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Abstract

Monitoring systems are proposed for the detection of incipient instability in uncer-
tain nonlinear systems. The work employs generic features associated with the response
to noise inputs of systems bordering on instability. These features, called “noisy pre-
cursors” in the work of Wiesenfeld, also yield information on the type of bifurcation
that would be associated with the predicted instability. The closed-loop monitoring
systems proposed in the paper have several advantages over simple open-loop moni-
toring. The advantages include the ability to influence the frequencies at which the
noisy precursors are observed, and the ability to simultaneously monitor and control
the system.

1 Introduction

In this paper, we propose monitoring systems for detection of incipient instability in uncertain
nonlinear systems. Our aim is to develop automatic monitoring systems that provide a
warning that a system is operating dangerously close to an instability. Such a warning
mechanism can be of great value especially when no accurate system model is available and
the system is being operated in a stressed condition. If an exact model were available, then



the stability boundary could be calculated off-line, and there would be no need for an on-line
monitoring system for detecting incipient instability.

Generically, loss of stability results in bifurcation of new steady states from the nominal
one [6], [17],[19]. The type of bifurcation that occurs depends on the manner in which the
system loses stability. Since bifurcations involve changes neglected in linearized models, it is
not surprising that linear control design methods have often been found to be inadequate for
control law design for stressed systems. Bifurcation control methods have arisen to address
stabilization of systems in such situations [4].

In this paper, we contribute to this problem area by considering the design of monitoring
systems for detection of incipient instability. We also make observations on the design of
combined monitoring and control systems for physical systems susceptible to bifurcation and
loss of stability.

To develop an on-line approach to the detection of incipient instability in the absence of an
accurate system model, we harness the effects of external continuously acting disturbances.
The presence of these disturbances facilitates determination of measured signal features
associated with nearness to instability. The presence of disturbance inputs, which can occur
naturally or be injected, is crucial. Without continuous disturbances, a system at equilibrium
would remain at equilibrium until an instability occurs, with no possibility of an on-line
warning signal. We take the continuously acting disturbances to be white noise inputs. This
allows us to make use of previous work of Wiesenfeld and co-workers [20, 11, 21, 22, 24, 14, 23].
Wiesenfeld was interested in features that can be observed in the power spectrum of a
measured output of a system that is operating close to an incipient bifurcation. He focused on
nonlinear systems operating along a steady state limit cycle. He referred to the distinguishing
features in the power spectrum as “noisy precursors” of the bifurcations. Noisy precursors
are aspects of the power spectral density of a measured output that arise in the vicinity of
an instability.

The monitoring systems we propose do not employ or require a system model. Rather,
use of the noisy precursors notion allows a nonparametric approach based on general features
of noise-driven systems operating close to instability. Moreover, the monitoring systems we
develop are closed-loop, in the sense that they involve both sensing and actuation. This
has important advantages over the direct open-loop approach of simply monitoring a system
output and deciding if it exhibits features of a noisy precursor. Closed-loop monitoring
systems can enhance our confidence in deciding that system operation is indeed near an
instability as well as in determining the nature of the instability.

For many engineering system models, the normal operating condition is an equilibrium
point rather than a periodic solution. Thus, we extend the theory of noisy precursors to
systems operating at an equilibrium point. This forms the basis for our design of monitoring



systems for detection of incipient instability.

Our results apply to situations that share the following general characteristics. A physical
system is operating at or near a nominal stable steady state. The system depends on a set
of parameters, some of which change slowly with time. Outside a certain range of parameter
values (the “design range”), model uncertainty impedes reliable determination of system
stability. However, there are circumstances in which the parameters will move outside of
the design range. Moreover, in these circumstances it is crucial that system operability be
maintained as far as possible outside the design range. The parameter changes may occur
due to action of the system operator, or may be exogenous. We refer to operation outside
the design range as “stressed operation.”

There are many important examples in which systems need to be operated in off-design,
stressed conditions. The driving factors depend on the application, but in general they entail
a desire to achieve increased performance without re-design or expansion of the system.
Often, stressed operation leads to a reduced margin of stability. Thus, stressed operation
can be unsafe, in that small uncertainties or disturbances can lead to loss of stability, i.e.,
to system failure. Examples include electric power system voltage collapse [18], chemical
reactor runaway [12], jet engine stall [13], aircraft stall at high angle-of-attack [5], and laser
system instability [8]. For each of these examples, precise models are difficult to obtain,
especially outside the design range.

The paper is organized as follows. In Section 2, we study noisy precursors for instability
for systems operating at an equilibrium point. In Section 3, we introduce a basic monitoring
system that facilitates use of precursors to detect incipient instability. In Section 4, we
redesign the monitoring system to ensure that the bifurcation occurring in the overall system
is supercritical. The monitoring systems of Section 3 and Section 4 require full state feedback.
In Section 5, we alleviate the full state feedback requirement for plants that can be viewed
as singularly perturbed (two time-scale) systems. In Section 6, we relax another assumption,
namely that the system equilibrium point is known. In Section 7, we give a simple example.
In Section 8, we collect our conclusions.

2 Noisy Precursors for Nonlinear System Instabilities

In this section, we extend the noisy precursor analysis of Wiesenfeld [20] to systems operating
at an equilibrium point. Wiesenfeld considered systems driven by white noise and operating
near a periodic steady state. He showed that the power spectrum of a measured output
for such a system exhibits sharply growing peaks near certain frequencies as the system
nears a bifurcation. The particulars depend on the type of bifurcation that the system



was approaching. He used the results to show that bifurcating systems could be used as
selective-frequency amplifiers [11], [22], [23].
Consider a nonlinear dynamic system (“the plant”)

T = f(Z,p) + N(1) (1)

where Z € R", p is a bifurcation parameter, and N(f) € R" is a zero-mean vector white
Gaussian noise process. Let the system possess an equilibrium point Z,. For small pertur-
bations and noise, the dynamical behavior of the system can be described by the linearized
system in the vicinity of the equilibrium point Z,. The linearized system corresponding to
(1) with a small noise forcing N(¢) is given by

i = Df (3o, )z + N(1) (2)

where z := & — T and N(t) € R" is a vector white Gaussian noise having zero mean. For
the results of the linearized analysis to have any bearing on the original nonlinear model,
we must assume that the noise is of small amplitude. This assumption of small noise will be
explicated below, in terms of smallness of correlation and cross-correlation coefficients. The
distinct notation for the system state Z and the linearized system state x was used here for
clarity. In the sequel, we will simply use the notation x and the meaning will be clear from
the context.

The noise N(t) can occur naturally or can be injected using available controls. To facili-
tate consideration of cases in which the noise is intentionally injected, we write N(¢) in the
general form

N(t) = Bn(t) (3)

where B € R™™ and n(t) € R™ is a vector white Gaussian noise. This notation allows
us to easily consider cases in which noise is injected in different equations through available
actuation means. The noise vector N(t) is a white Gaussian with zero mean as long as n(t)
is a white Gaussian with zero mean.

We view the system (2) as being in steady state and driven only by the noise process.
Thus, we solve for the evolution of the state assuming a zero initial condition. The solution
of equation (2) at time ¢ with a zero initial condition is

t
() = et / e~ N (s)ds (4)
0
where A := DF(xy). For our analysis, we assume that z, is an asymptotically stable
equilibrium point, i.e., all the eigenvalues of A have negative real part. We can express (4)
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in terms of the eigenvectors and eigenvalues of A (normalized, and assumed distinct):

z(t) = le/ ZlkN Mok dsetityd
j=1 70 k=1
lirj = 5ij

where r* and [* are right and left eigenvectors, respectively, of A corresponding to eigenvalue
Ai, and where 6;; is the Kronecker delta:

IRy
5= {12 5)

Thus, the i-th component of z(t) is given by
:ZeAt]/ PN (s)e ds (6)
j=1

Since the power spectrum is the Fourier transform of the autocovariance function, we calcu-
late the autocovariance for z;(t):

n.n t+7
(@t + 7)) = L3 M / [ e
k=1

j=
. Z Z g ]; ( 2)>d81d82
Let the noise have autocorrelation function
(Ni(t)N;(t + 7)) = vi50(7) (7)

where §(-) is the Dirac delta function and the v;; are constants for all 7, j. Moreover, v;;
should be small enough such that linearized analysis is valid. Again, (7) is satisfied for the
linearized system as long as n(t) satisfies

(ni(t)n;(t + 7)) = 4i;6() (8)

where the ;; are constants for all 4, j. Then
N A P Y LU
(i)t 4+ 7)) = D> eMle k+TTT/ /e‘ﬂsle_’“s2
j=1k=1 0 0
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Z Zl oVopd(51 — 52)ds1dsy

o=1p=1
_ ZZG ARt rjrk/ o5 = ks
j=1k=1 0
Z Z Bk vepds (9)
o=1p=1

Note that the upper limit of integration changes from ¢+7 to ¢ because the impulse 0(s; — $2)
occurs for s; = s9, and s; < t in the inner integral.

For a dynamic system that depends on a single parameter, there are two basic types
of bifurcation from an equilibrium point. One is stationary bifurcation in which a new
equilibrium emerges or the original equilibrium point suddenly disappears at the bifurcation.
The other is Hopf bifurcation, where a periodic orbit emerges from the equilibrium point
at bifurcation. In stationary bifurcation, a real eigenvalue of the linearized system becomes
zero as the parameter varies. In Hopf bifurcation, a complex conjugate pair of eigenvalues
crosses the imaginary axis.

Consider first the Hopf bifurcation. Assume that a complex conjugate pair of eigenvalues
(denote them as A = A;, A = \y) close to the imaginary axis has relatively smaller negative
real part in absolute value compared to other system eigenvalues:

[Re(A)], [Re(A2)| < |[Re(Ai)] (10)

for i = 3,...,n. Since the integrand in (9) is the product of decaying exponentials (due to
the asymptotic stability assumption) and bounded, terms involving A; and Ay dominate (9)
for large ¢:

(x;(t)x;(t+ 7)) =~ eM (2”7)( : 2/ _2’\15221 lkz/”ds

]Ikl

+ et (2t+T)( 2/ 2o Z Z lZlk;Vl]dS
j=1k=1
n

t n
A1 (t+7‘)+)\2t 1.2 /\1+/\2
+ e 7“7“/0 E E l/l]dS

n

t n
" /\(t+7)+/\1tr1r2/ —(A+2)s ZZ 20ds
0 —

The power spectrum is measured with the use of a spectrum analyzer, and most practical
spectrum analyzers perform both an ensemble average and a time average. Thus, the final



autocovariance function is

Ciu(r) = Re[lw;(®)zi(t +7))] (11)

2@667 cos(wr) 1 T [e,ﬂ(e CO;((L;JJIL;;; sin(uﬂ'))] (12)

—_
~ —
~ —

where * indicates averaging over time ¢, and we have written Cj; in terms of €, w > 0 instead
of in terms of \; = —€ 4+ jw and \y = —€ — jw. Also, = and T are

- — 2
=

lkV]kT

T =

lkVJk 2+ Z Z Gl (r]

j=1k=1

i M: i M:

>
=

Finally, taking the Fourier transform of equation (12) yields the desired power spectrum:

(Gn +€)
(jn+€)? + w?
€(jn + €) B 1
DG+ rred)  @xdGnrarrar) Y

Si(n) = =

The magnitude of S;;(n) is maximum at n = w and the maximum grows without bound as
e — 0. Moreover, as the noise power (as measured by the v;;) increases, the magnitude
of S;i(n) also increases. However, since = and T affect S;;(n) linearly and uniformly over
frequency 7, the shape of the magnitude S;;(n) doesn’t change with increasing noise power.
Of course, we have assumed that the noise is of small amplitude, so we cannot actually allow
the v;; to increase without bound.

Fig. 1 shows the magnitude of S;;(n) for w = 10, for two values of €. (For definiteness, =
and T have been set to 1 in constructing Fig. 1.) Note the sharp peak around w = 10 that
appears as € — 0. From this observation, we can conclude that the power spectrum peak
near the bifurcation is located at w, and the magnitude of this peak grows as € approaches to
zero. This property will be used as a precursor signaling the closeness to Hopf bifurcation.

To study the impact of noise near a stationary bifurcation, assume that a real eigenvalue
close to zero (denote it as A = A;) and that it has relatively smaller negative real part in
absolute value compared to the other system eigenvalues:

A < [Re(A)] (14)
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Figure 1: Power spectrum magnitude for Hopf bifurcation when w = 10 for two values of €



for i = 2,...,n. Due to (14), terms with j = 1 and k£ = 1 dominate the expression (9) for
large ¢, so that

t n o n
izt +7) = MO [T Y S s
j=1k=1

Taking the time average, we get the autocovariance function

Cou(r) = (w(®)m(t + 7)) ) (15)
= (X3 G, (16)

Fourier transformation of (16) gives the desired power spectrum:
n

n
1
Si(n) = [ ll'll’/'k](ril)zi-
jz::lkz::l]kj 2¢(e + jn)
This equation shows that the magnitude of the power spectrum peak grows as € approaches
to zero and the location of this peak is n = 0. Fig. 2 shows the magnitude of S;;(n) (17). (For
definiteness, the coefficient in square brackets in Eq. (17) has been set to 1 in constructing
Fig. 2.) Note the sharp growing peak around w = 0 as € — 0.

(17)

3 Monitoring System for Detecting Incipient
Stationary and Hopf Bifurcation

As shown in the foregoing section, we can expect to observe a growing peak in the power
spectrum of a measured output of a nonlinear system with white Gaussian noise input as the
system approaches a bifurcation. In the case of Hopf bifurcation, the location of the power
spectrum peak coincides with the imaginary axis crossing frequency of the critical eigenval-
ues. In the case of stationary bifurcation the power spectrum peak occurs at zero frequency.
In this section, we use these observations to develop a monitoring system for proximity to
bifurcation. Since noisy precursors associated with stationary bifurcation involve a grow-
ing peak in the power spectrum at zero frequency, these are difficult to resolve. Hence, we
first propose a closed-loop monitoring system that addresses this problem by transforming
a stationary bifurcation into a Hopf bifurcation. That is, the original plant augmented with
the monitoring system undergoes a Hopf bifurcation. The critical frequency of the Hopf
bifurcation is set by the monitoring system itself. After introducing the monitoring system
and studying its use in monitoring for stationary bifurcation, we study its use in monitoring
a system for proximity to a Hopf bifurcation.
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3.1 Generating a Hopf Bifurcation from a Stationary Bifurcation

Suppose the plant of interest is susceptible to loss of stability through a stationary bifur-
cation. Since Hopf bifurcation is easier to detect than stationary bifurcation through noisy
precursors, we introduce a monitoring system that replaces the stationary bifurcation with
a Hopf bifurcation of tunable frequency.

In the absence of noise, let the plant obey the dynamics

&= f(z, p) (18)

Results we obtain for this model will have immediate implications for precursor-based mon-
itoring of the system with noise effects included. Suppose the following assumptions hold:

(S1) The origin is an equilibrium point of system (18) for all values of p.

(S2) System (18) undergoes stationary bifurcation from the origin at p = p. (i.e., there is
a simple eigenvalue A(p) of D f(0, 1) such that for some value p = p., A(u.) = 0 and

dA(pe)
& 7#0)

(S3) All other eigenvalues of D f(0, u.) are in the open left half complex plane.

We introduce the following augmented system (plant plus monitoring system) correspond-
ing to (18):

yi = cx (19)

Here, y € R", c€ Rand i =1,2,...,n. Eq. (19) will later be viewed as a basic monitoring
system whose use facilitates detection of either stationary or Hopf bifurcation. Note that
the state vector consists of the original physical system states x augmented with the states
y of the monitoring system.

Proposition 1 Under assumptions (S1)-(S3), the augmented system (19) undergoes a Hopf
bifurcation from the origin at p = p.. Moreover, if for any value of p the origin of the original
system (18) is asymptotically stable (resp. unstable), then the origin is asymptotically stable
(resp. unstable) for the augmented system (19).
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Proof: Denote by A the Jacobian matrix of system (18) at the origin. Clearly, the origin
(0,0) in R*" is an equilibrium point of the augmented system (19). The Jacobian matrix of
the augmented system (19) at the origin is

J:[éi'ﬁfl (20)

Let a be any eigenvalue of A and r the corresponding right eigenvector. Also, denote by A
any eigenvalue of J and the associated right eigenvector by v = [v; v3]7. Then,

My = Av; — cuy (21)
s = cug (22)
We seek a solution for which v; = r. From (22), we have

c
vp =T (23)

Substituting (23) into (21) and using r # 0, we get
M —aA+c =0 (24)

Thus, any eigenvalue a of A has corresponding to it two eigenvalues of J, which are the
solutions of the quadratic equation above:

atvVa?Z —4c?

A= ; (25)

Thus, the eigenvalues of the Jacobian matrix of the augmented system (19) are

a; +/a? — 4c?
i=1,2,....n (26)

2

Aoi1,2i =

where a;, 1 = 1,...,n are the eigenvalues of A. Let the eigenvalue of A that becomes 0 at
criticality be ay. At u = p., the eigenvalues of the augmented system associated with oy are
(using (24)) are a pair of pure imaginary eigenvalues at ..

)\1, )\2 == I|:C] (27)
Note that the pair of pure imaginary eigenvalues (27) depends on c.
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For a Hopf bifurcation to occur, the transversality condition should be satisfied. That
is, the eigenvalues crossing the imaginary axis should do so with nonzero speed. From the
quadratic equation (24) and using the fact that a; = 0 at p = p., we have

dR€()\1) . ldal
dep 2 du

(28)

Since oy = 0 and ‘% # 0 at u = p. from assumption (S2), (28) implies dRZL’\l) = %% #0
(i.e., the transversality condition holds for system (19)). Therefore, the augmented system
(19) undergoes a Hopf bifurcation from the origin at p = p,.

The last step in the proof consists in showing that all other eigenvalues of the matrix
J are in the open left half complex plane. Any pair of eigenvalues of J can be obtained

from (26). For a real eigenvalue of A, it is clear from (26) that the corresponding pair of

eigenvalues of J have negative real part if o; < 0 since o; < Re{y/a? — 4¢? }. For a complex
conjugate pair of eigenvalues of A (denoted ~,7), we have the following two equations:

M—yA+c = 0 (29)
N =+ = 0 (30)
Multiply (29) and (30) to get the following fourth order equation:
M=+ PN+ 2+ )N = Ay + A+t =0 (31)
Denoting v = a + bj and ¥ = a — bj, equation (31) simplifies to
A —2aX? + (2¢% + a® + V)N’ — 2ac® A + ¢t =0 (32)

Applying the Routh-Hurwitz criterion [7] to (32), we obtain the Routh array

s 1 22 +a®>+ 0

s3 —2a —2ac? 0

s 32+ a?+b? ct 0
1 —2ac®(2¢®+a62+b?)

s 3c24a2+b2 0 0

s ct 0 0

From assumption (S3), a < 0. This guarantees that all the entries in the first column of the
Routh array are positive. Therefore, all eigenvalues of the Jacobian matrix of the augmented
system have negative real part.
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From the foregoing discussion, it is also clear that if any eigenvalue of A has positive
real part, then the corresponding eigenvalues of .J also have positive real part. This proves
that if the origin is unstable for the plant, then it is also unstable for the augmented system. B

Note that since the value ¢ in equation (19) is adjustable, we can control the crossing
frequency of the complex conjugate pair of eigenvalues of the augmented system. Thus,
for detecting stationary bifurcation, we only need to monitor a frequency band around the
chosen value of ¢. It is also possible to slowly vary ¢ in a controlled fashion, giving added
confidence in our assessment that an instability is imminent.

There are some other advantages of our monitoring system. The augmented system (19)
has the same critical parameter value (u.) as the original system. This is actually not a
luxury but a necessity for the system to be practically useful. In addition, the final part
of the proof shows that augmenting the states y; and applying the feedbacks cy; to the
original system does not change the local stability of the system. Moreover, to apply the
monitoring system, we do not need knowledge of the original system. However, there are
some restrictions and further considerations in applying the suggested monitoring system to
general physical systems. We will discuss these in subsequent sections.

We assumed above that the stationary bifurcation was such that the transversality con-
dition is satisfied. This means that the eigenvalue that vanishes at criticality must cross
into the right half of the complex plane with nonzero speed as the parameter is varied. In a
saddle node bifurcation, however, the nominal equilibrium disappears at criticality, so that
the transversality condition does not hold. For a saddle-node bifurcation, the augmented
system of this section results in a degenerate Hopf bifurcation. The possible bifurcation
diagrams for degenerate Hopf bifurcation are more complex than for Hopf bifurcation [16],
[10]. However, for the purpose of detecting incipient instability, the details of the ensuing bi-
furcation are not important. These details become important when we consider the system’s
post-bifurcation behavior.

3.2 Detecting Hopf Bifurcation using Monitoring System

In this section, we consider the effect of the monitoring system of the proceeding section on
a system that undergoes Hopf bifurcation instead of stationary bifurcation. Consider again
the system (18), repeated here for convenience:

&= f(z,p) (33)
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(H1) The origin is an equilibrium point of (33) for all values of p.
(H2) System (33) undergoes a Hopf bifurcation from the origin at 1 = ..

(H3) All other eigenvalues of Df(0, i) are in the open left half complex plane.

As in the foregoing section, let the augmented system (plant plus monitoring system) be

T = filw, 1) — cy;

where r € R", y € R", c€ R,and 1 =1,2,...,n.

Proposition 2 Under the assumptions (H1)-(H3), the augmented system (34) undergoes a
codimension two bifurcation at p = ., in which two complex conjugate pairs of eigenvalues
cross the imaginary azis. Moreover, for any value of u if the origin of the original system s
asymptotically stable (resp. unstable), then the origin is asymptotically stable (resp. unstable)
for the augmented system.

Proof: First, we show that the augmented system has two pairs of pure imaginary eigenval-
ues at the origin for u = ., and that these eigenvalues satisfy the transversality condition.

From assumption (H2), the Jacobian matrix of the original system at the origin has a
pair of pure imaginary conjugate eigenvalues (denote them by jw, —jw) for u = p.. From the
proof of Proposition 1, it is clear that each of these eigenvalues results in a pair of eigenvalues
for the augmented system which are the solutions of the following equations:

N —jwul+c = 0 (35)
N4 jwd+ce = 0 (36)

By multiplying the equations above, we get a fourth order equation the solutions of which
are eigenvalues of augmented system:

M4+ (2 + WA+t =0 (37)

The four solutions of the equation above are given by

\/—202 —w? £ V4c2w? + wt

A==+
V2

(38)
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Note that 2¢? + w? > V4c2w? +w? for all c,w € R. Therefore, the Jacobian matrix of
the augmented system has two pairs of pure imaginary conjugate eigenvalues at the critical
parameter value.

To check the transversality condition, consider the eigenvalues for y near p.. Near u = .,
we have the following fourth order equation the solutions of which result from the pair of
complex conjugate eigenvalues (« &+ wj) of the original system (see (31)):

M =200 + (2¢2 + a® + WA = 2c%a + ¢ =0 (39)

Since p is close to p., by continuity it follows that this equation has two pairs of complex
conjugate eigenvalues as its solutions for p near p.. Denote these as e+ fj, g+ hj. The next
relationship is now easily demonstrated:

4
20 = Y N=e+yg (40)
i=1
4
=2 = Y ANAMN = 2g(€* + f7) + 2e(g” + ) (41)
%7k

where \;, Aj, A, are roots of (39). Taking the derivative of both sides of the equation above
with respect to p and evaluating at p = p. (e=g =0, 3 =09 =c— a) gives

de dg _ _ydo
du — dp du
de dg da
P+ P2 = A 42
du I du ¢ dp (42)
Next we solve Eq. (42) for g—z, j—;. Also, h and f are not 0 at the critical point from (38)

and f # h at the critical point if ¢ # 0. These conditions guarantee that if Z—Z‘ # 0, then
d de

The last step in the proof consists in showing that all other eigenvalues of the Jacobian
matrix J of (34) lie in the open left half complex plane. Note that we have the same form
of matrix J as in the proof of Proposition 1:

J= [2 _gll (43)

where all noncritical eigenvalues of A have negative real part. We can use the same procedure
as in Proposition 1 to prove that if all noncritical eigenvalues of A have negative real part,
then all corresponding eigenvalues of J have negative real part.
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It is also clear that if any eigenvalue of A has positive real part, then the corresponding
eigenvalues of J also have positive real part. This implies that if the original system is
unstable, then the augmented system is also unstable. B

Since two pairs of eigenvalues of the augmented system cross the imaginary axis at the
critical parameter value, we can expect to see two peaks in the power spectrum as the system
nears the bifurcation point. From (38), we see that the values of the pairs of imaginary
eigenvalues at criticality depend on ¢. Hence, we can change the location of the power
spectrum peaks by changing ¢. Moreover, we can predict the exact locations of the peaks if
the pair of eigenvalues crossing the imaginary axis in the original system is known.

Because two pairs of eigenvalues cross the imaginary axis for the augmented system, the
augmented system undergoes a codimension two bifurcation. The nature of the bifurcation
behavior depends strongly on f(z, ). The possible bifurcation diagrams for the associated
degenerate Hopf bifurcation can be found in [16], [10]. However, as was the case for de-
tecting incipient stationary bifurcation, the details of the degenerate Hopf bifurcation are
not important. They become important when we consider the system’s post-bifurcation
behavior.

4 Stabilization of Bifurcated Limit Cycle
in the Augmented System

In this section, we suppose that the plant is subject to loss of stability through a stationary
bifurcation. In these circumstances, the monitoring system proposed above results in a Hopf
bifurcation in the augmented system. Besides being able to predict that a bifurcation is
about to take place, it would be useful if the monitoring system could also ensure stability
of the bifurcated solution. That is, a system that can perform both monitoring and control
functions is desirable. The purpose of this section is to illustrate how the monitoring system
we have proposed can be modified to serve in both capacities. Liberal use is made of the
bifurcation formulas and associated results summarized in Appendix B.

4.1 Stability of the Bifurcated Limit Cycle
of the Augmented System

First, we consider the relationship between the stability of bifurcated equilibrium points of
the original system and stability of the bifurcated limit cycle of the augmented system. If
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stability of the bifurcated equilibria of the original system implies stability of the bifurcated
periodic solution of the augmented system, then bifurcation control design need only be
performed for the original system. We proceed to show, however, that the stability properties
of the bifurcation persist in the case of scalar systems, but not generally for systems of
dimension two or higher.

Let the plant be given by

&= f(x, p) (44)

where x € R" is the state vector and 1 € R is the bifurcation parameter, and the noise input
is neglected for the purposes of this section. Suppose that at the critical parameter value
[ = p, the Jacobian matrix of (44) evaluated at the equilibrium point 2y = 0 has one zero
eigenvalue.

For simplicity, we first consider the one-dimensional case (n = 1), i.e., suppose the
state vector of (44) is a single variable. Also, suppose system (44) undergoes a pitchfork
bifurcation. It is easy to see that the left (/) and right (r) eigenvectors corresponding to
the simple zero eigenvalue at criticality can be taken as any nonzero constants. Set r = 1
and [ = 1, so that r and [ satisfy the normalization Ir = 1. Lemma 1 (see Appendix B)
then applies directly, allowing calculation of the associated bifurcation stability coefficients
(1 and (5. As discussed in Appendix B, the pitchfork bifurcation is supercritical (giving
stable bifurcated equilibria) if 3; = 0 and s < 0. Since system (44) is assumed to undergo
a pitchfork bifurcation, 4, = 0:

8= 1Q(rr) = 2F0) =0 (45)
’ Ox?
Thus, Q(r,r) vanishes. Since Q(r,r) = 0, we have x5 = 0 (using the notation of Appendix
B). Thus, /3, becomes
20°f
52 = QZCO(T, r, T) == 5%(0) (46)

The augmented system corresponding to the plant (44) is

T = f(l"aﬂ)—cy
] = cx (47)

where z,y, n € R. We have shown that the augmented system undergoes a Hopf bifurcation if
the original system undergoes a pitchfork bifurcation. To check the stability of the bifurcated
periodic solution of (47), we only have to check the sign of the Hopf bifurcation stability
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coefficient 5 (102). At criticality, the Jacobian matrix of (47) is

0 —c

Ly := l c 0 ] (48)
T

The matrix Ly has an eigenvalue c¢j with corresponding right eigenvector r = [ 1 =y ] and

left eigenvector [ = % [ 1 g ] Eigenvalue —cj has right eigenvector 7 and left eigenvector .

Note that higher order terms only come from f(z, ) and they are not a function of y. From
this observation, we have

Q) wy) = | 717 ”lng(o) o] [7]

_ ( %80)962) (49)

From equation (45), equation (49) implies that Q(r,7) and Q(r,r) both vanish. Therefore,
the solutions of (100) and (101) are @ = 0 and b = 0. Now, (s of (47) becomes

N[

8, = 236{210(7; )y =25 L9 ) (50)

since higher order terms only come from f(z, ) and none depend on y.
Note that the sign of (46) agrees with the sign of (50). The next proposition therefore
follows.

Proposition 3 Suppose the system (44) is of first order, i.e., n=1. If the plant (44) un-
dergoes a supercritical pitchfork bifurcation (respectively a subcritical pitchfork bifurcation),
then the transformed system (47) undergoes a supercritical Hopf bifurcation (respectively a
suberitical Hopf bifurcation).

Next, we consider the case n > 2, that is, the case in which the dimension of the plant
is at least 2. We show using an example that the monitoring system proposed above does
not necessarily preserve the stability character of the bifurcation in the plant. That is, a
supercritical pitchfork bifurcation (resp. a subcritical pitchfork bifurcation) in the plant
need not result in a supercritical Hopf bifurcation (resp. a subcritical Hopf bifurcation) in
the augmented system.
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Consider the example

.'L:1 = —ury — l‘? + T1T9
Ty = —xo+ kat (51)

where 1 € R is a bifurcation parameter and k£ € R is a constant. It is easy to see that the

origin is an equilibrium point for all parameter values 1 and that a pitchfork bifurcation

occurs for 4 = 0. Moreover, a simple calculation shows that (3, for this pitchfork bifurcation

is —1. This implies that system (51) undergoes a supercritical pitchfork bifurcation at u = 0.
The augmented system corresponding to (51) is

Ty = —uxr; — x? + x129 — CY1

Y = cn

Lo = —Ty+ kx% — Cyo

Yo = €I (52)

As discussed in Appendix B, typically a Hopf bifurcation’s stability is determined by a single
bifurcation stability coefficient 35 (this differs from the 35 coefficient in the study of pitchfork
bifurcations). The Hopf bifurcation is supercritical if the coefficient (3 is negative, and it is
subcritical if the coefficient is positive. We now calculate (3, for the Hopf bifurcation that
occurs in the augmented system (52). To facilitate application of the formulas in Appendix
B, denote the state vector of (52) as z = (21, 22, 23, 24)7 where z; 1=z, 29 := Y1, 23 1= To,
and z; := yo. The Jacobian matrix of (52) evaluated at the origin at criticality is

0 —c 0 0
c 0 0 0
0O 0 -1 —c (53)
0 0 c 0

One eigenvalue of this matrix is ¢j, and it has corresponding right eigenvector r = [ 1 —5 0

and left eigenvector [ = % 1 57 0 0 |. The conjugate eigenvalue —cj has right eigenvector

7 and left eigenvector I. The Taylor series expansion of the right side of (52) has the following
quadratic and cubic terms:

2123 T1T2
0 0

Qlzz) = kz2 | | ka?
0 0
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][ -
0 0
C(z,2,2) = o =1 o (54)
0 0
Therefore, we have
0
0
Q) = Q= )
0
-1
_ 0
C(r,r,7) = 0 (55)
0

Solving Egs. (100) and (101) of Appendix B, we obtain

o = (000 —&]"
[ : ]

b = [0 0 Fk—% 2]530 ]T (56)

Substituting these values in (102) of Appendix B, we find that 3, for system (52) is

3 k
o = ——+

4 449 (57)

Note that for sufficiently large k, (s is positive. For such values of k, the augmented system
(52) therefore undergoes a subcritical Hopf bifurcation even though the plant undergoes a
supercritical pitchfork bifurcation. Thus, for n > 2, the monitoring system as presented
above does not necessarily preserve the stability of bifurcated solutions. We now proceed to
modify the design to address this deficiency.

4.2 Redesign for Combined Monitoring
and Bifurcation Stabilization

In this section, we modify our monitoring system such that the bifurcated limit cycle occur-
ring in the augmented system is guaranteed stable regardless of the stability of the pitchfork
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bifurcation occurring in the plant. That is, we ensure that the Hopf bifurcation in the
augmented system is supercritical, and that this holds regardless of whether the pitchfork
bifurcation in the original system is supercritical or subcritical. The modification that we
introduce in the monitoring system involves the addition of a nonlinear term with a gain
parameter that can be tuned to ensure the desired result.

Let the plant obey the dynamics

&= f(x, ), (58)

which we assume undergoes a pitchfork bifurcation from the origin for 4 = p.. Here, x € R"
and p € R is the bifurcation parameter. Denote by r, and [, the right and left eigenvectors,
respectively, corresponding to the simple zero eigenvalue of the system linearization at y =
pe. Take the first component of r; to be 1 and impose the normalization [;r; = 1 (following
the procedure in Appendix B).

Now consider the following redesign of the augmented system:

i = fi(v,p) = cyi
i = cxi —maiy; (59)

Here, ¢ and m are real constants. At criticality, the system (59) has Jacobian matrix

J:[fl _Cé] (60)

at the origin, written in terms of A, the Jacobian matrix of (58). Employing Proposition 1,
it is easy to show that the augmented system (59) undergoes Hopf bifurcation and that the
matrix J has eigenvalues +ci. Moreover, the right and left eigenvectors of J corresponding
to the eigenvalue cj are given by

i T
r = Ts —]7"5]

[ 1 s | (61)

Also, the right and left eigenvectors corresponding to the eigenvalue —cj are given by 7 and
[, respectively.

The stability of the bifurcated periodic solution of the augmented system is determined
by the sign of the bifurcation stability coefficient 3, (Eq. (102), Appendix B):

| =

N| —r—

By = 2Re{21Qu (r, a) + 1Qo (F, b) + %l(](r, )} (62)
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Since there are no quadratic terms in y; in the augmented system (59), £, simplifies to

52 = 2R€{215Qf (7”, a) + lsQf(fv b) + %lC(T, T, 77)} (63)

where Q)s(-,-) denotes the quadratic terms in the Taylor expansion of f(z, ). Moreover,
we can simplify

IC(r,r,7) = 1,Cy(r7,7) + S0y (7, 7)

= 1Oy ) + ¢ Y L)’ (64)

=1

where C(z,z,x) denotes the cubic terms in the Taylor expansion of f(z, u.), and r’ and [
denote the i-th component of r; and [y, respectively. Since the first component of r! is 1 and

lsrs =1, (64) reduces to
IC(r,r, 1) = 1,Cs(r,r,7) — % (65)

Hence, 35 becomes

3m

D) (66)

By = 2Re{20,Qs(r,a) + 1,Qf(T,b) + leCf(r, r )} —
By choosing m positive and sufficiently large, we can ensure that (3, will be negative. This
will imply that the Hopf bifurcation occurring in the augmented system (59) is supercritical.
Here, we have suggested only one of many possible designs that render the Hopf bifurcated
supercritical. The method is robust, since the efficacy of the design does not depend on the
details of the plant model. For any given plant, a sufficiently large feedback gain m will
result in supercriticality of the Hopf bifurcation. Note that we added a nonlinear term only
to the dynamics of the augmented states y; not to those of the physical system states z;. We
therefore have considerable freedom in choosing the nonlinear feedback gain m.

5 Reduced Order Monitoring System

The closed-loop monitoring systems introduced in the preceding two sections entail the use
of full state feedback. In this section, we alleviate this requirement for plant models that
can be viewed as singularly perturbed (or two time-scale) systems. We design a monitoring
system in which only the slow states are fed back to the controls.
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Consider a plant given by a singularly perturbed system of the form

jj - f(.’L',Z,/,L,G)
€z = g(x,z, p,¢€) (67)

where x € R™, z € R™, u,e € R and € is small but positive. The reduced system is obtained
by formally setting € = 0 in (67), giving

jj :f(xVZhu)O)
0=g(z,z,n0) (68)

Let my = (0, 29) be an equilibrium point of the reduced system. Also, assume
(SP1) mg = (0, 29) is an equilibrium point of (68) for all values of u.
(SP2) f,g,are C"(r > 5) in x, z, i, € in a neighborhood of (my, 0, 0).
(SP3) No eigenvalue of Dyg(0, z9,0,0) has zero real part.

(SP4) The reduced system undergoes a stationary bifurcation at my for the critical parameter
value pu = p..

Let the augmented system (plant plus monitoring system) corresponding to (67) be

T = f(fU,Za/%‘f)—Cy

= cx
ez = g(x,z p,€) (69)
Proposition 4 Let (SP1)-(SP4) above hold. Then there is an €y > 0 and for each € € [0, €]

the augmented system (69) undergoes a Hopf bifurcation at an equilibrium mﬁg’e near myg for

a critical parameter value pg near p..

Proof: By virtue of Theorem in [1] on persistence of Hopf bifurcation under singular pertur-
bation, we need to verify two conditions. The first is that the reduced system corresponding
to (69) undergoes a Hopf bifurcation at (0,0, zp) at the critical parameter value p = .. The
second condition is that the Jacobian matrix of g with respect to the fast variables z does
not possess any eigenvalues with zero real part. The reduced system

T = f(xazauao)_cy
] = cx

0 = g(z,2,p,0) (70)
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Since the original reduced system (68) undergoes a stationary bifurcation, we can apply
Proposition 1 to (70) to show that the reduced augmented system (70) undergoes Hopf bi-
furcation at the critical parameter value 1 = p.. The result now follows from [1].1

Proposition 4 is useful because it implies that we only have to augment and feed back slow
states in a two-time scale system to transform stationary bifurcation into Hopf bifurcation.

6 Mbonitoring System for Nonzero Equilibrium Point

Although the results of the preceding sections do not depend on availability of an accurate
model of the plant, they do require knowledge of the nominal equilibrium. In this section, we
alleviate this requirement through a re-design of the monitoring system. Not surprisingly,
the increased generality comes with some cost, mainly in the simplicity of the observed
instability precursor.

The requirement of a known equilibrium is embodied in assumption (S1), which states
that the nominal equilibrium point of the plant is fixed at the origin for all parameter values.
Through a simple parameter-dependent coordinate change, it is clear that the results of the
preceding sections still apply under the milder assumption that the equilibrium is a known
function of the parameter.

Assumption (S1) was invoked so that the equilibrium point of the plant is not changed
upon applying state feedback. A standard control technique for exactly preserving an equi-
librium despite model uncertainty involves the use of washout filters [15]. Our revised designs
in this section entail adjoining a washout filter to the previous monitoring system designs.

Denote by z(p) the nominal equilibrium point of system (18). We now allow the equi-
librium to depend in some unknown fashion on the parameter .

The following re-designed augmented system involves two sets of additional variables:
the vector y, which appears in the original design (19); and the vector z, the washout filter
states:

T = filz, ) — cy;
Vi cr; + az;

fori=1,2,...,n, where a,c € R.

Proposition 5 Assume the original system (18) satisfies (S2) and (S3) at an equilibrium
point xo(p) not necessarily at the origin. Then the augmented system (71) undergoes a
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codimension 2 bifurcation at pu = p.. At criticality, the linearization of (71) possesses one
simple zero eigenvalue and a pair of pure imaginary eigenvalues.

Proof: The equilibrium point of the augmented system (71) is (g, 0, zp), where zq is solution
of cx;4+az; = 0. Note that new augmented system keeps zy as a component of this equilibrium
point. The Jacobian matrix of (71) evaluated at this equilibrium point is

A —cl 0
J=|cI 0 al (72)
0 I 0

where A is the Jacobian matrix of the original system evaluated at xy. Let o be any eigen-
value of A and r corresponding eigenvector. Also, assume A is an eigenvalue of J with
eigenvector v = [vI vl oI1T. Then

Ay = Av; — cuy (73)
A\ = cvy + avs (74)
)\'Ug = 9 (75)

Attempt a solution v for which v; = r. Solve (74) and (75) for vy and v; in terms of r, we
get

cA

A —q
c

A —q

(%) T

V3 = r

Substituting the equation for vy into (73) and using r # 0, gives
N —aX + (* —a)d+aa =0 (76)

Since one eigenvalue of A becomes 0 at u = p., we can set o = 0 to get following equation
for the expected pair of eigenvalues system at criticality:

N4+ (P —a)d=0 (77)

If we choose a < 0, then .J has eigenvalues 0,++/¢> —aj which correspond to the zero
eigenvalue of the original system criticality.
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Next, we check the transversality condition. Equation (76) which corresponds to crossing
simple real eigenvalue of original system has one real and a pair of complex conjugate as
its solution near the critical point. Denote ¢ as the real eigenvalue and 3 + vj as the
pair of complex conjugate eigenvalue. Solving this notation in (76) and separating real and
imaginary parts, we obtain

0+2%x03 = —«
§(F2+7%) = aa (78)

Differentiating these equations with respect to u, gives

a5, ,d8 _ da

du du du
o, o 5 ap dry do
— 2—0B0+2—v) = — 79
du(ﬁ +77) + duﬁ 20 e (79)

At the critical parameter value y = p., 6 = 0, 3 =0, and 72 = ¢> — a. Thus, at u = .,

dé d d

CUPLUE R (80)
du du du

dé , , do
(2= = — 81
T = Tl (51)

From equation (81), fi—z # 0. Solving these equations for %, gives
1

af _ 1 ¢ de (82)
du 2¢2—adpy

which is nonzero if Z—Z # 0 and a < 0.

As was the case with Proposition 1, the final step in the proof consists of showing that
all other eigenvalues of the matrix .J are in the open left half complex plane (C_). There are
three eigenvalues of J which correspond to one negative real value eigenvalue of A and these
eigenvalues are solutions of the (76). By using the Routh-Hurwitz criterion, we can show
that solutions of equation (76) in C_ if the corresponding real eigenvalue of A isin C'"_. For
the complex conjugate pair of eigenvalues of A (7, 7), we have following two equations

M-y +(—a)d+ay = 0 (83)
NN+ (P —a)r+ay = 0 (84)
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Multiply (83) and (84) to get the sixth order equation

A= DN+ R = a) )N+ (7 +9)(20 = )N
+ (¢ —a)* = 2av9)N* + (¢ — a)a(y + )\ + a*yy =0 (85)

By applying the Routh-Hurwitz criterion to (85), we can show that all solutions of (85) are
in the open left half complex plane if Re(7) is negative (details are in Appendix A). B

We have proved that the new augmented system (71) with nominal equilibrium not
necessarily at the origin replaces a stationary bifurcation with a codimension two bifurcation.
Note that the design gives the same critical parameter value for the plant and the augmented
system. In addition, the crossing eigenvalues at critical point are located 0 and ++v/¢? — a j.
Also, note that an original simple zero eigenvalue persists under the augmentation. Thus, the
monitoring system’s effectiveness has to do with its introduction of a purely imaginary pair
of eigenvalues at criticality in addition to the zero eigenvalue. Near bifurcation, we expect
power spectrum peaks to be located at 0 and v/¢> — a. By varying ¢ and a (both tunable
parameters), we can tune the location of the peak at v/¢? — a as desired. This flexibility
increases our assurance that the power spectrum peak is caused by closeness to instability
rather than by other factors (such as noise). However, the new augmented system (71) also
comes with some disadvantages compared to the system in Proposition 1. In Proposition 1,
we transform a stationary bifurcation into a Hopf bifurcation. In other words, the system
has a limit cycle as its solution instead of a new equilibrium point near of bifurcation. In
comparison to the previous augmented system design (19), the new augmented system (71)
shows more complicated bifurcation behavior [9]. The system is no longer guaranteed to have
a periodic orbit as a solution near bifurcation. Either a periodic orbit or a new equilibrium
point could result at bifurcation. The bifurcation diagram depends strongly on the vector
field f(z,p). However, it may be possible that augmented system has desired bifurcation
diagram by introducing some nonlinear terms into augmented states. Of course, to do that
we have detail knowledge on f(z, ). Details on codimension two bifurcations can be found
in [9]. However, for the purpose of monitoring, it is enough to have a discernible power
spectrum peak when the system approaches instability.

The next proposition asserts that the new augmented system also works for singularly
perturbed systems using fewer states for feedback. The only difference from the previous
results on singularly perturbed systems is that we no longer require (SP1) of Section 5.
Using the same notation as in Section 5, we have the following proposition.

Proposition 6 Let (SP2)-(SP4) of Section 5 hold for the system (18). Then there is an
€0 > 0 and for each €y € [0, €] the following extended system undergoes a codimension two
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€
(one real and a pair of complez eigenvalues crossing) bifurcation at an equilibrium my® near

myg for a critical parameter value 1 near ji.:

:tz' = fi(xazau7€)_cyi

Y = cr; + aw;
wp = Y
ez = g(x, 2z p,€) (86)

where 1 =1,2,...,n.

Proof: Follows directly from Proposition 5 and Theorem 7 of [1]. B

7 An Example

Consider again the simple system (51) which undergoes a pitchfork bifurcation. For conve-
nience, we rewrite the equations for the plant (including a noise term) augmented with a
monitoring system:

T = —uw; — 2+ 1129 — ey + N(t)

Y1 =

Ty = —x9+ 523 —cyo

Yo = CIy (87)

Here, N(t) is a white Gaussian noise. The system (87) undergoes a Hopf bifurcation at
i = 0, which is the parameter value where a pitchfork bifurcation occurs for the original
system (51). The origin loses stability as u is decreased through p = 0.

The simulation results in this section were obtained by the MATLAB Simulink package.
Figure 3 shows the location of the power spectrum peak in frequency as the parameter ¢
is (quasistatically) changed. The simulations were done for a parameter value of u = 0.1,
which is before the origin loses stability. Note from the figure that the location of the power
spectrum peak obtained from simulation (shown as an asterisk in Figure 3) agrees well with
the predicted location (straight line in Figure 3).

8 Conclusions

We have proposed closed-loop monitoring systems for detection of incipient instability in
uncertain nonlinear plants. These systems make use of characteristics of the power spectrum
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Figure 3: Variation of location of power spectrum peak with ¢ (u = 0.1)
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of a measured output in the vicinity of an instability. By employing closed-loop designs, we
are able to more reliably monitor for incipient instability through on-line tuning of control
parameters. Two time-scale models were used to reduce the number of measurements fed
back in the closed-loop monitoring system. We have studied the impact of the monitoring
systems on stability of bifurcations that occur when stability is lost, and proposed design
modifications to ensure stability of bifurcated solutions in a robust fashion.

A Routh-Hurwitz Calculation for
Proposition 5

Using the same notation as in Proposition 5, and letting v = 0 + jw and ¥ = 0 — jw, Eq.
(85) becomes

M — 2005 + (2(c2 — a) + 02 + WM +20(2a — AN+
((c* = a)® = 2a(0® + W))A? + 2(c* — a)aoc A + a*(0® +w?) = 0

Applying the Routh-Hurwitz criterion to the equation above, we obtain the Routh array

55 1 2(c—a)+o (c—a)?* —2a(0? + w?) a?*(0? + w?)
EE —20 20(2a — ¢) 20a(c — a) 0
st ct+o’+w? P —ac—2a(0? +w?) a?(0? + w?) 0
3 20c(a—(0%+w?)) 20ac(c—a+o’+w?)
ST T e T eroThe? 0 0
52 A a?(0? 4+ w?) 0 0
1 —2aco(cto’+w?)
§ a(o2+w2+c)—(a+c)? 0 0
s d*(o* + w?) 0 0 0

“((’”‘”2)(”;?;?;&‘;“’2<"2+“’2>. If @ < 0 and o < 0, then all entries in the first

column of this array are positive. Therefore, under this condition all solutions of (85) have
negative real part.

where A =

B Stability of Bifurcated Solutions

In this appendix, we recall formulas for determining the local stability of bifurcated solutions.
Details can be found in Abed and Fu [2],[3].
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Consider a one-parameter family of nonlinear autonomous systems

&= f(x,p) (88)

where = € R™ is the vector state and p is a real-valued parameter. Let f(x, ) be sufficiently
smooth in = and p and let z(, be the nominal equilibrium point of the system as a function
of the parameter pu.

First, we consider the case of stationary bifurcation. For simplicity, we take the critical
parameter value to be p, = 0 in the statement of the next hypothesis.

(S) The Jacobian matrix of system (88) at the equilibrium =z, , has a simple zero eigenvalue
A1(p) with X{(0) # 0, and the remaining eigenvalues lie in the open left half of the
complex plane for p = 0.

The Stationary Bifurcation Theorem asserts that hypothesis (S) implies a stationary
bifurcation from z,, at ;1 = 0 for (88). A new equilibrium branch bifurcates from z; , at
p = 0. The theorem states that near the point (z,0) of the (n + 1)-dimensional (z, u)-
space, there exists a locally unique curve of critical points (z(e), uu(¢)), distinct from =z, , and
passing through (x¢,,0), such that for all sufficiently small |e], z(¢) is an equilibrium point
of (88) when u = p(e). (Here, € is an auxiliary small parameter.)

The series expansions of x(e), iu(€) can be written as

ple) = pae+ pipe’ + - (89)
z(e) = o, + 1€+ T + -+ (90)

If ;11 # 0, the system undergoes a transcritical bifurcation from =z, at 4 = 0. That is,
there is a second equilibrium point besides z, for both positive and negative values of
with |p] small. If 4y = 0 and py # 0, the system undergoes a pitchfork bifurcation for |u|
sufficiently small. That is, there are two new equilibrium points existing simultaneously,
either for positive or for negative values of p with || small. The new equilibrium points
have an eigenvalue ((e) which vanishes at ;1 = 0. The series expansion [(¢) is given by

Be) = Bre + Br€® + - - (91)
We have the exchange of stability formula:
p1 = — N (0) (92)
Moreover, in case 3; = 0, (3 is given by
B2 = —2u\'(0) (93)
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Egs. (92),(93) are not explicit formulas for 3; and (5. Explicit formulas are given Lemma 1.

The bifurcation stability coefficients 3, and (3, can be obtained using eigenvector com-
putations and series expansion of the vector field. System (88) can be written in the series
form

i = L,3+QuE,%)+C.(%7,3)+

Lo 4 ply & 4+ p?Loi + - - -

+Qo(7,7) + pQ:(7,7) + -+

+Co(%, %, %) + - - (94)

where @ = © — w0, Ly, L1, Ly are n x n matrices, Q,(z,z), Qo(z,z),Q:1(z, ) are vector-
valued quadratic forms generated by symmetric bilinear forms, and C),(z, z,z), Co(z, z, )
are vector-valued cubic forms generated by symmetric trilinear forms.

By assumption, the Jacobian matrix Ly has a simple zero eigenvalue with the remain-
ing eigenvalues stable. Denote by [ and r the left (row) and right (column) eigenvectors,
respectively, of the matrix Ly associated with the simple zero eigenvalue, where the first
component of r is set to 1 and the left eigenvector [ is chosen such that Ir = 1. (Setting
the first component of r to 1 sometimes requires a re-ordering of the state variables.) The
following well known fact is used in the statement of the next lemma:

N(0) = ILyr (95)

The two lemmas that follow give stability criteria for the bifurcated equilibria of system
(94). The first addresses to pitchfork bifurcation, while the second addresses transcritical
bifurcation.

Lemma 1 Let hypothesis (S) hold. Then

51 = ZQO (7", T) (96)
Also, if p1 =0, then
By = 21{2Q(r, z2) + Co(r,7,7)} (97)
where x5 solves
Loxy = —Qo(r,7) (98)

The bifurcated equilibrium points of (94) near a:g for p near 0 are asymptotically stable if
By =0 and B < 0, but they are unstable if 3 =0 and By > 0.
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Lemma 2 Let hypothesis (S) hold, and suppose that 31 # 0 (this can be checked using (96)).
Then the bifurcated solution is asymptotically stable on one side of p =0 and is unstable on
the other. For any given value of pu near 0, the stability of the bifurcated solution is opposite
that of the nominal equilibrium.

Now consider system (88) under for the following hypothesis, which implies occurrence of
Hopf bifurcation. Again, for simplicity the critical value of the parameter is taken as u. = 0.

(H) The Jacobian matrix of system (88) at the equilibrium g ,—¢ has a pair of pure imag-
inary eigenvalues \;(0) = jw. and \(0) = —jw, with w. # 0, the transversality
condition % # 0 is satisfied, and all the remaining eigenvalues lie in the open left

half complex plane.

Under these conditions, the Hopf Bifurcation Theorem asserts the existence of a one-
parameter family p.,0 < € < ¢, of nonconstant periodic solutions of system (88) emerging
from x = x, at the parameter value 0 for sufficiently small |u|. Exactly one of the charac-
teristic exponents of p, governs the asymptotic stability and is given by a real, smooth and
even function

B(€) = Poc® + fae + - - (99)
Specifically, p. is orbitally stable if §(€) < 0 but is unstable if 3(e) > 0. Generically the local
stability of the bifurcated periodic solution p, is decided by the sign of the coefficient 5.
It happens that the sign of (3, also determines the stability of the critical equilibrium point
%o, An algorithm for computing the stability coefficient 3, follows.

Stepl Express (88) in the Taylor series form (94). Let r be the right eigenvector of Ly
corresponding to eigenvalue jw. with the first component of r set to 1. Let [ be the left
eigenvector of Ly corresponding to the eigenvalue jw., normalized such that [r = 1.

Step2 Solve the equations
Loa = —5Qo(r,7) (100)
1
(QjWCI— Lg)b = 5620(7",7“) (101)

for @ and b.

Step 3 The stability coefficient (3, is given by

B, = 2Re{21Qo(r, a) + 1Qo(F, b) + Zl(](r, )} (102)
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