
Abstract

Title of dissertation User-centered Program Analysis Tools

Khoo Yit Phang, Doctor of Philosophy, 2013

Dissertation directed by Professor Jeffrey S. Foster
Professor Michael Hicks
Department of Computer Science

The research and industrial communities have made great strides in developing ad-

vanced software defect detection tools based on program analysis. Most of the work

in this area has focused on developing novel program analysis algorithms to find bugs

more efficiently or accurately, or to find more sophisticated kinds of bugs. However,

the focus on algorithms often leads to tools that are complex and difficult to actually

use to debug programs.

We believe that we can design better, more useful program analysis tools by taking a

user-centered approach. In this dissertation, we present three possible elements of such

an approach. First, we improve the user interface by designing Path Projection,

a toolkit for visualizing program paths, such as call stacks, that are commonly used

to explain errors. We evaluated Path Projection in a user study and found that

programmers were able to verify error reports more quickly with similar accuracy,

and strongly preferred Path Projection to a standard code viewer.

Second, we make it easier for programmers to combine different algorithms to

customize the precision or efficiency of a tool for their target programs. We designed



Mix, a framework that allows programmers to apply either type checking, which is

fast but imprecise, or symbolic execution, which is precise but slow, to different parts

of their programs. Mix keeps its design simple by making no modifications to the

constituent analyses. Instead, programmers use Mix annotations to mark blocks of

code that should be typed checked or symbolically executed, and Mix automatically

combines the results. We evaluated the effectiveness of Mix by implementing a

prototype called Mixy for C and using it to check for null pointer errors in vsftpd.

Finally, we integrate program analysis more directly into the debugging process.

We designed Expositor, an interactive dynamic program analysis and debugging

environment built on top of scripting and time-travel debugging. In Expositor,

programmers write program analyses as scripts that analyze entire program execu-

tions, using list-like operations such as map and filter to manipulate execution traces.

For efficiency, Expositor uses lazy data structures throughout its implementation

to compute results on-demand, enabling a more interactive user experience. We de-

veloped a prototype of Expositor using GDB and UndoDB, and used it to debug

a stack overflow and to unravel a subtle data race in Firefox.
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Chapter 1

Introduction

Today’s software is becoming increasingly complex as programmers strive to meet the

growing sophistication of users’ demands and expectations. Advances in programming

languages and software engineering have helped programmers to manage this com-

plexity and improve the quality of their software. There are now many automated

program analysis tools for detecting potential bugs quickly or even preventing some

kinds of bugs entirely. Several companies, such as Coverity, Inc. (a), GrammaTech,

Inc. (b), and Klocwork, Inc. (b) specialize in providing software defect detection tools

based on program analysis.

However, many advanced techniques remain inaccessible to programmers because

they are too difficult to use and understand. For example, according to Bessey et al.

(2010), Coverity “completely abandoned some analyses that might generate difficult-

to-understand reports” and “had to drop checkers or techniques that demand too much

sophistication on the part of the user” such as concurrency error checkers. One reason

for this is that most research on defect detection tools has focused on designing new

program analysis algorithms. However, we believe it is equally important to study the

other aspects of program analysis tools. Indeed, Pincus (2000) stated that “[a]ctual
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analysis is only a small part of any program analysis tool [used at Microsoft]. In

PREfix, [it is] less than 10% of the ‘code mass’.”.

Making tools more accessible to programmers will only become more important

as program analysis tools become more sophisticated. In particular, as tools become

more effective at detecting and preventing simpler bugs, the bugs that remain are of

the more complicated variety—so called mandelbugs1—that involve code distributed

spatially across many files or machines, as well as temporally, as disparate pieces of

code interact over time. Examples of mandelbugs include concurrency errors such as

data races or deadlocks, performance bugs such as slow execution speed or excessive

memory usage, or memory corruption bugs such as buffer overflows. There are also

logic bugs, which simply compute results incorrectly, that are not easily detected by

automated tools.

Our thesis is that by taking a user-centered approach to designing program analysis

tools, we can build better tools that are more accessible and useful to programmers.

We argue that a program analysis tool is only effective if programmers can actually

use it to improve the quality of their software. Thus, we should consider how pro-

grammers would approach and use a tool, in addition to improving the efficiency or

preciseness of underlying algorithm. Not only does this mean that we should think

about how to present results of program analyses to programmers in a way that is

easy to understand and act upon, it also means that we should enable new usage

1“Mandelbug (from the Mandelbrot set): a bug whose underlying causes are so complex and
obscure as to make its behavior appear chaotic or even nondeterministic.” From the New Hacker’s
Dictionary (3d ed.), Raymond E.S., editor, 1996.
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scenarios or work-flows that make program analysis tools more practical to use in

real-world software development projects.

1.1 Dissertation Overview

In this dissertation, we will present three elements of our user-centered approach to

designing better program analysis tools. Each element addresses one of the following

sources of difficulty that we have identified in the use of current program analysis

tools:

• First, the user interface is often designed without considering how programmers

will use it to understand a reported error. Existing user interfaces often force

programmers to manually locate the offending lines of code and relate them to

the bug, which, for mandelbugs involving many lines of code, can be a tedious

and error-prone task.

• Second, it is often impossible to mix-and-match different program analyses to

suit the characteristics of a particular target software. For example, it would

be useful to be able to apply a slow but more precise analysis on complex parts

of the software, and a fast but less capable program analysis of other parts that

are easier to analyze.

• Finally, while program analyses play an important role in initially identifying

bugs, it is hard to take full advantage of the information computed by these

analyses in other stages of debugging. In particular, much of the intermediate
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results is often unavailable to programmers. Without much of this information,

we find that programmers effectively have to redo the program analysis, either

mentally or using other tools, just to understand the error.

1.1.1 Path Projection: Path-based Code Visualization for Program

Analysis

Generally speaking, program analysis tools often produce false warnings due to im-

precision in the underlying algorithms. Thus, programmers must triage the list of

errors reported to deciding whether a reported error is a truly an error or false warn-

ing. However, while many tools provide support for categorizing and managing error

reports, most provide little assistance for determining whether a reported error is true

or false.

Program analysis tools commonly employ command-line interfaces or integrated

development environment (IDE) plug-ins. Command-line interfaces produce textual

error reports, typically by listing the detected errors along with the classification

of the error detected as well as information such as the lines of code implicated by

the error. For example, Figure 1.1 shows a textual error report produced by Lock-

smith (Pratikakis et al., 2006), a data race detection tool for C. The report contains

a list of variables involved in data races 1 , the lines of code that lead to the racing

accesses 2 , mutex locks acquired or otherwise 3 , as well as the threads involved

4 . Unfortunately, to triage a textual error report, programmers have to manually

relate the information from the error report to the source code, which is a tedious

and error-prone task.
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1 Warning: Possible data race: &count2:example.c:2 is not protected! 1
2 references:
3 dereference of count:example.c:5 at example.c:7 2
4 &count2:example.c:2 => atomic_inc.count:example.c:43
5 => count:example.c:5 at atomic_inc example.c:43
6 locks acquired: 3
7 ∗atomic_inc.lock:example.c:43
8 concrete lock2:example.c:16
9 lock2:example.c:1

10 in: FORK at example.c:21 −> example.c:43 4
11

12 dereference of &count2:example.c:2 at example.c:35 &count2:example.c:2 2

13 locks acquired: 3
14 <empty>
15 in: FORK at example.c:20 4
16

17 Warning: Possible data race: &foo:example.c:50 is not protected! 1
18 ...

Figure 1.1: Example command-line user interface (error report produced by Lock-
smith).

IDE plug-ins are able to report errors in a richer, interactive environment. Typ-

ically, plug-ins present a summary of all detected errors in a list box, and allow

programmers to view more details about an error by clicking on an entry in the

list box. For example, Figure 1.2 shows the FindBugs (Hovemeyer and Pugh, 2004)

for the Eclipse IDE (The Eclipse Foundation). The left panel contains the list of

bugs found by FindBugs and the bottom right panel panel contains additional details

about a particular bug, in this case, a description of the bug. The main benefit of

IDE plug-ins is that they can take full advantage of the features provided by IDEs to

manage source code. In particular, they can easily direct a programmer to the source

code implicated by the bug, e.g., as shown in the upper right panel of Figure 1.2.
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However, for mandelbugs involving many lines of code across many files, it can still

be difficult to manage multiple windows or tabs to view all implicated lines of code

in standard IDEs.

We observe that both styles of user interfaces often present program paths, such

as call stacks or sequences of statements, to explain how an error could arise. By

following a program path, programmers can more easily reproduce an execution,

either concretely or mentally, that exhibits the error, making it easier to understand

the error or the flow in the tool’s reasoning. However, as we explained above, it is

tedious to navigate program paths in typical user interfaces. Thus, in Chapter 2,

we present a novel user interface toolkit called Path Projection that helps users

visualize, navigate, and understand program paths. We performed a controlled user

study to measure the benefit of Path Projection in triaging error reports from

Locksmith. The user study shows that Path Projection improved participants’

time to complete this task without affecting accuracy, while participants felt Path

Projection was useful and strongly preferred it to a more standard viewer.

1.1.2 Mix: a Framework for Combining Program Analyses

To encourage programmers to adopt a particular program analysis tool, the tool must

be able work effectively for any target software the programmers may have. In partic-

ular, program analysis designers must carefully balance precision and efficiency—on

one hand, a program analysis must be precise enough to prove properties of realistic

software systems, and on the other hand, it must run in a reasonable amount of time

and space. In our experience, this means that many practical program analysis tools
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Figure 1.2: Example IDE plug-in (FindBugs for Eclipse).

begin with a relatively straightforward algorithm at their core, but then gradually

accrete a multitude of special cases to add just enough precision without sacrificing

efficiency.

This ad-hoc approach has a number of disadvantages: it significantly complicates

the implementation of a program analysis algorithm; it is hard to be sure that all

the special cases are handled correctly; and it makes the tool less predictable and

understandable for an end-user since the exact analysis algorithm becomes obscured

by the special cases. Perhaps most significantly, software systems are extremely

diverse, and programming styles vary greatly depending on the application domain

and the idiosyncrasies of the programmer and her community’s coding standards.
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Thus an analysis that is carefully tuned to work in one domain may not be effective

in another domain.

We propose a different approach: instead of making a single algorithm suitable for

all software, we apply several algorithms of different levels of precision or efficiency

to different parts of the target software. This enables programmers to customize

the program analyses to the characteristics of their target software, for example, by

applying slower but more precise algorithms only on more complex parts of their

target software, and faster but less precise algorithms elsewhere. Another advantage

of this approach is that we can avoid making extensive tweaks to the constituent

algorithms, which potentially makes it simpler for programmers to understand the

algorithms.

In Chapter 3, we present Mix, a framework that realizes this approach by mixing

two conceptually simple program analyses—type checking and symbolic execution.

A key feature of our approach is that we use the constituent analyses as-is with no

modifications. Instead, we apply these analyses independently on disjoint parts of the

program. At the boundaries between nested type checked and symbolically executed

code regions, we use special mix rules to communicate information between the off-

the-shelf systems. The resulting mixture is a provably sound analysis that is more

precise than type checking alone and more efficient than exclusive symbolic execution.

We also describe a prototype implementation, Mixy, for C. Mixy checks for potential

null dereferences by mixing a null/non-null type qualifier inference system with a

symbolic executor.
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1.1.3 Expositor: Integrating Program Analysis into Debugging

“...we talk a lot about finding bugs, but really, [Firefox’s] bottleneck is not find-

ing bugs but fixing [them]...”

—Robert O’Callahan (2010)

“[In debugging,] understanding how the failure came to be...requires by far

the most time and other resources”

—Andreas Zeller (2006)

We observe that using program analysis tools is just the beginning of a larger

debugging process. Debugging is a process that involves repeated application of the

scientific method: the programmer makes some observations; proposes a hypothesis

as to the cause of an error; uses this hypothesis to make predictions about the pro-

gram’s behavior, either under a program analysis or in a concrete execution; tests

those predictions using experiments; and finally either declares victory or repeats the

process with a new or refined hypothesis.

Mandelbugs in particular can truly test the mettle of programmers as they can

take hours or even days of tedious, hard-to-reuse, seemingly sisyphean effort to un-

tangle. Understanding mandelbugs often requires testing many hypotheses, with lots

of backtracking and retrials when those hypotheses fail. To make it easier to under-

stand mandelbugs, we would ideally like to take advantage of both the automation of

program analysis tools as well as quick and detailed feedback of interactive debuggers.

One way to combine program analysis with debugging is to use tools based on

dynamic program analysis, a particular kind of program analysis that detects errors
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as they happen in a running execution of the target software. Dynamic program

analyses are typically implemented by instrumenting the target software binary with

additional code that implements the analysis logic. The programmer can then run

the instrumented executable under an interactive debugger such as GDB (The GDB

Developers), so that, when a bug is detected, the programmer can use the debugger

to examine the program states leading to the bug. For example, Valgrind (Nether-

cote and Seward, 2007), a dynamic binary program analysis framework that includes

various checkers such as memory corruption detectors, provides a mode that allows

GDB to connect to a running instance of Valgrind.

However, current dynamic program analysis tools are not well designed for this

kind of workflow. In particular, while it is possible to examine the program state of

the target software with the debugger, it is rarely possible to examine the intermediate

results produced by the dynamic analysis tools and gain some insight into the program

facts that these tools discover and use to produce an error report. In our experience,

we find that we often have to effectively redo the analysis, either mentally or using the

debugger, just to understand why a tool reports a particular error. Current interactive

debuggers do not support this workflow either: to follow the reasoning of the dynamic

program analysis requires manual effort to juggle breakpoints to stop the execution at

appropriate times to inspect the program state. As a result, it is non-trivial to apply

the information found by dynamic program analysis to debugging or vice-versa. It is

similarly difficult to run additional dynamic program analyses post-hoc on the failing

execution, e.g., to refine the original analysis or to test other hypothesis about the

bug.
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In Chapter 4, we propose Expositor, a new environment that unifies dynamic

program analysis and interactive debugging, built on top of scripting and time-travel

debugging. Expositor allows programmers to express dynamic program analyses

and debugging tasks as scripts that analyze entire program executions. The funda-

mental abstraction provided by Expositor is the execution trace, which is a time-

indexed sequence of program state snapshots or projections thereof. Programmers

can manipulate traces as if they were simple lists with operations such as map and

filter. Under the hood, Expositor efficiently implements traces as lazy, sparse in-

terval trees whose contents are materialized on demand. Expositor also provides a

novel data structure, the edit hash array mapped trie (EditHAMT), which is a lazy

implementation of sets, maps, multisets, and multimaps that enables programmers to

maximize the efficiency of their scripts. We have implemented a prototype of Expos-

itor in GDB that uses UndoDB (Undo Software) as its time-travel backend. We ran

micro-benchmarks to show that Expositor scripts are faster than the equivalent

non-lazy scripts for common debugging scenarios. We have also used Expositor

on two case studies: to debug a stack overflow and to unravel a subtle data race in

Firefox.
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Chapter 2

Path Projection: Path-based Code Visualization for

Program Analysis†

In this chapter, we present Path Projection, a new user interface toolkit that helps

users visualize, navigate, and understand program paths (e.g., call stacks, control flow

paths, or data flow paths), a common component of many program analysis tools’

error reports. Path Projection aims to help engineers understand error reports,

improving the speed and accuracy of triage and remediation.

Path Projection accepts an XML error report containing a set of paths and

automatically generates a concise source code visualization of these paths. First,

we use function call inlining to insert the bodies of called functions just below the

corresponding call sites, rearranging the source code in path order. Second, we use

path-derived code folding to hide potentially-irrelevant statements that are not in-

volved in the path. Finally, we show multiple paths side by side for easy comparison.

By synthesizing the visualization directly from the error report, Path Projection

greatly reduces the programmer’s effort to examine the code for the error report.

†Path Projection was originally published in Khoo et al. (2008a,b) in collaboration with
my advisors Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. A prototype is available at
http://www.cs.umd.edu/projects/PL/PP/ along with screenshots and demos.
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We evaluated Path Projection’s utility by performing a controlled experiment

in which programmers triaged reports produced by Locksmith (Pratikakis et al.,

2006), a static data race detection tool for C. When Locksmith finds a potential

data race, it produces an error report that includes a set of call stacks (the paths).

Each call stack describes a concurrently-executing thread that contains an access

involved in the potential race. For Locksmith, the triaging task requires examining

each reported call stack to decide whether it is actually realizable at run time, and

then deciding whether there are at least two realizable accesses that can execute in

parallel.

To our knowledge, ours is the first work to empirically study a user interface

for defect detection tools using sophisticated program analysis. While commercial

vendors may study the utility of their interfaces internally, no results of such studies

are publicly available. Independent evaluation of commercial tools is also difficult

because of the tools’ licensing, which often forbids disclosure of information.

In our study, we measured programmers’ completion time and accuracy in triaging

Locksmith reports, comparing Path Projection to a “standard” viewer that we

designed to include the textual error report along with commonly-used IDE features.

We did not require that programmers propose actual fixes to the code, since even

when a bug is clear its proper fix may be hard to determine.

In our within-subjects study, each programmer participated in one session with

one interface, and one session with the other interface. Half the participants started

with Path Projection, and the other half began with the standard viewer, to help

factor out learning effects. In each session, after some introductory material, the
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programmer was asked to triage three error reports by filling in a triaging checklist

that enumerates the sub-tasks needed to triage the report correctly. At the end of

the experiment, we asked programmers to qualitatively evaluate the interface and

compare both.

We found that Path Projection improved the time it takes to triage a bug by

roughly 1 minute, an 18% improvement, and participants using it made about the

same number of mistakes as with the standard viewer. Moreover, in Path Projec-

tion programmers spent little time looking at the error report itself. This suggests

that Path Projection succeeds in making paths easy to see and understand in the

source code view. Also, seven of eight programmers preferred Path Projection

over the standard viewer, and generally rated all the features of Path Projection

as somewhat or very useful.

As a side result, we also observed that using triaging checklist dramatically re-

duced the overall triaging times for users of both interfaces, compared to an earlier

pilot study that did not utilize checklists. We originally created the checklist after

discovering that participants in the pilot study lack sufficient experience or knowl-

edge of Locksmith to triage its error report efficiently, and will often spend time

discerning information about the program that is not relevant to the triaging task.

So, we designed the checklist as an experimental aid to give programmers a system-

atic procedure to perform triage, but we were surprised by degree of improvement

in triaging times after introducing the checklists. Although this result is not scien-

tifically rigorous (several other features changed between the pilot and the current
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study), we believe it suggests checklists would be a useful addition to many program

analysis interfaces, and merit further study.

In summary, this chapter makes two main contributions:

1. We present Path Projection, a novel toolkit for visualizing program paths

(Section 2.2). While mature program analysis tools can have sophisticated

graphical user interfaces (Section 2.6), these interfaces are designed for partic-

ular tools and cannot easily be used in other contexts. We show how to apply

Path Projection both to Locksmith and to BLAST (Beyer et al., 2007),

a software model checking tool. We believe Path Projection’s combination

and design of user interface features is novel.

2. We present quantitative and qualitative evidence of Path Projection’s ben-

efits in triaging Locksmith error reports (Sections 2.4 and 2.5). To our knowl-

edge, ours is the first study to consider the task of triaging defect detection tool

error reports, and the first to consider the user interface in this context. Our

study results provide some scientific understanding of which features are most

important for making programmers more effective when using program analysis

tools.

2.1 Motivation: Program Paths

The simplest way for a program analysis tool to report a potential defect is to indicate

a line in the file where the defect was detected. However, while this works reasonably

well for C or Java compiler errors, program analysis designers have long realized it
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is insufficient for understanding the results of more sophisticated program analyses.

Accordingly, many program analysis tools provide a program path, i.e., some set of

program statements, with each error message. For example, CQual (Greenfieldboyce

and Foster, 2004) and MrSpidey (Flanagan et al., 1996) report paths corresponding to

data flow; BLAST (Beyer et al., 2007) and SDV (Ball and Rajamani, 2002) provide

counterexample traces; Code Sonar (GrammaTech, Inc., a) provides a failing path

with pre- and post-conditions; while Coverity SAVE (Coverity, Inc., b) and HP Fortify

SCA (Hewlett-Packard Development Company, L.P.) provides control-flow paths that

could induce a failure.

Because program analysis tools often make conservative assumptions, they typi-

cally produce false warnings, i.e., reports that do not correspond to actual bugs. The

programmer must therefore triage a tool’s reports by, e.g., tracing the reported paths,

to decide if a problem could actually occur at run-time.

2.1.1 Unrealizable paths in Locksmith

To understand the challenges that occur when tracing program paths, we consider

the problem of triaging error reports in Locksmith, a data race detection tool for C.

Locksmith reports paths whose execution could lead concurrent threads to access a

shared variable simultaneously. However, like many other tools, Locksmith employs

a path-insensitive analysis, meaning it assumes that any branch in the program could

be taken both ways. Thus, to triage an error report, a programmer must decide

whether a pair of reported accesses is simultaneously realizable, i.e., if there is some

execution in which both could happen at once.
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The triaging process is conceptually simple: we must examine the control flow

logic along the paths and ensure it does not prevent both accesses from occurring at

once. However, in practice, performing this task is non-trivial, taking a surprising

amount of effort using typical code editors.

Consider Figure 2.1, a screenshot of our standard viewer, which represents the

assistance a typical editor or IDE would give programmers in understanding textual

error reports. A sample Locksmith error report is shown in the pane labeled 1 .1

This error report comes from aget, a multithreaded FTP client. The report first

identifies prev as the shared variable involved in the race. Then, it lists two call stacks

leading to conflicting accesses to prev, the first via a thread created in main, and the

second via a different thread created in resume_get. No lock is held at either access.

We need to trace through the control-flow of the program to see under what

conditions the two dereferences are reachable. The call stacks in the error report

show exactly what code to examine. In the screenshot in Figure 2.1, we begin by

tracing path 1 from the thread creation site, which can be reached by clicking on the

hyperlink 2 , and look for any branch conditions that may prevent the thread from

being created. We can continue tracing to the access by clicking on the hyperlinks

or scrolling through the code. As we navigate from function to function, we can split

windows 3 to keep various context together on the screen, and close splits when

the window becomes too crowded. After tracing path 1, we need to trace through

1Note that this format is slightly different than Locksmith’s standard output, but the
differences are merely syntactic.
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Figure 2.1: Standard viewer screenshot (picture in color; labels described in text).
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path 2 in the same way, and ultimately decide whether both paths are simultaneously

realizable.

The resulting display is cluttered and hard to manage, and if we were to continue,

we would likely be forced to collapse splits, which would make it harder to refer back

to code along the path. In general, when examining program paths with standard

viewers, mundane tasks such as searching, scrolling, navigating, viewing, or combining

occur with such frequency that they add up to a significant cognitive burden on

the programmer and distract from the actual program understanding task. In our

experience, it can be quite tedious to triage error reports even for small programs

such as aget, which has only 2,000 lines of code. Since program analysis tools can

yield hundreds of defect reports on large programs, we believe it is crucial to make

triaging error reports easier.

The goal of Path Projection is to make tracing paths much easier by reducing

the cognitive load on the programmer. In our user study, we focused on the task of

triaging Locksmith error reports by looking for unrealizable paths. However, we

also believe that Path Projection is generally applicable to many other program

understanding tasks involving path tracing.

We should add that, besides unrealizable paths, there are several other reasons

Locksmith may report a false warnings, e.g., it may incorrectly decide that a variable

is shared, or it may decide a lock is not held when it is Pratikakis et al. (2006). For

many programs that we have looked at, Locksmith’s lock state analysis is accurate,

and warnings often involve only simple sharing (e.g., of global variables, or via simple

aliasing), thus, we focuses on the problem of tracing program paths.
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2.2 Path Projection

Program paths are commonly used by program analysis tools to report errors. How-

ever, as the previous section illustrates, tracing program paths becomes difficult when

the programmer needs to examine discontinuous lines of code across many different

files.

Standard code editors provide some support for tracing program paths. For exam-

ple, they typically allow the programmer to view more than one file to be by opening

multiple windows or by splitting a window. Code folding is another commonly avail-

able feature used to hide irrelevant code.

The key issue, however, is that the programmer has to invoke and manage these

features manually. In particular, the programmer has to carefully consider the trade-

offs of these features, e.g., after opening or splitting windows, the programmer may

have to move, resize or close other windows to make them visible or simply to reduce

screen clutter.

This places a significant cognitive burden on the programmer to extract and or-

ganize relevant information from the source code and the error report, and distracts

from the actual task of understanding a program path. If paths are long or compli-

cated, as they often are, it can be hard to keep track of the context of the path while

managing windows and folded code. In our experience, it is all too easy to get lost

on a long path and have to backtrack or retrace it many times.
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2.2.1 Design Guidelines

To develop a better interface for tracing program paths, we can look to guidelines

developed by researchers in information visualization. We found three strategies

described by Card et al. (1999) to be particularly applicable for our task:

1. Increase users’ memory and processing resources and reduce the search for in-

formation. The Locksmith error report is compact, but examining the path

in the actual source code may involve many different source code lines spread

across many different files. We would ideally like to put all the necessary infor-

mation for triaging an error report on one screen, so the programmer can see all

the information at the same time. We would also like to allow the programmer

to hide any unimportant information, to further reduce the cognitive burden.

2. Use visual representation to enhance pattern detection. We would like to visually

distinguish the source code lines appearing in the Locksmith error report from

the other lines in the program, since the lines in the error reports are presumably

very important. We would also like to bring important threading API calls, e.g.,

invocations of pthread_X functions, to the programmer’s attention.

3. Encode information in a manipulable medium. We need to give the programmer

good mechanisms for searching and comparing the information we present to

them.

Another key guideline we would like to follow is that “code should look like code”.

We want the programmer to be able to relate any visualization back to the original
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source code. This is based on our experience as programmers: we spend a large frac-

tion of time editing source code in standard textual form, and relatively little working

with abstract visualizations. Understanding Locksmith error reports requires look-

ing at source code in great detail. A visualization that looks like source code will be

familiar, which should increase acceptance and could increase comprehension.

2.2.2 Interface Features

Figure 2.2 shows the Path Projection interface for the same program shown in

the standard viewer in Figure 2.1. The core feature of Path Projection is that it

makes multiple program paths manifest in the display of the source code. To achieve

this, Path Projection uses three main techniques:

Function call inlining. Path Projection inlines function calls along a

path. In the left path in the example, we see that the bodies of signal_waiter (called

by pthread_create), sigalrm_handler, and updateProgressBar are displayed in a series of

nested boxes immediately below the calling line 1 . We color and indent each box to

help visually group the lines from each function (Principle 2). This feature is where

our interface name comes from—we are “projecting” the source code onto the error

path. Our motivation is to reduce the need for the programmer to look at the error

report, since the path is apparent in the visualization. We also underline the racing

access (innermost boxes) to make it easy to identify.

Notice that in Path Projection, we actually visually rearrange function bodies

in the original source code to conform to the order they appear in the path. Moreover,
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Figure 2.2: Path Projection screenshot (picture in color; labels described in
text). This and additional screenshots can be found at at http://www.cs.umd.edu/
projects/PL/PP.
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we may pull in functions from multiple files (in our example, three separate files) and

display them together. Together, these regroupings help keep relevant information

close together to reduce search and free up cognitive resources (Principle 1).

In the standard viewer, the programmer could achieve a similar result by splitting

the display into several pieces to show the functions along the path. However, this

quickly becomes tedious if there are several functions to show at once, and it adds

significant mechanical overhead to viewing and navigating a path. Moreover, without

code folding, which we discuss next, it can be difficult to see all the relevant parts of

the functions simultaneously.

Path-derived code folding. To keep as much relevant information on one

screen as possible (Principle 1), we filter by default irrelevant statements, i.e., state-

ments not implicated by the error report, from the displayed source code. For exam-

ple, in the function updateProgressBar in the left path, we have folded away all lines 2

except the implicated access (line 193) and the enclosing lexical elements (the func-

tion definition and open and close curly braces). The programmer can tell code has

been folded by noticing non-consecutive line numbering.

Our code folding algorithm is a syntax-based heuristic that tags lines in the pro-

gram as either relevant or irrelevant. Irrelevant lines are hidden when the code is

folded. For each line l listed in the error report, we tag as relevant line l itself; the

opening and closing statements of any lexical blocks that enclose l; and the beginning

and end of the containing function. For lexical blocks that include a guard (i.e., if,

for, while, or do), we include the guard itself, and for an if block, we show the line

24



containing the else (though not the contents of the else block). For example, the call

to sigalrm_handler 4 is in the error path, and so we reveal it, the closing if and while

blocks, and the beginning and end of the signal_waiter function. Our code folding

heuristic resembles the degree-of-interest model proposed by Furnas (1986). A more

sound approach would be to use program slicing (Weiser, 1984) to determine relevant

lines; and in a sense, our code folding algorithm can be thought of as an extremely

simple but imprecise slicing technique.

Since our code folding algorithm is heuristic and may hide elements that the pro-

grammer actually needs to examine, we allow the programmer to click the expansion

button in the upper-left corner of a box to reveal all code in the corresponding func-

tion. When unfolded, source lines tagged as irrelevant are colored gray to ensure the

path continues to stand out. For example, we have unfolded the body of main 5 in

Figure 2.2.

While code folding is common in many IDEs, most require the programmer man-

ually perform folding on individual lexical blocks, which can be time consuming and

tricky to get exactly right. In contrast, we use the path to automatically decide

which lines of code to reveal or fold away, requiring no programmer effort. Further-

more, since we display each path in a separate column, we can apply our code folding

algorithm to each path individually.

Side-by-side paths. This error report contains two paths, each of which is

displayed side-by-side in its own column ( 3 , left side of Figure 2.2). This parallel

display makes relationships between the paths easier to see than in the standard
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interface, which would require flipping between different views (Principle 1). Each

column is capped at a maximum width, and programmers can horizontally scroll

columns individually. This helps prevent files that are unusually wide from cluttering

the display.

Triaging Locksmith’s error report requires comparing more than one path, mak-

ing this feature a necessity. However, we believe that side-by-side paths would be

useful for other tools too. For example, a model-checker may display known-good

paths for comparison with the error path.

In our experiments, participants used a wide-screen monitor to make it easier to

see multiple paths simultaneously. Since wide-screen displays are commonly available

and popular, we think designing an interface with such displays in mind is reasonable.

Additional interface features. Path Projection includes several other

features to make it easier to use. We include a multi-query search facility 6 that

allow programmers to locate multiple terms and keep them highlighted at the same

time. Each term is distinguished by a different color in the source code, and the

programmer can cancel the highlighting of any term individually. Any source line

containing a match is automatically marked as relevant, as are any lexical blocks

enclosing the match. For example, in the screenshot in Figure 2.2, calls to pthread_join,

which are not included in the error report, have been marked as relevant due to

the search 7 . This facility follows Principle 3, since it allows the programmer to

manipulate code folding in a natural way. In our experiments, we initialized multi-
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query to find the four pthread functions shown in the screenshot, since in our pilot

study we found programmers almost always want to locate uses of these functions.

Our interface also includes a reveal definition facility that uses inlining to show the

definition of a function or variable. In the screenshot, the programmer has clicked on

nthreads, and its definition has been inlined below the use 8 . While this feature seems

potentially handy, we found it was rarely used by participants in our experiments.

Lastly, Path Projection still includes the original error report from which the

visualization was generated, to act as a back-up and to provide consistency with the

standard view. As with the standard view, the report is hyperlinked to the source

display.

2.2.3 Applying Path Projection to Other Tools

We intend Path Projection to be general toolkit that may be used by program

analysis tool developers to visualize their error reports. To this end, Path Projec-

tion is implemented as a standalone tool that takes as input an XML-based error

report and the source code under analysis.

pathreport XML format. Our XML format, called pathreport, describes one

or more program path using three kinds of tags. It is designed to easily convert a

textual path-based report by marking it up appropriately. Briefly, the three tags are:

<path> marks text that corresponds to a continuous block of code, such as a func-

tion. A <path> can contain any number of <detour> and <marker> tags.
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<detour> marks text that corresponds to a reference in some code, such as a call

site. The parent <path> provides the context for this reference, e.g., the function

in which the call site appears. Each <detour> tag must in turn contain exactly

one <path> tag.

<marker> tags mark any other texts, such as function names, variable names, or

line numbers, that point to code that may be interesting.

These tags also require attributes to precisely indicate information such as the file

where a function is defined. Together, <path> and <detour> recursively describe a

program path, and <marker> can be used to mark any interesting line of code along

the path.

Figure 2.3 shows how a path-based textual report can be marked up with <path>

and <detour>. Note that on line 31, <path> marks the entire call to a. Within that,

two <detour> tags on lines 32 and 33 mark the call sites to b and e that appear in a.

Path Projection on BLAST. In addition to Locksmith, we have applied

Path Projection to counterexample traces produced by BLAST (Beyer et al.,

2007), a software model checking tool. Such traces are not call stacks, as in Lock-

smith, but rather are execution traces that include function calls and returns. We use

a short awk script to post-process a BLAST trace into our XML format. We reformat

the line annotations from the original report for brevity, but retain the indentations

as they reveal relationships between implicated lines.

Figure 2.4 shows an example of BLAST in Path Projection, generated from

a post-processed counterexample trace that describes how a failing assertion (not
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19 Trace:
20 In function a (
21 On line a:5, call b (
22 On line b:10, call c (
23 On line c:15, call d
24 )
25 )
26 On line a:20, call e (
27 On line e:25, call f
28 )
29 )

(a)

30 Trace:
31 In function <path name="a">a (
32 On line <detour line="5" name="b">a:5, call <path name="b">b (
33 On line <detour line="10" name="c">b:10, call <path name="c">c (
34 On line c:15, call d
35 )</path></detour>
36 )</path></detour>
37 On line <detour line="20" name="e">a:20, call <path name="e">e (
38 On line e:25, call f
39 )</path></detour>
40 )</path>

(b)

Figure 2.3: A textual path-based report (a) can be converted into the pathreport XML
format (b) using <path> and <detour> (some attributes omitted for brevity).

shown) can be reached. The counterexample trace shown is 102 lines long, much

longer than is typical with Locksmith. Note that BLAST’s counterexample trace

is not a call stack, as in Locksmith, but an execution trace that includes function

calls and returns.

We find the error report confusing in its textual form, e.g., line 4 implicates a call

to initialize in line 157 of tcas.c, and lines 5-6 are indented to indicate the function

body; but the indented lines after line 8 do not correspond to the body of atoi. As

such, it can be quite difficult to match function calls and returns in a long error report.
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Figure 2.4: Path Projection applied to a post-processed counterexample trace
produced by BLAST (picture in color; labels described in text).
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Occasionally, there are also missing line numbers, such as on line 5 in the error report.

Furthermore, it is not obvious from the error report that many implicated lines are

actually not interesting.

Path Projection makes the structure of the path much clearer. We can quite

easily tell that the beginning of the path contains a call to initialize 1 , and that the

subsequent 24 lines in the error report correspond to the input program’s command-

line interface. The next interesting line is a call to alt_sep_text 2 , which is impli-

cated further down the report, on the last line visible in Figure 2.4 (obscured due to

indentation). However, this is obvious at first glance in Path Projection.

We believe that this example shows how Path Projection can be quite useful to

understand complicated error reports. We think that using Path Projection can

also suggest ways to improve error reports, e.g., BLAST should not indent function

calls with no corresponding body.

2.3 Triaging Checklist

In our pilot study we found that even with extensive pre-experiment tutorials, partic-

ipants had trouble determining how to accomplish this triaging task, and would often

get distracted with irrelevant features, such as locating the definition of a global vari-

able. This inconsistent behavior confounded our attempts to measure the benefits of

the PP interface, since it varied significantly depending on the participant. To address

this issue, we developed a tabbed triaging checklist that breaks down this task into

smaller sub-tasks, one per tab, that identify conditions under which reported thread
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states, if individually realizable, could execute in parallel and thus constitute a true

race. A single error report could identify several races, so programmers must complete

all tabs, at which point they may click Submit to complete the triage process.

A checklist is automatically generated for each Locksmith error report, and is

identical in both interfaces— 4 in Figure 2.1 and 9 in Figure 2.2. The first tab,

labeled Locks (not shown), asks programmers to document where the locks held at

the end of each path were acquired. This tab is merely an experimental device: since

programmers tend to examine the code before moving to the checklist, we insert this

tab first to measure this initial startup period. The remaining tabs have two flavors,

both illustrated in Figure 2.5.

The tab shown in Figure 2.5(a) is generated once for each path i that ends in

an access with no locks held. The programmer is asked to check whether the access

could occur in a thread created in a loop. If it could have, then the same access

may occur in two different threads, constituting a race. For example, consider Path 2

in Figure 2.2. The write to prev (underlined in red) occurs in a thread created on

line 171 of Aget.c. Notice that that line appears in a for loop that actually creates

multiple threads. Thus, what Locksmith reports as Path 2 is actually a summary

of nthreads total paths, all of which may reach the same access. Since no lock is held

at the access, and it is a write, we have found a data race. The last part of this

tab asks the programmer to look for any logic that would prevent the data race from

occurring. For example, perhaps nthreads is always 1, so only one thread is spawned,

or perhaps the given state is not realizable due to inconsistent assumptions about the

branches taken on the path. While we could attempt to break this condition down
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Path i
Y N

Is the thread created in a loop (loop count > 1)? ○ ○
If yes, there is likely a race. Are there reasons to show otherwise? ○ ○
Explain:

(a) Single path i

For threads leading to dereferences in Paths i and j:

Are they parent-child (or child-parent), or child-child?
○ Parent-child / ○ Child-child

Parent-child (or child-parent) threads. Y N
Does the parent’s dereference occur after the child is spawned? ○ ○
Before its dereference, does the parent wait (via pthread_join) for the child? ○ ○
If no, there is likely a race. Are there reasons to show otherwise? ○ ○
Explain:

Child-child threads. Y N
Are the children mutually exclusive (i.e., only one can be spawned by their common paren-
t/ancestor)?

○ ○

If no, there is likely a race. Are there reasons to show otherwise? ○ ○
Explain:

(b) Pair of paths i and j

Figure 2.5: Checklist tabs.

into further subtasks, we chose this more open-ended question to reduce visual clutter

and complexity.

The tab in Figure 2.5(b) is generated once for each pair of paths i and j that

end with inconsistent sets of locks held. First, the programmer selects whether the

two threads are in a parent-child or other (child-child) relationship. In the first case,

the programmer must check (1) that the access in the parent occurs after the child is

created, and (2) that there is no parent-child synchronization with pthread_join. Case

(1) is necessary for the parent and child to access a location in parallel. Case (2) is
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necessary because even if the parent accesses the location after creating its child, it

might wait for the child to complete before performing the access, making parallel

access impossible. If both (1) and (2) are true, then there is likely a race, and the

programmer is asked to look for other program logic that would prevent a race.

In the second case, a child-child relationship, the programmer checks whether the

two children are mutually exclusive. For example, they may be spawned in different

branches of an if statement, only one of which can execute dynamically. Again, if they

are not mutually exclusive, the programmer looks for other logic that would prevent

a race.

Though we did not carefully consider the benefits of the checklist experimen-

tally, we observed anecdotally that participants’ completion times for our current

study were reduced in both variance and magnitude (by an average of 3:46 minutes,

or 41%), compared to the pilot study. This improvement strongly suggests that a

tool-specific checklist has independent value, and that tool builders might consider

designing checklists for use with their tools. An interesting direction for future work

would be to explicitly study the benefit of checklists in performing triaging.

2.4 Preliminary Experimental Evaluation

We ran a controlled user study as a preliminary evaluation of Path Projection’s

utility. In our experiment, participants are asked to perform a series of triaging

tasks, using either Path Projection (PP), described in Section 2.2, or the standard

viewer (SV), described in Section 2.1.1. To eliminate bias due to participants’ prior
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experience with editors, we implemented our own standard viewer instead of using

an existing editor.

For each task, the participant is presented with a Locksmith error report for a

program selected from a test corpus of open source programs. The participant’s goal

is to determine whether the error report constitutes an actual data race or whether

it is a false positive. In this task, PP provides an advantage over SV in triaging if it

is faster, easier, and/or more accurate.

2.4.1 Participants

We recruited a total of eight participants (3 undergraduate, 5 graduate) for this

experiment via e-mail and word-of-mouth advertising in the UMD Computer Science

Department. We required the participants to have prior experience with C and with

multithreaded programming (though not necessarily in C). All participants had taken

at least one college-level class that involved multithreaded programming. On a scale

of 1 (no experience) to 5 (very experienced), participants rated themselves between

3 and 4 when describing their ability to debug data races. Two participants had

previous experience in using a race detection tool (Locksmith and Eraser (Savage

et al., 1997)).

2.4.2 Design

Each participant was asked to perform the triaging task in two sessions, first with one

interface and then with the other, taking up to four hours in total. For scheduling
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Session 1 Session 2
1 PP/1.1 PP/1.2 PP/1.3 SV/2.1 SV/2.2 SV/2.3
2 SV/1.1 SV/1.2 SV/1.3 PP/2.1 PP/2.2 PP/2.3

Table 2.1: User interface/problem number schedules.

flexibility, participants may opt to split up the sessions into several one- or two-hour

sections over different days.

Thus, our experiment is a within-subjects design consisting of two conditions,

using PP and using SV. Since participants experienced both interfaces, we were able

to measure comparative performance, and we could ask participants to qualitatively

compare the two interfaces.

A within-subjects design potentially suffers from order effects, since participants

may be biased towards the interface given first. To compensate, we perform coun-

terbalancing on the interface order: participants are randomly placed into one of the

two schedules shown in Table 2.1.

Participants in the first schedule use PP in the first session and SV in the second,

whereas participants in the second schedule use SV first and PP second. However, all

participants receive the same set of problems, numbered 1.1–2.3, in the same order,

which allows us to directly compare our observations of each problem without the

need to account for order effects.

2.4.3 Procedure

At the beginning of each session, we ask participants to complete several HTML-

based tutorials. First, we give a short tutorial and quiz on pthreads and data races, as
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well as a tutorial on Locksmith with emphasis on the items in the triaging checklist

(Section 2.3); the same tutorial and quiz is repeated in second session as a review.

Then, we introduce the user interface (PP or SV) with another tutorial. We make

sure that participants are familiar with each interface by encouraging them to try

every feature and to triage a simple data race problem using the interface. We allow

participants to complete the tutorial at their own pace; all participants completed

the tutorial within 30 minutes.

Following the tutorial is a single practice trial and three actual trials, all of which

follow the same procedure. In each trial, we first ask participants to triage a real

Locksmith error report generated from Locksmith’s test corpus (Section 2.4.4).

We log participants’ mouse movements during the trial and measure the total time

to completion. Triaging ends when participants complete and submit the triaging

checklist. Immediately after, we present participants with the same problem and ask

them to explain out loud the steps they took to verify the warning. This allows us to

compare their descriptions with our expectations.

We do not tell participants whether their answers are correct, for several reasons.

Firstly, it is difficult for the experimenter to quickly judge the correctness of the

answer, since identifying a data race may involve understanding many subtle aspects

in a program. Secondly, we do not want the participants to become reliant on receiving

an answer or to guess at an answer. Finally, in a real triaging scenario, programmers

will not have the benefit of an oracle to confirm their intuitions.

We have found this two-stage procedure to be very effective in our pilot studies.

In particular, it allows us to ask about specific interesting behaviors observed without
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interrupting the participant during the task. The participants also benefit from a lim-

ited form of feedback. By recalling their work to the experimenter, they can confirm

their initial understanding, or notice mistakes made. Furthermore, we have found

that participants gain a better understanding of the user interface by demonstrating

it to another person. This also helps mitigate the effects of what turned out to be

a long learning curve in triaging error reports. The experimenter may also ask for

clarification to certain points, which may reveal inconsistencies or mistakes.

After the experiment, participants complete a questionnaire and are interviewed

to determine their opinion of the user interface. Programmers are asked to evaluate

each tool based on ease-of-learning, ease-of-use, and effectiveness in supporting the

triaging task.

We ran the experiment on Mac OS X 10.5.2. To avoid bias due to OS competency,

all shortcuts are disabled except for cut, copy, paste, find, and find-next, and par-

ticipants are informed of these shortcuts. We also display the interface on a 24-inch

wide-screen 1920-by-1200 resolution LCD monitor.

2.4.4 Programs

Each trial’s error report was drawn from one of four open source programs, all of

which we have previously applied Locksmith to: engine, aget, pfscan, and knot. We

also chose reports in which imprecision in the sharing and lock state analysis do not

contribute to the report’s validity, so as to focus on the task of tracing program path

as discussed in Section 2.1.
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Reports from engine and pfscan are used during the tutorial and practice trials.

Trials 1.1–1.3 use error reports from aget, and trials 2.1–2.3 use error reports from

knot. By using different programs in each trial, we prevent participants from carrying

over knowledge of the programs from the first interface to the second. The three

selected reports within each program are significantly different from each other, e.g.,

they do not follow the same paths. This helps avoid bias that could arise if participants

were given very similar triaging tasks for the same program.

Of the six reports, four contain 3 paths, and two contain 2 paths; eight paths have

a call depth of 3, and the two deepest have a call depth of 8. Overall, there were 23

(non-Locks) tabs to complete for the experiment, 8 of which are true positives and

15 of which are false positives.

We also simplify the task slightly by making four small, semantics-preserving

changes to the programs themselves. Doing so makes it simpler to ensure that our

participants have a common knowledge base to work from, and reduces measurement

variance due to individual differences. First, we made local static variables global.

Second, we converted wait/signal synchronization to equivalent pthread_join synchro-

nization when possible. We made both changes in response to confusion by some

participants in our pilot study who were unfamiliar with these constructs. Third, we

deleted lines of code disabled via #if 0 or other macros. Finally, in a few cases we

converted gotos and switch statements to equivalent if statements. These last changes

remove irrelevant complexity from the triaging task.
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2.5 Experimental Results

2.5.1 Quantitative Results

Completion time. We measured the time it took each participant to complete

each trial, defined as the interval from loading the user interface until the participant

submitted a completed checklist. Figure 2.6(a) lists the results, and Figure 2.6(b)

shows the mean completion times for each interface and session order combination.

We found in general that PP results in 18% shorter completion times than SV.

More precisely, the mean completion time is 296 seconds (4:56 minutes) for PP, and

362 seconds (6:02 minutes) for SV. A standard way to test the significance of this result

is to run a two-way, user interface (within subjects) by presentation order (between

subjects), mixed-model ANOVA on the mean of the three completion times for each

participants in each session.2 However, this test revealed a significant interaction

effect between the interface and the presentation order (F (1, 6) = 20.157, p = 0.004;

Figure 2.7(a)).3 We believe this is a learning effect—notice that for the SV-PP order

(SV first, PP second), the mean time improved 188 seconds (3:08 minutes) from the

first session to the second, and for the PP-SV order the mean time improved 55

seconds. Since the interaction effect is significant, we cannot directly interpret the

main effect of the user interface. Instead, we use the standard approach of running

two one-way, within-subjects ANOVAs for each presentation order separately, and

2We ran all statistical tests in R. For ANOVA, we confirmed that all data sets satisfied normality
using the Shapiro-Wilk test.

3As is standard, we consider a p-value of less than 0.05 to indicate a statistically significant result.
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Session 1 Session 2
Trial 1.1 1.2 1.3 mean 2.1 2.2 2.3 mean

Participant SV PP
1 516 854 584 651 427 288* 242 319
2 307* 190 350 282 256 149* 130* 178
5 466 154 338* 320 313 223* 78* 205
7 340 383 455 393 185 233* 152 190

411 223
Participant PP SV

0 387* 369 512* 423 582 316* 191* 363
3 398 438 515 450 678 381 219 426
4 501 131 283 305 326* 267* 166* 253
6 431 172 290** 297 273 246* 118* 212

369 314

# Tabs 3 2 6 6 3 3
* one incorrectly answered tab in the checklist

(a) Completion times and accuracy for each trial

Session 1 Session 2
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0
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(b) Completion time (sec)
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(c) Time in error report (sec)

Figure 2.6: Quantitative data (error bars are omitted as they are inappropriate for
within-subjects design).
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Figure 2.7: Interaction plots; non-parallel lines indicate the presence of an interaction
effect (error bars are omitted as they are inappropriate for within-subjects design).

found that both of these improvements were statistically significant (F (1, 3) = 12.72,

p = 0.038 and F (1, 3) = 19.43, p = 0.022, respectively).

However, notice that the SV-PP improvement is much greater than the PP-SV

improvement. We applied Cohen’s d, a standard mean difference test, which showed

that the SV-PP improvement was large (d = 1.276), and the PP-SV improvement was

small-to-medium (d = 0.375). This provides evidence that while there is a learning

effect, PP still improves programmer performance significantly.

Note that when analyzing completion times, we did not distinguish correct and

incorrect answers. Indeed, it is unclear how this affects timings, especially since in

many cases, only one tab out of several will contain an incorrect answer.
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Accuracy. Figure 2.6(a) also indicates, for each trial, how many of the checklist

tabs were answered incorrectly. The total number of checklist tabs in each trial

is listed at the bottom of the chart. We did not count the Locks tab in either of

these numbers. Programmer mistakes are evenly distributed across both interfaces.

Participants made 10 mistakes (10.9%) under PP, compared to 9 mistakes (9.8%)

under SV. For each participant, we summed the number of mistakes they made in

each session, and we compared the sums for each interface using a Wilcoxon rank-sum

test. This showed that the difference is not significant (p = 0.770), suggesting the

distribution of errors is comparable for both interfaces. This shows that using PP,

participants are able to come to similarly accurate conclusions in less time.

Most of the participant mistakes occurred in trials 2.2 and 2.3, in which two

potentially-racing paths actually contain a common unrealizable sub-path, making

the data race report a false positive. In trial 1.3, one participant completed two tabs

incorrectly, but there was only one underlying mistake: misidentifying the same child

thread as a parent thread (and thus affecting the answers to two tabs).

Time in error report. We found that under PP, participants spend much less

time with the mouse hovering over the error report compared to SV. Figure 2.6(c)

shows the mean times for each session and interface. We found that on average, par-

ticipants spend 20 seconds in the error report under PP, compared to 94 seconds (1:34

minutes) under SV. As with completion time, there is a significant interaction effect

(F (1, 6) = 9.889, p = 0.020; Figure 2.7(b)) according to a two-way, user interface

(within subjects) by presentation order (between subjects), mixed-model ANOVA.
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Running two one-way, within-subjects ANOVAs for each presentation order sepa-

rately as before shows that the improvements under PP are statistically significant

(F (1, 3) = 31.16, p = 0.011 and F (1, 3) = 16.21, p = 0.028, respectively).

We believe this difference is because PP makes the paths clearly visible in the

source code display, whereas in SV, hyperlinks in the error report are heavily used to

bring up relevant parts of the code. As additional evidence, participants themselves

reported the same result: one noted that the error report is “necessary for the standard

viewer, but just a convenience in [PP].”

2.5.2 Qualitative Results

In addition to quantitative data, we also examined participants’ answers to the ques-

tionnaires we administered. The questions are on a 5-point Likert scale, and we

analyze them using either the Wilcoxon rank-sum test for paired comparisons, or the

Wilcoxon signed-rank test otherwise.

Overall impressions. Figure 2.8(a) gives a box plot summarizing participants’

opinions of the interfaces. Comparing the median responses for the first three ques-

tions, we see that participants felt PP took longer to learn, led to more confidence

in answers, and made it easier to verify a race. However, none of these results is

statistically significant (p = 0.308, 0.629, 0.152, respectively), perhaps due to the

small sample size (N = 8). When asked to compare the interfaces head-to-head, all

but one participant preferred PP (p = 0.016).
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Figure 2.8: Participants’ overall impression and usefulness rating for particular fea-
tures in Path Projection.
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However, we should also note that several participants felt that they were unable to

fairly assess PP due to the novelty of the interface and the limited amount of exposure

to it in the experiment. One participant rated PP worse than SV in all metrics, yet

stated he preferred PP due to its potential, saying, “once you get comfortable with

seeing [only] pieces of your code, I feel it will be more efficient.”

Usefulness of features. Finally, participants generally rated all the features

of PP as somewhat or very useful. Figure 2.8(b) shows a box plot of participants’

responses, and all answers are statistically significant in favor of PP compared to a

neutral response of 3 (p < 0.032).

While participants felt that the error report was very useful, they also commented

that it served mostly as an initial overview under PP, whereas it was critical under

SV. This matches our quantitative result indicating participants spent much less time

in the error report under PP.

The checklist was very well received overall. One participant said, “[It] saved

me from having to memorize rules.” Interestingly, two participants felt that, while

the checklist reduces mistakes, verifying the data race takes longer. This conflicts

with our own experience—as we mentioned earlier, participants in our pilot study,

which did not include the checklist, took notably longer to triage error reports than

participants in our current study.

We thought that participants would be wary about function inlining and code

folding, since the former is an unfamiliar visualization and the latter hides away

much code. However, participants rated both very highly, saying particularly that
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code folding was “the best feature,” “my favorite feature,” and “I love using this feature

[code folding].”

Most participants found multi-query useful, but two did not. When we asked

them why, they replied that they felt that the code folding was already doing an

adequate job without it. However, they had forgotten that the multi-query was in

use by default with the four preset queries (shown in Figure 2.2). We believe that

multi-query is actually extremely useful in combination with code folding.

2.5.3 Threats to Validity

There are a number of potential threats to the validity of our results. The core threat

is whether our results generalize. The main issue is that we had a small number of

participants, all of whom were students rather than professional programmers who

had significant experience debugging data races. Due to length of our user study,

we had thought that it would be easier to recruit students who would have less

scheduling constraints than professional programmers for the preliminary user study.

Unfortunately, we found the number of students with the prerequisite experience in

C and multithreaded programming to be fewer than we expected.

We had a small set of programs (N = 2) and error reports (N = 6) in the experi-

ment due to length as well. Moreover, participants were asked to triage error reports

for unfamiliar programs, rather than code bases they had developed themselves. We

had intentionally restricted these programs to Locksmith’s test corpus to avoid any

issues in running Locksmithon other untested programs.
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Lastly, despite long tutorials before each experiment, we were unable to eliminate

the learning effect across our trials.

However, even with these limitations, our experiment did produce statistically

significant and anecdotally useful information for our population and sample trials.

We leave carrying out a wider range of experiments to future work.

One minor threat is the small set of changes we made to the programs (Sec-

tion 2.4.4) to avoid confusion in our participants. Using more professional program-

mers as test subjects would obviate the need for this. Also, the SV interface represents

a typical IDE, but is not an actual, production-quality IDE. We chose this approach

on purpose, so that familiarity with a particular IDE would not bias our participants,

but we may have omitted features that would be useful for our task.

2.6 Related Work

Error report triaging is essentially a program comprehension task. In our study,

the particular task is to determine whether two dereferences could possibly execute

simultaneously in two different threads. There is a substantial body of tools aimed at

assisting in program comprehension tasks typically (but not exclusively) associated

with code maintenance or re-engineering (e.g., SHriMP (Storey, 1998), and Code

Surfer (Anderson et al., 2003)). As far as we are aware, none of these tools has been

specifically designed to support users of program analysis for defect detection.

Many defect detection tools that use program analysis provide custom user in-

terfaces, IDE plug-ins, or both. Since many proprietary tools have licenses that
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Features (legend below)

Tool IDE HLR HPC PCF FCI AC AQ MQ OV

Path Projection X X X X X
SDV2 X X X
PREFast3 X X X n/a1 X
Coverity SAVE4 X X X X X
CodeSonar5 X X X X X
MrSpidey6 X X X X
Fortify SCA7 X X X
Klocwork8 X X X
Fluid9 X X
FindBugs10 X X X n/a1

CQual11 X X

Feature legend
IDE : IDE plug-in AC : annotated code with analysis
HLR : hyperlinked error report AQ : analysis queries
HPC : highlighted path in code MQ : multi-query
PCF : path-derived code folding OV : other visualization (see text)
FCI : function-call inlining

1 PREFast and FindBugs are intraprocedural, so FCI does not apply.
2 Ball and Rajamani (2002)
3 Larus et al. (2004)
4 Coverity, Inc. (b)
5 GrammaTech, Inc. (a)
6 Flanagan et al. (1996)
7 Hewlett-Packard Development Company, L.P.
8 Klocwork, Inc. (a)
9 Greenhouse et al. (2003)
10 Hovemeyer and Pugh (2004)
11 Greenfieldboyce and Foster (2004)

Table 2.2: Comparison of tool interface features.

specifically prohibit publishing the results of studies about their tools, we surveyed

a number of these tools based on publicly-available screenshots and literature and

compared their features with Path Projection in Table 2.2. Almost all tools we

surveyed provide IDE plug-ins, and all tools provide hyperlinked error reports, which
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is unsurprising since hyperlinking is one of the most basic feature provided by IDEs

today.

Several tools provide features not present in Path Projection. For example,

SDV, PREFast, Coverity SAVE, and CodeSonar insert summaries of the internal

results of their analysis at corresponding lines in the source code. MrSpidey allows

the programmer to query possible run-time values for a given expression, based on a

value-flow analysis. Some tools provide more graphical visualizations of paths. Fortify

SCA illustrates a path as UML-style interaction diagram, and MrSpidey overlays lines

on the source code to illustrate value flows. On the other hand, Path Projection’s

path-derived code-folding and multi-query features seem to be unique among the tools

we studied.

There has been a few studies after ours that measured the impact of the user

interface on a program analysis tool’s efficacy. Ayewah and Pugh (2008) conducted a

survey to determine how programmers triage a list of errors from FindBugs and Fortify

SCA. Similarly, Guo and Engler (2009) studied how Linux developers addressed errors

found by Coverity SAVE. In contrast, our work focus on the task of determining if

an error report is true or false. Johnson et al. (2013) interviewed 20 programmers

to understand why programmers have not adopted program analysis in general, and

found that tools tend to overwhelm programmer with too many false warnings or

provide too little assistance to fix actual bugs. We believe that Path Projection

provides one part of the solution to the latter problem.

Triaging is a necessary and important first stage in identifying and fixing a soft-

ware defect. In fact, according to Ruthruff et al. (2008), Google employs a dedicated
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team of programmers to triage errors reported by FindBugs. There has been a consid-

erable amount of research that addresses various challenges in triaging. For example,

Ruthruff et al. (2008) developed a machine learning technique to pre-screen FindBugs

error reports for false warnings before triage; similarly, Kremenek et al. (2004) pro-

posed a machine learning algorithm to prioritize error reports; Runeson et al. (2007)

used natural-language processing to detect duplicate bug reports; Anvik et al. (2006)

designed a machine learning algorithm to assign programmers to fix bugs. Path

Projection, and our study, differs from these work in exploring how triage can be

performed more accurately and efficiently.

A number of proposals aim to improve the quality of error reporting by generating

more intelligent error messages. For example, Wand (1986) proposed to modify type

inference algorithms to keep track of the reasons why a variable is assigned a particular

type, an approach that is later refined by Beaven and Stansifer (1993) to handle

parametric polymorphism, and Duggan and Bent (1996) to explain types induced

by aliasing; whereas Haack and Wells (2004) applied program slicing (Weiser, 1984)

techniques to present a minimal explanation of type errors, among others. As another

example, Findler and Felleisen (2002) developed an assertion or contract checking

system for higher-order languages that properly assigns blame to statements that are

most likely to be in error. Our work complements these techniques by visualizing

results in the context of code as much as possible.

Since our work, there has been a couple of studies that looked into using checklists

to complement program analysis tools. Ayewah and Pugh (2009) developed a checklist

to help programmers triage error reports from FindBugs. They found that program-
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mers with little to no experience using FindBugs were able to use the checklist to

triage error reports as accurately as expert FindBugs users. Dillig et al. (2007) devel-

oped a program analysis technique based on abductive inference that automatically

generates triaging questions when the analysis is unable to reach a sound conclusion.

They found that programmers were able to triage error reports far more accurately

and quickly using their technique, up to 90% accurate and taking less than 1 minute,

compared to 33% accurate and taking 5 minutes if programmers were not given the

questions. These studies as well as ours show that there is great advantage to be

gained in using checklist to complement program analysis tools.
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Chapter 3

Mix: a Framework for Combining Program Analyses†

In this chapter, we present Mix, a novel framework for combining different program

analysis algorithms to trade off precision and efficiency. In our implementation of

Mix, we allow programmers to choose between two conceptually simple algorithms—

type checking, a coarse but highly scalable analysis, and symbolic execution (King,

1976), which is very precise but less efficient. Programmers can add typed blocks

{t e t} or symbolic blocks {s e s} as annotations to the source code of their target

software to indicate whether expression e should be analyzed with type checking or

symbolic execution, respectively. Blocks may nest arbitrarily to achieve the desired

level of precision versus efficiency.

The distinguishing feature of Mix is that its type checking and symbolic execution

engines are completely standard, off-the-shelf implementations. Within a typed or

symbolic block, the analyses run as usual. It is only at the boundary between blocks

that we use special mix rules to translate information back-and-forth between the two

analyses. In this way, Mix gains precision at limited cost, while potentially avoiding

many of the pitfalls of more complicated approaches.

†This work was originally published as Khoo et al. (2010a,b) in collaboration with Bor-Yuh Evan
Chang and my advisor Jeffrey S. Foster. An implementation of Mix, Mixy, is available as part of
the Otter project at https://bitbucket.org/khooyp/otter.
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As a hypothetical example, consider the following code:

41 {s
42 if (multithreaded) {t fork(); t}
43 {t . . . t}
44 if (multithreaded) {t lock(); t}
45 {t . . . t}
46 if (multithreaded) {t unlock(); t}
47 s}

This code uses multiple threads only if multithreaded is set to true. Suppose we have

a type-based analysis that checks for data races. Then assuming the analysis is path

insensitive, it cannot tell whether a thread is created on line 42, and it does not know

the lock state after lines 44 and 46—all of which will lead to false positives.

Rather than add path sensitivity to our core data race analysis, we can instead

use Mix to gain precision. We wrap the program in a symbolic block at the top level

so that the executions for each setting of multithreaded will be explored independently.

Then for performance, we wrap all the other code (lines 43 and 45 and the calls to

fork, lock, and unlock) in typed blocks, so that they are analyzed with the type-based

analysis. In this case, these block annotations effectively cause the type-based analysis

to be run twice, once for each possible setting of multithreaded; and by separating those

two cases, we avoid conflation and eliminate false positives.

While Mix cannot address every precision/efficiency tradeoff issue (for exam-

ple, the lexical scoping of typed and symbolic blocks is one limitation), there are

nonetheless many potential applications. Among other uses, Mix can encode forms

of flow sensitivity, context sensitivity, path sensitivity, and local type refinements.

Mix can also use type checking to overcome some limitations of symbolic execution

(Section 3.1). Also, we currently leave the placement of block annotations to the pro-
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grammer, but we envision that an automated refinement algorithm could heuristically

insert blocks as needed. In this scenario, Mix becomes an intermediate language for

modularly combining off-the-shelf analyzer implementations.

In this chapter, we formalize Mix for a small imperative language, mixing a stan-

dard type checking system with symbolic execution to yield a system to check for

the absence of run-time type errors. Thus, rather than checking for assertion fail-

ures, as a typical symbolic executor might do, our formal symbolic executor reports

any type mismatches it detects. To mix these two systems together, we introduce

two new rules: one rule in the type system that “type checks” blocks {s e s} using

the symbolic executor; and one rule in the symbolic executor that “executes” blocks

{t e t} using the type checker. We prove that the type system, symbolic executor,

and mix of the two systems are sound. The soundness proof of Mix uses the proofs

of type soundness and symbolic execution soundness essentially as-is, which provides

some additional evidence of a clean modularization. Additionally, two features of

our formalism for symbolic execution may be of independent interest: we discuss the

tradeoff between “forking” the symbolic executor and giving more work to the solver;

and we provide a soundness proof, which, surprisingly, we have been unable to find

for previous symbolic execution systems (Section 3.2).

Finally, we describe Mixy, a prototype implementation of Mix for C. Mixy

combines a simple, monomorphic type qualifier inference system (a reimplementation

of Foster et al. (2006)) with a C symbolic executor. There are two key challenges that

arise when mixing type inference rather than checking: we need to perform a fixed-

point computation as we switch between typed and symbolic blocks since data values
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can pass from one to the other and back; and we need to integrate aliasing information

into our analysis so that pointer manipulations performed within symbolic blocks

correctly influence typed blocks. Additionally, we extend Mixy to support caching

block results as well as recursion between blocks. We use Mixy to look for null

pointer errors in a reasonably-sized benchmark vsftpd; we found several examples

where adding symbolic blocks can eliminate false positives compared to pure type

qualifier inference (Section 3.3).

3.1 Motivating Examples

Before describing Mix formally, we examine some coding idioms for which type infer-

ence and symbolic execution can profitably be mixed. Our examples will be written

in either an ML-like language or C-like language, depending on which one is more

natural for the particular example.

Path, Flow, and Context Sensitivity. In the introduction, we saw one

example in which symbolic execution introduced a small amount of path sensitivity

to type inference. There are several potential variations on this example where we can

locally add a little bit of path sensitivity to increase the precision of type checking.

For example, we can avoid analyzing unreachable code:

48 {t . . . {s if true then {t 5 t} else {t "foo" + 3 t} s} . . . t}

This code runs without errors, but pure type checking would complain about the

potential type error in the false branch. However, with these block annotations added
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in Mix, the symbolic executor will only invoke the type checker for the true branch

and hence will avoid a false positive.

We can also use symbolic execution to gain some flow sensitivity. For example,

in a dynamically-typed imperative language, programmers may reuse variables as

different types, such as in the following:

49 {t . . . {s var x = 1; {t . . . t}; x = "foo"; s} . . . t}

Here the local variable x is first assigned an integer and is later reused to refer to a

string. With the annotations above, we can successfully statically check such code

using the symbolic executor to distinguish the two different assignments to x, then

type check the code in between.

Similar cases can occur if we try to apply a non-standard type system to existing

code. For example, in our case study (Section 3.3.5), we applied a nullness checker

based on type qualifiers to C. We found some examples like the following code:

50 {t . . . {s x−>obj = NULL; x−>obj = ( . . .)malloc( . . .); s} . . . t}

Here x->obj is initially assigned to NULL, immediately before being assigned a freshly

allocated location. A flow insensitive type qualifier system would think that x->obj

could be NULL after this pair of assignments, even though it cannot be.

Finally, we can also use symbolic execution to gain context sensitivity, though at

the cost of duplicate work. For example, in the following:

51 {s let id x = x in {t . . . {s id 3 s} . . . {s id 3.0 s} . . . t} s}
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the identity function id is called with an int and a float. Rather than adding parametric

polymorphism to type check this example, we could wrap those calls in symbolic

blocks, which in Mix causes the calls to be checked with symbolic execution. While

this is likely not useful for standard type checking, for which parametric polymorphism

is well-understood, it could be very useful for a more advanced type system for which

fully general parametric polymorphic type inference might be difficult to implement

or perhaps even undecidable.

A combination of context sensitivity and path sensitivity is possible with Mix.

For example, consider the following:

52 {s
53 let div x y = if y = 0 then "err" else x / y in
54 {t . . . + {s div 7 4 s} t}
55 s}

where the div function may return an int or a string, but it returns a string (indicating

error) only when the second argument is 0. Note that this level of precision would be

out of the reach of parametric polymorphism by itself.

Local Refinements of Data. Symbolic execution can also potentially be

used to model data more precisely for non-standard type systems. As one example,

suppose we introduce a type qualifier system that distinguishes the sign of an integer

as either positive, negative, zero, or unknown. Then we can use symbolic execution

to refine the type of an integer after a test:
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56 {t
57 let x : unknown int = . . . in
58 {s
59 if x > 0 then {t (∗ x : pos int ∗) . . . t}
60 else if x = 0 then {t (∗ x : zero int ∗) . . . t}
61 else {t (∗ x : neg int ∗) . . . t}
62 s}
63 t}

Here on entry to the symbolic block, x is an unknown integer, so the symbolic executor

will assign it an initial symbolic value αx ranging over all possible integers. Then

at the conditional branches, the symbolic executor will fork and explore the three

possibilities: αx > 0, αx = 0, and αx < 0. On entering the typed block in each

branch, since the value of x is constrained in the symbolic execution, the type system

will start with the appropriate type for x, either pos, zero, or neg int, respectively.

As another example, suppose we have a type system to prevent data races in C.

Then a common problem that arises is analyzing local initialization of shared data

(Pratikakis et al., 2006). Consider the following code:

64 {t
65 {s
66 x = (struct foo ∗) malloc(sizeof(struct foo));
67 x−>bar = . . . ;
68 x−>baz = . . . ;
69 x−>qux = . . . ;
70 s}
71 insert(shared_data_structure, x);
72 t}

Here we allocate a new block of memory and then initialize it in several steps before it

becomes shared. A flow-insensitive type-based analysis would report an error because

the writes through x occur without a lock held. On the other hand, if we wrap the

allocation and initialization in a symbolic block, as above, symbolic execution can
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easily observe that x is local during the initialization phase, and hence the writes

need not be protected by a lock.

Helping Symbolic Execution. The previous examples considered adding

precision in type checking through symbolic execution. Alternatively, typed blocks

can potentially be used to introduce conservative abstraction in symbolic execution

when the latter is not viable. For example:

73 {s
74 let x = {t unknown_function() t} in . . .
75 let y = {t 2∗∗z (∗ operation not supported by solver ∗) t} in . . .
76 {t while true do {s loop_body s} t}
77 s}

The first line contains a call to a function whose source code is not available, so we

cannot symbolically execute the call. However, if we know the called function’s type,

then we can wrap the call in a typed block (assuming the function has no side effects),

conservatively modeling its return value as any possible member of its return type.

Similarly, on the second line, we are performing an exponentiation operation, and let

us suppose the symbolic executor’s solver cannot model this operation if z is symbolic.

Then by wrapping the operation in a typed block, we can continue symbolic execution,

again conservatively assuming the result of the exponentiation is any member of the

result type. The third line shows how we could potentially handle long-running loops

by wrapping them in typed blocks, so that symbolic execution would effectively skip

over them rather than unroll them (infinitely). We can also recover some precision

within the loop body by further wrapping the loop body with a symbolic block.
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3.2 The Mix System

In the previous section, we considered a number of idioms that motivate the design of

Mix. Here, we consider a core language, shown in the top portion of Figure 3.1, with

which we study the essence of switching blocks for mixing analyses. Our language in-

cludes variables x; integers n; booleans true and false; selected arithmetic and boolean

operations +, =, ¬, and ∧; conditionals with if; let bindings; and ML-style updatable

references with ref (construction), ! (dereference), and := (assignment). We also

include two new block forms, typed blocks {t e t} and symbolic blocks {s e s}, which

indicate e should be analyzed with type checking or symbolic execution, respectively.

We leave unspecified whether the outermost scope of a program is treated as a typed

block or a symbolic block; Mix can handle either case.

3.2.1 Type Checking and Symbolic Execution

Type checking for our source language is entirely standard, and so we omit those

rules here. Our type checking system proves judgments of the form Γ ` e : τ , where

Γ is the type environment and τ is e’s type. Grammars for Γ and τ are given in the

bottom portion of Figure 3.1.

The remainder of this section describes a generic symbolic executor. While the

concept of symbolic execution is widely known, there does not appear to be a clear

consensus of its definition. Thus, we make explicit our definition of symbolic execution

here through a formalization similar to an operational semantics. Such a formalization
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Source Language.

e ::= x | v variables, constants
| e+ e arithmetic
| e = e | ¬e | e ∧ e predicates
| if e then e else e conditional
| let x = e in e let-binding
| ref e | !e | e := e references
| {t e t} type checking block
| {s e s} symbolic execution block

v ::= n | true | false concrete values

Types, Symbolic Expressions, and Environments.

τ ::= int | bool | τ ref types
Γ ::= ∅ | Γ, x : τ typing environment

s ::= u:τ typed symbolic expressions
g ::= u:bool guards
u ::= α | v symbolic variables, constants
| u:int + u:int arithmetic
| s = s | ¬g | g ∧ g predicates
| m[u:τ ref] memory select

m ::= µ arbitrary memory
| m, (s � s) memory update
| m, (s

a� s) memory allocation
Σ ::= ∅ | Σ, x : s symbolic environment

Figure 3.1: Program expressions, types, and symbolic expressions.

enables us to describe the switching between type checking and symbolic execution

in a uniform manner.

Symbolic Expressions, Memories, and Environments. The remainder of

Figure 3.1 describes the symbolic expressions and environments used by our symbolic

executor. Symbolic expressions are used to accumulate constraints in deferral rules.

62



For example, the symbolic expression (α:int+3:int):int represents a value that is three

more than the unknown integer α.

Because we are concerned with checking for run-time type errors, in our system

symbolic expressions s have the form u:τ , where u is a bare symbolic expression and

τ is its type. With these type annotations, we can immediately determine the type of

a symbolic expression, just like in a concrete evaluator with values. As a shorthand,

we use g to represent conditional guards, which are just symbolic expressions with

type bool. Bare symbolic expressions u may be symbolic variables α (e.g., α:int is a

symbolic integer, and α:bool is a symbolic boolean); known values v; or operations

+, =, ¬, ∧ applied to symbolic expressions of the appropriate type. Notice that our

syntax forbids the formation of certain ill-typed symbolic expression (e.g., α1:int +

α2:bool is not allowed).

Symbolic expressions also include symbolic memory accesses m[u:τ ref], which

represents an access through pointer u in symbolic memory m. A symbolic memory

may be µ, representing an arbitrary but well-typed memory; m, (s � s′), a memory

that is the same as m except location s is updated to contain s′; or m, (s a� s′),

which is the same as m except newly allocated location s points to s′. These are

essentially McCarthy-style sel and upd expressions that allow the symbolic executor to

accumulate a log of writes and allocations while deferring alias analysis. An allocation

always creates a new location that is distinct from the locations in the base unknown

memory, so we distinguish them from arbitrary writes.

Finally, symbolic environments Σ map local variables x to (typed) symbolic ex-

pressions s.
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Symbolic Execution for Pure Expressions. Figure 3.2 describes our symbolic

executor on pure expressions using what are essentially big-step operational semantics

rules. These rules prove judgments of the form

Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉

meaning with local variables bound in Σ, starting in state S, expression e evaluates

to symbolic expression s and updates the state to S ′. In our symbolic execution

judgment, a state S is a tuple 〈g ; m〉, where g is a path condition constraining the

current state and m is the current symbolic memory. The path condition begins as

true, and whenever the symbolic executor makes a choice at a conditional, we extend

the path condition to remember that choice (more on this below). We write X(S) for

the X component of S, with X ∈ {g,m}, and similarly we write S[X 7→ Y ] for the

state that is the same as S, except its X component is now Y .

Most of the rules in Figure 3.2 are straightforward and intend to summarize typical

symbolic executors. Rule SEVar evaluates a local variable by looking it up in the

current environment. Notice that, as with standard operational semantics, there is

no reduction possible if the variable is not in the current environment. Rule SEVal

reduces values to themselves, using the auxiliary function typeof(v) that examines the

value form to return its type (i.e., typeof(n) = int and typeof(true) = typeof(false) =

bool).

Rules SEPlus, SEEq, SENot, and SEAnd execute the subexpressions and then

form a new symbolic expression with +, =, ¬, or ∧, respectively. Notice that these

rules place requirements on the subexpressions—for example, SEPlus requires that

64



Symbolic Execution. Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉 S = 〈g ;m〉

SEVar

Σ, x : s ` 〈S ; x〉 ⇓ 〈S ; s〉

SEVal

Σ ` 〈S ; v〉 ⇓ 〈S ; (v: typeof(v))〉

SEPlus
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:int〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; u2:int〉

Σ ` 〈S ; e1 + e2〉 ⇓ 〈S2 ; (u1:int + u2:int):int〉

SEEq
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; u2:τ〉

Σ ` 〈S ; e1 = e2〉 ⇓ 〈S2 ; (u1:τ = u2:τ):bool〉

SENot
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

Σ ` 〈S ; ¬e1〉 ⇓ 〈S1 ; ¬g1:bool〉

SEAnd
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; g2〉

Σ ` 〈S ; e1 ∧ e2〉 ⇓ 〈S2 ; (g1 ∧ g2):bool〉

SELet
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉 Σ, x : s1 ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; let x = e1 in e2〉 ⇓ 〈S2 ; s2〉

SEIf-True
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 Σ ` 〈S1[g 7→ g(S1) ∧ g1] ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S2 ; s2〉

SEIf-False
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 Σ ` 〈S[g 7→ g(S1) ∧ ¬g1] ; e3〉 ⇓ 〈S3 ; s3〉

Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S3 ; s3〉

Figure 3.2: Symbolic execution for pure expressions.
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the subexpressions reduce to symbolic integers, and SENot requires that the subex-

pression reduces to a guard (a symbolic boolean). If the subexpression does not

reduce to an expression of the right type, then symbolic execution fails. Thus, these

rules form a symbolic execution engine that does very precise dynamic type checking.

Rule SELet symbolically executes e1 and then binds e1 to x for execution of e2.

The last two rules, SEIf-True and SEIf-False, model a pure, non-deterministic

version of the kind of symbolic execution popularized by DART (Godefroid et al.,

2005), CUTE (Sen et al., 2005), EXE (Cadar et al., 2006), and KLEE (Cadar et al.,

2008). When we reach a conditional, we conceptually fork execution, extending the

path condition with g1 or ¬g1 to indicate the branch taken. EXE and KLEE would

both invoke an SMT solver at this point to decide whether one or both branches

are feasible, and then try all feasible paths. DART and CUTE, in contrast, would

continue down one path as guided by an underlying concrete run (so-called “concolic

execution”), but then would ask an SMT solver later whether the path not taken was

feasible and, if so, come back and take it eventually. All of these implementation

choices can be viewed as optimizations to prune infeasible paths or hints to focus

the exploration. Since we are not concerned with performance in our formalism, we

simply extend the path condition and continue—eventually, when symbolic execution

completes, we will check the path condition and discard the path if it is infeasible.

To get sound symbolic execution, we will compute a set of symbolic executions and

require that all feasible paths are explored (see Section 3.2.2).

Sometimes, the symbolic executor may want to throw away information (e.g.,

replace a symbolic expression for a complicated memory read with a fresh symbolic
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variable). Such a rule is straightforward to add, but as discussed in Section 3.2.2, a

nested typed block {t e t} serves a similar purpose.

Deferral Versus Execution. Consider again the rules for symbolic execution

on pure expressions in Figure 3.2. Excluding the trivial SEVal rule, the first set

of rules (SEPlus, SEEq, SENot, and SEAnd) versus the second set (SELet,

SEVar, SEIf-True, SEIf-False) seem qualitatively different. The first set simply

get symbolic expressions for their subexpressions and form a new symbolic expression

of the corresponding operator, essentially deferring any reasoning about the operation

(e.g., to an SMT solver). In contrast, the second set does not accumulate any such

symbolic expression but rather chooses a possible concrete execution to follow. For

example, we can view SEIf-True as choosing to assume that g1 is concretely true

and proceeding to symbolically execute e2. This assumption is recorded in the path

condition. (The SELet and SEVar rules are degenerate execution rules where no

assumptions need to be made because there is only one possible concrete execution

for each.) Alternatively, we see that there are symbolic expression forms for +, =, ¬,

and ∧ but not for let, program variables, and if.

Although it is not commonly presented as such, the decision of deferral versus

execution is a design choice. For example, let us include an if-then-else symbolic ex-

pression g?s1:s2 (using a C-style conditional syntax) that evaluates to s1 if g evaluates

to true and s2 otherwise. Then, we could defer to the evaluation of the conditional
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to the solver with the following rule:

SEIf-Defer
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 Σ ` 〈S[g 7→ g(S1) ∧ g1] ; e2〉 ⇓ 〈S2 ; u2:τ〉

Σ ` 〈S[g 7→ g(S1) ∧ ¬g1] ; e3〉 ⇓ 〈S3 ; u3:τ〉
S ′ = 〈(g1?g(S2):g(S3)) ; (g1?m(S2):m(S3))〉

Σ ` 〈S ; (if e1 then e2 else e3)〉 ⇓ 〈S ′ ; (g1?(u2:τ):(u3:τ)):τ〉

Here notice we also have to extend the ·? · :· relation to operate over memory as

well. With this rule, we need not “fork” symbolic execution at all. However, note

that even with conditional symbolic expressions and condition symbolic memory, this

rule is more conservative than the SEIf-True and SEIf-False execution rules, as

it requires both branches to have the same type.

Conversely, other rules may also be made non-deterministic in manner similar

to SEIf-*. For example, SEVar may instead return an arbitrary value v and add

Σ(x) = v to the path condition, a style that resembles hybrid concolic testing (Ma-

jumdar and Sen, 2007). A special case of execution rules are ones that apply only

when we have concrete values during symbolic execution and thus do not need to

“fork.” For example, we could have a SEPlus-Conc that applies to two concrete

values n1, n2 and returns the sum. This approach is reminiscent of partial evaluation.

These choices trade off the amount of work done between the symbolic executor

and the underlying SMT solver. For example, SEIf-Defer introduces many disjunc-

tions into symbolic expressions, which then may be hard to solve efficiently. To match

current practice, we stick with the forking variant for conditionals, but we believe our

system would also be sound with SEIf-Defer.
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Symbolic References. Figure 3.3 continues our symbolic executor definition

with rules for updatable references. We use deferral rules for all aspects of references

in our formalization. Rule SERef evaluates e1 and extends m(S1) with an allocation

for fresh symbolic pointer α. Similarly, rule SEAssign extends S2 to record that

s1 now points to s2. Observe that allocations and writes are simply logged during

symbolic execution for later inspection. Also, notice that we allow any value to be

written to s1, even if it does not match the type annotation on s1. In contrast,

standard type systems require that any writes to memory must preserve types since

the type system does not track enough information about pointers to be sound if that

property is violated. Symbolic execution tracks every possible program execution

precisely, and so it can allow arbitrary memory writes.

In SEDeref, we evaluate e1 to a pointer u1:τ ref and then produce the symbolic

expression m(S1)[u1:τ ref]:τ to represent the contents of that location. However, here

we are faced with a challenge: we are not actually looking up the contents of memory;

rather, we are simply forming a symbolic expression to represent the contents. How,

then, do we determine the type of the pointed-to value? We need the type so that

we can halt symbolic execution later if that value is used in a type-incorrect manner.

That is, we do not want to defer the discovery of a potential type error.

Our solution is to use the type annotation on the pointer to get the type of the

contents—but above we just explained that SEAssign allows writes to violate those

type annotations. There are many potential ways to solve this problem. We could in-

voke an SMT solver to compute the actual set of addresses that could be dereferenced

and fork execution for each one. Or we could proceed as our implementation and use
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Symbolic Execution for References. Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉

SERef
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ〉 α /∈ Σ, S, S1, u1

S ′ = S1[m 7→ (m(S1), (α:τ ref
a� u1:τ))]

Σ ` 〈S1 ; ref e1〉 ⇓ 〈S ′ ; α:τ ref〉

SEAssign
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉 Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; e1 := e2〉 ⇓ 〈S2[m 7→ (m(S2), (s1 � s2))] ; s2〉

SEDeref
Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ ref〉 ` m(S1) ok

Σ ` 〈S ; !e1〉 ⇓ 〈S1 ;m(S1)[u1:τ ref]:τ〉

Memory Type Consistency. ` m ok U ` m ok

Empty-OK

` µ ok ∅

Alloc-OK
` m ok U

` m, (α:τ ref
a� u2:τ) ok U

Overwrite-OK
` m ok U U ′ = U\ {s1 � s2 | s1 ≡ u1:τ ref ∧ s1 � s2 ∈ U}

` m, (u1:τ ref � u2:τ) ok U ′

Arbitrary-NotOK
` m ok U

` m, (s1 � s2) ok (U ∪ {s1 � s2})

M-OK
` m ok ∅
` m ok

Figure 3.3: Symbolic execution for updatable references.

an external alias analysis to conservatively model all possible locations that could

be read to check that the values at all locations have the same type (Section 3.3).

However, to keep the formal system simple, we choose a very coarse solution: we

require that all pointers in memory are well-typed with the check ` m(S1) ok.
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This judgment is defined in the bottom portion of Figure 3.3 in terms of the aux-

iliary judgment ` m ok U , which means memory m is consistently typed (pointers

point to values of the right type), except for mappings in U . There are four cases

for this judgment. SEEmpty-OK says that arbitrary well-typed memory µ is con-

sistently typed. Similarly, Alloc-OK says that if m is consistently typed except

for potentially inconsistent writes in U , then adding an allocation preserves consis-

tent typing up to U . Rule SEOverwrite-OK says that if ` m ok U and we extend

m with a well-typed write to u1, then any previous, inconsistent writes to locations

s1 ≡ u1:τ ref can be ignored. Here by ≡ we mean syntactic equivalence, but in

practice we could query a solver to validate such an equality given the current path

condition. Rule SEArbitrary-NotOK says that any write can be added to U and

viewed as potentially inconsistent. Finally, SEM-OK says that ` m ok if m has no

inconsistent writes that persist. Together, these rules ensure that the type assigned

to the result of a dereference is sound. We can also see how the SEDeref may be

made more precise by only requiring consistency up to a set of writes U and querying

a solver to show that u1:τ ref are disequal to all the address expressions in U .

3.2.2 Mixing

In the previous section, we considered type checking and symbolic execution sep-

arately, ignoring the blocks that indicate a switch in analysis. Figure 3.4 shows the

two mix rules that capture switching between analyses.

Rule SETSymBlock describes how to type check a symbolic block {s e s}, that

is, how to apply symbolic execution to derive a type of a subexpression for a type
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Block Typing. Γ ` e : τ

TSymBlock
Σ(x) = αx:Γ(x)

(for all x ∈ dom(Γ)) Σ ` 〈S ; e〉 ⇓ 〈Si ; ui:τ〉 S = 〈true ; µ〉 µ /∈ Σ
` m(Si) ok exhaustive(g(S1), . . . , g(Sn)) (i ∈ 1..n)

Γ ` {s e s} : τ

exhaustive(g1, . . . , gn)⇐⇒ (g1 ∨ . . . ∨ gn is a tautology)

Block Symbolic Execution. Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉

SETypBlock
` Σ : Γ ` m(S) ok Γ ` e : τ µ′, α /∈ Σ, S

Σ ` 〈S ; {t e t}〉 ⇓ 〈S[m 7→ µ′] ; α:τ〉

Symbolic and Typing Environment Conformance. ` Σ : Γ

dom(Σ) = dom(Γ) Σ(x) = u:Γ(x) (for all x ∈ dom(Γ))
` Σ : Γ

Figure 3.4: Mixing type checking and symbolic execution.

checker. First, we construct an environment Σ that maps each variable x in Γ to

a fresh symbolic variable αx, whose type is extracted from Γ. Then we run the

symbolic execution under Σ, starting in a state with true for the path condition and

a fresh symbolic variable µ to stand for the current memory. Recall that, because

of SEIf-True and SEIf-False, symbolic execution is actually non-deterministic—

it conceptually can branch at conditionals. If we want to soundly model the entire

possible behavior of e, we need to execute all paths. Thus, we run the symbolic

executor n times, yielding final states 〈Si ; ui:τ〉 for i ∈ 1..n, and we require that the

disjunction of the guards from all executions form a tautology. This constraint ensures
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that we exhaustively explore every possible path (see Section 3.2.3 about soundness).

And if all those paths executed successfully without type errors and returned a value

of the same type τ , then that is the type of expression e. We also check that all paths

leave memory in a consistent state.

Symbolic execution has typically been used as an unsound analysis where there

is no exhaustiveness check like exhaustive(. . .) in the SETSymBlock. We can also

model such unsound analysis by weakening exhaustive(. . .) to a “good enough check.”

The other rule, SESETypBlock, describes how to symbolically execute a typed

block {t e t}, that is, how to apply the type checker in the middle of a symbolic

execution. We begin by deriving a type environment Γ that maps local variables

to the types of the symbols they are mapped to in Σ. This mapping is described

precisely by the judgment ` Σ : Γ, which is straightforward. We also require that the

current symbolic memory state be consistent, since the typed block relies purely on

type information (rather than tracking pointer values as symbolic execution does).

Then we type check e in Γ, yielding a type τ . The typed block itself symbolically

evaluates to a fresh symbolic variable α of type τ . Since the typed block may have

written to memory, we conservatively set the memory of the output state to a fresh

µ′, indicating we know nothing about the memory state at that point except that it

is consistent.

Note that in our formalism, we do not have typed blocks within typed blocks,

or symbolic blocks within symbolic blocks, though these would be trivial to add (by

passing-through).
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Why Mix? The mix rules are essentially as precise as possible given the

strengths and limitations of each analysis. The nested analysis starts with the maxi-

mum amount of information that can be extracted from the other program analysis—

for symbolic blocks, the only available information for symbolic execution is types,

whereas for typed blocks, the type checker only cares about types of variables and

thus abstracts away the symbolic expressions. After the nested analysis is complete,

the result is similarly passed back to the enclosing analysis as precisely as possible.

We deliberately chose two analyses at opposite ends of the precision spectrum:

type checking is cheap, flow insensitive with a rather coarse abstraction, while sym-

bolic execution is expensive, flow and path sensitive (and context sensitive if we add

functions) with a minimal amount of abstraction. They also work in such a different

manner that it does not seem particularly natural to combine them in tighter ways

(e.g., as a reduced product of abstract interpreters (Cousot and Cousot, 1979)). We

think it is surprising just how much additional precision we can obtain and the kinds

of idioms we can analyze from such a simple mixing of an entirely standard type

system and a typical symbolic executor as-is (as we see in Section 3.1). We note

that a type system capturing all of the examples in Section 3.1 would likely be quite

advanced (involving, for example, dependent types).

However, as can be seen in Figure 3.4, the conversion between these two analyses

may be extremely lossy. For example, in SETypBlock, the memory after returning

from the type checker must be a fresh arbitrary memory µ′ because e may make

any number of writes not captured by the type system and thus not seen by the

symbolic executor. We can also imagine mixing any number of analyses in arbitrary
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combination, yielding different precision/efficiency tradeoffs. For example, if we were

to use a type and effect system rather than just a type system, we could avoid

introducing a completely fresh memory µ′ in SESETypBlock—instead, we could

find the effect of e and limit applying this “havoc” operation only to locations that

could have been changed.

3.2.3 Soundness

In this section, we sketch the soundness of Mix, which is described in full detail

in Appendix A. The key feature of our proof is that aside from the mix rule cases,

it reuses the standalone type soundness and symbolic execution soundness proofs

essentially as-is.

We show soundness with respect to a standard big-step operational semantics

for our simple language of expressions. Our semantics is given by a judgment E `

〈M ; e〉 → r. This says that in a concrete environment E, an initial concrete memory

M and an expression e evaluate to a result r. A concrete environment maps variables

to values, while a concrete memory maps locations to values. The evaluation result

r is either a concrete memory-value pair 〈M ′; v〉 or a distinguished error token.

To prove mix soundness, we consider simultaneously type and symbolic execution

soundness. While type soundness is standard, we discuss it briefly, as it is a part of

mix soundness, and provides intuition for symbolic execution soundness.

For type soundness, we introduce a memory type environment Λ that maps loca-

tions to types, and we update the typing judgment to carry this additional environ-

ment, as Γ `Λ e : τ where Λ is constant in all rules. In many proofs, Λ is included in
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Γ rather than being called out separately, but for mix soundness separating locations

from variables makes the proof easier. To show type soundness, we need a relation

between the concrete environment and memory 〈E;M〉 and the type environment and

memory typing 〈Γ; Λ〉. We write this relation as 〈E;M〉 ∼ 〈Γ; Λ〉, which informally

says two things: (1) the type environment Γ abstracts the concrete environment E,

that is, the concrete value v mapped by each variable x in E has type Γ(x), and (2)

the memory typing Λ abstracts the concrete memory M , that is, the concrete value

v at each location l in M has type Λ(l). We also talk about the second component

in isolation, in which case we write M ∼ Λ to mean memory typing Λ abstracts the

concrete memory M .

Type soundness is the first part of mix soundness (Statement 1 in Theorem 1).

Let us consider the pieces. Suppose we have a concrete evaluation E ` 〈M ; e〉 → r.

We further suppose that e has type τ in typing environments that are sound with

respect to the concrete state (i.e., 〈E;M〉 ∼ 〈Γ; Λ〉). Then, the result r must be

a memory-value pair 〈M ′; v〉 where the resulting concrete memory is abstracted by

Λ′, an extension of Λ, and the resulting value v has the same type τ in Γ with

the extended memory typing Λ′. Notice this captures the notions that well-typed

expressions cannot evaluate to error and that evaluation preserves typing.

For symbolic execution soundness, we need to ensure that a symbolic execution

faithfully models actual concrete executions. Let V be a valuation, which is a finite

mapping from symbolic values α to concrete values v or concrete memories M . We

write JsKV , JmKV , and JΣKV for the natural extension of V to operate on arbitrary

symbolic expressions, memories, and the symbolic environment. Symbolic execution

76



begins with symbolic values α for unknown inputs and accumulates a symbolic ex-

pression s that represents the result of the program. Then at a high-level, if symbolic

execution is sound, then a concrete run that begins with JαKV for inputs should

produce the expression JsKV .

To formalize this notion, we need a soundness relation between the concrete eval-

uation state and the symbolic execution state, just as in type soundness. The form

of our soundness relations for symbolic execution states is as follows:

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m〉

This relation captures two key properties. First, applying the valuation V to the

symbolic state should yield the concrete state (i.e., JΣKV = E and JmKV = M).

Second, the types of symbolic expressions in Σ and m must be correctly related.

Recall that an additional property of our typed symbolic execution is that it tracks the

type of symbolic expressions and halts upon encountering ill-typed expressions. The

typing of symbolic reference expressions must be with respect to some memory typing.

This memory typing is given by Λ0 and Λ. For technical reasons, we need to separate

the locations in the arbitrary memory on entry Λ0 from the locations that come from

allocations during symbolic execution Λ; to get typing for the entire memory, we write

Λ0 ∗ Λ to mean the union of submemory typings Λ0 and Λ with disjoint domains.

Analogously, we also have a symbolic soundness relation that applies to memory-value

pairs: 〈M ; v〉 ∼Λ0·V ·Λ 〈m; s〉.

As alluded to above, we first consider a notion of symbolic execution soundness

with respect to a concrete execution. This notion is what is stated in the second part
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of mix soundness (Theorem 1). Analogous to type soundness, it says that suppose

we have a concrete evaluation E ` 〈M ; e〉 → r and a symbolic execution Σ ` 〈S ;

e〉 ⇓ 〈S ′ ; s〉 such that the symbolic state is an abstraction of the concrete state

(i.e., 〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉). There is one more premise, Jg(S ′)KV , which says

that the path condition accumulated during symbolic execution holds under this

valuation. This constrains the concrete and symbolic executions to follow the same

path. With these premises, symbolic execution soundness says that the result of

symbolic execution, that is the memory-symbolic expression pair 〈m(S ′); s〉, is an

abstraction of the concrete evaluation result, which must be a memory-value pair

〈M ′; v〉.

Theorem 1 (Mix Soundness)

1. If

E ` 〈M ; e〉 → r and

Γ `Λ e : τ such that

〈E;M〉 ∼ 〈Γ; Λ〉 ,

then ∅ `Λ′ v : τ and M ′ ∼ Λ′ for some M ′, v, Λ′ such that r = 〈M ′; v〉 and

Λ′ ⊇ Λ.

2. If
E ` 〈M ; e〉 → r and

Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉 such that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S ′)KV ,

then r ∼Λ′
0·V ′·Λ′ 〈m(S ′); s〉 for some V ′ ⊇ V and some Λ′0,Λ

′ such that Λ′0 ∗

Λ′ ⊇ Λ0 ∗ Λ.
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Proof

By simultaneous induction on the derivations of E ` 〈M ; e〉 → r. The proof is given

in Appendix A.

This statement of symbolic execution soundness (Statement 2 in Theorem 1) is

what we need to show Mix sound, but at first glance, it seems suspect because it does

not say anything about symbolic execution being exhaustive. However, if we look at

type checking a symbolic block (i.e., rule TSymBlock), exhaustiveness is ensured

through the exhaustive(. . .) constraint.

In particular, we can state exhaustive symbolic execution as a corollary, and the

case for TSymBlock proceeds in the same manner as this corollary.

Corollary 1.1 (Exhaustive Symbolic Execution)

Suppose E ` 〈M ; e〉 → 〈M ′; v〉 and we have n > 0 symbolic executions

Σ ` 〈〈true;m〉 ; e〉 ⇓ 〈Si ; si〉 such that

exhaustive(g(S1), . . . , g(Sn)) and

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m〉 ,

then 〈M ′; v〉 ∼Λ′
0·V ′·Λ′ 〈m(Si); si〉 for some i ∈ 1..n, V ′ ⊇ V , and some Λ′0,Λ

′ such

that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

Here we say that if we have n > 0 symbolic executions that each start with a path

condition of true and where their resulting path conditions are exhaustive (i.e., g(S1)∨

. . . ∨ g(Sn) is a tautology meaning it holds under any valuation V ), then one of
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those symbolic executions must match the concrete execution. Observe that in this

statement, there is no premise on the resulting path condition, but rather that we

start with a initial path condition of true.

3.3 Mixy: A Prototype of Mix for C

We have developed Mixy, a prototype tool for C that uses Mix to detect null pointer

errors. Mixy mixes a (flow-insensitive) type qualifier inference system with a sym-

bolic executor. Mixy is built on top of the CIL front-end for C (Necula et al.,

2002), and our type qualifier inference system, CilQual, is essentially a simplified CIL

reimplementation of the type qualifier inference algorithm described by Foster et al.

(2006). Our symbolic executor, Otter (Reisner et al., 2010), uses STP (Ganesh and

Dill, 2007) as its SMT solver and works in a manner similar to KLEE (Cadar et al.,

2008).

Type Qualifiers and Null Pointer Errors. For this application, we introduce

two qualifier annotations for pointers: nonnull indicates that a pointer must not be

null, and null indicates that a pointer may be null. Our inference system automatically

annotates uses of the NULLmacro with the null qualifier annotation. The type qualifier

inference system generates constraints among known qualifiers and unknown qualifier

variables, solves those constraints, and then reports a warning if null values may flow

to nonnull positions. Thus, our type qualifier inference system ensures pointers that

may be null cannot be used where non-null pointers are required.

For example, consider the following C code:
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78 void free(int ∗nonnull x);
79 int ∗id(int ∗p) { return p; }
80 int ∗x = NULL;
81 int ∗y = id(x);
82 free(y);

Here on line 78 we annotate free to indicate it takes a nonnull pointer. Then on line 80,

we initialize x to be NULL, pass that value through id, and store the result in y on

line 81. Then on line 82 we call free with NULL.

Our qualifier inference system will generate the following types and constraints

(with some simplifications, and ignoring l- and r-value issues):

free : int ∗ nonnull → void x : int ∗ β
id : int ∗ γ → int ∗ δ y : int ∗ ε

null = β β = γ γ = δ δ = ε ε = nonnull

Here β, γ, δ, and ε are variables that standard for unknown qualifiers. Put together,

these constraints require null = nonnull, which is not allowed, and hence qualifier

inference will report an error for this program.

Our symbolic executor also looks for null pointer errors. The symbolic executor

tracks C values at the bit level, using a representation similar to KLEE (Cadar et al.,

2008). A null pointer is represented as the value 0, and the symbolic executor reports

an error if 0 is ever dereferenced.

Typed and Symbolic Blocks. In our formal system, we allow typed and

symbolic blocks to be introduced anywhere in the program. In Mixy, these blocks

can only be introduced around whole function bodies by annotating a function as

MIX(typed) or MIX(symbolic), and Mixy switches between qualifier inference and sym-
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bolic execution at function calls. We can simulate blocks within functions by manually

extracting the relevant code into a fresh function.

Skipping some details for the moment, this switching process works as follows.

When Mixy is invoked, the programmer specifies (as a command-line option) whether

to begin in a typed block or a symbolic block. In either case, we first initialize global

variables as appropriate for the analysis, and then analyze the program starting with

main. In symbolic execution mode, we begin simulating the program at the entry

function, and at calls to functions that are either unmarked or are marked as symbolic,

we continue symbolic execution into the function body. At calls to functions marked

with MIX(typed), we switch to type inference starting with that function.

In type inference mode, we begin analysis at the entry function f, applying qualifier

inference to f and all functions reachable from f in the call graph, up to the frontier

of any functions that are marked with MIX(symbolic). We use CIL’s built-in pointer

analysis to find the targets of calls through function pointers. Finally, we switch to

symbolic execution for each function marked MIX(symbolic) that was discovered at

the frontier.

In this section, we describe implementation details that are not captured by our

formal system from Section 3.2:

• The formal system Mix is based on a type checking system where all types are

given. Since type qualifier inference involves variables, we need to handle vari-

ables that are not yet constrained to concrete type qualifiers when transitioning

to a symbolic block (Section 3.3.1).
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• We need to translate information about aliasing between blocks (Section 3.3.2).

• Since the same block or function may be called from multiple contexts, we need

to avoid repeating analysis of the same function (Section 3.3.3).

• Since functions can contain blocks and be recursive, we need to handle recursion

between typed and symbolic blocks (Section 3.3.4).

Finally, we present our initial experience with Mixy (Section 3.3.5), and we discuss

some limitations and future work (Section 3.3.6).

3.3.1 Translating Null/Non-null and Type Variables

At transitions between typed and symbolic blocks, we need to translate null and

nonnull annotations back and forth.

From Types to Symbolic Values. Suppose local variable x has type int ∗ nonnull.

Then in the symbolic executor, we initialize x to point to a fresh memory cell. If x

has type int ∗ null, then we initialize x to be (α:bool)?loc:0, where α is a fresh boolean

that may be either true or false, loc is a newly initialized pointer (described in Sec-

tion 3.3.2), and 0 represents null. Hence this expression means x may be either null

or non-null, and the symbolic executor will try both possibilities.

A more interesting case occurs if a variable x has a type with a qualifier variable

(e.g., int ∗ β ). In this case, we first try to solve the current set of constraints to

see whether β has a solution as either null or nonnull, and if it does, we perform
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the translation given above. Otherwise, if β could be either, we first optimistically

assume it is nonnull.

We can safely use this assumption when returning from a typed block to a symbolic

block since such a qualifier variable can only be introduced when variables are aliased

(e.g., via pointer assignment), a case that is separately taken into account by the

Mixy memory model (Section 3.3.2).

However, if we use this assumption when entering a symbolic block from a typed

block, we may later discover our assumption was too optimistic. For example, consider

the following code:

83 {t int ∗x; {s x = NULL; s}; {s free(x); s} t}

In the type system, x has type int ∗ β , where initially β is unconstrained. Suppose

that we analyze the symbolic block on the right before the one on the left. This

scenario could happen because the analysis of the enclosing typed block does not

model control-flow order (i.e., is flow insensitive). Then initially, we would think the

call to free was safe because we optimistically treat unconstrained β as nonnull—but

this is clearly not accurate here.

The solution is, as expected, to repeat our analyses until we reach a fixed point. In

this case, after we analyze the left symbolic block, we will discover a new constraint on

x, and hence when we iterate and reanalyze the right symbolic block, we will discover

the error. We are computing a least fixed point because we start with optimistic

assumptions—nothing is null—and then monotonically discover more expressions may

be null.
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From Symbolic Values to Types. We use the SMT solver to discover the

possible final values of variables and translate those to the appropriate types. Given

a variable x that is mapped to symbolic expression s, we ask whether g ∧ (s = 0) is

satisfiable where g is the path condition. If the condition is satisfiable, we constrain x

to be null in the type system. There are no nonnull constraints to be added since they

correspond to places in code where pointers are dereferenced, which is not reflected

in symbolic values.

Thus, null pointers from symbolic blocks will lead to errors in typed blocks if they

flow to a nonnull position; whereas null pointers from typed blocks will lead to errors

in symbolic blocks if they are dereferenced symbolically.

3.3.2 Aliasing and Mixy’s Memory Model

The formal system Mix defers all reasoning about aliasing to as late of a time as

possible. As alluded to in Section 3.2, this choice may be difficult to implement in

practice given limitations in the constraint solver. Thus in Mixy, we use a pre-pass

pointer analysis to initialize aliasing relationships.

Typed to Symbolic Block. When we switch from a typed block to a symbolic

block, we initialize a fresh symbolic memory, which may include pointers. We use a

variant of the approach described in Section 3.2 that makes use of aliasing information

to be more precise. Rather than modeling memory as one big array, Mixy models

memory as a map from locations to separate arrays. Aliasing within arrays is modeled
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as in our formalism, and aliasing between arrays is modeled using Morris’s general

axiom of assignment (Morris, 1982; Bornat, 2000).

C also supports a richer variety of types such as arrays and structs, as well as

recursive data structures. Mixy lazily initializes memory in an incremental manner

so that we can sidestep the issue of initializing an arbitrarily recursive data structure;

Mixy only initializes as much as is required by the symbolic block. We use CIL’s

pointer analysis to determine possible points-to relationships and initialize memory

accordingly.

Symbolic to Typed Block. An issue arises from using type inference when we

switch from a symbolic block to a typed block. Consider the following code snippets,

which are identical except that y points to r on the left, and y points to x on the right:

84 {s
85 // ∗y not aliased to x
86 int ∗x = . . . ;
87 int ∗r = . . . , ∗∗y = &r;
88 {t // okay
89 x = NULL;
90 assert_nonnull(∗y);
91 t}
92 s}

93 {s
94 // ∗y aliased to x
95 int ∗x = . . . ;
96 int ∗∗y = &x;
97 {t // should fail
98 x = NULL;
99 assert_nonnull(∗y);

100 t}
101 s}

In both cases, at entry to the typed blocks, x and ∗y are assigned types Mix’b ref and

Mix’c ref respectively, based on their current values. Notice, however, that for the

code on the right, we should also have Mix’b = ’c. Otherwise, after the assignment

x = NULL, we will not know that ∗y is also NULL.

This example illustrates an important difference between type inference and type

checking. In type checking, this problem cannot arise because every value has a
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known type, and we only have to check that those types are consistent. However,

type inference actually has to discover richer information, such as what types must

be equal because of aliasing, in order to find a valid typing.

One solution to this problem would be to translate aliasing information from

symbolic execution to and from type constraints. In Mixy, we use an alternative

solution that is easier to implement: we use CIL’s built-in may pointer analysis to

conservatively discover points-to relationships. When we transition from a symbolic

block to a typed block, we add constraints to require that all may-aliased expressions

have the same type.

3.3.3 Caching Blocks

In C, a block or function may be called from many different call sites, so we may

need to analyze that block in the context of each call site. Since it can be quite

costly to analyze that block repeatedly, we cache the calling context and the results

of the analysis for that block, and we reuse the results when the block is called again

with a compatible calling context. Conceptually, caching is similar to compositional

symbolic execution (Godefroid, 2007); in Mixy, we implement caching as an extension

to the mix rules, using types to summarize blocks rather than symbolic constraints.

Caching Symbolic Blocks. Before we translate the types from the enclosing

typed block to symbolic values, we first check to see if we have previously analyzed

the same symbolic block with a compatible calling context. We define the calling

context to be the types for all variables that will be translated into symbolic values,
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and we say two calling contexts are compatible if every variable has the same type in

both contexts.

If we have not analyzed the symbolic block before with a compatible calling con-

text, we translate the types into symbolic values, analyze the symbolic block, and

translate the symbolic values to types by adding type constraints as usual. At this

point, we will cache the translated types for this calling context; we cache the trans-

lated types instead of the symbolic values since the translation from symbolic values

to types is expensive. Otherwise, if we have analyzed the symbolic block before with

a compatible calling context, we use the cached results by adding null type constraints

for null cached types in a manner similar to translating symbolic values. Finally, in

both cached and uncached cases, we restore aliasing relationships and return to the

enclosing typed block as usual.

Caching Typed Blocks. Caching for typed blocks is similarly implemented,

but with one difference: unlike above, we first translate symbolic values into types,

then use the translated types as the calling context, and finally cache the final types

as the result of analyzing the typed block. We could have chosen to use symbolic

values as the calling context and the result, but since translating symbolic values to

types or comparing symbolic values both involve similar number of calls to the SMT

solver, we chose to use types to unify the implementation.
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3.3.4 Recursion between Typed and Symbolic Blocks

A typed block and a symbolic block may recursively call each other, and we found

block recursion to be surprisingly common in our experiments. Without special han-

dling for recursion, Mixy will keep switching between them indefinitely since a block

is analyzed with a fresh initial state upon every entry. Therefore, we need to detect

when recursion occurs, either beginning with a typed block or a symbolic block, and

handle it specially.

To handle recursion, we maintain a block stack to keep track of blocks that are

currently being analyzed. Similar to a function call stack, the block stack is a stack

of blocks and their calling contexts, which are defined in terms of types as in caching

(Section 3.3.3). We push blocks onto the stack upon entry and pop them upon return.

Before entering a block, we first look for recursion by searching the block stack

for the same block with a compatible calling context. If recursion is detected, then

instead of entering the block, we mark the matching block on the stack as recursive

and return an assumption about the result. For the initial assumption, we use the

calling context of the marked block, optimistically assuming that the block has no

effect. When we eventually return to the marked block, we compare the assumption

with the actual result of analyzing the block. If the assumption is compatible with

the actual result, we return the result; otherwise, we re-analyze the block using the

actual result as the updated assumption until we reach a fixed point.
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3.3.5 Preliminary Experience

We gained some initial experience with Mixy by running it on vsftpd-2.0.7 and

looking for false null pointer warnings from pure type qualifier inference that can be

eliminated with the addition of symbolic execution. Since Mixy is in the prototype

stage, we started small. Rather than annotate all dereferences as requiring nonnull,

we added just one nonnull annotation:

102 sysutil_free(void ∗ nonnull p_ptr) MIX(typed) { . . . }

The sysutil_free function wraps the free system call and checks, at run time, that the

pointer argument is not null. In essence, our analysis tries to check this property stati-

cally. We annotated sysutil_free itself with MIX(typed), so Mixy need not symbolically

execute its body—our annotation captures the important part of its behavior for our

analysis.

We then ran Mixy on vsftpd, beginning with typing at the outermost level. We

examined the resulting warnings and then tried adding MIX(symbolic) annotations

to eliminate warnings. We succeeded in several cases, discussed next. We did not

fully examine many of the other cases, but Section 3.3.6 describes some preliminary

observations about Mixy in practice. Note that the code snippets shown below are

abbreviated, and many identifiers have been shortened. We should also point out

that all the examples below eliminate one or more imprecise qualifier flows from type

qualifier inference; this pruning may or may not suppress a given warning, depending

on whether other flows could produce the same warning.
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Case 1: Flow and path insensitivity in sockaddr_clear

103 void sockaddr_clear(struct sockaddr ∗∗p_sock) MIX(symbolic) {
104 if (∗p_sock != NULL) {
105 sysutil_free(∗p_sock);
106 ∗p_sock = NULL;
107 }
108 }

This function is implicated in a false warning: due to flow insensitivity in the type sys-

tem, the null assignment on line 106 flows to the argument to sysutil_free on line 105,

even though the assignment occurs after the call. Also, the type system ignores the

null check on line 104 due to path insensitivity.

Marking sockaddr_clear with MIX(symbolic) successfully resolves this warning: the

symbolic executor determines that ∗p_sock is not null when used as an argument to

sysutil_free().

Case 2: Path and context insensitivity in str_next_dirent

109 void str_alloc_text(struct mystr∗ p_str) MIX(typed);
110 const char∗ sysutil_next_dirent( . . .) MIX(typed) {
111 if (p_dirent == NULL) return NULL;
112 }
113 void str_next_dirent( . . .) MIX(symbolic) {
114 const char∗ p_filename = sysutil_next_dirent( . . .);
115 if (p_filename != NULL)
116 str_alloc_text(p_filename);
117 }
118 . . .
119 str_alloc_text(str);
120 . . .
121 sysutil_free(str);
122 . . .

In this example, the function str_next_direct calls sysutil_next_dirent on line 114, which

may return a null value. Hence p_filename may be null. The type system ignores the
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null check on line 115 and due to context insensitivity, conflates p_filename with other

variables, such as str, that are passed to str_alloc_text (lines 116 and 119). Hence

the type system believes str may be null. However, str is used as an argument to

sysutil_free (line 121), which leads the type system to report a false warning.

Annotating function str_next_dirent as symbolic, while leaving sysutil_next_dirent

and str_alloc_text as typed, successfully eliminates this warning: the symbolic execu-

tor correctly determines that p_filename is not null when it is used as an argument

to str_alloc_text. And although the extra precision does not matter in this particular

example, notice that the call on line 116 will be analyzed in a separate invocation of

the type system than the call on line 119, thus introducing some context sensitivity.

Case 3: Flow and path insensitivity in dns_resolve and main

123 void main_BLOCK(struct sockaddr∗∗ p_sock) MIX(symbolic) {
124 ∗p_sock = NULL;
125 dns_resolve(p_sock, tunable_pasv_address);
126 }
127 int main( . . .) {
128 . . .
129 main_BLOCK(&p_addr);
130 . . .
131 sysutil_free(p_addr);
132 . . .
133 }
134 void dns_resolve(struct sockaddr∗∗ p_sock, const char∗ p_name) {
135 struct hostent∗ hent = gethostbyname(p_name);
136 sockaddr_clear(p_sock);
137 if (hent−>h_addrtype == AF_INET)
138 sockaddr_alloc_ipv4(p_sock);
139 else if (hent−>h_addrtype == AF_INET6)
140 sockaddr_alloc_ipv6(p_sock);
141 else
142 die("gethostbyname(): neither IPv4 nor IPv6");
143 }
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There are two sources of null values in the code above: ∗p_sock is set to null on

line 124; and sockaddr_clear, which was previously marked as symbolic in Case 1

above, also sets ∗p_sock to null on line 136 in dns_resolve. Due to flow insensitivity

in the type system, both these null values eventually reach sysutil_free on line 131,

leading to false warnings.

However, we can see that these null values are actually overwritten by non-null

values on lines 138 and 140, where sockaddr_alloc_ipv4 or sockaddr_alloc_ipv6 allocates

the appropriate structure and assigns it to ∗p_sock (not shown). We can eliminate

these warnings by extracting the code in main that includes both null sources into a

symbolic block.

Also, there is a system call gethostbyname on line 135 that we need to handle. Here,

we define a well-behaved, symbolic model of gethostbyname that returns only AF_INET

and AF_INET6 as is standard (not shown). This will cause the symbolic executor to

skip the last branch on line 142, which we need to do because we cannot analyze die

symbolically as it eventually calls a function pointer, an operation that our symbolic

executor currently has limited support for. We also cannot put gethostbyname or die

in typed blocks in this case, since ∗p_sock is null and will result in false warnings.

Case 4: Helping symbolic execution with symbolic function pointers

144 void sysutil_exit_BLOCK(void) MIX(typed) {
145 if (s_exit_func) (∗s_exit_func)();
146 }
147 void sysutil_exit(int exit_code) {
148 sysutil_exit_BLOCK();
149 exit(exit_code);
150 }
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In several instances, we would like to evaluate symbolic blocks that call sysutil_exit,

defined on line 147, which in turn calls exit to terminate the program. However,

before terminating the program, sysutil_exit calls the function pointer s_exit_func on

line 145. Our symbolic executor does not support calling symbolic function pointers

(i.e., which targets are unknown), so instead, we extract the call to s_exit_func into

a typed block to analyze the call conservatively.

3.3.6 Mixy Limitations

While our preliminary experience provides some real-world validation of Mix’s effi-

cacy in removing false positives, there are a number of limitations.

Most importantly, the overwhelming source of issues in Mixy is its coarse treat-

ment of aliasing, which relies on an imprecise pointer analysis. One immediate con-

sequence is that it impedes performance in the symbolic executor: if an imprecise

pointer analysis returns large points-to sets for pointers, translating symbolic point-

ers to type constraints becomes slow because we first need to check if each pointer

target is valid in the current path condition by calling the SMT solver, then deter-

mine if any valid targets may be null. This leads to a significant slowdown: our small

examples from Section 3.3.5 take less than a second to run without symbolic blocks,

but from 5 to 25 seconds to run with one symbolic block, and about 60 seconds with

two symbolic blocks. This issue is further compounded by the fixed-point computa-

tion that repeatedly analyzes symbolic blocks nested in typed blocks or for handling

recursion.
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We also noticed several cases in vsftpd where calls to symbolic blocks would help

introduce context sensitivity to distinguish calls to malloc. However, since we rely on

a context-insensitive pointer analysis to restore aliasing relationships when switch-

ing to typed blocks, these calls will again be conflated. The issue especially affects

the analysis of typed-to-symbolic-to-typed recursive blocks because the nested typed

blocks are polluted by aliasing relationships from the entire program. A similar issue

occurs with symbolic blocks, as pointers are initialized to point to targets from the

entire program, rather than being limited to the enclosing context.

Just as in the formalism, Mixy has to consider the entire memory when switching

from typed to symbolic or vice-versa. Since this was a deliberate design decision,

we were not surprised to find out that this has an impact on performance and leads

to many limitations in practice. Any temporary violation of type invariants from

symbolic blocks would immediately be flagged when switching to typed blocks, even

if they have no effect on the code in the typed blocks. In the other direction, symbolic

blocks are forced to start with a fresh memory when switching from typed blocks even

if there were no effects.

Ultimately, we believe that these issues can be addressed with more precise in-

formation about aliasing as well as effects, perhaps extracted directly from the type

inference constraints and symbolic execution.
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3.4 Related Work

There are several threads of related work. There have been numerous proposals

for program analyses based on type systems; see Palsberg and Millstein (2007) for

pointers. Symbolic execution was first proposed by King (1976) as an enhanced

testing strategy, but was difficult to apply for many years. Recently, SMT solvers

have become very powerful, making symbolic execution much more attractive as even

very complex path conditions can be solved surprisingly fast. There have been many

recent, impressive results using symbolic execution for bug finding (Godefroid et al.,

2005; Sen et al., 2005; Cadar et al., 2006, 2008). These systems use symbolic execution

to explore a small subset of the possible program paths, since in the presence of loops

with symbolic bounds, pure symbolic execution will not terminate in a reasonable

amount of time (unless loop invariants are assumed). In the Mix formalism, in

contrast, we use symbolic execution in a sound manner by exploring all paths, which

is possible because we can use type checking on parts of the code where symbolic

execution takes too long. Of course, it is also possible to mix unsound symbolic

execution with type checking, to gain whatever level of assurance the programmer

desires.

There are several program analyses that can operate at different levels of abstrac-

tion. Corbett et al. (2000) is a model checking system that uses abstraction-based

program specialization, in which the programmer specifies the exact abstractions to

use. System Z is an abstract interpreter generator in which the programmer can tune

the level of abstraction to trade off cost and precision (Yi and Harrison III, 1993).
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Tuning these systems requires a deep knowledge of program analysis. In contrast, we

believe that Mix’s tradeoff is easier to understand—one selects between essentially no

abstraction (symbolic execution), or abstraction in terms of types, which are arguably

the most successful, well-understood program analyses.

Mix bears some resemblance to program analysis based on abstraction refinement,

such as SLAM (Ball and Rajamani, 2002), BLAST (Henzinger et al., 2004), and

client-driven pointer analysis (Guyer and Lin, 2005). These tools incrementally refine

their abstraction of the program as necessary for analysis. Adding symbolic blocks

to a program can be seen as introducing a very precise “refinement” of the program

abstraction.

There are a few systems that combine type checking or inference with other anal-

yses. Dependent types provide an elegant way to augment standard type with very

rich type refinements (Xi and Pfenning, 1999). Liquid types combines Hindley-Milner

style type inference with predicate abstraction (Rondon et al., 2010, 2008). Hybrid

types combines static typing, theorem proving, and dynamic typing (Flanagan, 2006).

All of these systems combine types with refinements at a deep level—the refinements

are placed “on top of” the type structure. In contrast, Mix uses a much coarser

approach in which the precise analysis is almost entirely separated from the type

system, except for a thin interface between the two systems.

Many others have considered the problem of combining program analyses. A

reduced product in abstract interpretation (Cousot and Cousot, 1979) is a theoretical

description of the most precise combination of two abstract domains. It is typically

obtained via manually defined reduction operators that depend on the domains being
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combined. Another example of combining abstract domains is the logical product of

Gulwani and Tiwari (2006). Combining program analyses for compiler optimizations

is also well-studied (e.g., Lerner et al. (2002)). In all of these cases, the combinations

strengthen the kinds of derivable facts over the entire program. With Mix, we instead

analyze separate parts of the program with different analyses.

Finally, Mix was partially inspired by Nelson-Oppen style cooperating decision

procedures (Nelson and Oppen, 1979). One important feature of the Nelson-Oppen

framework is that it provides an automatic method for distributing the appropriate

formula fragments to each solver (if that the solvers match certain criteria). Clearly

Mix is targeted at solving a very different problem, but it would be an interesting

direction for future work to try to extend Mix into a similar framework that can

automatically integrate analyses that have appropriately structured interfaces.
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Chapter 4

Expositor: Integrating Program Analysis into Debugging†

In this chapter, we present Expositor, a new environment that unifies dynamic

program analysis and interactive debugging. Expositor combines the advantages of

dynamic program analysis and interactive debugging: it allows programmers to auto-

mate complex dynamic program analysis by writing scripts that operate over entire

program executions, yet provides quick, interactive feedback in that programmers can

easily examine partial or intermediate results of the analysis. Expositor is designed

in particular to aid programmers in hypothesis testing, i.e., iteratively developing and

testing various hypothesis about the cause of a bug.

4.0.1 Background: Scriptable Debugging and Time-Travel Debuggers

Scriptable debugging is a powerful technique for hypothesis testing in which program-

mers write scripts to perform complex debugging tasks. For example, suppose we

observe a bug involving a cleverly implemented set data structure. We can try to

debug the problem by writing a script that maintains a shadow data structure that

implements the set more simply (e.g., as a list). We run the buggy program, and the

script tracks the program’s calls to insert and remove, stopping execution when the

†A version of this chapter was previously published as Khoo et al. (2013a,b). A prototype of
Expositor is available at https://bitbucket.org/khooyp/expositor.
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contents of the shadow data structure fail to match those of the buggy one, helping

pinpoint the underlying fault.

While we could have employed the same debugging strategy by altering the pro-

gram itself (e.g., by inserting print statements and assertions), doing so would require

recompilation—and that can take considerable time for large programs (e.g., Firefox),

thus greatly slowing the rate of hypothesis testing. Modifying a program can also

change its behavior—we have all experienced the frustration of inserting a debugging

print statement only to make the problem disappear! Scripts also have the benefit

that they can invoke libraries not used by the program itself. And, general-purpose

scripts may be reused.

There has been considerable prior work on scriptable debugging. GDB’s Python

interface makes GDB’s interactive commands—stepping, setting breakpoints, etc.—

available in a general-purpose programming language. However, this interface em-

ploys a callback-oriented programming style which, as pointed out by Marceau et al.

(2007), reduces composability and reusability as well as complicates checking temporal

properties. Marceau et al. propose treating the program as an event generator—each

function call, memory reference, etc. can be thought of as an event—and scripts are

written in the style of functional reactive programming (FRP) (Elliott and Hudak,

1997). While FRP-style debugging solves the problems of callback-based program-

ming, it has a key limitation: time always marches forward, so we cannot ask questions

about prior states. For example, if while debugging a program we find a doubly freed

address, we cannot jump backward in time to find the corresponding malloc. Instead

we would need to rerun the program from scratch to find that call, which may be
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problematic if there is any nondeterminism, e.g., if the addresses returned by malloc

differ from run to run. Alternatively, we could prospectively gather the addresses

returned by malloc as the program runs, but then we would need to record all such

calls up to the erroneous free.

Time-travel debuggers, like UndoDB (Undo Software), and systems for captur-

ing entire program executions, like Amber (O’Callahan, 2006), allow a single non-

deterministic execution to be examined at multiple points in time. Unfortunately,

scriptable time-travel debuggers typically use callback-style programming, with all

its problems. (Section 4.6 discusses prior work in detail.)

4.0.2 Expositor: Scriptable, Time-Travel Debugging

We developed Expositor as a new scriptable debugging system that is inspired by

FRP-style scripting but with the advantages of time-travel debugging. Expositor

scripts treat a program’s execution trace as a (potentially infinite) immutable list of

time-annotated program state snapshots or projections thereof. Scripts can create or

combine traces using common list operations: traces can be filtered, mapped, sliced,

folded, and merged to create lightweight projections of the entire program execution.

As such, Expositor is particularly well suited for checking temporal properties of

an execution, and for writing new scripts that analyze traces computed by prior

scripts. Furthermore, since Expositor extends GDB’s Python environment and

uses the UndoDB (Undo Software) time-travel backend for GDB, users can seamlessly

switch between running scripts and interacting directly with an execution via GDB.

(Section 4.1 overviews Expositor’s scripting interface.)
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The key idea for making Expositor efficient is to employ laziness in its im-

plementation of traces—invoking the time-travel debugger is expensive, and laziness

helps minimize the number of calls to it. Expositor represents traces as sparse,

time-indexed interval trees and fills in their contents on demand. For example, sup-

pose we use Expositor’s breakpoints combinator to create a trace tr containing just

the program execution’s malloc calls. If we ask for the first element of tr before time

42 (perhaps because there is a suspicious program output then), Expositor will

direct the time-travel debugger to time 42 and run it backward until hitting the call,

capturing the resulting state in the trace data structure. The remainder of the trace,

after time 42 and before the malloc call, is not computed. (Section 4.2 discusses the

implementation of traces.)

In addition to traces, Expositor scripts typically employ various internal data

structures to record information, e.g., the set s of arguments to malloc calls. These

data structures must also be lazy so as not to compromise trace laziness—if we eagerly

computed the set s just mentioned to answer a membership query at time t, we

would have to run the time-travel debugger from the start up until t, considering

all malloc calls, even if only the most recent call is sufficient to satisfy the query.

Thus, Expositor provides script writers with a novel data structure: the edit hash

array mapped trie (EditHAMT), which provides lazy construction and queries for sets,

maps, multisets, and multimaps. As far as we are aware, the EditHAMT is the first

data structure to provide these capabilities. (Section 4.3 describes the EditHAMT.)

We have used Expositor to write a number of simple scripts, as well as to debug

two more significant problems. Section 4.1 describes how we used Expositor to
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find an exploitable buffer overflow. Section 4.5 explains how we used Expositor to

track down a deep, subtle bug in Firefox that was never directly fixed, though it was

papered over with a subsequent bug fix (the fix resolved the symptom, but did not

remove the underlying fault). In the process, we developed several reusable analyses,

including a simple race detector.

4.1 The Design of Expositor

We designed Expositor to provide programmers with a high-level, declarative API

to write analyses over the program execution, as opposed to the low-level, imperative,

callback-based API commonly found in other scriptable debuggers.

In particular, the design of Expositor is based on two key principles. First,

the Expositor API is purely functional—all objects are immutable, and methods

manipulate objects by returning new objects. The purely functional API facilitates

composition, by reducing the risk of scripts interfering with each other via shared

mutable object, as well as reuse, since immutable objects can easily be memoized or

cached upon construction. It also enables Expositor to employ lazy programming

techniques to improve efficiency.

Second, the trace abstraction provided by Expositor is based around familiar

list-processing APIs found in many languages, such as the built-in list-manipulating

functions in Python, the Array methods in JavaScript, the List module in Ocaml, and

the Data.List module in Haskell. These APIs are also declarative—programmers ma-

nipulate lists using combinators such as filter, map, and merge that operate over entire
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151 class execution:
152 # get snapshots
153 get_at(t): snapshot at time t
154

155 # derive traces
156 breakpoints(fn): snapshot trace of breakpoints at func fn
157 syscalls(fn): snapshot trace of breakpoints at syscall fn
158 watchpoints(x, rw): snapshot trace of read/write watchpoints at var x
159 all_calls(): snapshot trace of all function entries
160 all_returns(): snapshot trace of all function exits
161

162 # interactive control
163 cont(): manually continue the execution
164 get_time(): latest time of the execution
165

166 class trace:
167 # count/get items
168 __len__(): called by “ len(trace)”
169 __iter__(): called by “ for item in trace”
170 get_at(t): item at exactly time t
171 get_after(t): next item after time t
172 get_before(t): previous item before time t
173

174 # create a new trace by filtering/mapping a trace
175 filter(p): subtrace of items for which p returns true
176 map(f): new trace with f applied to all items
177 slice(t0, t1): subtrace from time t0 to time t1
178

179 # create a new trace by merging two traces
180 merge(f, tr): see Figure 4.3(a)
181 trailing_merge(f, tr): see Figure 4.3(b)
182 rev_trailing_merge(f, tr): see Figure 4.3(c)
183

184 # create a new trace by computing over prefixes/suffixes
185 scan(f, acc): see Figure 4.3(d)
186 rev_scan(f, acc): see Figure 4.3(e)
187 tscan(f, acc): see Figure 4.5(a)
188 rev_tscan(f, acc): see Figure 4.5(b)

Figure 4.1: Expositor’s Python-based scripting API. The get_X and __len__
methods of execution and trace are eager, and the remaining methods of those classes
return lazy values. Lazy values include trace, snapshot, and gdb_value objects whose
contents are computed only on demand and cached.
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189 class item:
190 time: item’s execution time
191 value: item’s contents
192

193 class snapshot:
194 read_var(x): gdb_value of variable x in current stack frame
195 read_retaddrs(): gdb_values of return addresses on the stack
196 backtrace(): print the stack backtrace
197 . . . and other methods to access program state . . .
198

199 class gdb_value:
200 __getitem__(x): called by “ gdb_value[x]” to access field/index x
201 deref(): dereference gdb_value (if it is a pointer)
202 addrof(): address of gdb_value (if it is an l-value)
203 . . . and other methods to query properties of gdb_value . . .

Figure 4.2: Expositor’s Python-based scripting API (continued).

lists, instead of manipulating individual list elements. These list combinators allow

Expositor to compute individual list elements on-demand in any order, minimizing

the number of calls to the time-travel debugger. Furthermore, they shield program-

mers from the low-level details of controlling the program execution and handling

callbacks.

4.1.1 API Overview

Figures 4.1 and 4.2 lists the key classes and methods of Expositor’s scripting in-

terface, which is provided as a library inside UndoDB/GDB’s Python environment.

The execution class and the the_execution object The entire execution of

the program being debugged is represented by the execution class, of which there is

a singleton instance named the_execution. This class provides several methods for
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querying the execution. The get_at(t)1 method returns a snapshot object representing

the program state at time t in the execution (we will describe snapshots in more detail

later). Several methods create immutable, sparse projections of the execution, or

traces, consisting of program state snapshots at points of interest: the breakpoints(fn)

and syscalls(fn) methods return traces of snapshots at functions and system calls named

fn, respectively; the watchpoints(x, rw) method returns a trace of snapshot when the

memory location x is read or written; and the all_calls and all_returns methods return

traces of snapshots at all function entries and exits, respectively.

For debugging interactive programs, the execution class provides two useful meth-

ods: cont resumes the execution of the program from when it was last stopped (e.g.,

immediately after Expositor is started, or when the program is interrupted by press-

ing ^C), and get_time gets the latest time of the execution. If a program requires

user input to trigger a bug, we often find it helpful to first interrupt the program and

call get_time to get a reference time, before resuming the execution using cont and

providing the input trigger.

The trace class and the item class As mentioned above, the trace class

represents sparse projections of the execution at points of interest. These traces

contain snapshots or other values, indexed by the relevant time in the execution.

Initially, traces are created using the execution methods described above, and traces

may be further derived from other traces.

1We use the convention of naming time variables as t, and trace variables as tr.
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The first five trace methods query items in traces. The tr.__len__() method is

called by the Python built-in function len(tr), and returns the total number of items

in the tr. The tr.__iter__() method is called by Python’s for x in tr loop, and returns

a sequential Python iterator over all items in tr. The get_at(t) method returns the

item at time t in the trace, or None if there is no item at that time. Since traces are

often very sparse, it can be difficult to find items using get_at, so the trace class also

provides two methods, get_before(t) and get_after(t), that return the first item found

before or after time t, respectively, or None if no item can be found. The get_at,

get_before, and get_after methods return values that are wrapped in the item class,

which associates values with a particular point in the execution.

The remaining methods create new traces from existing traces. The tr.filter(p)

method creates a new trace consisting only of items from tr that match predicate

p. The tr.map(f) method creates a new trace of items computed by calling function

f on each item from tr, and is useful for extracting particular values of interest from

snapshots. The tr.slice(t0, t1) method creates a new trace that includes only items

from tr between times t0 and t1.

The trace class also provides several more complex methods to derive new traces.

Three methods create new traces by merging traces. First, tr0.merge(f, tr1) creates a

new trace containing the items from both tr0 and tr1, calling function f to combine

any items from tr0 and tr1 that occur at the same time (Figure 4.3(a)). None can be

passed for f if tr0 and tr1 contain items that can never coincide, e.g., if tr0 contains

calls to foo and tr1 contains calls to bar, since f will never be called in this case. Next,

tr0.trailing_merge(f, tr1) creates a new trace by calling f to merge each item from tr0
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with the immediately preceding item from tr1, or None if there is no preceding item

(Figure 4.3(b)). Lastly, rev_trailing_merge is similar to trailing_merge except that it

merges with future items rather than past items (Figure 4.3(c)).

The remaining four methods create new traces by computing over prefixes or

suffixes of an input trace. The scan method performs a fold- or reduce-like operation

for every prefix of an input trace (Figure 4.3(d)). It is called as tr.scan(f, acc), where

f is a binary function that takes an accumulator and an item as arguments, and acc

is the initial accumulator. It returns a new trace containing the same number of

items at the same times as in the input trace tr, where the nth output item outn is

recursively computed as:

outn =

inn f outn−1 if n > 0

inn f acc if n = 0

where f is written infix as f . The rev_scan method is similar, but deriving a trace

based on future items rather than past items (Figure 4.3(e)). rev_scan computes the

output item outn as follows:

outn =

inn f outn+1 if 0 ≤ n < length − 1

inn f acc if n = length − 1

Lastly, tscan and rev_tscan are variants of scan and rev_scan, respectively, that take an

associative binary function but no accumulator, and can sometimes be more efficient.

These two methods are described in Section 4.2.2.

The snapshot class and the gdb_value class The snapshot class represents a

program state at a particular point in time and provides methods for accessing that
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Figure 4.3: Illustration of complex trace operations.

state, e.g., read_var(x) returns the value of a variable named x in the current stack

frame, read_retaddrs returns the list of return addresses on the stack, backtrace prints

the stack backtrace, and so on.

The gdb_value class represents values in the program being debugged at a par-

ticular point in time, and provides methods for querying those values. For example,

v.__getitem__(x) is called by the Python indexing operator v[x] to access struct fields

or array elements, deref dereferences pointer values, addrof returns the address of an

l-value, and so forth. These gdb_value objects are automatically coerced to the ap-

propriate Python types when they are compared against built-in Python values such
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as ints, for example; it is also sometimes useful to manually coerce gdb_value objects

to specific Python types, e.g., to treat a pointer value as a Python int.

Both the snapshot and gdb_value classes are thin wrappers around GDB’s Python

API and UndoDB. When a method of a snapshot or gdb_value object is called, it

first directs UndoDB to jump to the point in time in the program execution that

is associated with the object. Then, it calls the corresponding GDB API, wrapping

the return value in snapshot and gdb_value as necessary. In general, the semantics of

snapshot and gdb_value follows GDB, e.g., the Expositor’s notion of stack frames is

based on GDB’s notion of stack frames. We also provide several methods, such as

read_retaddrs, that return the result of several GDB API calls in a more convenient

form. Additionally, all of GDB’s Python API is available and may be used from

within Expositor.

Given a debugging hypothesis, we use the Expositor interface to apply the

following recipe. First, we call methods on the_execution to derive one or more traces

that contain events relevant to the hypothesis; such events could be function calls,

breakpoints, system calls, etc. Next, we combine these traces as appropriate, applying

tracemethods such as filter, map, merge, and scan to derive traces of properties predicted

by our hypothesis. Finally, we query the traces using methods such as get_before and

get_after to find evidence of properties that would confirm or refute our hypothesis.
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4.1.2 Warm-up Example: Examining foo Calls in Expositor

To begin with a simple example, let us consider the task of counting the number

of calls to a function foo, to test a hypothesis that an algorithm is running for an

incorrect number of iterations, for example. Counting foo calls takes just two lines

of code in Expositor. We first use the breakpoints method of the_execution to create

the foo trace:

204 foo = the_execution.breakpoints("foo")

This gives us a trace containing all calls to foo. We can then count the calls to foo

using the Python len function, and print it:

205 print len(foo)

Later, we may want to count only calls to foo(x) where x == 0, perhaps because

we suspect that only these calls are buggy. We can achieve this using the filter method

on the foo trace created above:

206 foo_0 = foo.filter(lambda snap: snap.read_var("x") == 0)

Here, we call filter with a predicate function that takes a snapshot object (at calls to

foo), reads the variable named x, and returns whether x == 0. The resulting trace

contains only calls to foo(0), which we assign to foo_0. We can then count foo_0 as

before:
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207 print len(foo_0}

After more investigation, we may decide to examine calls to both foo(0) and foo(1),

e.g., to understand the interaction between them. We can create a new trace of foo(1)

calls, and merge it with foo(0):

208 foo_1 = foo.filter(lambda snap: snap.read_var("x") == 1)
209 foo_01 = foo_0.merge(None, foo_1)

We define foo_1 just like foo_0 but with a different predicate. Then, we use the merge

method to merge foo_0 and foo_1 into a single trace foo_01 containing calls to both

foo(0) and foo(1), passing None for the merging function as foo(0) and foo(1) can never

coincide. Note that we are able to reuse the foo and foo_0 traces in a straightforward

manner; under the hood, Expositor will also have cached the computation of foo

and foo_0 from the earlier and reuse them here.

Finally, we may want to take a closer look at the very first call to either foo(0) or

foo(1), which we can do using the get_after method:

210 first_foo_01 = foo_01.get_after(0)

We call get_after on foo_01 to find the first item after time 0, i.e., the beginning of

the execution, that contains the snapshot of a foo(0) or foo(1) call.

In this example, observe how we began with a simple debugging task that counts

all calls to foo in a trace to answer our initial hypothesis, then gradually create

more traces or combined existing ones and queried them as our hypothesis evolves.

Expositor is particularly suited for such incremental, interactive style of debugging.
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Comparison to GDB’s Python API

In contrast to Expositor, it takes 16 lines of code to count foo calls using GDB’s

standard Python API, as shown in Figure 4.4. On line 211, we first initialize two

variables, count and more, that will be used to track of the number of calls to foo

and to track if the execution has ended respectively. Then, on line 212, we create a

breakpoint at the call to foo. Next, we create a callback function named stop_handler

on lines 213–216 to handle breakpoint events. In this function, we first check on

lines 214–215 to see if the breakpoint triggered is the one that we have set, and if so,

we increment count on line 216. We also create a callback function named exit_handler

on lines 217–218 to handle stop events which are fired when the program execution

ends. This function simply resets the more flag when called.

After that, we register stop_handler and exit_handler with GDB on lines 219–220,

and start the program execution on line 221. GDB will run the program until it hits

a breakpoint or the end of the execution is reached, calling stop_handler in the former

case, or exit_handler in the latter case. Then, we enter a loop on lines 222–223 that

causes GDB to continue running the program until more is False, i.e., the program has

exited. Once that happens, we deregister the event handlers from GDB and delete the

breakpoint on lines 224–226, cleaning up after ourselves to ensure that the callbacks

and breakpoint will not be unintentionally triggered by other scripts.

It also takes more work to refine this GDB script to answer other questions about

foo, compared to Expositor traces. For example, to count calls to foo(0), we would

have to modify the GDB script to add the x == 0 predicate and rerun it, instead
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211 count = 0; more = True
212 foo = gdb.Breakpoint("foo")
213 def stop_handler(evt):
214 if isinstance(evt, gdb.BreakpointEvent) \
215 and foo in evt.breakpoints:
216 global count; count += 1
217 def exit_handler(evt):
218 global more; more = False
219 gdb.events.stop.connect(stop_handler)
220 gdb.events.exited.connect(exit_handler)
221 gdb.execute("start")
222 while more:
223 gdb.execute("continue")
224 gdb.events.exited.disconnect(exit_handler)
225 gdb.events.stop.disconnect(stop_handler)
226 foo.delete()

Figure 4.4: Python script to count calls to foo in GDB.

of simply calling filter on the foo trace. As another example, if we were given two

different scripts, one that counts foo(0) and another that counts foo(1), if would be

difficult to combine those scripts as they each contain their own driver loops and

shared variables; it would be easier to just modify one of those script than to attempt

to reuse both. In contrast, it took us one line to use the merge method to combine

the foo_0 and foo_1 traces. Finally, note that Expositor caches and reuses trace

computation automatically, whereas we would need some foresight to add caching to

the GDB script in a way that can be reused by other scripts.

4.1.3 Example: Reverse Engineering a Stack-Smashing Attack

We now illustrate the use of Expositor with a more sophisticated example: reverse

engineering a stack-smashing attack, in which malware overflows a stack buffer in the
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target program to overwrite a return address on the stack, thereby gaining control of

the program counter (One, 1996).

We develop a reusable script that can detect when the stack has been smashed

in any program, which will help pinpoint the attack vector. Our script maintains a

shadow stack of return addresses and uses it to check that only the top of the stack

is modified between function calls or returns; any violation of this property indicates

the stack has been smashed.

We begin by using the all_calls and all_returns methods on the_execution to create

traces of just the snapshots at function calls and returns, respectively:

227 calls = the_execution.all_calls()
228 rets = the_execution.all_returns()

Next, we use merge to combine these into a single trace, passing None for the merging

function as function calls and returns can never coincide. We will use this new trace

to compare consecutive calls or returns:

229 calls_rets = calls.merge(None, rets)

Now, we map over call_returns to apply the read_retaddrs method, returning the list of

return addresses on the call stack. This creates a trace of shadow stacks at every call

and return:

230 shadow_stacks = calls_rets.map(
231 lambda s: map(int, s.read_retaddrs()))

We also use map to coerce the return addresses to Python ints.
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Then we need to check that, between function calls and returns, the actual call

stack matches the shadow stack except for the topmost frame (one return address

may be added or removed). We use the following function:

232 def find_corrupted(ss, opt_shadow):
233 if opt_shadow.force() is not None:
234 for x, y in zip(ss.read_retaddrs(), opt_shadow.force()):
235 if int(x) != y:
236 return x # l-value of return address on stack
237 return None

Here, find_corrupted takes as arguments a snapshot ss and its immediately preceding

shadow stack opt_shadow; the opt_ prefix indicates that there may not be a prior

shadow stack (if ss is at the first function call), and we need to call the force method on

opt_shadow to retrieve its value (we will explain the significance of this in Section 4.2).

If there is a prior shadow stack, we compare every return address in ss against the

shadow stack and return the first location that differs, or None if there are no corrupted

addresses. (The zip function creates a list of pairs of the respective elements of the

two input lists, up to the length of the shorter list.)

Finally, we generate a trace of corrupted memory locations using the trailing_merge

method, calling find_corrupted to merge each function call and return from call_rets

with the immediately preceding shadow stack in shadow_stacks. We filter None out of

the result:

238 corrupted_addrs = calls_rets \
239 .trailing_merge(find_corrupted, shadow_stacks) \
240 .filter(lambda x: x is not None)

The resulting trace contains exactly the locations of corrupted return addresses at

the point they are first evident in the trace.
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4.1.4 Mini Case Study: Running Expositor on tinyhttpd

We used the script just developed on a version of tinyhttpd (Blackstone) that we

had previously modified to include a buffer overflow bug. We created this version of

tinyhttpd as an exercise for a security class in which students develop exploits of the

vulnerability.

As malware, we deployed an exploit that uses a return-to-libc attack (Designer,

1997) against tinyhttpd. The attack causes tinyhttpd to print “Now I pwn your computer”

to the terminal and then resume normal operation. Finding buffer overflows using

standard techniques can be challenging, since there can be a delay from the exploit

overflowing the buffer to the payload taking effect, during which the exploited call

stack may be erased by normal program execution. The payload may also erase

evidence of itself from the stack before producing a symptom.

To use Expositor, we call the expositor launcher with tinyhttpd as its argument,

which will start a GDB session with Expositor’s library loaded, and then enter the

Python interactive prompt from GDB:2

241 % expositor tinyhttpd
242 (expositor) python-interactive

Then, we start running tinyhttpd:

243 >>> the_execution.cont() # start running
244 httpd running on port 47055

2GDB contains an existing python command that is not interactive; python-interactive is a new
command that we have submitted to GDB, and is available as of GDB 7.6.

117



When tinyhttpd launches, it prints out the port number on which it accepts client

connections. On a different terminal, we run the exploit with this port number:

245 % ./exploit.py 47055
246 Trying port 47055
247 pwning...

At this point, tinyhttpd prints the exploit message, so we interrupt the debugger

and use Expositor to find the stack corruption, starting from the time when we

interrupted it:

248 Now I pwn your computer
249 ^C
250 Program received signal SIGINT, Interrupt
251 >>> corrupted_addrs = stack_corruption()
252 # function containing Section 4.1.3 code
253 >>> time = the_execution.get_time()
254 >>> last_corrupt = corrupted_addrs.get_before(time)

Items in a trace are indexed by time, so the get_before method call above tells

Expositor to start computing corrupted_addrs from the interrupted time backward

and find the first function call or return when the stack corruption is detected. We

can print the results:

255 >>> print time
256 56686.8
257 >>> print last_corrupt
258 Item(56449.2, address)

This shows that the interrupt occurred at time 56686.8, and the corrupted stack

was first detected at a function call or return at time 56449.2. We can then find and

print the snapshot that corrupted the return address with:
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259 >>> bad_writes = the_execution \
260 .watchpoints(last_corrupt.value, rw=WRITE)
261 >>> last_bad_write = bad_writes.get_before(last_corrupt.time)
262 >>> print last_bad_write
263 Item(56436.0, snapshot)

We find that the first write that corrupted the return address occurred at time

56436.0. We can then inspect the snapshot via last_bad_write.value. In this case,

the backtrace of the very first snapshot identifies the exact line of code in tinyhttpd

that causes the stack corruption—a socket recv with an out-of-bounds pointer. Notice

that to find the bug, Expositor only inspected from time 56686.8 to time 56436.0.

Moreover, had last_corrupt not explained the bug, we would then call corrupted_addrs

.get_before(last_corrupt.time) to find the prior corruption event, inspecting only as

much of the execution as needed to track down the bug.

This mini case study also demonstrates that, for some debugging tasks, it can be

much faster to search backward in time. It takes only 1 second for corrupted_addrs

.get_before(time) to return; whereas if we had instead searched forward from the be-

ginning (e.g., simulating a debugger without time-travel):

264 first_corrupted = corrupted_addrs.get_after(0)

it takes 4 seconds for the answer to be computed. Using Expositor, users can write

scripts that search forward or backward in time, as optimal for the task.
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4.2 Lazy Traces in Expositor

As just discussed, Expositor allows users to treat traces as if they were lists of

snapshots. However, for many applications it would be impractical to eagerly record

and analyze full program snapshots at every program point. Instead, Expositor uses

the underlying time-travel debugger, UndoDB, to construct snapshots on demand and

to discard them when they are no longer used (since it is expensive to keep too many

snapshots in memory at once). Thus the major challenge is to minimize the demand

for snapshots, which Expositor accomplishes by constructing and manipulating

traces lazily.

More precisely, all of the trace generators and combinators, including execution

.all_calls, trace.map, trace.merge, etc., return immediately without invoking UndoDB.

It is only when final values are demanded, with execution.get_at, trace.get_at, trace

.get_after, or trace.get_before, that Expositor queries the actual program execution,

and it does so only as much as is needed to acquire the result. For example, the

construction of corrupted_addrs in Section 4.1.4, line 251 induces no time travel on

the underlying program—it is not until the call to corrupted_addrs.get_before(time) in

Section 4.1.4, line 254 that Expositor uses the debugger to acquire the final result.

To achieve this design, Expositor uses a lazy, interval-tree-like data structure to

implement traces. More precisely, a trace is a binary tree whose nodes are annotated

with the (closed) lower-bound and (open) upper-bound of the time intervals they

span, and leaf nodes either contain a value or are empty. The initial tree for a trace
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contains no elements (only its definition), and Expositor materializes tree nodes as

needed.

As a concrete example, the following trace constructs the tree shown below, with

a single lazy root node spanning the interval [0,∞), which we draw as a dotted box

and arrow.

265 foo = the_execution.breakpoints("foo")

0 ∞

Now suppose we call foo.get_before(100). Expositor sees that the query is looking

for the last call to foo before time 100, so it will ask UndoDB to jump to time 100

and then run backward until hitting such a call. Let us suppose the call is at time

50, and the next instruction after that call is at time 50.1. Then Expositor will

expand the root node shown above to the following tree:

266 foo_100 = foo.get_before(100)

0 ∞

0 ∞

50.1 ∞

100 ∞50.1 100

0 50.1

foo 50.1500 50

Here the trace has been subdivided into four intervals: The intervals [0, 50) and

[100,∞) are lazy nodes with no further information, as Expositor did not look at
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those portions of the execution. The interval [50, 50.1) contains the discovered call,

and the interval [50.1, 100) is fully resolved and contains no calls to foo. Notice that

if we ask the same query again, Expositor can traverse the interval tree above to

respond without needing to query UndoDB.

Likewise, calling get_at(t) or get_after(t) either returns immediately (if the result

has already been computed) or causes UndoDB to jump to time t (and, for get_after(

t), to then execute forward). These methods may return None, e.g., if a call to foo did

not occur before/after/at time t.

As our micro-benchmarks in Section 4.4 will show, if we request about 10–40% of

the items in a trace, computing traces lazily takes less time than computing eagerly,

depending on the query pattern as well as the kind of computations done. This

makes lazy traces ideal for debugging tasks where we expect programmers to begin

with some clues about the location of the bug. For example, we start looking for

stack corruption from the end of the execution in Section 4.1.4, line 254, because

stack corruptions typically occur near the end of the execution.

4.2.1 Lazy Trace Operations

We implement filter and map lazily on top of the interval tree data structure. For a

call tr1 = tr0.map(f), we initially construct an empty interval tree, and when values are

demanded in tr1 (by get_X calls), Expositor conceptually calls tr0.get_X, applies f

to the result, and caches the result for future use. Calls to tr0.filter(p) are handled sim-

ilarly, constructing a lazy tree that, when demanded, repeatedly gets values from tr0

until p is satisfied. Note that for efficiency, Expositor’s does not actually call get_X
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on the root node of tr0; instead, it directly traverses the subtree of tr0 corresponding

to the uninitialized subtree of the derived trace.

The implementation of tr0.merge(f, tr1) also calls get_X on tr1 as required. For a

call tr.slice(t0, t1) Expositor creates an interval tree that delegates get_X calls to tr,

asking for items from time t0 to time t1, and returns None for items that fall outside

that interval.

For the last four operations, [rev_]trailing_merge and [rev_]scan, Expositor em-

ploys additional laziness in the helper function argument f. To illustrate, consider a

call to tr.scan(f, acc). Here, Expositor passes the accumulator to f wrapped in an

instance of class lazy, defined as follows:

267 class lazy:
268 force(): return the actual value
269 is_forced():

return whether force has been called

The force method, when first called, will compute the actual value and cache it; the

cached value is returned in subsequent calls. Thus, f can force the accumulator as

needed, and if it is not forced, it will not be computed.

To see the benefit, consider the following example, which uses scan to derive a new

trace in which each item is a count of the number of consecutive calls to foo with

nonzero arguments, resetting the count when foo is called with zero:

270 foo = execution.breakpoints("foo") # void foo(int x)
271 def count_nonzero_foo(lazy_acc, snapshot):
272 if snapshot.read_var("x") != 0:
273 return lazy_acc.force() + 1
274 else:
275 return 0
276 nonzero_foo = foo.scan(count_nonzero_foo, 0)
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Notice that if lazy_acc were not lazy, Expositor would have to compute its value

before calling count_nonzero_foo. By the definition of scan (Figure 4.3(d)), this means

that it must recursively call count_nonzero_foo to compute all prior output items

before computing the current item, even if it is unnecessary to do so, e.g., if we had

called nonzero_foo.get_before(t), and the call to foo just before time t had argument

x=0. Thus, a lazy accumulator avoids this unnecessary work. Expositor uses a lazy

accumulator in rev_scan for the same reason.

Likewise, observe that in tr0.trailing_merge(f, tr1), for a particular item in tr0 the

function f may not need to look in tr1 to determine its result; thus, Expositor

wraps the tr1 argument to f in an instance of class lazy. The implementation of

rev_trailing_merge similarly passes lazy items from tr1 to f. Note that there is no

such laziness in the regular merge operation. The reason is that in tr0.merge(f, tr1),

the items from tr0 and tr1 that are combined with f occur at the same time. Thus,

making f’s arguments lazy would not reduce demands on the underlying time-travel

debugger.

4.2.2 Tree Scan

Finally, Expositor provides another list combinator, tree-scan, which is a lazier

variant of scan that is sometimes more efficient. The tscan method computes an

output for every prefix of an input trace by applying an associative binary function

in a tree-like fashion (Figure 4.5(a)). It is invoked with tr.tscan(f), where f must be

an associative function that is lazy and optional in its left argument and lazy in its

right argument. The tscan method generates an output trace of the same length as
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the input trace, where the nth output outn is defined as:

outn = in0 f in1 f · · · f inn

where f is written infix as f . Notice that there is no accumulator, and Expositor

can apply f in any order, since it is associative. When a value at time t is demanded

from the output trace, Expositor first demands the item inn at that time in the

input trace (if no such item exists, then there is no item at that time in the output

trace). Then Expositor walks down the interval tree structure of the input trace,

calling f (only if demanded) on each internal tree node’s children to compute outn.

Since the interval tree for the input trace is computed lazily, f may sometimes be

called with None as a left argument, for the case when f forces an interval that turns

out to contain no values; thus for correctness, we also require that f treats None as a

left identity. (The right argument corresponds to inn and so will never be None.)

Because both arguments of f are lazy, Expositor avoids computing either ar-

gument unnecessarily. The is_forced method of the lazy class is particularly useful

for tscan, as it allows us to determine if either argument has been forced, and if so,

evaluate the forced argument first. For example, we can check if a trace contains a

true value as follows:

277 def has_true(lazyleft, lazyright):
278 return lazyleft.is_forced() and lazyleft.force() \
279 or lazyright.is_forced() and lazyright.force() \
280 or lazyleft.force() or lazyright.force()
281 has_true_trace = some_trace.tscan(has_true)
282 last_has_true = has_true_trace.get_before("inf")
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Figure 4.5: Illustration of tree-scan operations.

The best case for this example occurs if either lazyleft or lazyright have been forced by a

prior query, in which case either the first clause (line 278) or second clause (line 279)

will be true and the unforced argument need not be computed due to short-circuiting.

Expositor’s rev_tscan derives a new trace based on future items instead of past

items (Figure 4.5(b)), computing output item outn as:

outn = inn f inn+1 f · · · f in length−1

Here, the right argument to f is optional, rather than the left.

4.3 The Edit Hash Array Mapped Trie

Many of the Expositor scripts we have written use sets or maps to record infor-

mation about the program execution. For example, in Section 4.0.1, we suggested

the use of a shadow set to debug the implementation of a custom set data structure.

Unfortunately, a typical eager implementation of sets or maps could demand all items

in the traces, defeating the intention of Expositor’s lazy trace data structure. To
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demonstrate this issue, consider the following code, which uses Python’s standard

(non-lazy) set class to collect all arguments in calls to a function foo:

283 foos = the_execution.breakpoints("foo") # void foo(int arg)
284 def collect_foo_args(lazy_acc, snap):
285 return lazy_acc.force().union( \
286 set([ int(snap.read_var("arg")) ]))
287 foo_args = foos.scan(collect_foo_args, set())

Notice that we must force lazy_acc to call the union method which will create a deep

copy of the updated set (lines 285–286). Unfortunately, forcing lazy_acc causes the

immediately preceding set to be computed by recursively calling collect_foo_args. As

a result, we must compute all preceding sets in the trace even if a particular query

could be answered without doing so.

To address these problems, we developed the edit hash array mapped trie (Edit-

HAMT), a new set, map, multiset, and multimap data structure that supports lazy

construction and queries. The EditHAMT complements the trace data structure; as

we will explain, and our micro-benchmark in Section 4.4.4 will show, the EditHAMT

can be used in traces without compromising trace laziness, unlike eager sets or maps.

4.3.1 EditHAMT API

From the user’s perspective, the EditHAMT is an immutable data structure that

maintains the entire history of edit operations for each EditHAMT. Figure 4.6 shows

the EditHAMT API. The edithamt class includes contains(k) to determine if key k exists,

and find(k) to look up the latest value mapped to key k. It also includes the find_multi(

k) method to look up all values mapped to key k, returned as a Python iterator that in-

crementally looks up each mapped value. EditHAMT operations are implemented as
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288 class edithamt:
289 # lookup methods
290 contains(k): Return if key k exists
291 find(k): Return the latest value for k or None if not found
292 find_multi(k): Return an iterator of all values bound to k
293

294 # static factory methods to create new EditHAMTs
295 empty(): Create an empty EditHAMT
296 add(lazy_eh, k): Add binding of k to itself to lazy_eh
297 addkeyvalue(lazy_eh, k, v): Add binding of k to v to lazy_eh
298 remove(lazy_eh, k): Remove all bindings of k from lazy_eh
299 removeone(lazy_eh, k): Remove the latest binding of k to any value from lazy_eh
300 removekeyvalue(lazy_eh, k, v): Remove the latest binding of k to v from lazy_eh
301 concat(lazy_eh1, lazy_eh2): Concatenate lazy_eh2 edit history to lazy_eh1

Figure 4.6: The EditHAMT API.

static factory methods that create new EditHAMTs. Calling edithamt.empty() creates

a new, empty EditHAMT. Calling edithamt.add(lazy_eh, k) creates a new EditHAMT

by adding to lazy_eh, the prior EditHAMT, a binding from key k to itself (treating

the EditHAMT as a set or multiset). Similarly, edithamt.addkeyvalue(lazy_eh, k, v) cre-

ates a new EditHAMT by adding to lazy_eh a binding from key k value v (treating

the EditHAMT as a map or multimap). Conversely, calling edithamt.remove(lazy_eh, k)

creates a new EditHAMT by removing all bindings of key k from lazy_eh. Lastly, call-

ing edithamt.removeone(lazy_eh, k) or edithamt.removekeyvalue(lazy_eh, k, v) creates new

EditHAMTs by removing from lazy_eh the most recent binding of key k to any value

or to a specific value v. The lazy_eh argument to these static factory methods is lazy

so that we need not force it until a call to contains, find or find_multi demands a result.

For convenience, the lazy_eh argument can also be None, which is treated as an empty

EditHAMT.
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The last static factory method, edithamt.concat(lazy_eh1, lazy_eh2), concatenates

the edit histories of its arguments. For example:

302 eh_rem = edithamt.remove(None, "x")
303 eh_add = edithamt.addkeyvalue(None, "x", 42)
304 eh = edithamt.concat(eh_add, eh_rem)

Here eh is the empty EditHAMT, since it contains the additions in eh_add followed

by the removals in eh_rem. A common Expositor script pattern is to map a trace to

a sequence of EditHAMT additions and removals, and then use edithamt.concat with

scan or tscan to concatenate those edits.

4.3.2 Example: EditHAMT to Track Reads and Writes to a Variable

As an example of using the EditHAMT, we present one piece of the race detector

used in our Firefox case study (Section 4.5). The detector compares each memory

access against prior accesses to the same location from any thread. Since UndoDB

serializes thread schedules, each read need only be compared against the immediately

preceding write, and each write against the immediately preceding write as well as

reads between the two writes.

We use the EditHAMT as a multimap in the following function to track the access

history of a given variable v:

305 def access_events(v):
306 reads = the_execution.watchpoints(v, rw=READ) \
307 .map(lambda s: edithamt.addkeyvalue( \
308 None, v, ("read", s.get_thread_id())))
309 writes = the_execution.watchpoints(v, rw=WRITE) \
310 .map(lambda s: edithamt.addkeyvalue( \
311 edithamt.remove(None, v), \
312 v, ("write", s.get_thread_id())
313 return reads.merge(None, writes)
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In access_events, we create the trace reads by finding all reads to v using the

watchpoints method (line 306), and then mapping each snapshot to a singleton Edit-

HAMT that binds v to a tuple of "read" and the running thread ID (lines 307–308).

Similarly, we create the trace writes for writes to v (line 309), but instead map each

write snapshot to an EditHAMT that first removes all prior bindings for v (line 311),

then binds v to a tuple of "write" and the thread ID (lines 310–312). Finally, we merge

reads and writes, and return the result (line 313).

We are not done yet, since the EditHAMTs in the trace returned by access_events

contain only edit operations corresponding to individual accesses to v. We can get an

EditHAMT trace that records all accesses to v from the beginning of the execution

by using scan with edithamt.concat to concatenate the individual EditHAMTs. For

example, we can record the access history of var1 as follows:

314 var1_history = access_events("var1").scan(edithamt.concat)

We can also track multiple variables by calling access_events on each variable,

merging the traces, then concatenating the merged trace, e.g., to track var1 and var2:

315 access_history = \
316 access_events("var1").merge(access_events("var2")) \
317 .scan(edithamt.concat)

Since trace methods are lazy, this code completes immediately; the EditHAMT op-

erations will only be applied, and the underlying traces forced, when we request a

particular access, e.g., at the end of the execution (time "inf"):

318 last = access_history.get_before("inf")
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To see laziness in action, consider applying the above analysis to an execution

depicted in Figure 4.7, which shows two threads at the top and the corresponding

EditHAMT operations at the bottom. Suppose we print the latest access to var1 at

time t4 using the find method:

319 >>> print last.find("var1")
320 ("read", 2)

Because "var1" was just added at time t4, answering this query will only force the

EditHAMT and query the time-travel debugger at time t4, and not before.

As another example, suppose we want to find all accesses to var1 from the last

access backward using find_multi:

321 >>> for mem_access in last.find_multi("var1"):
322 print mem_access
323 ("read", 2)
324 ("write", 1)

Here since all "var1" bindings added prior to time t2 were removed at time t2, the

results are computed without forcing any EditHAMTs or querying the debugger before

time t2.

4.3.3 Implementation

The EditHAMT is inspired by the hash array mapped trie (HAMT) (Bagwell, 2001).

Like the HAMT, the EditHAMT is a hybrid data structure combining the fast lookup

of a hash table and the memory efficiency of a trie. The HAMT is a hash-based data

structure built in a manner analogous to a hash table. Whereas a hash table uses a

bucket array to map keys to values, the HAMT uses an array mapped trie (AMT)—a
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Figure 4.7: Example execution with two threads accessing var1 (gray) and var2, and
the corresponding EditHAMT operations returned by access_events.

trie that maps fixed-width integer keys to values—for the same purpose. When a hash

collision occurs, the HAMT resolves the collision by replacing the colliding entry with

a nested HAMT, rehashing the colliding keys, and inserting those keys in the nested

HAMT using the new hash values.

We developed the EditHAMT by making two changes to the traditional HAMT.

First, we replaced the AMT with the LazyAMT, which supports lazy, rather than

eager, updates. Second, we resolve hash collisions, as well as support remove and

multiset/multimap operations, using EditLists, which are lazy linked-lists of nodes

tallying edit operations on the EditHAMT; the tails are lazily retrieved from the prior

EditHAMT.

LazyAMT: Lazy Array Mapped Tries

The first piece of the EditHAMT is the LazyAMT, which is lazy, immutable variant

of the AMT that maps fixed-width integer keys of size k bits to values. We implement

the LazyAMT using lazy sparse arrays of size 2w as internal nodes, where w is the
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bit-width of the array index such that w < k, and store key-value bindings as leaf

nodes. We will divide the key into w-bit words, where each w-bit word is used to

index an internal node during a lookup; the key can be padded as necessary if k is

not a multiple of w.

Lazy sparse arrays combine the properties of lazy values and sparse arrays: each

element of a lazy sparse array is computed and cached when first indexed, akin to

forcing a lazy value, and null elements are stored compactly, like sparse arrays. We

implement lazy sparse arrays using two bitmaps to track which elements are initialized

and non-null,3 respectively, and an array to store initialized, non-null elements.

To build the EditHAMT, we need to support two operations on the LazyAMT:

adding a key-value binding to a LazyAMT, and merging two LazyAMTs into a single

LazyAMT. We will explain how the LazyAMT works by example, using an internal

node index bit-width of w = 2 bits and a key size of k = 6 bits.

Adding a key-value binding When we add a binding such as 14 : b to a

LazyAMT, we first create a new lazy sparse array representing the root node:

14:b
prior 

LazyAMT

Initially, all elements of the root node are uninitialized, which we depict as four narrow

dotted boxes; we will use the convention of numbering the boxes from left to right,

i.e., in binary, the leftmost box is element 00, and the rightmost box is element 11.

3It is more efficient to track non-null elements as many modern processors provide a POPCNT
instruction, which counts the number of 1 bits in a word, that can be used to compute the index of
a non-null element in the storage array.
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In addition, we also maintain a lazy reference to the prior LazyAMT; we do not yet

need to know what the prior LazyAMT contains, which we indicate with a dotted

arrow. In fact, the lazy reference allows us to further defer the construction of (the

root node of) the prior LazyAMT, i.e., the prior LazyAMT may not exist yet when

we add the binding 14 : b; we indicate this with a dotted trapezoid. For example,

in Expositor, we may query UndoDB to determine what binding should be added

only when the lazy reference to the prior LazyAMT is first forced. We also need to

store the binding 14 : b, to be added when the LazyAMT is sufficiently initialized.

The actual construction of the LazyAMT occurs only when we look up a binding.

The lookup is a standard trie lookup, however, since internal nodes are lazy sparse ar-

rays, the elements of those arrays will be initialized as necessary when we access those

elements during the lookup. We initialize an element in one of three ways, depending

on whether that element is along the lookup path of the binding we previously set

aside to be added, and whether we have reached the end of the lookup path. If the

element is along the lookup path the binding and we have not reached the end of the

lookup path, we create the next internal node and initialize the element to that node.

If the element is along the lookup path of the binding and we have reached the end

of the lookup path, we initialize the element to a leaf node containing that binding.

Otherwise, if the element is not along the lookup path of the binding, we initialize

it to point to the same subtrie as the corresponding element (at the same partial

lookup path) in the prior LazyAMT, or to be null if the corresponding element does

not exist. Note that in the last case, prior LazyAMTs will be recursively initialized

as necessary.
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For example, suppose that we look up the binding for key 14. First, we split up

the key into w-bit words, here, 00 11 10 in binary; this is the lookup path for key 14.

Then, we use the first word, 00, to index the root node. We need to initialize the

element at 00 as this is the first time we accessed it. Since this particular LazyAMT

was created by adding 14 : b and the 00 element of the root node is along the lookup

path for key 14, we initialize that element to a new uninitialized internal node below

the root node:

14:b
prior 

LazyAMT

Here, we depict the initialized element of the root node as a square unbroken box,

and a non-lazy reference to the just created internal node as an unbroken arrow.

We continue the lookup by using the next word, 11, to index the just created

internal node. Since 11 is again along the lookup path, we initialize the corresponding

element to another internal node. We repeat the process again with the last word, 10,

but now that we have exhausted all bits in the lookup key, we initialize the element

for 10 to point to a leaf node containing the binding 14 : b that we previously set

aside. This results in a partially initialized LazyAMT:

prior 
LazyAMT

14:b

We finish the lookup for key 14 and return b.
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The example so far illustrates how the lookup process drives the initialization

process in an interleaved manner. Also, since we are looking up a key that was just

inserted into the LazyAMT, we did not need to refer to the prior LazyAMT at all.

These properties allow LazyAMTs to be constructed lazily, by initializing only as

much as necessary to answer lookup queries.

We continue the example by considering the case of looking up a key that was not

added by the most recent LazyAMT. Suppose that the immediately prior LazyAMT,

when computed, will add binding 5 : a:

prior 
LazyAMT

14:b

add 5 : a

If we then look up key 5, or 00 01 01 in binary, from the rightmost LazyAMT, we

would first index 00 of the root node. We have already initialized this element from

looking up key 14 before, so we simply walk to the next internal node and index 01.

The element at 01 is uninitialized, but it is not along the lookup path of key 14, the

key added to the rightmost LazyAMT. To continue the lookup of key 5, we retrieve

the prior LazyAMT by forcing our lazy reference to it, causing it to be partially

constructed:
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5:a

prior 
LazyAMT

14:b

Then, we initialize the element at 01 to point to the subtrie under the element at the

partial key 00 01 in the prior LazyAMT, initializing the middle LazyAMT a bit more

along the way:

5:a

prior 
LazyAMT

14:b

We finish the lookup for key 5 as before, initializing the LazyAMTs a bit more:

14:b5:a

prior 
LazyAMT

Note that we have simultaneously initialized parts of the rightmost LazyAMT and

the middle LazyAMT because they share a common subtrie; subsequent lookups of

key 5 on either LazyAMT will become faster as a result.

Merging two LazyAMTs The merge operation takes two LazyAMTs as input,

which we call left and right , as well as a function, mergefn(lazy-opt-leftval , rightval),
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that is called to merge values for the same key in both LazyAMTs. As the name

of the arguments suggests, mergefn is called in an unusual, asymmetric manner in

that it is called for all keys in the right LazyAMT, but not necessarily for all keys

in the left LazyAMT. For each key in the right LazyAMT, mergefn is called with a

lazy, optional value, representing the value for that key in the left LazyAMT, as the

lazy-opt-leftval argument, and the value for the same key in the right LazyAMT as the

rightval argument. This approach maximizes laziness in that we can compute a lazy

value as soon as we determine a key exists in the one LazyAMT without immediately

looking up the value for the same key in the other LazyAMT. For example, mergefn

can be used to create a lazy linked-list by returning lazy-opt-leftval and rightval in a

tuple.

When we merge two LazyAMTs, we first create a new root node of a new LazyAMT

with two lazy references to the input LazyAMTs:

right 
LazyAMT

left 
LazyAMT

As before, the actual construction of the merged LazyAMT occurs when elements

of internal nodes are initialized during lookups. We initialize an element in one of

three ways, depending on whether the corresponding element (at the same partial

lookup path) in the right LazyAMT points to an internal node, points to a leaf node,

or is null. If the corresponding element points to an internal node, we create the next

internal node and initialize the element to that node. If the corresponding element

points to a leaf node, then we call mergefn, giving as lazy-opt-leftval a new lazy value

138



that, when forced, looks up the same key in the left LazyAMT (returning null if the

key does not exist), and as rightval the value at the leaf node. Otherwise, if the

corresponding element is null, we initialize the element to point to the same subtrie

as the corresponding element in the left LazyAMT, or to be null if the corresponding

element does not exist. Note that both the left and right LazyAMTs will be recursively

initialized as necessary.

For example, suppose the right LazyAMT contains a single binding 14 : b:

left 
LazyAMT

14:b

If we look up key 14, or 00 11 10 in binary, we would first index element 00 of the root

node. Since this is the first time we accessed this element, we initialize it by looking at

the corresponding element in the right LazyAMT. The corresponding element points

to an internal node, so we initialize the element to a new internal node:

left 
LazyAMT

14:b

We repeat this process until we exhaust all bits in the lookup key and reach the

corresponding leaf node. Because a binding exists for key 14 in the right LazyAMT,
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we initialize a new leaf node that binds key 14 to a merged value by first creating a

new lazy value that looks up the key 14 from the left LazyAMT, and calling mergefn

on that lazy value as well as the value b from the right LazyAMT:

left 
LazyAMT

14:b 14:mergefn(  , b)

Note that we do not have to force the left LazyAMT to be computed immediately;

the decision to force the left LazyAMT is deferred to mergefn. We finish the lookup

by returning the newly merged value.

As another example, suppose the left LazyAMT contains a single binding 5 : a:

14:b5:a 14:mergefn(  , b)

If we look up key 5, or 00 01 01 in binary, we would first index element 00 of the root

note that is already initialized above. However, when we index element 01 of the next

internal node, we would find that the corresponding element in the right LazyAMT

is null. In this case, we look up the subtrie under the corresponding element in the

left LazyAMT, and initialize element 01 to it:
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14:b5:a 14:mergefn(  , b)

Note that we do not call mergefn in this case. We finish the lookup by walking into

left LazyAMT to the leaf node for key 5, and returning a.

Finally, we represent the empty LazyAMT as a special instance that simply returns

null for all key and partial key lookups, allowing us to avoid building a trie structure

with no bindings.

LazyAMT lookups are amortized O(1) time; the LazyAMT has a fixed depth

of k/w, so each lookup takes constant time to traverse the internal nodes to a leaf

node. Similarly, adding a binding to a LazyAMT or merging two LazyAMTs take

only amortized O(1) time and memory to create k/w internal nodes of size 2w each.

The amortization of lookups, adding bindings, and merging LazyAMTs is due to

laziness—most of the cost of adding a binding or merging two LazyAMTs is deferred

to subsequent lookups. Adding the same key repeatedly would take an additional

amortized O(1) memory each time (i.e., prior bindings are never removed, only shad-

owed). However, this is actually an advantage in Expositor as we are usually

interested in how bindings to the same key change over time.
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EditList: Lazy Linked-List of Edit Operations

The second piece of the EditHAMT is the EditList, which is a lazy immutable

set/map/multiset/multimap implemented as a lazy linked-list of edit operations.

When an operation such as add or remove is applied to an EditList, we simply ap-

pend a new node to the EditList, labeling it with the given operation and arguments.

For example, if we add a binding k0 : a to an EditList (treating the EditList as a map

or multimap), we create a new EditList node labeled addkeyvalue(k0, a) with a lazy

reference to the head of the prior EditList (i.e., the prior node):

prior EditList addkeyvalue(k0, a)

We depict the EditList node as a box pointing to the left. Since all operations,

including removals, are implemented by appending nodes, we do not need to know

what the prior EditList contains, which we depict as a dotted arrow. And, as with the

LazyAMT, we keep a lazy reference to the prior EditList which allows us to further

delay any computation necessary to determine its contents, i.e., the prior EditList

may not exist yet when we perform an addition or removal operation on it, which

we depict as a dotted rounded box. Only when we first force the lazy reference to

the prior EditList will we need to determine what kind of edit operation the prior

EditList contains or if it is null, e.g., by making queries to UndoDB in Expositor.

We support several different kinds of edit operations on EditLists, with the cor-

responding node labels:

• add(k): add element k, treating the EditList as a set or multiset;
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• addkeyvalue(k, v): add a binding from key k to value v, treating the EditList

as a map or multimap;

• remove(k): remove all elements/bindings for key k;

• removeone(k): remove the latest element/binding for key k, treating the Ed-

itList as a multiset or multimap;

• removekeyvalue(k, v): remove the latest binding from key k to value v, treating

the EditList as a multimap;

• concat(lazy_el): concatenate the EditList lazy_el as a lazy reference at this

point.

These are the building blocks for the corresponding EditHAMT operations listed in

Figure 4.6.

We implement EditList lookup in two different ways: one for set membership

queries and map lookups, and another for multiset and multimap lookups.

Set Membership Queries and Map Lookups We implement set membership

queries and map lookups by traversing the EditList from head to tail (right to left),

looking for the first node that contains an edit operation for the given key. For

example, if we look up the value for key k0 in the above EditList, we would start by

looking at the head node. Since the head node adds a binding from key k0, we can

finish the lookup and return value a without having to look at the prior EditList. As

another example, suppose that the immediately prior node, when we force it to be

computed, e.g., by making calls to UndoDB in Expositor, removes key k1:
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remove k1prior EditList addkeyvalue(k0, a)

If we look up the value for key k1, we would first look at the head node and skip it

because it does not involve key k1. Then, we would force the lazy reference to the

prior node, causing it to be initialized if necessary, and look at it:

prior EditList addkeyvalue(k0, a)remove(k1)

Here, we indicate that the tail has been forced with an unbroken arrow, and that the

prior node has been initialized by replacing the dotted rounded box with pointed box.

Since the prior node removes key k1, we know that bindings no longer exist for key

k1, so we can finish the lookup and return null. This example shows that, once we

have found a node that involves the lookup key, we no longer need to traverse the rest

of the EditList. Also, because the reference to the prior EditList is lazy, the lookup

process drives the construction of prior EditLists in an interleaved manner, just as in

the LazyAMT.

If we find a concat node during traversal, we handle that node by recursively

looking up the concatenated EditList for the given key. If we do not find any relevant

nodes in the concatenated EditList, we would then resume the lookup in the original

EditList.

Multiset and Multimap Lookups We implement multiset and multimap

lookups lazily by returning a Python iterator that allows all values for a given key to
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be incrementally retrieved, typically via a for x in values loop. To illustrate how we

implement multimap lookups, suppose we have the following EditList:

remove one k0

add k0 : badd k0 : cNone

addkeyvalue(k0, a)

Reading backward from the tail, this EditList binds key k0 to value c, binds value b

and removes it, then binds value a; i.e., it represents a map that contains bindings

from k0 to values a and c but not b. A multimap lookup on this EditList for key k0

will return an iterator of all values bound to that key:

k0

remove one k0

add k0 : badd k0 : cNone

addkeyvalue(k0, a)

The iterator is associated with the key k0 and initially points to the beginning of the

input EditList, which we depict as a large down-arrow labeled k0.

The actual lookup does not begin until we retrieve a value from the iterator, which

initiates a traversal of the input EditList to find a binding for key k0:

k0

remove one k0 addkeyvalue(k0, a)

add k0 : badd k0 : cNone
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In this case, the head of the input EditList itself contains a binding to value a, so we

return the value a and update the iterator to point to the tail of the input EditList

(the head of the prior EditList), which we depict by moving the k0 down-arrow.

If we retrieve a value from the iterator again, the lookup continues from the head

of the prior EditList:

k0

None

addkeyvalue(k0, a)removeone(k0)

addkeyvalue(k0, b)addkeyvalue(k0, c)

The prior node removes the next binding for key k0; we temporarily note this as a

pending removal. The node after that adds a binding for key k0, but since we have

a pending removal, we skip over that node. Next, we reach a node that binds key k0

to value c, so we return c and update the iterator as before.

If we retrieve a value from the iterator once more, the lookup will reach the end

of the input EditList, which we depict as None, so we terminate the iterator. At this

point, all nodes in the input EditList will have been initialized:

None

addkeyvalue(k0, a)removeone(k0)

addkeyvalue(k0, b)addkeyvalue(k0, c)

We implement multiset lookups identically by treating add(k) as if key k were

bound to itself. Note in particular that, whereas a standard multiset lookup gives us

the total number of values for a given key, a lazy multiset lookup allows us to ask if

there are at least n values for a given key. As we illustrated above, both multiset and
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multimap lookups are lazy in that the returned iterator will only initializes as many

nodes of the input EditList as retrieved.

EditList set membership and map/multiset/multimap lookups are not particularly

fast, since they take O(n), where n is the number of edit operations in the EditList

(i.e., the length of the EditList), to traverse the EditList to find a relevant binding.

However, applying an edit operation takes only O(1) time and O(1) memory to create

and append a single EditList node. Adding an element or binding to the same key

repeatedly takes an additional O(1) memory each time, but as we explained for the

LazyAMT, this is actually an advantage for Expositor as we are usually interested

in how bindings change over time.

EditList + Hash + LazyAMT = EditHAMT

As we described above, the LazyAMT provides fast amortized O(1) set/map lookups,

but supports only fixed-width integer keys as well as addition and merging operations;

it does not support removal operations or multiset/multimap lookups. Conversely,

the EditList supports arbitrary keys, removal operations as well as multiset/multimap

lookups, but lookups are a slow O(n) where n is the number of edit operations in

the EditList. Both the LazyAMT and the EditList support lazy construction, i.e.,

we can perform operations such as addition or removal without knowing what the

prior LazyAMT or EditList contains. Finally, each LazyAMT operation takes only

an additional amortized O(1) time and memory over the prior LazyAMT, and likewise

O(1) time and memory for the EditList.
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We combine these two data structures to create the EditHAMT, a lazy data

structure that is more capable than the LazyAMT and faster than the EditList. The

key idea is build multiple EditLists, each containing only edits for keys with the same

hash h, which we denote as editlist(h), and use the LazyAMT to map hash h to

editlist(h). We can then look up a key k using the following steps:

1. compute the hash h of key k;

2. look up editlist(h) from the LazyAMT of the EditHAMT;

3. look up key k from editlist(h);

The lookup process will cause the underlying LazyAMT or editlist(h) to be initialized

as necessary.

We construct EditHAMTs in one of two ways: we use the LazyAMT addition oper-

ation to perform addition or removal operations on an EditHAMT, and the LazyAMT

merge operation to concatenate two EditHAMTs.

Performing Addition or Removal Operations on an EditHAMT We

take the following steps to perform an addition or removal operation for a given key

k on an EditHAMT:

1. compute the hash h of key k;

2. lazily look up the LazyAMT of the prior EditHAMT as lazyamt ′;

3. lazily look up editlist ′(h) from lazyamt ′, and append the given operation to it

to create editlist(h);
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4. add a new binding to lazyamt ′ from hash h to editlist(h) to create the updated

EditHAMT;

where by lazily looking up we mean to create a lazy reference that, when forced, looks

up lazyamt ′ or editlist ′(h), which allows the construction of the prior EditHAMT to

also be lazy. Because both the LazyAMT and the EditList are lazy, the EditHAMT

will be mostly uninitialized at first; (parts of) it will be initialized as necessary during

lookup.

For example, suppose we add a binding from key k0 to value b to an EditHAMT,

and key k0 has hash 14. We would create a new LazyAMT that maps hash 14 to a

new editlist(14) that appends addkeyvalue(k0, b) to the prior EditHAMT:

prior 
EditHAMT

editlist(14)
addkeyvalue(k0, b)

At first, most of the EditHAMT—the LazyAMT as well as the tail of the editlist(14)—

is uninitialized; we indicate the uninitialized editlist(14) tail as a dotted arrow pointing

to the prior EditHAMT. When we look up key k0, we would look up hash 14 from the

LazyAMT to find editlist(14) that we just added, then look up key k0 from editlist(14).

The head of editlist(14) adds key k0, so we can return value b without looking at the

tail. At the end of the lookup, the EditHAMT will be initialized as follows:
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prior 
EditHAMT

editlist(14)
addkeyvalue(k0, b)

This example shows that we can apply an edit operation without knowledge of the

prior EditHAMT, and since the key k0 was just added, we can look up key k0 without

having to consult the prior EditHAMT. Both of these properties are inherited from

the underlying LazyAMT and EditList.

We continue the example by considering the case of looking up a different key

that was involved in an earlier edit operation. Suppose that the immediately prior

EditHAMT removes key k1, and key k1 has hash 5. When we look up key k1, the

EditHAMT will be initialized as follows:

prior 
EditHAMT

editlist(14)

editlist(5)

addkeyvalue(k0, b)

remove(k1)

Looking up the editlist(5) from the rightmost LazyAMT causes parts of the middle

LazyAMT to be initialized and shared with the rightmost LazyAMT, and since the

head of editlist(5) removes key k1, we can return null without looking at its tail.

The two examples so far do not require traversing the tail of editlist(h). We would

need to do so if there was a hash collision or if we perform a multiset or multimap
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lookup. For example, suppose that an earlier EditHAMT added a binding from key

k0 with hash 14 to value a, and we perform a multimap lookup of key k0 to find the

second value. We have to initialize the tail of editlist(14) by looking up editlist ′(14)

from the prior EditHAMT. The immediately prior EditHAMT did not involve key

k0 or hash 14; instead, we will partially initialize the earlier EditHAMT containing

editlist ′(14) and share it. Then, we retrieve editlist ′(14) and initialize it as the tail of

editlist(14). At the end of the lookup, the EditHAMT will be initialized as depicted

below:

prior 
EditHAMT

editlist(14)editlist'(14)

editlist(5)

addkeyvalue(k0, b)

remove(k1)

addkeyvalue(k0, a)

Concatenating two EditHAMTs To concatenate two EditHAMTs, we call

the LazyAMT merge operation with:

• the older EditHAMT as the left LazyAMT;

• the newer EditHAMT as the right LazyAMT;

• a mergefn function that creates a new editlist(h) by appending an EditList

concat node containing editlist ′(h) from the right EditHAMT to the lazy, op-

tional value containing editlist ′′(h) from the left EditHAMT;

where the older and newer EditHAMTs are lazy_eh1 and lazy_eh2, respectively, in

Figure 4.6.
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For example, suppose we concatenate two EditHAMTs, where the right Edit-

HAMT contains a single binding k0 : b and key k0 has hash 14. We would create a

new EditHAMT using the LazyAMT merge operation as described above:

left 
EditHAMT

editlist'(14)
addkeyvalue(k0, b)None

If we perform a map lookup on the concatenated EditHAMT to find the value for key

k0, we would look up the concatenated EditHAMT for hash 14 to retrieve editlist(14)

and perform a map lookup on it. This will cause the concatenated EditHAMT to be

initialized as follows:

left 
EditHAMT

editlist'(14)
addkeyvalue(k0, b)None

concat(  )
editlist(14)

The head of editlist(14) is a concat node created by the mergefn described above.

When we look up key k0 from editlist(14), we would recursively look up editlist ′(14)

from the right EditHAMT for the same key. Since the head of editlist ′(14) adds key

k0, we finish the lookup by returning the mapped value b. We do not have to look at

the tail of editlist(14) and can avoid forcing the left EditHAMT for now, which is a

property inherited from the LazyAMT merge operation.
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To consider an example that requires us to force the left EditHAMT, suppose that

the left EditHAMT contains a single binding k1 : a where key k1 also has hash 14.

If we look up key k1 from the concatenated EditHAMT, it will be initialized in the

following manner:

editlist'(14)
addkeyvalue(k0, b)None

concat(  )
editlist(14)

addkeyvalue(k1, a)None
editlist''(14)

We would look up key k1 from editlist(14), and recursively look up editlist ′(14) for the

same key. Because editlist ′(14) does not contain key k1, we would then resume the

lookup in editlist(14), forcing its tail to retrieve editlist ′′(14) from the left EditHAMT,

and finally return the mapped value a.

The combination of the LazyAMT and the EditList enables the EditHAMT to

support all operations that the EditList supports, reduces the EditList lookup cost

to amortized O(1) if we assume no hash collisions, and takes only an additional

amortized O(1) time and memory for each edit operation. However, multiset and

multimap lookups take amortized O(n) time where n is the number of removeone and

removekeyvalue operations.
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4.3.4 Comparison with Other Data Structures

Compared to Python sets, which are implemented as hash tables, it is more memory

efficient to make an updated copy of the EditHAMT, since only a constant number

of nodes in the underlying LazyAMT are created, than it is to make a copy of the

bucket array in the hash table underlying Python sets, which can be much larger. This

makes it viable to store every intermediate EditHAMT as it is created in a trace, as

each EditHAMT only requires an additional amortized O(1) memory over the prior

EditHAMT. In our current implementation, a trace of EditHAMTs is cheaper than

a trace of Python sets (which requires deep copying) if, on average, each EditHAMT

or set in the trace has more than eight elements.

It is also common to implement sets or maps using self-balancing trees such as

red-black trees or AVL trees. However, we observe that it is not possible to make these

tree data structures as lazy as the EditHAMT. In these data structures, a rebalancing

operation is usually performed during or after every addition or removal operation to

ensure that every path in the tree does not exceed a certain bound. In particular,

the root node may be swapped with another node in the process of rebalancing (in

fact, every node may potentially be swapped due to rebalancing). This means that

the root node of self-balancing trees is determined by the entire history of addition

and removal operations. Thus, we would be forced to compute the entire history of

addition and removal operations when we traverse the root node to look up a key,

defeating laziness.
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We also observe a similar issue arising with hash tables. Hash tables are based on

a bucket array that is used to map hash values to keys. Typically, the bucket array

is dynamically resized to accommodate the number of keys in the hash table and to

reduce hash collisions. However, the number of keys in the hash table is determined

by the entire history of addition and removal operations. As a result, we would be

forced to compute the entire history of addition and removal operations before we

can use the bucket array to map a hash value to a key, defeating laziness.

Furthermore, the EditHAMT suffers much less from hash collisions than hash

tables. The LazyAMT in the EditHAMT is a sparse integer map, unlike the bucket

array in hash tables, and thus can be made much larger while using little memory,

which reduces the likelihood of hash collisions.

4.4 Micro-benchmarks

We ran two micro-benchmarks to evaluate the efficiency of Expositor. In the first

micro-benchmark, we evaluated the advantage of laziness by comparing a script writ-

ten in Expositor against several other equivalent scripts written using non-lazy

methods. In the second micro-benchmark, we compared the performance of scripts

using the EditHAMT against other equivalent scripts that use non-lazy data struc-

tures.
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325 #define LOOP_I 16
326 #define LOOP_J 16
327 #define LOOP_K 16
328 #define LOOP_L 8
329 void foo(int x, int y) {}
330 void bar(int z) {}
331 int main(void) {
332 int i, j, k, l;
333 for (i = 0; i < LOOP_I; i++) {
334 for (j = 0; j < LOOP_J; j++) {
335 for (k = 0; k < LOOP_K; k++) {
336 bar(i ∗ LOOP_K + k);
337 }
338 foo(i, i ∗ LOOP_J + j);
339 for (l = 0; l < LOOP_L; l++) {
340 bar(i ∗ LOOP_L + l);
341 }
342 }
343 }
344 return 0;
345 }

Figure 4.8: Micro-benchmark test program.

4.4.1 Test Program

For both micro-benchmarks, we use the test program in Figure 4.8 as the subject of

our Expositor scripts. This program consists of two do-nothing functions, foo on

line 329 and bar on line 330, and the main function on lines 331–345 that calls foo and

bar in several nested loops.

4.4.2 Experimental Setup

We run both micro-benchmarks on a 32-bit Ubuntu Linux 11.04 virtual machine

(since UndoDB runs only on Linux), set up with 8 cores and 8 GB of RAM in

VMware Fusion 4.1.4 on Mac OS X 10.6.8 running on a Mac Pro with two 2.26
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GHz quad-core Intel Xeon processors and 16 GB of RAM. We use UndoDB version

3.5.1234, a developmental version of GDB (CVS revision as of October 2012), and

Python version 2.7.5.

4.4.3 Evaluating the Advantage of Trace Laziness

In our first micro-benchmark, we benchmark the advantage of trace laziness using the

following procedure. We first start Expositor on the test program in Figure 4.8,

and run the following script:

346 foo_trace = the_execution.breakpoints("foo")
347 trace1 = foo_trace.filter(
348 lambda snap: int(snap.read_arg("x")) % 2 == 0)

This script creates a trace named foo_trace of calls to foo, and a trace named trace1

that keeps only calls to foo where the argument x is even. We then measure the time

it takes to call get_after to find the first item in trace1 after time 0. We repeat this

measurement to find the second item, the third item, and so forth, until there are no

more items left in trace1. Next, we create another trace named trace2:

349 trace2 = foo_trace.filter(
350 lambda snap: int(snap.read_arg("x")) % 2 == 1)

This trace is similar to trace1, but keeps only calls to foo where x is odd. We then

measure again the time it takes to call get_after to find each item in trace2. Finally,

we restart Expositor and repeat the entire procedure, but use get_before to find

all items in trace1 and trace2 starting from the end of the execution, instead of using

get_after.
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Figure 4.9: The time it takes to get all items in two traces using lazy or non-lazy
scripts.
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We compare the above script against several other equivalent scripts that are not

lazy, written either in a variant of Expositor with trace laziness disabled, or using

the standard GDB Python API with or without UndoDB. We disable trace laziness

in Expositor by immediately performing the equivalent of get_after(t) on lazy nodes

as they are created, where t is the beginning of the time interval on those nodes, and

replacing the lazy nodes by the computed contents.

The results are shown in Figure 4.9(a) for the procedure using get_after, and

Figure 4.9(b) for the procedure using get_before. The x-axes are labeled “action #”,

and indicate particular actions that are taken during the benchmarking procedure:

• action 0 corresponds to creating trace1;

• actions 1–128 correspond to calling get_after or get_before repeatedly to get all

items in trace1;

• action 129 (the vertical gray line) corresponds to creating trace2;

• actions 130–257 correspond to calling get_after or get_before repeatedly to get

all items in trace2.

For scripts using the standard GDB Python API, action 0 and action 129 correspond

instead to creating the equivalent of trace1 or trace2, i.e., creating a standard Python

list containing the times, rather than snapshots, of the relevant calls to foo. The

y-axes indicate cumulative time in seconds, i.e., the total time it takes to perform all

actions up to a particular action, and is mean-averaged over 31 runs.
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The startup plot simply marks the time it takes for Expositor to call the GDB

start command to start the execution, as well as to run any Expositor-specific

startup initialization, before running any scripts. The lazy_trace plot corresponds

to the script written in Expositor above. The strict_trace plot corresponds to the

same script, but uses a variant of Expositor with trace laziness disabled. The

gdb_python plot corresponds to a script written using the standard GDB Python

API without the time-travel features of UndoDB, restarting the execution at action

129 (when the equivalent of trace2 is created), and without caching intermediate

computation. Note that because gdb_python does not use time travel, the gdb_python

scripts in Figures 4.9(a) and 4.9(b) and are the same, i.e., they both run the execution

forward only, and gdb_python records times instead of snapshots; plotting gdb_python

in Figure 4.9(b) allows us to compare forward execution against backward execution.

Lastly, the undodb_python plot uses a nearly identical script as gdb_python, but uses

UndoDB to rewind the execution at action 129 instead of restarting the execution,

and runs the execution backward in Figure 4.9(b).

From Figure 4.9(a), we can see that lazy_trace takes zero time to perform action 0,

whereas all the other implementations take some non-zero amount of time. This is due

to laziness—lazy_trace defers the startup cost until the first get_after call is made in

action 1. We also note that strict_trace is slower than all other implementations, which

suggests that the trace data structure has high overhead when laziness is disabled,

and that undodb_python is slightly faster than gdb_python at action 129, since it is

faster to rewind an execution than to restart it.
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As we expect from laziness, each call to get_after in lazy_trace takes a small addi-

tional amount of time, whereas the other non-lazy implementations do not take any

additional time (since all relevant calls to foo have already been found at action 0).

When we have found about 40% items from trace1, the cumulative time of lazy_trace

reaches that of gdb_python. This tells us that, as long as we do not make queries to

more than 40% of an execution, it takes us less time to construct and query a lazy

trace, compared to other non-lazy implementations. This is actually the common

scenario in debugging, where we expect programmers to begin with some clues about

when the bug occurs. For example, a stack corruption typically occurs near the end

of the execution, so we would likely only have to examine the last few function calls

in the execution.

Furthermore, we observe that the slope of lazy_trace is shallower at actions 130–

257. This is because trace2 reuses foo_trace which was fully computed and cached

during actions 1–128. Thus, Expositor does not have to perform as much work

to compute trace2. strict_trace also benefits from caching since it uses a (non-lazy)

variant of the trace data structure. In contrast, both gdb_python and undodb_python

do not reuse any computation, so action 129 takes the same amount of time as action

0.

Figure 4.9(b) shows the results of the benchmark procedure using get_before.

We can see that it is much slower to use get_before that get_after—all scripts but

gdb_python take longer than in Figure 4.9(a) (gdb_python actually runs forward as we

noted above). This is because these scripts has to run the execution in two passes:

first to get to the end of the execution, then to execute the get_before calls back to
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the beginning of the execution. Unlike other scripts, the gdb_python script only has

to run forward once and not backward, and so is much faster. Still, lazy_trace can be

faster than gdb_python, if queries are made to fewer than about 10% of an execution.

We note that the results of this micro-benchmark actually suggest a lower bound

to the advantage of trace laziness. This micro-benchmark is based on a very simple

Expositor script that filters calls to foo using a simple predicate. Therefore, the

time used for each script is dominated by the time it takes to set a breakpoint at

foo and to run the execution, forward or backward, until the breakpoint. To a lesser

extent, the trace data structure in lazy_trace adds overhead to the time used in com-

parison to gdb_python. The filter predicate in lazy_trace and the equivalent predicate

in gdb_python takes very little time in contrast. We expect more complex Exposi-

tor scripts to spend more time in programmer-provided helper functions such as the

filter predicate or the scan operator, which will mask the overhead of the trace data

structure.

4.4.4 Evaluating the Advantage of the EditHAMT

In our second micro-benchmark, we evaluate the advantages of the EditHAMT data

structure using the following procedure. We first create a trace of EditHAMTs:

351 bar_maps = the_execution.breakpoints("bar") \
352 .map(lambda snap: edithamt.addkeyvalue(
353 None, int(snap.read_arg("z")), snap)) \
354 .scan(edithamt.concat)

For each call to bar(z), we create a new EditHAMT that adds a binding from the

argument z to the snapshot of that call. In other words, an EditHAMT in bar_maps at
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Figure 4.10: The time it takes to get all items in a trace computed by looking up
items from an EditHAMT or other data structures.
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Figure 4.11: The memory it takes to get all items in a trace computed by looking up
items from an EditHAMT or other data structures.
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time t contains bindings from arguments z to the corresponding bar(z) calls preceding

and including the bar(z) call at time t.

We then create another trace that looks up values from bar_maps:

355 bar_of_foos = the_execution.breakpoints("foo")
356 .trailing_merge(
357 lambda snap, bar_map:
358 bar_map.force().find(int(snap.read_arg("y"))),
359 bar_maps)

For each call to foo(x, y), we use the trailing_merge method to look up the immediately

prior EditHAMT in bar_maps, and then look up that EditHAMT for the most recent

bar(z) call where y = z.

Next, we measure the time it takes to call get_after to look up the first item

from bar_of_foos, which includes the time it takes to compute the EditHAMTs in

bar_maps as necessary, as well as to compute parts of the bar_maps and bar_of_foos

traces. We also measure the additional memory used after the call to get_after by

Python,4 which includes the memory required to cache the intermediate computation

of the EditHAMTs in bar_maps as well as that of the bar_of_foos and bar_maps traces,

but does not include the memory usage of other parts of GDB as well as UndoDB.

We repeat these measurements to find the second item, the third item, and so forth,

until there are no more items in bar_of_foos. Finally, we restart Expositor and

repeat the entire procedure using get_before to find all items in bar_of_foos starting

from the end of the execution, instead of using get_after.

For this micro-benchmark, we set the key size of the EditHAMT to k = 35 bits

and its internal node index bit-width to w = 5 bits, which gives it a maximum depth

4We use Python’s sys.getsizeof and gc.get_objects functions to measure Python’s memory usage.
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of 7. These parameters are suitable for 32-bit hash values that are padded to 35 bits.

We compare the above script against several other equivalent scripts using other data

structures, as well as a script that uses the EditHAMT in a variant of Expositor

with trace laziness disabled as described in Section 4.4.3, and a script that uses the

standard GDB Python API without the time-travel features of UndoDB and a list of

Python dicts (hash table) as the equivalent of bar_maps.

The results are shown in Figures 4.10 and 4.11: Figures 4.10(a) and 4.10(b)

show the time measurements using get_after and get_before, respectively, while Fig-

ures 4.11(a) and 4.11(b) show the memory measurements using get_after and get_before,

respectively. The x-axes are labeled “action #”, and indicate particular actions that

are taken during the benchmarking procedure:

• action 0 correspond to creating bar_maps and bar_of_foos;

• actions 1–256 corresponds to calling get_after or get_before repeatedly to get all

items in bar_of_foos.

For the script using the standard GDB Python API, action 0 correspond instead

to creating a list of Python dicts mapping the arguments z of bar to times, rather

than snapshots, of calls to bar. The y-axes indicate cumulative time in seconds or

cumulative memory usage in bytes, i.e., the total time or memory it takes to perform

all actions up to a particular action, and is mean-averaged over 31 runs.

The startup plot simply marks the time or memory it takes for Expositor to call

the GDB start command to start the execution, as well as to run any Expositor-

specific startup initialization, before running any scripts. The lazy_trace_edithamt
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plot corresponds to the Expositor script above that creates EditHAMTs, which

are lazy, in bar_maps. The lazy_trace_rbtree plot corresponds to a similar script,

but creates maps based on immutable red-black trees, which are not lazy, instead of

EditHAMTs in bar_maps. Likewise, the lazy_trace_python_dict plot creates Python

dicts, which are also not lazy, in bar_maps. The strict_trace_edithamt plot corresponds

to a script that uses the EditHAMT in a variant of Expositor with trace laziness

disabled as described in Section 4.4.3. Lastly, the gdb_python script corresponds to

a script written using only the standard GDB Python API without the time-travel

features of UndoDB. Note that because gdb_python does not use time travel, the

gdb_python scripts in Figures 4.10(a)–4.11(b) are all the same, i.e., they all run the

execution forward only, and gdb_python records times instead of snapshots; plotting

gdb_python in Figures 4.10(b) and 4.11(b) allows us to compare forward execution

against backward execution.

From Figure 4.10(a), we can see that the scripts that use Expositor, lazy_trace_X,

take zero time to perform action 0, whereas strict_trace_edithamt and gdb_python,

which are not lazy, take some amount of time to do so, the former more than the

latter. This is the result we expect based on the results in Section 4.4.3. Also,

for lazy_trace_X, each get_after calls takes a small additional amount of time. In

particular, lazy_trace_edithamt takes less additional time than lazy_trace_rbtree and

lazy_trace_python_dict. This is due to EditHAMT laziness: lazy_trace_edithamt only

has to compute as many (parts) of the EditHAMTs in bar_maps as needed to answer

the look up in bar_of_foos. In contrast, red-black trees and Python dicts are not lazy,

so lazy_trace_rbtree and lazy_trace_python_dict have to compute all prior red-black
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trees or Python dicts, respectively, in bar_maps, even before answering the lookup

in bar_of_foos. Also, since there are many more calls to bar than to foo in the test

program (Section 4.4.1), and the bar call that matches a foo call occurs within a few

calls to bar, lazy_trace_edithamt has to examine fewer bar calls than lazy_trace_rbtree

or lazy_trace_python_dict. Furthermore, as long as we make fewer queries than about

30% of the items in bar_of_foos, it is faster to use lazy_trace_edithamt than it is to use

gdb_python. We also note that it is far easier to compose or reuse lazy_trace_edithamt

than gdb_python. For example, if we later decide to compare the argument x of foo to

the matching bar call, we can easily create a new trace that maps foo calls to their x

argument and merge it with bar_of_foos in lazy_trace_edithamt, while we would need

to modify and rerun gdb_python to collect the x arguments.

The results are quite different for lazy_trace_rbtree and lazy_trace_python_dict in

Figure 4.10(b)—action 0 still takes zero time, but action 1, the very first call to

get_before, is very slow, contributing most of the cumulative time by the end of the

micro-benchmark. This is because that very first call to get_before retrieves the very

last item in bar_of_foos near the end of the execution, which looks up one of the

last red-black tree or Python dict in bar_maps to find the matching bar call. As we

explained above, since red-black trees and Python dicts are not lazy, lazy_trace_rbtree

and lazy_trace_python_dict has to compute all prior red-black trees or Python dicts,

respectively, and examine almost all bar calls when performing action 1. These cases

highlight the importance of using lazy data structures in Expositor scripts—non-

lazy data structures can completely defeat the advantage of trace laziness. Interest-

ingly, lazy_trace_edithamt performs similarly whether we use get_before or get_after;
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this is because the computation of each item of bar_of_foosmatches a foo call to a prior

bar call by running the execution backwards, regardless of whether we use get_before

or get_after to look up bar_of_foos. Note that we can easily change the compu-

tation of bar_of_foos to match a future bar call by using rev_scan/rev_trailing_merge

instead of scan/trailing_merge in lazy_trace_edithamt, whereas making the same change

in gdb_python would be significantly complicated by the lack of time-travel features.

Looking at memory usage, Figure 4.11(a) shows that each get_after call in lazy_

trace_edithamt and lazy_trace_rbtree takes a small additional amount of memory.

EditHAMTs use slightly more memory than red-black trees, despite fewer (parts

of) EditHAMTs being computed due to laziness. However, we note that the mem-

ory cost of EditHAMTs is exaggerated in our Python-based implementation, since

it makes extensive use of closures which are rather costly memory-wise in Python.5

We believe that an implementation of EditHAMTs in more efficient languages such

as C or OCaml would use much less memory. In contrast, lazy_trace_python_set

is quite expensive, using an increasing amount of memory after each get_after call.

This is because Python dicts are implemented using hash tables, and since each dict

in bar_maps has to be distinct, we have to make a deep copy of the dicts. This

eventually takes O(n2) memory where n is the number of bar calls in the execution,

which is confirmed by Figure 4.11(a). The gdb_python script uses almost as much

memory as lazy_trace_python_dict by the end of the micro-benchmark, since they

both create many Python dicts, except that gdb_python stores them in a Python list

5In 32-bit Python 2.7.1, a closure over a single variable takes 108 bytes, and each additional
variable takes 28 bytes.
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which has lower overhead than a trace. The strict_trace_edithamt script also uses a

lot memory, more than lazy_trace_edithamt by the end of the micro-benchmark, since

strict_trace_edithamt has to create every EditHAMT in bar_maps (the EditHAMTs

themselves are lazy), unlike lazy_trace_edithamt which only creates EditHAMTs in

bar_maps when they are looked up.

We see a similar pattern in Figure 4.11(b) for memory usage as in Figure 4.10(b)

for time usage: action 1 of lazy_trace_rbtree and lazy_trace_python_dict contributes

almost all of the cumulative memory usage by the end of the execution. As we

explained above for Figure 4.10(b), this is due to having to compute almost all red-

black trees or Python dicts in bar_maps.

4.5 Firefox Case Study: Delayed Deallocation Bug

To put Expositor to the test, we used it to track down a subtle bug in Firefox that

caused it to use more memory than expected (Zakai, 2011). The bug report contains a

test page that, when scrolled, creates a large number of temporary JavaScript objects

that should be immediately garbage collected. However, in a version of Firefox that

exhibits the bug (revision c5e3c81d35ba), the memory usage increases by 70MB (as

reported by top), and only decreases 20 seconds after a second scroll. As it turns out,

this bug has never been directly fixed—the actual cause is a data race, but the official

fix instead papers over the problem by adding another GC trigger.

Our initial hypothesis for this bug is that there is a problem in the JavaScript

garbage collector (GC). To test this hypothesis, we first run Firefox under Expos-
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Figure 4.12: Timeline of items in traces used to debug Firefox.
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itor, load the test page, and scroll it twice, temporarily interrupting the execution

to call the_execution.get_time() just before each scroll, time tscroll1 and time tscroll2 ,

and after the memory usage decreases, tend . Then, we create several traces to help us

understand the GC and track down the bug, as summarized in Figure 4.12.

We observe the GC behavior using a trace of the calls to (gc_call) and returns

from (gc_return) function js_GC (Figure 4.12a).6 Also, we find out when memory is

allocated or released to the operating system using mmap2 and munmap traces of the

same-named system calls (Figure 4.12b). Printing these traces reveals some oddly

inconsistent behavior: the GC is called only once after tscroll1 , but five times after

tscroll2 ; and memory is allocated after tscroll1 and deallocated just before tend . To make

sense of these inconsistencies, we inspect the call stack of each snapshot in gc_call

and discover that the first js_GC call immediately after a scroll is triggered by a scroll

event, but subsequent calls are triggered by a timer.

We now suspect that the first scroll somehow failed to trigger the creation of

subsequent GC timers. To understand how these timers are created, we write a

function called set_tracing that creates a trace for analyzing set-like behavior, using

EditHAMTs to track when values are inserted or removed, and apply set_tracing to

create timer_trace by treating timer creation as set insertion, and timer triggering as

set removal (Figure 4.12c). This trace reveals that each js_GC call creates a GC timer

(between gc_call and gc_return snapshots), except the js_GC call after the first scroll

(and the last js_GC call because GC is complete).

6The index=-1 optional argument to execution.breakpoints indicates that the breakpoint should
be set at the end of the function.
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To find out why the first js_GC call does not create a GC timer, we inspect call

stacks again and learn that a GC timer is only created when the variable gcChunks-

WaitingToExpire is nonzero, and yet it is zero when the first js_GC returns (at the first

gc_return snapshot). Following this clue, we create a watchpoint trace on gcChunks-

WaitingToExpire and discover that it remained zero through the first js_GC call and

becomes nonzero only after the first js_GC returns. It stayed nonzero through the

second scroll and second js_GC call, causing the first GC timer to be created after

that (Figure 4.12d).

We posit that, for the GC to behave correctly, gcChunksWaitingToExpire should

become nonzero at some point during the first js_GC call. Inspecting call stacks

again, we find that gcChunksWaitingToExpire is changed in a separate helper thread,

and that, while the GC owns a mutex lock, it is not used consistently around gcChunks-

WaitingToExpire. This leads us to suspect that there is a data race. Thus, we develop

a simple race detection script, one_lock, that works by comparing each access to a

chosen variable against prior accesses from different threads (Section 4.3.1 explains

how we track prior accesses), and checking if a particular lock was acquired or released

prior to those accesses. For each pair of accesses, if at least one access is a write, and

the lock was not held in one or both accesses, then there is a race, which we indicate

as an item containing the snapshot of the prior access. We apply this race detector to

gcChunksWaitingToExpire and confirm our suspicion that, after tscroll1 , there is a write

that races with a prior read during the first js_GC call when the timer should have

been created (Figure 4.12e).
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To give a sense of Expositor’s performance, it takes 2m6s to run the test page

to tscroll2 while printing the gc_call trace, with 383MB maximum resident memory

(including GDB, since Expositor extends GDB’s Python environment). The equiv-

alent task in GDB/UndoDB without Expositor takes 2m19s and uses 351MB of

memory (some difference is inevitable as the test requires user input, and Firefox

has many sources of nondeterminism). As another data point, finding the race after

tscroll1 takes 37s and another 5.4MB of memory.

The two analyses we developed, set_tracing and one_lock, take only 10 and 40

lines of code to implement, respectively, and both can be reused in other debugging

contexts.

4.6 Related Work

Expositor provides scripting for time-travel debuggers, with the central idea that

a target program’s execution can be manipulated (i.e., queried and computed over)

as a first-class object. Prior work on time-travel debugging has largely provided low-

level access to the underlying execution without consideration for scripting. Of the

prior work on scriptable debugging, Expositor is most similar to work that views

the program as an event generator—with events seeded from function calls, memory

reads/writes, etc.—and debugging scripts as database-style queries over event streams

or as dataflow-oriented stream transformers. None of this scripting work includes the

notion of time travel.
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4.6.1 Time-Travel Debuggers

Broadly speaking, there are two classes of time-travel debuggers. Omniscient debug-

gers work by logging the state of the program being debugged after every instruc-

tion, and then reconstructing the state from the log on demand. Some examples

of omniscient debuggers include ODB (Lewis, 2003), Amber (also known as Chron-

icle) (O’Callahan, 2006), Tralfamadore (Lefebvre et al., 2012), and TOD (Pothier

et al., 2007). In contrast, replay debuggers work by logging the results of system calls

the program makes (as well as other sources of nondeterminism) and making inter-

mediate checkpoints, so that the debugger can reconstruct a requested program state

by starting at a checkpoint and replaying the program with the logged system calls.

Several recent debuggers of this style include URDB (Visan et al., 2011) and Un-

doDB (Undo Software) (which we used in our prototype) for user-level programs, and

TTVM (King et al., 2005) and VMware ReTrace (Xu et al., 2007) for entire virtual

machines. Expositor could target either style of debugger in principle, but replay

debugging scales much better (e.g., about 1.7× recording overhead for UndoDB vs.

300× for Amber). Engblom (Engblom, 2012) provides a more comprehensive survey

on time-travel debugging techniques and implementations.

The above work focuses on implementing time travel efficiently; most systems

provide very simple APIs for accessing the underlying execution, and do not consider

how time travel might best be exploited by debugging scripts.

Similarly, GDB’s Python environment simply allows a Python program to execute

GDB (and UndoDB) commands in a callback-oriented, imperative style. This is quite
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tedious, e.g., just counting the number of calls to a particular function takes 16 lines

of code (Section 4.1.2), and cannot be composed with other scripts (e.g., to refine

the count to calls that satisfy predicate p). Expositor’s notion of traces is simpler

and more composable: function call counting can be done in one or two lines by

computing the length of a breakpoint trace; to refine the count, we simply filter the

trace with p before counting (Section 4.1.2).

Tralfamadore (Head et al., 2012) considers generalizing standard debugging com-

mands to entire executions, but does not provide a way to customize these commands

with scripts.

Whyline is a kind of omniscient debugger with which users can ask “why did ”

and “why didn’t” questions about the control- and data-flow in the execution, e.g.,

“why did this Button’s visible = true” or “why didn’t Window appear ” (Ko and Myers,

2008). Whyline records execution events (adding 1.7× to 8.5× overhead), and when

debugging begins, it uses program slicing (Xu et al., 2005) to generate questions

and the corresponding answers (imposing up to a 20× further slowdown). Whyline

is good at what it does, but its lack of scriptability limits its reach; it is hard to

see how we might have used it to debug the Firefox memory leak, for example. In

concept, Whyline can be implemented on top of Expositor, but limitations of GDB

and UndoDB (in particular, the high cost of software watchpoints, and the inability

to track data-flow through registers) makes it prohibitively expensive to track fine-

grained data-flow in an execution. We plan to overcome this limitation in future

work, e.g., using EDDI (Zhao et al., 2008) to implement fast software watchpoints.
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4.6.2 High-Level (Non-callback Oriented) Debugging Scripts

Expositor’s design was inspired by MzTake (Marceau et al., 2007), a Scheme-based,

interactive, scriptable debugger for Java based on functional reactive programming.

In MzTake, the program being debugged is treated as a source of event streams

consisting of events such as function calls or value changes. Event streams can be

manipulated with combinators that filter, map, fold, or merge events to derive new

event streams. As such, an event stream in MzTake is like a trace in Expositor.

Computations in MzTake are implicitly over the most recent value of a stream and are

evaluated eagerly as the target program runs. To illustrate, consider our example of

maintaining a shadow stack from Section 4.1.3. In MzTake, when the target program

calls a function, a new snapshot event s becomes available on the calls stream. The

calls_rets stream’s most recent event is the most recent of calls and rets, so MzTake

updates it to s. Since shadow_stacks is derived from calls_rets, MzTake updates its

most recent event by executing map(int, s.read_retaddrs())).

This eager updating of event streams, as the program executes, can be less efficient

than using Expositor. In particular, Expositor evaluates traces lazily so that

computation can be narrowed to a few slices of time. In Section 4.1.3, we find the

latest smashed stack address without having to maintain the shadow stack for the

entire program execution, as would be required for MzTake. Also, Expositor traces

are time indexed, but MzTake event streams are not: there is no analogue to tr.get_at(

i) or tr.slice(t0, t1) in MzTake. We find time indexing to be very useful for interactivity:

we can run scripts to identify an interesting moment in the execution, then explore
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the execution before and after that time. Similarly, we can learn something useful

from the end of the execution (e.g., the address of a memory address that is double-

freed), and then use it in a script on an earlier part of the execution (e.g., looking for

where that address was first freed). MzTake requires a rerun of the program, which

can be a problem if nondeterminism affects the relevant computation.

Dalek (Olsson et al., 1991) and Event Based Behavioral Abstraction (EBBA) (Bates,

1988) bear some resemblance to MzTake and suffer the same drawbacks, but are much

lower-level, e.g., the programmer is responsible for manually managing the firing and

suppression of events. Coca (Ducassé, 1999) is a Prolog-based query language that

allows users to write predicates over program states; program execution is driven by

Prolog backtracking, e.g., to find the next state to match the predicate. Coca provides

a retrace primitive that restarts the entire execution to match against new predicates.

This is not true time travel but re-execution, and thus suffers the same problems as

MzTake.

PTQL (Goldsmith et al., 2005), PQL (Martin et al., 2005), and UFO (Augus-

ton et al., 2002) are declarative languages for querying program executions, as a

debugging aid. Queries are implemented by instrumenting the program to gather the

relevant data. In principle, these languages are subsumed by Expositor, as it is

straightforward to compile queries to traces. Running queries in Expositor would

allow programmers to combine results from multiple queries, execute queries lazily,

and avoid having to recompile (and potentially perturb the execution of) the program

for each query. On the other hand, it remains to be seen whether Expositor traces

would be as efficient as using instrumentation.
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Chapter 5

Towards a Grand Unified Debugger

This dissertation is part of a much larger vision to rethink the way we build high qual-

ity software. Over the course of our research, we have come to realize that program

analysis tools are part of a much larger debugging process. Therefore, we should con-

sider how the debugging process can be augmented with program analyses and bug

finding tools, rather than building tools that are then shoehorned into the debugging

process. Furthermore, we observe that debugging is a largely distinct process from

programming and requires a different skill set (albeit with some overlap). Program-

ming is a constructive engineering activity, where programmers begin with a design

goal, then incrementally write source code to achieve that goal. In contrast, debug-

ging is a deductive scientific activity, where programmers begin with a (potential)

misbehavior in a program and source code for the program,1 then derive hypotheses

to explain the misbehavior and eventually track down the root cause.

Based on the above viewpoint, we envision designing a Grand Unified Debugger

(GUD)2 that specifically addresses the needs of programmers performing debugging

1If they are lucky, it will be source code they have written; more likely, it will be source code
written by someone else, or no source code at all.

2A more humble name would be “Integrated Debugging Environment”, but that would be too
easily confused with “Integrated Development Environment”.
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tasks, as a complement to integrated development environments (IDEs) that are de-

signed for programming tasks. Since debugging typically begins by examining a (po-

tential) misbehavior, we propose that the core artifacts of a GUD should be program

paths or execution traces that demonstrate or exhibit the misbehavior, in contrast

to IDEs where the central artifacts are typically source code. These program paths

or execution traces may be concretely generated from test cases or by running the

program under an interactive debugger, or they may be synthetically derived, e.g.,

from the output of program analysis tools. We believe that the GUD should provide

the following core features:

1. a user interface to generate, inspect and analyze program paths or execution

traces, and relate them back to source code;

2. a library of program analyses for debugging, as well as facilities to customize

existing analyses or write new analyses; and

3. ways for programmers to organize debugging hypotheses to be systematically

confirmed or refuted.

5.1 A User Interface for Debugging

We believe that a combination of Path Projection and Expositor would be an

excellent basis for a user interface to generate, inspect and analyze program paths or

execution traces. For example, given a program path, we imagine first using Path

Projection as a user interface for interactive debugging to generate an execution
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trace that corresponds to that program path. Then, we can use Expositor, aug-

mented with a visual timeline-like interface resembling Figure 4.12, to examine an

execution trace at a high level overview of events. We can also use Path Projec-

tion again to examine execution trace segments at a low, binary or source-code level

of detail.

There are many interesting research questions that need to be answered to de-

velop this user interface. For example, how should Path Projection be adapted to

visualize program paths that are incrementally generated via an interactive debugger,

or to visualize partial trace segments, since a complete execution trace would result

in an excessively large visualization? As another example, how should the timeline

interface for Expositor be designed to visualize a trace of events, such as break-

points, that may simultaneously be densely packed around certain trace segments,

yet be sparsely spread throughout the entire trace?

5.2 Program Analyses for Debugging

Expositor, in a sense, is a primitive realization of the GUD vision in that it unifies

dynamic program analysis with interactive debugging. We believe that debugging

scripts written using the Expositor API are essentially as expressive as dynamic

program analyses, but are written in a more declarative style, and are more suited

for analyzing traces interactively. Nonetheless, more research is needed to determine

what sort of dynamic program analysis can be implemented effectively in Expositor,

to come up with new kinds of dynamic program analysis that can take full advantage
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of laziness, and to determine the best way to compose dynamic program analyses from

small, reusable components such that intermediate results can be easily examined and

the analyses can be customized by programmers.

As a first step to answering these questions, we have developed a preliminary

version of a happens-before data race detector (Lamport, 1978) in Expositor. While

we were able to write the happens-before data race detector as an Expositor script,

it is currently impractical to use it due to a number of limitations in our Expositor

prototype. In particular, our Expositor prototype treats GDB and UndoDB as

black boxes, using GDB/UndoDB commands to query for breakpoint or watchpoint

events in an execution trace. This turns out to be very slow: if we had used the

happens-before race detector in place of the simple one_lock race detector in our

Firefox case study (Section 4.5), it would have taken hours instead of minutes to

verify the data race, due to processing the sheer quantity of lock/unlock events even

in a short trace segment. Furthermore, it is difficult to track data flow quickly and

accurately using GDB/UndoDB, since hardware watchpoints are limited to only four

memory addresses (on x86), GDB’s software watchpoints are prohibitively slow, and

it is non-trivial to use GDB to track data flow through registers.

We believe that solving these problems requires deeper integration between Ex-

positor and the time-travel backend. At first, this would allow us to implement

techniques such as fast watchpoints based on EDDI (Zhao et al., 2008) in Expos-

itor. Moreover, this would create many opportunities for new analysis techniques

based on time-travel debugging technology. In particular, time-travel provides de-

terministic replay, which means that we can implement dynamic program analysis
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techniques in a far more intrusive manner without fear of perturbing the execution,

for example, to track data flow in a manner similar to Valgrind (Nethercote and

Seward, 2007). Also, deterministic replay potentially allows us to run Expositor

scripts more quickly by making parallel queries to the time-travel backend.

5.2.1 Static Program Analyses for Debugging

Static program analysis is another style of program analysis that works not by run-

ning the target software, but by analyzing the source code or binary. Static program

analyses can potentially find many more bugs than dynamic program analyses, how-

ever, static program analyses are usually less precise in that they may report more

false warnings.

One interesting research question to ask is if we can apply static program analyses

to Expositor for debugging. In other words, can we combine static program analy-

ses with time-travel based dynamic program analyses, either to optimize time-travel

queries, or to increase the precision of the static program analyses? Perhaps we can

use an approach similar to Mix to combine static program analyses and time-travel

dynamic program analyses across disjoint trace segments.

Conversely, can we use the Expositor API to write static program analyses, i.e.,

to ensure the correctness of all possible executions of the target software? We can

perhaps achieve this by substituting symbolic executors (Cadar et al., 2011) or model

checkers (Jhala and Majumdar, 2009) in place of the time-travel debugger. Unlike

time-travel debuggers which can only answer queries about particular execution trace,

symbolic executors and model checkers can generate and answer queries about all
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possible execution traces of the target software. This approach eliminates the need to

generate a failing execution in the time-travel debugger, which is especially difficult

when the bug is nondeterministic, before the debugging process can begin.

5.3 A Systematic Approach to Debugging

When debugging, it can be more productive to keep the debugging process organized

by deriving hypotheses to explain the misbehavior and systematically confirming or

refuting each hypothesis, in a manner analogous to using specification documents to

organize programming. One possible approach is to use checklists: as a side result

of our user studies on Path Projection, we found that when checklists are used,

programmers were able to verify the results of program analysis 41% faster than

without checklists (Section 2.3). Similarly, Dillig et al. (2012) recently presented a

method to automatically derive checklists to triage program analyses, and found that

programmers improved their triaging accuracy from 33% to 90%, yet spent only 20%

of the time to do so. These checklists were designed to triage program analysis results;

we believe it would be interesting to consider how to design checklists for deriving

debugging hypotheses, or for guiding the systematic evaluation of these hypotheses.
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Chapter 6

Conclusion

In this dissertation, we have presented three approaches to designing better program

analysis tools that are more accessible and useful to programmers.

First, to improve the user interface of program analysis tools, we introduced Path

Projection, a new program visualization toolkit that is specifically designed to

help programmers navigate and understand program paths, a common output of

many program analysis tools. Path Projection visualizes multiple paths side-by-

side, using function call inlining and code folding to show those paths in a compact

format. Our interface also includes a multi-query search facility to locate and reveal

multiple terms simultaneously. To our knowledge, Path Projection is the first

tool-independent framework for visualizing program analysis results in particular,

and program paths in general.

We measured the performance of Path Projection for triaging error reports

from Locksmith, a data race detection tool for C. For this experiment, we added

a task-specific checklist that enumerates the sub-tasks needed to triage each error

report. Our controlled user study showed that, compared to a standard viewer, Path

Projection reduced completion times for triaging data races, with no adverse effect

on accuracy, and that users felt that Path Projection was useful. We also found the
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checklist improved performance overall compared to a pilot study. To our knowledge,

ours is the first study of the impact of the user interface on the efficiency and accuracy

of triaging program analysis error reports.

Second, to enable programmers to customize a program analysis tool for a particu-

lar target software, we presented Mix, a new program analysis framework that allows

programmers to apply either type checking or symbolic execution to different parts

of the target software, trading efficiency for precision as appropriate. The key feature

of our approach is that the mixed systems are essentially completely independent,

and they are used in an off-the-shelf manner. Only at the boundaries between typed

blocks—which the user inserts to indicate where type checking should be used—and

symbolic blocks—the symbolic checking annotation—do we invoke special mix rules to

translate information between the two systems. We proved that Mix is sound (which

implies that type checking and symbolic execution are also independently sound).

We also described a preliminary implementation, Mixy, which performs null/non-

null type qualifier inference for C. We identified several cases in which symbolic

execution could eliminate false positives from type inference. We believe that Mix

provides a promising new approach to trade off precision and efficiency in program

analysis.

Finally, to give programmers greater insight into the inner workings of program

analyses, we designed Expositor, a novel environment that unifies dynamic program

analysis and interactive debugging, based on scripting and time-travel debugging. Ex-

positor allows programmers to project a program execution onto immutable traces,

which support a range of powerful combinators including map, filter, merge, and scan.
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The trace abstraction gives programmers a global view of the program, and is easy to

compose and reuse, providing a convenient way to correlate and understand events

across the execution timeline. For efficiency, Expositor traces are implemented us-

ing a lazy, interval-tree-like data structure. Expositor materializes the tree nodes

on demand, ultimately calling UndoDB to retrieve appropriate snapshots of the pro-

gram execution. Expositor also includes the EditHAMT, which lets script writers

create lazy sets, maps, multisets, and multimaps that integrate with traces without

compromising their laziness. We ran two micro-benchmarks that show that Expos-

itor scripts using lazy traces can be faster than the equivalent non-lazy scripts in

common debugging scenarios, and that the EditHAMT is crucial to ensure that trace

laziness is not compromised. We used Expositor to find a buffer overflow in a small

program, and to diagnose a very complex, subtle bug in Firefox. We believe that

Expositor holds promise for helping programmers better understand complex bugs

in large software systems.

As future work, we propose the Grand Unified Debugger (GUD), a conceptual en-

vironment designed specifically for debugging tasks. The core artifacts of the GUD are

program paths or execution traces, instead of source code as for IDEs, and the GUD

makes use of ideas from Path Projection, Expositor and Mix to allow program-

mers to examine these paths or traces. In addition, we suggest several new ideas for

the GUD, including a timeline-like visualization for Expositor-style traces, program

analysis techniques that combine time-travel debugging with heavyweight dynamic

analysis or static analysis, as well as checklists to support systematic debugging.
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Appendix A

Mix Soundness

To show the soundness of Mix, we consider a standard big-step operational semantics

for our simple language of expressions (Appendix A.1). We then show the soundness

of type checking and symbolic execution separately (Appendices A.2 and A.3, respec-

tively), which will provide the basis for Mix soundness (Appendix A.4). This section

is an expansion of Section 3.2.3.

Type soundness is entirely standard. For symbolic execution soundness, we con-

sider two notions in turn: when an execution is sound with respect to a path of

exploration and when a set of executions cover all possible concrete execution paths.

One challenge for showing Mix soundness is that symbolic execution allows a tempo-

rary violation of the type invariant on memory used by the type checker, which must

be restored before entering a type checking phase.

A.1 Operational Semantics

Figure A.1 gives a big-step operational semantics for our language of expressions e. In

these rules, M is a concrete memory that maps locations l to values v. We make this

a mapping, rather than a list, to reflect the fact that the memory is actually updated
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Big-Step Operational Semantics. E ` 〈M ; e〉 → 〈M ′; v〉

SVar

E, x : v ` 〈M ;x〉 → 〈M ; v〉

SVal

E ` 〈M ; v〉 → 〈M ; v〉

SPlus
E ` 〈M ; e1〉 → 〈M1;n1〉 E ` 〈M1; e2〉 → 〈M2;n2〉

E ` 〈M ; e1 + e2〉 → 〈M2;n1 + n2〉

SEq
E ` 〈M ; e1〉 → 〈M1; v1〉 E ` 〈M1; e2〉 → 〈M2; v2〉

E ` 〈M ; e1 = e2〉 → 〈M2; v1 = v2〉

SNot
E ` 〈M ; e1〉 → 〈M1; b1〉

E ` 〈M ;¬e1〉 → 〈M1;¬b1〉

SAnd
E ` 〈M ; e1〉 → 〈M1; b1〉 E ` 〈M1; e2〉 → 〈M2; b2〉

E ` 〈M ; e1 ∧ e2〉 → 〈M2; b1 ∧ b2〉

SIf-True
E ` 〈M ; e1〉 → 〈M1; true〉 E ` 〈M1; e2〉 → 〈M2; v〉

E ` 〈M ; if e1 then e2 else e3〉 → 〈M2; v〉

SIf-False
E ` 〈M ; e1〉 → 〈M1; false〉 E ` 〈M1; e3〉 → 〈M3; v〉

E ` 〈M ; if e1 then e2 else e3〉 → 〈M3; v〉

SLet
E ` 〈M ; e1〉 → 〈M1; v1〉 E, x : v1 ` 〈M1; e2〉 → 〈M2; v2〉

E ` 〈M ; let x = e1 in e2〉 → 〈M2; v2〉

SRef
E ` 〈M ; e1〉 → 〈M1; v1〉 l 6∈ dom(M1)

E ` 〈M ; ref e1〉 → 〈M1[l 7→ v1]; l〉

SAssign
E ` 〈M ; e1〉 → 〈M1; l〉 E ` 〈M1; e2〉 → 〈M2; v2〉 l ∈ dom(M2)

E ` 〈M ; e1 := e2〉 → 〈M2[l 7→ v2]; v2〉

SDeref
E ` 〈M ; e1〉 → 〈M1; l1〉 l1 ∈ dom(M1)

E ` 〈M ; !e1〉 → 〈M1;M1(l1)〉

SSymBlock
E ` 〈M ; e1〉 → 〈M1; v1〉

E ` 〈M ; {s e1 s}〉 → 〈M1; v1〉

STypBlock
E ` 〈M ; e1〉 → 〈M1; v1〉

E ` 〈M ; {t e1 t}〉 → 〈M1; v1〉

Figure A.1: Standard big-step operational semantics.
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on the running system. The notation M [l 7→ v] indicates an update or extension

of M so that l 7→ v (depending on whether or not l ∈ dom(M), respectively). We

consider the set of locations to be included in the set of values. The basic form of the

evaluation judgment:
E ` 〈M ; e〉 → 〈M ′; v〉

says that in a concrete environment E, an initial memory M and an expression e

evaluate to a resulting memory M ′ and a value v. A concrete environment maps

variables to values (i.e., we define E ::= ∅ | E, x : v). To indicate boolean values,

we use the meta-variable b (i.e., we let b ::= false | true). To reiterate and make it

explicit, we work with following semantic domains:

v ∈ Val concrete values
x ∈ Var program variables
l ∈ Loc ⊆ Val memory locations

E : Var⇀fin Val = Env concrete environments
M : Loc⇀fin Val = Mem concrete memories

In addition to the rules shown in Figure A.1, there are also rules that produce

error when none of these rules apply, which is also standard. We define:

r ::= 〈M ; v〉 | error

as the result of an execution, so the general form of our execution judgment is as

follows:
E ` 〈M ; e〉 → r

For example, we have the following error rule for ¬e:

SNot-Error
E ` 〈M ; e1〉 → r1 r1 6= 〈M1; b1〉

E ` 〈M ;¬e1〉 → error
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A.2 Type Soundness

Figure A.2 shows the type checking rules for our language. Again, these rules are

entirely standard. As usual, we introduce a memory type environment Λ that maps

locations to types, and we update the typing judgment to carry this additional envi-

ronment:
Γ `Λ e : τ

Because Λ is constant in all rules, we elide it except where needed for clarity in

presentation. The memory type environment Λ is used to assign types to locations l;

specifically, we add the following typing rule:

TLoc

Γ `Λ l : Λ(l) ref

Type Checking. Γ ` e : τ

TVar

Γ, x : τ ` x : τ

TInt

Γ ` n : int

TBool

Γ ` b : bool

TPlus
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

TEq
Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 = e2 : bool

TNot
Γ ` e : bool

Γ ` ¬e : bool

TAnd
Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ∧ e2 : bool

TIf
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

TLet
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

TRef
Γ ` e : τ

Γ ` ref e : τ ref

TAssign
Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1 := e2 : τ

TDeref
Γ ` e : τ ref

Γ ` !e : τ

Figure A.2: Standard type checking rules.
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We write Λ′ ⊇ Λ if Λ′ is an extension of Λ. Formally, Λ′ ⊇ Λ if:

dom(Λ′) ⊇ dom(Λ) and Λ′(l) = Λ(l) for all l ∈ dom(Λ) .

We also use the same notation for other mapping extensions.

To prove type soundness, we define a soundness relation that says that the val-

ues in the concrete environment and concrete memory are consistent with the type

environments:

Definition 2 (Type State Soundness Relation)

We define soundness relations for type environments as follows:

〈E;M〉 ∼ 〈Γ; Λ〉 if

E ∼ 〈Γ; Λ〉 and M ∼ Λ

E ∼ 〈Γ; Λ〉 if

∅ `Λ E(x) : Γ(x) for all x ∈ dom(E) = dom(Γ)

M ∼ Λ if

∅ `Λ M(l) : Λ(l) for all l ∈ dom(M) = dom(Λ)

The following theorem states type soundness and is proved only for the rules in

Figure A.2 (i.e., everything excluding the nested block rule in Figure 3.4).

Theorem 3 (Type Soundness)

If

E ` 〈M ; e〉 → r and

Γ `Λ e : τ such that

〈E;M〉 ∼ 〈Γ; Λ〉 ,
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then ∅ `Λ′ v : τ and M ′ ∼ Λ′ for some M ′, v, and Λ′ such that r = 〈M ′; v〉 and

Λ′ ⊇ Λ.

Proof

By induction on the derivation of E ` 〈M ; e〉 → r.

Notice that above theorem says that r, the result of evaluating a well-typed ex-

pression, cannot be error.

A.3 Symbolic Execution Soundness

Intuitively, symbolic execution begins with symbolic values α for unknown inputs and

accumulates a symbolic expression s that represents the result of the program along a

path. Thus, at a high-level, a symbolic execution is sound along a path if interpreting

the symbolic result under an assignment to the symbolic values (i.e., the unknowns)

yields the same value as the concrete execution along that path.

To capture this assignment to symbolic values, or valuation, we write:

V : SymVal⇀fin Val ∪Mem

for a finite mapping from symbolic values α (drawn from set SymVal) to concrete

values v (from Val) or concrete memories M (from Mem). Recall that a concrete

environment E : Var ⇀fin Val is a finite mapping from variables to values, and a

concrete memory M : Loc⇀fin Val is a finite mapping from locations to values.
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Concretization. JsKV = v JΣKV = E JmKV = M

Ju:τKV def
= JuKV

JαKV def
= V (α)

JvKV def
= v

Ju1:int + u2:intKV def
= Ju1KV + Ju2KV

Js1 = s2KV
def
= Js1KV = Js2KV

J¬gKV def
= ¬JgKV

Jg1 ∧ g2KV
def
= Jg1KV ∧ Jg2KV

Jm[u:τ ref]KV def
= JmKV (JuKV )

JµKV def
= V (µ)

Jm, (s1 � s2)KV def
= JmKV

[
Js1KV 7→ Js2KV

]
Jm, (s1

a� s2)KV def
= JmKV

[
Js1KV 7→ Js2KV

]
J∅KV def

= ∅
JΣ, x : sKV def

= JΣKV , x : JsKV

Figure A.3: Interpretation of symbolic expressions, symbolic memories, and symbolic
environments.

Given a valuation V , the interpretation of symbolic expressions, symbolic memo-

ries, and symbolic environments is largely as expected, which we define in Figure A.3.

We write the following for these interpretations:

JsKV = v JmKV = M JΣKV = E

The interpretation of symbolic expressions ignores the type annotation, though would

be ill-defined if the symbolic expressions were not well-typed with respect to the

valuation V .
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Our typed symbolic execution tracks the type of symbolic expressions (i.e., the

type of the value under any valuation that respects the types of the unknowns) and

halts upon encountering ill-typed expressions. Observe that this behavior matches

the concrete executor (i.e., the big-step operational semantics in Figure A.1). This

typing of symbolic expressions must be with respect to a memory typing Λ and thus

must be part of the soundness relation. Moreover, the symbolic executor distinguishes

between the locations in the arbitrary memory on entry and the locations that come

from allocations during execution, which must be reflected in the symbolic state

soundness relation.

Definition 4 (Symbolic State Soundness Relation)

We define soundness relations for environment-memory pairs and memory-value pairs

using the concretization defined above, which are parametrized by a valuation V , a

memory typing for the arbitrary memory on entry Λ0, and the memory typing for

locations allocated during symbolic execution Λ.

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m〉 if

JΣKV = E and E ∼ 〈Γ; Λ0 ∗ Λ〉 and
` Σ : Γ for some Γ and
JmKV = M and Λ0 `V m : Λ0 ∗ Λ

〈M ; v〉 ∼Λ0·V ·Λ 〈m;u:τ〉 if

JmKV = M and Λ0 `V m : Λ0 ∗ Λ and
Ju:τKV = v and ∅ `Λ0∗Λ v : τ

where we write Λ1 ∗ Λ2 to mean the memory typing that is the union of submemory

typings Λ1 and Λ2 with disjoint domains.

There are several pieces to these definitions:
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1. The interpretation of a symbolic part under the valuation V yields the concrete

part (e.g., JΣKV = E).

2. Under the valuation V , all symbolic expressions (e.g., u:τ) correspond to values

that are well-typed in a concrete memory with typing Λ0 ∗ Λ (e.g., ∅ `Λ0∗Λ

Ju:τKV : τ).

To check this second piece for writes and allocations in m, the soundness relations

depend on the following auxiliary judgment on symbolic memories:

Λ `V m : Λ′

The above judgment says that under a valuation V , a symbolic memory m corre-

sponds to a concrete memory whose location types are given by Λ′ and all symbolic

expressions that record writes and allocations are well-typed according to Λ′. The

memory typing Λ gives a hypothesis on the location types of the initial memory µ. In

summary, we can show that if Λ `V m : Λ′, then dom(Λ′) = dom(JmKV ). The rules

that define the above judgment are as follows:

MTHyp
V (µ) ∼ Λ0

Λ0 `V µ : Λ0

MTUpdate
Λ0 `V m : Λ ∅ `Λ Ju1:τ1KV : τ1 ∅ `Λ Ju2:τ2KV : τ2

Λ0 `V m, (u1:τ1 � u2:τ2) : Λ

MTAlloc
Λ0 `V m : Λ ∅ `Λ Ju:τKV : τ V (α) 6∈ dom(JmKV )

Λ0 `V m, (α:τ ref
a� u:τ) : (Λ, V (α) : τ)

Rule MTHyp asserts that the concrete initial memory given by V (µ) is typed by

Λ0. Then, rules MTUpdate and MTAlloc check that the symbolic expressions in

the update-allocation log are well-typed, that is, the concretization of each symbolic
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expression has the type claimed by its typing annotation (e.g., observe τ1 in the

premise ∅ `Λ Ju1:τ1KV : τ1 of MTUpdate). However, this judgment does not ensure

that writes are well-typed (i.e., in MTUpdate, types τ1 and τ2 do not need to be

compatible), as symbolic execution allows temporarily type-inconsistent memory.

Temporarily Type-Inconsistent Memory. A property of symbolic execution

is that it does not require all writes to be consistent with the memory typing (i.e.,

Λ0 ∗ Λ), as long as the consistency is restored before assigning types to expressions

that use memory. This temporary violation of the memory typing invariant allows us

to obtain, for example, flow-sensitive type checking. The memory type consistency

judgment is a validation that the memory typing invariant gets restored, and its

soundness is stated as follows:

Lemma 5 (Memory Type Consistency Soundness)

If ` m ok U and Λ0 `V m : Λ, then

∅ `Λ JmKV (l) : Λ(l) for all l ∈ dom(Λ)\L

where
L =

⋃
s1�s2∈U

Js1KV .

As a corollary, if
` m ok and Λ0 `V m : Λ ,

then JmKV ∼ Λ.
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Proof

By induction on the derivation of ` m ok U .

Informally, the above says that if we have a symbolic memory m that we have

checked for consistency (i.e., ` m ok U), a memory typing invariant Λ, and a valu-

ation V , then the concrete memory under the valuation V is consistent with Λ at

all locations except perhaps those in the potentially inconsistent set U . When U is

empty, then we know we have restored the memory typing invariant.

Soundness of Symbolic Execution along a Path. For the proof of sym-

bolic execution soundness, we need a technical lemma—Lemma 6 (Path Condition

Prefix)—that says that the executor only adds constraints to the path condition g(S)

(i.e., the path condition becomes stronger monotonically).

Lemma 6 (Path Condition Prefix)

If Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉 and Jg(S ′)KV , then Jg(S)KV .

Proof

By induction on the derivation of Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉.

Finally, we can show the soundness of symbolic execution along a path. Observe

the key premise Jg(S ′)KV , which says that the path condition accumulated during

symbolic execution holds under this valuation. This constraint allows us to state

that the given concrete and symbolic executions follow the same path. The following
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theorem is proven only for the rules in Figures 3.2 and 3.3 (i.e., everything excluding

the nested block rule in Figure 3.4).

Theorem 7 (Symbolic Execution Soundness)

If

E ` 〈M ; e〉 → r and

Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉 such that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S ′)KV ,

then
r ∼Λ′

0·V ′·Λ′ 〈m(S ′); s〉

for some V ′ ⊇ V and some Λ′0,Λ
′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

Proof

By induction on the derivation of E ` 〈M ; e〉 → r.

Case SVar

By assumption, we have that

SVar

E, x : v ` 〈M ;x〉 → 〈M ; v〉

The only symbolic execution rule that applies is SEVar.

SEVar

Σ, x : s ` 〈S ; x〉 ⇓ 〈S ; s〉

Since by assumption, we have that

〈E, x : v;M〉 ∼Λ0·V ·Λ 〈Σ, x : s;m(S)〉 ,
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so trivially, we have that

〈M ; v〉 ∼Λ′
0·V ′·Λ′ 〈m(S); s〉

by choosing V ′ = V , Λ′0 = Λ0, and Λ′ = Λ.

Case SVal

Trivial.

Case SPlus

By assumption, we have that

SPlus
E1 :: E ` 〈M ; e1〉 → 〈M1;n1〉 E2 :: E ` 〈M1; e2〉 → 〈M2;n2〉

E ` 〈M ; e1 + e2〉 → 〈M2;n1 + n2〉

The only symbolic execution rule that applies is SEPlus.

SEPlus
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:int〉 S2 :: Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; u2:int〉

Σ ` 〈S ; e1 + e2〉 ⇓ 〈S2 ; (u1:int + u2:int):int〉

By assumption, we have that Jg(S2)KV , so Jg(S1)KV since it is path condition prefix

of Jg(S2)KV (Lemma 6 on S2). Also, by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,

so
〈M1;n1〉 ∼Λ′′

0 ·V1·Λ1
〈m(S1);u1:int〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Then, we

have that
〈E;M1〉 ∼Λ′′

0 ·V1·Λ1
〈Σ;m(S1)〉

200



and Jg(S2)KV1 because V1 ⊇ V , so

〈M2;n2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2);u2:int〉

for some V ′ ⊇ V1 ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E2 with

S2. Since V ′ ⊇ V1, we have that Ju1:intKV ′
= n1, so

J(u1:int + u2:int):intKV
′
= n1 + n2

and thus
〈M2;n1 + n2〉 ∼Λ′

0·V ′·Λ′ 〈m(S2); (u1:int + u2:int):int〉 .

Case SEq, SNot, SAnd

Similar to the case for SPlus.

Case SIf-True

By assumption, we have that

SIf-True
E1 :: E ` 〈M ; e1〉 → 〈M1; true〉 E2 :: E ` 〈M1; e2〉 → 〈M2; v〉

E ` 〈M ; if e1 then e2 else e3〉 → 〈M2; v〉

The only symbolic execution rules that could apply are SEIf-True or SEIf-False.

Sub-case SEIf-True

SEIf-True
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 S2 :: Σ ` 〈S1[g 7→ g(S1) ∧ g1] ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S2 ; s2〉
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By assumption, we have that Jg(S2)KV , so Jg(S1) ∧ g1KV since it is path condi-

tion prefix of Jg(S2)KV (Lemma 6 on S2). Thus, we have that Jg(S1)KV . By

assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,

so
〈M1; true〉 ∼Λ′′

0 ·V1·Λ1
〈m(S1); g1〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. We have

that
〈E;M1〉 ∼Λ′′

0 ·V1·Λ1
〈Σ;m(S1)〉

and Jg(S2)KV1 because V1 ⊇ V , so

〈M2; v〉 ∼V ′ 〈m(S2); s2〉

for some V ′ ⊇ V1 ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 ⊇ Λ′0 ∗ Λ by i.h. on E2 with

S2.

Sub-case SEIf-False

SEIf-False
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉 S2 :: Σ ` 〈S[g 7→ g(S1) ∧ ¬g1] ; e3〉 ⇓ 〈S3 ; s3〉

Σ ` 〈S ; if e1 then e2 else e3〉 ⇓ 〈S3 ; s3〉

By assumption, we have that Jg(S3)KV , so Jg(S1)∧¬g1KV since it is path condition

prefix of Jg(S3)KV (Lemma 6 on S2). Thus, we have that Jg(S1)KV and J¬g1KV .

By assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,
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so
〈M1; true〉 ∼Λ′′

0 ·V1·Λ1
〈m(S1); g1〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Thus, we

have that Jg1KV1 . We also have that J¬g1KV1 because J¬g1KV and V1 ⊇ V . Con-

tradiction, both of these statements cannot hold, so this subcase is not possible.

Case SIf-False

Similar to the case for SIf-True.

Case SLet

By assumption, we have that

SLet
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉 E2 :: E, x : v1 ` 〈M1; e2〉 → 〈M2; v2〉

E ` 〈M ; let x = e1 in e2〉 → 〈M2; v2〉

The only symbolic execution rule that applies SELet.

SELet
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉 S2 :: Σ, x : s1 ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; let x = e1 in e2〉 ⇓ 〈S2 ; s2〉

By assumption, we have that Jg(S2)KV , so Jg(S1)KV since it is path condition prefix

of Jg(S2)KV (Lemma 6 on S2). Also, by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,

so
〈M1; v1〉 ∼Λ′′

0 ·V1·Λ1
〈m(S1); s1〉
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for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Then, because

Js1KV1 = v1, we have that

〈E, x : v1;M1〉 ∼Λ′′
0 ·V1·Λ1

〈Σ, x : s1;m(S1)〉 .

Also, Jg(S2)KV1 because V1 ⊇ V , so

〈M2; v2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2); s2〉

for some V ′ ⊇ V1 ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E2 with

S2.

Case SRef

By assumption, we have that

SRef
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉 l 6∈ dom(M1)

E ` 〈M ; ref e1〉 → 〈M1[l 7→ v1]; l〉

The only symbolic execution rule that applies is SERef.

SERef
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ〉 β /∈ Σ, S, S1, u1

S ′ = S1[m 7→ m(S1), (β:τ ref
a� u1:τ)]

Σ ` 〈S1 ; ref e1〉 ⇓ 〈S ′ ; β:τ ref〉

Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S1)KV

since g(S ′) = g(S1), so

〈M1; v1〉 ∼Λ′
0·V1·Λ1

〈m(S1);u1:τ〉

204



for some V1 ⊇ V and some Λ′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Since

β 6∈ Σ, S, S1, u1, we can assume without loss of generality that β 6∈ dom(V1)—if

it were in dom(V1), we could always remove it without affecting 〈M1; v1〉 ∼Λ′
0·V1·Λ1

〈m(S1);u1:τ〉. Now, choose

V ′ = V1[β 7→ l] and Λ′ = Λ1, l : τ .

Because l 6∈ dom(M1), we have that

Λ′0 `V ′ m(S2), (β:τ ref
a� u1:τ) : Λ′0 ∗ Λ′ .

and thus
〈M1[l 7→ v1]; l〉
∼Λ′

0·V ′·Λ′

〈m(S1), (β:τ ref � u1:τ); β:τ ref〉 .

Case SAssign

By assumption, we have that

SAssign
E1 :: E ` 〈M ; e1〉 → 〈M1; l〉 E2 :: E ` 〈M1; e2〉 → 〈M2; v2〉 l ∈ dom(M2)

E ` 〈M ; e1 := e2〉 → 〈M2[l 7→ v2]; v2〉

The only symbolic execution rule that applies is SEAssign.

SEAssign
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; s1〉 S2 :: Σ ` 〈S1 ; e2〉 ⇓ 〈S2 ; s2〉

Σ ` 〈S ; e1 := e2〉 ⇓ 〈S2[m 7→ m(S2), (s1 � s2)] ; s2〉

By assumption, we have that Jg(S2)KV , so Jg(S1)KV since it is path condition prefix

of Jg(S2)KV (Lemma 6 on S2). Also, by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 ,
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so
〈M1; l〉 ∼Λ′′

0 ·V1·Λ1
〈m(S1); s1〉

for some V1 ⊇ V and some Λ′′0 ∗ Λ1 ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Then, we

have that
〈E;M1〉 ∼Λ′′

0 ·V1·Λ1
〈Σ;m(S1)〉

and Jg(S2)KV1 because V1 ⊇ V , so

〈M2; v2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2); s2〉

for some V ′ ⊇ V1 and Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1 by i.h. on E2 with S2. Thus, we have

Λ′0 `V ′ m(S2) : Λ′0 ∗ Λ′ .

Since V ′ ⊇ V1 and Λ′0 ∗ Λ′ ⊇ Λ′′0 ∗ Λ1, we have that

Ju1:τ1KV
′
= l and ∅ `Λ0∗Λ′ l : τ1

where s1 = u1:τ1. Therefore, the symbolic memory relation holds for the symbolic

memory with the logged write:

Λ′0 `V ′ m(S2), (s1 � s2) : Λ′0 ∗ Λ′ .

Finally, because l ∈ dom(M2), we have that

〈M2[l 7→ v2]; v2〉 ∼Λ′
0·V ′·Λ′ 〈m(S2), (s1 � s2); s2〉 .

Case SDeref

By assumption, we have that

SDeref
E1 :: E ` 〈M ; e1〉 → 〈M1; l1〉 l1 ∈ dom(M1)

E ` 〈M ; !e1〉 → 〈M1;M1(l1)〉
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The only symbolic execution rule that applies is SEDeref.

SEDeref
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; u1:τ ref〉 M :: ` m(S1) ok

Σ ` 〈S ; !e1〉 ⇓ 〈S1 ;m(S1)[u1:τ ref]:τ〉

Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S1)KV ,

so
〈M1; l1〉 ∼Λ′

0·V ′·Λ′ 〈m(S1);u1:τ ref〉

for some V ′ ⊇ V and Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Thus, we have that

Λ′0 `V ′ m(S1) : Λ′0 ∗ Λ′

and
∅ `Λ′

0∗Λ′ Ju1:τ refKV
′
: τ ref .

By memory typing soundness (Lemma 5) on M , we have that Jm(S1)KV ′ ∼ Λ′0 ∗ Λ′.

Therefore, we have that

∅ `Λ′
0∗Λ′ Jm(S1)[u1:τ ref]KV

′
: τ

as l1 ∈ dom(M1), which shows

〈M1;M1(l1)〉 ∼Λ′
0·V ′·Λ′ 〈m(S1);m(S1)[u1:τ ref]〉 .

Case SNot-Error

By assumption, we have that

SNot-Error
E1 :: E ` 〈M ; e1〉 → r1 r1 6= 〈M1; b1〉

E ` 〈M ;¬e1〉 → error
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The only symbolic execution rule that applies is SENot.

SENot
S1 :: Σ ` 〈S ; e1〉 ⇓ 〈S1 ; g1〉

Σ ` 〈S ; ¬e1〉 ⇓ 〈S1 ; ¬g1:bool〉

Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S1)KV ,

so
r1 ∼Λ′

0·V ′·Λ′ 〈m(S1); g1〉

for some V ′ ⊇ V and Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ by i.h. on E1 with S1. Thus, r1 = 〈M1; v1〉

for some M1 and v1 such that

∅ `Λ′
0∗Λ′ v1 : bool

Therefore, by a standard canonical forms lemma, v1 = b1 for some b1, which con-

tradicts that r1 6= 〈M1; b1〉. Therefore, this case is not possible.

Case Other Error Cases

Similar to SNot-Error.

Exhaustive Symbolic Execution. With the soundness along a path, we can

state what it means for symbolic execution to be exhaustive. To do so, we say:

exhaustiveg(g1, . . . , gn) if g ⇒ g1 ∨ . . . ∨ gn is a tautology.

In other words, regardless of the valuation, the path conditions are exhaustive up to

an initial guard g.

208



Exhaustive symbolic execution, a corollary to symbolic execution soundness (The-

orem 7), can be stated as follows. Observe that the premise Jg(S)KV only says that

the path condition holds in the initial state.

Corollary 7.1 (Exhaustive Symbolic Execution)

Suppose E ` 〈M ; e〉 → 〈M ′; v〉 and we have n > 0 symbolic executions

Σ ` 〈S ; e〉 ⇓ 〈Si ; si〉 such that

exhaustiveg(S)(g(S1), . . . , g(Sn)) and

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S)KV ,

then 〈M ′; v〉 ∼Λ′
0·V ′·Λ′ 〈m(Si); si〉 for some i ∈ 1..n, V ′ ⊇ V , and some Λ′0,Λ

′ such

that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

Proof

Direct. The meaning of exhaustiveg(S)(g(S1), . . . , g(Sn)) is that g(S) ⇒ g(S1) ∨

. . . ∨ g(Sn) is a tautology. Therefore, we have that

Jg(S)KV ⇒ Jg(S1) ∨ . . . ∨ g(Sn)KV

because the above holds for all valuations. By assumption, Jg(S)KV , so we have

that Jg(S1) ∨ . . . ∨ g(Sn)KV and consider cases. Suppose Jg(Si)KV for each i ∈ 1..n,

then
〈M ′; v〉 ∼Λ′

0·V ′·Λ′ 〈m(Si); si〉

for some V ′ ⊇ V and some Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ by symbolic execution soundness

(Theorem 7).
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As a technical point, the concerned reader might be worried that we are commingling

existentially quantified variables (i.e., the symbolic variables α) from different runs of

the symbolic executor in exhaustive (. . .); however, this commingling is permissible,

as we are combining with disjuncts and existential quantification distributes over

disjunction. At the same time, for debugging in an implementation, we would likely

want a fixed, deterministic strategy that ensures that symbolic executions of common

prefixes of paths use the same sequence of symbolic variable names.

A.4 Mix Soundness

With type soundness (Theorem 3) and symbolic execution soundness (Theorem 7),

we show soundness of Mix by additionally considering the cases for the switching

rules.

Theorem 8 (Mix Soundness)

1. If

E ` 〈M ; e〉 → r and

Γ `Λ e : τ such that

〈E;M〉 ∼ 〈Γ; Λ〉 ,

then ∅ `Λ′ v : τ and M ′ ∼ Λ′ for some M ′, v, Λ′ such that r = 〈M ′; v〉 and

Λ′ ⊇ Λ.

2. If
E ` 〈M ; e〉 → r and

Σ ` 〈S ; e〉 ⇓ 〈S ′ ; s〉 such that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉 and Jg(S ′)KV ,
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then
r ∼Λ′

0·V ′·Λ′ 〈m(S ′); s〉

for some V ′ ⊇ V and some Λ′0,Λ
′ such that Λ′0 ∗ Λ′ ⊇ Λ0 ∗ Λ.

Proof

By simultaneous induction on the derivations of

E ` 〈M ; e〉 → r .

We include the cases from type soundness (Theorem 3) and symbolic execution sound-

ness (Theorem 7) unchanged and consider the additional mix cases (Figure 3.4).

Case SSymBlock

By assumption, we have that

SSymBlock
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉
E ` 〈M ; {s e1 s}〉 → 〈M1; v1〉

The only type checking or symbolic execution rule that applies is the type checking

rule TSymBlock.

TSymBlock
Σ(x) = αx:Γ(x)

(for all x ∈ dom(Γ)) Σ ` 〈S ; e〉 ⇓ 〈Si ; ui:τ〉 S = 〈true ; µ〉 µ /∈ Σ
` m(Si) ok exhaustive(g1, . . . , gn) (i ∈ 1..n)

Γ ` {s e s} : τ

By assumption, we have that 〈E;M〉 ∼ 〈Γ; Λ〉. Let V be the valuation such that

V (αx) = E(x) for all x ∈ dom(Γ) and
V (µ) = M
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Now, choose Λ0 = Λ, and we have that

〈E;M〉 ∼Λ0·V ·∅ 〈Σ;m(S)〉

As we have exhaustive(g(S1), . . . , g(Sn)), we have that g(S1) ∨ . . . ∨ g(Sn) is a

tautology. Therefore, we have that

Jg(S1) ∨ . . . ∨ g(Sn)KV

because the above holds for all valuations. Now consider cases, suppose Jg(Si)KV

for each i ∈ 1..n, then

〈M1; v1〉 ∼Λ′
0·Vi·Λi

〈m(Si);ui:τ〉

for some Vi ⊇ V and some Λ′0 ∗ Λi ⊇ Λ0 by the i.h. on E1. By memory typing

soundness (Lemma 5), we have that

Jm(Si)KV ∼ Λ′0 ∗ Λi and thus M1 ∼ Λ′0 ∗ Λi .

Let Λ′ = Λ′0 ∗ Λi, then we have that

∅ `Λ′ v1 : τ and M1 ∼ Λ′

where Λ′ ⊇ Λ.

Case STypBlock

By assumption, we have that

STypBlock
E1 :: E ` 〈M ; e1〉 → 〈M1; v1〉
E ` 〈M ; {t e1 t}〉 → 〈M1; v1〉
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The only type checking or symbolic execution rule that applies is the symbolic

execution rule SETypBlock.

SETypBlock
` Σ : Γ M :: ` m(S) ok T :: Γ ` e : τ µ′, β /∈ Σ, S

Σ ` 〈S ; {t e t}〉 ⇓ 〈S[m 7→ µ′] ; β:τ〉

Also by assumption, we have that

〈E;M〉 ∼Λ0·V ·Λ 〈Σ;m(S)〉

In particular, we have that
E ∼ 〈Γ; Λ0 ∗ Λ〉

because if ` Σ : Γ and ` Σ : Γ′ then Γ = Γ′. By memory type soundness (Lemma 5)

on M , we have that M ∼ Λ0 ∗ Λ, so

〈E;M〉 ∼ 〈Γ; Λ0 ∗ Λ〉

Then, we have that
∅ `Λ′

0
v1 : τ and M1 ∼ Λ′0

for some Λ′0 ⊇ Λ0 ∗ Λ by the i.h. on E1 with T . Since µ′, β 6∈ Σ, S, we can assume

without loss of generality that µ′, β 6∈ dom(V ). Now, choose

V ′ = V [β 7→ v1][µ 7→M1]

Then, we have that
Λ′0 `V ′ µ′ : Λ′0 ,

and thus, we have that
〈M1; v1〉 ∼Λ′

0·V ′·∅ 〈µ′; β:τ〉 .

Note that Mix soundness (Theorem 8) as stated above considers symbolic execu-

tion along a path. To show soundness of the top-level expression, we can consider a
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exhaustive constraint as in Corollary 7.1 or simply say that the top-level expression is

always wrapped in a type checking block {t e t}. In order words, exhaustive symbolic

execution of an expression e is type checking of {t {s e s} t}.
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