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1 Introduction

In this paper we consider a class of Variable Geometry Truss (VGT) assemblies
(Miura, Furuya & Suzuki [1985]; Wada [1990]), which are structures consisting of longi-
tudinal repetition of truss modules. In the present instance, each module is implemented
as a planar parallel manipulator consisting of two platforms connected by legs whose
lengths can vary under the control of linear actuators. Each platform is equipped with
a pair of wheels, so that it can move on the plane that supports the structure (fig. 1.1).
The wheels of each platform are free and not actuated and their motion is independent
of each other, while we assume that the wheels roll without slipping on the plane. This
imposes a nonholonomic constraint on the motion of each platform, namely the require-
ment that its velocity is perpendicular to the axis connecting the wheels. When the
legs of the individual modules are expanded or contracted, the shape of the whole VGT
assembly changes. As a consequence of the nonholonomic constraints imposed by the
rolling-without—slipping assumption on the wheels, this shape change induces a global
motion of the VGT assembly.

Fig. 1.1

The motion planning problem for such an assembly is of the nonholonomic vari-
ety. There is a significant body of research related to such problems (see e.g. (Latombe
[1991}; Li & Canny [1993])), which in general assumes cart-type mobile robots mov-
ing under direct actuation of a set of wheels. The main difference in our case is the
prominence of shape changes as the means which, together with the action of the non-

holonomic constraints, induces global motion of the system. This is analogous to the
idea of reorientation in free-floating multibody systems, induced by closed joint space

trajectories under the nonholonomic constraint of conservation of angular momentum
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(Krishnaprasad [1990]; Krishnaprasad & Yang [1991]; Marsden, Montgomery & Ratiu
[1990)).

VGT assemblies of the type discussed here have been examined in the past (see
(Chirikjian & Burdick [1991]; Wada [1990]) and references there), but the emphasis
was on its capabilities as a redundant manipulator and on locomotion using snake-
like motions, not on the special problems introduced by nonholonomic constraints. A
system similar to the one described here was built by (Chirikjian & Burdick [1993}) using
castors instead of wheels in the platforms of the modules and therefore the nonholonomic
constraints that we consider here were not present. A visit to Burdick’s lab in Caltech
in 1992 was a source of inspiration for the present work.

In section 2, we examine the kinematics of a VGT assembly with £ modules. Con-
sider the i-th module (fig. 1.1). Its shape can be described by the relative position
and orientation of the coordinate frame centered at the point O;4; with respect to the
coordinate frame centered at the point O;. Then, the shape of each module corresponds
to an element of the Special Euclidean group SE(2) that describes rigid motions on the
plane and, as a result, the shape of the {~module VGT can be described by £ elements of
SE(2). The configuration of the VGT assembly can be described by its shape and by the
position and orientation of the assembly with respect to some fixed (world) coordinate
system, thus by a total of £+ 1 elements of SE(2). In (Brockett, Stokes & Park [1993])
a systematic way of deriving the kinematics of serial linkages is presented based on the
“product of exponentials” formula, where the configuration of the system is described
by an element of the appropriate SE(n) group and is expressed as a product of its
one-parameter subgroups, with one element of the product corresponding to each of the
one—degree—of-freedom joints of the linkage. The VGT assembly that we consider here
is a structure similar to the ones described there, but the joints are more complicated
parallel manipulator modules with more than one degree—of-freedom each. Moreover,
the whole assembly is not anchored to a base, but is free to move on a plane and, finally,
nonholonomic constraints are present, in addition to the holonomic ones. However, an
extension of the above method, allows us to systematically derive the kinematics of the
VGT assembly as follows: Using the Wei~Norman representation of SE(2), we express,
in section 2.1, the shape of each module as a product of the one-parameter subgroups of
S E(2). Then, the configuration of the whole assembly can be expressed as a product of

such one~parameter subgroups. Using the notion of the adjoint action of SE(2) on its
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Lie algebra, we determine, in section 2.2, how the motion of a module relates to the mo-
tion of the other modules of the assembly. We also express the nonholonomic constraints
in a compact form that can be used to make explicit the dependence of the assembly
configuration on the shape of its modules. This allows us to characterize the dependence
of the global motion of the assembly on the shape controls, namely the changes in the
shape of each module, which are expressed as elements of the Lie algebra of SE(2). In
section 2.3, we consider the implementation of each module as a planar parallel manipu-
lator. The shape of each module is determined by the lengths of the legs of the parallel
manipulator. From the velocity kinematics of the parallel manipulator we conclude that
motion planning schemes for the VGT assembly can disregard the particular details of
the implementation of the modules and only consider the shape of each module. Thus,
instead of considering the changes in leg lengths as controls for the VGT assembly, we
can use the corresponding shape controls of each module.

In section 3, we specialize the previous discussion to the 2-module VGT. Unlike the
generic {~module case, here we have exactly the number of nonholonomic constraints
that we need in order to determine the position and orientation of the VGT assembly
with respect to the world coordinate frame, based on a sequence of shape changes from
a reference shape. As a result, we can demonstrate how shape changes of the VGT
assembly induce a global snake-like motion due to the nonholonomic constraints. We
consider the motion planning problem under a specific shape actuation scheme, where
one of the two modules is responsible for the motion of the assembly through periodic
changes of its shape and the other module is responsible for steering. We demonstrate
how to generate primitive “straight line motion” and “turning” behaviors and we show
by computer simulations how to synthesize these into more complex ones, like avoidance
of obstacles.

In section 4, we discuss possible extensions of this work.

2 Kinematic Chains on Lie Groups

In section 2.1 we discuss the Wei-Norman representation of curves in SE(2) and
in section 2.2 we apply this representation to the derivation of the kinematics of the
¢-module VGT. It is found convenient to employ the language of matrix Lie groups
throughout. In section 2.3 we consider the implementation of a module of the VGT

assembly as a planar parallel manipulator.



2.1 The Wei-Norman Representation of SE(2)

The instantaneous shape of a module of the VGT assembly or the position and ori-
entation of the whole assembly with respect to the world coordinate system corresponds,
as was discussed in section 1, to an element x of the matrix Lie group G = SE(2). Given
a curve x(.) C G = SE(2), there is a curve V(.) C G = se(2), the Lie algebra of SE(2),
such that:

x=xV. (1)

0)
N e
0

Let {A;, i = 1,2,3} be the following basis of G :

0 -1 0 0 0 1 0 0
{A1, A2, A3} = { 1 0 0},{0 0 0},10 O
0 0 O 0 00 0 0

with [, ] being the usual Lie bracket on G. Then:
(A1, A)] = A3, [A1, A3l = —A2, [A2, As]=0. (3)

Let G* be the dual space of G, i.e. the space of linear functions from G to IR. Let
{A?, i =1,2,3} be a basis of G* such that A}(A;) = 6/, for i,j = 1,2,3, where &/ is the
Kronecker symbol. Then the curve V(.) C G can be represented as:

3 3
V=) wndi=) A(V)A. (4)
i=1 i=1

Here v; is a scalar function of ¢, the curve parametrization.

For z,y € G, define (adz)y def [z,9], (adz)*y = [z,(adz)*~1y]. Then, from the Baker—
Campbell-Hausdorff formula (Wei & Norman [1964]) we have:

e®ye™® = ("F)y = y + [z,y] + %[-’r, [z, 9]]+ ... . (5)

Proposition 2.1.1
Let x(0) = I, the identity of G. There exists a global representation of the curve

x(.) C G of the form:
X(t) - e"/l(t)Al e’Yz(t)Az e’Ya(t)As . (6)
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The coefficients 7; € IR are related to the coefficients v; in (4) by:
00! 1 00 "
=11 1 0] (7)
Y3 -7 0 1 v3

wm=wm+/mmm,
0

and, equivalently, by:

t t
wm=wmwmm+%mwmm+/wvm@ﬂm+/mvwmﬂm, (8)
0 0
nm=—wmwmm+%mwmm—/wvwmﬂw+/mvwmﬂm,
0 0

¢ ¢
where C(t,T) ¢ cos (fvl(a)da) and S(t,7) 4 gin (fvl(o)dcr). For the initial con-
T T

dition x(0) = I, we have v;(0) =0, 1 =1,2,3.
Proof

Since G = se(2) is solvable, the existence of a global representation of the form (6)

is immediate by (Wei & Norman [1964]). Differentiating (6) we have:

d . . :
_l_i_>t£ — ,),le‘h-AlAle'Yz-Aze'YsAa + 726’71-'41 6’72-A2_A2e’73A3 + ,),36’71-41 872A26’73-A3A3

— e"rvﬁe’YzAze‘Ya-As[ﬁle—ﬂaAse—’YzAzAle’hAze‘YsAa +;),2e~’YaA3A26'73-A3 + ;73-/43] (9)

=x [:head(-%As)ead(—vaz)_Al 4+ ﬁ,zead(—“laAa)fb + 43.A3]
We now compute the RHS of (9). From (3) and (5) :

eﬂd(—"lsAa)Az =A;,
(10)
ead(—Vs-As)ead(—“mAz)Al = ead(—'Ys-As)(_Al + 72A3) = A — 73 A2 + 1243 -

From (1), (4),(9) and (10) we have:

V = v1 A1 + 1242 + 13A3
= 41(Ap — 73z + 7243) + Y24z + Y3 Az = 1AL+ (42 — 1371) A2 + (3 + 1271)As -
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Since {A;, A3, A3} is a basis, we have:
n=n, =% -1N, Bv=13+trhn.
Solving for the 9;’s we get (7), which can be rewritten as:
71 =,
(2)-(5 3) G+ (%)
Y3 -vp 0 73 v3

This system can be solved by quadratures, giving (8).

|
For x € G, V € G, define the adjoint action of G on G denoted Ad, : G — G by:
ALV vy, (11)
From (4) we have:
3 3
AdyV =Y viddyAi = Y AN (V) AdyA; (12)
i=1 i=1

Proposition 2.1.2
Consider the Wei-Norman representation (6) of x determined by (7) and (8). Then:

Ady-1 Ay = A —13A2 + 1243,
Ady-1A; = cos 1A —sin A3, (13)
Ady-1A3 = siny1 Ay + cos 1143 .
Proof
From (11) we have for 1 = 1,2,3:

Adx—l.A,‘ = ead(-'YSAJ)ead(—"I?A'z)eud("’YLAl)A’. .
From this and (5) we have for A;:

e2d=mA) 4, = 4,
edd(~1242) gad(-mA1) 4 — ead(—WzAz)_Al = Ay + 1243
34(=1343) gad(—1242) gad(—m A1) 4, = 2 =W A (4 4 1 A3) = A — 13A2 + 7243
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For A, :

e3d(-141) A, = cos 114z — sin 7143
33— 12 A3) gad(-mA2) 4, = ead(—’YzA2)(coS T1A; = sin71ds) = cos 1Az = sinyiAs
24— 1 As) gad(—1247) gad(=m A1) 4, = e24(=1343)(cos y1.4; — sin7143)

= cos Y1 A2 —sin 11 As .
For A3 :

e24(=1A1) A, = sin v, Ay + cos 7143
e2d(=1242) gad(-mAs) 4, = 347242 (5in vy Ay + cosy1.A3) = sin 1142 + cos 11 A3
e““("‘YaAs)e“d(—’hAz)e“d("‘Ybe)_As - ead(—"lsAs)(Sin v1. A + cos 1.A3)

= siny142 + cos 11 A3 -

| |
Using the definition of the basis {A;}, we have from (6):
cosyr —siny; 7Y2cosm1 — 73sinm
x(t) = enAregrAeenAs — | giny;  cosy;  Yesinyi +yzcosta | - (14)
0 0 1
Define:
def .
T = q2€0871 — Y3sSIM 71,
y = yzsinyy + 73 c05M (15)
def
$= 1.
Differentiating and using (7) we have:
= vycosyy — U3sinYL,
¥ = vy siny; + v3cos71, (16)

4-5-——’01.



2.2 The {-module Variable Geometry Truss (VGT)

We consider a chain of £ modules of the type shown in fig. 1.1 and 2.1. Each module
consists of a planar parallel manipulator with one pair of wheels per platform and with
each wheel rotating independently from the other around its axis, both forward and
backwards. Neither wheel pair is actuated and we assume that the wheels roll without
slipping. This system has n = 3(£ + 1) degrees—of-freedom, its configuration space is
Q= §E(2) X e XS E(2) and it is subject to 3¢ holonomic constraints from the parallel

—

£4+1 times

manipulator legs and to p = £ + 1 nonholonomic constraints from the rolling-without—
slipping wheel motion. The configuration of the assembly can be determined by its shape

(which is an element of the shape space S = SE(2) x --- x SE(2) ) and by the position

o~

£ times

and orientation of the assembly with respect to the world coordinate system (which is

an element of G = SE(2) ). Then @ = G x §.

Fig. 2.1

Consider a world coordinate system centered at Og and platform coordinate systems

centered at O;, 1 = 1,...,£+ 1. Let X, € G = SE(2) be the configuration matrix of the

i-th platform with respect to the world coordinate system. Define V; € G = se(2) by:

5('.=xiV;,i=1,...,£+1. (17)
From (4) we have:
3 3
Vi= ) vid; =) ANVi)A; (18)
i=1 i=1

Also define v' = (v vivi)T = (AN(V) AY(Vi) AB(V))T.
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Let X i1 € G be the configuration matrix of the (i + 1)-th platform with respect to the

coordinate system of the j—th platform. Define V; ;11 € G by:

Xj,i+1 = Xj,i+1‘/j’i+l , fori=1,...,£ and 1<j<i+1. (19)
From (4) we have:
3 3
Viger = D ol A =) AL(Viisn) A - (20)
k=1 k=1

Also define v7*+1 = (’U{"H ”g'iﬂ ”§'£+I )T = (AL (Vi) A5 (Viis1) A5(Viien) )T Ob-
serve that the x = ’s and the Vj ;s are the shape variables of the chain.
S+l it
The shape of the VGT assembly is determined by {Xi 1’ i=1,...,¢}. The veloc-
ities {V; i41, 1 =1,...,£} are called shape controls for reasons to become obvious at the

end of this section.

By (6),(15) and (16) we have:

: . , o cos¢; —sing; wo,

X’,(t) = M1 (DAL 12 (8) Az pv3(t)As (%‘ 11") = | sing; cos¢; Yo, | (21)

0 0 1

and
X, () = T A T B4l 04
I

cosd;; —sind; ; ;i (22)

R i T. . : Jyi+l FRES 7,i+1

= ( J6+l .7111*!"1 ) = | sin 9j,i+1 cos 0]-,1:_*_1 Yjit1 ,
0 0 1

where the v’s and the corresponding v’s are related by (7) and (8). By the system

kinematics we have:

X = X.X X. X ,’l::].,...,l (23)

i+l ikl T A1t
and

N X cox. . ,fori=1,..., and 1<j<i+1. (24)

it X X T X X
Define x = I, where I is the identity in G.
]’
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Equations (23) with (21),(22) can be seen as a generalization of the “product—of-
exponentials” formula of (Brockett, Stokes & Park [1993]) for kinematics chains with

more than one degree—of-freedom per joint.

Proposition 2.2.1
The velocities of the (i + 1)-th module depend on the velocities of the previous

modules as follows:

Vis1 = Ady—» Vi+ Vi

i+l
= Ad, - e Ad, -1 Vq + Ad - - Ad -1 V5
Xiitl XTo ! + X it s
+eeo+Ady-y Vil i+ Vi,
Qi+l
(25)
Viitr = Ady—x Vi 4+ Vi
iit1
= Adys Ads Vi +Adgs Ads Vi
Xt Xirngez 7t Xt Xifages S THIH2
+-otAd-r Vi + Vi
Proof
From (17) and (23):
Xiv1 = XX, i1 + XXiim1 = Xivixi,i+1 + XiXi,i-i-lVi'H'l
— -1 . L.
= Xixi,i+1[x,-,,-+1v‘xi,i+1 + Viis] (26)
= Xi+1[Adx,-_,;+1Vi + Viit1l s
Xipr =X X0 X TX XX Tt X X12 " Xiiv1
= Xalddy Ao Vit Ad e ddi Vi (27)

+o 4 Ady-r Vi + Vil .
i,i4+1

Then (25) follows from (17),(26) and (27). The equation for V; ;41 is derived similarly.
]
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Corollary 2.2.2
Equations (25) induce the following relationships between the positions and veloci-

ties of the (i + 1)-th module and those of the previous modules:

vt = vi + v‘ "H

1 1 1 1 1,141
vt = —olyd 4wl cos it 4 vl sin gyt 4 gt (28)

1 _ i 1,1+l i,i+1

1,i+1 1,i+1
V3 =Yy — v2 sin 71 + v3 cosvyy" T +vg .

_ 1,i+1
"’1 + vy y

Jyit+l
L5
v,21,1+1 ”'17 K i i+l + v2 cos 7: i+l + vg,s sin 71,s+1 + vt t+1 (29)

i1 L L it
ot = iyl v%’ sm'yi At v3' cos'y; A+ vyt

Moreover:
1.+1 1,141
= 71 + 7 9

i+1 i,i+1 i,i+1

73t = yicos vy T 4 ydsinyy T ; A (30)

1,i41 + 1.1+1

i+1 __
3 73

73 —’72 sin '71 T+ 73 cosmy

Jiatl 4 1,i4+1

71 =7+ ’
7,141 7, i,i41 1,i+1 i,i+1

3 = 4" cos 1y + 7 !sin P HIE S A (31)
i+l ;41 1,541 1,i+1

1 = —ydisinyp T+ 4 cosy T 4 4t

Proof
From (4),(25),(12) and (13), observing that {A;} form a basis, we get equations
(28) and (29). From (14) and (23) we get equations (30) and (31).

The nonholonomic constraint of rolling-without—slipping on the wheels of each plat-

form can be expressed using (16) as:
= A (Vi) = ¢0, cos i + Jo,sing; =0, i=1,...,0+1. (32)
Define the composite velocity vector of the VGT assembly:
v déf (’01 I ,vl,2 l .. _‘v£,£+1 )T

= (olofud o] [of 1L 41T

= (A (V1) A5(V2) A5(W1) | Az(vl.z) o | A (Vigr1) A (Voern) A3 (Vezen) )

12



Proposition 2.2.3

The p = £+ 1 nonholonomic constraints (32) can be written in matrix form as:

A(Xl,zv""xt’”_l)v =0, (33)
where A is a function of only the shape of the VGT assembly {Xi i+1’i =1,.--,£} and
is a block lower triangular matrix of maximal rank of the form:

[ *11 0 0 0 0 0 0 \
*1,2 *9 2 0 0 0 0 0
0 0 0

A 3T =

(Xlﬂ XUH) i1 *2,i41 0 Kiidl  Fidl,itl 0 0
: : : : 0

\*1,£+1 ¥o041 T R4+l Fipi.e41 0 0 Fp 41l Fi41,041 )

(34)

with the k—th block of the (i + 1)-th line defined as:

Fhit1 = (Ag(AdX;,li+1Al) Ag(Adx;‘li+1A2) Ag(AdX;,lt+1A3))

= A(Ady-1 - -Ad -~ A(Ad -1 - Ad-1 A
( 2( xi,:-{-l Xk,1k+1A1) 2( xi,i+1 Xk,k+1 2)

Ab(Ady-1 - Ady— ,43))
t,i+1 k. k+1
= ( - 7§,i+1 COS,Y{C,HI sin 7{:,i+1)  fork<itl,

=(010), fork=t+4+1,
*kit1 =(000), fork>i141.

Proof
From (25),(18) and (20), we get for i = 1,...,£:

0 - A;(Vg-}.]) - Ag(Adx—l "'Adx—l Vl)‘{‘Ag(Adx—l "'Adx——l V1,2)
1,i4+1 2 1,1+1 2,3

+---4 Ag(Adx.'?+l‘/i_l'i) + .Ag(‘/i,i+l)

13



3
b
= A; (Ad, “:H 'Adx'l"lz(j;Aj(Vl)Aj))

3
b b
+ Az (Ady Xt 'Adxz-;(;*“j(vlt,z)v‘ij))

+o ek A (Adys ZA"(V_I,)A))MWM)

11 ]1

1,i41

3
=" Ay (Ady- e Ady=s AjAL(WA)
j=1 !

3
Ab(Adymr -+ Adyr A ANV,
+Z l X %23 )Ai(Viz)

-+ Z-Ab(Ad oL A DAVicr) + A5 (Viign)
= (35)

3
= z (Ad -1 ‘Adx—l .Aj)’v}

i=1 1,i+1 1,2

+ZA;(Ad o1 Ads A

j=1
+- +ZA(Ad o A)v‘ L ittt

Thus, the (i 4+ 1)-th nonholonomic constraint can be expressed as a linear combination
of the v!’s and the shape velocities v'2, ... , v"+1 fori = 1,...,£. Then (34) follows.
From its form, and especially from the expressions for the diagonal blocks *j r, we can

easily see that A has always maximal rank p= £+ 1.

Since A has always maximal rank p, its null space A'(A) has dimension m nop=
2p.
Proposition 2.2.4

Assume that the velocities v can be reordered, so that the matrix A is partitioned

as A = (A; Az), with A; a p X m matrix and A, a locally invertible p X p matrix.

14



Let the corresponding partition of the velocity vector be v = (Zl ) , with 4 € IR™ and
2

vy € IRP. Then, there exists an n X m matrix B such that:

=(”‘)=Bu1. (36)

L $/)

Proof

. _ Imxm
The matrix B = (__ A Al) works.

Notice that, since A depends only on the shape, so does A,. In addition, the choice
of the locally invertible matrix A, is dictated by the choice of the splitting of v into
vy and v,. For a particular choice, as the shape is altered, A; will become singular at
certain shapes. The corresponding configurations of the VGT assembly shall be referred
to as nonholonomic singularities. It will be apparent that these singularities are not
removable by merely choosing alternative splittings of v or alternative parametrizations
of the configuration space (e.g. how we assign orderings to the kinematic chain at hand).
In these conﬁguratiohs, the system kinematics together with the shape control may not
provide sufficient information to determine its motion and the dynamics of the system

may have to be considered.

Remarks

1) Unlike previous work on nonholonomic motion planning, in our case the v;’s of
equation (36) do not correspond directly to the controls of the system and, thus, are
not at our disposal to alter at will. Our real controls are the leg velocities ¢ of the
parallel manipulator modules (see section 2.3). However, as we will see in section 2.3,
off the kinematic singularities of the parallel manipulators, the shape controls can easily

determine the corresponding leg velocities. Therefore, in order to simplify the discussion

of motion planning, once the partitioning of the velocity vector v as (Zl> is done in
2

such a way that all the vy ’s are controllable from the &’s, we will disregard the particulars
of the implementation of the modules and only consider the shape controls. Note that

when £ = 1, such a partitioning of the velocity vector cannot be done.
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2) The 3¢ holonomic constraints imposed by the legs of the modules of the ~module

of the assembly. In order to de-

VGT assembly determine the shape X, 92X s X

2,37 L,t41

termine completely its configuration, we also need to specify the position and orientation
of the assembly with respect to the world coordinate frame, given by an element ( X, in
this case) of G = SE(2). Thus, we need 3 more constraints. These come from the £ + 1
nonholonomic constraints provided by the platform wheels. Consider now some special
cases: i) If £ = 1, we have 3 holonomic and 2 nonholonomic constraints, but we need
to determine 6 degrees-of-freedom, thus we do not have enough kinematic constraints
to determine the motion of the assembly. We either have to consider its dynamics or
we need to impose additional constraints (e.g. unidirectional wheel motion). i) If
£ = 2, we have 6 holonomic and 3 nonholonomic constraints and we need to determine
9 degrees—offreedom, thus we have exactly the required number of constraints. i)

If £ > 2, we have 3¢ holonomic and £ 4+ 1 nonholonomic constraints and we need to
determine 3(€ + 1) degrees—of-freedom, thus we have 3{ + (£ + 1) - 3(£+ 1) = £~ 2
extra constraints that have to be satisfied. Therefore, from the 3¢ shape velocities, only
3£—(£~2) = 2(£+1) can be determined independently and will be elements of the vector
v1 in equation (36). The remaining £ — 2 shape velocities will be determined by the £ —2
extra constraints, i.e. they will be elements of the vector v;, together with the velocities
that characterize the global motion of the assembly (here they are the v'’s). Observe
that if there exists k such that £ — 2 = 3k, we can choose £ — k of the £ modules and
alter their shape at will, while the shape of the remaining k£ modules will be determined

by the extra constraints. In brief, for £ > 2, the problem is over—constrained.

3) The 2-module VGT is “canonical” in the following sense: Suppose that we change
the {~module VGT architecture (for £ > 2) so that we have wheels on only 3 platforms
and castors on the remaining £ — 2 platforms. Then we have only 3 nonholonomic
constraints (instead of £ + 1). Such a system has exactly the number of constraints
needed to determine its motion, which, in our original VGT assembly is the case only for
£ = 2. The motion planning strategies that will be determined for the 2-module VGT
will work also for this £~module assembly. Moreover, this {~module assembly possesses
3¢ — 6 degrees—of—freedom more than the 2-module VGT and those can be exploited for
other purposes (e.g. for motion in a constrained environment, or for generating a richer

repertoire of motions of the type described in (Chirikjian & Burdick [1991))).
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2.3 Implementation of a VGT module as a Parallel Manipulator

Consider the i~th module of the VGT assembly, implemented as a planar parallel
manipulator (Fichter [1986]). This consists of the i—th and (i + 1)-th platforms, which
are connected by three legs of variable length. One possible architecture is shown in fig.
2.1.

In previous sections we saw that the shape of the i-th module is determined by

X € SE(2). Let PP}, for k =1,i+1, j = 1,2,3 be the position of the j—th joint of

i,i+1
the k-th platform with respect to the coordinate system of this platform. Consider the
following quantities, defined with respect to the coordinate system of the i-th platform:
the position P}“ of the (¢ + 1)-th platform, the vector S;'- and the length a} of the
j-th leg of the module. Let o* be the vector of the leg lengths of the i-th module, i.e.
ot < (o1 of oi)T.

The inverse kinematic map F~! : SE(2) — IR3 specifies the leg lengths of the

module as functions of its shape x. . . We can easily see that for the j—th leg:
1,i+1 5

St ppitl ppi
(1J)=Xi,i+l( 11 )—(1])' (37)

Then the leg lengths of the module are given by

ot =||Sill = /< §i,8i >, forj=1,2,3, (38)

where < ., . > is the inner product in IR™ and }|.]| is the corresponding norm. Then
the inverse kinematic map is:
Flx =o' (39)

1,141

Proposition 2.3.1 (Velocity Kinematics)

The body velocities of the i-th module v***! and the changes of length of its legs &* def

(63 6% 65)T are related by:

iNed §,i+1
£(e)5 = I(x, )0 (40)

- T .
where £(0*) = diag{ai, ol , 0i} and J(x, '+1) = [S;TR,~,;+1 PPt | S;-TRi,,-+1]
i i
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Proof

From (38) : (0})? =< S}, 5} > . Differentiating both sides and defining Q def p3+1 and
o def [ yhi+!

== (vz'i“) , we get:

U;U; =< 5;,5; >=< S},R.-,,-H(E + QPP;+1) >
. —_ T ; . .
=< R,',,‘.;.]TS;,E-l- PP}+1 Q>=< pP;+1R;,,'+1TS;-,Q >+ < R,',H.lTS},E >,

where R; ;41 was defined in (22). Then (40) follows.
R

Configurations where J(x) is singular are called kinematic singularities. Those do

not have anything to do with nonholonomic singularities.

Corollary 2.3.2
Suppose the configuration X € SE(2) of the i-th module is not a kinematic

singularity and that the corresponding leg lengths are o*. Then:

1,141 ~1
v’ =J
(Xi,{ 1

)Z(ot)s* (41)
and

i,i+1)vi,i+l ' (42)

Observe that after we specify the shape controls v+, the corresponding leg length
changes can be easily determined from (42). Therefore, our discussion of the motion
planning problem can disregard, without loss of generality, the particular implementation

details of the modules and consider only the shape controls.

3 The 2-module VGT

In section 3.1 we consider the kinematics of the 2-module VGT (fig. 3.1) as a
special case of the kinematics of the £-module VGT. We show that the velocity vector
can be partitioned in two parts, one of which constitutes the independent shape controls

and the other being velocities dependent on the shape variables, which characterize the
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motion of the assembly with respect to the world coordinate system. In section 3.2 we
examine the motion planning problem for the 2-module VGT assembly. We show that
shape actuation strategies, where one module keeps its shape fixed and the other varies
it periodically, induce a rotation of the VGT assembly around the instantaneous center
of rotation of the first module. If the platforms of the fired shape module are parallel,
the induced motion is a translation along a direction perpendicular to the platforms.
We allow the shape of the second module to describe a closed path in shape space and
show that a net displacement of the VGT assembly with respect to the world coordinate

system is induced after each traversal of the shape space path.

3.1 Kinematics of the 2-module VGT

Fig. 3.1

In the assembly of fig. 3.1, we consider a chain of £ = 2 VGT modules. This system
has n = 9 degrees—of-freedom, its configuration space is @ = G X §, where G = SE(2)
and the shape space is § = SE(2) x SE(2) and it is subject to 6 holonomic constraints
from the parallel manipulator legs and to p = 3 nonholonomic constraints from the
rolling-without—slipping assumption on the wheels. From the system kinematics we

have (specializing the results of section 2):

X, = X1X1,2 )
X3 = szz.a = X1X1,2X2,3 ? (1)
X3 = X1,2X2,3



From (2.25) we get for the corresponding velocities:

Va = Ady1 Vi + Vi

1.2
V3 = Adx;,gV2 + ‘/'2,3 = AdX;’;Adx;,;‘ﬁ + Adx;,gVI,Z + V2’3 (2)
Via = Adx;13V1,2 + Va3
The nonholonomic constraint of rolling—without—slipping on the wheels of each platform
can be expressed using (2.32) as
= A5(Vi) = 30, cos ¢i + Yo, sind; =0, i=1,2,3. (3)

The 3 nonholonomic constraints can be put in the matrix form of (2.33) :

Alx, X, ,)v=10, (4)

»l
where v = (vl'z) . The matrix A is a function of only the shape variables X{ 40 Xy g of
2 3 Y ¥

v 9

the chain and is a block lower triangular matrix of the form:

(*1,1 0 0
A(Xm,xm): *12 *22 0

*¥1,3 *23 *33

1 0
A2(Ad _IAI) Ab(Ad, _1.A2) Ab(Ad,, -1.A3)

Ab(Ad, -IA,) Ab(Ad,, _IAZ) Ab(Ad,, _1A3)

0 0 0 0 0 0
0 1 0 0 00
Ab(Ady-1 A1) A5 (Ady-1 Ay) Aj(Ady-1A43) 0 1 0
2,3 2,3 2,3
O 1 0 0 0 0 0 00
= —-*)gi €Os 'y1 sin 71 0 1 0 0 0 O
—Y3"~ cosy;” sinvyy’ 3 —-yg 3 cos 7f 3 sin 'yf 20010
(5)
Equation (4) can be put in the form (2.36) by partitioning v as v = (Zl ) with
12
n = <v2’3) and v, = o! (6)
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and by partitioning A as (A; Az) with

0 0 0 0 00
Ailx. )= 0 1 0 000
23 Ab(Ady-1 A1) AL (Ady-1 A;) AY(Ady-14;) 0 1 0
2,3 23 23
0 0 0 0 0 0
= 0 1 0 0 00
—7§ 3 cos 7% ? sin 712 2010

0 1 0
A5 (Ad,, _IAI) A5 (Ad, _1A2) As(Ad, -1A3)
A% (Ad,, _IAl) Ab(Ad, -IAQ) Ab(Ad,, _1A3)

(M

and

Az(X 7X2 3)

(8)

0 1 0
= -—’y%’z cos 'y1 sin ’73
-3 cosy;? sinqy
Then the velocity of the 2-module VGT assembly with respect to the world coordinate

system, as it is characterized by !, can be expressed as a function of only the shape

variables of the assembly:

_ 1)1’2
= 470 %, 106, ) (12 ) ©)

The nonholonomic singularities of the system can be specified by considering the deter-

minant of the matrix A, :

det(Ay) = Ay (Ady-1 Ay A5 (Ad, -1 As) — A5 (Ad, -1 Ay)AS(Ady -1 A3)
1,3 1,2 1,2 1,3 (10)

13 .. 1,2 1,2 . .13
= —73" sy + 37 siny

Observe that when sin 7} 2 £ 0 and sin 711 P40

1,3 1,2
det(Az) = sin'y%’2 sin 711’3 - _73 5 - —%

.12 . .13
= siny, " sinv; [A$01,3—A$01,2] ,

def b

where Azp,; = — Jj = 2,3, is the distance of the intersection U; ; of the axis

sin -~y !

of platform 1 with the axis of platform j from the point Oy, as shown in fig. 3.2. It will
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Fig. 3.2

be shown in the next section that the point Oy ; coincides with the instantaneous axis
of rotation of the module composed by the platforms 1 and j.

Then, the matrix Ay is singular whenever the points Oy 2 and O3 coincide (the
point O 2,3 may be at infinity as in fig. 3.3.a). Even in this case the 3 nonholonomic
constraints remain independent (c.f. equation (5), where rank(A) = 3), but, since the
platforms have a common instantaneous center of rotation, equation (4) cannot be recast
in the form of (9). Therefore, motion with respect to point O 2 3 cannot be controlled by
the system shape variables alone and the dynamics of the system ought to be considered.

This is analogous to what practising engineers refer to as loss of control authority.

Fig. 3.3
From (8):
1 sisn 'lei s - - sin 711’3 sin 7%‘2 A
A7l = ———— 12 sinyl? — 412 sin g 0 0 12
2 det(Az) 731,2 711,3 731,3 711,2 1,3 1,2 (12)
=73 cos ;" + 737 €os Yy 3 R
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Then, from (9) we get:

< 1,2 .23 13 12 23 .12 23
. -1 ~siny;“y3" —siny;” 4siny;“ cosy;™  siny;' sinyy
Y :det(A) 1% 2,3 1,3 ({2 3 20
' y ¥ ) 2, 1, 4 2,3
2 —73 73 —713" + 73" cosmy T3 Sy
.1,
0 sin7y; 20 o112
0 0 0 <v2'3)
0 7;’2 0

(13)

Observe that the partitioning of v in equation (6) is the only one that assigns to 14
shape controls which can be affected by leg length changes in the parallel manipulator
modules. Moreover, it assigns to v5 the velocities that characterize the global motion of
the VGT assembly with respect to the world coordinate system.

From )'(1 = X1V1 and the definition of the basis {A;} of G, it is easy to see that,

away from the nonholonomic singularities, controllability is guaranteed for a generic set

1,2
of shape controls (22,3 ) whenever the 1st and 3rd rows of the matrix A; ' A; are linearly

independent. However, the latter always holds away from the nonholonomic singularities.

3.2 Motion Planning for the 2-module VGT

There are several possible actuation strategies for the 2-module VGT. We will con-
sider a simple one where the first module “steers” the system, while the second provides
the translation mechanism through periodic variations of its shape parameters.

From (13) we observe that the motion of the system is determined completely, at
least away from the nonholonomic singularities, by the shape controls v!'? and v?:3. Here
we will consider the special case of motions that are generated by keeping the shape
of the first module fixed, i.e. v12 = 0, and vary the shape controls v?? of the second

module periodically. Then from (2.7):

71"2’ 100 fop
412 = it | = ,7;1 2 1 0 w? | = 0 = 8% =+1%0). (14)
3 -7" 01 3’
Also :
o 10 0) (v?
. : 3 :
72'3 = "7.5’2 = 7§; 5 1 0 17223 (15)
73’ -7 01 U3’



Then from (2.8):

t) 7 (0)+/v (r)dr,

v23(t) = 72°°(0) cos (/tvf'a(a)da> +73°(0) sin (/tvf's(a)da)

0

t

/ ('r)cos( / o (a)da)dr+ / (r)sin( / v3'3(a)du>dr,

T

t t

733(t) = -73°(0)sin ( / vf"‘(a)da> +723(0) cos ( / va”(a)da)

0

t i

- /t v33(7)sin ( / v§v3(a)da)dr+ /t 033 (1) cos( / vf’s(a)da)d'r

(16)

From (2.31),(10) and (14):

det(As) = =73 siny32(0) + 737*(0) sin 7y
= - [732"3 - 7%’2(0) sin 7%’3 + 7%’2(0) cos*yf’a] sin 7}’2(0) 1n

+732(0) sin(7,2(0) + 117)

From (13):

1 0 siny;?(0) 0 23 sin 13 %(0)
= —-——10 0 0] 0¥ = —~A—< 0 (18)

and from (2.7):
vy
) ( 0 ) (19)
. 'U%



Then from (2.8) :

¢
1) =1+ [ vi(r)dr,
1 0/ 1

i t

73(8) = 73(0) cos ( / v%(a)da) +73(0)sin ( / v%(a)da)
0

0

i

+ /t vg(r)sin( / v}(a)do)dr, (20)
0

T

t t

140) = ~h@sin ([ ol(0)ae) + h(0)cos ([ +torae)

v} [

t

+ jv%(r) cos (/v}(a)da)dr.

T

Proposition 3.2.1

i) Iif v1? = 0 and 7%’2 = 0, the 2-module VGT translates along an axis perpendicular
to platforms 1 and 2.

i) If v1'2 = 0 and 7%’2 # 0, the 2-module VGT rotates around the intersection of

the axes of platforms 1 and 2.

Proof
¢) Translation : Let y1"* = 0. From (17) and (18):

vi =0,
v% =0, (21)
23
1 2
Ve =
3 sin 7%’3
From (15):
) 7 () = 1(0),
Y1 =0
3 72(t) = 72(0)
Y2 =0 = ; (22)
A=) dO =230+ [
0
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From (2.16):

Zo, ~ sin 5 (0)
o, | =v3 | cosvi(0) | . (23)
o 0

Thus, platform 1 translates along the axis that passes through the point (zo, , yo,) and
is parallel to the vector (— sin7}(0), cos72(0)), i.e. perpendicular to the platform. This
is a constant vector, thus the point O; traces a straight line. Moreover, since ¢; is

constant, the whole platform translates along this line.

i1) Rotation : Let v,2(t) = 71°%(0) # 0. The instantaneous center of rotation (ICR)
of the velocity distribution of equation (18) (Botteina & Roth [1979]) can be proven to
be the point O, where the axes of platform 1 and 2 intersect. To see this, assume
that the ICR has coordinates (z},y}L) with respect to the fixed world coordinate system
and (m},’2,y};2) with respect to the moving coordinate system of platform 1. Define

zp = (zb yb 1)7 and Xp = (23° yp* 1)7. By its definition, Xp = 0. Then:
ep=xXp = ip=xXp+ XIXP =x,V1Xp. (24)

The ICR is defined as the point where p = 0. From this and (24) we get:

1,2
WiXp=0 = :c}f:-——_-ﬁfiﬁ,y}ﬁ:O. (25)
sin 3

From fig. 3.2, it is easy to see that this is point O; 2, the intersection of the axes of
platform 1 and 2.

Furthermore, it is possible to show that the ICR is constant, not only with respect to
the coordinate system of platform 1, as is immediately evident from the expressions for
(m}.!2, y},’2) in (25), but also with respect to the world coordinate system. Therefore, the
motion of the system, is indeed a rotation around this point. To see this, consider the
vector zp as a function of time t and expand in Taylor series around a fixed time instant

to. Then, defining At =1 — {y, we get:

dz p(1 1 d?zp(t
zp(t)_—.zp(to)+—%§—i’lAt+§—!———J’;§°—)At2+... .

By definition: %’1 = )'(lXp + XIXP = XlVlXp = 0. Moreover, from (18) and (25):

dzzp
dt?

=X, Xp+ XlXP + XIXP + le(;P =xXp=KxW+ X1V1)XP =0.
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Similarly, all the higher derivatives of zp are zero under the given velocity distribution.

Thus the ICR is a constant point.
|

In the case where v!'2 = 0, consider the following periodic shape controls for the

second module:

2,3

1" = qqwcoswt ,

v;,s = ayw sin wi cos 712'3 , (26)
. . 3

v§'3 = —QWw sinwt sm'yf' .

From (16):

7121 = 11°(0) + e sinwt

723(1) = v2(0) cos(ay sinwt) + 733(0) sin(ey sin wt) + az(1 — coswt) cosva ,  (27)
v23(t) = ~42%(0) sin(ay sinwt) + 722(0) cos(a sin wt) — az(1 — cos wit) siny2 .

From (2.15) and (27) we see that those shape controls correspond to a closed elliptical
path in (233, ¢2 3)-space.

We attempt to specify the global motion of the VGT assembly induced by the shape
controls, as characterized by the position and orientation 4! of platform 1. We saw that
instantaneously this motion is a translation whenever 4, = 0 or a rotation whenever

27

1% £ 0. We want to find out if, after a period T = <L of the shape controls, there

is a net motion Ay! %f 41(T) = 41(0) of the VGT assembly. This is equivalent to the
geometric phase idea of (Krishnaprasad [1990]).

Translation: Let v} = 41%(0) = 0.
From (21) and (22):

Ay{(t) = 7{(t) - 7i(0) =0,

Ayy(t) =13 (1) = 12(0) =0,
(28)

t
wsin wr

830 =70 - RO = [oh()ir = —a [ dr

tan(as + oy sinwt)
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Fig. 3.4 Fig. 3.5

where az & v33(0).

From (2.15) and (28) we have:

¢ = 711(0) ’
2o, = 73(0) cos 71 (0) — 73 sin 7, (0) , (29)

yo, = 73(0)sin 71 (0) + 73 cos 11 (0) .

From this we get:

70 1 2o
siny{(0)  tany{(0) '’

Yo, = (30)
Thus the locus of the point O, is the straight line given by equation (30), which is
perpendicular to the axis of platform 1. Using Mathematica, we can integrate (28)
numerically and verify that after a period of the shape controls, the 2-module VGT
assembly has moved forward by a distance specified by Av3(3Z) = v3(3X) — 43(0) (fig.
3.4). If we trace the closed shape-space path of (26) in the reverse direction, the assembly

will move backwards by the same distance.

Rotation: Let 711’2 = 711’2(0) # 0.
In Prop. 3.2.1 we saw that the instantaneous motion of the 2-module VGT in this
case is a rotation around the point Oj 2. The position of the assembly with respect to

this point can be characterized by the angle v{.
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From (2.31) and (27):

713(8) = 41?4 = 42(0) + 47 °(0) + exsinwt
7§'3(t) = 73'3 1 ? sin ’)’1 Sy ’)’;’2 cos 73’3
= —73’3(0) sin( ey sinwt) + 73’3(0) cos(a; sinwt) (31)

- [7%’2(0) + ap(1 — cos wt)] sin (7%’3(0) + o sin wt)
+73%(0) cos (71 (0) + oy sin w#) .

Then, from (17) :

det(Ax(2)) = —73™(2) sin 71 (0) + 757 (0)sin 7, *(2) - (32)
From (18):
k) = —sin O 1 s A(t()t)) (33)
and from (20):
Aqb(®) = 70 = 71(0) = = sin 7} ?(0) / i (34)

Using Mathematica, we can integrate (34) numerically and verify that fore.g. 7}’2 -5
after a period of the shape controls, the 2-module VGT assembly rotates clockwise
around the point O; ; by an angle specified by Ayi(EE) = v1(32) - 41(0) (fig. 3.5). If
we trace the closed shape-space path of (26) in the reverse direction, the assembly will
rotate counter—clockwise by the same angle.

The 2-module VGT nonholonomic kinematics were simulated on a Silicon Graphics
IRIS 4D/120 graphics workstation. The primitive straight line and rotational motions
described above are shown in fig. 3.6 and 3.7. Those primitive motions can be synthesized

to display more complex behaviors of the system, like obstacle avoidance, as shown in

fig. 3.8.
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4 Conclusions

In this paper we introduced Variable Geometry Truss assemblies with nonholonomic
constraints. We derived their kinematics and examined motion planning by showing how
periodic shape changes induce global translation or rotation of the assembly under the
influence of the nonholonomic constraints. The framework discussed here is an instance
of a class of nonholonomic systems that we refer to as G-snakes. An outline of this was
discussed by one of us at a recent workshop (Krishnaprasad [1993]). Details appear in a
forthcoming paper.

Further exploration of motion planning through alternative shape change strategies
can be based on the above framework. In (Tsakiris & Krishnaprasad {1993]), configu-
ration space trajectories for parallel manipulators that minimize curvature-squared cost
criteria were shown to generalize the usual straight line and circular arc configuration
space paths. These can be used to create a richer family of closed shape-space paths
than the ones presented in Section 3.2. Moreover, shape changes like those presented in
(Chirikjian & Burdick [1991]) can be explored for the {~module VGT architecture (c.f.
Remark 3, Section 2.2).

Finally, we can consider integration of this mechanical system with various obstacle
avoidance (Latombe [1991]) and sensory information mediation schemes, in order to

explore motion in a constrained or dynamic environment.
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