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ABSTRACT

Title of Dissertation: NOISY PRECURSORS FOR NONLINEAR

SYSTEM INSTABILITY WITH APPLICATION

TO AXIAL FLOW COMPRESSORS

Taihyun Kim, Doctor of Philosophy, 1997

Dissertation directed by: Professor Eyad H. Abed

Department of Electrical Engineering

This dissertation addresses monitoring of nonlinear systems for detection and

prediction of incipient instabilities. The analysis and design presented here rely

on the in
uence of noise on system behavior near the onset of instability. The

work is of relevance to high performance engineering systems, which are often

operated with a low stability margin in order to maximize performance. In such

a stressed operating mode, a small or moderate disturbance can result in loss of

stability of the nominal operating condition. This can be followed by operation in

a new lower performance mode, oscillatory behavior, or even system collapse. All

of these conditions can be viewed as bifurcations in the underlying dynamical

models. Prediction of the precise onset points of these instabilities is made

di�cult by the lack of accurate models for complex engineering systems. Thus,



in this thesis monitoring systems are proposed that can signal an approaching

instability before it occurs, without requiring a precise system model.

The approach taken in this work is based on precursors to instability that

are features of the power spectral density of a measured output signal. The

noise in the system can be naturally occurring noise or can be intentionally

injected noise. The output signal can be measured directly from the physical

system or from the system with an augmented monitoring system. Design of

appropriate augmented monitoring systems is a major topic of this work. These

monitoring systems result in enhancing precursor signals and also allow control

of the precursor by tuning external parameters. This tuning is important in that

it adds con�dence to the detection of an impending instability.

The methods developed on precursors for instablility are applied to models of

axial 
ow compression systems. Existing results on bifurcations for such models

and their relation to compressor stall provide a starting point for the analysis.
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Chapter 1

Introduction

In recent years, bifurcation and chaos have been a very active research area

in which a good deal of theoretical and applied work has been done. Bifur-

cation theory has an important role in science, engineering and social science.

The appearance of topologically nonequivalent phase portraits under variation

of parameters is called a bifurcation [38]. Systems that upon analysis are found

to be nonlinear, nonequilibrium, deterministic, dynamic, and that incorporate

randomness so that they are sensitive to initial conditions, and have strange

attractors are said to be chaotic [16].

Due to today's ever-increasing demands for performance, engineering sys-

tems are often required to operate very close to the limits of their operating

envelopes. Exceeding these limits can result in degradation of performance, os-

cillatory behavior, a jump to an unacceptable new operating condition, or even

system collapse.

Operation near the limits of a system envelope (\stressed operation") can

still lead to these undesirable e�ects. This is because even a small or moderate

external disturbance can push the system outside its operating envelope. Air-

craft stall in supermaneuvers, blackout of a heavily loaded power system, and
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compressor stall are just a few examples of system failures that can occur in

stressed operation.

Conventional linear models are incapable of explaining such catastrophic dy-

namical behavior. Nonlinear dynamic models can often be employed to explain

transitions in system behavior. In particular, bifurcation theory has proved to

be quite a useful tool for understanding qualitative changes in the behavior of

nonlinear systems. This theory has become an indispensable tool in the analysis

of many problems in many technological and scienti�c problems. In [7], [10],

[41], [39], and [43], bifurcation theory has been successfully applied to axial 
ow

compressor system models. It has also been employed to explain the dynamics

of voltage collapse in electric power systems in [23], [4], [12], [18], [17], and [55].

The fact that bifurcations are usually considered as undesirable events in

applications has motivated research on the control of bifurcations. There are

three basic categories of control of bifurcations.

One is the use of a state feedback to relocate (delay) a bifurcation in pa-

rameter space. Linear state feedback control is often enough to achieve this.

Application of linear state feedback to delay bifurcation in axial 
ow compres-

sors is given in [50], [51].

Another category of bifurcation control involves modifying the stability of

bifurcated solutions. In [5], Abed and Fu devised local feedback laws that ensure

that the periodic orbit emerging at a Hopf bifurcation is stable. In [6], they

extended this work to stationary bifurcation. These results were successfully

applied to axial 
ow compressors [39], [40], to aircraft stall at high angle-of-

attack [8] and to voltage collapse [54]. In [54] and [3], the issue of relocating a

bifurcation while at the same time stabilizing the bifurcated solution has been
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addressed. In [9], the control design result of [1] was extended in a new dynamic

feedback structure incorporating a washout �lter. The advantage gained by

employing washout �lters in the feedback loop is the preservation of all system

equilibria.

Mehra [45] and Mehra, Kessel, and Carroll [46] investigated the third category

of bifurcation control, namely global removal of bifurcations by state feedback.

Their results can apply only to stationary bifurcations, since it is obtained by

appealing to a global implicit theorem. These publications were the �rst on any

aspect of bifurcation control.

Even with signi�cant control authority, it might not be possible to remove

bifurcations altogether. In fact, much work in bifurcation control deals with

simply delaying the bifurcation as much as possible and/or stabilizing the bifur-

cated solution instead of eliminating it. Applying control to delay or eliminate a

bifurcation might be costly and unnecessary if the system normally operates far

from conditions leading to bifurcation. For such cases, we may want to apply

control only when the system approaches bifurcation. In some cases, an accu-

rate model of the system is not available for control design, or physical means of

actuation might not be su�cient for controlling a bifurcation. For these cases, it

is imperative that the system (or system operator) recognizes during operation

that the system is approaching a bifurcation. Once such a condition is detected,

appropriate measures can be taken.

These considerations motivate us to develop monitoring techniques that can

provide some type of warning signal that the system is close to a bifurcation.

Wiesenfeld [57] has shown that the power spectrum of a measured output exhibits

distinguishing features near a bifurcation for systems normally operating along a
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periodic solution. For many engineering systems, the normal operating condition

is an an equilibrium point rather than a periodic solution. Thus, we extend this

work to systems operating at an equilibrium point. This will form a basis for

our design of monitoring systems that exhibit precursors of bifurcation for a

nonlinear system operating at an equilibrium point.

It should be noted that the term \precursor" has also been used in the liter-

ature on stall of axial 
ow compressors [26], [21] and instabilities in combustion

systems [52]. The precursors that have been suggested for these applications

di�er markedly in spirit to what is sought in this dissertation. In the cited refer-

ences, the initiation of an instability is detected by examining the time signal as

it begins to depart from the nominal operating state. In contrast, in this work

we attempt to obtain warning signals for instabilities that provide an indication

of nearness to instability as opposed to an indication of the onset of instability.

The implications for system operability of having such precursors available are

signi�cant.

The remainder of the dissertation proceeds as follows. Some basic theoretical

results of the bifurcations and related mathematical tools will be discussed in

Chapter 2. The basic local codimension one bifurcations are presented.

In Chapter 3, the e�ects of noise on systems exhibiting bifurcation are inves-

tigated. First, we review the e�ect of noise on systems operating along a periodic

solution and recall why the power spectrum can be used as a useful precursor

for bifurcation of a periodic solution. Then, we extend this result to bifurcations

from an equilibrium point.

The precursor of Chapter 3 are very useful for detecting Hopf bifurcation,

but much less so for detecting stationary bifurcation. Chapter 4 addresses how

3



to make stationary bifurcation more detectable by a power spectrum precursor.

A new augmented state is presented as a solution. Theorem that states a new

augmented state transformation renders stationary bifurcation into Hopf bifur-

cation without much knowledge on system dynamics is shown. The e�ects of a

augmented states transformation on a nonlinear system are considered in this

chapter. Stability of bifurcated periodic solution due to a transformation, e�ect

of transformation on a system experiencing Hopf bifurcation, and reduced order

transformation are also considered. Extension of an augmented state transfor-

mation to singularly perturbed systems is investigated. Finally, we suggest a

another augmented state transformation to relax some of assumptions which we

have made in a previous transformation.

In Chapter 5, we use the axial compression system as a example. Bifurca-

tion analysis of an axial compression system model is performed. The model

undergoes both stationary and Hopf bifurcation as a parameter varies. The

compression model provides examination of a suggested precursor in a practical

engineering system. We perform numerical simulation on axial compressor under

mild assumption on the modeling part.

Conclusions and future research directions are given in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we review some basic concepts and results from bifurcation

theory, mulitilinear functions, and random process theory which will be used in

subsequent chapters. The discussion follows [2], [53] and [28].

2.1 Local Bifurcations

In this section, we recall the statement of well known local bifurcation theo-

rems. The term bifurcation refers to qualitative changes in the phase portraits

of dynamical systems occurring with slight variation in the system parameters.

There are many types of bifurcation. Here, we have particular interest in local

bifurcations, i.e. bifurcations in the neighborhood of an equilibrium point. The

nominal operating condition of an engineering system can often be taken to be

an equilibrium point.

2.1.1 Low-dimensional example

Originally, Poincar�e used the term bifurcation to describe the splitting of equilib-

rium solutions for a family of di�erential equations. Bifurcations involving only

5



equilibrium points are known as stationary or static bifurcations. There are also

bifurcations, such as Hopf bifurcation, which involve both an equilibrium point

and a periodic solution.

Consider a system

_x = f(x; �) (2.1)

where x 2 Rn is the system state and � 2 Rk denotes a k-dimensional parameter;

k can be any positive integer. In this work, we limit k to be 1 so that � is a

scalar. The equilibrium solutions are given by the solutions of the equation

f(x; �) = 0. By the implicit function theorem, as � varies, these equilibria

are smooth function of � as long as Dxf , the Jacobian matrix of f(x; �) with

respect to x evaluated at the equilibrium, does not have a zero eigenvalue. An

equilibrium point for a given parameter value is called a \stationary bifurcation

point" if two or more equilibria join at that point. A necessary condition for

(x0; �0) to be a stationary bifurcation point is that the Jacobian Dxf has a

zero eigenvalue for x = x0, � = �0. Moreover, it is also true that a necessary

condition for a local bifurcation any kind to occur is that Dxf have at least

one eigenvalue with a zero real part. For example, a pair of purely imaginary

eigenvalues typically results in a Hopf bifurcation.

Bifurcations are often classi�ed according to their codimension. The codi-

mension number is the minimum number of parameters that are needed to make

the description of the dynamics possible, in the vicinity of the singularity [47].

A rigorous de�nition of codimension can be found in [27] and [38]. After an

appropriate linear coordinate transformation, Dxf can be represented in block-
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diagonal form

Dxf =

0
BB@
Ac 0

0 As

1
CCA (2.2)

where Ac is the Jordan block corresponding to the critical eigenvalues (i.e. those

with zero real part) and As involves the remaining eigenvalues. Bifurcations

from an equilibrium of codimension one and two fall into one of the following

situations.

Codimension 1 bifurcation:

1. Ac = 0, a scalar.

2. Ac is 2� 2 and has a pair of pure imaginary eigenvalues.

Codimension 2 bifurcation:

1. Ac is 2� 2 and is nondiagonalizable with a double zero eigenvalue, that is

Ac =

0
BB@

0 1

0 0

1
CCA (2.3)

2. Ac is 2� 2 and is diagonalizable with a double zero eigenvalue, that is

Ac =

0
BB@

0 0

0 0

1
CCA (2.4)

3. Ac is 3 � 3 and has one zero eigenvalue and one pair of pure imaginary

eigenvalue, that is

Ac =

0
BBBBBB@

0 �!c 0

!c 0 0

0 0 0

1
CCCCCCA

(2.5)
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4. Ac is 4� 4 and has two pairs of pure imaginary eigenvalues, that is

Ac =

0
BBBBBBBBBB@

0 �!1 0 0

!1 0 0 0

0 0 0 �!2

0 0 !2 0

1
CCCCCCCCCCA

(2.6)

By employing what is known as center manifold reduction [38] and a normal

form transformation, system (2.1) can be reduced to a lower order simpli�ed

system called the normal forms. The normal form preserves the qualitative

properties of the solution near bifurcation. Analyzing the dynamics of normal

forms yields a qualitative picture of the solution for each type of bifurcation.

The normal forms of codimension one bifurcations are summarized as follows:

i) Saddle-node bifurcation: The normal form is given by

_x = �� x2 (2.7)

where x is a scalar variable. Equilibrium solutions exist only for � > 0 and are

given by x = �p�. The branch, x =
p
�, is stable while the other branch,

x = �p�, is unstable.
ii) Transcritical bifurcation: The normal form is given by

_x = �x� x2 (2.8)

where x is a scalar variable. The nominal equilibrium point is the origin for all

values of �. The bifurcated equilibrium solution is x = �, and exists for both

� > 0 and � < 0. For � > 0 (resp. � < 0), the bifurcated branch is stable (resp.

unstable).

iii) Pitchfork bifurcation: The normal form (for the supercritical case) is

8



given by

_x = �x� x3 (2.9)

where x is a scalar variable. Again, the origin exists as the nominal equilibrium

point for all value of �. There are two bifurcated equilibrium branches. For \+"

case in (2.9), these branches are x = �p� for � > 0, and they are both stable.

The opposite is true in the \-" case.

iv) Hopf bifurcation: The normal form is two dimensional and given by

_x = �y + x(�� (x2 + y2))

_y = �x + y(�� (x2 + y2)) (2.10)

where x and y are scalar variables. The associated bifurcated solution is a non-

constant periodic trajectory. In the \-"case in (2.10), the periodic solution occurs

for � > 0 and is stable, while in the \+" case it exists for � < 0 and is unstable.

2.1.2 Bifurcation theorems

We have the following codimension one bifurcation theorems for the system (2.1).

Theorem 2.1 (Stationary Bifurcation Theorem) Suppose f(x; �) of system (2.1)

is su�ciently smooth with respect to both x and �, and f(0; �) = 0 for all �, and

the Jacobian of f(x; �), A� := Dxf(0; �), possesses a simple eigenvalue �(�)

such that at the critical parameter value �c = 0,

�0(0) :=
d�

d�
j�=0 6= 0 (2.11)

and all the remaining eigenvalues of A0 have strictly negative real part. Then:

9



i) there is an �0 > 0 and a function

�(�) = �1� + �2�
2 +O(�3) (2.12)

such that if �1 6= 0, there is a nontrivial equilibrium x(�) near x = 0 for

each � 2 f[��0; 0)S(0; �0)g; if �1 = 0 and �2 > 0 (resp. � < 0), there

are two equilibrium points x�(�) near x = 0 for each � 2 (0; �0] (resp.

� 2 [��0; 0))

ii) Exactly one eigenvalue �(�) of the Jacobian evaluated with respect to each

of the nontrivial equilibrium points in (i) approaches 0 as � # 0 and it is

given by a real function

�(�) = �1� + �2�
2 +O(�3) (2.13)

The coe�cient �1 of this function satis�es �1 = ��0(0)�1. The nontrivial

equilibrium x� (resp. x+) is stable (resp. unstable) if �1� < 0 and is

unstable (resp. stable) if �1� > 0. Nevertheless, the bifurcation point itself

is unstable. If �1 = 0, then �2 = �2�0(0)�2, and the nontrivial equilibria

are asymptotically stable if �2 < 0 but are unstable if �2 > 0.

The assumptions of the theorem above are not generic for the case of a single

parameter �. A result that is generic Theorem 2.2 below, which gives conditions

for saddle node bifurcation. In this bifurcation, nominal, stable equilibrium

merges with another, unstable equilibrium.

To state the theorem on saddle node bifurcation, we consider system (2.1)

where f is su�ciently smooth and f(0; 0) = 0. Express the expansion of f(x; �)

in a Taylor series about x = 0; � = 0 in the form

f(x; �) = Ax + b�+Q(x; x) + � � � (2.14)

10



Note that A = Dxf(0; 0) is simply the Jacobian matrix of f at the origin for

� = 0.

(SN1) The Jacobian A possesses a simple zero eigenvalue.

(SN2) lb 6= 0 and lQ(r; r) 6= 0 where r (resp. l) is the right column (resp. row)

eigenvector of the Jacobian A associated with the zero eigenvalue, with r

and l normalized by setting the �rst component of r to 1 and then choosing

l such that lr = 1.

Theorem 2.2 (Saddle Node Bifurcation Theorem) If (SN1) and (SN2) hold,

then there is an �0 > 0 and a function

�(�) = �2�
2 +O(�3) (2.15)

such that �2 6= 0 and for each � 2 (0; �0], (2.1) has a nontrivial equilibrium x(�)

near 0 for � = �(�). The equilibrium point x = 0 is unstable at bifurcation, i.e.,

for � = 0.

Suppose that instability of the nominal equilibrium x(�0) is the result of a

pair of eigenvalues of the system linearization crossing the imaginary axis in the

complex plane. Then, as is well known [34], [42], [47], generically it will be the

case that a small amplitude periodic orbit of (2.1) emerges from the equilibrium

x0(�) at the critical parameter value. We have the following theorem for the

case.

Theorem 2.3 (Cr-Hopf Bifurcation Theorem) [34] Suppose the system (2.1)

satis�es the following conditions:

i) f�(0) = 0 for � in an open interval containing 0, and 0 2 Rn is an isolated

equilibrium point of f .

11



ii) All partial derivatives of the components f l� of the vector f of orders l � r

r � 4 (including the partial derivative with respect to �) exist and are

continuous in x and � in a neighborhood of (0; 0) in Rn �R1 space.

iii) A� := Dxf(0; �) has a complex conjugate pair of eigenvalues � and �� such

that �(�) = �(�) + j!(�), where w0 := w(0) > 0, �(0) = 0, and

�0(0) :=
d�

d�
j�=0 6= 0 (2.16)

iv) The remaining eigenvalues of A0 have strictly negative real parts.

Then:

i) There exist an �p > 0 and Cr�1 function

�(�) =

[ r�2
2

]X
i=1

�2i�
2i +O(�r�1) (0 < � < �p) (2.17)

such that for each � 2 (0; �p) there exists a nonconstant periodic solution

p�(t) with period

T (�) =
2�

!0

[1 +

[ r�2
2

]X
i=1

�2i�
2i] +O(�r�1) (0 < � < �p) (2.18)

occurring for � = �(�).

ii) There exists a neighborhood � of x = 0 and an open interval # containing

0 such that for any � 2 #, the only nonconstant periodic solutions that lie

in � are members of the family p�(t).

iii) Exactly two of the Floquet exponents of p�(t) approach 0 as � # 0. One is

0 identically, and the other is a Cr�1 function

�(�) =

[ r�2
2

]X
i=1

�2i�
2i +O(�r�1) (0 < � < �p) (2.19)
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The periodic solution p�(t) is orbitally asymptotically stable if �(�) < 0,

and is unstable if �(�) > 0. If there is a �rst nonvanishing coe�cient �p2k,

then the �rst nonvanishing coe�cient in (2.19) is given by

�2k = �2�0(0)�2k (2.20)

Moreover, there is then an �1 2 (0; �p) such that

sgn[�(�)] = sgn[�2] (2.21)

for � 2 f�j0 < �=�2k < �(�1)=�2kg. Here, sgn denotes the sign of a real

number.

2.1.3 Singularly perturbed Hopf bifurcation

Since we are also going to consider the case of Hopf bifurcation under singular

perturbation in this thesis, discussion of a basic theorem on this topic is in order.

The next theorem gives conditions that ensure persistence of Hopf bifurcation

under singular perturbation of a dynamical system. Let the full system be

_x = f(x; y; �; �)

� _y = g(x; y; �; �) (2.22)

where x 2 Rn; y 2 Rm; �; � 2 R and � is small but nonzero. Here, � is the bifur-

cation parameter and a � is the singular perturbation parameter. The associated

reduced system , obtained by formally setting � = 0 in (2.22), is

_x = f(x; y; �; 0)

0 = g(x; y; �; 0) (2.23)
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Let J(�; �) denote the Jacobian matrix

J(�; �) :=

0
BB@
Dxf Dyf

��1Dxg ��1Dyg

1
CCA (2.24)

of the full system evaluated at the equilibrium point x0(�; �); y0(�; �) of interest.

Introduce the following assumptions

(S1) f; g are Cr (r � 5) in x; y; �; � in a neighborhood of (x0; y0; 0; 0).

(S2) det Dyg(x0; y0; 0; 0) 6= 0.

(S3) The reduced system (2.23) undergoes a Hopf bifurcation from the equilib-

rium m0 = (x0; y0) for the critical parameter value � = 0.

(S4) No eigenvalue of D2g(x0; y0; 0; 0) has zero real part.

Under conditions (S1)-(S4), Abed [1] has proved the following theorem.

Theorem 2.4 (Persistence Under Singular Perturbation) Let (S1)-(S4) above

hold. Then, there is an �0 > 0 and for each � 2 (0; �0] the full system (2.22)

undergoes a Hopf bifurcation at an equilibrium m
��c;�
0 near m0 for a critical pa-

rameter value ��c near 0. We also have

lim
�!0

d

d�
Re(�1(�

�
c; �)) = �0(0) (2.25)

where �1(�; �); ��1(�; �) are the complex-conjugate eigenvalues of J(�; �) which

cross the imaginary axis for � = ��c, and where �(�) is the real part of �1.
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2.2 Multilinear Functions and the

Fredholm Alternative

2.2.1 Multilinear functions

Multivariable Taylor series expansions are used in the derivation of local stability

conditions for bifurcations. The notation of multilinear functions is convenient in

dealing with multivariable Taylor series. The following are some basic de�nitions

and properties of mulitilinear functions.

De�nition 2.1 Let V1; V2; : : : ; Vk and W be vector spaces over the same �eld.

A map  : V1 � V2 � � � � � Vk 7!W is said to be multilinear (or k-linear) if it is

linear in each of its variables. That is ([15], p. 76), for arbitrary vi; ~vi 2 Vi; i =
1; : : : ; k, and for arbitrary scalars a; ~a; we have

 (v1; � � � ; avi + ~a~vi; � � � ; vk) = a (v1; � � � ; vi; � � � ; vk)

+ ~a (v1; � � � ; ~vi; � � � ; vk) (2.26)

We refer to k as the degree of the multilinear function  . In particular, multi-

linear functions of degree two, three, and four are referred as bilinear, trilinear,

and tetralinear functions, respectively.

In the sequel, we shall deal exclusively with mulitilinear functions whose

domain is the product space of k identical vector spaces V1 = V1 = � � � = Vk = V .

For such multilinear functions, we have the following notion of symmetry.

De�nition 2.2 A k-linear function  : V � V � � � � � V !W is symmetric if,

for any vi 2 V; i = 1; : : : ; k the vector

 (v1; v2; � � � ; vk) (2.27)
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is invariant under arbitrary permutations of the argument vectors vi.

With an arbitrary multilinear function  , we associate a symmetric multi-

linear function  s by the symmetrization operation ([15], pp. 88-89). Given

a multilinear function  (x1; x2; � � � ; xk), de�ne a new (symmetric) multilinear

function  s as follows:

 s(x
1; x2; � � � ; xk) := 1

k!

X
i1;i2;���;ik

 (xi1 ; xi2 ; � � � ; xik) (2.28)

where the sum is taken over the k! permutation of the integer 1; 2; : : : ; k.

An important property of homogeneous functions represented in terms of

multilinear �ctions is given next.

Proposition 2.1 Let  : (Rm)k ! Rm be a symmetric k-linear function. For

any vector v 2 Rn,

D (�; �; � � � ; �) � v = k (�; �; � � � ; �; v) (2.29)

2.2.2 The Fredholm Alternative

Next, we consider the Fredholm Alternative. Consider the system of linear equa-

tions

Ax = b (2.30)

where A is a real n � n matrix and b 2 Rn. If the coe�cient matrix A is

nonsingular, then (2.30) has a unique solution, given by A�1b. Existence of solu-

tions for cases in which A is singular is the subject of the Fredholm Alternative.

Below, we �rst present this result for the general case of a singular coe�cient

matrix A, and then employ it for the particular case in which A has a simple

zero eigenvalue.
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Theorem 2.5 Let N(A) be k-dimensional, with basis r1; � � � ; rk, and dual basis

l1; � � � ; lk. Then (2.30) has at least one solution in Rn if and only if lib = 0 for

i = 1; : : : ; k. Moreover, in such a case, the general solution of (2.30) has the

representation

x = x0 +
kX
i=1

�ir
i (2.31)

where x0 is any particular solution of (2.30) and the �i are arbitrary real scalar.

Suppose now that A has a simple zero eigenvalue. Let r and l denote right

and left eigenvectors of A, respectively, corresponding to the zero eigenvalue,

and require that these be chosen to satisfy lr = 1. Under these conditions, the

Fredholm Alternative asserts that (2.30) has a solution if and only if lb = 0.

Moreover, the Fredholm Alternative also implies that, if (2.30) has a solution x0,

then the totality of solutions is given by the one-parameter family x = x0 + �r

where � 2 R is arbitrary. The solution is rendered unique upon imposing a

normalization condition which speci�es the value of lx.

Introduce subspaces Ec; Es 2 Rn as follows: Ec is the one-dimensional sub-

space

Ec := spanfrg (2.32)

and Es is the (n� 1)-dimensional subspace

Es := fx 2 Rnjlx = 0g (2.33)

From the foregoing, we have in particular that if lb = 0 then system Ax =

b; lx = 0 has a unique solution. Equivalently, (2.30) has a unique solution in Es

for any vector b 2 Es. This proves that the restriction AjEs of the linear map

de�nes an invertible (one-to-one and onto) map. In the next result, we exhibit

the unique solution which lies in Es of the system Ax = 0; lx = 0.
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Proposition 2.2 Suppose A has a simple zero eigenvalue. Then the unique

solution of Ax = b; lx = 0 given that lb = 0 is

x = (ATA+ lT l)�1AT b (2.34)

Therefore, the inverse of the restricted map AjEs exists and is given by

(AjEs)�1 = (ATA+ lT l)�1AT (2.35)

2.3 Stability of Bifurcated Solutions

Abed and Fu [5],[6] derived formulas for determining the local stability of bifur-

cated solutions. We review their method here since we will employ it later to

study the stability of the bifurcated solution of a system system monitored to

detect possible nearness to bifurcation.

Consider a one-parameter family of nonlinear autonomous systems

_x = f(x; �) (2.36)

where x 2 Rn is the vector state and � is real-valued parameter. Let f(x; �) be

su�ciently smooth in x and � and let x0� be the nominal equilibrium point of

the system as a function of the parameter �.

2.3.1 Stability calculation for stationary bifurcation

First, we consider the case of stationary bifurcation. The next hypothesis is in

force throughout this section.

(S) The Jacobian matrix of system (2.36) at the equilibrium x0� has a simple

zero eigenvalue �1(�) with �
0
1(0) 6= 0, and the remaining eigenvalues lie in

the open left half of the complex plane for �c = 0.
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Theorem 2.1 asserts that hypothesis (S) implies a stationary bifurcation from

x00 at � = 0 for (2.36). That is, a new equilibrium point bifurcates from x00 at

� = 0. Recall that near the point (x00; 0) of the (n+1)-dimensional (x; �)-space,

there exists a parameter � and a locally unique curve of critical points (x(�); �(�)),

distinct from x0� and passing through (x00; 0), such that for all su�cient small j�j,
x(�) is an equilibrium point of (2.36) when � = �(�).

The parameter � may be chosen such that x(�); �(�) are smooth. The series

expansions of x(�); �(�) can be written as

�(�) = �1�+ �2�
2 + � � � (2.37)

x(�) = x0� + x1�+ x2�
2 + � � � (2.38)

If �1 6= 0, the system undergoes a transcritical bifurcation from x0� at � = 0.

That is, there is a second equilibrium point besides x0� for both positive and

negative values of � with j�j small. If �1 = 0 and �2 6= 0, the system undergoes

a pitchfork bifurcation for j�j su�ciently small. That is, there are two new

equilibrium points existing simultaneously, either for positive or for negative

values of � with j�j small. The new equilibrium points have an eigenvalue �(�)

which vanishes at � = 0. The series expansion �(�) is given by

�(�) = �1� + �2�
2 + � � � (2.39)

with

�1 = ��1�0(0) (2.40)

and, in case �1 = 0, �2 is given by

�2 = �2�2�0(0) (2.41)
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The stability coe�cients �1 and �2 can be determined solely by eigenvector

computations and the coe�cients of the series expansion of the vector �eld.

System (2.36) can be written in the series form

_~x = L�~x+Q�(~x; ~x) + C�(~x; ~x; ~x) + � � �

= L0~x + �L1~x+ �2L2~x + � � �

+Q0(~x; ~x) + �Q1(~x; ~x) + � � �

+C0(~x; ~x; ~x) + � � � (2.42)

where ~x = x � x00; L�; L1; L2 are n � n matrices, Q�(x; x); Q0(x; x); Q1(x; x)

are vector-valued quadratic forms generated by symmetric bilinear forms, and

C�(x; x; x); C0(x; x; x) are vector-valued cubic forms generated by symmetric tri-

linear forms.

By assumption, the Jacobian matrix L0 has only one simple zero eigenvalue

with the remaining eigenvalues stable. Denote by l and r the left (row) and

right (column) eigenvectors of the matrix L0 associated with the simple zero

eigenvalue, respectively, where �rst component of r is set to be 1 and the left

eigenvector l is chosen such that lr = 1. It is well known that

�0(0) = lL1r (2.43)

A stability criterion for the bifurcated equilibria of system (2.42) is given in the

following two lemmas.

Lemma 2.1 The two bifurcated equilibrium points of (2.42) near x0� for � near

0, which appear only for � > 0 (resp. � < 0) when lL1r > 0 (resp. lL1r < 0),

are asymptotically stable if �1 = 0 and � < 0, and unstable if �1 = 0 and � > 0.
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Here,

�1 = lQ0(r; r) (2.44)

�2 = 2lf2Q0(r; x2) + C0(r; r; r)g (2.45)

with x2 satis�es the following equation:

L0x2 = �Q0(r; r) (2.46)

Lemma 2.2 Suppose the value of �1 given in (2.44) is negative. Then the bi-

furcated solution occurring for for � > 0 (resp. � < 0) is asymptotically stable

when lL1r > 0 (resp. lL1r < 0).

The criterion given in Lemma 2.1 corresponds to pitchfork bifurcation, with

the one in Lemma 2.2 is for transcritical bifurcation.

2.3.2 Stability calculation for Hopf bifurcation

Now consider system (2.36) under for the following hypothesis, which implies

occurrence of Hopf bifurcation

(H) The Jacobian matrix of system (2.36) at the equilibrium x0� has a pair of

pure imaginary eigenvalues �1(�c) = i!c and ��1(�c) = �i!c with !c 6= 0,

the transversality condition @Re[�(�c)]
@�

6= 0 is satis�ed, and all the remaining

eigenvalues lie in the open left half complex plane.

Theorem 2.3, the Hopf bifurcation theorem asserts the existence of a one-

parameter family p�; 0 < � � �0 of nonconstant periodic solutions of system
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(2.36) emerging from x = x0�c at the parameter value �c for su�ciently small

j���cj. Exactly one of the characteristic exponents of p� governs the asymptotic

stability and is given by a real, smooth and even function

�(�) = �2�
2 + �4�

4 + � � � (2.47)

Speci�cally, p� is orbitally stable if �(�) < 0 but is unstable if �(�) > 0. Gener-

ically the local stability of the bifurcated periodic solution p� is decided by the

sign of the coe�cient �2. Note the sign of �2 also determines the stability of

the critical equilibrium point x0�c . An algorithm for computing the stability

coe�cient �2 is given as follows:

Step1 Express (2.36) in the Taylor series form (2.42). Let r be the right eigen-

vector of L0 corresponding to eigenvalue i!c with the �rst component of

r equal to 1. Let l be the left eigenvector of L0 corresponding to the

eigenvalue i!c, normalized such that lr = 1.

Step2 Solve the equations

L0a = �1

2
Q0(r; �r) (2.48)

(2i!cI � L0)b =
1

2
Q0(r; r) (2.49)

for a and b.

Step 3 The stability coe�cient �2 is given by

�2 = 2Re[2lQ0(r; a) + lQ0(�r; b) +
3

4
lC(r; r; �r)] (2.50)
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2.4 Washout Filters in Nonlinear Control

Washout �lters are used commonly in control systems for power systems and

aircraft. The main advantage of using these �lters is the resulting robustness

of the system operating point to model uncertainty and to other control actions

which may be used. In this section, we give a brief discussion of these �lters, their

use in control of parameterized systems and especially system with bifurcation.

A washout �lter (or washout circuit) is a stable high pass �lter with transfer

function [25]

G(s) =
y(s)

x(s)
=

s

s+ a

= 1� a

s+ a
(2.51)

Here, a > 0 is the inverse of the �lter time constant. Letting

z(s) :=
1

s+ a
x(s) (2.52)

the dynamics of the �lter can be written as

_z = x� az (2.53)

and

y = x� az (2.54)

Feedback through washout �lters results in equilibrium preservation in the

presence of system uncertainties and other control mechanisms that they inher-

ently o�er. Indeed, the most striking property of a system controlled through a

washout �lter is that all the original equilibria are preserved. Equilibrium points

represent, in some sense, a system's capability to perform in a certain manner

at steady state. There are situations in which such a capability should not be
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altered by the introduced control strategy, such as in the lateral control design

for an aircraft.

Washout �lters reject steady-state inputs, while passing transient inputs. At

steady-state,

z =
x

a
(2.55)

the output y = 0, and the steady-state input signal has been washed out.

Consider a system

_x = f(x; u) (2.56)

with

f(x0; 0) = 0 (2.57)

where u is the control input and x0 is an equilibrium point for the system with

zero input. Let the control input u be a function of y (denote it u = h(y)), and

let h satisfy

h(0) = 0 (2.58)

From (2.53)-(2.54), it is clear that y vanishes in steady state. Hence

f(x0; h(y0)) = f(x0; 0) = 0 (2.59)

and x0 remains an equilibrium point of the closed-loop system. This shows that

by incorporating a washout �lter in the feedback, the equilibrium points of the

original system are preserved.

2.5 Background on the Power Spectral Density

In this section, we review the de�nition of the power spectral density of a random

process and discuss related computational aspects. We begin by recalling basic
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de�nitions from the theory of random processes. The de�nitions given next

follow Gray and Davisson [28], and the discussion of computation of the power

spectral density follows Jenkins and Watts [37].

A random process or stochastic process is an indexed family of random vari-

ables fXt : t 2 Ig de�ned on a common probability space (
; F; P ) where 


is sample space, F is a sigma �eld of a sample space 
, and P is a probability

measure on a measurable space (
; F ). The process said to be discrete-time if I

is discrete and continuous-time if the index set I is continuous.

Given a random process fXt : t 2 Ig, the autocorrelation function RX(t; s) :

t; s 2 I is de�ned by

RX(t; s) =< XtXs > (2.60)

The autocovariance function KX(t; s) : t; s 2 I is de�ned by

KX(t; s) = cov(Xt; Xs)

= RX(t; s)� (< Xt >< Xs >) (2.61)

where cov denotes covariance. Note that the autocorrelation and autocovariance

functions are equal if the process has zero mean, that is, if < Xt >= 0 for all t.

The random process is said to be weakly stationary (or wide sense stationary)

if

< Xt >=< Xs > (2.62)

for all t; s 2 I and

RX(t; t+ �) = Rx(�) (2.63)

for all t; � such that t; t+ � 2 I.
For a given weakly stationary random process fXtg with autocovariance func-

tion KX(�), the power spectral density SX(�) is de�ned as the Fourier transform
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of the autocovariance function, that is,

SX(�) =

8>><
>>:

P
kKX(k)e

�j2��; in discrete time

R
KX(�)e

�j2���d�; in continuous time
(2.64)

A weakly stationary random process fXtg is said to be white if its power

spectral density is a constant for all f , that is

SX(�) = �2X (2.65)

for all f .

Let fXtg be a weakly stationary random process, and suppose that Xt is the

input signal to a linear time-invariant system with transfer function H(�) which

represents a frequency response of a linear time-invariant system to sinusoidal

signal input. If fXtg has spectral density SX(�), then the output random process

fYtg has spectral density

SY (�) = jH(�)j2SX(�) (2.66)

To estimate the power spectrum in an experimental or computer simulation

setting, there are two important factors to consider [37]. First, the sampling

rate should be chosen such that the estimated power spectrum is valid within

the frequency range of interest 0 � � � �0. Second, the length of the record

that is needed to detect a peak in the power spectrum of width w is inversely

proportional to w. This means that a longer time history is needed for detecting a

peak of smaller width. For a �xed length of the time record, there are techniques

for improving the resolution [37, pp. 239-248]. The power spectral densities

given in the examples later in the dissertation are computed by simulation using

the Simulink package. In each case, the results were veri�ed by checking that
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variation of the record length and sampling rate did not in
uence the calculated

spectrum.
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Chapter 3

Noisy Precursors for Nonlinear

System Instabilities

In this chapter, we �rst summarize the work of Wiesenfeld [57],[58],[60] on prop-

erties of nonlinear systems with noise inputs in the vicinity of bifurcation, and

then extend these results both in scope and in concept.

The original motivation for Wiesenfeld's work was the determination of the

precise value of bias current in a nonlinear circuit for which the onset of a period

doubling instability occurs. The power spectrum of a system variable was mea-

sured. Near a period doubling bifurcation, the power spectrum would show a new

peak at half the fundamental frequency of the nominal periodic solution when

period doubling bifurcation occurred. However, substantial broad-band noise

also centered at half the fundamental frequency made precise determination of

the onset of instability impossible. This observation motivated the development

of theory which could be applied to all codimension one bifurcations of a periodic

solution.

Wiesenfeld showed that the power spectrum of a measured output for a sys-

tem operating at a periodic steady state and forced by small white Gaussian noise
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perturbations exhibits a sharply growing peak near the fundamental frequency

as the system nears a bifurcation. Then the suggested analysis was successfully

applied in signal ampli�cation area such as a resonantly driven silicon p � n

junction [36] and a modulated semiconductor laser [59].

Based on this observation, we will introduce the measured output power

spectrum as a precursor that could predict proximity to bifurcation.

3.1 Noisy Precursor for System Operating at

Limit Cycle

In this section,we will brie
y review work of Wiesenfeld on precursors for bifur-

cation for system operating at a limit cycle. We do not give the detail derivation,

since a similar derivation will be used in next section. Consider the system

_x = f(x; �) (3.1)

where x 2 Rn and � is a scalar bifurcation parameter. Suppose the system has

an asymptotically stable T�periodic solution xp for that changes with � (T can

depend on �). Thus,

xp(t+ T ) = xp(t) (3.2)

For small perturbations, the dynamical system behavior can be described by

the linearized equation of (3.1) about xp. Suppose that the noise enters as an

additive forcing term. The linearized system with noise forcing term becomes

_~x = Df(xp) _~x+ n(t) (3.3)
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where ~x := x � xp and n(t) 2 Rn is a vector white Gaussian noise with mean

zero and correlation

hni(t)nj(t+ �)i =  ij�(�) (3.4)

where the  ij are �nite constants for all i; j. Then, we can solve equation (3.3)

by using the fundamental matrix and Floquet theory. A detailed derivation is

not presented here since it is analogous to the derivation of the measured output

power spectrum for nonlinear systems operating on equilibrium point which is

presented in next section.

Using this solution and assuming that the real parts of the non critical Flo-

quet exponents of the fundamental matrix are signi�cantly larger (in magnitude)

than real parts of the critical Floquet exponents for a system near bifurcation,

Wiesenfeld [57] approximated the solution of equation (3.3) in terms of only the

imaginary axis crossing Floquet exponents.

Finally, Wiesenfeld [57] studied the power spectrum of the approximate so-

lution, focusing on changes that might occur near a bifurcation. Moreover, he

showed that di�erent types of bifurcation correspond to di�erent power spectrum

change.

Figure 3.1 from [57] shows the expected e�ects in the power spectrum for each

type of codimension one bifurcation. This �gure concerns only bifurcation from

a limit cycle, not from an equilibrium point. Note that the power spectrum for

saddle-node or transcritical bifurcation does not exhibit new peaks, but rather

has an increasing bump around the fundamental frequency (de�ned 2�
T

where

T is period). Here, fundamental frequency is assumed to be 1 except pitchfork

bifurcation that has 0.5 fundamental frequency. The other bifurcations such

as pitchfork, Hopf and period doubling bifurcation show the increasing power
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spectrum peaks at new locations.

3.2 Noisy Precursor for System Operating at

an Equilibrium Point

In this section, we consider the e�ect of noise on systems operating at an equilib-

rium point under condition that could give rise to a bifurcation. In the foregoing

section, we discussed the e�ect of noise in the analogous situation of a system

operating at a periodic solution. It was suggested that the power spectrum could

be used to indicate the closeness to bifurcation. Moreover, we saw that the power

spectrum could also be used to discern the bifurcation type such as saddle-node,

pitchfork, and Hopf bifurcation. The conclusions motivate our work this section,

where we study be the e�ect of noise on the power spectrum of system outputs

when an operating condition is near bifurcation. We follow closely the method

used in [57].

Consider the autonomous dynamic system

_~x = f(~x; �) (3.5)

where ~x 2 Rn and � is a bifurcation parameter. For small perturbations or

noise, the dynamical behavior of the system can be described by the linearized

equation near the equilibrium point x0. The linearized system corresponding to

(3.5) with a small noise forcing N(t) is given by

_x = Df(x0; �)x+N(t) (3.6)

where x = ~x � x0 and N(t) 2 Rn is a vector white Gaussian noise having zero

mean. For the results of the linearized analysis to have any bearing on the
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Figure 3.1: Power spectrum for system operating at a limit cycle near bifurcation
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original nonlinear model, we must assume that the noise is of small amplitude.

This assumption of small noise will be made clear below, in terms of smallness

of correlation and cross-correlation coe�cients.

The noiseN(t) can occur naturally or can be injected using available controls.

To facilitate consideration of cases in which the noise is intentionally injected,

we write N(t) in the general form

N(t) = Bn(t) (3.7)

where B 2 Rn�m and n(t) 2 Rm is a vector white Gaussian noise. This notation

allows us to easily consider cases in which noise is injected in di�erent equations

through available actuation means. The noise vector N(t) has zero mean as long

as n(t) has zero mean.

We view the system (3.6) as being in steady state and driven only by the

noise process. Thus, we solve for the evolution of the state assuming a zero

initial condition. The solution of equation (3.6) with a zero initial condition is

x(t) = eAt
Z t

0
e�AsN(s)ds (3.8)

where A := DF (x0). For our analysis, we assume that x0 is an asymptotically

stable equilibrium point, i.e., all the eigenvalues of A have negative real part.

We can express (3.8) in terms of the eigenvectors and eigenvalues of A:

x(t) =
nX

j=1

lj
Z t

0

nX
k=1

lkN(s)e�ksrkdse�jtrj

lirj = �ij

where ri and li are right and left eigenvectors of A corresponding to eigenvalue
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�i, respectively and where �ij is the Kronecker delta,

�ij =

8>><
>>:

0 i 6= j

1 i = j
(3.9)

Thus, the i-th component of x(t) is given by

xi(t) =
nX

j=1

e�j trji

Z t

0

nX
k=1

lkN(s)e��ksrkds (3.10)

Since the power spectrum is the Fourier transformation of the auto-covariance

function, we calculate auto-covariance for xi(t).

hxi(t)xi(t+ �)i =
nX

j=1

nX
k=1

e�j te�k(t+�)rji r
k
i

Z t+�

0

Z t

0
e��js1e��ks2

�
nX

o=1

nX
p=1

ljol
k
phNo(s1)Np(s2)ids1ds2

Let the noise have correlation characteristic

hNi(t)Nj(t+ �)i = �ij�(�) (3.11)

where �(�) is the Dirac delta function and the �ij are constants for all i; j. More-

over, �ij should be small enough such that linearized analysis is valid. Again,

(3.11) is satis�ed for the linear a�ne input system as long as n(t) satis�es

hni(t)nj(t+ �)i =  ij�(�) (3.12)

where the  ij are constants for all i; j. Then

hxi(t)xi(t+ �)i =
nX

j=1

nX
k=1

e�j te�k(t+�)rji r
k
i

Z t+�

0

Z t

0
e��js1e��ks2

�
nX

o=1

nX
p=1

ljol
k
p�op�(s1 � s2)ds1ds2

=
nX

j=1

nX
k=1

e�j te�k(t+�)rji r
k
i

Z t

0
e��jse��ks

�
nX

o=1

nX
p=1

ljol
k
p�opds (3.13)
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For a dynamic system which depends on a single parameter, there are two

types of typical bifurcation from a nominal equilibrium point. One is stationary

bifurcation in which case a new equilibrium emerges or the original equilibrium

point suddenly disappears at the bifurcation. The other is Hopf bifurcation,

where a periodic orbit emerges from the equilibrium point at bifurcation. For

stationary bifurcation, a real eigenvalue of the linearized system becomes zero

as the parameter varies. For Hopf bifurcation, a complex conjugate pair of

eigenvalues crosses the imaginary axis.

Consider the Hopf bifurcation case �rst. Assume that a complex conjugate

pair of eigenvalues (denote them as � � �1; �� � �2) close to the imaginary axis

has relatively smaller negative real part in absolute value compared to other

system eigenvalues:

jRe(�1)j; jRe(�2)j � jRe(�i)j (3.14)

for i = 3; : : : ; n. Since the integrand in (3.13) is the product of decaying ex-

ponentials (due to the asymptotic stability assumption) and a bounded value,

terms involving �1 and �2 dominate (3.13) for large t:

hxi(t)xi(t+ �)i � e�1(2t+�)(r1i )
2
Z t

0
e�2�1s

nX
j=1

nX
k=1

l1j l
1
k�ijds

+ e�2(2t+�)(r2i )
2
Z t

0
e�2�2s

nX
j=1

nX
k=1

l2j l
2
k�ijds

+ e�1(t+�)+�2tr1i r
2
i

Z t

0
e�(�1+�2)s

nX
j=1

nX
k=1

l1j l
2
k�ijds

+ e�2(t+�)+�1tr1i r
2
i

Z t

0
e�(�1+�2)s

nX
j=1

nX
k=1

l1j l
2
k�ijds

The power spectrum is measured with the use of a spectrum analyzer and

most practical spectrum analyzers perform both an ensemble average and a time

35



average. Thus, the �nal auto-covariance function is

Cii(�) � Re[hxi(t)xi(t+ �)it] (3.15)

= � � 2e
���

�
cos(!�) + � � [e

���(� cos(!�)� ! sin(!�))

2(�2 + !2)
] (3.16)

where < � >t denotes the mean over time t, and we replaced �1 = �� + i! and

�2 = ��� i! with �; ! > 0. Also, � and � are

� :=
nX

j=1

nX
k=1

l1j l
2
k�jkr

1
i r

2
i

� :=
nX

j=1

nX
k=1

l1j l
1
k�jk(r

1
i )

2 +
nX

j=1

nX
k=1

l2j l
2
k�jk(r

2
i )

2

Finally, taking the Fourier transform of equation (3.16) yields the desired

power spectrum:

Sii(�) = �
(j� + �)

(j� + �)2 + !2

+ �[
�(j� + �)

(�2 + !2)((j� + �)2 + !2))
� 1

(�2 + !2)((j� + �)2 + !2))
](3.17)

The magnitude of Sii(�) is maximum at � = ! and the maximum grows without

bound as �! 0. Moreover, as noise power (as measured by the �ij) increases, the

magnitude of Sii(�) also increases. However, since � and � a�ect Sii(�) linearly

and uniformly over frequency �, the shape of the magnitude Sii(�) doesn't change

with increasing di�erent noise power. Of course, we have assumed that the noise

is of small amplitude, so we cannot actually allow the �ij to increase without

bound.

Fig. 3.2 shows the magnitude of Sii(�) for ! = 10. Note the sharp peak

around ! = 10 that appears as � ! 0. From this observation, we can conclude

that the power spectrum peak near the bifurcation located at !, and the mag-

nitude of this peak grows as � approaches to zero. This property will be used as

a precursor signaling the closeness to Hopf bifurcation.
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Figure 3.2: Power spectrum magnitude for Hopf bifurcation when ! = 10 for

two values of �
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To study the impact of noise near a stationary bifurcation, assume that

a real eigenvalue occurs close to zero (denote it as � � �1) and that it has

relatively smaller negative real part in absolute value compared to the other

system eigenvalues:

j�1j � jRe(�i)j (3.18)

for i = 2; : : : ; n. Due to (3.18), terms with j = 1 and k = 1 dominate the

expression (3.13) for large t, so that

hxi(t)xi(t+ �)i � e�1(2t+�)(r1i )
2
Z t

0
e�2�1s

nX
j=1

nX
k=1

l1j l
1
k�ijds

Taking the time average, we get auto-covariance function

Cii(�) := hxi(t)xi(t+ �)it (3.19)

= [
nX

j=1

nX
k=1

l1j l
1
k�jk](r

1
i )

2 e
���

2�
(3.20)

Fourier transformation of (3.20) gives the desired power spectrum:

Sii(�) = [
nX

j=1

nX
k=1

l1j l
1
k�jk](r

1
i )

2 1

2�(�+ j�)
(3.21)

This equation shows that the magnitude of the power spectrum peak grows as

� approaches to zero and the location of this peak is � = 0. Fig. 3.3 shows the

magnitude of Sii(�) (3.21). Note the sharp growing peak around ! = 0 as �! 0.
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Chapter 4

Monitoring System for Detection of Proximity

to Stationary and Hopf Bifurcation

As seen in the proceeding chapter, we can expect to observe a growing peak

in the power spectrum of a measured output of a nonlinear system with white

Gaussian noise input as the system approaches a bifurcation. In the case of

Hopf bifurcation, the location of the power spectrum peak coincides with the

imaginary axis crossing frequency of the critical eigenvalues. In the case of

stationary bifurcation the power spectrum peak occurs at zero frequency. In

this chapter, we start with these observations and develop monitoring system

that yields useful precursors if proximity to bifurcation.

4.1 Transforming Stationary Bifurcation to Hopf

Bifurcation

In this section, introduce a the monitoring system that , when augmented to a

system undergoing stationary bifurcation, results in a new system that undergoes

Hopf bifurcation. Hopf bifurcation is easier to detect than stationary bifurcation
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with the and of noisy precursors. Hopf bifurcation shows a power spectrum peak

at a non zero frequency.

Consider the system

_x = f(x; �) (4.1)

and suppose following assumptions hold.

(A1) The origin is an equilibrium point of system (4.1) for all values of �.

(A2) System (4.1) undergoes stationary bifurcation at � = �c. (i.e. there is a

simple eigenvalue �(�) of Df(x0(�); �) such that for some value � = �c,

�(�c) = 0 and d�(�c)
d�

6= 0)

(A3) All other eigenvalues of Df(0; �c) are in the open left half complex plane.

Let the augmented system corresponding to (4.1) be

_xi = f(x; �)� cyi

_yi = cxi (4.2)

Here, y 2 Rn, c 2 R and i = 1; 2; : : : ; n.

Proposition 4.1 Under assumptions (A1)-(A3), the augmented system (4.2)

experiences Hopf bifurcation at � = �c. Moreover, if for any value of � the

origin of the original system (4.1) is asymptotically stable (resp. unstable), then

the origin is asymptotically stable (resp. unstable) for the augmented system

(4.2).

Proof: Denote by A the Jacobian matrix for system (4.1) at the origin. Clearly,

the origin (0; 0) in R2n is an equilibrium point of the augmented system (4.2).
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The Jacobian matrix of the augmented system (4.2) at the origin is

D =

2
664
A �cI
cI 0

3
775 (4.3)

Let � be any eigenvalue of A and r the corresponding right eigenvector. Also,

denote by � any eigenvalue of D and the associated eigenvector by v = [v1 v2]
T .

Then,

�v1 = Av1 � cv2 (4.4)

�v2 = cv1 (4.5)

We seek a solution for which v1 = r. From (4.5), we have

v2 =
c

�
r (4.6)

Substituting (4.6) into (4.4) and using r 6= 0, we get

�2 � ��+ c2 = 0 (4.7)

Thus, any eigenvalue � of A has corresponding to it two eigenvalues of D, which

are the solutions of quadratic equation, above:

� =
��p

�2 � 4c2

2
(4.8)

Thus, the eigenvalues of the that Jacobian matrix of the augmented system (4.2)

are

�2i�1;2i =
�i �

q
�2
i � 4c2

2
i = 1; 2; : : : ; n (4.9)

where �i; i = 1; : : : ; n are the eigenvalues of A. Let the eigenvalue of A that

becomes 0 be �1. At � = �c, the eigenvalues of the augmented system associated

with �1 are (using (4.7)) a pair of pure imaginary eigenvalues at �c

�1; �2 = �cj (4.10)
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Note that the pair of pure imaginary eigenvalues (4.10) depends on c.

For a Hopf bifurcation to occur, the crossing complex conjugate pair of eigen-

values should satisfy the transversality condition. From the quadratic equation

(4.7) and using the fact that �1 = 0 at � = �c, we have

dRe(�1)

d�
=

1

2

d�1

d�
(4.11)

At � = �c. Since �1 = 0 and d�1
d�

6= 0 at � = �c from assumption (A2), (4.11)

implies dRe(�1)
d�

= 1
2
d�1
d�

6= 0 (i.e., the transversality condition hold for system

(4.2)). Therefore, the augmented system (4.2) undergoes Hopf bifurcation from

the origin at � = �c.

The last step in the proof consists in showing that all other eigenvalues of the

matrix D are in the open left half complex plane. Any pair of eigenvalues of D

can be obtained from (4.9). For a real eigenvalue of A, it is clear from (4.9) that

the corresponding pair of eigenvalues of D have negative real part if �i < 0 since

�i < Re[
q
�2
i � 4c2]. For a complex conjugate pair of eigenvalues of A (denote

them as 
; �
), we have following the two equations:

�2 � 
� + c2 = 0 (4.12)

�2 � �
� + c2 = 0 (4.13)

Multiply (4.12) and (4.13) to get the following fourth order equation:

�4 � (
 + �
)�3 + (2c2 + 
�
)�2 � c2(
 + �
)�+ c4 = 0 (4.14)

Denoting 
 = a+ bj and �
 = a� bj, equation (4.14) simpli�es to

�4 � 2a�3 + (2c2 + a2 + b2)�2 � 2ac2�+ c4 = 0 (4.15)
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Applying the Routh-Hurwitz criterion [25] to (4.15), we obtain the Routh array

s4 1 2c2 + a2 + b2 c4

s3 �2a �2ac2 0

s2 3c2 + a2 + b2 c4 0

s1 �2ac2(2c2+a62+b2)
3c2+a2+b2

0 0

s0 c4 0 0

From assumption (A3), a < 0. This guarantees that all the entries in the �rst

column of Routh array are positive. Therefore, all eigenvalues of the Jacobian

matrix of the augmented system have negative real part.

From forging discussion, it is also clear that any eigenvalue of A has positive

real part, then the corresponding eigenvalues of D also have positive real part.

This proves that if the original system is unstable, then the augmented system

is also unstable. 2

Note that by changing the value c in equation (4.2), we can control the

crossing frequency of the complex conjugate pair of eigenvalues of the augmented

system. Thus, for detecting stationary bifurcation, we only need to monitor a

frequency band around the value c , which we control.

There are some other advantages of our monitoring system. The augmented

system (4.2) has the same critical parameter value (�c) as the original system.

This is actually not a luxury but a necessity for the system to be practically

useful. In addition, the �nal part of the proof shows that augmenting the state

yi and applying the feedback cyi to the original system does not change stability

of the system. Moreover, use of design does not require knowledge of the original

system. However, there are some restriction to apply to suggested system to
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general nonlinear system. We will discuss this in the some of the following

sections.

We assumed that in the original system the stationary bifurcation, the transver-

sality condition is satis�ed. It is not the case for saddle node bifurcation. For a

saddle-node bifurcation, the augmented system of this section results in a degen-

erate Hopf bifurcation. The possible bifurcation diagrams for degenerate Hopf

bifurcation are more complex than for Hopf bifurcation [47], [32]. However, for

the purposes of the power spectrum precursor it is enough that a new peak in

the power spectrum appears near bifurcation.

4.2 Detection Hopf Bifurcation using Monitor-

ing System

In this section, we consider the e�ect of the monitoring system of the proceed-

ing section on a system which undergoes Hopf bifurcation instead of stationary

bifurcation. Consider again the system (4.1), repeated here for convenience:

_x = f(x; �) (4.16)

(A1)
0

The origin is an equilibrium point of (4.16) for all values of �.

(A2)
0

System (4.16) undergoes a Hopf bifurcation from the origin for � = �c.

(A3)
0

All other eigenvalues of Df(0; �c) are in the open left half complex plane.
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Let the augmented system be

_xi = fi(x; �)� cyi

_yi = cxi (4.17)

where x 2 Rn, y 2 Rn, c 2 R, and i = 1; 2; : : : ; n.

Proposition 4.2 Under the assumptions (A1)
0

-(A3)
0

, the augmented system

(4.17) undergoes a codimension two bifurcation at � = �c, in which two complex

conjugate pair of eigenvalues cross the imaginary axis. Moreover, for any value

of � if the origin of the original system is asymptotically stable (resp. unsta-

ble), then the origin is asymptotically stable (resp. unstable) for the augmented

system.

Proof: First, we show that the augmented system has two pair of pure imaginary

eigenvalues at the origin for � = �c, and that these eigenvalues satisfy the

transversality condition.

From assumption (A2)
0

, the Jacobian matrix of the original system at the ori-

gin has a pair of pure imaginary conjugate eigenvalues (denote them by j!;�j!)
for � = �c. From the proof of Proposition 4.1, it is clear that each of these eigen-

values results in a pair of eigenvalues for the augmented system which are the

solutions of the following equations

�2 � j!�+ c2 = 0 (4.18)

�2 + j!�+ c2 = 0 (4.19)

By multiplying the equations above, we get a fourth order equation the solutions

of which are eigenvalues of augmented system:

�4 + (2c2 + !2)�2 + c4 = 0 (4.20)

46



The four solutions of the equation above are given by

� = �
q
�2c2 � !2 �p

4c2!2 + !4

p
2

(4.21)

Note that 2c2 + !2 >
p
4c2!2 + !4 for all c; ! 2 R. Therefore, the Jacobian

matrix of the augmented system has two pairs of pure imaginary conjugate

eigenvalues at the critical parameter value.

To check the transversality condition, consider the eigenvalues for � near �c.

Near � = �c, we have the following fourth order equation the solutions of which

result from the pair of complex conjugate eigenvalues (� � !j) of the original

system (see (4.14)):

�4 � 2��3 + (2c2 + �2 + !2)�2 � 2c2� + c4 = 0 (4.22)

Since � is close to �c, by continuity it follows from above that this equation has

two pairs of complex conjugate eigenvalues as its solutions for � near �c. Denote

these as e�fj; g�hj. Then, we have (4.24) from relationship between solutions

of equations and its coe�cients.

�2� =
4X

i=1

�i = e+ g (4.23)

�2c2� =
4X

i;j;k=1

i6=j 6=k

�i�j�k = 2g(e2 + f 2) + 2e(g2 + h2) (4.24)

where �i; �j; �k are roots of (4.22). Take the derivative of both sides of the

equations above with respect to � and evaluate at � = �c (e = g = 0, � =

0,
2 = c� a), giving

de

d�
+
dg

d�
= �2d�

d�

h2
de

d�
+ f 2

dg

d�
= �c2d�

d�
(4.25)
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Solve equations (4.25) for dg

d�
; de
d�
. Also, h and f are not 0 at the critical point

from (4.21) and f 6= h at the critical point if c 6= 0. These conditions guarantee

that if d�
d�
6= 0 , then dg

d�
6= 0; de

d�
6= 0.

The last step in the proof consists in showing that all other eigenvalues of

Jacobian matrix D of (4.17) in the open left half complex plane. Note that we

have same form of matrix D as in proof of Proposition 4.1.

D =

2
664
A �cI
cI 0

3
775 (4.26)

where all noncritical eigenvalues of A have negative real part. We can use the

same procedure as in Proposition 4.1 to prove that if all noncritical eigenvalues of

A have negative real part, then all corresponding eigenvalues of D have negative

real part.

It is also clear that if any eigenvalue of A has positive real part, then the

corresponding eigenvalues of D also have positive real part. This proves that if

the original system is unstable, then the augmented system is also unstable. 2

Since two pairs of eigenvalues of the augmented system cross the imaginary

axis at the critical parameter value, we can expect to see two peaks in the power

spectrum as the system nears the bifurcation point. From (4.21), we see that

values of the pairs of imaginary eigenvalues at criticality depend on c. Hence, we

can change the location of the power spectrum peaks by changing c. Moreover,

we can predict the exact locations of the peaks if the imaginary axis crossing

pair of eigenvalues of the original system are known.

However, the augmented system undergoes a codimension two bifurcation.

Thus, the post-bifurcation behavior is complicated. The nature of the bifurcation
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depends strongly on f(x; �). The detailed possible bifurcation diagrams for the

corresponding normal form can be found in [13], [27], [38] and [31].

4.3 Reduced Order Monitoring System

There are some drawbacks of the monitoring system approach presented in the

preceding two sections. Most crucial of these is that it requires that all of the

original system states be measured and fed back through the augmented system.

This is not be practical for many systems. In this section, we show that for

some classes of nonlinear systems we can apply a similar monitoring system

without needing feedback of all the original system states. This is achieved by

supposing the original system has an inherent time-scale structure, i.e., that

it is in singularly perturbed form or the system with a�ne input has linearly

decoupled Jacobian matrix.

4.3.1 Monitoring system for singularly perturbed system

Consider a general singular perturbation problem �rst. Let the full system be

of the form

_x = f(x; z; �; �)

� _z = g(x; z; �; �) (4.27)

where x 2 Rn, z 2 Rm, �; � 2 R and � is small but positive. The reduced system

is obtained by formally setting � = 0 in (4.27), giving

_x = f(x; z; �; 0)

0 = g(x; z; �; 0) (4.28)
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Let m0 = (0; z0) be an equilibrium point of the reduced system. Also, assume

(H1) m0 = (0; z0) is an equilibrium point of (4.28) for all values of �.

(H2) f; g; are Cr(r � 5) in x; z; �; � in a neighborhood of (m0; 0; 0).

(H3) det(D2g(0; z0; 0; 0)) 6= 0.

(H4) The reduced system undergoes a stationary bifurcation at m0 for the crit-

ical parameter value � = �c.

(H5) No eigenvalue of Dzg(0; z0; 0; 0) has zero real part.

Let the augmented system corresponding to (4.27) be

_x = f(x; z; �; �)� cy

_y = cx

� _z = g(x; z; �; �) (4.29)

Proposition 4.3 Let (H1)-(H5) above hold. Then there is an �0 > 0 and for

each � 2 [0; �0] the augmented system (4.29) undergoes a Hopf bifurcation at an

equilibrium m
��c;�
0 near m0 for a critical parameter value ��c near �c.

Proof: By virtue of Theorem 2.4 an persistence of Hopf bifurcation under singular

perturbation, we only need to show that the reduced system corresponding to

(4.29) undergoes a Hopf bifurcation at (0; 0; z0) at the critical parameter value

� = �c. The reduced system

_x = f(x; z; �; 0)� cy

_y = cx

0 = g(x; z; �; 0) (4.30)

50



Since the original reduced system (4.28) undergoes a stationary bifurcation, we

can apply Proposition 4.1 to (4.30) to show that the reduced augmented system

(4.30) undergoes Hopf bifurcation at the critical parameter value � = �c. And

then, The remainder of proof follows as for the Theorem 2.4.2

Proposition 4.3 is useful because it implies that we only have to augment

and feed back slow states in a two-time scale system to transform stationary

bifurcation into Hopf bifurcation.

4.3.2 Monitoring system for the system with linearly de-

coupled Jacobian matrix

In this section, we consider a nonlinear a�ne control system which has linearly

decoupled Jacobian matrix at origin. For those system, we introduce new re-

duced order monitoring system.

Let this nonlinear a�ne control system be

_x = f(x; �) +
nX
i=1

gi(x)ui (4.31)

where gi is smooth function of xi and each ui is an input which will be used

to feedback the augmented states. If the controls ui = 0 for i = 1; : : : ; m, the

system becomes

_x = f(x; �) (4.32)

The following assumptions on (4.31) and (4.32) are used in Proposition 4.4 below.

(B1) The origin is an equilibrium point of (4.32) for all �.

(B2) System (4.32) undergoes stationary bifurcation at � = �c (i.e., the uncon-

trolled system experiences stationary bifurcation).
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(B3) Besides the critical zero eigenvalue, all other eigenvalues of the system

linearization are in the open left half complex plane for � = �c.

(B4) The Jacobian matrix of the system at origin for � = �c has the form

A :=

2
664
A11 0

A21 A22

3
775 (4.33)

where A11 2 Rl�l with l � m. Moreover, the zero eigenvalue of the system

at criticality is an eigenvalue of the A11.

(B5) The subspace D(x) = spanfgi(x) : i 2 1; : : : ; mg has constant dimension

k > l for all x in a neighborhood of the origin.

Proposition 4.4 Introduce the augmented system

_x = f(x; �) +
nX
i=1

gi(x)u
�
i

_y = c
�
I 0

�
x (4.34)

where x 2 Rn, y 2 Rl, c 2 R, and I is l� l identity matrix. Under assumptions

(B1)-(B5), the augmented system (4.34) undergoes Hopf bifurcation at � = �c

with input u� = �cKy. Here, c 2 R and K 2 Rm�l satis�es

G(0)K =

2
664
I

0

3
775 (4.35)

Here, G(0) = [g1(0); � � � ; gm(0)] and I is l � l identity matrix. In addition, if

origin is asymptotically stable for the original system, then the origin is asymp-

totically stable for the augmented system.
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Proof: Because of assumption (B4), there exists an K satis�es (4.35). Then, the

Jacobian matrix of the augmented system with u� is

D =

2
6666664

A11 0 �cI
A21 A22 0

cI 0 0

3
7777775

(4.36)

Since interchanging rows and columns does not e�ect the eigenvalues of a matrix,

we reformulate D as follows:

~D =

2
664

D1 0

A21 0 A22

3
775 (4.37)

where

D1 =

2
664
A11 �cI
cI 0

3
775 (4.38)

Since the set of eigenvalues of ~D is the union of the eigenvalues of D1 and of

A22, we can now show that the system undergoes Hopf bifurcation by applying

Proposition 4.1 to D1. It is also clear that the origin is asymptotically stable

for the augmented system as long as it is asymptotically stable for the original

system from the proof of Proposition 4.1. 2

If we have system which is the case with (4.31) under assumption (B4) and if

system experiences stationary bifurcation, then we can transform the bifurcation

into a Hopf bifurcation with reduced order augmented states. In the extreme

case, we need only a single augmented state if the dimension of A11 is one. It also

have advantage over multi-dimension A11 which will be illustrated with some ex-

ample in section 5.2. For those system which is not decoupled as (B4), we could

try coordinate transform which render the system into desired form. However,

detailed knowledge of the system is needed to �nd such a transformation.
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4.4 Stability of Bifurcated Periodic Solution for

the Augmented System

In this section, we consider the stability of bifurcated solutions of the augmented

system. We have shown in previous section that the proposed monitoring system

renders stationary bifurcation into Hopf bifurcation.

We will investigate in this section the stability of the bifurcated periodic

orbit if the original system undergoes either supercritical or subcritical pitchfork

bifurcation.

Let the system be

_x = f(x; �) (4.39)

where x 2 Rn is the state vector and � 2 R is the bifurcation parameter.

Suppose that at the critical parameter value � = �c, the Jacobian matrix of

(4.39) evaluated at the equilibrium point x0 = 0 has one zero eigenvalue.

Consider the case in which n = 1, that is, let the dimension of the state vector

of (4.39) be one. Also, suppose system (4.39) undergoes a pitchfork bifurcation.

It is easy to see that left (l) and right (r) eigenvector corresponding to the simple

zero eigenvalue at criticality can be taken as any nonzero constants. Set r = 1

and l = 1 such that r and l satisfy lr = 1 and the �rst component of r is one.

Lemma 2.1 then applies. From the assumption that system (4.39) undergoes

pitchfork bifurcation, we have

�1 = lQ(r; r) =
@2f

@x2
(0) = 0 (4.40)

Thus, Q(r; r) is zero. Recall that �2 is given by

�2 = 2lf2Q0(r; x2) + C0(r; r; r)g (4.41)
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where x2 is

x2 = (RTR)�1RT (�Q(r; r)) (4.42)

with R given by

R :=

0
BB@
L0

l

1
CCA (4.43)

where L0 is the Jacobian matrix of (4.39) at criticality. Since Q(r; r) = 0, we

have x2 = 0. Thus, �2 becomes

�2 = 2lC0(r; r; r) =
2

3!

@3f

@x3
(0) (4.44)

The augmented system corresponding to the system (4.39) is

_x = f(x; �)� cy

_y = cx (4.45)

where x; y; � 2 R. We have shown that the augmented system undergoes Hopf

bifurcation if the original system undergoes pitchfork bifurcation. To check the

stability of the bifurcated periodic solution of (4.45), we only have to check the

sign of the Hopf bifurcation stability coe�cient �2 (2.50). At criticality, the

Jacobian matrix of (4.45) is

L0 :=

2
664
0 �c
c 0

3
775 (4.46)

The matrix L0 has an eigenvalue cj with corresponding right eigenvector r =�
1 �j

�T
and left eigenvector l = 1

2

�
1 j

�
, respectively. Eigenvalue �cj

has right eigenvector �r and left eigenvector �l, respectively. Note that higher

order terms only come from f(x; �) and they are not a function of y. From this
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observation, we have

Q((x; y); (x; y)) =

0
BBBBBB@

1
2!

�
x y

� 2664
@2f

@x2
(0) 0

0 0

3
775

2
664
x

y

3
775

0

1
CCCCCCA

=

0
BB@

1
2
@2f

@x2
(0)x2

0

1
CCA =

0
BB@

0

0

1
CCA (4.47)

where we used the equation (4.40). Equation (4.47) implies that Q(r; �r) and

Q(r; r) are equal to zero. Therefore, a = 0 and b = 0 are solution of (2.48) and

(2.49), respectively. Hence, �2 of (4.45) becomes

�2 = 2Re[
3

4
lC(r; r; �r)] = 2

3

4

1

3!

@2f

@x3
(0) (4.48)

since higher order terms only come from f(x; �) and they are not function of y.

Note that a sign of (4.44) are equal to a sign of (4.48). We have following

proposition as a result.

Proposition 4.5 Consider the system (4.39) is of �rst order, i.e., n=1. If the

original system (4.39) undergoes a supercritical pitchfork bifurcation (respectively

a subcritical pitchfork bifurcation), then the transformed system (4.45) undergoes

a supercritical Hopf bifurcation (respectively a subcritical Hopf bifurcation).

Next, we are going to consider the case when n � 2, that is, dimension of

original system is 2 or higher. We use an example to show that a supercritical

pitchfork bifurcation (resp. a subcritical pitchfork bifurcation) need not result

in a to supercritical Hopf bifurcation (resp. a subcritical Hopf bifurcation) by

using the monitoring system proposed in the preceding sections.
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To this end, consider the example

_x1 = ��x1 � x31 + x1x2

_x2 = �x2 + kx21 (4.49)

where � 2 R is a bifurcation parameter and k 2 R is a constant. It is easy to

see that the origin is an equilibrium point for all parameter values � and that a

pitchfork bifurcation occurs for � = 0. Moreover, a simple calculation shows that

�2 for this pitchfork bifurcation is -1. This implies that system (4.49) undergoes

a supercritical pitchfork bifurcation at � = 0.

The augmented system corresponding to (4.49) is

_x1 = ��x1 � x31 + x1x2 � cy1

_y1 = cx1

_x2 = �x2 + kx21 � cy2

_y2 = cx2 (4.50)

The Jacobian matrix of (4.50) evaluated at the origin at criticality is

2
66666666664

0 �c 0 0

c 0 0 0

0 0 �1 �c
0 0 c 0

3
77777777775

(4.51)

This matrix has eigenvalue ci with corresponding right eigenvector r =
�
1 �j 0 0

�T

and left eigenvector l = 1
2

�
1 j 0 0

�
. The eigenvalue �cj has right eigen-

vector �r and left eigenvector �l. The Taylor series expansion of the right side of
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(4.50) has the following quadratic and cubic terms:

Q((x; y); (x; y)) =

2
66666666664

x1x2

0

kx21

0

3
77777777775

C((x; y); (x; y); (x; y)) =

2
66666666664

�x31
0

0

0

3
77777777775

(4.52)

Therefore, we have

Q(r; �r) = Q(r; r) =

2
66666666664

0

0

k

0

3
77777777775

C(r; r; �r) =

2
66666666664

�1
0

0

0

3
77777777775

(4.53)

By solving (2.48) and (2.49), we have

a =
�
0 0 0 �k

c

�T

b =
�
0 0 kj

2j�3c
k

2j�3c

�T
(4.54)

Putting these values into (2.50), �2 for the system (4.50) is

�2 = �3

4
+

k

4 + 9c2
(4.55)
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For some large positive k, �2 becomes positive. Thus, the augmented system

(4.50) undergoes a subcritical Hopf bifurcation for such value of k.

Thus, for n � 2 if the original system undergoes a supercritical pitchfork

bifurcation (resp. a subcritical pitchfork bifurcation), then the augmented sys-

tem need not undergo a supercritical Hopf bifurcation (resp. a subcritical Hopf

bifurcation).

4.5 Nonlinear Monitoring System Ensuring Sta-

bility

In this section, we modify our monitoring system such that if original system

undergoes pitchfork bifurcation for any type with mild assumption which will

be speci�ed later, then new nonlinear monitoring system undergoes supercritical

Hopf bifurcation, that is, a bifurcated periodic solution is a stable limit cycle.

Consider the following system assumed to undergo a pitchfork bifurcation for

� = �c.

_x = f(x; �) (4.56)

Here, x 2 Rn and � 2 R is the bifurcation parameter. Denote rs and ls as a

right eigenvector and left eigenvector corresponding to a simple zero eigenvalue

at � = �c, respectively. Take �rst component of rs to be 1 and impose the

normalization lsrs = 1.

Consider the following augmented system

_xi = fi(x; �)� cyi

_yi = cxi �mx21yi (4.57)
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where m is a real constant. At criticality, it has Jacobian matrix

D :=

2
664
A �cI
cI 0

3
775 (4.58)

where A is the Jacobian matrix of (4.56). Employing Proposition 4.1, it is easy

to show that the augmented system (4.57) undergoes Hopf bifurcation and D

has eigenvalue �ci. Moreover, the right and left eigenvectors of D corresponding

eigenvalue cj are given by

r =
�
rs �jrs

�T

l =
�
ls jls

�
(4.59)

Also, the right and left eigenvectors corresponding to the eigenvalue �cj are

given by �r and �l, respectively.

The stability of the bifurcated periodic solution of augmented system is de-

termined by the sign of �2 (2.50):

�2 = 2Re[2lQ0(r; a) + lQ0(�r; b) +
3

4
lC(r; r; �r)] (4.60)

Since there are no quadratic terms in yi in the augmented system (4.57), �2 of

(4.57) simpli�es to

�2 = 2Re[2lsQf (r; a) + lsQf (�r; b) +
3

4
lC(r; r; �r)] (4.61)

where Qf(�; �) denotes a quadratic term of f(x; �c). Moreover, we can simplify

lC(r; r; �r) = lsCf(r; r; �r) + jlsCy(r; r; �r)

= lsCf(r; r; �r)� m

2

nX
i=1

lisr
i
s(r

1
s)

2 (4.62)

where Cf(x; x; x) are cubic part of f(x; �c) and r
i
s and l

i
s denotes the i-th compo-

nent of rs and ls, respectively. Since the �rst component of r1s is 1 and lsrs = 1,
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(4.62) reduces to

lC(r; r; �r) = lsCf(r; r; �r)� m

2
(4.63)

Hence, �2 becomes

�2 = 2Re[2lsQf (r; a) + lsQf(�r; b) + lsCf(r; r; �r)]� m

2
(4.64)

By choosing m large enough and positive, we can make �2 negative. This will

imply that the augmented system (4.57) undergoes a supercritical Hopf bifurca-

tion.

Here, we suggested only one of many possible methods which renders bifur-

cated periodic orbit stable. Note that we added a nonlinear term only to the

dynamics of the augmented states yi not the physical system states xi. This

implies that we have freedom to choose m to be any value.

4.6 Monitoring System for Equilibrium Point

Not at the Origin

We have shown that using the augmented system results in a Hopf bifurcation

if the original system undergoes a stationary bifurcation. However, the scheme

used places a strict requirement on the system. In the assumptions of Proposition

4.1, note that (A1) demands that the origin be an equilibrium point of the system

for all parameter values. This assumption is invoked so that the equilibrium

point of the original system is not changed through adding state feedback. In

this section, we attempt to remove assumption (A1). It will become clear at

the end of the section that removing (A1) comes at some expense in terms of

simplicity of the results.
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Let's assume that equilibrium point of system (4.1) of interest does not lie

at the origin, and that it changes as � varies. Then the augmented system has

equilibrium point that di�ers from the original system. As a matter of fact,

(0; y0) becomes a new equilibrium point for augmented system (4.2), where y0

solves f(0; �)� cy = 0. This sudden change in the equilibrium point is highly

undesirable. It can result in unstable equilibrium point, or in some cases we sim-

ply prefer not to change the nominal operating point. Therefore, an alternative

augmented system for monitoring for nearness to instability is presented next.

The new system is motivated by washout �lters, discussed in Section 2.4.

Consider the augmented system

_xi = fi(x; �)� cyi

_yi = cxi + azi

_zi = yi (4.65)

where i = 1; 2; : : : ; n and a; c 2 R.

Proposition 4.6 Assume the original system (4.1) satis�es (A2) and (A3) with

an equilibrium point x0 not necessarily at the origin. Then the augmented system

(4.65) undergoes a codimension 2 bifurcation at � = �c. At criticality, the

linearization of (4.65) possesses one simple zero eigenvalue and a pair of pure

imaginary eigenvalues.

Proof: The equilibrium point of the augmented system (4.65) is (x0; 0; z0), where

z0 is solution of cxi + azi = 0. Note that new augmented system keeps x0 as a

component of this equilibrium point. The Jacobian matrix of (4.65) evaluated
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at this equilibrium point is

D =

2
6666664

A �cI 0

cI 0 aI

0 I 0

3
7777775

(4.66)

where A is the Jacobian matrix of the original system evaluated at x0. Let �

be any eigenvalue of A and r corresponding eigenvector. Also, assume � is an

eigenvalue of D with eigenvector v = [vT1 vT2 vT3 ]
T . Then

�v1 = Av1 � cv2 (4.67)

�v2 = cv1 + av3 (4.68)

�v3 = v2 (4.69)

Attempt a solution v for which v1 = r. Solve (4.68) and (4.69) for v2 and v3 in

terms of r, we get

v2 =
c�

�2 � a
r

v3 =
c

�2 � a
r

Substituting the equation for v2 into (4.67), gives

�3 � ��2 + (c2 � a)�+ a� = 0 (4.70)

Since one eigenvalue of A becomes 0 at � = �c, we can set � = 0 to get following

equation for the expected pair of eigenvalues system at criticality:

�3 + (c2 � a)� = 0 (4.71)

If we choose a < 0, then D has eigenvalues 0;�pc2 � a j which correspond to

the zero eigenvalue of the original system criticality.
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Next, we check the transversality condition. Equation (4.70) which corre-

sponds to crossing simple real eigenvalue of original system has one real and a

pair of complex conjugate as its solution near the critical point. Denote � as the

real eigenvalue and � � 
j as the pair of complex conjugate eigenvalue. Solving

this notation in (4.70) and separating real and imaginary parts, we obtain

� + 2 � � = ��

�(�2 + 
2) = �a (4.72)

Di�erentiating these equations with respect to �, gives

d�

d�
+ 2

d�

d�
= �d�

d�
d�

d�
(�2 + 
2) + 2

d�

d�
�� + 2

d


d�

� =

d�

d�
a (4.73)

At the critical parameter value � = �c, � = 0, � = 0, and 
2 = c2 � a. Thus, at

� = �c,

d�

d�
+ 2

d�

d�
= �d�

d�
d�

d�
(c2 � a) =

d�

d�
a (4.74)

Solving these equations for d�

d�
, gives

d�

d�
= �1

2

c

c2 � a

d�

d�
(4.75)

which is nonzero if d�
d�
6= 0 and a < 0.

As was the case with proposition 4.1, the �nal step in the proof consists

of showing that all other eigenvalues of the matrix D are in the open left half

complex plane. There are three eigenvalues of D which correspond to one nega-

tive real value eigenvalue of A and these eigenvalues are solutions of the (4.70).
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By using the Routh-Hurwitz criterion, we can show that solutions of equation

(4.70) in C� if the corresponding real eigenvalue of A is in C�. For the complex

conjugate pair of eigenvalues of A (
; �
), we have following two equations

�3 � 
�2 + (c2 � a)�+ a
 = 0 (4.76)

�3 � �
�2 + (c2 � a)�+ a�
 = 0 (4.77)

Multiply (4.76) and (4.77) to get the sixth order equation

�6 � (
 + �
)�5 + (2(c2 � a) + 
�
)�4 + (
 + �
)(2a� c2)�3

+ ((c2 � a)2 � 2a
�
)�2 + (c2 � a)a(
 + �
)�+ a2
�
 = 0 (4.78)

By applying the Routh-Hurwitz criterion to (4.78), we can show that all solu-

tions of (4.78) are in the open left half complex plane if Re(
) is negative (details

are in Appendix A). 2

We have proved that the new augmented system (4.65) with nominal equi-

librium not necessarily at the origin replaces a stationary bifurcation with a

codimension two bifurcation. Note that the system has the same critical pa-

rameter value for the original system and the augmented system. In addition,

the crossing eigenvalues at critical point are located 0 and �pc2 � a j. Also,

note that an original simple zero eigenvalue persists under the augmentation.

Thus, monitoring system helps by introducing j! axis eigenvalue in addition

to the zero eigenvalue. Hence, we can expect that the power spectrum peaks

near bifurcation to be located at 0 and
p
c2 � a. By varying c and a (both

tunable parameters), we could relocate the peak at
p
c2 � a to any desired loca-

tion. This 
exibility gives more assurance to say that peak of power spectrum is

caused by closeness to instability rather than other factors such as certain noise

65



burst at that speci�c frequency. However, this new augmented system (4.65)

also comes with some disadvantage compared to the system Proposition 4.1. In

Proposition 4.1, we transform a stationary bifurcation into a Hopf bifurcation.

In other words, the system has a periodic orbit as its solution instead of a new

equilibrium point near of bifurcation. In comparison to the previous augmented

system design (4.2), the new augmented system (4.65) shows more complicated

bifurcation behavior [31]. The system is no longer guaranteed to have a periodic

orbit as a solution near bifurcation. Either a periodic orbit or a new equilibrium

point could result at bifurcation. The bifurcation diagram depends strongly on

the vector �eld f(x; �). However, it may be possible that augmented system has

desired bifurcation diagram by introducing some nonlinear terms into augmented

states. Of course, to do that we have detail knowledge on f(x; �). Details on

codimension two bifurcations can be found in Guckenheimer [31]. However, for

the purpose of monitoring, it is enough to have a discernible power spectrum

peak when the system approaches instability.

The next proposition asserts that the new augmented system also works

for singular perturbation case with fewer states needed to be fed back. Only

di�erence from previous singular perturbation case is that we no longer requires

(H1) of Section 4.3. Using the same notation in the Section 4.3, we have the

following proposition.

Proposition 4.7 Let (H2)-(H5) in Section 4.3 hold for the system (4.1). Then

there is an �0 > 0 and for each �0 2 [0; �0] the following extended system undergoes

a codimension 2 (one real and a pair of complex eigenvalues crossing) bifurcation

at an equilibrium m
��c;�
0 near m0 for a critical parameter value ��c near �c.

_xi = fi(x; z; �; �)� cyi
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_yi = cxi + awi

_wi = yi

� _z = g(x; z; �; �) (4.79)

where i = 1; 2; : : : ; n.

Proof: By direct application of Proposition 4.6 and Theorem 7 of [1]. 2

We are going to just state following proposition without detail proof for the

nonlinear a�ne control system since it is direct a result of proposition 4.4 and

proposition 4.6. Here, we no longer need assumption (B1) which assumes origin

remains a equilibrium point for all parameter value �. The next proposition

refers to the following augmented system:

_x = f(x; �) +
nX
i=1

gi(x)u
�
i

_y = c
�
I 0

�
x + dz

_z = y (4.80)

where x 2 Rn, y 2 Rl, c 2 R, and I is l � l identity matrix. We have new

assumption (B5)' to replace assumption (B5) in Section 4.3.

(B5)' The subspace D(x) = spanfgi(x) : i 2 1; : : : ; mg has constant dimension

k > l for allx in Rn.

Proposition 4.8 Assumptions (B2)-(B4) in Section 4.3 and (B5)' hold for

the system (4.1), then the augmented system (4.80) experiences a codimension

2 bifurcation at � = �c with special input u�. In addition, if the nominal equilib-

rium of the original system is asymptotically stable, then it is also asymptotically

stable for the augmented system (4.80).
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Proof: Let's set u� = �ch(x)y where h(x) 2 Rm�l and c 2 R. Let G(x) =

[g1(x); � � � ; gm(x)]. For any given x, G(x) can be changed into singular value

decomposition form as follows.

G(x) = U(x)�(x)V (x)

=

2
6666664

u1(x)

...

un(x)

3
7777775

2
66666666664

�1(x) 0 � � � 0

0 �2(x) � � � 0

0 0 � � � �l

0

0 0

3
77777777775

2
6666664

v1(x)

...

vm(x)

3
7777775

(4.81)

where U(x) and V (x) are unitary matrix, i.e., UH(x)U(x) = I and V H(x)V (x) =

I, with dimension n � n and m � m, respectively. Here, AH denotes complex

conjugate transpose of A. Because of assumption (B5)' and smoothness of gi,

U(x), V (x), and �(x) are smooth function of x. Set h(x) to

h(x) = V H(x)M(x)

�(x)M(x) =
�
uH1 � � � uHl 0 � � � 0

�
(4.82)

Then,

G(x)h(x) =

2
664
I

0

3
775 (4.83)

where I is l� l identity matrix. Rest of the proof is direct application of Propo-

sition 4.4. 2
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Chapter 5

Application of Monitoring System to Axial

Flow Compression System

There have recently been several important developments in analysis and control

of axial 
ow compressor both in analysis of instability phenomena and their con-

trol. These developments make possible the increased performance of the axial


ow compressor by operating near the maximum pressure rise. However, the

increased performance comes at the price of signi�cantly reduced stability mar-

gin. Loss of stability is of course unacceptable. It results decreased performance

of the compressor and to mechanical damage of the compression system. Axial


ow compressor are known to be susceptible to two basic types of instability,

[29]. One of these is surge which is a low-frequency, large-amplitude oscillation

of the mean mass 
ow rate and pressure rise. The other is rotating stall which

corresponds to a traveling wave of gas around the annulus of the compressor.

These rich nonlinear characteristics of the axial 
ow compressor are well suited

to apply our suggested monitoring system.

Several control laws have been introduced to permit operation near peak

pressure rise while maintaining stability (e.g. [35], [40], [51], [56], etc.). Many of
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those suggested control laws ([50] and [51]) are employ linear control for avoiding

or delaying the occurrence of stall. There are also nonlinear controls ([11], [56],

[39] and [40]) that aims to ensure results in only stable rotating stall. Thus, even

though the nominal equilibrium is not stabilized, it may be possible to stabilize

a neighborhood of the nominal solution for a range of parameter values includ-

ing the stall value of the throttle opening parameter, to �nite perturbations.

However, there is no known control law which totally eliminates the bifurcation

and maintains stable nominal equilibrium point for all parameter values. Since

bifurcation will occur for any controller, the axial 
ow compressor is a good

application for our monitoring systems.

5.1 Modeling and Bifurcation Analysis

Compressor dynamic modeling is a subject that has attracted signi�cant atten-

tion (see, e.g., [20], [24], [14] and [33]). Greitzer [30] developed a nondimensional

fourth order compression system model and introduced a nondimensional pa-

rameter, B, which he found to be a determinant of the nature of post-instability

behavior. A global bifurcation of periodic solutions and other bifurcations were

found for this model [41], and were used to explain the observed dependence of

the dynamical behavior on the B parameter.

Moore and Greitzer [48] introduced a re�ned model to describe stall phenom-

ena in axial compressor. This model includes the dynamics of nonaxisymmetric


ow patterns, which was not present in the Greitzer model [30].

For this dissertation, we employ a Moore and Greitzer's model in [48] with

slight modi�cation. Moore and Greitzer derived following basic partial di�eren-
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Figure 5.1: Schematic of an axial compressor

tial equation representing a local momentum balance in the compressor and its

associated ducting:

�P = Css(V + v0)� lC
dV

dt
�m

@

@t

Z 0

�1
vd� � 1

2�
[2
@v0
@t

+
@v0
@�

] (5.1)

where V denotes the annulus-averaged (mean) gas axial velocity; v0 is the axial

velocity perturbation evaluated at � = 0 (the inlet face of the compressor); �P

is the plenum to atmosphere pressure rise; �; � are the axial and angular coordi-

nates, respectively; and �; lc; m are internal compressor lag, overall compressor

length, and exit duct length factor, respectively.

The compressor characteristic Css is particular to each compressor. Moore

and Greitzer [48] used following cubic function as a compressor characteristic

Css.

Css(Vloc) = f0 +H[1 +
3

2
(
Vloc
!

� 1)� 1

2
(
Vloc
!

� 1)3] (5.2)

where Vloc = V + v0 (the total local axial 
ow); f0 is shut-o� head; ! is a
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compressor characteristic width factor; and H is a is a compressor characteristic

height factor. Unlike Moore and Greitzer's model, we only assume here that Css

be a smooth function of V + v0 as in Liaw and Abed [40]. If there are no spatial

variation of gas density and pressure in the plenum, an overall material balance

on the gas over plenum gives:

d�P

dt
=

1

4B2
[V � F (
;�P )] (5.3)

where F (
;�P ) is a inverse of throttle characteristic and 
 is a parameter pro-

portional to the throttle opening. Note that parameter B which was �rst intro-

duced by Greitzer [30] appears in (5.3).

Moreover, Moore and Greitzer retain only the �rst harmonic of the ax-

ial velocity perturbation and assume that a �rst harmonic axial velocity per-

turbation is a sine wave with time varying phase and amplitude (i.e. v0 =

WA(t)sin(�+ p(t))). By employing Galerkin procedure to one mode truncation

approach, the model is reduced to the following 3 dimension nonlinear ODE:

dA

dt
=

�

�W

Z 2�

0
Css(V +WA sin �) sin �d� (5.4)

dV

dt
= ��P +

1

2�

Z 2�

0
Css(V +WA sin �)d� (5.5)

d�P

dt
=

1

4B2
[V � F (
;�P )] (5.6)

Stability analysis has been done for compressor without employing bifurca-

tion theory ( [19],[44] and [49]). McCaughan [43] performs bifurcation analysis

on model of Moore and Greitzer [48] and shows that a stationary bifurcation from

nominal equilibrium point occurs as the throttle opening parameter 
 is varied.

Liaw and Abed [40] extended the work of McCaughan [43] to the case in which

the axisymmetric compressor characteristic is taken to be a general smooth func-
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tion of axial velocity. Since Liaw and Abed [40] did bifurcation analysis of the

axial compressor model (5.4)-(5.6), we follow the bifurcation analysis therein.

We assume that B > 0 and F is strictly increasing function with respect to

each of the variables 
 and �P in (5.6). Seeking equilibrium point of (5.4)-(5.6),

we note that A = 0 always results in dA
dt

= 0. There may also be equilibrium

points for which A 6= 0. Consider a nominal equilibrium point for which there

is no asymmetry 
ow , i.e. let A = 0. Denote this nominal equilibrium point by

x0(
) =
�
0 V 0(
) �P 0(
)

�T
(5.7)

where V 0(
) and �P 0(
) satisfy V 0 = F (
;�P 0) and �P 0 = Css(V
0). At this

equilibrium point, the system Jacobian matrix is

L0 =

2
6666664

�C
0

ss(V
0(
)) 0 0

0 C
0

ss(V
0(
)) �1

0 1
4B2 � 1

4B2D�PF (
;�P
0)

3
7777775

(5.8)

At the parameter value 
 = 
0 for which C
0

ss(V
0(
)) = 0, L0 has a zero eigenvalue

and two eigenvalue with negative real part since we assume that B > 0 and F

is strictly increasing function with respect to each of variables 
 and �P . This

suggests that a static bifurcation occurs at 
 = 
0. Moreover, it is not di�cult

to see that for the matrix L0 to have a pair of pure imaginary eigenvalues, C
0

ss

must be positive. Because the trace of the lower right 2 � 2 submatrix of L0

should be zero. However, if this were the case then the matrix L0 would have

�C
0

ss(V
0(
)) as a positive real eigenvalue, and the equilibrium would therefore

unstable. This means that a stationary bifurcation must be occur before an Hopf

bifurcation for the nominal equilibrium of x0. In the remainder of this section,

we focus on the stationary bifurcation that occurs for 
 = 
0.
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To analyze bifurcation behavior of the model, we employ bifurcation formulae

in Section 2.3. Let x0 be equilibrium point at which C
0

ss(V
0(
)) = 0 for 
 = 
0.

The Taylor series expansion of (5.4)-(5.6) for (x; 
) near (x0; 
0) is given by

dx

dt
= L0x +Q0(x; x) + C0(x; x; x) + (
 � 
0)L1x + � � � (5.9)

where x now denotes the deviation
�
A V �P

�T
�x0. Here, L0 is as in (5.8),

and

Q0(x; x) =

0
BBBBBB@

�C
00

ss(V
0)x1x2

1
4
C

00

ss(V
0)(W 2x21 + 2x22)

� 1
8B2D(�P )2F (


0;�P 0)x23

1
CCCCCCA

(5.10)

C0(x; x; x) =

0
BBBBBB@

1
8
�C

000

ss(V
0)(w2x31 + 4x1x

2
2)

C
000

ss(V
0)(1

4
W 2x21x2 +

1
6
x32)

� 1
24B2D(�P )3F (


0;�P 0)x33

1
CCCCCCA

(5.11)

L1 =

0
BBBBBB@

�C
00

ss(V
0)�1 0 0

0 C
00

ss(V
0)�1 0

0 0 � 1
4B2 �2

1
CCCCCCA

(5.12)

where �1 = D
F (

0;�P 0) and �2 = D�P
F (


0;�P 0). Set l =
�
1 0 0

�
and

r = lT , the left and right eigenvectors respectively corresponding to the zero

eigenvalues of L0. Check the transversality condition by using (2.43)

lL1r = �C
00

ss(V
0)D
F (


0;�P 0) (5.13)

We calculate the bifurcation stability coe�cients using (2.44) and (2.45):

�1 = lQ0(r; r) = 0 (5.14)

�2 = 2lf2Q0(r; x2) + C0(r; r; r)g

=
1

4
�W 2f2D�PF (
;�P

0)[C
00

ss(V
0)]2 + C

000

ss(V
0)g (5.15)
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The next theorem follows from the foregoing discussion.

Theorem 5.1 Suppose that C
00

ss 6= 0 and that F is strictly increasing in each

of its variables. Then the axial compression system model (5.4)-(5.6) exhibits a

pitchfork bifurcation with respect to small variation of 
 at the point (x0; 
0) for

which C
0

ss(V
0(
)) = 0.

Note that the formula (5.15) shows that stability of bifurcation equilibria

depends on derivatives of the axisymmetric compressor characteristic at the bi-

furcation point.

To illustrate Theorem 5.1 numerically, we consider an example in which the

compressor characteristic is cubic. Let the axisymmetric compressor character-

istic Css(V ) and the throttle characteristic F be

Css(V ) = 1:56 + 1:5(V � 1)� 0:5(V � 1)3 (5.16)

F (
;�P ) = 

p
�P (5.17)

Note that (5.16) is the same cubic function which used in Moore and Greitzer

[48] (see (5.2)). Also, throttle characteristic (5.17) is same throttle character-

istic given in Moore and Greitzer [48] and satis�es strictly increasing function

condition.

Select parameter values � = 3;W = 1:0, and B = 0:5. By using the bifur-

cation analysis package AUTO [22], we generate Figure 5.2. Figure 5.2 shows

the �rst bifurcation occurring at 
 = 1:25 and second bifurcation occurring at


 = 1:17325. First one is a pitchfork bifurcation corresponding to rotating stall

and second one is Hopf bifurcation. In the Figure 5.2, solid line, dotted line, and

circle correspond to stable equilibrium point, unstable equilibrium point, and

periodic orbit, respectively. Figure 5.2 (b) is the blown up �gure of Figure 5.2
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Figure 5.2: Bifurcation Diagram for Axial Compressor
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(a) for 
 value between and 1.3 where �ll up circle corresponds to stable periodic

solution and empty circle corresponds to unstable periodic solution. This �gures

are drawn for variable A.

5.2 Precursor for Rotating Stall

In the previous section, we have shown that the axial compression system model

(5.4)-(5.6) experiences a pitchfork bifurcation as the parameter 
 varies. Based

on this information, we will apply our monitoring system (4.2) in Section 4.1 to

the axial 
ow compressor.

The Jacobian matrix of the compressor model (5.8) shows that the linearized

system is decoupled as assumption (B3) of Proposition 4.4 between A and V ,

�P . Thus, we need only one augmented state corresponding to A. However,

to apply our monitoring system, we should have monitoring input to state A.

But, our compressor model ((5.4)-(5.6)) does not have input to amplitude of

�rst harmonic of asymmetric 
ow (A). Therefore, we are going to adopt new

compressor model which has control input to state A.

It is known that there are many ways to generate asymmetric 
ow in an axial

compressor, such as oscillating the inlet guide vanes, vanes with oscillating 
aps,

jet 
aps, tip bleed above the rotor, etc. In Paduano et al. [51], control was

implemented using a circumferential array of hot wires to sensor propagating

waves of axial velocity upstream of the compressor. Using this information,

additional circumferential traveling waves were then generated with appropriate

phase and amplitude by wiggling inlet guide vanes driven by individual actuator.

Their modi�ed compressor schematics is shown in Fig 5.3.
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Figure 5.3: Schematic of controlled IGV axial compressor

In another paper [50], Paduano et al. obtained a linear state space model

which includes the e�ect of the input (moving the inlet guide vanes). In [50],

experiments were used to identify the e�ect of input. Until now, no low order

nonlinear model is available that includes the e�ect of the dithering the inlet

guide vanes. Therefore, we settle for using the following general nonlinear model

in this section. Let the compression system with controlled inlet guide vanes be

described by

dA

dt
=

�

�W

Z 2�

0
Css(V +WA sin �) sin �d� + g1(A; V;�P )u

dV

dt
= ��P +

1

2�

Z 2�

0
Css(V +WA sin �)d� + g2(A; V;�P )u

d�P

dt
=

1

4B2
[ _mC � F (
;�P )] + g3(A; V;�P )u (5.18)

Here, we assume that the e�ect inputs to the system can be modeled as a�ne.

However, since dynamics of �P is derived from balance of entering, leaving, and

stored mass of the plenum, changing the phase and amplitude of traveling wave
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A is most likely not a�ect the dynamics of �P .

We have the following proposition for the model above.

Proposition 5.1 Assume that g1,g2, and g3 are general smooth function with

respect to each of their variables and g1 does not depend on the bifurcation pa-

rameter. In addition, suppose that g1 does not change sign along the equilibrium

path as the parameter 
 varies and its sign is known to us but not the exact func-

tion itself. Then following augmented system with u = �sgn(g1)cy undergoes a

Hopf bifurcation at 
0 which corresponds to a pitchfork bifurcation point from

nominal equilibrium point x0 (5.7) for the original system:

dA

dt
=

�

�W

Z 2�

0
Css(V +WA sin �) sin �d� + g1(A; V;�P )u

dy

dt
= cA

dV

dt
= ��P +

1

2�

Z 2�

0
Css(V +WA sin �)d� + g2(A; V;�P )u

d�P

dt
=

1

4B2
[V � F (
;�P )] + g3(A; V;�P )u (5.19)

Proof: Linearize the equation (5.19) at the equilibrium point. The equilibrium

point for system (5.19) corresponding to a nominal equilibrium point x0 is given

by �
0 0 V 0(
) �P 0(
)

�T
(5.20)

Note that augmentation does not change the nominal equilibrium point x0. Then

the Jacobian matrix2
66666666664

�C
0

ss(V
0(
)) �c j g1 j 0 0

c 0 0 0

0 ~g2 C
0

ss(V
0(
)) �1

0 ~g3
1

4B2 � 1
4B2D�PF (
;�P

0)

3
77777777775

(5.21)
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where ~g2 := g2sgn(g1) and ~g3 := g3sgn(g1). Since the Jacobian matrix is in

block lower triangular form, we can apply Proposition 4.1 to the upper left 2�2

submatrix to verify occurrence of Hopf bifurcation. At the critical point, we

have a pair of imaginary eigenvalues

� =
�c
q
j g1(�) jj
2

(5.22)

2

From equation (5.22), without knowing g1 we cannot determine exact location

of crossing pair of imaginary eigenvalues. However, this equation does show that

the values of the eigenvalues at crossing are proportional to the value of c, which

we can control.

Now consider the case in which g1 is exactly known. We have the following

Proposition.

Proposition 5.2 Consider the augmented system (5.19). Assume that g�11 ex-

ists and is independent of the bifurcation parameter 
. Then the system (5.19)

with u = �g�11 cy undergoes a Hopf bifurcation for 
 = 
0 which corresponds

to a pitchfork bifurcation point for the original system. Also, a crossing pair of

imaginary eigenvalues has value �ci at the critical point.

Note that if g�11 fails to exist in the region of interest, then we can use Proposition

5.1. However, we can determine the exact location of crossing pair of imaginary

eigenvalues unlike Proposition 5.1 since we have exact knowledge of g1.

In the rest of this section, we try to verify the propositions above numeri-

cally. All of the bifurcation diagram shown here are obtained using numerical
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bifurcation analysis package AUTO. We assume that g1 and g2 are given as

g1(V ) = V 2 + 1

g2(�P ) = �P 2

g3 = 0

We also take the same compressor characteristic (5.16), inverse function of throt-

tle pressure rise (5.17), and parameters which are given in Section 5.1. Moreover,

small white Gaussian noise (n1(t)) is added to dA
dt

in equation (5.18) either nat-

urally or arti�cially such that

dA

dt
=

�

�W

Z 2�

0
Css(V +WA sin �) sin �d� + g1(A; V;�P )u+ n1(t) (5.23)

This assumes that there exist noise disturbance in the natural environment. We

have shown that the compressor with these speci�cations undergoes pitchfork

bifurcation at 
 = 1:25 without input.

Consider problem setting of Proposition 5.2. Since g1 is known, we can cancel

out g1 in (5.23) and result g1u = �cy by setting input u = � 1
V 2+1

cy. Figure 5.4

(a) shows that augmented system undergoes Hopf bifurcation and the bifurcation

point is the same as original system parameter value. In Figure 5.5 where we

set c = 5, note that the clear pronounced spectrum peak is at 5 as 
 approaches

critical value. Another Figure 5.6 shows that the power spectrum peak is moved

to 10 when c is changed to 10.

Let's consider the case such that there is no way to add arti�cial disturbance

to A and also no natural disturbance in A. Since existence of a small white

Gaussian noise is crucial to see a growing peak in the power spectrum as a

system closes to a bifurcation, we have to add some noise to the system. Here,

81



0. 1. 2. 3. 4. 5.

-0.100

-0.075

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

γ

A

(a) Exact cancelation of g1(�)

0. 1. 2. 3. 4. 5.

-0.100

-0.075

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

A

γ

(b) Partially known g1(�) or non-invertible g1(�)

Figure 5.4: Bifurcation Diagram of Axial Compressor for Augmented System
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we are going to add a white Gaussian noise (n2(t)) to the augmented state y

such that

dy

dt
= cA + n2(t) (5.24)

Since we have total control over the augmented state y, it is easy to add noise

to state variable y.

With noise injected into the y dynamics as in (5.24), Figure 5.7 shows that

we have a peak at ! = 5 for power spectrum measurement of both A and y.

This shows that even if noise does not enter naturally or cannot be injected into

the physical system dynamics, it may still be possible to obtain a precursor by

injecting noise into the augmented states.

Next, we consider Proposition 5.1 case. This case we cannot cancel out g1

since we assume no knowledge on g1 except its sign which is locally non varying.

Figure 5.4 (b) shows that augmented system still undergoes Hopf bifurcation

at the same critical value despite of partially known g1 assumption. Let our

monitoring input u = �cy where c > 0 because g1(V ) = V 2 + 1 > 0 for all _mc

In the Figure 5.8 where we set c = 5, we see clear power spectrum peak around

7 which we could predict from (5.22) as 
 closes its bifurcation point. Note that

power spectrum peak moves to around 14.14 by changing c to 10 in the Figure

5.9.

5.3 Precursor for Hopf Bifurcation of the

Axisymmetric Solution

From previous sections, we know that axial compressor undergoes a pitchfork

bifurcation as parameter varies. Here, we are going to consider the case of after

85



5 10 15 20 25 30

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Power Spectral Density

Frequency (rads/sec)

a. 
 = 1.3 and power spectrum of A

5 10 15 20 25 30

0.005

0.01

0.015

0.02

0.025

Power Spectral Density

Frequency (rads/sec)

b. 
= 1.3 and power spectrum of y

Figure 5.7: Power spectrum with noise driving only the augmented state y

86



5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−4 Power Spectral Density

Frequency (rads/sec)

a. 
 = 10

5 10 15 20 25 30

2

4

6

8

10

12

14

x 10
−3 Power Spectral Density

Frequency (rads/sec)

b. 
= 1.3

Figure 5.8: Power spectrum of A when c=5

87



5 10 15 20 25 30

1

2

3

4

5

6

7

x 10
−4 Power Spectral Density

Frequency (rads/sec)

a. 
 = 10

5 10 15 20 25 30

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Power Spectral Density

Frequency (rads/sec)

b. 
= 1.3

Figure 5.9: Power spectrum of A when c=10

88



pitchfork bifurcation occurred. For this section, we limit our case to a cubic

compressor characteristic which is given by equation (5.16). Also, we employ

throttle characteristic given by equation (5.17).

After the pitchfork bifurcation occurs, there are two new equilibrium points

for the amplitude of the �rst harmonic of asymmetric 
ow (A). Moreover, the

equilibrium point with A = 0 is no longer stable. However, if initially A = 0 and

there is no perturbation to dynamics of A, then A remains zero for all the time

(see equation (5.4)). This corresponds to an axisymmetric 
ow condition and

it is stable for given cubic compressor characteristic and throttle characteristic.

For this ideal compressor which A being �xed to 0 even after the pitchfork

bifurcation, the �rst bifurcation will be a Hopf bifurcation.

Since we assume that A remains zero all the time, we can drop equation (5.4)

and the following two dimensional ODE remains:

dV

dt
= ��P + Css(V )

d�P

dt
=

1

4B2
[V � F (
;�P )] (5.25)

Figure 5.2 shows the Hopf bifurcation occurring at 
 = 1:17325 for system (5.25).

Before we apply our monitoring system, there are two things to note. First,

the equilibrium point varies as the parameter 
 varies. Hence, we are going

to use our monitoring system with wash out �lter (4.65). Second, we have to

have monitoring signal input to both states of the system (5.25). However, our

axial compressor has one input as form of 
 = 
n + u. From this, it is clear

that we cannot transform axial compressor model system directly into suggested

augmented state form. Therefore, we suggest a modi�ed method as follows.
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The modi�ed augmented model is

dV

dt
= ��P +

1

2�
Css(V )

d�P

dt
=

1

4B2
[V � 
n

p
�P ]� cy

dy

dt
= c�P + dz

dz

dt
= y (5.26)

We set 
 = 
n + 4B2cyp
�P

cy to get above equations where 
n denotes original

parameter setting. Note that equilibrium point of (5.25) is still the equilibrium

point of (5.26).

The linearization of (5.26) at equilibrium point (V 0;�P ;0;� c
d
�P 0) where V 0

and �P 0 satisfy V 0 = F (
;�P 0) and �P 0 = Css(V
0). gives Jacobian matrix

D =

0
BBBBBBBBBB@

C
0

ss(V
0) �1 0 0

1
4B2 � 
n

8B2
p
�P 0

�c 0

0 c 0 d

0 0 1 0

1
CCCCCCCCCCA

(5.27)

The characteristic polynomial of D is

�4�(�+�)�3+(��+
1

4B2
+c2�f)�2+((�+�)d��c2)��d(��+ 1

4B2
) (5.28)

where � = C
0

ss(V
0) and � = � 
n

8B2
p
�P 0

. To check the stability of augmented

system if all the eigenvalues of Jacobian matrix of the system (5.25) is in the

open left half complex plane, we to use the Routh-Hurwitz criterion. The Routh
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array is

s4 1 �� + 1
4B2 + c2 � d �d(�� + 1

4B2 )

s3 �(� + �) ((� + �)d� �c2) 0

s2
(�+�)(��+ 1

4B2
)+�c2

�+�
�d(�� + 1

4B2 ) 0

s1
c2(��(��+ 1

4B2
)(�+�)���(c2�d)+�2d)

(�+�)(��+ 1

4B2
)+�c2

0 0

s0 �d(�� + 1
4B2 ) 0 0

(5.29)

Note that (� + �) < 0 since original system has eigenvalues in open left half

complex plane and ��+ 1
4B2 > 0 since determinant of Jacobian matrix of (5.25) is

positive if (5.25) has all the eigenvalues in the open left half complex plane. From

these, we have following su�cient conditions to guarantee asymptotic stability

of augmented system.

� < 0 and d < �jKj (5.30)

where d is constant which we can choose and should be chosen big enough to

guarantee the stability (see s1 row). Since � = � 
n

8B2
p
�P 0

, � is always less than

zero if the equilibrium point of (5.26) is real and 
n is positive. These are the

case for our axial compressor set-up.

By using the fact that at criticality �+ � = 0, the characteristic polynomial

at the criticality simpli�es to

�4 + (!2 + c2 � d)�2 � �c2�+ d!2 = 0 (5.31)

where ! = �
q
�� + 1

4B2 is a crossing pair of imaginary eigenvalues of (5.25).

For the compressor with cubic characteristic function, � is close to zero near the

critical point. Hence, we can expect equation (5.31) has solutions close to

� = �
q
d� (c2 + !2)�p

d2 � 2dc+ c4 + 2d!2 + 2c2!2 + !4

p
2

(5.32)
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It is easy to see that inside of outer square root of above equation is always

less than zero. Therefore, augmented system has two pair of complex conjugate

eigenvalues near critical point.

As we have pointed out before, the augmented system has two pair of complex

conjugate eigenvalues with real part guaranteed to be less than zero but very

close to imaginary axis near bifurcation point. Actual bifurcation diagram is

not shown here since until now there are no numerical package which detects

codimension 2 bifurcation. However, Figure 5.3 which is generated by AUTO

shows stability change in equilibrium point at same critical value of 
 as original

system.

Despite of this unclear post bifurcation behavior, we can still use augmented

system to get more assurance for closeness to bifurcation point as follows. First,

we observe the power spectrum without augmentation. Once we saw power

spectrum peak at !, then apply feedback with state augmentation. If the power

spectrum peak moves the point where it supposed to be, then we have more

assurance that system is really close to its instability.

Note that original system has a complex conjugate pair of eigenvalues �i at
bifurcation point for our chosen parameter. From the calculation of section 3.2,

we can expect power spectrum peak at ! = 1 and we can verify that from Figure

5.11.

For the augmented system, we see two peaks as system close to its bifurcation

point. In Figure 5.12 where we have chosen c = 5 and d = �100, we see to peaks
around at ! = 1 and ! = 11. We have moved these power spectrum peak

to ! = 1 and ! = 15 by varying d to -200 in Figure 5.13. Those location of

power spectrum peak could be predicted by solving (5.31). We can say that
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our augmentation does not have much e�ect on original power spectrum peak

location rather we create new power spectrum peak which is more in
uenced by

changing d than original peak.
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Chapter 6

Conclusions and Suggestions for Future

Research

We have discussed that a power spectrum precursor can be a useful measurement

to detect nearness to instability in a system. It has been shown that a power

spectrum precursor is a useful signal of closeness to bifurcation in the case of Hopf

bifurcation. Unlike Hopf bifurcation, employing a power spectrum precursor to

stationary bifurcation does not result in satisfactory performance. To circumvent

this we have suggested an augmented monitoring system.

The augmented system has been shown to keep most of the original nonlinear

characteristics of the system, except that it replaces a stationary bifurcation by

a Hopf bifurcation. The transformed system undergoes bifurcation at the same

critical paremeter value as the original system. Moreover, it has been shown that

we can transform either supercritical and subcritical pitchfork bifurcation to a

supercritical Hopf bifurcation under mild assumptions. This achieves both pre-

cursor for bifurcation and stabilizing the bifurcated solution. Moreover, should

the system undergo a Hopf bifurcation, the augmented system undergoes a codi-

mension two bifurcation. Thus the approach allows detection of both stationary
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and Hopf bifurcations.

One advantage of the augmented system is that it does not require detailed

knowledge of the system being monitored. Mere knowledge that the system

undergoes stationary bifurcation is enough to rendering stationary bifurcation

to Hopf bifurcation. Another advantage is that we have to total control on

the frequency of bifurcated periodic solution. This means we can only measure

certain range of frequency rather than measuring the entire frequency domain.

These advantages are achieved under some restrictive assumptions such as the

origin being an equilibrium point as the parameter varies and having independent

inputs into all original system states. We have discovered that in some cases we

can transform stationary bifurcation to Hopf bifurcation with restricted input.

Moreover, for singularly perturbed system case we need inputs only to the slow

varying states. For the case of non origin equilibrium point, we used wash

out type �lter. However, it renders stationary bifurcation to codimension 2

bifurcation.

We have successfully applied a precursor to axial compressor. Numerical

simulation on compressor have shown that we have a clear precursor as a system

closes a bifurcation. We have examined a precursor for both of a stationary

bifurcation corresponding to rotating stall and a Hopf bifurcation corresponding

surge. It should be noted that with some detail knowledge of the system we

can do more. This is certainly the case for axial 
ow compressors, especially for

surge detection.

Several directions for extension of this work are summarized as follows.

1. In the derivation of a power spectrum precursor, we assumed that all other

eigenvalues have relatively large negative real part compared to imaginary
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axis crossing critical eigenvalue. Of course some systems might have two or

more eigenvalues near the imaginary axis. Moreover, in some cases system

could have imaginary axis approaching eigenvalues without ever crossing

imaginary axis as parameter varies. A power spectrum precursor could not

discern these cases. Research to address these issues is recommended.

2. We assumed that white Gaussian noise enters the dynamical model in the

form of additive forcing. This noise may come from the natural environ-

ment of the system or can be added to the system arti�cially. In the former

case (i.e., a given noise structure), determining the best states to measure

for obtaining the best precursor is an important problem for future work.

In the latter setting, we can consider �nding the optimal location for in-

jection of noise to result in the clearest possible precursor.

3. In some systems, the naturally occurring perturbations cannot be modeled

as white noise, but rather as time periodic disturbances. Precursors and

monitoring systems for such settings deserve investigation.

4. Experimental testing of the use of the monitoring systems presented here

on an axial 
ow compression system rig would be worthwhile.
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Appendix A

Routh-Hurwitz Calculation for Proposition 4.6

Use the same notation as in Proposition 4.6 and letting 
 = �+j! and �
 = ��j!.
Equation (4.78) becomes

�6 � 2��5 + (2(c2 � a) + �2 + !2)�4 + 2�(2a� c2)�3 +

((c2 � a)2 � 2a(�2 + !2))�2 + 2(c2 � a)a��+ a2(�2 + !2) = 0

Applying the Routh-Hurwitz criterion to the equation above, we obtain the

Routh array

s6 1 2(c� a) + � (c� a)2 � 2a(�2 + !2) a2(�2 + !2)

s5 �2� 2�(2a� c) 2�a(c� a) 0

s4 c+ �2 + !2 c2 � ac� 2a(�2 + !2) a2(�2 + !2) 0

s3 2�c(a�(�2+!2))
c+�2+!2

2�ac(c�a+�2+!2)
c+�2+!2

0 0

s2 � a2(�2 + !2) 0 0

s1 �2ac3�(c+�2+!2)
a(�2+!2+c)�(a+c)2 0 0 0

s0 a2(�2 + !2) 0 0 0
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where � = a(�2+!2)(c+�2+!2)�(a+c)2(�2+!2)
a�(�2+!2) . If a < 0 and � < 0, then all entries in

the �rst column of this array are positive. Therefore, under this condition all

solutions of (4.78) have negative real part.
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Appendix B

Frequently Used Notation

Dxf;
@f

@x
partial derivatives with respect to x

Ck functions k times di�erentiable

_x; dx
dt

time derivative of x

Rn real n dimensional space

C� open left half complex plane

� parameters

I n� n identity matrix

eAt exponential of matrix At

det(A) determinant of n� n matrix A

� eigenvalue

Re(�) real part of �

�
 complex conjugate of 


j�j absolute value of �

N(t); n(t) white Gaussian noise

< X > expected value of X

X(t)
t

time average over all time

103



sgn(�) sign of real number �

AH complex conjugate transpose of matrix A

g�1(x) reciprocal of function g(x)
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