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Bioequivalence studies are an essential part of the evaluation of generic drugs. The 

most common in-vivo bioequivalence (BE) study design is the two-period two-

treatment crossover design. AUC (area under the concentration-time curve) and Cmax 

(maximum concentration) are obtained from the observed concentration-time profiles 

for each subject from each treatment under each sequence.  

In the BE evaluation of pharmacokinetic crossover studies, the normality of the 

univariate response variable, e.g.  log(AUC) or log(Cmax) is often assumed in the 

literature without much evidence. Therefore, we investigate the distributional 

assumption of the normality of response variables, log(AUC), log(Cmax), and 

log(Tmax) by simulating concentration-time profiles from the two-stage 

pharmacokinetic models for a wide range of pharmacokinetic parameters and 

measurement error structures. Our simulation shows that log(AUC) has heavy tails 

and log(Cmax) is skewed. We study the impact of the non-normality of response 

variable on the sample size and type I error rate. 

Under the normality of the response variable, the most common approach to testing 

for bioequivalence is the two one-sided tests procedure. We develop the exact 

analytical formula for the probability of rejection in the two one-sided tests procedure 



  

for crossover bioequivalence studies under general parameter settings. Our exact 

formulas for power and sample size are shown to improve in realistic parameter 

settings over the previous approximations.  

We propose a new unblinded sample size re-estimation strategy. The new total 

sample size is calculated from our exact power function for the one stage using the 

estimated variance from the Stage 1 as the true variance. If the sample variance from 

Stage 1 is smaller than the initial variance from the historical data, then we stop at the 

end of Stage 1 and analyze Stage 1 data with the standard t- quantile. Otherwise, we 

collect data from additional subjects. We then analyze the combined data from both 

Stage 1 and Stage 2 with a new test statistic using the pooled variance of two stages. 

The exact critical values for the new test statistics are derived as the largest of u for 

which the following condition holds: the experimentwise type I error rate is exactly 

α .  
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Chapter 1  Overview 
Following the 2001 Food and Drug Administration’s Guidance for Industry [1]: 

Statistical Approaches to Establishing Bioequivalence, the Center for Drug 

Evaluation and Research (CDER) recommended that a standard in vivo 

bioequivalence (BE) study design be based on the administration of either single or 

multiple doses of the test (T) and the reference (R) products to healthy subjects on 

separate occasions, with random assignment to the two possible sequences of drug 

product administration. Hence the crossover design for in vivo BE study is the 

primary design studied in regulatory trials. The reference product could be a marketed 

innovator's product previously approved by Food and Drug Administration (FDA) 

and the test product a potential generic substitute manufactured by a different 

pharmaceutical company. The test and reference products could also be different 

formulations, but manufactured by the same pharmaceutical company. 

In a two-period two-treatment crossover design, a group of n1 subjects (Sequence 

1) receives the reference drug, and a profile of the drug concentration within blood 

plasma over time is obtained for each subject. After a washout period to remove any 

carryover effect, this group receives the test drug, and drug plasma concentration-

time profile for each subject is again obtained. A second group of n2 subjects 

(Sequence 2) receives the drugs in the reverse order. Therefore AUC (area under the 

concentration-time curve), Cmax (maximum concentration), and Tmax (time to reach 

the maximum concentration) are obtained from the correspondingly observed 

concentration time profile for each subject under each treatment in each sequence. In 

practice, AUC is estimated by a trapezoidal approximation method. 
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For the bioequivalence evaluation of pharmacokinetic crossover studies, univariate 

response variables such as log(AUC) and log(Cmax) are often assumed to follow a 

normal distribution in literature and in practice [2, 3]. The investigation by Lacey et 

al. [4] showed the underlying distributions of AUC and Cmax of four different Glaxo 

Wellcome compounds with the number of subjects varying from 29 to 69 are better 

approximated by log-normality rather than normality using p-values of the Shapiro-

Wilk test [5]. Liu and Weng [6] briefly discussed the theoretical distributions of AUC 

and Cmax under joint multivariate normal and multivariate log-normal assumptions 

of the observed plasma concentrations. The FDA Guidance published in 1992: 

Statistical procedures for bioequivalence studies using a standard two-treatment 

crossover design [7] and others [8, 9] provided the rationale for normality of 

log(AUC) and log(Cmax) as follows. Assuming that elimination of the drug follows 

first order and only occurs from the central compartment, the following equation 

holds after an extravascular route of administration: 
KeV

FD

CL

FD
AUC

a

==∞−0 , where F 

is the fraction absorbed, D is the administered dose, FD is the amount of drug 

absorbed, and CL is the clearance of a given subject which is the product of the 

apparent volume of distribution ( aV ) and the elimination rate constant (Ke). The use 

of AUC as a measure of the amount of drug absorbed thus involves a multiplicative 

term (CL) which might be regarded as a function of the subject. For this reason, 

Westlake [8, 9] contends that the subject effect is not additive if the data is analyzed 

on the original scale of measurement. 
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Logarithmic transformation of the AUC data brings the CL ( ea KV ) term into the 

equation in an additive fashion: 

KeVDFAUC a lnlnlnlnln 0 −−+=∞− . 

Clearly, the above argument is vague and lacks concrete scientific evidence. Thus, 

there is a need to have a systematic investigation of this assumption by simulations of 

individual pharmacokinetic profiles. 

In Chapter 2, we investigate the assumption of normality of the response variables, 

log(AUC), log(Cmax), and log(Tmax) by simulating a large number of concentration 

time profiles from two-stage one–compartment pharmacokinetic models for a wide 

range of parameter choices and measurement error structures. Then the distributions 

of log(AUC), log(Cmax), and log(Tmax) can be investigated by examining the 

departure of the histograms of the standardized response variables from normality for 

large sample studies (e.g., 100,000 subjects) and examining the rejection rates of the 

Shapiro-Wilk normality test for the response variables at a 0.05 significance level for 

small sample size (e.g., 40 subjects) studies.  

In Chapter 3, we present the linear mixed effect model for a two-period two-

treatment cross-over bioequivalence study. Assuming the response variable 

(log(AUC) or log(Cmax)) is normally distributed, we give a brief introduction of test 

statistics for the two one-sided hypothesis tests most commonly used in 

bioequivalence studies and present the power function for the test based on two one-

sided test statistics. We also take a quick look at the power approach. In practice, the 

power approach usually consists of testing the hypothesis of no difference at level 
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α (e.g., 0.05) and a lack of significance is often used to incorrectly infer equivalence.  

We derive the power function for the power approach. The two one-sided tests 

procedure is selected because it is recommended by FDA guidance and the two one-

sided tests procedure is superior to the power approach as a test of the hypothesis H0 

below based on Shuirmann’s comparison [10] of the two one-sided tests procedure, 

and the power approach for assessing the equivalence of average bioavailability in 

terms of rejection regions under the assumption that the response variable (log(AUC) 

or log(Cmax)) is normally distributed. 

Denote the population mean bioavailability (log(AUC) or log(Cmax)) of the test 

product by Tµ and the population mean bioavailability of the reference product by Rµ . 

In order to conclude the bioequivalence of the test product and the reference product, 

we aim to reject the null hypothesis of the following null and alternative hypotheses 

[10]: 

211

210

:

or  :

θµµθ
θµµθµµ

<−<
≥−≤−

RT

RTRT

H

H
    . 

Here θ1 and θ2 are pre-specified constants, also called equivalence margins, and 

θ1< θ2.  

The null hypothesis, H0, states that μT and μR are not equivalent. The alternative 

hypothesis, Ha, states that they are equivalent. Ha  is the intersection of the two one-

sided parameter regions, {
RT µµθ −<1 } and { 2θµµ <− RT

}. The statistical 

hypotheses H0 and H1 given above are referred to as the “interval hypotheses” in 

literature [11, 12].   
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In Chapter 4, we present the background, notation and standard assumptions in 

two-period two-sequence crossover designs for tests of bioequivalence and briefly 

derive the joint density function of test statistics and the exact formula for the power 

of the two one-sided tests procedure for testing bioequivalence based on a univariate 

normally distributed response variable. Our derivation for the exact power under 

general parameters only serves for completeness and for expository purposes since 

the explicit power formula under the equal variance for the test and reference 

products and balanced design was published before. However, by allowing for 

unequal variances, it might allow the user to assess the robustness of the power and 

sample size determinations when this assumption is violated. Modest differences in 

variability may not cause concern when the bioequivalence question is being 

addressed. We compare the simulated values with the numerical values and indicate 

how numerical integration easily provides accurate numerical values for power and 

sample size. Then, we compare the numerical results of the exact method with other 

methods including some approximate ones that have been proposed because of ease 

of calculation. 

When planning a bioequivalence study, one needs to specify a true mean 

difference between test and reference for the response variable of interest, along with 

the variance of these responses for both test and reference formulations. This may 

come from a limited pilot study or by looking at data from the reference formulation 

to make an intelligent guess. Because these initial values may be off, providing an 

approach that allows one to update information in the study while still conserving 
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type I error can improve the chances of success. We henceforth refer to our new 

method as a two stage design for bioequivalence.   

In Chapter 5, we propose a new unblinded sample size re-estimation strategy 

which re-estimates the new total sample size from the exact power function in 

Chapter 4 for the single stage with the replacement of the true variance by the 

estimated variance from the Stage 1. If the sample variance from the first stage is 

smaller than the initial variance from the historical data, then we stop at the end of the 

first stage, and we analyze the first stage data with the standard t quantile. Otherwise, 

we proceed collecting the data from additional subjects and then analyze the 

combined data from both Stage 1 and Stage 2. In order to analyze the combined data 

from Stage 1 and Stage 2, we propose new test statistics using the pooled variance of 

two stages. We search for exact critical values for the new test statistics subject to the 

following constraint: the maximum of the probability of rejecting the non-equivalent 

under the non-equivalent for the two-stage study plus the probability of rejecting the 

non-equivalent under the non-equivalent for the one-stage study in the whole range of 

variance is less than or equal to the nominal level α . With this exact critical value, 

the experiment-wise type I error rate for the sample size re-estimation procedure is 

not inflated.  

Throughout Chapter 3 to Chapter 5, we assume the normality of the response 

variable. In Chapter 6, we consider the impact of the non-normality of the response 

variable on the sample size, power, and type I error rate for the single stage study 

planning and also on the expected sample size and type I error rate for the two-stage 
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study planning. In Chapter 7, we provide our final conclusions and recommendations 

for designing a new study using either a one stage design or a two stage design.  
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Chapter 2  Distributional assumptions for AUC, Cmax and 

Tmax 

2.1 Introduction 

 
In a typical pharmacokinetic bioequivalence study with a single dose 

administration, one of the drug products is a reference formulation and the other a test 

formulation. Each subject is administered both formulations in a randomized two-

period crossover design [3]. A concentration-time profile is determined for each 

subject given each formulation. Each single concentration-time profile can be 

modeled by a pharmacokinetic compartmental model [13]. Many software programs 

exist for estimating the pharmacokinetic parameters such as the absorption rate, the 

volume of distribution, etc. [14]. Then, AUC, Cmax, and Tmax can be obtained from 

the fitted pharmacokinetic model. In spite of these elaborate pharmacokinetic models, 

the AUC, Cmax, and Tmax are obtained from the nonparametric method [1] for 

bioequivalence assessment.  

In practice, the univariate response variables such as log(AUC) and log(Cmax) are 

often assumed to follow a normal distribution without much experimental data 

support. For instance, an investigation of observed pharmacokinetic studies in [4] was 

based on numbers of subjects from 29 to 69 and so the power of the Shapiro-Wilk test 

to detect departures from either distribution (lognormal or normal) may have been 

limited.  

In this chapter, we investigate the normality assumption of log(AUC) or log(Cmax) 

using pharmacokinetic compartmental models typically used to describe 
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concentration profiles over time. In particular, if data is generated using the simplest 

pharmacokinetic models (namely one and two compartment models), will it 

ultimately lead to deciding which distribution of log(AUC), log(Cmax), or log(Tmax) 

is most plausible? There are many software packages, e.g., NONMEM [14] and many 

programs, e.g., SAS/IML [15] available for pharmacokinetic simulations. The 

SAS/IML program [15] provides an opportunity to use the statistical capabilities of 

the SAS package; NONMEM is a specialized-pharmacokinetic modeling software 

package. We write our own SAS program to simulate the plasma concentration 

profiles for streamlining the derived response variables and incorporating the desired 

variance-covariance structures for errors and pharmacokinetic parameters.  

In this chapter, we will investigate the distributional assumption of the normality 

of response variables (log(AUC), log(Cmax), and log(Tmax)) by simulating a large 

number of concentration-time profiles from two-stage pharmacokinetic models for a 

wide range of variability in pharmacokinetic parameters, a wide range of correlations 

of pharmacokinetic parameter vector, and a wide range of measurement error 

structures.  

In Stage 1, we simulate the mean plasma concentration-time profile of each subject 

from the one-compartment pharmacokinetic model using the pharmacokinetic 

parameters (absorption rate, elimination rate, bioavailability, and volume of 

distribution, etc.) of a particular drug whose values follow the log-normal distribution 

from subject to subject. In Stage 2, the plasma concentration-time profile of each 

subject is the result of the mean plasma concentration-time profile of each subject 

multiplied by the log-normally distributed residual errors. Then the distributions of 
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log(AUC), log(Cmax), and log(Tmax) from a simulated study are examined in three 

ways.  

First, we compare the estimated density curve of the standardized response 

variables (log(AUC), log(Cmax), and log(Tmax)) for 400,000 simulated subjects with 

the standard normal density curve. We compare the percentiles of the sample 

distribution to those of the standard normal distribution for one case.  

Second, we examine the normality departures of the histogram of the standardized 

response variable for 100,000 simulated subjects for several combinations of 

variability in pharmacokinetic parameters, correlations of pharmacokinetic 

parameters’ vector, and measurement error structures so that the most severe 

normality departure can be spotted. From practical experience, correlation 

coefficients among pharmacokinetic parameters ranging from 0.1 to 0.5 seem 

reasonable. The coefficient of variation (CV) for measurement errors of 0.2 is small 

compared to 0.4 (a highly variable drug has CV>0.3). Coefficient of –log(0.5) is high 

since measurement errors are most commonly assumed to be independent for each 

subject in the pharmacokinetic modeling (see Chapter 3 in NONMEM users guide 

[14]).  

Third, we compare the rejection rates of the Shapiro-Wilk normality test of these 

variables at 0.05 significance level for small sample size (e.g., 40 subjects) studies for 

some choice of parameters. Through the examination of a large sample size study, we 

can obtain a sampling distribution that is very close to the true distribution for the 

response variable and determine how the distribution of the response variable departs 

from normality. We obtain the proportion of trials which reject the null hypothesis of 
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normality from the rejection rate of the Shapiro-Wilk normality test for the response 

variable based on the small sample size study.. If the rejection rate is much larger 

than the nominal significance level, then the sampling distribution departs from 

normality. However, we would not know the nature of the departure. In addition, the 

normality testing for a small sample (e.g., 40 subjects) has very low power to reject 

the null hypothesis of normality. Hence the rejection rate is not a sensitive method. 

Sensitivity analyses investigate how the sampling distribution of the standardized 

log(AUC) (or the standardized log(Cmax)) for a large number of simulated subjects 

deviates from normality if residual error is distributed as t (a heavy tail distribution),  

the mixture of two normal variables (two subgroups responding differently), or if the 

concentration-time profiles follow a two-compartment pharmacokinetic model with 

normal residual errors. 

In Section 2.2, the two-stage one-compartment pharmacokinetic models are 

described in detail. In Section 2.3, we present the simulation scheme for the 

concentration profiles from a one–compartment pharmacokinetic model with first 

order absorption and first order elimination for many subjects who receive a single 1 

mg oral dose of Ropinirole for treatment of Parkinson’s disease. The simulation is 

motivated by the real example and the estimated means for parameters from the 

reference [16] are used as their true means in the simulation. Subsequently, the 

sampling distributions of log(AUC), log(Cmax), and log(Tmax) are obtained. In 

Section 2.4, we review univariate normality tests extensively and recommend that the 

Shapiro-Wilk test be used for sample sizes less than 2000. In Section 2.5, we closely 

examine the distributions of log(AUC), log(Cmax), and log(Tmax) for 400,000 
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simulated subjects for one case. We also examine the departure from normality of the 

histogram of the standardized response variable for 100,000 subjects simulated from 

one of several combinations of the variances and correlations of pharmacokinetic 

parameters’ vector and measurement error structures. In Section 2.6.1, sensitivity 

analyses illustrate how the distribution of the standardized log(AUC) (or the 

standardized log(Cmax)) for a large number of simulated subjects deviates from 

normality if eij is distributed as t with 5 to 20 degrees of freedom. In Section 2.6.2, 

sensitivity analyses study the validity of the normality assumptions of log(AUC), 

log(Cmax), and log(Tmax) if there is a subgroup with a slower absorption process. In 

Section 2.6.3, we present sensitivity analyses of the effect of different 

pharmacokinetic compartment models on the validity of the normality assumptions of 

log(AUC), log(Cmax), and log(Tmax) from two-compartment model under different 

combinations of the variations of the pharmacokinetic parameters and the variations 

of the measurement errors. In Section 2.7, distributions of log(AUC), log(Cmax), and 

log(Tmax) are examined for a real case with 39 subjects. 

2.2 Pharmacokinetic models and assumed distribution 

Assume that a typical person takes one tablet with dose D orally and the plasma 

concentration-time curve obtained after oral administration of one tablet can be 

described by a one-compartment model with the first-order absorption and 

elimination.  

Let X be the true amount of drug in the body at time t after oral administration of 

one tablet with dose D. Let Xa be the true amount of drug at the absorption site at time 

t after oral administration of one tablet with dose D. For a drug that enters a body by 
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an apparent first-order absorption process, is eliminated by a first-order process, and 

distributes in the body according to a one-compartment model, the change in the 

amount of drug adheres to the following differential equations [13]: 

keXkaX
dt

dX
a −= .                                                                       (2.1) 

a
a kaX

dt

dX −= .                                                                            (2.2) 

Here ka is the apparent first-order absorption rate constant and ke is the apparent 

first-order elimination rate constant for the drug. Note that when t=0, X=0 and 

Xa=FD. Now we turn to solving the differential equations (2.1) and (2.2), we obtain 

the relationship between the amount of drug and time: 

( )tketka ee
keka

FDka
X ⋅−⋅− −

−
=

)(
.  

Assuming the apparent volume of a typical person is aV  and bioavailability 

fraction is F, we obtain the relationship between the true concentration of drug (
tCµ ) 

and time (t): 

( )tketka

a

tC ee
kekaV

FDka ⋅−⋅− −
−

=
)(

µ . 

Let Cij denote the jth measurement of plasma concentration for j=1,2,…, ni; also 

for the ith subject with i=1,2,…,m, taken at time tij after dosing. Thus a total of 

N=∑
=

m

i

in
1

plasma concentrations are obtained. Suppose that the relationship between 

the mean of Cij and tij for a given subject i is a nonlinear function f(tij, βi), where βi is 

a ( 1×p ) vector of pharmacokinetic parameters for the ith subject which can vary 

from subject to subject, and tij is a nonrandom design constant. We further assume 
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that the form of f is common to all subjects, while βi differs for each subject i. This 

may be written as ),()|( iiiiiiii ββββββββ ijCij tfCE
ij

== µ . Note that f(tij, βi) is often assumed to be 

a nonlinear function of tij, and βi is assumed to be in the form of a summation of 

exponential functions. It is common to represent the body as a system of 

compartments and to assume that the rates of transfer between compartments follow 

first-order or linear kinetics when we characterize the concentration of a drug in the 

human body [13]. For example, f(tij,βi) = ( ) ( )( )
ijiiji

iiia

ii tketka
kekaV

DkaF −−−
−

expexp
)(,

, 

which is derived from the one-compartment linear pharmacokinetic model for plasma 

concentration after a single oral dose, D, where βi= )),1/(,,( ,
′− iaiiii VFFkeka ,  

10 , ≤≤> iii Fkeka .  

Now we can define the following two-stage models: 

Stage 1 (between subject variability) 

Variation among subjects is accounted for through the subject-specific regression 

parameters (βi). Parameters may differ due to unexplained variation from the natural 

biological or physical variability among subjects or the run-to-run variation in assay 

procedures.  

In general, subjects in pharmacokinetic bioequivalence studies are chosen from a 

relatively homogeneous population of healthy volunteers. Thus, variation among 

pharmacokinetic parameters across subjects is often attributable mainly to random 

variation among subjects rather than to differences in individual demographic and 

physiological characteristics that would be more pronounced in a heterogeneous 

patient population, e.g., body weight, genetics, and disease status.  
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In bioequivalence studies, it is appropriate to assume that inter-subject variation is 

due to unexplained noise: 

( )iiiiββββogl = ( )γlog iiiibbbb+ .                                                                                        (2.3) 

In Model (2.3), ( )iiiiββββogl  is the vector of logarithms of the components of the vector 

iiiiββββ , γ  is a positive vector of population pharmacokinetic parameters, ( )γlog is the 

vector of logarithms of the components of the vector γ ,  and the error vector bi is the 

normal random component of inter-subject variation, which might be taken to have 

mean vector zero and covariance matrix ΣΣΣΣ. In practice, pharmacologists often assume 

( )iiiiββββogl  is distributed as a normal random variable [14, 16-18]. This assumption is 

based on physiological and biological reasons such as positively skewed iiiiββββ  [17]. On 

the contrary, this assumption has not been validated. However, in one type of  

bimodal population, a small percentage of the population has a slower absorption 

process. This two-subpopulation case corresponds to a two-component mixture of the 

multivariate-normal ( )iiiiββββogl  distribution where two components differ only by 

log( ka ). 

Stage 2 (Within subject variability) 

Assume that for Subject i, the jth concentration follows the model 

ijijijij etgCy +== ),()log( iiiiββββ  .                                                                        (2.4) 

Here eij is a normal random measurement error with 0)|( =iiiiββββijeE and 

2)|( σ=iiiiββββijeVar , given the ith subject, and =),( iiiiββββijtf ( )2/),(exp 2σ+iiiiββββijtg .  
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Let ],...,[ 1
′=

iini yyiy  be the log-transformed concentrations of the ith subject and 

furthermore let ],...,[ 1
′=

iini eeie  be the errors of the ith subject. Let ( )iiiiiiiigggg β  be the 

vector of concentration functions of the ith subject. 

 ( ) ( ) ( ) ( )[ ]′= iiiiiiiiiiiiiiiiiiii ββββββββββββββββgggg ,...,, 21 iinii tgtgtg .                                         (2.5) 

We can summarize the data for the ith subject as iii egy += )( iiiiββββ , where we 

assume 0)|( =iiiiββββieE , iiiiiiii RRRRββββ =)|( ieVar , and iiiiRRRR  is the variance-covariance matrix of 

log-transformed data within the ith subject. 

Let ( )ijiij tXe = , where ( ){ }0, ≥ttX i  is all Ornstein-Uhlenbeck process [19] 

defined by the following stochastic differential equation:  

( ) ( ) ( )tdWdttXtdX ii σξ +−= , ( ) ( )2,0~0 σNX i , and 0≥t .  Here 0>ξ  and 0>σ  

are unknown parameters, and ( )tW  is the standard unit Wiener process. The solution 

to the preceding differential equation is ( ) ( ) ( ) ( )( ) s

t

ii dWstXttX ∫ −−+−=
0

exp0exp ξσξ . 

Thus we have 11 ii ue = , ( )( ) 1,11, exp +++ +−−= jiijjjji uette ξ , mj ,..,2,1= , where 

imi uu ,...,1  are independent distributed normal variables with 0)|( =iiiiββββijuE , 

( ) 2

1 | σ=iiiiββββiuVar , and ( )( )( )ξσ jjij ttuVar −−−= +1

2 2exp1)|( iiiiββββ . Hence 

( )( ) jktteeCov jkikij >−−= ,2exp)|,( 2 ξσiiiiββββ . If CV denotes the coefficient of variation 

of the untransformed concentration data, then the variance of the log-transformed 

concentration is computed as σ2=log(1+CV2). 

We assume that bi is independent of eij. A supposition of normality of bi and eij in 

Models (2.3) to (2.5) cannot be justified on a physiological or pharmacological basis, 
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and hence some sensitivity analyses of bioavailability parameters (log(AUC) and 

log(Cmax)) to these distributions are essential. 

2.3 Simulation scheme 

 
Motivated by a real world example, we will simulate the concentration profiles 

from Models (2.3) to (2.5).  Assuming the estimate means are the true value, this is a 

one–compartment pharmacokinetic model with the first order absorption and first 

order elimination for many subjects to whom are administered a single 1 mg oral dose 

of Ropinirole for treatment of Parkinson’s disease. This drug is a novel non-ergoline 

dopamine D2 receptor agonist, for which Kaye and Nicholls [20] summarized clinical 

pharmacokinetics. We obtain the estimated means of untransformed pharmacokinetic 

parameters (ka, ke, F, and aV ) from [20]. Here, ka is the absorption rate in hr-1; ke is 

the elimination rate in hr-1; F is the bioavailability fraction, 0≤F≤1; and aV  is the 

apparent volume in liters (L). In the reference [20], F is reported to be approximately 

0.5, aV  at steady state is approximately 7.2 L/kg after oral administration, Tmax  

approximately lies in the range from 0.5 to 4 hours after dosing, and the elimination 

half-life is approximately 6 hours after dosing. The average of ke  is about 0.12 hr-1 

obtained by
et

ke
2/1

693.0=  (the well-known approximate relationship [13] between 

elimination half-life ( et 2/1 ) and ke ). The average of ka is 1.5 hr-1 obtained 

by 








−
=

ke

ka

keka
T ln

3026.2
max  (the approximate relationship [13], among Tmax, 

absorption rate, ka , and ke ) when we assume Tmax to be 4.21 hours. According to 

Kaye and Nicholls [20], patients with Parkinson’s disease usually have body weights 
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in the range from 65 to 75 kg.  The average weight of a patient is assumed 70 Kg, and 

so the average of aV  is 525 Liters. 

The following detailed steps delineate how to simulate the plasma concentration 

profiles: 

1) The coefficients of variation for person-level untransformed pharmacokinetic 

parameters are assumed after consideration of the estimated value in [20] as:  

[ ]

._,
1

_,_,_ and

 525,1,12.0,5.1,
1

,, 

′








−
=

′=
′








−
=

aVcv
F

F
cvkecvkacv

aV
F

F
kekaE

cv

η

 

2) Assume that the log-transformed vector of pharmacokinetic parameters for the ith 

subject follow a multivariate normal distribution and write this as log of vector 

entries: ),( ~,
1

,, log , ΛλNV
F

F
keka ia

i

ii

′


















−
. For a log-normal ( λ , 2σ ) variable, 

the coefficient of variation squared 2

pkcv  (variance divided by the square of mean) is 

1
2

−σe and 21 pkcv+=σ . The correlation matrix of these log-transformed 

pharmacokinetic parameters is assumed to be R .  We further assume each parameter 

on this scale is equally correlated. Here we need to convert the marginal mean 

( {1,2,3,4}j ],[ ∈∀jη ) and coefficient of variation (cvpk[j], {1,2,3,4}j ∈∀ ) for each 

untransformed pharmacokinetic parameter obtained from the reference into the 

marginal mean ( {1,2,3,4} ],[ ∈∀jjλ ) of each log-transformed pharmacokinetic 

parameter and variance matrix ( Λ ) of  log-transformed pharmacokinetic parameters 

by the following formulas. 
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 {1,2,3,4},j ),])[(1log(*5.0])[log(][ 2 ∈∀+−= jcvjj pkηλ and

4*4

2 })))][(1log({( jcvdiag pk+=M .     

Let R =





















1

1

1

1

 

000

000

000

000

ρρρ
ρρρ
ρρρ
ρρρ

. Therefore, ⋅= MΛ R M⋅ . 

3) Independently generate m subjects’ random vectors of log-transformed 

pharmacokinetic parameters, ( )( )′− iaiiii VFFkeka ,,1,,log , from the distribution in 

Step 2. Then convert this to ( )′iaiii VFkeka ,,,, , for i=1, 2,…, m. 

4) For a given individual i, simulate concentration profile at time points 

t= ( )′36,32,28,24,22,20,18,16,14,12,10,8,6,4,3,2,5.1,1,2/1,4/1 , measured in hours. 

Let ni be the number of sampling times. The choice of the sampling schedule is 

typical for these types of studies and follows the general rule: more frequent 

samplings earlier on after dosing (e.g., sampling every 15 minutes for the first few 

samples and sampling every half hour for the next few samples) and less frequent 

samplings later on (e.g., sampling every 2 or 3 hours after half-life). This flexible 

sampling schedule allows more information for the rapidly changing period prior to 

the half-life. 

Let ijt be the jth sampling time point after dosing for Subject i and let ijC be the 

concentration at ijt , j=1,2,…,ni. Here =
ijCµ ( )ijiiji tketka

iiia

ii ee
kekaV

DkaF ⋅−⋅− −
− )(,

. 

=
ijCµ 2/),( 2

ijijtg
e

σ+iiiiββββ , ( )ijClog ~ ( )( )2,, ijijtgN σiiiiββββ . 
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5) Obtain AUCi by evaluating the following summation: ( )( )
ijji

n

j

jiij ttCC
i

−+ +

−

=
+∑ 1,

1

1

1,5.0  

for Subject i, since analytical integration from this complicated nonlinear and 

stochastic model is not tractable, this calculation is done in practice. 

6) Obtain Cmaxi= ( )ij
j

CMax  from all observed values for Subject i. 

7) Obtain Tmaxi (time to reach Cmaxi) from all observed values for Subject i. 

8) Perform the Shapiro-Wilk W test (discussed in Section 2.4) for the goodness of fit 

of normal distribution of log(AUCi), log(Cmaxi), and log(Tmaxi), i=1,2,…,m. Small 

sample sizes such as m=40 will be investigated and a large sample size of 400,000 

will also be investigated for the true distribution arising from random-effects 

pharmacokinetic models.  

9) Repeat Steps 2 to 8 for Snum=10,000 times when m=40.  

10) Calculate the rejection rate of the goodness of fit test of log-normality at nominal 

significance level 0.05 by 

( )
Snum

pvalueI
Snum

l

l∑
=

≤
1

05.0

. The 0.05 significance level is chosen 

based on the usual type I error rate of 5% used by the regulatory and industrial 

statisticians for each small bioequivalence study. 

2.4 Univariate normality test 

 
The goodness-of-fit problem is to decide whether or not the random sample (xi, 

i=1,.., n) follows one of a parameterized family ( )θ,xF  of distributions, whereθ may 

be either be specified in advance or estimated. The W statistic proposed by Shapiro 

and Wilk [5] provides an omnibus measure of non-normality when n<2,000 and the 
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power of concluding the non-normality which slightly deviates from normality is very 

high when n>2,000 [21]. The test statistic W [5] was defined for a random sample 

nxx ,...,1 as: ( ) ( )∑∑
==

−






=
n

i

i

n

i

ii xxxaW
1

2

2

1

, where ( )ix is the thi  order statistic (the 

thi value from the bottom of the list of sample variables in increasing sorted order), 

x is the sample mean, and ia is a constant determined from the expectation and 

variance of the thi order statistic of a sample of n standard normal observations, 

i=1,2,…, n. W must be greater than zero and less than or equal to one. Small values of 

W lead to the rejection of the null hypothesis of normality. The distribution of W is 

highly skewed. When the sample size is greater than three, the coefficients to 

compute the linear combination of the order statistics in Proc Univariate, a SAS 

procedure [22], are approximated with an approximate normalizing transformation 

suitable for computer implementation [23]. According to this method, variable nZ  

defined by ( )( )( ) 000 /1loglog σµγ −−−−= nn WZ  for 4≤n≤11 or 

( )( ) 00 /1log σµ−−= nn WZ for 12≤n≤2000 are treated as precisely normally 

distributed, where 000  and , , σµγ are functions of n from simulation results, and Wn is 

W-statistic value for sample size n. Royston [23] extended the Shapiro-Wilk W test up 

to sample size 2000. Large values of nZ indicate departure from normality. When the 

sample size is larger than 2000, other goodness of fit tests such as the chi-squared test 

or tests based on the empirical distribution function such as the original or modified 

Kolmogorov-Smirnov test, Cramer-von Mises or Anderson-Darling tests are used. 

The main purpose of the chi-squared test is to provide a quantitative test of the 

discrepancies between the observed and the expected frequencies. The null 
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hypothesis is: the observations are randomly drawn from a specified theoretical 

distribution. The chi-squared test can be used with either continuous or discrete 

distribution. Under the null, the chi-squared test follows the chi-squared distribution 

in large samples with the degrees of freedom equal to the number of cells minus 1 

minus the dimension of the estimated parameter θ  [24, 25]. 

Another class of goodness-of-fit statistics is empirical distribution function (EDF) 

statistics because they are based on a comparison of ( )xF  with the empirical 

distribution function ( )xFn . Kolmogorov-Smirnov, Cramer-Von Mises, and 

Anderson-Darling test are examples of EDF statistics tests.  

If ( )xF  is continuous and completely specified, EDF statistics is more powerful 

than the chi-squared test. The Kolmogorov-Smirnov statistic is the largest vertical 

distance between the fully specified cumulative distribution function ( ( )xF ) and the 

EDF ( ( )xFn ), which is a step function that takes a step of height 1/n at each 

observation. This test only applies to continuous distributions and tends to be more 

sensitive near the center of the distribution than at the tails. Anderson-Darling test 

[26] uses the quadratic class EDF, which is based on the weighted and integrated 

squared difference ( ( )xFn - ( )xF )2. This test gives more weight to the tails than the 

Kolmogorov-Smirnov test does by setting a function weighting the square difference.  

Similarly, Cramer-von Mises test [27] is also based on the quadratic class of EDF 

statistics, but the weight function is set to 1. The Cramer-von Mises test and the 

Anderson-Darling test better takes into account the variation in the whole data; while 

the Kolmogorov-Smirnov test is more sensitive to the outliers in the sample. 
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If ( )xF  is not completely specified, the mean and/or the variance have to be 

estimated from the data. In such cases, the critical threshold for any of the three EDF 

statistics is no longer valid. However, some work [28-30] has made it possible to use 

EDF statistics for two very important practical situations in which the distribution 

tested is normal or exponential, with parameters to be estimated. For a large sample 

size (n>2000), the Kolmogorov-Smirnov test, Cramer-von Mises test, and Anderson-

Darling test are usable for normal and exponential distributions when the mean and 

variance are estimated from the data after the percent points are obtained from 

simulations [30]. Once the EDF test statistics (Kolmogorov-Smirnov test, Cramer-

von Mises test and Anderson-Darling test) are computed, then the associated p-values 

are calculated. SAS procedure: PROC UNIVARIATE [22] uses internal tables of 

probability levels that are similar to those given by D'Agostino and Stephens [31]. 

For continuous, asymmetric and long-tailed distributions (e.g., ( )12χ , ( )22χ , 

( )42χ , and  ( )102χ ) and continuous, asymmetric, and short-tailed distributions (e.g., 

( )1,2Beta  and ( )2,3Beta ),  the W statistic is most sensitive and the Kolmogorov-

Smirnov test and Cramer-von Mises test show, in general, relatively poor sensitivity 

for these alternative [21]. For continuous, symmetric, and long-tailed distributions 

(e.g., ( )1Cauch , ( )2Cauch , and ( )4Cauch ) and continuous, symmetric, and short-

tailed distributions (e.g., ( )1,1Beta  and ( )2,2Beta ), the W statistic outperforms the 

Kolmogorov-Smirnov test and Cramer-von Mises test [27]. Hence the Anderson-

Darling test implemented by SAS PROC UNIVARIATE is chosen in this chapter for 

assessing the log-normality of the response variable when n>2000 and SAS PROC 



 

24 
 

UNIVARIATE’s W test extended by Royston is chosen for assessing the log-

normality of the response variable when n<2000. 

2.5 Distributions of log(AUC), log(Cmax), and log(Tmax) 

2.5.1 One case study 

 
To illustrate the simulated plasma concentration-profiles and distributions of the 

response variables, we will simulate plasma concentration-time profiles using the 

simulation scheme in Section 2.3 for one particular set of parameters, that is , a one-

compartment model with CV=0.2, ξ =-log(0.5), )'3.0,3.0,3.0,3.0(,5.00 == pkcvρ , and 

( )( )′− iaiiii VFFkeka ,,1,, = (1.5,0.12,1,525)’. Figure 2.1 shows concentration-time 

profiles for a sample of 20 subjects simulated under the models (2.3)-(2.5).  

Throughout this chapter, the log(AUC), log(Cmax), and  log(Tmax) are each 

standardized through centering by its sample mean and scaling by its sample standard 

deviation. The density curve of the standardized log(AUC) or log(Cmax) is estimated 

by the normal kernel density estimation method with bandwidth which is 0.9 times 

the minimum of the standard deviation and the interquartile range divided by 1.34 

times the sample size to the negative one-fifth power [32].  

Figure 2.2 shows that the estimated density curve of the standardized log(AUC) for 

400,000 simulated subjects is very close to the standard normal density. According to 

Table 2.1, the estimated quantiles for the standardized log(AUC) are generally not far 

away from the standard normal percentiles, but for example the 1% and 2% quantiles 

for standardized log(AUC) differ noticeably from the normal percentiles, showing 

that the tails of log(AUC) are a bit asymmetric even when the errors and random 
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effects in the pharmacokinetic model are normally distributed. The differences are as 

high as 0.2 in the tails, becoming closer (within about 0.05) in the center of the 

distribution.  

Figure 2.3 shows that the estimated density curve of the standardized log(Cmax) is 

skewed to the left compared to the standard normal density. Table 2.1 shows that the 

estimated quantiles for the standardized log(Cmax) are consistently larger than those 

for the standard normal. The differences are as high as 0.3 in the tail. 

Figure 2.4 shows that the cumulative distribution curve of the standardized 

log(Tmax) with a fixed number of discrete points significantly deviates from the 

standard normal cumulative distribution curve. Table 2.1 shows that the 1% tail 

quantile of standardized log(Tmax) is 17% larger than the 1% standard normal 

quantile; and the 99% tail quantile of standardized log(Tmax) is 12% larger than the 

99% standard normal quantile. In practice, Tmax is assessed subjectively and is not 

assessed by equivalence criteria.  

Figure 2.1 An example of concentration-time profiles from 20 subjects simulated from one-

compartment model with CV=0.2, ξ =-log(0.5), ( )'3.0,3.0,3.0,3.0,5.00 == pkcvρ , and 

( )( ) ( )′=′− 525,1,12.0,5.1,1,, ,,, iaiiieia VFFkk . 

 



 

26 
 

Figure 2.2 Comparison of the standard normal density and the estimated density curve of log(AUC) 
from 400,000 subjects simulated from one-compartment model with CV=0.2, ξ=-log(0.5), 

( )'3.0,3.0,3.0,3.0,5.00 == pkcvρ and ( )( ) ( )′=′− 525,1,12.0,5.1,1,, ,,, iaiiieia VFFkk . 

 
 
Figure 2.3 Comparison of the standard normal density and the estimated density curve of log(Cmax) 
from 400,000 subjects simulated from one-compartment model with CV=0.2, ξ =-log(0.5), 

( )'3.0,3.0,3.0,3.0,5.00 == pkcvρ and ( )( ) ( )′=′− 525,1,12.0,5.1,1,, ,,, iaiiieia VFFkk . 
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Figure 2.4 Comparison of standard normal distribution function and cumulative 
distribution function of log(Tmax) from 400,000 subjects simulated from a one-

compartment model with CV=0.2, ξ=-log(0.5), ( )'3.0,3.0,3.0,3.0,5.00 == pkcvρ and 

( )( ) ( )′=′− 525,1,12.0,5.1,1,, ,,, iaiiieia VFFkk  

 

 
 
Table 2.1 Comparison of observed extreme quantiles for standardized log(AUC), log(Cmax), and 
log(Tmax)  with standard normal extreme quantiles for 400,000 subjects simulated from one-

compartment model with CV=0.2 , ξ=-log(0.5), ( )'3.0,3.0,3.0,3.0,5.00 == pkcvρ , and 

( )( ) ( )′=′− 525,1,12.0,5.1,1,, ,,, iaiiieia VFFkk  

Probability Estimated quantile Standard normal 
quantile Standardized 

log(AUC) 
Standardized 
log(Cmax) 

Standardized 
log(Tmax) 

0.10% -3.338 -2.694 -2.910 -3.090 

0.50% -2.749 -2.258 -2.910 -2.576 

1% -2.451 -2.043 -1.920 -2.326 

2% -2.142 -1.816 -1.920 -2.054 

5% -1.692 -1.475 -1.920 -1.645 

95% 1.595 1.771 1.628 1.645 

97.50% 1.882 2.264 1.628 1.960 

99% 2.204 2.908 2.039 2.326 

99.50% 2.423 3.359 2.039 2.576 

99.90% 2.883 4.335 2.357 3.090 

 

2.5.2 Examination of distributions of response variables for 8 scenarios 

 
We compare the distributions of the standardized log(AUC), log(Cmax), and 

log(Tmax) for 100,000 simulated subjects to the standard normal density. We also 



 

28 
 

obtain the rejection rate of the normality testing for 2500 trials, each of which has 40 

subjects. Note that testing normality for a small sample (e.g., 40 subjects) has very 

low power to reject the null hypothesis of normality.  

From Table 2.2, it can be seen that 1) the median of the standardized log(AUC) is 

off 0 by less than 0.1 for all cases; 2) the 75th percentile is about 0.15 larger than the 

75th standard normal quantile for Cases 1 to 4 and about 0.15 smaller for Cases 5 to 8, 

and 3) the 25th percentile is  0.07 smaller than the 25th standard normal quantile for 

Cases 1 to 4 and about 0.08 larger for Cases 5 to 8. Figure 2.5 shows that the 

histogram (300 breaks) of the standardized log(AUC) has heavy tails compared to the 

density of N(0,1) for all 8 cases. 

The rejection rates of the Shapiro-Wilk normality test of log(AUC) at 0.05 

significance level are about 5% for Cases 3, 5, 6, 7, and 8. The rejection rates of the 

Shapiro-Wilk normality test of log(AUC) at 0.05 significance level are approximately 

6.5% for Cases 1, 2, and 6.  

From Table 2.2, it can be seen that 1) the mean of the standardized log(Cmax) is 

less than 0 by 0.15 for Cases 1, 3, 5, and 7; 2) the 75th percentile is about 0.1 larger 

than the 75th standard normal quantile for Cases 1 and 3; the same holds for Cases 5 

and 7, and about 0.3 smaller for Cases 2, 4, 6, and 8; and 3) the 25th percentile is  0.2 

to 0.3 larger than the 25th standard normal quantile for Cases 1, 3, 5, and 7 and about 

0.2 smaller for Cases 2, 4, 6, and 8. Figure 2.6 shows that the histogram (300 breaks) 

of the standardized log(Cmax) is skewed to the right of N(0,1) if 0=ξ  or to the left if 

)5.0log(−=ξ for 8 cases. All rejection rates of the Shapiro-Wilk normality test of 
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log(Cmax) at 0.05 significance level for Cases 1, 3, 5, 6, 7, and 8 are less than 7.5% 

and for Cases 2 and 4 are greater than 23%. 

Figure 2.7 shows that the CDF of the standardized log(Tmax) has the fixed number 

of mass points and is above the standard normal CDF for all cases. The rejection rates 

of the Shapiro-Wilk normality test of log(Tmax) at 0.05 significance level for almost 

all cases are larger than 50%. 

 

Table 2.2 Description of cases with simulated 100,000 subjects from Models 2.1 to 2.5 where PK 

parameters with ( )[ ] [ ] [ ]1,1,1,1 ,525,1,12.0,5.1,1,, pka cvVFFkekaE =′=′−= cvη , and 

],...,[ 1
′=

iini eeie . 

Case  ηlog  

~ ),( ΛλN  

Residual 

error eij 

Quantiles for N(0,1): (25th, 50th, 75th)=(-0.674,0,0.674) 

Quantiles of the standardized 

log(AUC)  

Quantiles of the standardized 

log(Cmax) 

0ρ  pkcv  ξ  CV 25th  50th 75th 25th  50th 75th 

1 0.5 0.3 0 0.4 -0.749 0.022 0.780 -0.413 0.152 0.737 

2 0.5 0.3 0.5 0.2 -0.699
 

0.097
 

0.856
 

-0.910
 

-0.244
 

0.486
 

3 0.1 0.3 0 0.4 -0.766 0.009 0.773 -0.490 0.148 0.804 

4 0.1 0.3 0.5 0.2 -0.715 0.075 0.852 -0.973 -0.253 0.539 

5 0.5 0.2 0 0.4 -0.590 -0.052 0.478 -0.337 0.136 0.625 

6 0.5 0.2 0.5 0.2 -0.551 0.017 0.576 -0.865 -0.294 0.382 

7 0.1 0.2 0 0.4 -0.597 -0.050 0.483 -0.378 0.134 0.673 

8 0.1 0.2 0.5 0.2 -0.560 0.008 0.574 -0.894 -0.294 0.413 
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Figure 2.5 Histograms (breaks=80) of the standardized log(AUC) for cases in Table 2.2 compared to 
N(0,1)  
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Figure 2.6 Histograms (breaks=80) of the standardized log(Cmax) for cases in Table 2.2 compared to 
N(0,1)  
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Figure 2.7 CDF of the standardized log(Cmax) for cases in Table 2.2 compared to CDF of N(0,1) 
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2.6 Sensitivity analyses  

 
In Section 2.5, the examination of distributions of 9 cases with large samples 

shows some deviations of log(AUC) from normality. The 25th and 75th percentiles of 

log(AUC) are slightly different from the 25th and 75th percentiles for the standard 

normal distribution, respectively. The 50th percentile of log(AUC) is close to 0. It also 

shows that log(Cmax) distributes skewed to the right or the left. The 25th, 50th, and 

75th percentiles of log(Cmax) are all different from the 25th, 50th, and 75th percentiles 

for the standard normal distribution, respectively. But the rejection rate of the 

Shapiro-Wilk normality test of log(Cmax) is slightly higher than 5% percent, but less 

than 7.5% for all cases. Clearly, the Shapiro-Wilk normality test of log(AUC) with 

small samples for all cases has very low power to reject the null hypothesis of 

normality. 

Since simulations in Section 2.5 are based on one-compartment pharmacokinetic 

models with normal measurement errors, we will demonstrate whether or not 

log(AUC) and log(Cmax) can be reasonably assumed as random normal variables by 

simulations if data come from the one-compartment pharmacokinetic models with 

symmetrical measurement errors distributed as t and with a bimodal population 

corresponding to one subgroup having a slower absorption process. We will also 

demonstrate whether or not log(AUC)  and log(Cmax) can be reasonably assumed to 

be normally distributed by simulations if data come from two-compartment 

pharmacokinetic models with normal measurement errors.  
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2.6.1 Symmetrical measurement errors distributed as t 

 
We investigate how the distribution of the standardized log(AUC) (or the 

standardized log(Cmax)) for large samples of simulated subjects deviates from 

normality if eij is distributed as a ( )νt  with =ν  5, 10, 15, or 20. We compare the 

histogram of the empirical standardized log(AUC) (or the standardized log(Cmax)) 

with the standard normal density curve. For the standardized log(Tmax), we compare 

the cumulative distribution function (CDF) of the standardized log(Tmax)) with the 

normal CDF.  

For Cases 1 to 8 in Table 2.3, we assume that imi ee ,...,1 are independent and 

identically distributed t-variables for each i by letting 0=ξ , and we also vary the ν  

values from 5 to 20 by 5 and CV values from 0.2 to 0.4 by 0.2 but fix the 

pharmacokinetic parameters’ CVs and correlation at )'3.0,3.0,3.0,3.0(=pkcv  and 

5.00 =ρ , respectively. For Cases 9 to 12, imi ee ,...,1 are the correlated t-variables for 

each i by letting )5.0log(−=ξ . 

Figure 2.8 shows that the histogram of the standardized log(AUC) for 100,000 

simulated subjects is very close to the standard normal density curve for all cases 

except Cases 1 and 9 (ν =5 and CV=0.4) in which the histograms are slightly skewed 

to the right of the standard normal density curve. Table 2.3 shows that the 25th, 50th, 

and 75th percentiles of log(AUC) are all very close to the 25th, 50th, and 75th 

percentiles for the standard normal distribution, respectively. The rejection rate of the 

Shapiro-Wilk normality test at 0.05 significance level for log(AUC) is about 5% if 

≥ν 10 and greater than 5% if ν =5.  
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Figure 2.9 shows that the histogram of the standardized log(Cmax) is skewed to 

the right compared to the standard normal density whenν ≥5 and CV= 0.4, and the 

histogram of the standardized log(Cmax) has a sharper peak and skew to the left 

compared to the standard normal density whenν ≥5 and CV= 0.2. The 25th, 50th, and 

75th percentiles of log(Cmax) are all different from the 25th, 50th, and 75th percentiles 

for the standard normal distribution, respectively. The rejection rate of the Shapiro-

Wilk normality test at 0.05 significance level for log(Cmax) is about 5% whenν ≥10 

except Case 3 (8.1%) and above 10% whenν =5.  

Figure 2.10 shows that the CDF of the standardized log(Tmax) has the fixed 

number of mass points and is above the standard normal CDF for all cases.  

In conclusion, the normality assumption of log(AUC) seems reasonable if the 

independent and identical measurement errors are assumed to be ( )10t , moderately 

heavy tails. The normality assumption of log(Cmax) is skewed even if the 

independent and identical measurement errors are assumed to follow t distribution. 

Normality of log(Tmax) cannot be assumed in general. 
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Table 2.3  Description of cases with 100,000 simulated subjects from Models 2.1 to 2.5 where PK 

parameters with ( )[ ] [ ]  525,1,12.0,5.1,1,, 
′=′−= aVFFkekaEη , and ],...,[ 1

′=
iini eeie , with 

)'3.0,3.0,3.0,3.0(=pkcv  and 5.00 =ρ . 

Case  Error eij~ ( )νt  Quantiles for N(0,1): (25th, 50th, 75th)=(-0.674,0,0.674) 

  Standardized log(AUC) Standardized log(Cmax) 

ξ  ν  CV 25th  50th 75th 25th  50th 75th 

1  

 

 

 

0 

5 0.4 -0.626 0.081 0.774 -0.366 0.353 1.160 

2 5 0.2 -0.651 0.025 0.677 -0.768 -0.226 0.343 

3 10 0.4 -0.669 0.020 0.694 -0.460 0.197 0.892 

4 10 0.2 -0.668 -0.001 0.656 -0.815 -0.298 0.232 

5 15 0.4 -0.675 0.013 0.681 -0.491 0.153 0.823 

6 15 0.2 -0.672 0.001 0.653 -0.829 -0.317 0.211 

7 20 0.4 -0.691 0.003 0.669 -0.506 0.133 0.793 

8 20 0.2 -0.670 -0.005 0.648 -0.833 -0.323 0.191 

9  

 

-log(0.5) 

5 0.4 -0.645 0.070 0.763 -0.514 0.123 0.837 

10 5 0.2 -0.622 0.040 0.682 -0.698 -0.171 0.435 

11 10 0.4 -0.669 0.015 0.676 -0.565 0.020 0.666 

12 10 0.2 -0.630 0.018 0.648 -0.716 -0.212 0.352 
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Figure 2.8 Histograms of the standardized log(AUC) for cases in Table 2.3 compared to N(0,1)  
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Figure 2.9 Histograms of the standardized log(Cmax) for cases in Table 2.3 compared to N(0,1) 
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Figure 2.10 CDF of the standardized log(Tmax) for cases in Table 2.3 compared to CDF of N(0,1) 
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2.6.2 Mixed population: one subgroup with a slower absorption process 

 
We assume in this subsection that the population of subjects consists of two 

subgroups. One subgroup has a slower absorption process. This could happen if 

coating on the pill took longer to digest for some people. To illustrate how the 

distribution of the standardized log(AUC) or the standardized log(Cmax) for large 

samples of simulated subjects deviates from normality, given that there is a subgroup 

with a slower absorption rate, we will compare the histogram of the standardized 

log(AUC) or the standardized log(Cmax) to the standard normal density curve. In this 

subsection we simulate the pharmacokinetic plasma-concentration profiles from two 

subpopulations: 70% of population has the mean ka=1.5 hr-1 and the rest of 

population has the mean ka=0.2 hr-1. We still assume that imi ee ,...,1 are independent 
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and identically distributed normal variables for each i by letting 0=ξ , CV =0.2, and 

the pharmacokinetic parameters’ cv values and correlation at )'2.0,2.0,2.0,2.0(=pkcv , 

and 3.00 =ρ . 

The left graph in Figure 2.11 shows that the histogram of the standardized 

log(AUC) for 100,000 simulated subjects is very close to the standard normal density 

curve. The right graph in Figure 2.11 shows that the histogram of the standardized 

log(Cmax) for 100,000 simulated subjects appears to be quite different from a bell 

shaped curve.  

 
Figure 2.11 Comparison of standard normal density and sample histogram of the standardized 
log(AUC)  and log(Cmax) from 100,000 subjects simulated from one-compartment model (1) with 

CV=0.2 , ξ =0, and ( )'2.0,2.0,2.0,2.0,3.00 == pkcvρ for a mixed population: 70% of population 

with the mean vector ( )( ) ( )′=′− 525,1,12.0,5.1,1,, ,,, iaiiieia VFFkk  and 30% of population with 

the mean vector ( )'3.0,3.0,3.0,3.0,5.00 == pkcvρ , and 

( )( ) ( )′=′− 525,1,12.0,2.0,1,, ,,, iaiiieia VFFkk  
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2.6.3 Two-compartment pharmacokinetic models with normal measurement errors 

 
To contrast the results of previous simulations with those of analogous simulations 

from a two-compartment pharmacokinetic model, we would ideally consider the two-

compartment model for the same drug Ropinirole for which we simulated the one-

compartment model in Section 2.4. However, the pharmacokinetic parameters for the 

two-compartment model of Ropinirole are not available in the literature. Hence we 

have to switch to a different drug, Digoxin, whose pharmacokinetic parameters for 

the two-compartment pharmacokinetic model were published in [33]. The cardiac 

glycoside Digoxin [33] has a low therapeutic index and serious side-effects. 

In a two-compartment model, Compartment 1 represents the central compartment, 

compartment 2 the "tissue" or peripheral compartment, kaV ,  the apparent volume of 

the kth compartment, and kjk the apparent first-order rate constant for transfer of drug 

from the jth to the kth compartment (k = 0 represents an elimination process). The 

equation in [33] describing the time course of drug concentration in the central 

compartment of this model for the ith subject at time tij after an intravenous bolus 

injection (dose D) is 

( ) ( )( )ijiiji

ij

t

ii

t

ii

iiia

ijCij ekek
V

D
tfCE

⋅−⋅− −−−
−⋅

=== λγ λγ
γλ

µ 2121

1,,

*

)(
),()|( iiiiiiii ββββββββ      (2.6),  

where ( ) ( ) 



 −+++++= iiiiiiiii kkkkkkkk 1021

2

102112102112 45.0λ , 

( ) ( ) 



 −++−++= iiiiiiiii kkkkkkkk 1021

2

102112102112 45.0γ , and βi= ),,,( 1102112
′

iiii Vkkk . 

Based on Models 2.3 to 2.5, we will simulate the concentration profiles in the 

central compartment of two–compartment pharmacokinetic model (2.6) for an 
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average person assumed to weigh 70 kilograms, who receives 1 mg Digoxin by rapid 

bolus injection. 

The following steps will give the details of how to simulate the plasma 

concentration profiles: 

1) Obtain the means of pharmacokinetic parameters ),,,( 1,102112
′

aVkkk  from [33]. In 

[33], the volume of distribution (Va,1) is 53.69 Liters (for an average person 

weighing 70 Kg); k12 is 0.76 hr-1, k21 is 0.12 hr-1, and 10k is 0.29 hr-1.  

2) Several sets of coefficients of variation of pharmacokinetic parameters are 

assumed after consideration of the estimated values in [33].  

Let  .
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_

_

_
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3) Assume that the vector of pharmacokinetic parameters and transformed 

parameters for the ith subject follows a log-normal distribution, denoted 

as ( ) ),(normal-log ~ ,1,,10,21,12 Λλ
′

iaiii Vkkk . The correlation matrix of these log-

transformed pharmacokinetic parameters is assumed to be R  without any 

reference.  Here we need to convert the marginal mean ( {1,2,3,4} ],[ ∈jjη ) and 

coefficient of variation (cv[j], {1,2,3,4}∈j ) for each untransformed 

pharmacokinetic parameter obtained from the reference into the marginal mean 

( {1,2,3,4} ],[ ∈jjλ ) of each log-transformed pharmacokinetic parameter and 

variance matrix ( Λ ) of  log-transformed pharmacokinetic parameters by the 

following formulas. 
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 {1,2,3,4}, ),])[(1log(*5.0])[log(][ 2 ∈+−= jjcvjj pkηλ and

4*4

2 })))][(1log({( jcvdiag pk+=M .     

Let R =





















1

1

1

1

 

000

000

000

000

ρρρ
ρρρ
ρρρ
ρρρ

, it follows that ⋅= MΛ R M⋅ .  

4) For each of m subjects, generate a random vector of pharmacokinetic parameters 

and transformed parameters, ( )′iaiii Vkkk ,1,,10,21,12 ,,, , from the distribution in Step 3. 

Here i=1,2,…,m.  

For a given individual i, simulate concentration profiles ( ijC ) at time points (in 

hours),  

t= ( )′72 ,48 ,24 ,16 ,8 ,6 ,4 ,3 ,2 ,1 ,4/3 ,2/1 ,30/11 ,10/3 ,30/7 ,6/1 ,15/2 ,10/1 ,15/1 ,30/1  

and ni is 20. We assume ni is the same for all subjects. The choice of sampling 

schedule follows [33].  

Let ijt be the jth sampling time point after dosing Subject i and let ijC be the 

concentration at ijt , j=1,2,…,ni. Here, 

( ) ( )( )ijiiji

ij

t

ii

t

ii

iiia

ijCij ekek
V

D
tfCE

⋅−⋅− −−−
−⋅

=== λγ λγ
γλ

µ 2121

1,,

*

)(
),()|( iiiiiiii ββββββββ .   

5) Calculate AUCi by evaluating the summation ( )( )
ijji

n

j

jiij ttCC
i

−+ +

−

=
+∑ 1,

1

1

1,5.0  for 

Subject i. 

6) Obtain Cmaxi= ( )ij
j

Cmax  from all observed values for Subject i. 

7) Obtain Tmaxi (time to reach Cmaxi) from all observed values for Subject i. 
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8) Obtain the goodness of fit of normality of log(AUCi), log(Cmaxi), and log(Tmaxi), 

i=1,2,…,m. 

9) Repeat Steps 2 to 8 for Snum=10,000 times. 

10)  Calculate the rejection rates of goodness of fit tests of log-normality at the 0.05 

significance level 

by  

( )
Snum

pvalueI
Snum

l

l∑
=

≤
1

05.0

. 

To illustrate how the distribution of the standardized log(AUC) or the standardized 

log(Cmax) deviates from normality if the data is described by a two-compartment 

model, we examine the sampling distribution of the standardized log(AUC) (or the 

standardized log(Cmax)) under various combinations of pharmacokinetic parameters’ 

variation and measurement errors. Since there are more pharmacokinetic parameters 

that vary from subject to subject in the two-compartment model than those in the one-

compartment model, it is even more restrictive than before to assume that their 

across-subject joint distribution is multivariate lognormal. From Table 2.4, we can 

easily see that the 25th, 50th, and 75th quantiles for log(AUC) (or log(Cmax)) simulated 

from the two-compartment model are correspondingly similar to the 25th, 50th, and 

75th quantiles for log(AUC) (or log(Cmax)) simulated from the one-compartment 

model. Hence the sampling distributions of the standardized log(AUC) for all cases in 

Figure 2.11 are similar to the first 8 cases in Figure 2.5 of Section 2.5.2.  The 

sampling distributions of the standardized log(Cmax) for all cases in Figure 2.12 are 

similar to the first 8 cases in Figure 2.6 of Section 2.5.2. It seems that the sampling 

distributions of the standardized response variables for the studied cases here and in 
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Section 2.5.2 are not greatly affected by the choice of compartment model, but rather 

by the distributions of the pharmacokinetic parameters and distribution of the 

measurement errors.  

Table 2.4 Quantiles of log(AUC) and log(Cmax) at 0.05 significance level (10,000 simulations) for 40 

subjects with [ ]1,1,1,1pkcv=cv and residual errors ],...,[ 1
′=

iini eeie ,ξ =0, and CV=0.4. 

 

Case  ηlog  ~ ),( ΛλN  Quantiles for N(0,1): (25th, 50th, 75th)=(-0.674,0,0.674) 

the standardized log(AUC)  the standardized log(Cmax) 

0ρ  pkcv  25th  50th 75th 25th  50th 75th 

1 0.5 0.3 -0.792 0.044 0.875 -0.446 0.317 1.094 

3 0.1 0.3 -0.728 0.011 0.741 -0.419 0.317 1.061 

5 0.5 0.2 -0.616 -0.030 0.549 -0.356 0.248 0.878 

7 0.1 0.2 -0.572 -0.048 0.475 -0.350 0.240 0.853 
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Figure 2.12 Histograms (breaks=80) of the standardized log(AUC) for cases in Table 2.4 compared to 
N(0,1) 
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Figure 2.13 Histograms (breaks=80) of the standardized log(Cmax) for cases in Table 2.4 compared to 
N(0,1)  
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2.7 One real case  

 
We would like to examine the sampling distributions of AUC, Cmax, and Tmax 

from a pharmacokinetic study of an orally administered agent. 

This was a single-dose, randomized, open-label, two-period, two-sequence, two-

treatment, crossover, comparative bioavailability study of the generic product to the 

innovative product. The products were studied using a crossover design with 40 

normal, healthy volunteers being administered a single oral dose under fasting 

conditions.  There were 39 subjects in the study because one subject withdrew from 

the study. Plasma concentration sampling times are pre-dose and at 0.25, 0.5, 0.75, 

1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 16.0, 24.0, and 36.0 

hours post-dose. 

Figures 2.14 and 2.15 respectively indicate that there are some deviations in the 

sampling density curve of the standardized log(AUC) and log(Cmax) from the 

standard normal density curve. Figure 2.16 indicates that there are a fixed number of 

discrete points in the cumulative distribution curve of the standardized log(Tmax), 

which is very different from standard normal cumulative distribution curve. 

The null hypothesis of normality of log(AUC) (or log(Cmax)) is not rejected at 

0.05 significance level because P-values from Shapiro-Wilk normality test of 

log(AUC) and log(Cmax) respectively are 0.7103 and 0.0981; both are larger than 

0.05. The null hypothesis of the normality of log(Tmax) is rejected at 0.05 

significance level because the p-value from Shapiro-Wilk normality test of log(Tmax) 

is 0.0183, smaller than 0.05.  
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Figure 2.14 Comparison of the standard normal density, empirical density and sample histogram of the 
standardized log(AUC) from 39 subjects of the real data set 

 
 

Figure 2.15 Comparison of standard normal density, empirical density and sample histogram of 

log(Cmax) from 39 subjects of the real data set 
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Figure 2.16 Comparison of standard normal distribution function and cumulative distribution function 
of standardized log(Tmax) 

 

2.8 Discussion and conclusions 

 

Strictly based on the statistical theory, iAUC  is not a log-normal variable even 

under the assumption that the plasma concentration ( ijC ) at each time point ( ijt ) is a 

log-normal random variable since AUC= ( )( )
ijji

n

j

jiij ttCC
i

−+ +

−

=
+∑ 1,

1

1

1,5.0  , which is a 

weighted sum of log-normal random variables. The examination of the sampling 

distributions of the standardized log(AUC) for 9 cases in Section 2.5 with large 

samples shows that the sampling distribution of the standardized log(AUC) 

sometimes has heavy tails compared to  the normal distribution. But Figures 2.8 and 

2.9 in Section 2.6.1 show that the normality assumption of log(AUC) seems 

reasonable if the independent and identical measurement errors are assumed to be t 

with more than 10 degrees of freedom, moderately heavy tails.  
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Since Cmaxi= ( )ij
j

Cmax  from all observed values for Subject i, Cmaxi should 

depend on the expected concentration curve. Furthermore, the possible time points to 

obtain Cmaxi are limited by the sampling schedule. So Cmaxi should not be log-

normal variable even if ijC is a log-normal random variable. The examination of the 

sampling distributions of the standardized log(Cmax) for 9 cases in Section 2.5 with 

large samples shows that the distribution of log(Cmax) is obviously skewed to the 

right or the left. The 25th, 50th, and 75th percentiles of log(Cmax) are all different from 

the 25th, 50th, and 75th percentiles for the standard normal distribution, respectively. 

The close examination of the sampling distribution of the response variable for large 

sample size study provides insight into its skewness and kurtosis. The sampling 

distribution of log(Cmax) is skewed even if the independent and identical 

measurement errors are assumed to be t. Figure 2.11 in Section 2.6.2 shows that the 

normality assumptions of log(Cmax) is severely violated if there is a subpopulation 

with a slower absorption process. Figures 2.12 and 2.13 in Section 2.6.3 show that the 

sampling distribution of the sampling distribution of log(Cmax) is skewed for data 

from two-compartment model under the combinations of ξ , 0ρ , and CV in Table 2.4. 

However, the rejection rate of the Shapiro-Wilk normality test for many small sample 

size studies does not provide the significant evidence for these cases. In other words, 

the Shapiro-Wilk normality test for any small sample size study should not be 

recommended in practice as statistical evidence for proving of the validity of the 

normality of log(AUC) or log (Cmax). 
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Comparing the cases in Section 2.6.3 compared to those in Section 2.5.2, it 

appears that the sampling distribution of the response variable (log(AUC) or 

log(Cmax)) is not greatly affected by the choice of compartment modeling.  

The real example in Section 2.7 illustrates that histogram of log(AUC) or 

log(Cmax) shows some departure from normality.  

The CDF of the standardized log(Tmax) has a fixed number of mass points and is 

above the standard normal CDF for almost every scenario. Since the number of 

possible values of Tmax is limited by the number of sampling points, distribution of 

Tmax most likely is discrete, not normally distributed. 

In conclusion, the sampling distribution of log(AUC) with large samples often has 

heavy tails. The sampling distribution of log(Cmax) is skewed either to the left or to 

the right and is not robust to many perturbations studied in this chapter. Our 

examinations of the sampling distributions of log(AUC) (or log(Cmax)) for a large 

number of simulated subjects helps to identify the nature of non-normality of 

log(AUC) (or log(Cmax)). On the contrast, the rejection rate of Shapiro-Wilk 

normality test, which is not sensitive for many small samples (e.g., 40 subjects), 

cannot provide such insight. Hence it is necessary to examine the sampling 

distribution of the response variable for many more large sample size simulations 

with more extensive variation of pharmacokinetic parameters and distributions so that 

the nature of the distribution for log(AUC) (or log(Cmax)) can be further evaluated. 

We must point out the limitation of our investigation since it is based on the 

simulations generated from the pharmacokinetic compartmental models and a 

lognormal measurement error structure, while the real concentration-time profile may 
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not fit the pharmacokinetic compartmental model and measurement error structure 

may be very different from lognormal.   
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Chapter 3  Background of the two one-sided tests for 

univariate bioequivalence testing 

3.1 Introduction 

 
In a typical bioavailability/ bioequivalence study, a test product (T) and a reference 

product (R) are administered to subjects. The reference product could be a marketed 

innovator's product previously approved by Food and Drug Administration (FDA) 

and the test product a potential generic substitute manufactured by a different 

pharmaceutical company. The test and reference products could also be different 

formulations, but manufactured by the same pharmaceutical company.  

Assuming the response variable (log(AUC) or log(Cmax)) is normally distributed, 

Schuirmann [9] compared the two one-sided tests procedure and the power approach 

which tests the hypothesis of no difference, RTH µµ =:0 , for assessing the 

equivalence of average bioavailability in terms of rejection regions. In the 

bioequivalence evaluation of pharmacokinetic studies, the normality of the response 

variable (log(AUC) or log(Cmax)) is often assumed in practice. However the 

histograms for log(Cmax) are skewed for many simulation scenarios in Chapter 2.   

Denote the population mean bioavailability (as measured by log(AUC) or 

log(Cmax)) of the test product by Tµ and the population mean bioavailability of the 

reference product by Rµ . In order to conclude the bioequivalence of the test product 

and the reference product, we should reject the null hypothesis in the context of the 

following pairs of hypotheses: 
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211

210

:

or  :

θµµθ
θµµθµµ

<−<
≥−≤−

RT

RTRT

H

H
          (3.1). 

Here θ1 and θ2 are pre-specified constants, also called equivalence margins, and θ1< 

θ2.  

The null hypothesis, H0, states that μT and μR are not equivalent. The alternative 

hypothesis, H1, states that they are equivalent. 

The statistical hypotheses H0 and H1 given above are referred to as the “interval 

hypotheses” in the literature [10, 11]. The interval hypotheses H0 and H1 can be 

decomposed into two sets of one-sided hypotheses as shown in Section 3.3. 

The purpose of this chapter is to provide a general background for the two one-

sided testing and the power approach procedures. The power approach in practice 

usually consists of testing the hypothesis of no difference, RTH µµ =:0 , at level 0.05 

and a lack of significance is often used to incorrectly infer equivalence.  For assessing 

the equivalence of average bioavailability of the test and reference products, the 

power approach switches what ought to be the null and alternative hypotheses. The 

power approach too often frequently fails to reject the hypothesis of no difference 

with a small study size and/or larger variance, in essence rewarding the investigator 

or company for a less than adequate study. It is recognized that the power approach 

will reject RTH µµ =:0 in large studies with smaller variability, but sometimes 

RTH µµ =:0  is rejected although the two products are likely quite comparable. In 

Section 3.2, the linear mixed effect model for a two-period two-treatment crossover 

study is described in great detail. In Sections 3.3 and 3.4, the hypotheses and test 

statistics for two one-sided tests procedure and for the power approach are discussed, 
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respectively. In Section 3.5, the exact power functions for these two approaches are 

derived.  

 3.2 Linear mixed effect model for a two-period two-treatment crossover 

bioequivalence study  

 
According to the 2001 Food and Drug Administration’s Guidance for Industry [1]: 

Statistical Approaches to Establishing Bioequivalence, the Center for Drug 

Evaluation and Research (CDER) recommended that a standard in vivo 

bioequivalence (BE) study design be based on the administration of either single or 

multiple doses of the T and R products to healthy subjects on separate occasions, with 

random assignment to the two possible sequences of drug product administration. 

Hence the crossover design for an in vivo BE study is the primary design employed in 

regulatory trials. 

In a two-period two-treatment crossover design, a group of n1 subjects (Sequence 

1) receives the reference drug, and a profile of the drug concentration within blood 

plasma over time for each subject is obtained. After a washout period for removal of 

any carryover effect, this group receives the test drug and drug plasma concentration-

time profiles are again obtained. A second group of n2 subjects (Sequence 2) receives 

the drugs in the reverse order. 

As long as the two periods are sufficiently far apart it is reasonable to assume that 

there is no interaction between formulation and sequence and no carry-over effect. In 

the 2-period 2-treatment crossover study, the carry-over and interaction between 

formulation and sequence are not separately identifiable. The carry-over effect can 

occur when the active ingredients of a drug given in the first period are still present in 
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the second period. A washout period is incorporated into the study design to allow a 

drug administered in the first period to be washed out of the body before the other 

drug in the second period is taken. In that way, the plasma concentration of a drug 

administered in the first period will be reduced to a negligible level in the second 

period. Hence it is reasonable to assume no carry-over effect in this crossover design. 

However, one must assume no interaction between formulation and sequence for the 

analysis since the interaction between the formulation and period is not estimable in 

the 2-period 2-treatment crossover study. In practice, if these assumptions are suspect 

an alternate study design is used where different subjects are exposed to test and 

reference product.  

Let ijkY  be the response (e.g., log(AUC)) of the kth subject in the jth period of the ith 

sequence in the 2-period 2-treatment crossover study, where i=1, 2, j=1, 2 and k=1,.., 

ni. Then ijkY  is modeled by the linear mixed effect model  

ijkijjikijk FPSY εγ ++++= ,                                                                  (3.2) 

where γ is the overall mean; Pj is the fixed effect of period j; Fij is the fixed effect 

of the formulation administered in period j of sequence i; Sik is the random effect of 

subject k in sequence i (note: If subjects each have individual identifiers, rather than 

being labeled within sequences as in model 3.2, then Sik is replaced by Sk.); and εijk is 

the random error. From the treatment assignments, we know that F11 = F22 = Rµ  and 

F12 = F21 = Tµ . The parameters can be estimated only subject to restrictions: P1 + P2 

= Tµ  + Rµ  = 0, since otherwise the parameters P1, P2, Tµ , and Rµ  are not separately 

identifiable. The Sik and the εijk are all independent normal random variables with 
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mean 0. The variance of Sik is 
2

Sσ  and the variance of εijk is 2

Tσ  if 2,1,, =∀≠ jiji  for 

the test formulation and 2

Rσ  if 2,1,, =∀= jiji for the reference formulation.  

Let RT µµθ −=* , where Tµ  and Rµ  are the true means of the test and reference 

formulations, respectively. An estimator of 
*θ is given as  

2
ˆ 22211112 •••• −+−= YYYY

D                                                                           (3.3). 
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For this crossover design, D̂  is a normally distributed unbiased estimate of *θ  = 
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The estimate D̂  is the average of the averages of the intra-subject difference 

between the test and the reference for the two sequences and 2S  is a pooled estimate 

of the variance of an intra-subject difference. 
( )

22

2

21 2

RT

Snn

σσ +
−+

is distributed as 2χ  with 

221 −+= nnν  degrees of freedom. 

Plugging the model value Yijk into S2, we rewrite S2 as:  
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 has a Chi-squared distribution with degrees of 

freedom 11 −n  due to the fact that kk 1112 εε −  is distributed as ( )22,0 RTN σσ + . 

Similarly, 

( )( )
22

1

2

22212221

2

RT

n

k

kk

σσ

εεεε

+

−−−∑
=

••

 has a Chi-squared distribution with degrees 

of freedom 12 −n . It is easy to see that 
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So 
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Model 3.2 is a typical model formulation for the 2-period 2-treatment 

bioequivalence study in the literature [2, 3]. Jones and Kenward’s model [3] is: 

ijkiijjikijk jIFPsY ελγ +=++++= )2( , where iλ  is the carry-over effect of the ith 

sequence; this is the same as Model 3.2 if iλ  is assumed to be zero. Another variant 

of this model is assuming that sik is a fixed effect. 
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3.3 The two one-sided tests procedure 

The interval hypotheses H0 and H1 in Equation 3.1 can be decomposed into two 

sets of one-sided hypotheses: 

111

101

:

 :

θµµ
θµµ

>−
≤−

RT

RT

H

H
                                                                         (3.5) 

and  

212

202

:

 :

θµµ
θµµ

<−
≥−

RT

RT

H

H
 .                                                                      (3.6) 

The two one-sided tests procedure consists of rejecting the interval hypothesis H0, 

and thus concluding equivalence of μT and μR, if and only if both H01 and H02 are 

rejected at a chosen nominal level of significance α. 

From Model (3.2), the test statistics for hypothesis testing of H0 in (3.1) are 

defined as: 
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.                                                                                             (3.8) 

 

Assuming that (1) the bioavailability is normally distributed, (2) the number of 

subjects in each sequence are equal (n1=n2=n/2), (3) there are no missing 

observations, and (4) the variance of test and reference products are equal (this 

assumption need only be approximately correct.), the test statistics for hypothesis 

testing of H0 can be rewritten as: 
nS

D
T

/1

ˆ
1

1

θ−=  and 
nS

D
T

/1

ˆ
2

2

θ−= . We would conclude 
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the bioequivalence of the test and reference product if 

)(
/1

ˆ
1

1 νθ
αt

nS

D
T ≥−= and )(

/1

ˆ
1

2
2 νθ

α−≤−= t
nS

D
T , where θ1 and θ2 are equivalence 

margins such that θ1< θ2, and )(ναt is the upper quantile of student t distribution with 

α upper tail probability, and 2−= nν . 

3.4 Power approach 

The usual hypothesis testing of no difference as null hypothesis and nonzero 

difference as alternative hypothesis at the nominal level of significance α (e.g., 0.05) 

is called the power approach. This hypothesis is defined as: 

0:

 0:
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The test statistic is defined as
nS

D
Tp

/1

ˆ
= . One cannot reject 0H ′  if 

( )να 2/
/1

ˆ
t

nS

D ≤ , where ν=n-2 is the number of degrees of freedom. The 

bioequivalence of test and reference product is inferred. 

3.5 Power functions for two one-sided tests procedure and power approach  

3.5.1 Power function for the two one-sided tests procedure 

In the two one-sided tests procedure (See Section 3.3), the power (P1) is the 

probability of rejecting both H01 and H02 given both H11 and H12 are true. Define 

2

2
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νS

X = .  Then σ
ν
X

S
2= , and X is a chi-squared random variable with degrees of 
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freedom, ν. Assume that 2/21 nnn ==  and 222 σσσ == RT , we determine the power 

function ( )σθ ,,*

1 nP  as follows: 
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2=  into the above equation, we have 
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* θθθ ∈ , )(ναt is the 1-α quantile of the ( )νt , and 

)(⋅Φ  is the standard normal cumulative distribution function. 

3.5.2 Power function for the power approach 

In the power approach (Section 3.4), the power ( ),( *

1 σθPowerP ) is the probability 

of rejecting 0H ′  given 1H ′  is true when 2/21 nnn ==  and 222 σσσ == RT ; that is  
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Plugging σ
ν
X

S
2=  into the above equation, where X is a chi-squared random 

variable with ν degrees of freedom, we have 
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(3.11) 

Here 0* ≠θ , and )(⋅Φ  is a standard normal cumulative distribution function. 

3.6 Discussion and conclusions 

This chapter provides the general background of two one-sided tests procedure for 

bioequivalence testing. Although Shuirmann [9] compared numerical value of power 

of the two one-sided tests procedure and that of the power approach for assessing the 

equivalence of average bioavailability, he did not provide the explicit power function 

for two one-sided tests procedure. Hence this chapter derives the explicit power 

functions for two one-sided tests procedure and the power approach. The two one-

sided tests procedure is much more widely used than the power approach and is the 

only one recommended in the FDA guidance [1].  In addition, this chapter provides a 
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fundamental understanding of the difference between the two one-sided tests 

procedure and the power approach.  
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Chapter 4  Exact calculation of power and sample size 

in bioequivalence studies using two one-sided tests 

4.1 Introduction 

 
In Chapter 3, two approaches for testing bioequivalence in the context of a 

crossover design are described. We indicate that the approach based on two one sided 

tests is most commonly used in practice for the purpose of establishing 

bioequivalence.  

As we described in Chapter 3, we reject the null hypothesis in the following 

hypothesis test (4.1) so as to conclude the bioequivalence of the test product and the 

reference product: 

21

210

:

or  :

θµµθ
θµµθµµ

<−<
≥−≤−

RTa

RTRT

H

H
          (4.1). 

In this chapter, we describe various approaches to determine power and sample 

size in this setting.  

Since Owen’s Q function has been widely used, we would like to give a brief 

description about Owen’s Q function and how to use it for calculating the probability 

of rejecting the null for the two one-sided tests procedure for the crossover 

bioequivalence study. Owen’s Q function [35] is defined as: 

( )ctQ f ,0;,δ = ( ) ( ) ( )dxxGx
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( ) ( )∫
∞−

′=
x

dxxGxG , f is degrees of freedom, δ is noncentrality parameter, and c is 

upper integration limit. With Owen’s Q function, the probability of rejecting the null 

for the two one-sided tests procedure for the crossover bioequivalence study is equal 

to ( )( ) ( )( )ctQctQ vv ,0;,,0;, 12 δνδν αα −−  (see Equation (11) on Page 439 of [35]) under 

2/21 nnn ==  and 222 σσσ == RT . Here 22  and RT σσ are the variance for the test product 

and the reference product, respectively; 21  and nn are respectively the number of 

subjects in Sequence 1 and Sequence 2; *θ is the true mean difference; 2−= nν ; 

n/2

1

*

1 σ
θθδ −= ; 

n/2

2

*

2 σ
θθδ −= ; and c

22

2

12

8

)(

σν
νθθ

α 






−=
t

n
. 

In 1990, Phillips [36] calculated the power and the sample size for the two one-

sided tests procedure with equivalence margins (θ1 =-20% and θ2 =20%) for 

bioequivalence assessment of normal data based on Owen’s special case of bivariate 

noncentral t-distribution [35] and presented some sample size tables and power 

graphs. We note that Phillips did not provide the formula for calculating R (an 

argument in Owen’s Q function) in his method. (See pages 138 and 139 of [36].) 

Phillips’ [36] calculations were for equivalence margins 12 θθ −=  =0.20, different 

from the values 12 θθ −=  = log 1.25 = 0.2231 recommended in [1], the FDA 

Guidance for Industry. In 1991, Diletti, Hauschke, and Steinijans [37] determined the 

sample size for the two one-sided tests procedure with equivalence margins (θ1 

=log(0.8) and θ2 =log(1.25)) for bioequivalence assessment of one log-transformed 

response variable that is assumed to be normally distributed on the basis of Owen’s 

special case of bivariate noncentral t-distribution. Again we note that Diletti et al did 
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not provide the formula for calculating c (an argument in Owen’s Q function) in their 

method. (See Page 5 of [37].) They presented the graphs of the power against the 

number of subjects for various coefficients of variations (standard deviation divided 

by the mean) of the untransformed data. There are graphs for the above probability 

but no explicit formula for this probability [36, 37]. In 1992, Liu and Chow [38] 

derived approximate sample size formulas for two one-sided tests procedure with 

equivalence margins θ1 =log(0.8) and θ2 =log(1.25) for bioequivalence assessment of 

one log-transformed response variable that is assumed to be normally distributed. 

These margins correspond to the margin in the 2001 Food and Drug Administration’s 

Guidance for Industry [1]. Hauschke, Steinijans, Diletti, and Burke [39] compared the 

sample size based on Owen’s bivariate noncentral t-distribution and an approximate 

formula in the case of a multiplicative model, in which period, treatment effect, 

subject effect, and residual acts proportionally on AUC or Cmax. Taking logarithms 

of both sides in the multiplicative model transforms the multiplicative model on the 

original scale to the additive model (in which the different components affected the 

response variable additively) on the logarithmic scale. In 1999, Kieser and Hauschke 

[40] proposed a unifying approach to approximate sample size determination for 

different types of hypotheses formulated in terms of ratio of two means and 

difference of two means for the situations of testing noninferiority, superiority, or 

equivalence when the response variable is normally distributed.  In 2000, Kieser and 

Hauschke [41] proposed an approximate sample size formula using both inter-subject 

and intra-subject variability for demonstrating equivalence in crossover trials based 

on the ratio of two location parameters. In 2001, Chow and Wang [42] derived 
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approximate formulas for sample size calculation under a balanced crossover design 

with equal variances of the test and reference products and a parallel design with 

normally distributed raw data or normally distributed log-transformed data.  

In 2007, Hauschke et al [43] published an explicit formula using Owen’s Q 

function [35] with properly defined noncentrality parameters and R under 

2/21 nnn ==  and 222 σσσ == RT . In 2009, Phillips [44] published an explicit formula 

for the probability of rejecting the null for the two one-sided tests procedure for the 

crossover bioequivalence study under 2/21 nnn ==  and 222 σσσ == RT . Hauschke et 

al [43] and Phillips [44] provided a clearer explanation for what these same authors 

had essentially done in 1991 and 1990, respectively. However, Phillips [44] is newly 

augmented with references to a specific readily available R-package [45]. There have 

also been several published approximations [38-42] that have been used in practice. 

In 2008, the formula for power calculation on the left side below Figure 4 on Page 

252 of [46] is the difference of cumulative noncentral t function, which is 

approximate. In 2014, the formula in Line 5 in Section 2.2 of [46] multiplied by 

Equation (2) in Section 4 of [46] for sample size calculation at nonzero true mean 

difference of the test and reference products same as Chow and Wang’s 

approximation is still used. Equation (1) in Section 2.2 of [47] multiplied by Equation 

(2) in Section 4 of [47] for sample size calculation at zero true mean difference of the 

test and reference products is also the same as Chow and Wang’s approximation. In 

2014, Shen, Russek-Cohen, and Slud published the exact power formula for 

calculating the probability of rejecting the null for the two one-sided tests procedure 

for the crossover bioequivalence study under general parameters [48] based on the 
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work in this chapter. The main purpose of [48] is to explain clearly just how 

untenable the approximations are for realistic parameter combinations and how easily 

the self-contained power expressions, that have been essentially known since Owen's 

1965 paper [35] are to implement in R. 

We note that except for [48] all of these approaches, both exact and approximate, 

assume the variances 22

RT σσ =  are homogeneous, that the design is balanced 

( 21 nn = ), and that measures of bioavailability (log(AUC) and log(Cmax)) are 

normally distributed. In this chapter, we compare approaches when the data is 

normally distributed and in Chapter 6 we will address the sensitivity of the exact 

method to the assumption of normality.  

In Section 4.2, we briefly derive the joint density function of test statistics and the 

exact formula for the power of the two one-sided tests procedure for testing 

bioequivalence based on a univariate normally distributed response variable. Our 

derivation for the exact power under general parameters just serves for completeness 

and for expository purposes since the explicit power formula assuming the equal 

variances for the test and reference products and balanced design was published in 

[43, 44]. However, by allowing for unequal variances, it might allow the user to 

assess the robustness of the power and sample size determinations when this 

assumption is violated. Modest differences in variability may not cause concern when 

the bioequivalence question is being addressed.  

In Section 4.3, we compare the simulated values with the numerical values and 

indicate how numerical integration easily provides accurate numerical values for 

power and sample size. In Section 4.4, we compare the numerical results of the exact 
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method with the graphed power values of Diletti et al. [37], the power values graphed 

by Phillips [36] for θ2 =-θ1=0.20, and the sample size and power values generated by 

the approximate method of Chow and Wang [42]. 

4.2 Exact power function and the joint probability density function of test statistics 

(T1 and T2 ) 

 

From Section 3.2 in Chapter 3, we recall that D̂  is a normally distributed unbiased 

estimate of RT µµθ −=*  with variance 







++=

21

22
2
ˆ

11

4 nn

TR

D

σσσ , and 

( )
22

2

21 2

RT

Snn

σσ +
−+

is distributed as 2χ  with 221 −+= nnν . 

We use the test statistics 

21

1
1

11

2

ˆ

nn

S

D
T

+

−= θ
and 

21

2
2

11

2

ˆ

nn

S

D
T

+

−= θ
 defined in Section 

3.3 in Chapter 3 testing for hypotheses (4.1).  To correct the mis-statement of Liu and 

Li [49] that the test statistics (T1 and T2) do not have a joint density (see first two lines 

after Equation (3) in [49]), we simply observe that the function mapping ( D̂ , 2S )  to 

(T1, T2) , with domain (-∞,∞)×(0,∞)  and range { (t1, t2):  t1 > t2 }, is both 

differentiable and differentiably invertible, while the independent variables D̂  and 

2S  have respective normal and Gamma densities, as described above. (For an 

exposition of the change-of-variable formula for differentiable one-to-one 

transformations of random vectors with a joint density, see Formula 4.3.2 on Page 

158 and Theorem 2.1.8 on page 53 of [50]). The joint density for (T1, T2) can also be 

obtained directly by differentiation with respect to t1 and t2 on the region  t1 > t2  of 
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the joint cumulative distribution function derived and published by Owen [35, Sec. 

5]). 

The joint pdf of (T1, T2) is given by 
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, where 21 tt > .   (4.2) 

Although the exact power function can easily be developed as a double integral 

from the joint pdf of T1 and T2, we will derive a simpler form of the exact power 

function by integrating the conditional power given 2S . This alternative formula, in 

the same spirit as formula (11) in Section 5 of [35], is simpler because it involves 

only a univariate integral over a bounded interval, after recognizing that the 

conditional power given 2S  is a readily evaluated normal tail probability. 

The exact power function can be written, in terms of the α and 1-α quantiles tν(α)  

and  tν(1-α)= - tν(α) of the t distribution with ν degrees of freedom, as: 
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This last expression is the expectation over S of the conditionally normal probability 

given S, using the fact that 
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)(ναt is the 1-α quantile of the t-distribution with 221 −+= nnν  degrees of freedom 

and )(⋅Φ  is the standard normal cumulative distribution function, ( )⋅I  is the indicator 
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The gamma density and integrand written in terms of the normal cdf are readily 

evaluated, so the integral (4.3) is easily evaluated in any good statistical computing 

package: R code for it is given in Appendix 4.1. 
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In the two one-sided tests procedure for one single variable, the power (P1) is the 

probability of rejecting H0 when Ha in (4.1) is true. For sample size determination and 

power of two one-sided tests procedure in the bioequivalence literature, Schuirmann 

[9], Phillips [36], Diletti et al. [37], and Chow and Wang [42] all assumed 

that 2/21 nnn ==  and 222 σσσ == RT .  Following this convention, we will compare the 

exact power with Chow and Wang’s approximate power under the assumption 

that 2/21 nnn ==  and 222 σσσ == RT . The exact power function becomes: 
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4.3 Comparison of power values from the exact power function and Monte Carlo 

simulations  

 
The power values computed numerically from (4.4) using a standard numerical 

integration routine, integrate in  R [51], were carefully checked both in terms of their 

own estimated error bounds and by comparing with Monte Carlo simulations of 

rejections in the two one-sided tests procedure. Table 4.1 lists the results from the 

exact power function and Monte Carlo simulations.  From Table 4.1, we found using 

106 Monte Carlo replications (with corresponding simulation standard errors less than 

0.0005), for a combination of cases of *θ  equal to 0, 0.1, 0.2 and log(1.25), and of σ 

= 0.2 and  0.3, that the simulated and exact values were always within 0.001 of one 

another, and that the numerical integration error bounds were less than 0.0001 

(usually by one or more orders of magnitude). 



 

81 
 

Since ( )νν α
2

t  is an increasing function of ν  (see the proof in Appendix 4.2), both 

the upper limit of integration and the integrand in the integral formula (4.4) are 

directly seen to be monotone increasing as a function of n, so the integral (4.4) itself 

is also monotone increasing in  n. Hence we use a bisection search or other numerical 

root-finder to find the required sample size n  by first solving for the continuous value  

n at which the exact power (4.4) with all parameters held fixed is equal to power (1-β) 

and then rounding it up to the smallest even number n ≥ n*. Code lines for doing this 

in R are also supplied in Appendix 4.1. 

Table 4.1 Comparison of power values from the exact power function and Monte Carlo simulations for 
n=40  

*θ  σ  Power 

Exact power (upper bound on 
absolute error) by Equation (4.4)  

Monte Carlo 
Simulations (106) 

0 0.2 0.9988604 (1.8e-6) 0.9989 

0.1 0.2 0.8552369 (1.8e-6) 0.8554 

0.2 0.2 0.1278706 (3.4e-7) 0.1285 

log(1.25) 0.2 0.0500 (7.3e-8) 0.0496 

0 0.3 0.8950818 (6.1e-8) 0.8946 

0.1 0.3 0.5617662 (1e-7) 0.5622 

0.2 0.3 0.09578144 (7.4e-8) 0.0955 

log(1.25) 0.3 0.04999948 (8.9e-5) 0.0499 

4.4 Comparison of exact power with power values from graphs and approximate 

power 

4.4.1 Comparison of exact power function with approximate power function of Chow 
and Wang 

4.4.1.1 Approximate power formulas of Chow and Wang 
 

Chow and Wang [42] focused on the log-normally distributed data which can be 

modeled by the linear mixed effect model (3.2). When 0* >θ  and *θ is large relative 

to σ, Chow and Wang assumed that ( ) 0
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the two one-sided tests procedure (4.1), Chow and Wang [42] approximated the 

power function 
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Chow and Wang replaced S by the 2σ  in the right side of inequality of PCW, so 

they further approximated the power function (4.4) when 0* >θ  and *θ is relatively 

big by ( )

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Hence the sample size can be determined by 
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Chow and Wang used similar treatments for obtaining approximate power when 

0* <θ . Hence Chow and Wang concluded that the sample size can be determined by 

( ) ( )( )
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σ βα ntnt
n     (4.6). 

When 0* =θ , the power function (4.4) is approximated by  
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4.4.1.2 Comparison of exact power and approximate power of Chow and Wang 
 

The approximate power function of Chow and Wang [42] tends to overestimate 

power by removing the upper-tail bound on 
nS

D

/1

ˆ *θ−
, but due to the further 

replacement of sample standard deviation by true σ in the inequality for 
nS

D

/1

ˆ *θ−
 , 

their approximation does not overestimate for all possible parameter combinations. 

The differences between exact power and approximate powers are illustrated in 

Figures 4.1 to 4.4 for wide ranges of standard deviations and true mean differences.  

 

As defined in Section 4.2, σ2 is the variance of log-transformed data from the 

reference product. It is well known that the relationship between the coefficient of 

variation (CV) in the untransformed data and the standard deviation (σ) of the log-

transformed is 1
2

−= σeCV . 

When σ =0.3 for log-transformed data, CV=0.307 for untransformed data. It is well 

known that the product is a highly variable drug when CV for untransformed AUC or 

Cmax is greater than 0.3 [52, 53]. Regardless of the magnitude of the standard 

deviation σ from examination of many numerical results, Chow and Wang’s 

approximate power seems to over-estimate the exact power when both n and θ* are 
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very small.  Chow and Wang’s power curve has a peak since Chow and Wang used 

two different formulas for power when θ* is zero and nonzero. The difference 

between the Chow and Wang’s approximate power and the exact power will decrease 

as the total sample size increases for same σ and n, and also decreases as the true 

difference (θ*) increases. When σ increases from 0.2 to 0.7, there are more cases 

when Chow and Wang’s approximate power exceeds the exact power. 

Thus, sample sizes estimated by Chow and Wang’s approximate power for the 

combination of small n and small θ* are underestimated. When studies are 

underpowered, they may fail to meet the study objectives. For combination of large 

θ* and small n, Chow and Wang’s approximate power can underestimate the true 

power slightly, which results in having a few more subjects than necessary.  

Previous authors [36, 37, 42] often focused on CV<0.3. However, errors of 

approximation may also be important for the large σ values of highly variable drugs.  

From Figures 4.1 to 4.4 there are more combinations of θ* and n for which Chow 

and Wang’s approximate power over-estimates the exact power as σ increases from 

0.2 to 0.7.  

From Figure 4.1, it is seen that Chow and Wang’s approximate power is very close 

to the exact power for n≥18 and θ*>0.04 when σ= 0.2. 

From Figure 4.2, it is seen that Chow and Wang’s approximate power over-

estimates the exact power for many combinations of θ* and n when σ= 0.3. For 

example, Chow and Wang’s approximate power is 81.77%, our exact power is 

74.13%, and Chow and Wang’s approximate power over-estimates the exact power 

by 7.64% for n=30 and θ*=0.02 when σ= 0.3. 
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From Figure 4.3, it is seen that Chow and Wang’s approximate power over-

estimates the exact power for many combinations of θ* and n when σ= 0.4. For 

example, Chow and Wang’s approximate power is 80.35%, our exact power is 

71.63%, and Chow and Wang’s approximate power over-estimates the exact power 

by about 9% for n=50 and θ*=0.02 when σ= 0.4. 

From Figure 4.4, it is seen that Chow and Wang’s approximate power over-

estimates the exact power for many more combinations of θ* and n when σ= 0.7 than 

those when σ= 0.2. For instance, Chow and Wang’s approximate power over-estimate 

the exact power by 10% for n<140 and small θ* when σ= 0.7. 

 

Figure 4.1 Comparison of Chow and Wang’s approximate power and exact power numerically 
calculated from Equation (4.4) against and true mean difference, θ* when σ=0.2, at different total 
sample sizes, n 
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Figure 4.2 Comparison of Chow and Wang’s approximate power and exact power numerically 
calculated from Equation (4.4) against and true mean difference, θ* when σ=0.3, at different total 
sample sizes, n 
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Figure 4.3 Comparison of Chow and Wang’s approximate power and exact power numerically 
calculated from Equation (4.4) against and true mean difference, θ* when σ=0.4, at different total 
sample sizes, n  
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Figure 4.4 Comparison of Chow and Wang’s approximate power and exact power numerically 
calculated from Equation (4.4) against and true mean difference, θ* when σ=0.7, at different total 
sample sizes, n  
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4.4.1.3 Comparison of exact sample size and approximation of Chow and Wang 
 

In Table 4.2, we compare the total sample sizes from Equation (4.4) and Chow and 

Wang’s approximate power [42] for achieving 80% power. The total sample size is 

rounded to next even number. Table 4.2 shows that the difference in the total sample 

sizes increases as σ increases, and decreases as 
*θ increases, for each given

*θ . For 

example, the total sample size from the Chow-Wang approximate power is about 

10% less than that from exact power when 
*θ =0.03 and σ=0.2; about 15% less when 

*θ =0.02 and σ=0.4; and about 20% less than that from exact power when 
*θ =0.01 

and σ=0.3. 

Table 4.2 Comparison of sample size from exact power given by Equation (4.4) and Chow and 
Wang’s approximate power for achieving 80% power at different combination of σ and θ* 

σ *θ =0.01 *θ =0.02 *θ =0.03 *θ =0.04 

Exact Chow 
and 
Wang 

Exact Chow 
and 
Wang 

Exact Chow 
and 
Wang 

Exact Chow 
and 
Wang 

0.1 6 6 6 6 6 6 6 6 

0.2 16 14 16 14 18 16 18 18 

0.3 34 28 34 30 36 32 38 36 

0.4 58 46 60 50 62 56 66 62 

0.5 90 70 92 78 94 86 100 94 

0.6 128 100 130 110 136 122 144 136 

0.7 172 136 176 150 184 164 194 184 

4.4.2 Comparison of the exact power and Diletti et al.’s power  

 
Since Diletti et al [37] did not provide the explicit mathematical formula for power 

calculation, we read three power values from Fig. 1c of [37]. The exact power values 

and power values from Fig. 1c of [37] when CV=20% and n=24 are listed below.  
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Table 4.3 Comparison of the exact power given by Equation (4.4) and power values read from Fig. 1c 
in Diletti et al’s paper when CV=20% and n=24. 

Method 
RT µµθ −=*  

0 Log(1.05) Log(1.1) 

Diletti et al’s power 0.97 0.9 0.7 

Exact power, ( )σθ ,,*

1 nP  0.9679 0.902 0.696 

 

From Table 4.3, the power is very close to the exact power by Equation (4.4). 

However, the graphs and tables present a limited number of cases. For instance, 

Diletti et al. [37] did not provide any power value for CV>30%, as would be the case 

with highly variable drugs. The exact and explicit power function allows such 

situations to be considered. 

4.4.3 Comparison of the exact power and Phillips’ power  

 
Since Phillips [36] did not provide the explicit mathematical formula for his power 

calculation, we also read three power values from Fig. 3 of [36]. The parameters we 

choose and comparison of the exact power values by Equation (4.4) and power values 

from Fig. 3 in Phillips’ paper under these parameters are listed in Table 4.4. In 

Phillips’s paper, θ1 =-20% and θ2 =20%.  In order to compare the exact power, 

( )σθ ,,*

1 nP , with Phillips’s power, θ1 =-20% and θ2 =20% are assumed in the 

calculation of exact power function, ( )σθ ,,*

1 nP . 

Table 4.4 Comparison of the exact power given by Equation (4.4) and power values read from Fig. 3 
in Phillips’ paper when CV=20% and n=24. 

Method 
RT µµθ −=*  

0.015 0.05 0.1 

Phillips’ power 0.9 0.8 0.5 

Exact power, ( )σθ ,,*

1 nP  0.909 0.809 0.517 

 



 

91 
 

From Table 4.4, Phillips’ power is very close to the exact power by Equation (4.4). 

However, the graphs and tables present a limited number of cases as Phillips [36] did. 

The exact and explicit power function, such as 1P  in equations (4.3)-(4.4), allows any 

situation to be considered. 

4.5 Discussion and Conclusions  

 
The exact power can be derived from the joint density function of two highly 

correlated test statistics (T1 and T2). Our derivation for the exact power under the 

general parameters just serves for completeness and for expository purposes since the 

explicit power formula under the equal variance for the test and reference product and 

a balanced design was published in [43, 44]. The exact power numerically integrated 

from Equation (4.4) is corroborated by the results from 106 Monte Carlo simulations. 

Since suitable free software, such as R software, is available, exact power for the two 

one-sided tests procedure can be readily obtained from the power function by 

numerical solutions. Our R code for power function is attached in the Appendix 4.1. 

Exact sample size calculation is then easy using the exact power for any parameter 

combinations in bioequivalence studies based on two one-sided tests. This chapter is 

to remind the readers that approximate methods are still in use [46, 47]. The exact 

power will pave the way for sample size calculation for any parameters’ combination 

(e.g., unequal variance of the test and reference products) in bioequivalence study. 

The fact that Chow and Wang’s approximate power markedly over-estimates the 

exact power for many combinations of θ* and n as shown in Figures 4.1 to 4.4 and 

Table 4.1 demonstrates the preferability of the exact power function ( )σθ ,,*

1 nP  in 

planning of bioequivalence study, especially when θ* is small relative to σ.  Mean 
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differences in log(AUC) or log(Cmax) as small as 0.03 are of practical interest based 

on the review by Davit et al. [54] of 12 years of bioequivalence studies from the 

FDA, which found that more than 50% of studies have mean difference less than of 

0.05 between generic product and innovator. (These are mean differences in 

log(AUC) or log(Cmax), when the corresponding mean differences in AUC and Cmax  

between generic and innovator products are respectively 3.56%  and  4.35%.) 

While the exact power agrees closely with [36, 37] in the few cases displayed in 

those papers and the explicit formula under the equal variance for the test and 

reference product and balanced design was published in [43, 44], it is still important 

to have exact powers and sample sizes in all bioequivalence study settings, including 

those for unequal variance of the test and reference products and to show just how far 

off the approximate formulas that are still in use [46, 47] can be for many practical 

settings. 

Appendix 4.1: R code for exact power and sample size 

 

The power ( )RTnnP σσθ ,,,, 21

*

1  in (4.3) is calculated by the following lines of R 

code. Here the arguments n1 and n2 respectively represent the sample sizes 21, nn of 

sequences 1 and 2; sigT , sigR represent Tσ  and Rσ ;  th1  and  th2 respectively 

represent 1θ  and 2θ ; and  tstar represents *θ . In fact, ( )RTnn σσ ,,, 21   enters formula 

(4.3) only through the quantities ( ) 4//1/1)( 21

222
ˆ nnTRD

++= σσσ   and   

221 −+= nnν , and arguments sigD and nu represent 
D̂

σ  and ν.  Pow1$value is the 

power in formula (4.3) (with Pow1$abs.error  the estimated absolute error of 

integration), and SSiz denotes the sample size obtained by equating formula (6)  to  1-
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beta.  We use two standard R functions: integrate to perform univariate numerical 

integration, and uniroot to perform root-finding or inversion. 

Pow1 = function(sigD, nu, th2,th1,tstar, alpha=.05){ 

     Integrand = function(x)    { 

         (pnorm((th2-tstar)/sigD- qt(1-alpha, nu)*sqrt(x/nu))-  

         pnorm((th1-tstar)/sigD+ qt(1-alpha, nu)*sqrt(x/nu)))*dchisq(x,nu)     

     } 

     integrate(Integrand, lower = 0, upper =  

              nu*((th2-th1)/(2*qt(1-alpha, nu)*sigD))^2)[1:2] 

}  

 

    SSiz = function(beta, sigT,sigR,th2,th1,tstar, alpha=.05, uppern=300){ 

         Pow2 = function(n) { 

             Pow1(sqrt((sigT^2+sigR^2)/n), n-2, th2, th1,  tstar, alpha)$value-1+beta } 

         uniroot(Pow2,c(3,uppern))$root 

    }  

Appendix 4.2: Proof of monotonicity of ( )νν αt  

 

Define ( ) ( )ννν YZt = , where Z is the standard normal random variable and 

( )νY is the chi-squared random variable with ν degrees of freedom. Since 

( ) ∑
=

=
ν

ν
1

2

i

iZY , where νZZZ ,...,, 21 are independent and identical standard normal 

random variables, then obviously ( )1+νY  is stochastically larger than ( )νY , which 
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means for any real value x , ( )( ) ( )( )xYPxYP ≥>≥+ νν 1 . If a function ( )yzf ,  is 

monotone decreasing in its second argument and Z is a random variable independent 

of ( )21,YY  with 1Y stochastically larger than 2Y , then ( )2,YZf  is stochastically larger 

than ( )1,YZf . From this it follows that ( ) 11 ++ ννt is stochastically smaller than 

( ) ννt , from which it follows that. ( ) ( ) νννν αα tt <++ 11 . Therefore, 

( )νν αt is a strictly increasing function of ν . 
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Chapter 5  Two-stage sample size re-estimation for 

bioequivalence crossover studies 

 

5.1 Introduction 

 
As previously discussed in Chapter 3, the goal of a bioequivalence study is to 

establish that two product formulations (T for the test product and R for the reference 

product) are sufficiently similar with respect to the mean bioavailability (log(AUC) or 

log(Cmax)). In this setting, we should reject the null hypothesis in the following 

hypothesis test (5.1) so as to conclude the bioequivalence of the test product and the 

reference product: 

21

210

:

or  :

θµµθ
θµµθµµ

<−<
≥−≤−

RTa

RTRT

H

H
 .                                                (5.1) 

In this chapter as in previous chapters, we assume the basic study involves a 

crossover design in which each patient is exposed to each formulation, though the 

order of which formulation comes first is randomized. The sample size calculation to 

achieve a specific power is described in Equation (4.3) of Chapter 4 for a single 

planned stage. In general planning these studies requires specification of the assumed 

mean difference between the test and the reference products and variances of the test 

and reference products. Misspecification of either mean difference or variances can 

result in an under-powered or over-powered trial. Both the assumed mean difference 

between the test product and the reference product and variances of the test and 

reference products used in sample size calculations often come from previous trials in 
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which some factors could be different from those in the current study. So sample size 

re-estimation can be important in improving the chances for success in a study. Most 

sample size re-estimation procedures for superiority clinical trials [55, 56] and for 

bioequivalence crossover trials [46, 47] are based on the updated variance estimates 

from an internal pilot study (Stage 1) since naturally Stage 1, a subset of the current 

trial’s data, is more similar to the current data than any historical data. Stein's classic 

two-stage design [55] assumed  that the number of subjects in Stage 2 ought to 

depend on the variance estimated from Stage 1 and Stein’s procedure [55] used only 

the Stage 1 variance estimate 2

1S  in the final statistic. This provided a guarantee of 

being able to control the type I error rate while the type II error rate would be no 

higher than a specified level irrespective of the true variance. Wittes et al [56] used 

the Naïve t for the combined data from Stage 1 and Stage 2 in which the number of 

subjects depended on the unblinded variance estimate from Stage 1 and they found 

out that the type I error rate was inflated. Potvin et al. [46] considered a simple naïve 

sample size re-estimation method using the nominal α (e.g., 0.05) at whichever stage 

the test is carried out and using data from both stages (if two stages are carried out) to 

compute the final variance estimate for two-period two-treatment crossover 

bioequivalence trials. Their limited simulations [46] quickly confirmed that the 

overall type I error rate can be much larger than the nominal level α . To investigate 

the type I error of the unmodified t-test after a blinded sample size revision in 

crossover bioequivalence trials, Golkowski et al. [47] defined *

2211  and , , , VZVZ  as 
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+
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.  

Here lin  is the sample size of the ith sequence at the lth stage 2,1, =∀ li , 

21 lll nnn +=•  is the total sample size at the lth stage, lD̂  is the average of the intra-

subject difference between the test and the reference over subjects and crossover 

sequences in Stage l, 2

lS  is a pooled estimate of 22

RT σσ + , ( ) 







−=∑

=
i

n

k

kikii nYYd
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the mean period difference of Sequence i at Stage 1, and ( ) 
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is the mean period difference of Sequence i at Stage 2. Golkowski et al. proposed to 

re-estimate •2n with the following formulas in which 22

RT σσ +  was replaced by the 

blinded variance estimate 2ˆ
OSσ :  

( ) ( )( )
( ) 







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−
+

= •
•−•−
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+
= •

•−•−
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n OSσ
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Here ( ) ( )∑∑
= =•

−
−

=
2

1 1

2

11

1

2
1

12

1
ˆ

i

n

k

ikOS

i

dd
n

σ , 0θ  (the assumed mean difference)  is in practice 

assumed to lie between log(0.9) and log(1.1), 2θ  (the equivalence margin) equals  log(1.25), 

ikd1  is the difference between Period 2 and Period 1 for the kth subject in the ith 
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sequence at Stage 1, and 1d is the mean of the period differences of two sequences at 

Stage 1. Golkowski et al. [47] calculated the t-test statistic from the combined data of 

Stage 1 and Stage 2 by 
( ) ( )

( ) ( ) 













−++

+++

••

••••••

221

*

21

22121211

nnVV

ZnnnZnnn
, a function of four 

components *

2211  and , , , VZVZ  whose distributions were discussed in detail on page 

1003 of [57]. The type I error rate 
DH

act
01α  for which they claimed as the actual type I 

error rate under the null hypothesis D

RT

DH 101 : δµµ ≤−  (see pages 1004 and 1005 of 

[45]) is an approximation, not the exact value due to the following two reasons: 1) 

The distribution of *

2V  given ( 11  ,VZ ) in [57] is approximately Chi-squared; 2) The 

boundaries of the integrations over the rejection region for calculating the maximum 

type I error rate are unclearly specified. Golkowski et al. [47] showed that their 

proposed sample size re-estimation procedure, although blinded, can lead to some 

inflation of the type I error rate. Furthermore, Golkowski et al. [47] proposed to 

adjust the actual type I error rate such that for the particular sample size of the 

internal pilot study 1n , the maximum type I error rate falls below the nominal α. The 

actual type I error rate for bioequivalence in Golkowski et al. [47] is approximate 

(possibly masking a minor type I error level inflation) since the distribution that they 

use for *

2V  is an approximation due to the fact that 
( )

22

2

22 2

RT

Sn

σσ +
−•  and 
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2
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2111
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dd

σσ
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
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


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+
−

RT

dd

σσ
 are no longer independent conditioning on both 1V  and 1D̂  [58].  

Let ( ) 2

11 2 SnX −= • . The new sample size ( )( )Xnn •• + 21  is a random variable 

because it is calculated using 2

1S  (the estimated variance) from Stage 1.Therefore 

( ) ( ) ( ) 










+
+

+
−=

XnnXnn

S
DT

22122111
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11

2
ˆ θ  and 

( ) ( ) ( ) 






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

+
+

+
−=

XnnXnn

S
DT

22122111

222

11

2
ˆ θ  will not follow the standard t-

distribution under the null hypothesis. Here D̂  and S  are respectively the average of 

the intra-subject difference between the test and the reference over subjects and 

crossover sequences and the pooled estimate of the variance of an intra-subject 

difference from the combined data of both Stage 1 and Stage 2. The quantities 

( )Xnn 2111 +  and ( )Xnn 2212 +  are respectively the number of subjects in Sequence 1 

and Sequence 2 of the combined data of Stage 1 and Stage 2. Consequently the type I 

error rate in sample size re-estimation [46] cannot be controlled at the nominal level 

α  if the naïve ( )( )221 −+ •• Xnntα  is used when combining data of two stages. 

In the literature and in practice, the point estimate for the variance obtained at stage 1 

is often used for sample size re-estimation. Following this practice, we propose that 

the number of subjects added to the second stage should be based on the point 

estimate of the variance from the first stage. Inspired by Gould and Shih’s idea of 
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using the pooled variance of Stage 1 and Stage 2 in the final statistics [59], we 

propose to replace S  in 21T  and 22T , by *S which is equal to 
( )( )

( ) 4

2

21

2

22

−+
−+

••

•

Xnn

SXnX
 so 

that the exact critical value for the two-stage study can be derived analytically. Two 

new test statistics for the hypothesis testing based on the combined data of Stage 1 

and Stage 2 are ( ) ( ) ( ) 










+
+

+
−=

XnnXnn

S
DT

22122111

*

1

*

21

11

2
ˆ θ  and 

( ) ( ) ( ) 










+
+

+
−=

XnnXnn

S
DT

22122111

*

2

*

22

11

2
ˆ θ .  

We will compare 22T  and *

22T  in Section 5.7 and provide justification for the use of 

*

22T . 

Let 2

0S  be the initial value for 22

RT σσ +  from the historical data. Throughout this 

chapter, we assume that 2

0S  is a constant, not a random variable. Let *θ  be the true 

mean difference between the test product and the reference product ( RT µµ − ). We 

also let 0θ  be the assumed mean difference between the test product and the reference 

product for power calculation. Since the probability of rejecting 0H  under aH  in 

Equation (5.1) when we assume that 2

0S  is the true variance ( 22

RT σσ + ) and *θ = 0θ  is 

0p  (targeted power), •1n  is calculated for any given allocation ratio of two sequences 

( 1.,. 1211 =nnge ) by solving the following equation:  
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If ( ) 2

01 2 SnX −≤ • , then we stop at the end of the first stage. We use the following 

test statistics ( ) 









+−=

1211

1
1111

11

2
ˆ

nn

S
DT θ  and ( ) 







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
+−=

1211

1
2112
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2
ˆ

nn

S
DT θ  to 

test the hypothesis in Equation (5.1) at Stage 1. Thus the data from the first stage is 

analyzed by comparing 11T  and 12T  to the critical value ( )1ναt  and - ( )1ναt , 

respectively. 

To simplify the notation for 22

RT σσ + , we define 
22

RTV σσ += . 

Let ( )VnnP s ,,, 121121 θ  be the joint probability of rejecting 0H  in Equation (5.1) under 

0H  for one-stage study and ( ) 2

01 2 SnX −≤ • .  ( )VnnP s ,,, 121121 θ  is calculated by (5.3) in 

which 2

* θθ = . The function ( )VnnP s ,,, 1211

*

1 θ  is expressed as  
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 α  is the significance level for Stage 1 analysis, and 212111 −+= nnν . See its 

derivation in Section 5.5.1. 

If ( ) 2

01 2 SnX −> • , then ( )Xnn •• + 21  is calculated to assure that the combined study 

(using Stages 1 and 2) will have the targeted power 0p . From this point forward, 

( )Xn •2  is a function of X.  This assumes that 2

1S  is 2V  and 0θ  is 
*θ  for any given 

allocation ratio of two sequences ( ( )( ) ( )( ) 1.,. 22122111 =++ XnnXnnge ) and we solve 

the following equation for ( )Xn •2 : if ( ) 2

01 2 SnX −> • , then 
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221221111

*

1

11

4
ˆ

ν
σ , and ( ) 221 −+= •• Xnnν .  

The solution of Equation (5.4) for ν  is unique (see Proposition 5 in Section 5.5.3).  

Clearly, ( )Xn •2  is a continuous-valued function implicitly defined in Equation (5.4). 

Actually in practice ( )Xn •2  is rounded up to next even number. This is a naïve and 

approximate way to obtain ( )Xnn •• + 21  since this formula pretends that the first stage 
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sample variance was not observed and that the second stage sample size was fixed in 

advance at ( )Xn •2 . 

To illustrate the idea, we assume that 05.00 =θ , 9.00 =p , ( )25.1log12 =−= θθ , 

05.0=α , 1211 nn = , and ( ) ( )XnXn 2221 =  throughout this chapter. From Equation 

(5.4), it can be seen that •2n  is a function of X . 

Let ( )upVnnP s ,,,,, 0121122 θ  be the joint probability of rejecting 0H  in Equation 

(5.1) under 0H  for two-stage study ( ( ) 02 >• Xn ) and ( ) 2

01 2 SnX −> • . Then 

( )upVnnP s ,,,,, 01211

*

2 θ  is expressed in terms of the function ( )Xnn •• = 22  as 
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See its derivation in Section 5.5.2.  Here u is the critical value.  

( ) ( )( ) ( ) xxcxnnxaa −−+== ••
2

221 4 .                                 (5.6)  

( ) 2

01 2 Snb −= • .                                                                 (5.7) 
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If ( ) 2

01 2 SnX −> • , we proceed collecting the data from additional ( )Xn •2  subjects 

and then analyze the combined data from both Stage 1 and Stage 2 using the test 

statistics: *

21T and *

22T  compared to critical values αu  and - αu  respectively. The exact 

critical value, αu , is derived as the largest value of u for which  the condition: 

( ) ( )[ ] αθθ α ≤+ upVnnPVnnP ss
V

,,,,,,,,max 0121122121121
 holds. Therefore αu  is not a function of V 

or X. This property ensures the experimentwise type I error rate in the sample size re-

estimation procedure.  

In Section 5.2, we will next apply the linear mixed effect model (3.2) defined in 

Chapter 3 to both Stage 1 and Stage 2 and derive the distributions of 1D̂  and 2D̂  given 

X . In Section 5.3, we present the test statistics ( )2221  and TT  based on our two-stage 

sample size re-estimation procedure and discuss the challenge of controlling the type 

I error rate with these statistics. In order to develop the analytical solution of type I 

error rate, we propose two simpler test statistics ( *

21T  and *

22T ). In Section 5.4, we 

describe the overall strategy for assuring that our proposed unblinded sample size re-

estimation procedure has an exact α experimentwise type I error rate. In Section 5.5, 

we derive the exact power function ( )upVnnP s ,,,,, 01211

*

2 θ  of *

21T  and *

22T  for the two-

stage study and the exact power function ( )VnnP s ,,, 1211

*

1 θ  for a one-stage study. In 

Section 5.6, we derive the exact critical value αu  for *

21T  ( and - αu  for *

22T ) for the 

two-stage study by assuring the supremum of experimentwise probability of rejecting 
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0H  under 0H  for the two-stage study over the whole range of true variances is less 

than or equal to α . The critical value ( )1ναt  will be used for the one-stage study. In 

Section 5.7, we will show that our proposed test statistic *

22T  performs much like 22T  

if the difference in the period effect between Period 2 and Period 1 is similar for both 

stages. Specifically, we compare the null and alternative distributions of 22T  and *

22T  

for two-stage study.   

5.2 Linear mixed effect model  

 

Recall that ijkY  is the response of the kth subject in the jth period of the ith sequence 

in the 2-period 2-treatment crossover study, here i=1, 2, j=1, 2 and k=1,.., in1 for Stage 

1 and  k= 11 +in  ,.., ( )Xnn ii 21 +  for Stage 2. Then as in Section 3.2, ijkY  is modeled by 

the linear mixed effect model (3.2).  
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S . 

From the derivations in Section 3.2, 1D̂  is a normally distributed unbiased estimate of 

*θ  with variance 







+=

1211

2
2
ˆ

11

41 nn

V
D

σ , and 
2V

X
 is distributed as 2χ  with the degrees 

of freedom 21211 −+ nn .  
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For Stage 2, ( )
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For Stage 2, given sample sizes ( ) ( )XnXn 2221  and , 2D̂  is a normally distributed 

unbiased estimate of *θ  with variance ( ) ( ) ( ) ( )






+=

XnXn

V
xnxnD

2221

2
2

,ˆ

11

422212

σ , and 

conditional distribution of 
( ) ( )( )

2

2

22221 2

V

SXnXn •−+
 given X is 2χ  with the degrees 

of freedom ( ) ( ) 22221 −+ XnXn . Hence the distributions of 2D̂  and of 

( ) ( )( )
2

2

22221 2

V

SXnXn −+
 can be respectively obtained by averaging the conditional 

cumulative distribution function over X  with respect to its density.  

5.3 Proposed test statistics 

 

As discussed in the introduction of this chapter, random variables ( )Xn21  and 

( )Xn22  are a function of 2

11SX ν=  from the first stage data, so 21T  and 22T  do not 

follow the standard t-distribution under the null. Consequently, the type I error rate in 

sample size re-estimation [46] cannot be controlled at the nominal level α  if the 

naïve choice ( )( )221 −+ •• Xnntα  is used as the critical value for combined data from 

both Stage 1 and Stage 2. We propose ( ) ( ) ( ) 

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( ) ( ) ( ) 
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S
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22122111
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22

11

2
ˆ θ  for hypothesis test (5.1) using the 

combined data of Stage 1 and Stage 2. Here 
( )( )

( ) 4

2

21

2

22*

−+
−+=

••

•

Xnn

SXnX
S  and *

21T  and 

*

22T  can be decomposed as functions of three components:  ,1Z   ,2Z X , and 2

22Sν  . 

We have 
22

1
ˆ

RT

i
ii

D
nZ

σσ
θ

+
−= • , i=1,2;  1Z is a standard normal variable; 

 2Z conditioned on X is a standard normal variable, ~2VX ( )1

2 νχ , and 

22

22 VSν conditioned on X ~ ( )2

2 νχ .  

5.4 Unblinded sample size re-estimation procedure with exact power functions 

 
In general, most bioequivalence trials are unblinded. So we proposed an unblinded 

sample size re-estimation procedure described in Section 5.1 in which we compared 

*

21T  with the exact critical value αu  and *

22T  with - αu  for the two-stage study. The 

exact critical value, αu , is derived as the largest value of u for which  the condition: 

( ) ( )[ ] αθθ α ≤+ upVnnPVnnP ss
V

,,,,,,,,max 0121122121121
 holds.  

To assure the experimentwise type I error rate ( ( )VnnP s ,,, 121121 θ  + 

( )upVnnP s ,,,,, 0121122 θ ) at exact α value, we calculate  ( )VnnP s ,,, 121121 θ  and 

( )upVnnP s ,,,,, 0121122 θ  from the exact power function using the numerical method 

which will be described in Section 5.6.2. We also quantify all levels of errors for the 

numerical calculation of ( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 0121122 θ  in the bounded 
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interval { }eb VVVV ≤≤:  in Section 5.6.3 and make sure the sum of all levels of error 

is no larger than 410−  

5.5 Exact power function for the proposed test statistics 

 

In this section, we first derive ( )VnnP s ,,, 1211

*

1 θ  and ( )upVnnP s ,,,,, 01211

*

2 θ . Then 

we prove several properties of the two power functions.  

5.5.1 One-stage power function ( )VnnP s ,,, 1211

*

1 θ  

 

Recall the previously defined test statistics ( ) 
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Also recall previously defined random variable ( ) 2

11 2 SnX −= • . 

Since ( )VnnP s ,,, 1211
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1 θ  is the joint probability of rejecting 0H  given ( )21
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01 2 SnX −≤ • , then we derive its exact function as: 
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Using the fact that  
2V

X
~ ( )1

2 νχ  and ( )2
ˆ

*

1
1

,~ˆ
D

ND σθ , this last expression is the 

expectation over X of a conditional probability given X, which is expressed simply in 

terms of the cumulative normal distribution function as:  
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where ( )1ναt  is the 1-α quantile of the t-distribution with 212111 −+= nnν degrees 

of freedom, )(⋅Φ  is the standard normal cumulative distribution function (cdf), ( )⋅I  is 

the indicator function, and recall that 







+=

1211

2
2
ˆ

11

41 nn

V
D

σ . Using the fact that 
2V

X
 

~ ( )1

2 νχ , we write the above expectation over X  explicitly as: 
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.  (5.3) 

Here 












+−=

−


























1
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2
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011
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nnt
Sc

ν
νθθν

α
 and 212111 −+= nnν . 

5.5.2 Two-stage power function ( )upVnnP s ,,,,, 01211

*

2 θ   

 

We use the test statistics ( ) ( ) ( ) 










+
+

+
−=

XnnXnn
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ˆ θ  and 
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

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+

+
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S
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22122111

*
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*
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11

2
ˆ θ  for hypothesis test in Equation (5.1) 
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after combining data from both Stage 1 and Stage 2.  Note 
( )( )

( ) 4

2

21

2

22*

−+
−+=

••

•

Xnn

SXnX
S , 

where ( ) 2

11 2 SnX −= • . 

Since ( )Xn •2  is a random variable, a function of X  in Equation (5.4), then 

( ) ( )
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*
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ˆ θ=



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
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Since ( )upVnnP s ,,,,, 01211

*

2 θ  is the joint probability of rejecting 0H  given 

( )21

* ,θθθ ∈  and 2

01SX ν> , then we derive its exact function as: 
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Since 
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S
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S
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+
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To simply the above equation, let 

( ) ( ) ( ) 

















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22122111
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It is easily seen that 
( )( ) ( )

( ) 2

4

2

2

2212

2 −
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•

••

Xn

XXcXnn
S . If we define ( ) 2

22 2 SnY −= • , 

then 
421

*

−+
+=

•• nn

YX
S . 2

2S is the variance of 2D̂  given X . Since 
2V

X
 is distributed 

as ( )1

2 νχ  with degrees of freedom 212111 −+= nnν  and  conditional distribution of 

2V

Y
 given X, is ( )2

2 νχ  with degrees of freedom 222212 −+= nnν , we can shorten 

the power expression for the true mean difference of the test product and the 

reference product ( *θ ) as the following  
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.(5.5) 

Since ( )( ) ( ) XXcXnnY −−+≤ ••
2

221 4 , it is obvious that ( )( ) ( ) xxcxnn −−+ ••
2

221 4  is 

the upper integration limit for the inner integral with respect to y. For ease of use, we 

let ( ) ( )( ) ( ) xxcxnnxaa −−+== ••
2

221 4 . Since ( ) 2

01 2 SnX −≥ •  on the event whose 

probability is calculated in the integral, the lower limit of the integration in x is 

( ) 2

01 2 Sn −• . 
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Here u is the critical value, ( )xc3 = ( ) ( ) ( ) 4

111

2

1

2122122111 −+

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














++








+

+
= ••

•• xnxn
xn

nn
n

xnn
xc

2221

2

2

1211

2

12

21

4

1111

4

1
.   

If ( ) ( ) ( ) 222221 xnxnxn •== , then ( )xc3 = ( )( ) ( )( )4

1

2121 −++ •••• xnnxnn
 and 

( ) ( )xnn
xc

•• +
=

21

4

1
.   

5.5.3 Properties of exact power functions 

The exact power functions ( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 01211

*

2 θ  are calculated 

by Equation (5.3) and Equation (5.5), respectively. )(xa , b, )(2 xc , )(3 xc , and )(4 xc are 

calculated by Equation (5.6), Equation (5.7), Equation (5.8), Equation (5.9), and Equation 

(5.10), respectively. Clearly, all of them except b depend on x, not V, while b does not depend 

on either x or V. 

Before we develop the numerical method of obtaining the critical value, we will prove 

several properties of ( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 01211

*

2 θ . 

Lemma 1: Let ( )
( )

dxbxgbH

bf

c

∫= ,)( . If both ( )bf  and ( )bxg , are non-increasing 

continuous functions of b , then )(bH is a monotonically non-increasing continuous function 

of b for a nonnegative ( )bxg , and ( ) cbf ≥  ( c is a constant).  

Proof: Since ( )
( )

dxbxgbH

bf

c

∫= ,)( , then )(bH  is a definite integral where both the limits 

of integration and the integrand are functions of b. Leibniz rule [60] allows us to take the first 
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derivative for both sides, which results in ( )( ) ( ) ( )( )
dx

b

bxg
bfbbfgbH

bf

c

∫ ∂
∂+′=′ ,

,)( . 

0)( ≤′ bH  since ( ) 0≤′ bf , 
( )

0
, ≤

∂
∂

b

bxg
, ( ) 0, ≥bxg , and ( ) cbf ≥ . 

Proposition 1: ( ) ( )upVnnPupVnnP ss ,,,,,,,,,, 01211

*

20121122 θθ ≥  for any 2

* θθ ≥  or 

1

* θθ ≤ .  

Proof: First let us recall Equation (5.5) as follows:      
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θθθθ

θ

.   

Φ  is monotonically increasing with derivative increasing on the negative axis, and  

the difference of two normal distribution function values given in the integrand of 

Equation (5.5) has the form ( ) ( )21 KzKz −Φ−−Φ  for ( )( )Vxcz 4

*θ−= ,  where 

Vc

yxuc
K

4

32
1

+−
−=

θ
 , 

Vc

yxuc
K

4

31
2

++
−=

θ
, and 12 KK >  does not involve *θ . 

Since the derivative of ( )kz −Φ  with respect to z  is positive and increasing for 

0<− kz , it follows immediately from the mean value theorem and chain rule that  

( ) ( )[ ] 021*
<−Φ−−Φ

∂
∂

KzKz
θ

. 

By Lemma 1, the decreasing property of the integrand with respect to *θ  gives the 

integral the same property. 
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Similarly, since 
Vc

yxuc

4

3

*

2 +−−θθ
≥

Vc

yxuc

4

3

*

1 ++−θθ
0≥  for 1

* θθ ≤ ,  then the 

derivative of ( )kz −Φ  with respect to z  is decreasing for 0>− kz , it follows 

immediately from the mean value theorem and chain rule [60] that  

( ) ( )[ ] 021*
>−Φ−−Φ

∂
∂

KzKz
θ

. 

By Lemma 1, the increasing property of the integrand with respect to *θ  gives the 

integral the same property. Therefore, we have proved that                                                                                           

( ) ( )upVnnPupVnnP ss ,,,,,,,,,, 01211

*

20121112 θθ ≥  for any 2

* θθ ≥  or 1

* θθ ≤ .  

Proposition 2: ( )VnnP s ,,, 121121 θ  is a decreasing function of V . 

Proof: Substituting 2

* θθ =  in Equation (5.3) and by change of variable, we have 

( )VnnP s ,,, 121121 θ  as,    
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(5.11)  
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 and 212111 −+= nnν . 

Since 1c is a constant, free of V, then it is easily seen that 2

1 Vc  is a decreasing 

function of V. Since ( ) 0)(
/1/12/ 1

1

1211

21 ≤+
+

−
ν

νθθ
α

x
t

nnV
, then the integrand is 

obviously decreasing in V. 
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Since both the upper integration and integrand bounded between 0 and 1 in the 

right side of Equation (5.11) are a monotonically decreasing function of V and 01 >c , 

which satisfy all conditions in Lemma 1, then ( )VnnP s ,,, 121121 θ
 
is a monotonically 

decreasing function of V. 

Proposition 3: ( )VnnP ,,, 2121 θ  is a decreasing function of V. 

Proof: As we discussed in Chapter 4, ( )VnnP ,,, 21

*

1 θ  is the probability of rejecting 

the null for the two one-sided tests procedure for the crossover bioequivalence study. 

Plugging 2

* θθ = and 22

RTV σσ += into Equation (4.3) , we have 
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In Proposition 2, we proved that  
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21  

is a monotonically decreasing function of V.  

Obviously 0c is a monotonically decreasing function of V.  
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Both the integrand, which is bounded between 0 and 1, and the upper integration 

limit are decreasing continuous functions of V and 00 >c , so from Lemma 1, we know 

that ( )VnnP ,,, 2121 θ  is a non-increasing function of V. 

Proposition 4: For fixed upnn  and,,,, 012112θ , there exists a maximum of 

( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  on { }0≥V . 

Proof: Recall ( )xn •2 is a real valued quantity defined by Equation (5.4) rather than 

an integer, and so it is a continuous function of x.  Substituting 2

* θθ =  in Equation 

(5.5), we have  
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.               (5.13) 

Since ( ) ( )( ) ( ) xxcxnnxaa −−+== ••
2

221 4 and ( ) 2

01 2 Snb −= • , both are free of V. 

From the above equation, ( )upVnnP s ,,,,, 0121122 θ is always a nonnegative continuous 

function of V for any V≥0. Similarly, from Equation (5.11), ( )VnnP s ,,, 121121 θ  is always 

a nonnegative continuous function of V for any V≥0. 

( ) 0,,,,, 0121122 →upVnnP s θ  as 0→V since both ( )⋅Φ  values in the integrand of 

right side in Equation (5.13) go to 0. ( ) αθ →VnnP s ,,, 121121
 as 0→V  since 
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( ) 

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νθθ
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nnV
 in the integrand of right side in Equation (5.11) 

goes to 0. Therefore, ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ α→  as 0→V . 

( ) 0,,,,, 0121122 →upVnnP s θ  as ∞→V  since both ( )⋅Φ  values in the integrand of 

right side in Equation (5.13) go to 1/2. ( ) 0,,, 121121 →VnnP s θ  as ∞→V  since 

( ) 

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

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nnV
 in the integrand of right side 

in Equation (5.11). Therefore, ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ 0→  as 

∞→V .  

 We can find 0>δ  such that 
[ ] [ ]

( ) ( ) ( ) ( )ulPlPuVPVPSup ssss
V

,, 2121
,11,0

+<+
∞∪∈ δδ

, 

[ ]δδ 1,∈l and then the maximum of the continuous function ( ) ( )uVPVP ss ,21 +  exists 

on [ ]δδ 1, . 

Let N be the upper bound for the sample size of n . In Proposition 5, we will bound 

the any solution of n of Equation (5.4) is less than or equal to N. 

Proposition 5: If N is greater than or equal to 

( )( ) ( ) ( )( )( )






 +Φ+ −
0

1122

1 001.15.03,3,33max pt
S

tS ν
θ

νθ αα , then any solution of n of 

Equation (5.4) is less than or equal to N. We rewrite Equation (5.4) as follows,     
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dxex
x

t
nS

x
t

nS
p x

c

2/12/

2/

0 1

01

1

02
0

)2/(2

1
)(

/1
)(

/1

0

−−

Γ























+

−
Φ−









−

−
Φ= ∫

ν
ναα νν

νθθ
ν

νθθ , where 

00 =θ , 999.00 <p , 
2

1

2

2

1
0

4

)(
2

Sνt

νnθθ
c

α







−= , ( )Xnnn •• += 21  and 2−= nν . 

Proof: Let ( )νX  denote a random variable as 2

νχ , then the right-hand side 

expression of the formula we will equate to 0p  is  

( ) ( )




































+Φ−









−Φ

+

ν
ννθ

ν
ννθ

αα
X

t
nS

X
t

nS
E )(

/1
)(

/1 1

1

1

2       (5.14) 

The proof goes in three steps: 

(1) For 31≥ν , ( )( ) 3103 −<≥ ννXP  which follows from the Markov-

Cheybchev inequality and the moment generating function of chi-square, 

since ( )( ) ( )( )( )( ) ( )( )( ) ( )ννννν 3.0exp7log5.07/9exp37/3exp3 −<−−=−<≥ XEXP . 

Taking 31≥ν  gives the right-hand side< 410− . 

(2) When 33≥ν , so that 31≥ν , also ( ) ( )31αα ν tt ≤ , and the integrand in 

curly brackets in (5.14) is positive for all ν3≤X  as long as 

( ) 1/3 Snt θνα <  

which holds as long as ( )( )22

13 νθ αtSn ≥ .  

(3) Finally, by removing an event of probability at most 410−  from the 

expectation on the right of (5.14), we have the curly-bracketed term strictly 
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positive with 3/ ≤νX  on the complement, which means that (5.14) is 

( ) ( )







+−Φ−








−Φ+−≥ − νθνθ

αα t
S

nt
S

n 3310
1

2

1

24 , which is  0p>  as 

long as n satisfies the bound in (1),(2) above along with 

( ) 0

4

1

2 10132 pt
S

n >−−







−Φ −νθ

α . Proof is over. 

Let bV  be the lower bound of the search range for V. bV  is obtained from the 

following inequality: ( )1

5222

01 ,101/ νχν −−≥ qVS b , where ( )1

52 ,101 νχ −−q  is the 

quantile of ( )1

2

101 5 νχ −− . Let eV  be the upper bound of the search range for V. In 

Proposition 6, eV  is chosen so large that the RHS of the following inequality < 

4510.0 − . ( ) ( )
[ ]

( )( ) ( )( )22

12

2

,
2 4/4inf0)(,

1

VPXaPuVP
N

s θθννχννν
−+<≤≥≤

∈
. 

In Proposition 6, the lower bound bV  and upper bound eV  for the search range of V 

can be determined by satisfying the above conditions.  

Proposition 6: We find that ( )VnnP s ,,, 121121 θ  + ( ) αθ <upVnnP s ,,,,, 0121122  

whenever bVV <  or eVV > .   

Proof: Let ( ) 2

111 SX νν = . 

Step (1) is to recall 
sP1
 is decreasing in V and by the Intersection-Union Test size 

inequality of Berger and Casella [50] (see Theorem 8.3.24 on Page 396 in Section 

8.3.3), ( ) αθ <> 0,,, 1211

*

1 VnnP s
. 

Step (2) is to note that uniformly in u, 
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( ) ( ) ( )( )22

01

2

1012 //, VSVXPSSPuVP s νν ≥=≥≤  

( )uVP s ,2  goes to 0 when 0→V . Therefore, with ( )1

5222

01 ,101/ νχν −−≥ qVS b , we 

find that ( )VnnP s ,,, 121121 θ + ( ) αθ <upVnnP s ,,,,, 0121122  whenever bVV < .  

Step (3) is to note that for large V, ( ) ( ) 0011 →<≤ SSPVP s
 (and express this 

probability in terms of 2

1νχ  quantiles as ( )1

22

01

2 ,/ ννχ VSp ), where ( )1

22

01

2 ,/ ννχ VSp  

is the probability of 22

01

2 /  toequalor an smaller th 
1

VSνχν . 

Step (4) is to note that for fixed u and ∞→V , 

( ) ( )( ) ( )( )222

12 /4/4 VXVXa νθθνν −−+=  and ( ) ( )0)(,2 ≥≤ XaPuVP s
. This goes to 0 

because ν does not depend on V and according to Prop.5 is bounded above by N, 

while ( ) 2/VX ν  is 2

νχ  distributed. In particular, 

( ) ( )
[ ]

( )( ) ( )( )22

12

2

,
2 4/4inf0)(,

1

VPXaPuVP
N

s θθννχννν
−+<≤≥≤

∈
 

and eV  is chosen so large that the RHS < 4510.0 − . Therefore 

( )VnnP s ,,, 121121 θ + ( ) αθ <upVnnP s ,,,,, 0121122  whenever eVV > . 

Remark 1: In Proposition 6, we established the search range { }eb VVVV ≤≤:  for 

V. Here we determine the search range for positive u for *

21T . The positive lower 

bound for u  is αZ  since our calculation indicates that 

( )VnnP s ,,, 121121 θ + ( ) αθ >upVnnP s ,,,,, 0121122  for some V when αZu = . 

We differentiate Equation (5.13), then 
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( )

( )
( )

( )
( )

( )
( )

( ) dydxexy
V

Vxc

yxxc

Vxc

yxxuc

Vxc

yxxuc

upVnnP
u

V

yx

b

a

s

2
12

2121

212/12/

21

2/

0 4

3

4

321

4

3

0121122

)2/()2/(2

1

,,,,,
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−−−

++

∞

⋅ΓΓ

+






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
















 ++−
+












 +−
−=

∂
∂

∫ ∫

νν
νννν νν

θθ
φφ

θ

                    (5.15). 

It is easy to see that the first partial derivative of ( )upVnnP s ,,,,, 0121122 θ  with 

respect to u is positive since ( ) 03 >xc  and ( ) 04 >xc . Therefore, 

( )upVnnP s ,,,,, 0121122 θ  is a decreasing function of positive u  for a given positive V. 

When ∞→u , ( ) 1,,,,, 0121122 −→upVnnP s θ  uniformly for all positive V. Hence 

0u∃  such that ( )VnnP s ,,, 121121 θ + ( ) αθ <00121122 ,,,,, upVnnP s for all positive V .   

Let [ ] [ ]0 , , uZVV eb α×=Β . Β is a compact set. By intermediate value theorem [60], 

the exact critical value, αu , is derived as the largest value of u for which  the 

condition: ( ) ( )[ ] αθθ α ≤+ upVnnPVnnP ss
V

,,,,,,,,max 0121122121121  holds.  

5.6 Numerical analysis 

 
The type I error rate for our proposed sample re-estimation procedure is 

( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ  since the maximum of the probability of 

rejecting 0H  under 0H in the hypothesis (5.1) occurs at the boundary 2θ  or 1θ  (see 

Proposition 1). 

Section 5.6.1 summarizes the overall method for obtaining the largest u such that 

( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  is exact α. We denote this u as αu . Section 5.6.2 

summarizes the numerical method for approximating the integrals in the calculation 
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of ( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 0121122 θ . Section 5.6.3 summarizes all numerical 

errors including the numerical approximation error bounds for the integrals at a fixed 

V and the upper bound for the difference between two adjacent grid points such as 

[ ]1, +kk VV , k=1,.2, …. Section 5.6.4 presents an example for comparing the numerical 

value for ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  for u at two values. 

5.6.1 Numerical method for obtaining critical values 

 
The first part of this section provides the conceptual reasoning to prove there exists 

a global maximum of ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  in the range 

{ }eb VVVV ≤≤:  for V.  

The second part of this section provides the computational method for obtaining 

αu  as the largest u such that ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  takes a value as 

large as α  for some V within the interval { }eb VVVV ≤≤: . 

Due to the complexity of the analytical expression for the second derivative with 

respect to V of ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ , it is impossible to derive its 

maximum in the bounded range { }eb VVVV ≤≤: . However, the existence of this 

maximum in a bounded interval of V can be reasonably assumed since ( )01 SSP >  

approaches 1 for any unusually large V. As ( ) 101 →> SSP , the influence of the Stage 

1 data is not significantly important and the two-stage study can be approximately 

treated as the fixed sample study. Therefore, ( )upVnnP s ,,,,, 0121122 θ  is a decreasing 

function of V for unusually large V since ( )VnnP ,,, 2121 θ  is a decreasing function of V 
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for any V>0 (see Proposition 3). We also know that ( )VnnP s ,,, 121121 θ  is a 

monotonically decreasing function of V for any V>0 (see Proposition 2). Hence 

( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  is a decreasing function of V for large 

positive V.  From Proposition 4, we know that there exists a maximum for 

( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  for any V>0. By carefully choosing the search 

range [ ]eb VV ,  for V and αZu ≥  for u (see Proposition 6 and Remark 1), respectively, 

we can assure that there exists a maximum in the bounded interval [ ]eb VV ,  and this 

maximum is the global maximum for any V>0 based on the calculation.   

The algorithm to obtain αu  is described in the following steps. We calculate the 

21n  and 22n  from Equation (5.4), which is bounded by N (see Proposition 5) and 

obtain the maximum of ( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ  for a fixed u  in the 

bounded interval [ ]eb VV , . We use αZ  as the initial value for u. If the maximum of 

( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ  is greater than α , we increase u by 0.001. We 

continue this iteration until the difference between α  and the maximum of 

( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 01211

*

2 θ  is less than or equal to 410− .  The last u is 

αu . 

For a fixed u, we use a grid search to obtain the maximum of ( )VnnP s ,,, 121121 θ  + 

( )upVnnP s ,,,,, 0121122 θ  among the grid points in the bounded interval [ ]eb VV , . The 

numerical value for ( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 0121122 θ  at a given V can be 

obtained by the numerical approximation methods described in Section 5.6.2.  
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The critical value for the two-stage study, αu , is determined as the largest u such 

that ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  takes a value as large as α  for some V 

within the interval { }eb VVVV ≤≤: . Error bounds for numerical approximation of 

( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 0121122 θ  can be obtained in Section 5.6.3.1. The 

maximum difference between two adjacent grid points can be quantified in Section 

5.6.3.2. 

5.6.2 Numerical calculation of ( )VnnP s ,,, 1211

*

1 θ  and ( )upVnnP s ,,,,, 01211

*

2 θ  

 

For a fixed critical value u, we use a grid search in the bounded interval [ ]eb VV ,  to 

obtain the maximum of ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ . We divide the interval 

[ ]eb VV ,  into many subintervals of length 310−  or 410− . The typical interval [ ]eb VV ,  for 

)( 1211 nn = less than 30 is [ ]7.0 ,1.0   

For a given V, ( )VnnP s ,,, 121121 θ  is calculated by a definite integral ( )∫
1

0

*

c

dxxf  (see 

Equation (5.16)). The numerical value of ( )∫
1

0

*

c

dxxf  is calculated by Equation (5.17) 

which is derived from Simpson’s rule. In Simpson’s Rule we approximate the 

function ( )xf *  as a quadratic in each interval and require that the quadratic agree 

with three of the points from each subinterval.  

From Equation (5.19), ( )upVnnP s ,,,,, 0121122 θ  is calculated by an improper integral 

( )∫ ∫
∞

b

a

dxdyyxf
0

, . We approximate the improper integral ( )∫ ∫
∞

b

a

dxdyyxf
0

,  by the definite 



 

125 
 

integral ( )∫ ∫
*

0

,
b

b

a

dxdyyxf such that ( )∫ ∫
∞

b

a

dxdyyxf
0

, - ( )∫ ∫
*

0

,
b

b

a

dxdyyxf 7105 −⋅≤ , where 

( )21

2

999999.0

2* −= •nVb χ . Now we need to compute a two dimensional definite integral. 

To ensure a good approximation for the entire integral, we have to approximate the 

inner integral first and then use a second approximation to deal with the outer 

integral. We use Simpson’s rule for estimating ( )∫
a

dyyxf
0

,  by ( )xI1
ˆ  (see Equation 

(5.20)). We approximate ( )∫
*

1
ˆ

b

b

dxxI by Equation (5.24) with the trapezoidal rule. 

 

5.6.3 Numerical approximation errors 

 
This section mainly discusses all levels of numerical errors. The first subsection 

discusses the numerical approximation error bounds for the integral at a fixed V and 

the second subsection numerically quantifies the maximum difference between two 

adjacent grid points using monotone functions in the integrand for any interval 

[ ]1, +kk VV , k=1,.2, … , in the neighborhood of *V  at which the maximum of 

( ) ( )αθθ upVnnPVnnP ss ,,,,,,,, 0

*

121122

*

121121 +  occurs. 

5.6.3.1 Numerical approximation error bounds for the integrals at a fixed V  
 

1. Error bound for the numerical approximation of ( )VnnP s ,,, 1211

*

1 θ  
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The numerical approximation error bound, ( )*1 fR SP

S  [61] (see Equation (5.18)), in 

approximating the definite integral ( )∫
1

0

*

c

dxxf , is an analytical upper bound since it is 

calculated from 
( )

4

*4

0 1
max

x

f
c ∂

∂
≤≤

ξ
ξ , which is the analytical and uniform upper bound 

in x on the bounded interval [ ]1 ,0 c  for the fourth derivative with respect to x of ( )xf *  

(see Appendix 5.2 for more detail).  

2. Error bounds for the numerical approximation of ( )upVnnP s ,,,,, 0121122 θ  

When calculating the numerical value of ( )upVnnP s ,,,,, 0121122 θ , the first numerical 

error is the difference between the definite integral and an improper integral. This 

difference is 7105 −⋅ . The numerical approximation error bound, ( )fxR inner

S ,  (see 

Equation (5.21)), in approximating the definite integral ( )∫
a

dyyxf
0

, , is an analytical 

upper bound since it is calculated from 
( )

4

4

0

,
max

y

xf
a ∂

∂
≤≤

ξ
ξ , which is the analytical 

and uniform upper bound in y on the bounded interval [ ]a ,0  for the fourth derivative 

with respect to y of ( )yxf , (see Appendix 5.3 for more detail).  

The numerical value for the definite integral of ( )fxR inner

S ,  is approximate since 

( )∫
*

,
b

b

inner

S dxfxR  is approximated by 3Î  (see Equation (5.22)) using the trapezoidal 

rule. The numerical approximation error bound, ( )( )ζ3ÎR  (see Equation (5.23)), in 
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approximating the definite integral ( )∫
*

,
b

b

inner

S dxfxR , is approximate since we bound 

( )( )( )fxRdxd inner

S ,22  by the upper bound of second finite differences of the integrand 

values ( )fxR inner

S ,  at the grid points ( 410 ) for the trapezoidal rule.  This is necessary 

because we can’t analytically bound ( )( )( )fxRdxd inner

S ,22  on the bounded interval 

[ ]*bb  , . 

The numerical approximation error bound, ( )( )ς1ÎRouter

S  (see Equation (5.25)), for 

approximating the definite integral ( )∫
*

1
ˆ

b

b

dxxI , is approximate since we bound 

( )( )xIdxd 1

22 ˆ  by the upper bound of second finite differences of the integrand values 

1Î  at up to 410 breakpoints for the trapezoidal rule.  As above, we cannot analytically 

bound ( )( )xIdxd 1

22 ˆ  on the bounded interval [ ]*bb  , .  

5.6.3.2 Maximum difference between two adjacent grid points  
 

Although one can refine the grid, one cannot arrive at any mathematically provable 

bound on the trapezoid-rule errors.  We quantify the bound on ( )VnnP s ,,, 121121 θ  

+ ( )upVnnP s ,,,,, 0121122 θ  between grid-points in V so that we can check the smoothness 

and continuity with respect to V of ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ . 
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From Equation (5.9), the upper bound for ( )VnnPs ,,, 121121 θ  in the bounded interval 

[ ]1, +kk VV  can be calculated by 1bP .  

1bP =
∫ +−−

+ Γ



















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





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





•+
+

−Φ−








•−Φ

1
2

11

11

0

2/12/

1

2/

1

1

1211

21

11

1

)2/(2

1)(

11

2

)(
c

Vx

kkkk

dxex
V

x

V

t

nn

V

x

V

t
kν

νν
αα

νν
νθθ

ν
ν .  

By choosing a large number of grid points, the upper bound between 1bP  and 

( )ks VnnP 121121 ,,θ  for any interval [ ]1, +kk VV , k=1,.2, … , in the neighborhood of *V  at 

which the maximum of ( ) ( )αθθ upVnnPVnnP ss ,,,,,,,, 0

*

121122

*

121121 +  occurs is 510−   

From Equation (5.19), we approximate the upper bound for ( )αθ upVnnP s ,,,,, 0121122
 

in the bounded interval [ ]1, +kk VV  by 2BP . 

( )
( ) ( )

dydxexy
VVc

yxcu

Vc

yxcu
BP kVyx

kb

a

Kk

2
112

21
21

212/12/

21

2/
0 14

3

*

1

4

3

*

2
2

)2/()2/(2

1
+

+
+−−−

+

∞

+ ⋅ΓΓ























⋅
+⋅⋅+−

Φ−










⋅
+⋅⋅−−

Φ= ∫ ∫
νν

νν νν
νν

θθθθ . 

By choosing a large number of grid points, the maximum difference between 1bP  

+ 2BP and ( )ks VnnP 121121 ,,θ  + ( )αθ upVnnP ks ,,,,, 0121122
 for any interval [ ]1, +kk VV , k=1,.2, … , 

in the neighborhood of *V  at which the maximum of ( )*

121121 ,,, VnnP s θ  + 

( )αθ upVnnP s ,,,,, 0

*

121122  occurs is 410−   

5.6.3.3 A numerical example   
 

We present an example for illustrating the levels of all error bounds. Using 

Simpson’s rule with 5,000 intermediate points, for the parameter values 

( ) ( )275.0,10,10),25.1log(,,, 12112 =Vnnθ , ( )*1 fR SP

S  is equal to 161022.2 −⋅ . For the 
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parameter values ( ) ( )782.1,275.0,10,10),25.1log(,,,, 12112 =uVnnθ , the difference between 

the definite integral and an improper integral for ( )upVnnP s ,,,,, 0121122 θ  is 7105 −⋅ . 

( )( )ς1ÎRouter

S  and ( )( )ζ3ÎR  from the trapezoidal method with 5,000 intermediate points 

are, respectively, 41087.1 −⋅  and 91060.1 −⋅ . 3Î  is 71020.1 −⋅ . Let SP

SR 2 be the total error 

for ( )upVnnP s ,,,,, 0121122 θ . SP

SR 2 = 7105 −⋅ + 41087.1 −⋅ + 91060.1 −⋅ + 71020.1 −⋅ = 41087.1 −⋅ .  

Hence the total integration error of ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 01211

*

2 θ  for 

V=0.275 is 161022.2 −⋅ + 41087.1 −⋅ = 41087.1 −⋅ . 1bP  + 2BP  in which V is within the 

interval [0.2750, 0.2751] is 0.05010652 while the numerical value of ( )VnnP s ,,, 121121 θ  

+ ( )upVnnP s ,,,,, 0121122 θ  is 0.04974823 for the parameter values 

( ) ( )782.1,275.0,10,10),25.1log(,,,, 12112 =uVnnθ . The upper bound for the difference 

between 1bP  + 2BP  and ( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ  is 4106.3 −⋅ . So the 

upper bound for ( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ  is 0.0503. 

5.6.4 An example for comparing ( )VnnP s ,,, 121121 θ + ( )upVnnP s ,,,,, 0121122 θ  with 

respect to V for two different u values  

 
We present one example to show the behavior of 

( ) ( )upVnnPVnnP ss ,,,,,,,, 0121122121121 θθ + , with respect to V for two different u values 

when 11n = 12n =10 in Figure 5.1. In Figure 5.1, we use ( )1805.0t  as the value of u for 

the dot line and use αu  as the critical value of u for the solid line. It is clearly shown 

that the type I error rate is inflated if ( )1805.0t  is used as the critical value. With 
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u=1.782, the type I error rate does not exceed 0.05. The type I error rate becomes 

larger if ( )ν05.0t  is used for 18>ν  when more subjects are added in the second stage. 

Figure 5.1 Experimentwise type I error rate, ( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ , against V 

for the critical value at 2 levels for 101211 == nn , 9.00 =p , and 05.00 =θ  

 

 
 
 

5.7 Comparison of 22T  and *

22T  

 
Some statistical power for analyzing the combined data of Stage 1 and Stage 2 can 

be lost since the degrees of freedom for 22T are 221 −+ •• nn  and the degrees of 

freedom for *

22T  are 421 −+ •• nn . In order to evaluate how much power may be lost, 

we will evaluate the difference in the null distributions of 22T  and *

22T , and the 

alternative distributions of 22T  and *

22T . 
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Comparing 2S  and ( )2*S , we can easily see that the difference between 22T and 

*

22T is that the contribution from the difference of the averaged period differences for 

each sequence between Stage 1 and Stage 2 is omitted in *

22T . Let dP be the 

difference in period effect between Period 2 and Period 1. It is reasonable to assume 

that dP is the same for both stages since they belong to the same study.  

5.7.1 Comparison of the null distributions between 22T  and *

22T  

 

To evaluate the null distributions of 22T  and *

22T , we use the following simulation 

schemes assuming that )25.1log(* =θ  and 05.0=dP : 

1) Simulate kd11 , k=1,2…,n11, from a normal distribution with ( ) dPdE k += *

11 θ  and 

( ) 2

11 VdV k = , and kd12 , k=1,2…,n12, from a normal distribution with  

( ) dPdE k +−= *

12 θ  and ( ) 2

12 VdV k = . 

2) Compute 2

1S  from Stage 1 data generated in Step 1. 

3) Calculate the new total sample size ( •• + 21 nn ) from the power function (5.4) 

assuming that 9.00 =p , ( ) 05.0 ,25.1log 0

* == θθ  and 2

1S  is used as 2V  if 2

1S > 2

0S . 

If 02 =n , then stop here. Otherwise continue to next step. 

4) Simulate kd21  (the difference in Y between Period 2 and Period 1 for the kth subject 

in Sequence 1 at Stage 2), k=1,2…, 21n , from a normal distribution with 

( ) dPdE k += *

21 θ  , and ( ) 2

21 VdV k = , and kd22  (the difference in Y between Period 2 

and Period 1 for the kth subject in Sequence 2 at Stage 2), l=1,2…, 22n , from a normal 
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distribution with  ( ) dPdE k +−= *

22 θ  and ( ) 2

22 VdV k = . Note that 

( ) 112121 2/ nnnn −+= ••  and ( ) 122122 2/ nnnn −+= •• . 

5) Compute *S , S , 22T , and *

22T . 

6) Repeat Steps 1 to 5 many times, for example 50,000 times.  

The null distributions of T22 and *

22T  under different parameters are compared in 

Tables 5.1 and 5.2. From these two tables, we can see that the quantiles of the null 

distributions of T22 and *

22T  match at the first decimal except for extreme quantiles 

and those quantiles become larger with smaller •1n  under the same other parameters. 

Comparing Table 5.1 and Table 5.2, we can see that the quantiles of the null 

distributions of T22 and *

22T  become larger with larger 2V under the same 1n  and other 

parameters. 
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Table 5.1 Comparison of the null distributions under )25.1log(* =θ  and 05.0=dP  between 

22T and 
*

22T  when 2563.00 =S  ( 101211 == nn ) 

 V  

0.25 0.3 0.4 0.45 0.5 

22T  
*

22T  22T  
*

22T  22T  
*

22T  22T  
*

22T  22T  
*

22T  

0.1% -2.810 -2.721 -3.222 -3.180 -3.426 -3.432 -3.435 -3.415 -3.118 -3.117 

0.5% -2.338 -2.238 -2.627 -2.582 -2.797 -2.785 -2.781 -2.781 -2.689 -2.693 

1% -2.107 -2.025 -2.366 -2.322 -2.507 -2.501 -2.471 -2.477 -2.446 -2.445 

2% -1.860 -1.799 -2.060 -2.024 -2.184 -2.174 -2.163 -2.163 -2.141 -2.143 

5% -1.469 -1.434 -1.637 -1.606 -1.717 -1.714 -1.703 -1.699 -1.731 -1.734 

10% -1.147 -1.115 -1.266 -1.239 -1.327 -1.331 -1.332 -1.335 -1.335 -1.337 

50% -0.002 0.000 0.011 0.008 0.000 0.000 0.001 0.001 0.002 0.002 

90% 1.171 1.149 1.290 1.262 1.334 1.331 1.327 1.334 1.329 1.332 

95% 1.493 1.467 1.659 1.627 1.701 1.704 1.718 1.720 1.717 1.714 

98% 1.897 1.854 2.098 2.051 2.118 2.109 2.166 2.169 2.146 2.152 

99% 2.142 2.083 2.374 2.309 2.414 2.408 2.477 2.479 2.443 2.452 

99.5% 2.378 2.323 2.625 2.557 2.721 2.741 2.758 2.765 2.703 2.712 

99.9% 2.753 2.780 3.182 3.140 3.442 3.453 3.349 3.388 3.360 3.382 
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Table 5.2 Comparison of the null distributions under )25.1log(* =θ  and 05.0=dP  between 22T  

and 
*

22T  when 3665.00 =S  ( 201211 == nn ) 

Cumulative 
probability  

V  

0.3 0.4 0.5 0.52 

22T  
*

22T  22T  
*

22T  22T  
*

22T  22T  
*

22T  

0.1% -2.473 -2.394 -3.037 -3.058 -3.286 -3.269 -3.252 -3.235 

0.5% -2.066 -2.040 -2.537 -2.503 -2.722 -2.697 -2.702 -2.697 

1% -1.843 -1.781 -2.301 -2.286 -2.443 -2.428 -2.379 -2.379 

2% -1.649 -1.607 -2.022 -1.989 -2.119 -2.128 -2.146 -2.139 

5% -1.329 -1.294 -1.612 -1.589 -1.685 -1.685 -1.684 -1.682 

10% -1.028 -1.006 -1.252 -1.232 -1.302 -1.301 -1.312 -1.312 

50% -0.010 -0.009 0.003 0.008 -0.005 -0.005 -0.002 -0.002 

90% 1.013 1.006 1.229 1.210 1.317 1.317 1.311 1.313 

95% 1.285 1.272 1.621 1.610 1.697 1.695 1.688 1.686 

98% 1.616 1.580 1.993 1.970 2.111 2.116 2.122 2.133 

99% 1.851 1.777 2.264 2.233 2.408 2.399 2.403 2.410 

99.5% 2.017 1.958 2.495 2.460 2.723 2.731 2.715 2.718 

99.9% 2.424 2.414 2.911 2.878 3.353 3.346 3.261 3.273 

5.7.2 Comparison of the alternative distributions between 22T and *

22T  

 

To evaluate the alternative distributions of 22T and *

22T , we use the same simulation 

schemes in Section 5.7.1 but assume that 05.0* =θ  and 05.0=dP . The results in 

Tables 5.3 and 5.4 indicate that the quantiles of the alternative distributions of T22 and 

*

22T match at the first decimal except for 0.1% or 99.9% quantile and those quantiles 

become larger with smaller •1n  under same other parameters. Comparing Table 5.3 

and Table 5.4, we can see that the quantiles of the alternative distributions of T22 and 

*

22T  become larger with larger 2V  under the same 1n  and other parameters. 
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Table 5.3 Comparison of the alternative distributions under 05.0* =θ  and 05.0=dP  between 22T  

and 
*

22T  when 2563.00 =S  ( 101211 == nn ) 

  V 

0.25 0.3 0.4 0.45 0.5 

22T  
*

22T  22T  
*

22T  22T  
*

22T  22T  
*

22T  22T  
*

22T  

0.1% -6.211 -6.044 -6.408 -6.318 -6.715 -6.685 -6.725 -6.695 -6.627 -6.637 

0.5% -5.629 -5.627 -5.874 -5.790 -5.978 -5.982 -5.933 -5.977 -5.952 -5.936 

1% -5.379 -5.317 -5.610 -5.548 -5.666 -5.690 -5.648 -5.648 -5.650 -5.659 

2% -5.126 -5.065 -5.292 -5.254 -5.340 -5.370 -5.299 -5.306 -5.292 -5.304 

5% -4.736 -4.682 -4.861 -4.842 -4.868 -4.875 -4.828 -4.833 -4.821 -4.834 

10% -4.382 -4.347 -4.471 -4.445 -4.467 -4.478 -4.433 -4.446 -4.401 -4.404 

50% -3.190 -3.189 -3.145 -3.147 -3.056 -3.068 -3.010 -3.018 -2.993 -3.000 

90% -2.012 -2.069 -1.842 -1.866 -1.654 -1.671 -1.605 -1.612 -1.598 -1.598 

95% -1.674 -1.749 -1.474 -1.511 -1.255 -1.279 -1.213 -1.219 -1.189 -1.197 

98% -1.296 -1.355 -1.047 -1.098 -0.774 -0.791 -0.737 -0.747 -0.733 -0.743 

99% -1.071 -1.122 -0.772 -0.815 -0.454 -0.481 -0.415 -0.422 -0.450 -0.455 

99.5% -0.870 -0.923 -0.495 -0.549 -0.175 -0.183 -0.169 -0.172 -0.157 -0.155 

99.9% -0.405 -0.455 -0.018 -0.086 0.424 0.397 0.380 0.377 0.396 0.412 
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Table 5.4 Comparison of the alternative distributions under 05.0* =θ  and 05.0=dP  between 22T  

and 
*

22T  when 3665.00 =S  ( 201211 == nn ) 

Cumulative 
probability  

V 

0.3 0.4 0.5 0.52 

22T  
*

22T  22T  
*

22T  22T  
*

22T  22T  
*

22T  

0.1% -5.648 -5.601 -6.091 -6.001 -6.383 -6.345 -6.283 -6.288 

0.5% -5.236 -5.231 -5.644 -5.586 -5.755 -5.784 -5.707 -5.730 

1% -4.994 -4.990 -5.422 -5.370 -5.545 -5.543 -5.455 -5.468 

2% -4.754 -4.733 -5.150 -5.102 -5.206 -5.208 -5.157 -5.165 

5% -4.406 -4.385 -4.705 -4.671 -4.748 -4.752 -4.736 -4.732 

10% -4.110 -4.090 -4.320 -4.308 -4.360 -4.361 -4.348 -4.345 

50% -3.073 -3.070 -3.042 -3.050 -3.013 -3.013 -2.992 -2.994 

90% -2.055 -2.074 -1.773 -1.790 -1.660 -1.663 -1.646 -1.643 

95% -1.761 -1.781 -1.422 -1.439 -1.275 -1.276 -1.238 -1.238 

98% -1.414 -1.449 -1.015 -1.032 -0.826 -0.830 -0.823 -0.822 

99% -1.203 -1.233 -0.721 -0.745 -0.507 -0.507 -0.537 -0.536 

99.5% -0.981 -1.034 -0.477 -0.493 -0.292 -0.292 -0.272 -0.274 

99.9% -0.546 -0.672 0.051 -0.007 0.186 0.185 0.350 0.351 

5.8 Discussion and conclusions 

 

Our simulations show that the null distributions of 22T  and *

22T  are close to each 

other and the alternative distributions of 22T  and *

22T  are also close to each other. Our 

simulations also show that the powers using ( )2221,TT  and ( )*

22

*

21,TT  are matched at the 

second digit for all cases and the type I error rates using ( )2221,TT  and ( )*

22

*

21,TT  are 

matched at the second digit for most of cases. Hence we do not lose much 

information if the simplified test statistics ( )*

22

*

21,TT  is used instead of ( )2221,TT . 

If 01 SS ≤ , the critical value ( )1ναt  for 11T (or - ( )1ναt  for 12T ) is used for the one-stage 
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study. Otherwise, the exact critical value αu  for *

21T  (or - αu  for *

22T ) is used for two-

stage study. We calculate ( )VnnP s ,,, 121121 θ  and ( )upVnnP s ,,,,, 0121122 θ  for any given 

V and u with the numerical integration methods. The sum of all calculated levels of 

numerical error bounds at grid points and between grid points is about 10-4. We find 

the bounded interval for V. 

To search for αu , we use the following strategy. The initial value for u is αZ . If 

the maximum of ( )VnnP s ,,, 121121 θ  + ( )upVnnP s ,,,,, 0121122 θ  in the bounded interval [ ]eb VV ,  

is greater than α , we increase u by 0.001. We continue this iteration until the 

difference between α  and the maximum of ( )VnnPs ,,, 121121 θ + ( )upVnnP s ,,,,, 01211

*

2 θ  is 

less than or equal to 410− . Due to all levels of errors, we can make α =0.0495. 

 

Appendix 5.1 Details for Numerical integration method 

 

1. Numerical method for calculation of ( )VnnP s ,,, 121121 θ  and its accuracy 

From Equation (5.11), we know ( )VnnP s ,,, 121121 θ  is calculated by one-dimension 

integration. Now we use the Simpson’s rule to obtain the numerical value for 

( )VnnP s ,,, 121121 θ  re-expressed as: 

( )dxxfI

c

∫=
1

0

* .                                                   (5.16) 
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Here

( ) 2
1

11

2/12/

1

2/

1

1

1211
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1
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)2/(2

1)(
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)( Vxex
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nn
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x

V

t
xf −−

Γ


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















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













•+
+

−Φ−








•−Φ= ν

νν
αα

νν
νθθ

ν
ν . 

Let ( )*1 fR SP

S  denote the numerical error for the integration. Î  is the numerical 

estimate for I . 

In the Simpson’s rule, we divide the inner interval [ ]1,0 c  into the even number ( 1n ) 

steps of length 1h  and obtain ( )∫=
1

0

*

c

dxxfI = Î + ( )*1 fR SP

S , where   

( ) ( ) ( ) ( )






 +++= ∑∑
−

=

−

=
+ n

n

m

m

n

m

m xfxfxfxf
h

I *
12/

1

2

*
12/

0

12

*

0

*1 24
3

ˆ ,                  (5.17) 

( ) ( )
4

*4

0

4

1
1*

max
180 1

1

x

f
h

c
fR c

P

S
S

∂
∂= ≤≤

ξ
ξ ,                                                                (5.18) 

Here 00 =x , 1*hixi =  1,...,2,1 ni =∀ . ( )*1 fR SP

S  calculated by (5.18) is an analytical 

upper bound for the remainder [61] since it is calculated from 
( )

4

*4

0 1
max

x

f
c ∂

∂
≤≤

ξ
ξ , 

which is the analytical and uniform upper bound in x on the bounded interval [ ]1 ,0 c  

for the fourth derivative with respect to x of ( )xf * . 
( )

4

*4

0 1
max

x

f
c ∂

∂
≤≤

ξ
ξ  will be derived 

in Appendix 5.2. 
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2. Numerical method for calculation of ( )upVnnP s ,,,,, 0121122 θ  and its accuracy 

In this section, we will discuss the Simpson’s rule to obtain the numerical value for 

( )upVnnP s ,,,,, 0121122 θ  in Equation (5.13) which is reiterated as: 

( ) dydxyxfupVnnP
b

a

s ∫ ∫
∞

=
0

0121122 ),(,,,,,θ .        (5.19) 

Here, 

( ) ( )
2

2121

12

2

21

2/

12/12/

4

321

4

3

)2/()2/(2
, V

yx

e
V

xy

Vc

yxcu

Vc

yxcu
yxf

+−

++
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⋅ΓΓ






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
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








⋅
+⋅⋅+−

Φ−













⋅
+⋅⋅−

Φ= νννν

νν

νν
θθ . 

Since the above integration is an improper integration, then the relative large upper 

integration limit (denoted by *b ) in the above outer integration can be determined 

from the inequality ( )∫
∞

−
−

+

−

≤
⋅Γ*

2

21

1

62

2

1

12/

10
2)2/(b

V

x

dxe
V

x
νν

ν

ν
. After *b is determined, we 

can use the Simpson’s rule for obtaining the numerical value for ( )upVnnP s ,,,,, 0121122 θ  

with the finite integration.  

Since 0
4

3

4

321 ≤
⋅

+⋅⋅−
≤

⋅
+⋅⋅+−

Vc

yxcu

Vc

yxcuθθ
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In addition, ( ) ( ) 1
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0>∀a . Hence   
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Let impR  be the upper bound for difference between the improper integration and 

the finite integration with upper limit *b . Then impR  is less than or equal to 7105 −⋅ .  

We define ( ) ( )∫=
a

dyyxfxI
0

1 ,  and ( )∫=
*

12

b

b

dxxII . Let ( )fxR inner

S ,  denote the 

numerical error for the inner integration. ( )xI1
ˆ  is the numerical estimate for ( )xI1 . 

In the Simpson’s rule, we divide the inner interval [0, a] into the even number (n) 

steps of length h and obtain ( ) ( )∫=
a

dyyxfxI
0

1 , = ( )xI1
ˆ + ( )fxR inner

S , , where   

( ) ( ) ( ) ( ) ( )






 +++= ∑∑
−

=

−

=
+ n

n

m

m

n

m

m yxfyxfyxfyxf
h

xI ,,2,4,
3

ˆ
12/

1

2

12/

0

1201 ,     (5.20) 

( ) ( )
4

4

0
4 ,

max
180

,
y

xf
h

a
fxR a

inner

S ∂
∂= ≤≤

ξ
ξ ,                                                          (5.21) 

Here 00 =y , and hiyi *= ni ,...,2,1=∀ .  
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The numerical approximation error bound, ( )fxR inner

S ,  is an analytical upper bound 

since it is calculated from 
( )

4

4

0

,
max

y

xf
a ∂

∂
≤≤

ξ
ξ , which is the analytical and uniform 

upper bound in y on the bounded interval [ ]a ,0  for the fourth derivative with respect 

to y of ( )yxf , . 
( )

4

4

0

,
max

y

xf
a ∂

∂
≤≤

ξ
ξ  will be derived in Appendix 5.3.  

We approximate ( )∫=
*

,3

b

b

inner

S dxfxRI  by 3Î  using the trapezoidal rule. In the 

trapezoidal rule, we divide the outer interval [ ]*,bb  into the number (n*) steps of 

length *h  and obtain ( )∫=
*

,3

b

b

inner

S dxfxRI = ( )xI3
ˆ + ( )( )ζ3ÎR , where  

( ) ( ) ( )

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*
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( )( )ζ3ÎR
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S
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ζ

ς ,                                             (5.23) 

00 =x , **hixi =  *,...,2,1 ni =∀ , and 
( )

2

2

max *

x

R inner

S
bb ∂

∂
≤≤

ζ
ς is bounded numerical 

second-order derivative. 

Let ( )( )ς1ÎRouter

S  denote the numerical error for the outer integration of 1Î . 2Î  is the 

numerical estimate for 2I . 
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In the trapezoidal rule, we divide the outer interval [ ]*,bb  into the number (n*) 

steps of length *h  and obtain ( )∫=
*

12

b

b

dxxII = ( )∫
*

1
ˆ

b

b

dxxI + ( )∫
*

,
b

b
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S dxfxR , where  
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(5.25) 

00 =x , **hixi =  *,...,2,1 ni =∀ , and
( )
2

1

2 ˆ
max *

x

I
bb ∂

∂
≤≤

ς
ς is bounded numerical 

second-order derivative. 

( )( )ζ3ÎR  and ( )( )ς1ÎRouter
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Appendix 5.2 Derivation of the analytical upper bound for ( )( )ξ*
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Appendix 5.3 Derivation of the analytical upper bound for ( )( )ξ,
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Chapter 6   Sensitivity analyses 

6.1 Introduction 

 
In the evaluation of a bioequivalence study, it is a common practice to assume that 

both log(AUC) and log(Cmax) are normal variables [1]. However the normality 

assumption of the log(Cmax) in a bioequivalence study cannot always be assumed 

due to the skewness based on the limited simulation results in Chapter 2. Our limited 

simulation scenarios in Chapter 2 show that the distribution of the log(AUC) can be 

heavy tailed.  

In this chapter, we compare the type I error rate, sample size, and power of two 

one-sided tests (TOST) we describe in Chapters 4 and 5 if the log(Cmax) (or 

log(AUC)) follows one of three non-normal distributions: heavy tailed t distribution, 

skew-normal distribution, or a mixture of two normal distributions, respectively, with 

the type I error rate, sample size, and power if the log(Cmax) (or log(AUC)) follows a 

normal distribution.  

In Section 6.2, we will briefly discuss three non-normal distributions: the skew-

normal distribution, t-distribution, and a mixture of two normal distributions. These 

three distributions closely mimic the empirical distributions from simulations based 

on the pharmacokinetic compartment models in Chapter 2. However, Chapter 2 only 

looked at a single time period and failed to account for the crossover design used in 

the bioequivalence setting. In Section 6.3, we simulate the response variable from the 

linear mixed effect model in Section 3.2. From the simulations, we look into the 

impact of non-normality of the response variable on the type I error rate, sample size, 
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and power of TOST for the one stage study discussed in Chapter 4. In Section 6.4, we 

simulate the response variable from the linear mixed effect model in Section 5.2. 

Based on the simulations, we also look into the impact of non-normality of the 

response variable on the type I error rate and sample size for a two-stage study 

discussed in Chapter 5. 

6.2 Non-normal distributions 

 
In this section, we focus on three non-normal distributions: the skew-normal 

distribution, t-distribution, and a mixture of two normal distributions. The motivation 

for these three non-normal models is discussed in Chapter 2. Recall that ijkY denotes 

the response (log(AUC) or log(Cmax)) of the kth subject in the jth period of the ith 

sequence in the 2-period 2-treatment crossover study ∀ i=1, 2, j=1, 2 and k=1,.., ni. 

ijkY is modeled as ijkijjikijk FPSY εγ ++++= .  

From Chapter 3 to Chapter 5, we assume that ijkε denotes a random variable 

following a normal distribution with ( ) 0=ijkE ε , and ( ) 2

TijkV σε =  if 2,1,, =∀≠ jiji  

for the test formulation and ( ) 2

RijkV σε =  if 2,1,, =∀= jiji  for the reference 

formulation. We assume σσσ == RT  in two following sections. Let N(0,1) stand for 

the standard normal variable, then ( )1,0Nijk ⋅= σε . 

Now let us discuss three non-normal distributions. The first non-normal 

distribution is the t-distribution with ν  degrees of freedom denoted by ( )νt . The 

second non-normal distribution is the skew-normal distribution with the location 

parameter being 0, the scale parameter being 1, and the shape parameter being ς , 
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which is denoted by ),1,0( ςSN . The expectation of ),1,0( ςSN  is 21//2 ςςπ + and 

the variance of ),1,0( ςSN  is ( )[ ]πςς 22 121 +− . We use the R package [62] for 

simulating skew-normal errors. In the following subsections, we respectively 

compare the type I error rate, power, and sample size if ijkε  follows ( )νσ t⋅  

or ),1,0( ςσ SN⋅  with the type I error rate, power, and sample size if ijkε  follows 

( )1,0N⋅σ .  

The third distribution in our simulation study is a mixture of two normal 

distributions. Assume that U is uniformly distributed in [0, 1], we write the mixture of 

2 normal variables as ( ) ( )2

220

2

110 , )(,)( σµδσµδ NUINUI ≤+⋅≥ . Here 

( )⋅I  is the indicator function, 0δ  is a constant in [0, 1], and ),( 2

iiN σµ  denotes the 

normal variable with mean iµ  and variance 2

iσ . 

We use this mixture model to investigate the impact of bimodality of the response 

distribution, in which a small fraction of the population (a subgroup) responds to a 

test formulation with a mean response 1µ  unequal to the mean response 2µ  of the 

majority of the population, on the type I error rate, power, and sample size. 

The subgroup’s variability 1σ  is also different from the variability of  the majority 

of population, 2σ . 
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6.3 Impact of non-normality of the response variable on the type I error rate and 

power for the single stage study 

 
In this section, we simulate the within-subject difference in the response variable 

between the test and the reference from the linear mixed effect model in Section 3.2 

with non-normal distributed errors. Then we compare the type I error rate and power 

for the one stage study under non-normality than those under normality. 

6.3.1 Simulation scheme 

 

We use the following simulation scheme for evaluating the power under *θ  with 

the assumption of a true constant period effect which was assigned the fixed value of 

0.05 in order to conduct the simulations. In the context of a balanced cross over 

design, the value is arbitrary and will not impact the results of interest. To avoid 

specifying another parameter for random subject effect, we simulate the difference in 

the response variable for each subject in each sequence. Let ikd denote the difference 

in the response variable for Subject k between the period 2 and period 1 in Sequence i. 

So ( ) kiki

i

ik PPd 1212

*1
1 εεθ −+−+−= +

,  k=1,2…, in . 

1) Simulate ijkε from the non-normal distribution, e.g., ( )νσ t⋅ , ∀ i=1, 2, j=1, 2 and 

k=1,.., ni. 

2) Obtain the data 11d , 12d ,…,
11nd and 21d , 22d ,…,

22nd  
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3) Compute
2
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1 1

∑ ∑
= =
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k
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i i

ndd
nn

S ,
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1
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2

ˆ

nn

S

D
T
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−= θ
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2
2

11
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ˆ

nn

S

D
T

+•

−= θ
. 

4) If ( )2211 −+≥ nntT α and ( )2212 −+≤ nntT α then pass=1. Otherwise pass=0. 

5) Repeat Steps 1 to 5 for 100,000 times.  

6) Calculate the percentage of rejecting 0H under 0H  in (3.1). 

6.3.2 Type I error rate and power in a one stage study 

 
In this subsection, we compare the simulated type I error rate and power for non-

normal distributions with those for normal distributions for the one stage study.  

The simulated type I error rate under )25.1log(* =θ and the simulated power 

under 05.0* =θ  in Tables 6.1 and 6.2, respectively if ijkε ~ ( )1,0N⋅σ , ( )νσ t⋅ , 

and ),1,0( ςσ SN⋅ . The simulation standard errors are less than 0.0005 when 106 Monte 

Carlo replications are used in Tables 6.1 to 6.4. Table 6.1 shows that the type I error 

rates under any of above three distributions for various sample size ( n ) are 

comparable to those under normality. From Table 6.2, we can see that the power 

values under ( )5t⋅σ  or ( )10t⋅σ  for various sample size are smaller than those under 

normality. But there is not much difference in power between the skew-normal and 

normal distributions.  
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Table 6.1 Comparison of the simulated type I error rates (%) for various n values under 

)25.1log(* =θ , 05.012 =− PP , and 2.0=σ among ijkε ~ ( )1,0Nσ , ( )νσt , ( ) ( )νννσ t2− , 

and ( )ςσ ,1,0SN . 

     ijkε     

n            

( )1,0N⋅σ  ( )νσ t⋅  ( ) ( )νννσ t⋅− 2  ),1,0( ςσ SN⋅  

ν =5 ν =10 ν =5 1−=ς  5.0−=ς  5.0=ς  

20 4.99 4.87 4.96 4.94 4.97 5.01 5.01 

24 5.01 4.98 5.01 4.98 5.01 4.96 4.98 

28 5.00 4.99 5.00 4.99 4.98 5.02 4.97 

32 5.00 5.00 5.02 4.98 4.97 5.01 4.98 

36 4.93 4.98 4.98 4.99 5.02 5.01 5.01 

40 5.03 4.96 4.99 5.00 4.98 5.00 5.00 

 

Table 6.2 Comparison of the estimated power (%) from simulations for various n values under 

)25.1log(* =θ , 05.012 =− PP , and 2.0=σ  among ijkε ~ ( )1,0Nσ , ( )νσt , 

( ) ( )νννσ t2− , and ( )ςσ ,1,0SN . 

     ijkε              

n              

( )1,0N⋅σ  ( )νσ t⋅  ( )ν
ν

νσ t⋅− 2  ),1,0( ςσ SN⋅  

ν =5 ν =10 ν =5 1−=ς  5.0−=ς  5.0=ς  

20 83.23 60.70 74.20 83.09 93.80 87.63 87.67 

24 89.45 70.40 82.12 89.00 96.94 92.80 92.76 

28 93.34 77.51 87.61 92.84 98.50 95.84 95.83 

32 95.86 82.73 91.41 95.32 99.30 97.59 97.60 

36 97.46 86.78 94.05 96.99 99.67 98.63 98.63 

40 98.46 89.87 95.90 98.03 99.85 99.22 99.23 
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The simulated type I error rate under )25.1log(* =θ and the simulated power 

under 05.0* =θ  are listed in Tables 6.3 and 6.4, respectively if 

ijkε ~ ( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI .  

In Table 6.3, the subpopulation has a mean shift from the majority of the 

population, but the overall mean is log(1.25). Table 6.3 shows that the type I error 

rate is about 5.5%  when the within-subject difference in the response variable for the 

subpopulation is more variable than that for the majority of the population; the type I 

error rate is below 5% when the within-subject difference in the response variable for 

the subpopulation is less variable than for the majority of the population; the type I 

error rate jumps around 5% when the within-subject difference in the response 

variable for the subpopulation has the same variance as the majority of the 

population. Table 6.4 shows that the power is much smaller when one of two 

subpopulations has a larger variance than that under normality. This is because the 

overall variance for the mixture distribution with a more variable major population is 

much larger than the variance of the normal distribution. The power when two 

subpopulations have equal variance is similar to that under normality. 
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Table 6.3 Comparison of the simulated type I error rates (%) for various n values under 

)25.1log(* =θ , 05.012 =− PP , and 2.0=σ  when ijkε  ~ 

( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI .  

n σσσσ == 21 ,2  σσσ == 21
 σσσσ 2, 21 ==  

20 5.44 4.98 3.42 

24 5.51 5.04 4.09 

28 5.50 5.06 4.49 

32 5.47 5.02 4.66 

36 5.47 5.01 4.76 

40 5.45 4.99 4.77 

 

Table 6.4 Comparison of the simulated power (%) for various  n values under )25.1log(* =θ , 

05.012 =− PP , and 2.0=σ  when ijkε  ~ ( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI   

n σσσσ == 21 ,2  σσσ == 21
 σσσσ 2, 21 ==  

20 53.10 82.30 22.30 

24 63.15 88.71 33.17 

28 70.81 92.82 43.37 

32 76.81 95.47 51.91 

36 81.34 97.15 59.16 

40 85.02 98.24 65.37 

6.4 Impact of non-normality of the response variable on the type I error rate and 

expected sample size for the two-stage study described in Chapter 5.  

 
In this section, we simulate the within-subject difference in the response variable 

between the test and the reference from the linear mixed effect model in Section 5.2 

with non-normal distributed errors for a sample size of •1n . From this, we obtain the 

sample variance 2

1S . Using 2

1S as the variance V, we estimate the sample size ( •2n ) 
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for the second stage. Then we simulate within-subject differences in the response 

variable for •2n subjects from the linear mixed effect model in Section 5.2 with non-

normal distributed errors. The critical value ( 05.0u ) is 1.715 when •1n =20. Last we 

compare the type I error rate and expected sample size for the two-stage stage study 

under non-normality to the corresponding type I error rate and expected sample size 

under normality.  

6.4.1 Simulation scheme 

 
Again we simulate the within-subject difference in the response variable between 

Period 2 and Period 1 for each subject in each sequence. Let likd denote the within-

subject difference in the response variable for Subject k between the period 2 and 

period 1 in Sequence i at Stage l. So ( ) kiki

i

ik PPd 1212

*1

1 1 εεθ −+−+−= +
,  k=1,2…, in1 . 

( ) kiki

i

ik PPd 1212

*1

2 1 εεθ −+−+−= +
, k= 11 +in ,…, ii nn 21 + . 

The simulation scheme is described as follows. 

1) Simulate ijkε  from the non-normal distribution, e.g., t(5), ∀ i=1, 2, j=1, 2 and 

k=1,.., in1 . 

2) Obtain the data 111d , 112d ,…,
111nd and 121d , 122d ,…,

212nd  

3) Compute 







−

−+
= ∑∑ ∑

= = =

2

1 1

2

1

1
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1

1 1
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ikik

i i

ndd
nn
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4) Calculate the new total sample size ( 21 nn + ) from the power function (5.2) 

assuming that 9.00 =p , 05.0* =θ  and 2V = 2

1S  if 2

1S > 2

0S . If 02 =n , then stop 

here. Otherwise continue to next step. 

5)  Simulate ijkε  from the non-normal distribution, e.g., t(5), ∀ i=1, 2, j=1, 2 and 

k= 11 +in ,…, ii nn 21 + . Note that ( ) 112121 2/ nnnn −+=  and 

( ) 122122 2/ nnnn −+= . 

6) Obtain the data 1,21 11 +nd , 2,21 11 +nd ,…,
2111,21 nnd + and 1,22 12 +nd , 222 12 +nd ,…,

221222 nnd +  

7) Compute 







−

−+
= ∑ ∑ ∑

=

+

+=

+

+=

2

1 1

2

1

1

22

2221

2

2

21

1

21

1

)(
2

1

i

nn

nk

i

nn

nk

ikik

ii

i

ii

i

ndd
nn

S  

8) Compute ( ) ( ) ( )
4

22

21

2

22

2

112*

−+
−+−=

nn

SnSn
S  

9) Compute
2

ˆ

2

1

1

1

1

1

1

∑ ∑
= =










= i

i

n

k

ik nd

D

i

 and 
2

ˆ

2

1

2

1

2

2

21

1

∑ ∑
=

+

+=











= i

i

nn

nk

ik nd

D

ii

i , and 

( ) ( )212211 /ˆˆˆ nnDnDnD ++= . 

10) Calculate ( ) 
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11) If αuT ≥*

21
and αuT −≥*

22
then pass=1. Otherwise pass=0. 

12) Repeat Steps 1 to 11 many times, for example 50,000 times, to calculate the 

percentage of rejecting the 0H under the 0H  in (5.1) if )25.1log(* =θ  or 

05.0* =θ . 
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Below we investigate the impact of non-normality of the response variable on the 

type I error rate and expected sample size.  

6.4.2 Impact of non-normality of the response variable on the type I error rate and 
sample size for the two-stage study in Chapter 5 

 
1. Type I error rate  

We used 105 simulation replicates in this section, so the simulation standard error 

is 0.0007. From Table 6.5, we can see that the type I error rates using our two stage 

approach when ijkε  follows ( )5t⋅σ  or ( )56.0 tσ  are similar to those under normality. 

It also shows that the type I error rates when ijkε  follows ),1,0( ςσ SN⋅ , and 

( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI  are smaller compared to those under 

normality. The type I error rates for statistical analyses of the two-stage data when 

ijkε  follows the mixture of 2 normal variables are above 0.05 and larger than those 

under normality for 25.0=σ .  Clearly it is clear that our proposed critical values for 

statistical analyses of the two-stage data are robust to non-normal distribution for 

most scenarios if the overall mean is not mis-specified.  
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Table 6.5 Comparison of the estimated type I error rates (%) from simulations for various σ values 

with 05.0u =1.715 for 201211 == nn  if ijkε  follows ( )5t⋅σ , ( )56.0 t⋅σ , ),1,0( ςσ SN⋅ , and 

( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI  

 

σ  ijkε  

( )σ,0N

  

( )5t⋅σ  ( )56.0 tσ  ),1,0( ςσ SN⋅  ( )
( )2

1

,03.0 )7.0(

,07.0)7.0(

σ
σ

−≤+
⋅≥

NUI

NUI  

5.0−=ς  5.0=ς  σσσ 22 21 ==  σσσ == 21
 

0.25 4.99 4.77 4.79 5.03 4.97 5.34 5.09 

0.3 4.92 4.86 4.64 4.49 4.61 5.05 4.99 

0.35 4.70 4.64 4.68 4.66 4.74 4.93 4.74 

0.4 4.54 4.56 4.58 4.71 4.88 4.75 4.44 

0.45 4.65 4.44 4.41 4.78 4.67 4.97 4.56 

 

2.  Sample size 

Table 6.6 shows that the expected sample sizes when ijkε  follows ( )5t⋅σ  , 

( )56.0 tσ , or ),1,0( ςσ SN⋅  are much larger than those under normality assumption.  

The expected sample sizes when ijkε  follows ( )56.0 tσ  are slightly larger than those 

under normality assumption.  It also shows that the expected sample sizes when ijkε  

follows a mixture of 2 normal variables, in which the variability of a subpopulation is 

twice as large as that of the majority of the population, are larger than those under 

normality. The expected sample sizes are similar when ijkε  follows a mixture of 2 

normal variables with equal variance to those under normality. 
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Table 6.6 Comparison of the expected sample sizes from simulations for various σ values with with 

05.0u =1.715 for 201211 == nn  if ijkε follows ( )5t⋅σ , ( )56.0 t⋅σ , ),1,0( ςσ SN⋅ , and 

( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI  

σ  ijkε  

( )σ,0N

  

( )5t⋅σ  ( )56.0 tσ  ),1,0( ςσ SN⋅  ( )
( )2

1

,03.0 )7.0(

,07.0)7.0(

σ
σ

−≤+
⋅≥

NUI

NUI  

5.0−=ς  5.0=ς  σσσ 22 21 ==  σσσ == 21
 

0.25 40 62.2 43.6 40.8 40.8 40.0 40.0 

0.3 40.1 88.4 54.7 48.3 48.3 41.9 40.1 

0.35 42.0 119.1 43.2 63.4 63.3 49.6 42.3 

0.4 49.0 154.8 49.9 82.1 82.1 62.5 49.6 

0.45 60.3 195.8 60.7 103.4 103.6 78.1 60.8 

 

6.5 Discussion and conclusions 

 
For TOST in the one stage design, our sensitivity analyses show that the type I 

error rates are not inflated when errors are distributed as the ( )5t⋅σ  or ( )10t⋅σ , or 

),1,0( ςσ SN⋅ if the true mean difference is log(1.25) but the powers under the ( )5t⋅σ  

or ( )10t⋅σ  for 25.0=σ  are smaller compared to those under normality. However the 

type I error rates under the mixture of two normal variables can be above 5% or 

below 5% or equal to 5% depending on the magnitude of the variance of 

subpopulation relative to that of the majority of the population. The resulting power 

under the mixture of two normal variables is much smaller when the variance of 

subpopulation is not equal to the variance of the majority of the population than those 

when the variance of subpopulation is equal to the variance of the majority of the 

population. 
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For the two-stage study, the type I error rates are robust if when errors are random 

variables distributed as ( )5t⋅σ , ( )56.0 tσ , and ),1,0( ςσ SN⋅  under various σ  values 

shown in Tables 6.5 and 6.6 if the true mean difference is log(1.25). The type I error 

rates for two-stage study are 5.34% for a mixture of two normal variables such as 

( ) ( )21 ,03.0 )7.0(,07.0)7.0( σσ −≤+⋅≥ NUINUI  , σσσ 22 21 == , if the overall mean is 

not mis-specified and 25.0=σ  The expected sample size for all non-normal 

distributions investigated are larger than those under normality.  



 

167 
 

Chapter 7  Final conclusions and recommendation 
This dissertation attacked three problems related to the statistical hypothesis 

testing in bioequivalence studies. First we investigated normality assumption for the 

response variable (log(AUC) or log(Cmax)) from the simulated concentration-time 

profiles for a large number of subjects. Second, we presented the exact power formula 

and the sample size calculation for planning a fixed sample size bioequivalence study. 

Third, we developed simpler test statistics and obtained the exact critical values, 

which these simpler test statistics are compared to, for the two-stage study in the new 

unblinded sample size re-estimation procedure.  

7.1 Summary and conclusions  

 
In Chapter 2, we simulated the concentration-time profiles from the two-stage one 

(or two) compartment models and multiplicative measurement errors. Comparing the 

histogram of the standardized response variable (log(AUC) or log(Cmax)) for a large 

sample with the standard normal density curve under many different parameter 

combinations revealed that the sampling distribution of the standardized log(AUC) 

often had heavy tails. The sampling distribution of log(Cmax) was skewed either to 

the left or to the right and was not robust to many perturbations studied in Chapter 2. 

For TOST in the one stage design, our sensitivity analyses in Chapter 6 showed that 

the type I error rates were robust when errors were distributed as ( )5t⋅σ  , 

( )56.0 t⋅σ , ( )10t⋅σ , or )5.0,1,0(SN⋅σ , which closely mimicked the empirical 

distributions from simulations in Chapter 2, if the true mean difference is log(1.25).  

But the powers under ( )5t⋅σ  or ( )10t⋅σ  for 2.0=σ  were smaller compared to those 
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under normality. Type I error rates were inflated if there was a subgroup responding 

differently to the test product from the majority of the population.  

In Chapter 3, the two explicit power functions for the power approach and two 

one-sided tests procedure provided the fundamental understanding of the difference 

between the two one-sided tests procedure and the power approach. We concluded 

that the power approach in practice usually consisted of testing the hypothesis of no 

difference at level 0.05 and a lack of significance was often used to incorrectly infer 

equivalence. In Chapter 4, we derived the exact power formula for two one-sided 

tests. From the exact power function, we calculated the exact powers and sample 

sizes in all bioequivalence study settings, including those for unequal variance of the 

test and reference products. The comparison between the exact power and a previous 

approximate power approach showed this approximate method could significant 

underestimate the power for many practical settings. Accurate numerical calculation 

of exact power could be readily obtained with our R code for the widely used free R 

software package. 

In Chapter 5, our simulation showed that not much information was lost if the 

simpler test statistics ( )*

22

*

21,TT  was used instead of ( )2221,TT . In our unblinded sample 

size re-estimation procedure, we calculated the new sample size using the exact 

power function derived in Chapter 4 in which the sample variance from Stage 1 data 

replaced the true variance. To assure the experimentwise type I error at the nominal 

level α, we presented the exact power function for one stage study in which we 

compared ( )1211,TT  with the ( ) ( )( )2,2 11 −−− •• ntnt αα  and the exact power function for 
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two-stage study in which we compared simpler test statistics ( )*

22

*

21,TT  with the exact 

critical values ( )αα uu −, . The positive exact critical value, αu , was derived as the 

largest value of u for which  the following condition holds: that supremum of the 

probability of rejecting the null under the null in the composite hypothesis testing 

(5.1) is exactly α. We proved that the maximum of this probability occurs within the 

carefully chosen range for V and u. We developed a numerical analysis for calculating 

the exact type I error rates and bounded the numerical and computation errors for 

approximating the exact type I error rates at grid points and quantified the maximum 

difference for any subinterval between two adjacent grid points in calculating exact 

type I error rate. To make sure the size of the sample size re-estimation procedure at 

the nominal level α- 410− , we chose the sufficient number of grid points in the 

carefully-chosen interval so that the sum of all levels of errors is about 410− . 

For the sample size re-estimation study design, the type I error rates and expected 

sample sizes are robust when errors are random variables distributed as ( )5t⋅σ , 

( )56.0 tσ , and )5.0,1,0(SN⋅σ  under various σ  values.  Type I error rates are inflated 

if errors are distributed as the mixture of 2 normal distributions. 

7.2 Recommendation for future work 

This work mainly focused on statistical methods in bioequivalence studies under 

normality. Our conclusions about the distributional assumption for log(AUC) or 

log(Cmax) should be scrutinized further with many real cases. If normality of 

log(AUC) or log(Cmax) cannot be assumed, statistical methods using robust statistics 

should be developed. Since we did not analytically prove that the numerical 
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maximum was the global one, then there could be more work for theoretical 

evaluation of the sample size re-estimation procedure. Adaptive design combining the 

use of the group sequential method and the sample size re-estimation method should 

be a potential research topic. 
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Index of Notation 

AUC: Area under the concentration-time curve 

Cij: Concentration at the jth time (tij) for the ith subject 

Cmax: Maximum concentration in the concentration profile 

CV: Coefficient variation for untransformed concentration data 

D: Dose amount, mg 

D̂ : Average of the averages of the intra-subject differences in Y between the test and 

the reference for the two sequences 

likd : Difference between Period 2 and Period 1 for Subject k in Sequence i at Stage l, 

l=1,2 

hd : Mean of the period differences of two sequences at Stage l, l=1,2 

eij: Normal random measurement error at the jth time (tij) for the ith subject 

F : Bioavailability fraction  

( )θ,xF : Distribution function 

f(tij, βi): A nonlinear function 

FR: μR 

FT: μT 

ka: Apparent first-order absorption rate constant  

ke: Apparent first-order elimination rate constant 

n1: Number of subjects in Sequence 1 for one-stage study 

n2: Number of subjects in Sequence 2 for one-stage study 

lin : Sample size of the ith sequence at the lth stage 2,1, =∀ li  
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•ln : Total sample size ( )21 ll nn + at Stage l, l=1,2 

( )σθ ,*

1P : Probability of rejecting the null hypothesis in a two one-sided hypothesis 

tests procedure for a single endpoint 

),( *

1 σθPowerP : Probability of rejecting the null hypothesis in power approach for a 

single endpoint 

( )VnnP s ,,, 121121 θ : Joint probability of rejecting 0H  in Equation (5.1) under 0H  for 

one-stage study and 01 SS ≤  

( )upVnnP s ,,,,, 0121122 θ : Joint probability of rejecting 0H  in Equation (5.1) under 0H  

for two-stage study ( 02 >•n ) and 01 SS >  

2S : Pooled estimate of the variance of an intra-subject difference in Y 

2

0S : Initial variance value for 22

RT σσ +  from the historical data 

2

lS : Sample variance for 22

RT σσ +  from Stage l, l=1,2 

*S : Pooled variance of Stage 1 and Stage 2, 
( ) ( )

4

22

21

2

22

2

11

−+
−+−

••

••

nn

SnSn
 

tij: The jth sampling time for the ith subject 

Tmax: Time to reach maximum concentration 

*

21T : Test statistics for combined data of Stage 1 and Stage 2  

*

22T : Test statistics for combined data of Stage 1 and Stage 2 

V: 22

RT σσ +  

aV : Apparent volume of distribution 

W: Shapiro and Wilk’s normality testing statistics  
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Y: log(AUC) or  log(Cmax) 

tCµ : True concentration of a drug  

Tµ : Population mean of Y for the test product 

Rµ : Population mean of Y for the reference product 

ν : Degrees of freedom 

*θ : RT µµ −  

1θ : Lower limit of bioequivalence margin 

2θ : Upper limit of bioequivalence margin 

2

ijσ : Variance of )log( ijC at the jth time (tij) for the ith subject 

2

Rσ : Variance of Y for reference product 

2

Tσ : Variance of Y for the test product 

bi: Normal random vector of inter-subject variation  

ie : Errors of the ith subject  

( )iiiiiiiigggg β : Functions of the ith subject 

βi: ( 1×p ) vector of pharmacokinetic parameters 

iiiiRRRR : Variance-covariance matrix of log-transformed data within the ith subject 

γ : Positive vector of population pharmacokinetic parameters 

ΣΣΣΣ: Covariance matrix 

 


