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Charged pion form factor between Q2 = 0.60 and 2.45 GeV2. II. Determination of, and results for,
the pion form factor
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The charged pion form factor, Fπ (Q2), is an important quantity that can be used to advance our knowledge of
hadronic structure. However, the extraction of Fπ from data requires a model of the 1H(e, e′π+)n reaction and
thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form
factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given
to the dominant uncertainties in this procedure. Results for Fπ are presented for Q2 = 0.60–2.45 GeV2. Above
Q2 = 1.5 GeV2, the Fπ values are systematically below the monopole parametrization that describes the low
Q2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of
theoretical approaches, and the experimental results are compared to a number of calculations. This comparison
is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q2

regime.

DOI: 10.1103/PhysRevC.78.045203 PACS number(s): 14.40.Aq, 13.40.Gp, 13.60.Le, 25.30.Rw

I. INTRODUCTION

There is much interest in trying to understand the structure
of hadrons, both mesons and baryons, in terms of their

constituents, the quarks and gluons. However, this structure
is too complicated to be calculated rigorously in quantum
chromodynamics (QCD) because perturbative QCD (pQCD)
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methods are not applicable in the confinement regime. Chiral
perturbation theory can give valuable insights, but it is limited
to small values of the photon virtuality Q2. Hence, in the
intermediate Q2 regime one has to resort to models like the
constituent quark model or methods employing light-cone
(LC) dynamics or the Bethe-Salpeter (plus Dyson-Schwinger)
equation or to other approaches such as the use of dispersion
relations or (QCD or LC) sum rules.

Transitions and (transition) form factors are crucial ele-
ments for gauging the ideas underlying these QCD-based
models. For example, the constituent quark model gives a
fairly good description of the meson and baryon spectrum
and some transitions, but quark effective form factors are
typically required when describing hadronic form factors in
the experimentally accessible Q2 region. In this framework,
the study of hadronic form factors can thus be viewed as
a study of the transition from constituent to current quark
degrees of freedom. As exemplified by the many calculations
of it, the electric form factor of the pion, Fπ , is one of the
best observables for the investigation of the transition of QCD
effective degrees of freedom in the soft regime, governed by all
kinds of quark-gluon correlations at low Q2, to the perturbative
(including next-to-leading order and transverse corrections)
regime at higher Q2.

In contrast to the nucleon, the asymptotic normalization
of the pion wave function is known from pion decay. The
hard part of the π+ form factor can be calculated within the
framework of pQCD as the sum of logarithms and powers of
Q2 [1]

Fπ (Q2) = 4πCF αs(Q2)

Q2

∣∣∣∣∣�∞
n=0an

[
log

(
Q2

�2

)]−γn

∣∣∣∣∣
2

×{1 + O[αs(Q
2),m/Q2]}, (1)

which in the Q2 → ∞ limit becomes [1,2]

Fπ (Q2) −−−→
Q2→∞

16παs(Q2)f 2
π

Q2
, (2)

where fπ = 93 MeV is the pion decay constant [3].
Because the pion’s q̄q valence structure is relatively

simple, the transition from “soft” (nonperturbative) to “hard”
(perturbative) QCD is expected to occur at significantly lower
values of Q2 for Fπ than for the nucleon form factors [4]. Some
estimates [5] suggest that pQCD contributions to the pion
form factor are already significant at Q2 � 5 GeV2. However, a
recent analysis [6] indicates that nonperturbative contributions
dominate the pion form factor up to relatively large values
of Q2, giving more than half of the pion form factor up
to Q2 = 20 GeV2. Thus, there is an ongoing theoretical
debate on the interplay of these hard and soft components
at intermediate Q2, and high-quality experimental data are
needed to help guide this discussion.

In this work, we concentrate exclusively on the spacelike
region of the pion form factor. For recent measurements
in the timelike region see Ref. [7]. At low values of Q2,
where it is governed by the charge radius of the pion, Fπ

has been determined up to Q2 = 0.253 GeV2 [8,9] from the
scattering of high-energy pions by atomic electrons. For the

determination of the pion form factor at higher values of Q2,
one has to use high-energy electroproduction of pions on a
nucleon, i.e., employ the 1H(e, e′π+)n reaction. For selected
kinematic conditions, the longitudinal cross section is very
sensitive to the pion form factor. In this way, data for Fπ were
obtained for values of Q2 up to 10 GeV2 at Cornell [10–12].
However, those data suffer from relatively large statistical and
systematic uncertainties. More precise data were obtained at
the Deutsches Elektronen-Synchrotron (DESY) [13,14]. With
the availability of high-intensity electron beams, combined
with accurate magnetic spectrometers at the Thomas Jefferson
National Accelerator Facility (JLab), it has been possible to
determine L/T separated cross sections with high precision.
The measurement of these cross sections in the regime
of Q2 = 0.60–1.60 GeV2 (Experiment Fpi-1 [15,16]) and
Q2 = 1.60–2.45 GeV2 (Experiment Fpi-2 [17]) are described
in detail in the preceding article [18]. In this article, it is
discussed how to determine Fπ from measured longitudinal
cross sections, the values determined from the JLab and
DESY data are presented, and the results of various theoretical
calculations are compared with the experimental data.

Because the pion in the proton is virtual (off its mass-shell),
the extraction of Fπ from the measured electroproduction cross
sections requires some model or procedure. In the next section,
the methods that have been used to determine Fπ from the
data are discussed. Section III presents the adopted extraction
method and the values of Fπ thus determined, including a full
discussion of the uncertainties resulting from the experimental
data and those from the adopted extraction procedure. Various
model calculations of Fπ are discussed and compared to the
data in Sec. IV. In the final section, some conclusions are
drawn and an outlook for the future is given.

II. METHODS OF DETERMINING THE PION CHARGE
FORM FACTOR FROM DATA

The measurement of the pion form factor is challenging.
As stated in the introduction, at low Q2Fπ can be measured
in a model-independent manner via the elastic scattering of
π+ from atomic electrons, such as has been done up to Q2 =
0.253 GeV2 at Fermilab [8] and at the CERN SPS [9]. It
is not possible to access significantly higher values of Q2

with this technique because of limitations in the energy of the
pion beam together with the unfavorable momentum transfer.
Therefore, at higher values of Q2 Fπ must be determined from
pion electroproduction on the proton. The dependence on Fπ

enters the cross section via the t-channel process, in which
the incident electron scatters from a virtual pion, bringing it
on-shell. This process dominates near the pion-pole at t =
m2

π , where t is the Mandelstam variable. The physical region
for t in pion electroproduction is negative, so measurements
should be performed at the smallest attainable values of −t .
To minimize background contributions, it is also necessary to
separate out the longitudinal cross section σL, via a Rosenbluth
L/T (/LT/T T ) separation [19].

The minimum physical value of −t,−tmin, is nonzero and
increases with increasing Q2 and decreasing value of the
invariant mass, W , of the produced pion-nucleon system.
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Carlson and Milana [20] have estimated an approximate upper
limit for the value of −tmin of the data appropriate for the
extraction of the pion form factor by studying the competing
nonpole QCD processes, which may complicate the extraction
of Fπ at higher Q2. They found that the background ratio
MpQCD/Mpole rises dramatically once −tmin > 0.20 GeV2.
Their concern stemmed from the large value of −t in some
of the Cornell results, which have −tmin > 0.4 GeV2 [12].
Therefore, reliable Fπ measurements should be performed at
smaller −t and thus higher W (for a fixed Q2). The results
presented in this article respect this −tmin < 0.20 GeV2 upper
limit. It is yet to be determined if reliable Fπ measurements
can be made in the future at larger −t .

The value of Fπ (Q2) can then be determined from the
data by trying to extrapolate the measured longitudinal cross
sections at small values of −t to the pole at t = m2

π =
0.02 GeV2 or by comparing the measured longitudinal cross
section at small values of −t to the best available model for the
1H(e, e′π+)n reaction, adjusting the value of Fπ in the latter.
The presence of the nucleon and its structure complicates the
theoretical model used, and so an unavoidable implication of
this method is that the extracted pion form-factor values are
model dependent. The differential cross sections σL versus
t over some range of Q2 and W are the actual observables
measured by the experiment. It is important to note that in all
cases the use of a model to extract Fπ is justified only if the
model correctly predicts the t dependence and magnitude of
the σL data as well as the dependence on the invariant mass W

of the photon-nucleon system.

A. Chew-Low extrapolation method

Frazer [21] originally proposed that Fπ be extracted from
σL via a kinematic extrapolation to the pion pole and that this
be done in an analytical manner using the so called Chew-
Low extrapolation [22]. The used Born formula is not gauge
invariant [23] but in principle should give Fπ , nonetheless,
when extrapolating to the pole.

The last serious attempt to extract the spacelike pion form
factor from electroproduction data via the Chew-Low method
was by Devenish and Lyth [24] in 1972. Most of the data
used were unseparated cross sections. The extrapolation failed
to produce a reliable result, because different polynomial fits
that were equally likely in the physical region gave divergent
values of the form factor when extrapolated to the pion pole
at t = m2

π . Since then, the quality of the π+ electroproduction
data set has improved immensely, and separated longitudinal
cross sections can now be used, avoiding the complications
stemming from the other parts of the cross section. Therefore,
it has been suggested to us that it may be appropriate to revisit
the Chew-Low extrapolation method.

However, before trying this method on the new data, it
should be tested to see how reliably one can extrapolate
to the pole. We start with high precision σL “pseudodata”
generated as a function of −t with the Vanderhaeghen, Guidal,
and Laget (VGL) Regge model. This model gives a fair
to good description of a wide body of pion photo- and
electroproduction data (see section II C). The kinematic condi-

tions for the test are Q2 = 1.594 GeV2 and W = 2.213 GeV,
similar to our Fpi-2 data. The input value of the pion form
factor in the model was Fπ = 0.244. The model σL cross
sections were then used in a Chew-Low type extrapolation,
with the challenge being to see if the Chew-Low extrapolation
is able to reproduce (within fitting uncertainties) the input Fπ

value.
The basis of the Chew-Low method is the Born-term model

(BTM) formula for the pion-pole contribution to σL. We use the
BTM of Actor, Korner, and Bender [25], where the pion-pole
contribution to σL is given by

N
dσL

dt
= 4h̄c(egπNN )2 −t(

t − m2
π

)2 Q2F 2
π (Q2), (3)

where e2/(4πh̄c) = 1/137 and N , which depends on the flux
factor used in the definition of dσL/dt , is given in our case by

N = 32π
(
W 2 − m2

p

)√(
W 2 − m2

p

)2 + Q4 + 2Q2
(
W 2 + m2

p

)
(4)

[26,27]. A monopole parametrization of the gπNN form factor
is typically used to determine its value at t values away from
the pion pole

gπNN (t) = gπNN

(
m2

π

)(�2
π − m2

π

�2
π − t

)
, (5)

where gπNN (m2
π ) is the experimental value of 13.4 [28]. This

is also the value used in the VGL calculations. We use the
�π = 0.80 GeV result from the QCD sum rules calculation
by T. Meissner [29], but because of the extrapolation to the
pole the final result does not depend significantly on the value
chosen.

For the Chew-Low extrapolation, one plots the value of

F 2 = N

4h̄c(egπNN )2

(
t − m2

π

)2

−Q2m2
π

dσL

dt
(6)

versus −t , which for a pure pole cross section gives a straight
line passing through the origin, with value Fπ (Q2) at the pole
(t = m2

π ). Other contributions to the cross section, which have
to be present, because the pole contribution alone is not gauge
invariant, will change this behavior, but because they do not
contain the 1/(t − m2

π )2 factor, they will not influence the
value of F 2 at the pole. However, it is not a priori given that
the behavior as function of −t is linear, quadratic, or of higher
order, thus introducing a “model” (extrapolation) uncertainty.

Values of F 2 for the generated pseudodata, together with
linear, quadratic, and cubic extrapolations to the pole are
shown in Fig. 1. Also shown is the input form factor value
in the VGL model, plotted at the pion pole. Quadratic and
higher-order extrapolations are almost indistinguishable and
give a very good description of the (pseudo-)data but miss
the input value of Fπ . This was true for all cases that were
investigated, from Q2 = 0.60 to 2.45 GeV2, the deviation
from the input Fπ -value being 6–15%, depending on the case
and the order of the extrapolation polynomial. Overall, there
was no consistent trend for the order of polynomial that was
best able to reproduce the input form factor value.
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FIG. 1. (Color online) Linear (dotted), quadratic (dashed), and
cubic (solid line) extrapolations of F 2 to the pole as computed from
Eq. (6). The boxes are a VGL Regge model calculation for σL at
fixed W = 2.213 GeV and Q2 = 1.594 GeV2, calculated with Fπ =
0.244. The lower limit of the box range is the kinematic end point of
these Q2, W values, whereas the upper limit is given by the t range
of our experiment. The input Fπ value in the model is indicated by
the bullet placed at the pion pole.

This study indicates that even if σL is very well known over a
range of physically accessible t , the Chew-Low extrapolation
yields inconsistent results. The extrapolated result depends
greatly on the choice of quadratic cubic, or higher-order
function, which all give a very good description of the data in
the physical region. This indicates that the t dependence of data
in the physical region is insufficient to uniquely constrain the
extrapolation through the unphysical region to the pole, even
if the data have small relative uncertainties. Furthermore, even
though modern data such as the JLab σL data are much more
precise than those previously available, they still comprise
4–6 t bins only, each with statistical and systematic uncer-
tainties of 5–10%. Therefore, any polynomial extrapolation
of such data to the pole will be more unreliable than the
pseudodata test case shown here. Therefore, the Chew-Low
extrapolation technique cannot be used to reliably determine
the pion form factor from a realistic σL data set.

B. Early extractions of Fπ

Brown et al. [30] at CEA were the first to embrace the
use of theoretical input to determine Fπ from their data. They
used the model of Berends [31], which includes the dominant
isovector Born term, with corrections for t values away from
the pole by means of fixed-t dispersion relations. This model
was also used by Bebek et al. for the analysis of the first two
sets of Cornell data [10,11]. The model gave a fair description
of the data, but systematically underpredicted the LT term of
the cross section and the t dependence of the data.

Until then, data were obtained at one (larger) value of the
photon polarization parameter ε only. In the third Cornell
experiment [12], data were taken at low values of ε, so that in

combination with the earlier data an L/T separation could
be performed at Q2 values of 1.19, 2.00, and 3.32 GeV2.
The value of σT was found to be substantially larger than
that predicted by Berends, especially at larger Q2. The
values obtained for σL had such large error bars that they
were not used to determine Fπ . Instead, use was made of
the observation that within the experimental error bars the
Q2 dependence of the forward transverse cross section was
satisfactorily reproduced by the Q2 dependence of the total
virtual-photoproduction cross section. Therefore, σT (Q2) was
parameterized with the overall scale as a free parameter, and
the parameterized values then used to subtract σT from the
measured unseparated cross sections to obtain σL. These σL

data at the lowest value of −t were used to determine Fπ ,
assuming that σL is given there by the t-channel one-pion-
exchange Born term. This was done for all data obtained at
CEA and Cornell. The uncertainties in Fπ thus obtained and
presented in Ref. [12] are statistical ones only and do not
include the contribution from the uncertainty in the value of
σT used in the subtraction. Especially at the larger values of
Q2, these are considered to be substantial, as can be seen from
Fig. 4. of Ref. [12].

The DESY experiments produced high-quality separated
cross sections at Q2 = 0.35 GeV2,W = 2.10 GeV [13] and
Q2 = 0.70 GeV2,W = 2.19 GeV [14]. Both of these experi-
ments used the generalized Born term model of Gutbrod and
Kramer [32] to determine Fπ . This BTM incorporates t-, s-,
and u-channel diagrams for the γv + p → π+ + n reaction,
giving a fair description of the magnitude of the measured
unseparated cross sections but failing to describe σT T and
σLT . However, Gutbrod and Kramer found that when treating
the magnitude of the nucleon form factor G

p

E(Q2) as a free
parameter, a much better description of the then-available
data was obtained. In addition, they included a factor et/M2

to
improve the description of the t dependence of the data. The
justification given is that the nucleon is far off its mass-shell,
whereas the pion is near to its pole. This generalized BTM
gave a good overall description of the DESY data. However, at
Q2 = 0.70 GeV2, nucleon form factors about 50% above their
on-mass-shell values were needed. The size of the modification
needed at Q2 = 0.35 GeV2 is not given.

C. Newer models

More recently, two new models for the 1H(e, e′π+)n
reaction have become available.

In Refs. [23,33], Vanderhaeghen, Guidal, and Laget pre-
sented a Regge model for pion production in which the polelike
propagators of Born term models are replaced with Regge
propagators, i.e., the interaction is effectively described by
the exchange of a family of particles with the same quantum
numbers instead of a single particle. If the same vertices and
coupling constants are used, the Regge model and the BTM
calculations agree at the pole of the exchanged particle, but
away from the pole the Regge model provides a superior
description of the available data. For forward pion production,
the dominant exchanges are the π and ρ trajectories. These
determine the t dependence of the cross section without the
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use of a gπNN (t) factor. At low values of −t , as covered by this
work, σL is completely determined by the π trajectory, whereas
σT is also sensitive to the ρ exchange contribution. Because
the t-channel π diagram is by itself not gauge invariant,
the s-channel (for π+ production) or u-channel (for π−
production) nucleon exchange diagram was also Reggeized,
to ensure gauge invariance of their sum.

The VGL model was first applied to pion photoproduc-
tion [33] and later extended to electroproduction [23], with
monopole forms for the ππγ and ρπγ form factors:

Fπ,ρ(Q2) = [
1 + Q2

/
�2

π,ρ

]−1
. (7)

Apart from the ππγ and ρπγ form factors, the model is
parameter free, as the coupling constants at the vertices (such
as gρπγ ) are well determined by precise studies and analyses
in the resonance region. The model gives a good description
of the W and t dependences of then available π+ and π−
photoproduction data, including the spin asymmetries, and of
the earlier electroproduction data.

The VGL predictions have been compared to our measured
cross sections and the ones taken at DESY [13,14] in Ref. [18].
For the discussion in this article, the data for σL and σT

are reproduced in Fig. 2, together with the results of the
model calculations. The VGL cross sections were evaluated
at the same W and Q

2
values as the data, resulting in the

discontinuities shown. The values of �2
π shown are determined

by the fitting of the VGL model to the measured σL values at
the five values of t at each Q2, resulting in values between
0.37 and 0.51 GeV2. The value of �2

ρ is more poorly known.

Calculations with both �2
ρ = 0.600 and 1.500 GeV2 are

shown, where the upper value is taken from the application
of the VGL model to kaon electroproduction [34].

The model gives an overall good description of our σL

data and those of Refs. [13,14], but the description of the t

dependence of the data is worse at Q2 = 0.60 and 0.70 GeV2.
The poorer description of the σL data by the VGL model
at lower Q2 and W may be due to contributions from
resonances, which are not included explicitly in the Regge
model. This is supported by the fact that the discrepancy in
the t dependence of the σL data is strongest at the lowest
Q2 value, at higher Q2 the resonance form factor supposedly
reducing such contributions. The values of σT are severely
underestimated, especially at larger Q2, even when taking a
hard ρπγ form factor. Because the data at the real-photon
point are well described, this suggests that another mechanism,
whose contribution increases with Q2, is at play [35]. Recently
the VGL model was extended [36] by including a hard
scattering between the virtual photon and a quark, the latter
hadronizing in combination with the spectator diquark into a
pion plus residual nucleon. With plausible assumptions, a good
description of σT was obtained, with no influence on σL. Those
results support the idea that the discrepancy in the magnitude
of σT , which increases with Q2, and the discrepancy in the
slope of σL with −t , which decreases with Q2, are not directly
related. Strategies for dealing with the latter discrepancy when
extracting the pion form factor are discussed in Sec. III.

We also considered a modification to the VGL Regge model
published by J. M. Laget in 2004 [37]. Laget introduces a

FIG. 2. (Color online) Separated π+ electroproduction cross sections σL (solid) and σT (open) from JLab and DESY in comparison to the
predictions of the VGL Regge model [23]. The error bars of the JLab data represent the combination of statistical and t uncorrelated systematic
uncertainties. In addition, there is an overall systematic uncertainty of about 6%, mainly from the t-correlated, ε-uncorrelated systematic
uncertainty. The VGL Regge model calculations for Q2 = 0.60–1.60 GeV2, W = 1.95 GeV use �2

π = 0.394, 0.372, 0.411, and 0.455 GeV2,
and those for Q2 = 0.35–2.45 GeV2, W ∼ 2.1 GeV use �2

π = 0.601, 0.519, 0.513, and 0.491 GeV2. The solid(dashed) curves indicate the
�2

ρ = 1.500(0.600) GeV2 value used.
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FIG. 3. (Color online) Separated π+ electroproduction cross sections σL (solid) and σT (open) from this work and DESY [14] in comparison
to the FGLO effective Lagrangian model [39]. The data error bars and systematic uncertainties are as in Fig. 2. The solid (dashed) curves
denote model calculations for σL(σT ) with �2

π = 0.405, 0.414, 0.503, 0.654, 0.386, 0.608, and 0.636 GeV2 (from upper left to lower right).
The calculations were performed at the same W and Q

2
as the data, with straight lines connecting the calculated values.

t-dependent factor into the pion form factor that is related to the
pion saturating Regge trajectory, approaching −1 as t → −∞.
The effect of this modification is to boost σT by 40% for
the largest −t spanned by our data (Q2 = 2.703 GeV2,−t =
0.365 GeV2) and converging with the unmodified calculation
at small −t . The effect on σL is under 1% for the largest −t

covered by our data and is negligible at −tmin.
Another recent development is the effective Lagrangian

model of Faessler, Gutsche, Lyubovitskij, and Obukhovsky
(FGLO, Ref. [38,39]). This is a modified Born term model,
in which an effective Lagrangian is used to describe nucleon,
pion, ρ, and photon degrees of freedom. The (combined) effect
of s- and u-channel contributions, which interferes with the
pion t pole, is modeled using a constituent quark model. The
authors show that the ρ t-pole contribution is very important
in the description of the magnitude of σT . When comparing
vector and tensor representations of the ρ contribution, the
latter was found to give better results. Unlike the VGL model,
the σL cross section depends here also on the ρ exchange,
because of the interference of the π and tensor ρ exchange
contributions. The model contains a few free parameters,
such as the renormalization constant of the Kroll-Ruderman
contact term used to model the s(u) channel, and t-dependent
strong meson-nucleon vertices, which are parameterized in
monopole form, as are the electromagnetic form factors. The
corresponding parameters were adjusted so as to give overall
good agreement with our σL and σT data.

As in case of the VGL model, a detailed comparison of
the FGLO model results to the measured data is given in

Ref. [18], whereas the results for σL and σT are also shown in
Fig. 3. The values of �2

π used were determined by the fitting
of the model to the σL t bins at each Q2, while keeping the
other parameters fixed at the values assigned by the authors.
In some cases, this results in different �2

π values than those
shown in Ref. [39]. However, it should be kept in mind that
the FGLO model σL cross sections also depend on other
parameters, which have been adjusted by the authors of the
model to give good agreement to our σL and σT data. To the
best of our knowledge, the Q2 = 0.7 GeV2 data of Ref. [14]
were not taken into account when these parameters were
determined.

Generally, the agreement of the FGLO model with the
σL data is rather good except for the Q2 = 0.60 (Fpi-1) and
0.70 GeV2 [14] measurements. There is a serious discrepancy
in the Q2 and W dependence of the σT data. For Q2 around
0.7 GeV2, the model agrees fairly well with the data at
W = 1.95 GeV, but it overpredicts the Q2 = 0.70 GeV2,W =
2.19 GeV data by a large factor. However, for Q2 =
1.60 GeV2, the W = 1.95 GeV data are underpredicted by
about a factor of 2, whereas those at W = 2.22 GeV are
reproduced, and the W = 2.22 GeV data for Q2 = 2.45 GeV2

are underpredicted again by 20–60%. This indicates some
problem in the description of the Q2,W dependences of the ρ

exchange used to describe σT . Because of the ρ-π interference,
the problems with the description of σT also affect the σL

calculation. This makes it hard to estimate how reliable the
values of Fπ would be if extracted from the data using this
model.
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TABLE I. �2
π and Fπ values from this work, and the reanalyzed

data from Refs. [13,14] using the same method. The first error
includes all experimental and analysis uncertainties, and the second
error is the “model uncertainty” as described in the text. The total
uncertainty is found by taking their sum in quadrature. Please note
that in some cases the �2

π value listed is different than the value used
in Fig. 2.

Q2

( GeV2)
W (GeV) �2

π ( GeV2) Fπ

0.60 1.95 0.458 ± 0.031+0.255
−0.068 0.433 ± 0.017+0.137

−0.036

0.75 1.95 0.388 ± 0.038+0.135
−0.053 0.341 ± 0.022+0.078

−0.031

1.00 1.95 0.454 ± 0.034+0.075
−0.040 0.312 ± 0.016+0.035

−0.019

1.60 1.95 0.485 ± 0.038+0.035
−0.027 0.233 ± 0.014+0.013

−0.010

0.35 2.10 0.601 ± 0.060 0.632 ± 0.023
0.70 2.19 0.627 ± 0.058+0.096

−0.085 0.473 ± 0.023+0.038
−0.034

1.60 2.22 0.513 ± 0.033+0.052
−0.022 0.243 ± 0.012+0.019

−0.008

2.45 2.22 0.491 ± 0.035+0.045
−0.024 0.167 ± 0.010+0.013

−0.007

III. Fπ RESULTS

As already discussed, the separated cross sections versus
t over some range of Q2 and W are the actual observables
measured by the experiment, and the extraction of the pion
form factor from these data is inherently model dependent.
Ideally, one would like to have a variety of reliable electropro-
duction models to choose from so the model dependence of
the extracted Fπ values can be better understood. Because the
VGL Regge model is able, without fitted parameters, to provide
a good description of both π+ and π− photoproduction data,
and of σL electroproduction data over a range in W, t , and Q2,
it is our opinion that at the moment only this model has shown
itself to be sufficiently reliable to enable its use to extract pion
form-factor values from the σL data. Therefore, we will use
this model to determine our Fπ values. Clearly, the Fπ values
determined are strictly within the context of the VGL Regge
model, and other values may result if other, better models
become available in the future.

A. W ≈ 2.2 GeV data

As shown in Fig. 2, the VGL model does a good job
of describing the t dependence of the σL cross sections
at W ≈ 2.2 GeV,Q2 = 0.35, 1.60, and 2.45 GeV2. In these
cases, the extraction of the pion form factor from the data is
straightforward: the value of �2

π in the model is varied until
the agreement of the model with the data is optimized. The
mean Q

2
and W values of the data for each t bin are used

when evaluating the model. Fπ is then calculated from Eq. (7)
using the best-fit �2

π and the nominal Q2 values. These are
listed in the last two lines of Table I.

The experimental statistical and systematic uncertainties
were propagated to the Fπ uncertainties as follows. The
statistical and t, ε-uncorrelated systematic uncertainties1 were
applied to the σL data prior to the fitting of the VGL model

1These uncertainties are described in detail in Ref. [18].

FIG. 4. (Color online) Fπ consistency check for the DESY and
Fpi-2 data at W ≈ 2.2 GeV. The solid squares indicate the Fπ values
that would be obtained if the VGL model was fit to each σL point
separately. The shaded band is the Fπ value that is obtained if the
model is fit to all of the t bins. The error bars and band reflect the
statistical and t-uncorrelated systematic uncertainties only.

to the σL data. This yields the best-fit �2
π value and its

associated fitting uncertainty. The effects of the t-correlated,
ε-uncorrelated, and the t, ε-correlated systematic uncertainties
on the fit were determined by investigating the variation in
�2

π values allowed by fitting to the lowest −t bin only. Of
these, the ε-uncorrelated, t-correlated systematic uncertainty
is amplified by 1/	ε in the L-T separation, whereas the
t, ε-correlated uncertainty is not. The resulting uncertainties
are added in quadrature to the fitting error, yielding the first
�2

π uncertainty listed in Table I. This value is also propagated
to Fπ according to the monopole parametrization, yielding the
first Fπ uncertainty listed.

To check if the extracted value of Fπ depends on the t

range used, the VGL model (i.e., the value of �2
π ) was fitted

separately to each σL point from Fpi-2 and DESY [13,14], and
the corresponding values of Fπ determined. To remove the
natural variation of Fπ with the Q

2
of each bin, the nominal

Q2 values were used in the monopole equation. A plot of the
obtained Fπ versus t is shown in Fig. 4. Also indicated as
the shaded band is the Fπ value with the uncertainty that
is obtained if one fits to all of the t bins simultaneously.
Except perhaps at Q2 = 0.70 GeV2, the data show no residual
t dependence beyond the statistical fluctuation.
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B. W = 1.95 GeV data

As already shown in Sec. II C, the VGL model does not fully
describe the t dependence of our σL data at W = 1.95 GeV.
The difficulty, as far as the Fπ extraction is concerned, is that
there is no theoretical guidance for the assumed interfering
background not included in the VGL model, even if one
assumes that it is due to resonances. Virtually nothing is known
about the L/T character of resonances at W = 1.95 GeV
let alone how they may influence σL through their interference
with the π -pole amplitude. Given this lack of theoretical
guidance, we are forced to make some assumptions in
extracting Fπ from these data. Our guiding principle is to
minimize these assumptions to the greatest extent possible.
The form-factor extraction method that we have adopted for
these data relies on the single assumption that the contribution
of the background is smallest at the kinematic end point tmin.

Our best estimate of Fπ for the W = 1.95 GeV data is
determined in the following manner. Using the value of �2

π

as a free parameter, the VGL model was fitted to each t bin
separately, yielding �2

π (Q2,W, t) values as shown in Fig. 5.
The values of �2

π tend to decrease as −t increases, presumably
because of an interfering background not included in the VGL
model. Because the pole cross section containing Fπ increases
strongly with decreasing −t , we assume that the effect of this
background will be smallest at the lowest value of |t | allowed
by the experimental kinematics, |tmin|. Thus, an extrapolation
of �2

π to this physical limit is used to obtain our best estimate
of Fπ . The value of �2

π at tmin is obtained by a linear fit to
the data in Fig. 5. The resulting �2

π and Fπ values for the
Fpi-1 data are listed in Table I. The first uncertainty listed
includes both the experimental and the linear fit extrapolation
uncertainties.

Because Fig. 4 suggests also a dependence (at larger −t)
between the VGL calculation and the Q2 = 0.70 GeV2 data
of Ref. [14], this Fπ extraction method was also applied to
those data. The result obtained when extrapolating to tmin is
listed in Table I. The value of Fπ (�2

π ) is 11(20)% larger than if
the VGL model was simply fit to all data points. Applying the
same procedure to our W = 2.22 GeV data, it was found that
the resulting values of Fπ (�2

π ) would be 1(2)% larger, which
is statistically insignificant, confirming that the t dependence
of those data is well described by the VGL model.

C. Model uncertainty estimate

The fact that we used an additional assumption for the
cases where the VGL model does not completely describe the
t dependence of the σL data causes an additional uncertainty
in the extracted Fπ value, which we term model uncertainty.
This model uncertainty, which is within the context of the
VGL model, should be distinguished from the general model
uncertainty discussed in Sec. II, which would result when
using different models. To make a quantitative estimate of this
additional uncertainty, the spread in extracted values of �2

π

(and thus Fπ ) was investigated by assuming specific forms of
the interfering background missing in the VGL model.

An effective upper limit for Fπ is obtained by assuming
that the background yields a constant, negative, contribution

to σL. For each value of Q2, this background and the value of
�2

π were fit together to the data, assuming that the background
is constant with t . The fitted contribution of the background
was found to drop strongly with increasing Q2. A second
possibility is to assume, in addition to the VGL amplitude,
a t-independent interfering background amplitude, fitting for
every Q2 the magnitude and phase of the latter, together
with the value of �2

π . Although the fitting uncertainties are
very large, the results suggest an interfering amplitude whose
magnitude decreases monotonically with increasing Q2. In this
case, the interference between the background amplitude and
the VGL amplitude, which depends on their relative phase,
does not necessarily result in a net negative cross-section
contribution to σL.

The estimated model uncertainty is determined from the
spread of the �2

π values and their uncertainties at each Q2,
obtained with these two choices of background. To keep the
number of degrees of freedom the same in both cases, the
background was fixed to the value giving the best χ2, and �2

π

and its uncertainty were then determined in a one-parameter
fit of the VGL model plus background to the data. Because
the statistical uncertainties of the data are already taken into
account in the first given uncertainty in Table I, the contribution
of the statistical uncertainties of the data were quadratically
removed from the �2

π uncertainties given by the fit. The
model uncertainties at each Q2 are then taken as the range
plus corrected fitting uncertainty given by these two methods,
relative to the value of �2

π determined from the extrapolation
to tmin. This procedure was applied to all data except those of
Ref. [13], yielding the model uncertainties listed as the second
(asymmetric) uncertainty in Table I. No model uncertainty was
calculated for the Q2 = 0.35 GeV2 data from DESY because
the t range spanned by those data (only 0.03 GeV2) was too
small for this procedure to be reliably applied.

For the W = 1.95 GeV data, the model uncertainty in the
extracted Fπ value drops from about 20% at Q2 = 0.60 GeV2

to about 5% at 1.60 GeV2. To be consistent, the same
procedure was applied to the W = 2.22 GeV data, which
yielded model uncertainties of about 5% at both Q2 = 1.60
and 2.45 GeV2. These rapidly dropping uncertainties with
increasing Q2 reflect the smaller discrepancy of the VGL
calculation with the t dependence of the data at larger values
of Q2 and W . These findings are at least compatible with the
idea that resonance contributions, which presumably have a
form factor that drops rapidly with Q2, are responsible. They
also suggest that our Fπ extraction methods are robust, when
the background contribution is small, as appears to be the case
at the higher value of W .

D. Discussion and comparison with empirical fits

The form factors extracted from the Fpi-1 and Fpi-2 data
with the use of the VGL model are shown in Fig. 6, along
with the reanalyzed Q2 = 0.70 GeV2 data of Ref. [14], the
elastic scattering measurements of Ref. [9], and the Q2 =
0.35 GeV2 data of Ref. [13]. The Cornell data of Refs. [10–12]
are not included because, as discussed in Sec. II B, they
have large unknown systematic uncertainties. The excellent
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FIG. 5. (Color online) Values of �2
π

determined from the fit of the VGL model
to each t bin and linear fit to same.
The error bars reflect the statistical and
t-uncorrelated systematic uncertainties.
The additional overall systematic uncer-
tainties, which were applied after the fit,
are not shown.

agreement between the Q2 = 1.6 GeV2 form-factor values
obtained from our W = 1.95, 2.22 GeV data, despite their
significantly different tmin and W values, indicates that the
model uncertainties from the use of the VGL model seem to
be under control, at least in this Q2 range. Also shown is a
more recently obtained value at Q2 = 2.15 GeV2 [40], which
was also extracted with the use of the VGL model.

The solid line shown in Fig. 6 is the monopole fit obtained
by Amendolia et al. [9] from their elastic-scattering data. This

curve is given by

Fmono = 1

1 + r2
monoQ

2

6h̄2c2

, (8)

where r2
mono = 0.431 fm2 is their best-fit squared pion charge

radius. Figure 6 indicates a systematic departure of the
data from the monopole curve above Q2 ≈ 1.5 GeV2. This
departure may have implications for theoretical approaches
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FIG. 6. (Color online) Q2Fπ data from this work, compared to
previously published data. The solid Brauel et al. [14] point has been
reanalyzed as discussed in the text. The outer error bars for the JLab
data and the reanalyzed Brauel et al. data include all experimental
and model uncertainties, added in quadrature, whereas the inner error
bars reflect the experimental uncertainties only. Also shown is the
monopole fit by Amendolia et al. [9] as well as a 85% monopole+15%
dipole fit to our data.

that assume the validity of the monopole parametrization over
a wide range of Q2.

To illustrate the departure from the monopole curve, as well
as to provide an empirical fit that describes the data over the
measured Q2 range, we also show in Fig. 6 a fit that includes
a small dipole component,

Ffit = 85%Fmono + 15%Fdip, (9)

where

Fdip = 1(
1 + r2

dipQ
2

12h̄2c2

)2
(10)

and r2
dip = 0.411 fm2. This dipole parametrization has nearly

the same χ2 for the elastic-scattering data as the monopole
curve shown [9], but it drops much more rapidly with Q2.
The combined monopole plus dipole fit is consistent with our
intermediate Q2 data, while maintaining the quality of fit to the
elastic-scattering data. Because a monopole parametrization
does not converge to the pQCD asymptotic limit [Eq. (2)], it
is expected to fail at some point. Similarly, we should expect
this empirical monopole+dipole parametrization to show its
limitations when additional high Q2 data become available
[41].

IV. COMPARISON WITH MODEL CALCULATIONS

The pion form factor can be calculated relatively easily in
a large number of theoretical approaches that help advance of
our knowledge of hadronic structure. In this sense, Fπ plays a
role similar to that of the positronium atom in QED. Here, we
compare our extracted Fπ values to a variety of calculations,
selected to provide a representative sample of the approaches
used.

A. Perturbative QCD

The most firmly grounded approach for the calculation of
Fπ is that of pQCD. The large Q2 behavior of the pion form
factor has already been given in Eq. (1). By making use of
model-independent dimensional arguments, the infinitely large
Q2 behavior of the pion’s quark wave function (distribution
amplitude, or DA) is identified as

φπ (x,Q2 → ∞) → 6fπx(1 − x), (11)

whose normalization is fixed from the π+ → µ+νµ decay
constant. Equation (2) follows from this expression.

Neither of these equations is expected to describe the pion
form factor in the kinematic regime of our data, and so much
effort has been expended to extend the calculation of Fπ

to experimentally accessible Q2. In this case, the pion DA,
φπ (x,Q2), must be determined at finite Q2. Additional effects,
such as quark transverse momentum and Sudakov suppression
(essentially a suppression of large quark-quark separation
configurations in elastic-scattering processes), must be taken
into account. A number of authors [42–46] have performed
leading-twist next-to-leading order (NLO) analyses of Fπ at
finite Q2. The hard contributions to Fπ expand as a leading
order part of order αs and an NLO part of order α2

s .
Bakulev et al. [47] have investigated the dependence of the

form of the DA on the form factors, using data from a variety of
experiments. These were the πγ γ transition form-factor data
from CLEO [48] and CELLO [49], as well as our Fπ data. Their
results are insensitive to the shape of the DA near x = 1/2,
whereas its behavior at x = 0, 1 is decisive. The resulting
hard contribution to the pion form factor is only slightly larger
than that calculated with the asymptotic DA in all considered
schemes. The result of their study, shown as F hard

π in Fig. 7, is
far below our data. The drop at low Q2 is due to their choice
of infrared renormalization, which is not necessarily shared

FIG. 7. (Color online) The Fπ data of Fig. 6 are compared with
a hard LO+NLO contribution by Bakulev et al. [47] based on an
analysis of the pion-photon transition form-factor data from CLEO
[48] and CELLO [49]. A soft component, estimated from a local
quark-hadron duality model, is added to bring the calculation into
agreement with the experimental data. The band around the sum
reflects nonperturbative uncertainties from nonlocal QCD sum rules
and renormalization scheme and scale ambiguities at the NLO level.

045203-10



CHARGED PION FORM . . . . II. DETERMINATION OF, . . . PHYSICAL REVIEW C 78, 045203 (2008)

by other calculations. To bring the calculation into agreement
with the experimental data, a soft component must also be
added. The treatment of the soft contribution to the pion DA is
model dependent. The authors estimate this soft contribution
using a local quark-hadron duality model. This soft estimate,
along with the sum of the hard and soft contributions, are also
shown in Fig. 7.

The interplay at intermediate Q2 between the hard and
soft components can be nontrivial, as demonstrated by Braun,
Khodjamirian, and Maul [5], using a light-cone sum rule
approach. Their results support a pion DA that is close to the
asymptotic expression, but they find that strong cancellations
between soft terms and hard terms of higher twist lead to
the paradoxical conclusion that the nonperturbative effects in
the pion form factor can be small and the soft contributions
large simultaneously. Because of complications such as these,
different theoretical viewpoints on whether the higher-twist
mechanisms dominate Fπ until very large momentum transfer,
or not, remain.

B. Lattice QCD

Unlike QCD-based models, in which confinement must be
explicitly added, lattice QCD allows calculation from first
principles. However, although lattice QCD is based on the
QCD Lagrangian, it involves a number of approximations.
Errors are introduced because space and time are crudely
discretized on the lattice. This error is controlled by the use
of improved lattice QCD actions. To allow a more rapidly
converging action, and hence reduce CPU usage, the pion
mass used is significantly larger than the physical pion mass.
Chiral extrapolation errors are introduced when the lattice
results, determined with large pion mass, are extrapolated to
physical values. Finally, quenching errors are introduced when
disconnected quark loops are neglected.

The first lattice simulations of Fπ were done in the 1980s
[50–52]. These pioneering works were primarily a proof
of principle of the lattice technique and were restricted to
Q2 < 1 GeV2. These results are consistent with the low-Q2

experimental data, within the large statistical uncertainties of
these pioneering calculations. Spurred by advances in CPU
power and lattice techniques, as well as the availability of new
experimental data, a number of groups [53–61] have returned
to the calculation of Fπ on the lattice. Of these, we compare
our data to the recent unquenched simulations of Brommel
et al. [60]. They performed simulations for a wide range of pion
masses and lattice spacings so both the chiral and continuum
limits could be studied. However, the lowest pion mass used
in the simulations was 400 MeV, so the chiral extrapolation
is significant. The authors fitted the Q2 dependence of each
lattice configuration with a monopole form for the pion form
factor and determined the corresponding monopole mass. They
then extrapolated these masses to the one corresponding to the
physical pion mass to obtain a chiral monopole mass value of
0.727 ± 0.016 GeV. The (monopole) form factor calculated
with that mass (including its uncertainty) is indicated by
the shaded band in Fig. 8, cut off at the highest Q2 point of the
lattice simulation. This result begins to trend away from the

FIG. 8. (Color online) The Fπ data of Fig. 6 are compared with
the lattice QCD result of Ref. [60] and the dispersion relation
result of Ref. [64]. The lattice QCD band denotes the statistical
and chiral extrapolation uncertainties in the fit monopole mass to
the simulated data. The dispersion relation uncertainty band reflects
different assumptions on the distributions of zeros in the complex s

plane, with the “no zeros” curve lying close to the “minimum Fπ ”
limit.

Q2 > 1.5 GeV2 experimental data. It remains to be seen how
these results would be affected by our Sec. III D comments on
the applicability of the monopole parametrization in this Q2

range.

C. Dispersion relation with QCD constraint

Dispersion relations are based on constraints posed by
causality and analyticity and relate the timelike and spacelike
domains of the pion form factor on the complex plane. In
principle the technique is exact, but our incomplete knowledge
of the scattering amplitudes over the whole complex plane, and
in particular the incomplete understanding of the contribution
of all of the poles in the timelike region, creates uncertainties.
Authors address these uncertainties by imposing additional
constraints, such as the role of higher timelike resonances like
the ρ ′′′ or chiral perturbation constraints near the spacelike
threshold or that Fπ must approach its expected asymptotic
value at very large Q2 [62–66]. We compare the Fπ data to
the dispersion relation analysis of B. V. Geshkenbein [64] in
Fig. 8. The displayed uncertainty band is obtained by assuming
different distributions of zeros in the complex s plane. This
results in a band that grows with Q2, with the “no zeros” curve
lying nearly at the lower end of the band. Our highest Q2

data lie above the “no zeros” curve, but below the “improved
maximum Fπ” limit.

D. QCD sum rules

The QCD sum rule approach is designed to interpolate
between the perturbative and nonperturbative sectors using
dispersion relation methods in combination with the operator-
product expansion. Although the practical implementation of
this approach cannot claim to be rigorously derived from QCD,
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FIG. 9. (Color online) The Fπ data of Fig. 6 are compared with
the QCD sum rules calculations of Refs. [6,69] and the Bethe-Salpeter
equation model utilizing dressed quark propagators via the Dyson-
Schwinger equation of Ref. [78] (long dashed). For the calculation
of Ref. [69], three curves are shown: (dotted) F hard

π , (short-dashed)
F soft

π , and (solid) the sum F soft
π + F hard

π . For the calculation of Ref. [6],

two dot-dashed curves are shown: (lower) s0 = 4π2f 2
π

1+αs (Q2)/π
, (upper)

s0 = 0.65 GeV2.

its intuitive value is that it provides a bridge between the low-
and high-energy properties of QCD [67]. A number of authors
have applied this technique with good success to the pion
form factor [5,6,68–70]. In the calculation of Radyushkin [69],
QCD sum rules were used to give a local quark-hadron duality
estimate of the soft wave function

F soft
π (Q2) = 1 − 1 + 6s0/Q

2

(1 + 4s0/Q2)3/2
, (12)

where the duality interval, s0, which within the QCD sum rule
approach is determined by the magnitude of the quark and
gluon condensates, was taken as 4π2f 2

π ≈ 0.7 GeV2. This soft
calculation, shown in Fig. 9, underestimates the data by about
25%. For the hard contribution, a simple model based on the
interpolation between the behavior near Q2 = 0 [related by the
Ward identity to the O(αs) term of the two-point correlator]
and the asymptotic behavior was used

F hard
π (Q2) = αs

π

1

(1 + Q2/2s0)
. (13)

The sum, F soft
π + F hard

π , is in excellent agreement with the data.
More recently, Braguta, Lucha, and Melikhov [6] have

replaced the simple ansatz leading to Eq. (12) with an
expression including explicit corrections up to O(αs). Because
the higher-order corrections needed to apply these results with
authority to the intermediate Q2 region are beyond the capacity
of their two-loop calculation, there is a model dependence in
their numerical result, which is reflected in the two different
curves for s0 = 0.65 GeV2 and s0 = 4π2f 2

π

1+αs (Q2)/π shown in
Fig. 9.

E. Bethe-Salpeter equation

The Bethe-Salpeter equation (BSE) is the conventional
formalism for the treatment of relativistic bound states. In
this formalism, a meson is described by a covariant wave
function, which depends on the four momenta of its constituent
quarks. Although formally correct, complications arise as the
interplay between different configurations, such as q-q̄ and
q-q̄-g, are implicitly buried in the potential and scattering
amplitudes used in analyzing hadronic processes, and as a
result, these potentials and scattering amplitudes are nearly
intractable. The light-front Bethe-Salpeter model is a means
to handle this problem by breaking the BSE into separate hard
and soft components. A variety of models incorporating a
confining potential that dominates at low Q2 and a QCD-
based interaction that dominates at high Q2 are given in
Refs. [71–75].

Another approach is to use the Dyson-Schwinger equation
(DSE) to obtain dressed quark propagators that may be used
in the solution of the BSE. The Dyson-Schwinger approach
to nonperturbative QCD has many advantages. It is consistent
with quark and gluon confinement, it automatically generates
dynamical chiral symmetry breaking, and the solution is
Poincare invariant. In the work of Maris, Tandy, and Roberts,
the meson Bethe-Salpeter amplitudes and quark-photon vertex
are obtained as solutions of the homogeneous and inhomoge-
neous BSE, and the dressed quark propagators are obtained
from the quark DSE. The model parameters are fixed by
requiring fπ and mπ to be in good agreement with the data [76]
and then rπ and Fπ are predicted with no further adjustment of
parameters [77,78]. Their calculation is shown in Fig. 9. It is
in excellent agreement with our data up to Q2 = 1.60 GeV2.
To extend the validity of the model to higher Q2, a more
complete description that takes meson loop corrections into
account self-consistently is required [78].

F. Local quark-hadron duality

Quark-hadron duality relations link the hadronic structure
information contained in exclusive form factors and inclusive
structure functions by making strong assumptions of locality
[79]. Although local quark-hadron duality is an expected
consequence of QCD at asymptotically large momenta, it
is not at all clear how well it could work at finite Q2 [80].
And if it does, it may be due to accidental cancellations of
higher twist effects. Nevertheless, it is worthwhile to compare
predictions based on quark-hadron duality with the measured
data, especially because duality is expected to work better at
higher Q2, in contrast to many other approaches.

The approximate relationship between the pion elastic form
factor and the pion structure function Fπ

2 = νWπ
2 was found

by Moffat and Snell [81],

[Fπ (Q2)]2 ≈
∫ ωmax

1
Fπ

2 (ω)dω, (14)

where ω = 1/x, and the upper limit of integration is chosen
to select the elastic contribution to the inclusive structure
function. In applying this formula use is made of the Drell-Yan-
West [82,83] relation, which is based on a field-theoretic parton

045203-12



CHARGED PION FORM . . . . II. DETERMINATION OF, . . . PHYSICAL REVIEW C 78, 045203 (2008)

FIG. 10. (Color online) The Fπ data of Fig. 6 are compared
with the local quark-hadron duality analysis of W. Melnitchouk
[84,85], and the constituent quark model calculations of Refs. [92,93].
For the duality calculation, two curves are shown: (short-dashed)
leading-order analysis of Ref. [84], (long-dashed) next-to-leading
order analysis of Ref. [85]. For the quark model calculations by
Cardarelli et al. [92], two curves are shown: (upper dot-dashed)
pointlike quarks and (lower dot-dashed) quarks with a monopole
form factor.

model that predates QCD. It predicts that if the asymptotic
behavior of a form factor is (1/Q2)n, the corresponding
structure function should behave as (1 − x)2n−1 as x → 1.
This leads to the prediction Fπ

2 (x → 1) ∼ (1 − x).
The existence of Drell-Yan Fπ

2 data allows a quantitative
test of Eq. (14) using only phenomenological input. Calcula-
tions [84,85] based on the leading-order analysis of Fπ

2 data
by Ref. [86] and the next-to-leading order analysis of Ref. [87]
are shown in Fig. 10. In both cases, the magnitude of the Fπ

prediction is dependent on the value chosen for the inelastic
cutoff ωmax (and corresponding Wmax) in Eq. (14). Local
duality is expected not to work at lower Q2. This is reflected
in the poor description of the Q2 < 1 GeV2 form-factor
data. However, above Q2 > 2 GeV2, the next-to-leading order
analysis is consistent with our data.

G. Constituent-quark model

There are many Fπ calculations using a variety of
constituent-quark models [88–98]. The differences in ap-
proach typically involve differences in the treatment of the
quark wave functions or the inclusion of relativistic effects.
Figure 10 shows the result of calculations by Cardarelli
et al. [92] and by Hwang [93]. Both are relativistic quark
models on the light front. Reference [92] uses the effective
qq̄ Hamlitonian of Ref. [99], which contains a one-gluon-
exchange term and a linear confining term and which describes
a large set of meson spectroscopic data. Use of this interaction
results in large high-momentum components, and Fπ is
strongly overpredicted (upper dot-dashed curve in Fig. 10).
This can be cured in a way that is consistent with the notion
of a constituent quark by assuming a form factor for the
latter. Taking a monopole form for the latter and adjusting

the mass parameter so that the measured pion charge radius is
reproduced, results in the lower dot-dashed curve shown.

The model of Ref. [93] allows a consistent and fully
relativistic treatment of quark spins and center-of-mass motion
to be carried out. A power-law wave function is used, whose
parameters are determined from experimental data on the
charged pion decay constant, the neutral pion two-photon
decay width, and the charged pion electromagnetic radius.
The charge and transition form factors of the charged pion
and the branching ratios of all observed decay modes of the
neutral pion are then predicted. The calculation is in very good
agreement with our Fπ data.

Li and Riska [100] asked if the empirical Fπ data exclude
the presence of a significant sea-quark configuration in the
charged pion. They performed a constituent quark-model
calculation that was extended to include explicit sea-quark
components in the pion wave function. They found that these
sea-quark contributions grew with increasing Q2, because they
allowed the momentum transfer to be shared by a greater
number of constituents and so were less-suppressed at high Q2

than configurations which involved only a q̄q pair. Although
their analysis was model dependent, they found that our
data allowed an approximate 20 ± 20% sea-quark component,
with the data point at Q2 = 2.45 GeV2 providing the greatest
constraint.

H. Holographic QCD

A recent theoretical development is the AdS/CFT corre-
spondence [101] between weakly coupled string states defined
on a five-dimensional anti-de Sitter space-time (AdS5) and a
strongly coupled conformal field theory (CFT) in physical
space-time. The goal of holographic QCD models is to find
a weakly coupled theory for which the dual strongly coupled
theory is as close to QCD as possible and so allow analytic
solutions of hadronic properties in the nonperturbative regime
to be performed. In these models, confinement is simulated
by imposing boundary conditions on the extra fifth dimension
z [102]. In the “hard-wall” variant, confinement is modeled
by a hard cutoff at a finite value z = z0 = 1�QCD. This
has the advantage of simplicity but produces the unphysical
Regge trajectory M2

n ∼ n2. The “soft-wall” variant replaces the
hard-wall boundary with an oscillator-type potential and pro-
duces the more phenomenologically realistic Regge behavior
M2

n ∼ n.
Several authors have applied holographic models to the

pion form factor [103–105,107]. Complications arise when one
introduces spontaneous and explicit chiral symmetry breaking
effects into the soft-wall holographic QCD model. References
[104,105] take different approaches to this problem. Grigoryan
and Radyushkin [105] consider only the hard-wall variant
and then estimate a soft-wall correction from their previous
vector meson study [106]. They conclude that a full analytic
calculation would likely follow the Fπ data only in the Q2 <

1 GeV2 region, while overshooting it above Q2 ∼ 2 GeV2.
The calculations by Kwee and Lebed [104,107] are numerical.
Both the hard-wall and the soft-wall calculations predict
charge radii that are too small, especially for the soft-wall
case (see Fig. 11). By allowing the parameters of the soft-wall
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FIG. 11. (Color online) The Fπ data of Fig. 6 compared with
the holographic QCD model calculations by H. J. Kwee and R. F.
Lebed [104]. The curves are (solid) “hard-wall” and (dot-dash) “soft-
wall,” both with parameters fit to mπ, mρ , and fπ , and (dash) “soft-
wall” with σ = 262 MeV to improve the fit to Fπ at higher Q2 but
destroying the agreement with the other observables.

model (originally fixed by mρ,mπ , and fπ ) to vary, they find
it is possible to describe Fπ at either high Q2 or low Q2,
but not both. Issues in ongoing discussions [105,107] on the
AdS/CFT approach include the applicability of this model
to the larger Q2 region where partonic degrees of freedom
become appreciable and the treatment of chiral symmetry
breaking.

V. SUMMARY AND OUTLOOK

Values for the charged pion form factor, Fπ (Q2), have been
extracted for Q2 = 0.60–2.45 GeV2 from the longitudinal
cross sections σL(t) for the 1H(e, e′π+)n reaction recently
measured at JLab. Fπ values were also extracted from older
experimental data acquired at DESY. The Cornell data are not
included in this analysis because these σL were not obtained
in a true L/T separation, but instead by subtracting a certain
assumption for σT . In addition, the higher-Q2 data have
excessively large values of −tmin.

The form-factor extraction requires the use of a model
incorporating both the π+ production mechanism as well
as the effect of the nucleon. Several approaches to extract
Fπ from the data, including the Chew-Low extrapolation
method, various types of Born term models, and newer models
utilizing Regge trajectories and effective Lagrangians, were
reviewed. By using specially generated test data, it was found
that extrapolating to the pole at t = m2

π , as is done in the
Chew-Low method, cannot be used in practice, because there
is no way to determine the order of the polynomial to use
for the extrapolation and because even small uncertainties
in the measured cross sections lead to a large uncertainty in
Fπ .

From the models available for determining Fπ from the
measured values of σL, the VGL Regge model [23] was
chosen, because it contains no ad hoc parameters and its
validity has been well established over a wide kinematic range

in t and W for both electroproduction and photoproduction
data. The VGL model gives a rather good description of both
the t and the W dependence of the JLab data at values of
Q2 > 1 GeV2, but especially at Q2 = 0.60 GeV2 the falloff
of the data with −t is steeper than that of the model. In the
cases where the VGL model described well the t dependence
of the σL data, the value of Fπ was determined by fitting
the model to the data. Otherwise, the value of Fπ was
determined by extrapolating the fit of the model to t = tmin.
An additional “model uncertainty” has been estimated by using
two different assumptions for an interfering background that
could be responsible for this discrepancy between the data
and VGL model. The fact that the discrepancy, and hence the
model uncertainty, is very small at higher values of Q2 and W

suggests that effects from nucleon resonances play a role in
the data at lower Q2 and W .

It is stressed that the cross sections are the actual ob-
servables measured by the experiment and that the extracted
values of Fπ are inherently dependent on the model used
to extract them. The development of additional models for
the 1H(e, e′π+)n reaction would allow further exploration
of the model dependence of the extraction of Fπ from the
same cross-section data. On the experimental front, proposed
measurements [41] after the completion of the JLab upgrade
are expected to better establish the validity of any used
model by investigating, for example, the W dependence of the
results.

The results for Fπ , extracted from our data and from the
DESY data with the use of the VGL model, are presented
together with their experimental and model uncertainties.
Above Q2 ≈ 1.5 GeV2, these data are systematically below
the monopole parametrization based on the empirical pion
charge radius. The data are also compared to a selection
of calculations, including those based on pQCD, lattice
QCD, dispersion relations, QCD sum rules, Bethe-Salpeter
equation, local quark-hadron duality, constituent-quark model,
and holographic QCD. There has been tremendous progress
in the theory of hadronic structure physics in the past decade,
as is evident by the many new approaches under development.
However at present, the intermediate Q2 regime remains a
significant challenge. Several different approaches concur that
up to at least Q2 = 2.5 GeV2, the Fπ data are far above the
estimated “hard” (perturbative) contribution, and that “soft”
(nonperturbative) contributions likely dominate in this region.
Data expected to be taken [41] after the completion of the
JLab upgrade, up to at least Q2 = 6.0 GeV2, are expected to
indicate whether the higher-twist mechanisms dominate Fπ

until very large momentum transfer or not.
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