6 1 7

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) є
ij ij ij i ij ij i ij ij i

ij i ij i ij i ij i ij

BMI f t t Ex t t In t t White

t Poverty t Depre t Edu t Edu2

β β β

β β β β

= + + + +

+ + + +
  (3.3) 

for 1, 2,..., ij n=  , .            1, 2,...,i = n

Figure 3 and Figure 4 show the fitted coefficient functions (solid curves) among 

boys and girls, together with the 95% pointwise SD bands (dashed curves). The 

BMI trajectories for boys and girls are consistent with those in models (3.1) and 

(3.2). Externalizing behavior is significantly associated with BMI trajectory of both 

boys and girls. However, the coefficient function plot of externalizing behavior is 

constant over time for girls, which means that the effects of externalizing behavior 

on BMI trajectory for girls are not changing as they grow older. Therefore, it is 

reasonable to replace the coefficient function by a constant coefficient parameter. 

Furthermore, the effects of internalizing behavior, household poverty and higher 

level of education are significant for both genders, and they tend to be stronger 

overtime.   

    Finally, we fit model (2.8) using time-varying coefficient mixed effects model 

among boys and girls to incorporate the within subject correlation.  
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0 1 2 3

4 5 6 1 7 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) є ( )
ij ij ij i ij ij i ij ij i

ij i ij i ij i ij i i ij i ij

BMI t t Ex t t In t t White

t Poverty t Depre t Edu t Edu v t t

β β β β

β β β β

= + + +

+ + + + + +
 (3.4) 

for 1, 2,..., ij n=  , .      1, 2,...,i = n

In the above model,  denotes a nonparametric random effect function, which 

is similar as that in model (3.2). The error follows the normal 

distribution N (0, Ri). Figure 5 and Figure 6 give the fitted coefficient functions 

(solid curves), together with the 95% pointwise SD bands (dashed curves) for boys 

and girls. It is clear that the 95% pointwise SD bands under model (3.4) are 

generally wider than those 95% pointwise SD bands under model (3.3), since model 

(3.4) accounts for the within-subject correlations while model (3.3) does not. The 

effects of internalizing behavior on BMI trajectory are no longer significant for girls. 

Similarly to model (3.3), the effects of race on BMI trajectory become weaker over 

time for both boys and girls, and the effects of maternal depression become stronger 

for boys as they grow older. Furthermore, the effects of high level education 

become stronger over time on BMI trajectory for girls. 

( )i ijv t

1є [є ,...,є ]=
i

T
i i in



 

Chapter 4 Discussion 

Very few studies of non-clinical populations have examined the relationship 

between obesity and externalizing behavior in preadolescent children. The main aim 

of this research is to re-examine this relationship by applying advanced 

semiparametric and nonparametric methods. In this thesis, two semiparametric and 

two nonparametric time-varying coefficient models have been fitted among boys 

and girls to analyze the effect of childhood externalizing behavior on BMI and other 

relevant covariates on BMI trajectory, and to evaluate how those effects are 

changing over time, which are not able to be evaluated using the parametric 

logistical regression or linear mixed-effects models proposed by Anderson et al. 

(2010).  

Compared to the population mean models, mixed effects models are most useful 

when the research objective is to make inferences about individuals rather than the 

study population (Fitzmaurice et al., 2004). For both semiparametric population 

mean models and mixed effects models (models (3.1) and (3.2)), the significant 

covariates were consistent for girls, which included externalizing behavior, maternal 

depression, and high level of maternal education. However, there exists 

inconsistency for the significant predictors among boys, while only race was 

significantly associated with BMI trajectory for boys in both models. 

In models (3.1) and (3.2), it was assumed that all the covariate effects are 

polynomials of lower degrees and was constant over time, which might not provide 

the best fit to the data. The BMI trajectories from models (3.1) and (3.2) are similar 
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to those in Anderson et al. (2010), which validated that the linear mixed effects 

model used in that study was an appropriate method to estimate BMI trajectory. In 

models (3.3) and (3.4), we removed the polynomial model assumption, and 

considered nonparametric time-dependent covariate effects. Compared to models 

(3.1) and (3.2), models (3.3) and (3.4) not only identified consistent significant 

predictors, but also provided more information on how the effects are changing over 

time. The effects of externalizing behavior on BMI for boys were decreasing, and 

were relatively constant for girls, while the effects of internalizing behavior were 

increasing over time for both boys and girls in model (3.3). Our results also 

illustrated that in models (3.3) and (3.4), the effects of race on BMI trajectory were 

declining overtime for both boys and girls, the effects of maternal depression were 

increasing overtime for boys, and the effects of household poverty on BMI 

trajectory were increasing overtime for girls. From this point of view, models (3.3) 

and (3.4) provide us with more insights about the changing effects of those 

covariates on BMI trajectory than models (3.1) and (3.2).   

4.1 Strengths 

Nonparametric time-varying coefficient models are very helpful to evaluate 

how the strength of covariate effects is changing over time, which cannot be done in 

parametric models. By using time-varying coefficient models, we are able to 

identify the decreasing effects of externalizing behavior and race on BMI trajectory 

among boys, and the increasing effects of household poverty status and high level 

of education on BMI trajectory among girls. 
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By applying nonparametric function on age, we are able to estimate the BMI 

trajectory nonparametrically, whose functional form is not pre-specified, but is 

determined from the data. By doing that, we can avoid model misspecification.  

This thesis considered semiparametric and nonparametric mixed effects 

models, which account for the time-varying subject specific effect by adding a 

random effect function, while in the generalized linear mixed effects models, the 

subject specific effect is assumed to be constant over time. We compare the aims 

and components of these four models in Table 6.  

4.2 Limitations 

There are also some limitations for this research. Firstly, the study relied upon 

mother’s reports of their child’s behavior. The CBCL is not a diagnostic instrument 

and the study does not take into account the extent to which externalizing behaviors 

were problematic for the mother or the child. It is possible that the ratings of 

children’s behavior are influenced by the child’s weight status. Secondly, the study 

is not able to adjust for parental obesity, which is strongly related to child obesity 

and may be related to child behavior problems or maternal reports of child behavior 

problems. The third limitation is the lack of model checking techniques to 

determine which model provides the best fit to the data. 

4.3 Conclusion Remarks 

Nonparametric varying coefficient models are very helpful to evaluate how the 

strength of covariate effects is changing over time, which cannot be done in 

parametric models. Sometimes, it will be misleading to model the covariate effects 
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as constant, especially for factors that in nature may change over time.  

Nonparametric models are more flexible than parametric models in terms of 

the functional form, and it is useful to apply nonparametric models first to identify 

the pattern of the covariate effects of interest.  



 

Appendices 
 
Table 1 Summary of variables in Anderson et al. (2010) 
 

Variables Scale 
Externalizing behavior Continuous T score 
Internalizing behavior Continuous T score 
Race  1-White, 0-non White 
Sex 1-boys, 0-girls 
Maternal depression 1-depression, 0-don’t have depression 
Household poverty status 1-below poverty threshold, 0-above 

poverty threshold 
Maternal education1 (<= high school) 1-yes, 0-no (whether mother has lower 

or equal to high school education) 
Maternal education2 (some college) 1-yes, 0-no (whether mother has some 

college education) 
 
 
 
Table 2 Semiparametric population mean model (3.1) fitted among boys: estimated 
covariate effects, standard deviations, approximate z-test values, P values for the 
parametric component  
(Quadratic truncated power basis with K = 3 knots was used. The smoothing 
parameter selected by GCV is 13.269.) 
 
Covariate Effect SE z-test value P value 
Ex. behavior -0.0218 0.0077 -2.8281 0.0047
In. behavior 0.0316 0.0074 4.2691 0.0001
Race (White vs Non-White) -0.6991 0.1664 -4.201 0.0001
Maternal depression 0.6687 0.1619 4.1309 0.0001
Household poverty 0.2770 0.1954 1.4178 0.1562
Maternal education (High school) 0.5673 0.1567 3.6219 0.0003
Maternal education (Some college) 0.4192 0.1421 2.951 0.0032
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Table 3 Semiparametric population mean model (3.1) fitted among girls: estimated 
covariate effects, standard deviations, approximate z-test values, P values for the 
parametric component 
(Quadratic truncated power basis with K = 3 knots was used. The smoothing 
parameter selected by GCV is 13.307.) 
 
Covariate Effect SE z-test value P value 
Ex. behavior 0.0283 0.0072 3.9207 0.0001
In. behavior 0.0098 0.0074 1.3284 0.184
Race (White vs Non-White) -0.1848 0.1518 -1.217 0.2236
Maternal depression -0.2096 0.1526 -1.3741 0.1694
Household poverty 0.9011 0.1771 5.0871 0.0001
Maternal education (High school) 0.0148 0.1546 0.0958 0.9237
Maternal education (Some college) 0.3196 0.1234 2.591 0.0096
 
 
 
 
Table 4 Semiparametric mixed effects model (3.2) fitted to dataset among boys: 
estimated covariate effects, standard deviations, approximate z-test values, P values 
for the parametric component 
(Quadratic truncated power basis with K = 3 knots was used. The smoothing 
parameter selected by GCV is 1.576.) 
 
Covariate Coef. Effect SE z-test value P value 
Intercept 00β  18.393 0.1677 109.7 0.0001 
 01β  -1.576 0.099 -15.926 0.0001 
 02β  0.3116 0.0156 19.962 0.0001 
Ex. behavior 1β  0.0072 0.0053 1.356 0.1751 
In. behavior 2β  0.0008 0.005 0.1556 0.8763 
White (1-white, 0-black and other) 3β  -0.4181 0.1037 -4.0299 0.0001 
Maternal depression 4β  0.2422 0.102 2.3755 0.0175 
Poverty status 5β  0.1684 0.1208 1.3936 0.1634 
Maternal education (High school) 61β  0.1608 0.0966 1.6642 0.0961 
Maternal education (Some college) 62β  0.1263 0.0882 1.4322 0.1521 
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Table 5 Semiparametric mixed effects model (3.2) fitted to dataset among girls: 
estimated covariate effects, standard deviations, approximate z-test values, P values 
for the parametric component 
(Quadratic truncated power basis with K = 3 knots was used. The smoothing 
parameter selected by GCV is 1694.7.) 
 
Covariate Coef. Effect SE z-test value P value 
Intercept 00β  17.305 0.1558 111.06 0.0001 
 01β  -1.2744 0.089 -14.315 0.0001 
 02β  0.2705 0.0137 19.762 0.0001 
Ex. behavior 1β  0.0227 0.0051 4.4952 0.0001 
In. behavior 2β  -0.0042 0.0049 -0.8441 0.3986 
White (1-white, 0-black and other) 3β  0.0618 0.0983 0.6285 0.5297 
Maternal depression 4β  -0.0344 0.0994 -0.3457 0.7296 
Poverty status 5β  0.4406 0.116 3.7969 0.0001 
Maternal education (High school) 61β  0.0218 0.1011 0.2158 0.8291 
Maternal education (Some college) 62β  0.1708 0.0795 2.148 0.0317 
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Table 6 Comparison of the four proposed models 
 

Models Aims Components 
3.1 Semiparametric population 

mean model 
1 24 2 24

3 4 5

6 1 7 2

( )

+ є

ij ij i i

i i

i i ij

BMI f t Ex In

White Depre Poverty
Edu Edu

i

β β

β β β
β β

= + +

+ +
+ +

1, 2,...,

+

ij n= 1,2,...,i n, =  

Model the BMI trajectory 
from 2-12 years of age 
nonparametrically; Evaluate 
the cross-sectional 
association of externalizing 
behavior at 24 months and 
BMI trajectory. 

Parametric: Externalizing, 
internalizing behavior at 24 
months and all the baseline 
covariates. 
Nonparametric: Effects of age 

on BMI is modeled as: ( )ijf t  

3.2 Semiparametric mixed 
effects model 

0 1 24 2 24

3 4 5

6 1 7 2

( )

( ) є

ij ij i i

i i

i i i ij ij

BMI t Ex In

White Depre Poverty
Edu Edu v t

i

β β β

β β β
β β

= + +

+ +
+ + +

1, 2,...,

+

+

ij n= 1,2,...,i n, =  

Same with model 3.1, but 
also able to evaluate the 
changing subject-specific 
effects nonparametrically by 
adding the nonparametric 
random effect function.  

Parametric: Externalizing, 
internalizing behavior at 24 
months and all the baseline 
covariates; Effects of age on 
BMI is modeled as pre-specified 
form. 
Nonparametric: Random effect 

is modeled as:  ( )i ijv t

3.3 Nonparametric time-varying 
coefficient population mean 
model 

1

2 3

4 5

6 1 7 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) є

ij ij ij i ij

ij i ij ij i

ij i ij i

ij i ij i ij

BMI f t t Ex t

t In t t White

t Poverty t Depre

t Edu t Edu

β

β β

β β

β β

= + +

+

+ +

+ +

+

i

 

1, 2,...,j n= , 1, 2,...,i n=  

Assess the time-varying 
effects of externalizing, 
internalizing behavior and 
other covariates on BMI 
trajectory. 

Parametric: The effects of all 
predictors are modeled as 
time-varying coefficient 
functions with pre-specified 
forms. 
Nonparametric: Effects of age 

on BMI is modeled as: ( )ijf t  

3.4 Nonparametric time-varying 
coefficient mixed effects 
model 

0 1

2 3

4 5

6 1 7 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) є ( )

ij ij ij i ij

ij i ij ij i

ij i ij i

ij i ij i

i ij i ij

BMI t t Ex t

t In t t White

t Poverty t Depre

t Edu t Edu

v t t

β β

β β

β β

β β

= +

+

+

+ +

+

+

+

+

i

 

1, 2,...,j n= , 1, 2,...,i n=  

Same with model 3.3, but 
also able to evaluate the 
changing subject-specific 
effects nonparametrically by 
adding the nonparametric 
random effect function. 

Parametric: The effects of all 
predictors are modeled as 
nonparametric time-varying 
coefficient functions with 
pre-specified forms. 
Nonparametric: Random effect 

function is modeled as:  ( )i ijv t

33 
 



 

Figure 1 Semiparametric population mean model (3.1) fitted to boys and girls: 
estimated BMI trajectory (solid curves) with 95% pointwise SD bands (dashed 
curves) 
 

   
 
 
 
 
Figure 2 Semiparametric mixedeffects model (3.2) fitted to boys and girls: fitted 
coefficient functions (solid curves) and their 95% pointwise SD bands (dashed 
curves) 
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Figure 3 Time-varying coefficient nonparametric population mean model (3.3) for 
boys: estimated coefficient functions (solid curves) and their 95% pointwise SD 
bands (dashed curves) 
 

 
 
 
Figure 4 Time-varying coefficient nonparametric population mean model (3.3) girls: 
estimated coefficient functions (solid curves) and their 95% pointwise SD bands 
(dashed curves) 
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Figure 5 Time-varying coefficient nonparametric mixed effects model (3.4) for boys: 
fitted coefficient functions (solid curves) and their 95% pointwise SD bands (dashed 
curves) 
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Figure 6 Time-varying coefficient nonparametric mixed effects model (3.4) for girls: 
fitted coefficient functions (solid curves) and their 95% pointwise SD bands (dashed 
curves) 
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