
ABSTRACT

Title of dissertation: NOVEL METHODS FOR COMPARING
AND EVALUATING SINGLE AND
METAGENOMIC ASSEMBLIES

Christopher Michael Hill, Doctor of Philosophy, 2015

Dissertation directed by: Professor Mihai Pop
Department of Computer Science

The current revolution in genomics has been made possible by software tools

called genome assemblers, which stitch together DNA fragments “read” by sequenc-

ing machines into complete or nearly complete genome sequences. Despite decades

of research in this field and the development of dozens of genome assemblers, assess-

ing and comparing the quality of assembled genome sequences still heavily relies on

the availability of independently determined standards, such as manually curated

genome sequences, or independently produced mapping data. The focus of this

work is to develop reference-free computational methods to accurately compare and

evaluate genome assemblies.

We introduce a reference-free likelihood-based measure of assembly quality

which allows for an objective comparison of multiple assemblies generated from the

same set of reads. We define the quality of a sequence produced by an assembler

as the conditional probability of observing the sequenced reads from the assembled

sequence. A key property of our metric is that the true genome sequence maximizes

the score, unlike other commonly used metrics.

Despite the unresolved challenges of single genome assembly, the decreasing

costs of sequencing technology has led to a sharp increase in metagenomics projects

over the past decade. These projects allow us to better understand the diversity

and function of microbial communities found in the environment, including the

ocean, Arctic regions, other living organisms, and the human body. We extend our

likelihood-based framework and show that we can accurately compare assemblies of

these complex bacterial communities.

After an assembly has been produced, it is not an easy task determining what

parts of the underlying genome are missing, what parts are mistakes, and what parts

are due to experimental artifacts from the sequencing machine. Here we introduce

VALET, the first reference-free pipeline that flags regions in metagenomic assemblies

that are statistically inconsistent with the data generation process. VALET detects

mis-assemblies in publicly available datasets and highlights the current shortcomings

in available metagenomic assemblers.

By providing the computational methods for researchers to accurately evalu-

ate their assemblies, we decrease the chance of incorrect biological conclusions and

misguided future studies.

NOVEL METHODS FOR COMPARING AND EVALUATING
SINGLE AND METAGENOMIC ASSEMBLIES

by

Christopher Michael Hill

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Mihai Pop, Chair/Advisor
Professor Atif Memon
Professor Héctor Corrada Bravo
Professor Michael Cummings
Professor Stephen Mount, Dean’s Representative

c© Copyright by
Christopher Michael Hill

2015

Preface

The algorithms, software, and results in this dissertation have either been pub-

lished in peer-reviewed journals and conferences or are currently under preparation

for submission. At the time of this writing, Chapters 2, 3, 4, and 6 have already been

published or submitted and are reformatted here. Chapter 5 is under preparation

for submission. I am indebted to my co-authors on these projects - their dedication

and knowledge in the areas of computer science, statistics, and biology have resulted

in much stronger scientific papers.

Chapter 2:

- Mohammadreza Ghodsi*, Christopher M. Hill*, Irina Astrovskaya, Henry Lin, Dan

D. Sommer, Sergey Koren, and Mihai Pop. De novo likelihood-based measures for

comparing genome assemblies. BMC research notes 6, no. 1 (2013): 334.

My contributions to this work include: (1) aiding in the development of the

underlying theory, specifically to the development of the theory incorporating paired-

read information, (2) implementation of the alignment-based and sampling methods,

(3) producing all of the results, and (4) aiding in drafting the manuscript.

The authors would like to thank Héctor Corrada Bravo and Bo Liu for their ad-

vice on the sampling procedure and associated statistics, Todd Treangen for advice

on accessing the GAGE data, and the other members of the Pop lab for valuable

discussions on all aspects of our work. This work was supported in part by the

National Science Foundation (grants IIS-0812111, IIS-1117247 to MP), and by the

ii

National Institutes of Health (grant R01-HG-004885 to MP).

Chapter 3:

- Christopher M. Hill, Irina Astrovskaya, Heng Huang, Sergey Koren, Atif Memon,

Todd J. Treangen, and Mihai Pop. De novo likelihood-based measures for comparing

metagenomic assemblies. In Bioinformatics and Biomedicine (BIBM), 2013 IEEE

International Conference on, pp. 94-98. IEEE, 2013.

My contributions to this work include: (1) developing the theory to handle the

addition of organismal abundances, (2) drafting the manuscript, and (3) producing

the majority of the results.

The authors would like to thank the members of the Pop lab for valuable dis-

cussions on all aspects of our work. This work was supported in part by the NIH,

grant R01-AI-100947 to MP, and the NSF, grant IIS-1117247 to MP.

- Koren, Sergey, Todd J. Treangen, Christopher M. Hill, Mihai Pop, and Adam M.

Phillippy. Automated ensemble assembly and validation of microbial genomes. BMC

bioinformatics 15, no. 1 (2014): 126.

My contributions to this work include: (1) the development of the lap software

used by MetAMOS.

The authors would like to thank Magoc et al. and Comas et al. who submit-

ted the raw data that was used in this study. We thank Lex Nederbragt and an

anonymous reviewer for detailed comments on the manuscript and iMetAMOS soft-

ware, usability, and documentation. MP and CMH were supported by NIH grant

iii

R01-AI-100947and the NSF grant IIS-1117247.

Chapter 4:

- Christopher M. Hill, Sergey Koren, Daniel Sommer, Bryan Dzung Ta, Atif Memon.

and Mihai Pop. De novo genome assembly regression testing. Under revision.

My contributions to this work include: (1) generating the software used by

the assembler regression pipeline, (2) evaluating SOAPdenovo2’s version history, (3)

evaluating the effect of read permutation and multiple threads on assembly quality,

and (4) drafting the manuscript.

The authors would like to thank members of the Memon and Pop labs for their

support and valuable discussions. This work was supported by NIH grant R01-AI-

100947 to MP.

Chapter 5:

- Christopher M. Hill, Jonathan Gluck, Atif Memon, and Mihai Pop. VALET: a de

novo pipeline for finding metagenomic mis-assemblies. In preparation.

My contributions to this work include: (1) aiding in the development and the-

ory of the overall pipeline, (2) developing the tool used for finding highly variable

coverage regions, (3) producing all results, and (4) drafting the manuscript.

Chapter 6:

- Christopher M. Hill, Carl H. Albach, Sebastian G. Angel, and Mihai Pop. K-

mulus: Strategies for BLAST in the Cloud. In Parallel Processing and Applied

iv

Mathematics, pp. 237-246. Springer Berlin Heidelberg, 2014.

My contributions to this work include: (1) implementing the query segmenta-

tion, database segmentation, and hybrid approaches, (2) producing the majority of

the results, and (3) drafting the manuscript.

The authors would like to thank Mohammadreza Ghodsi for advice on cluster-

ing, Daniel Sommer for advice on Hadoop, Lee Mendelowitz for manuscript feedback,

Katherine Fenstermacher for the name K-mulus, and the other members of the Pop

lab for valuable discussions on all aspects of our work.

- Christopher M. Hill, Andras Szolek, Mohamed El Hadidi, and Michael Cummings.

Lossy compression of DNA sequencing quality data. Under review.

My contributions to this work include: (1) developing the overall pipeline, (2)

implementing the regression, profile, and binning approaches, and (3) aiding in the

drafting of the manuscript.

The authors would like to thank the 2014 Bioinformatics Exchange for Stu-

dents and Teachers (best) Summer School, funded by the offices of the Dean of

The Graduate School at University of Maryland and the Rektor of University of

Tübingen, where this research was initiated.

v

Dedication

To those who inspired it and will not read it.

vi

Acknowledgments

I have been truly fortunate to know and work with many outstanding people

throughout my career, and I am grateful to all of you.

First and foremost, I would like to thank my advisor Mihai Pop. It has been

an absolute privilege to be under your guidance for the past 8 years. I hope that you

will continue to watch over my academic career and be proud. I am eternally grateful

for your advice, support, and encouragement and hope to have the opportunity to

pay it forward someday.

I would also like to thank all of my other committee members. I will always

enjoy the [often off-topic] discussions with Atif Memon who has introduced me to the

world of software testing. I am indebted to Héctor Corrada Bravo for increasing the

focus of statistics within the Center for Bioinformatics and Computational Biology.

I wish to thank Michael Cummings for his mentorship and allowing me to work

abroad with him. I have built up collaborations and friendships that were made

possible thanks to him. I am also very grateful to Stephen Mount for always being

able to answer any biological question I come up with during our social hours.

I owe a great deal of thanks to countless past and present faculty and grad-

uate students at the University of Maryland. In particular, the majority of this

dissertation was only made possible with the help of MohammadReza Ghodsi, Irina

Astrovskaya, and Henry Lin. In addition, I owe a great deal of thanks to Sergey

Koren who has been my mentor and oracle for all things related to assembly. Ted

Gibbons has been a close friend and would always listen to me rant about the

vii

seemingly endless negative results and lack of progress. I would also like to thank

everyone (past and present) from the labs of Mihai Pop, Héctor Corrada Bravo,

Sridhar Hannenhalli, and Steven Salzberg.

Finally, I must thank my friends, family, and loved ones who have supported

me unconditionally throughout this adventure.

It is impossible to remember everyone, so I apologize to anyone who may have

been left out. If I forgot you, let me know and I will happily buy you a drink.

viii

Table of Contents

List of Tables xiii

List of Figures xiii

1 Introduction 1
1.1 Genome assembly . 1

1.1.1 Computational challenges of assembly 2
1.1.2 Assessing the quality of an assembly 3

1.2 Contributions of this dissertation . 5

2 Comparing Whole-Genome Assemblies 8
2.1 Introduction . 8
2.2 Methods . 9

2.2.1 Theoretical foundation for probabilistic evaluation 9
2.2.1.1 Likelihood of an assembly 10
2.2.1.2 True genome obtains the maximum likelihood 11
2.2.1.3 Error-free model for fragment sequencing 13

2.2.2 A realistic model of the sequencing process 14
2.2.2.1 Sequencing errors . 14
2.2.2.2 Exact probability calculation via dynamic program-

ming . 16
2.2.2.3 Mate pairs . 18
2.2.2.4 Assemblies containing more than one contig 20
2.2.2.5 Reads that do not align well 21

2.2.3 Performance considerations 22
2.2.3.1 Estimating the average read likelihood by sampling . 22
2.2.3.2 Approximating the likelihood value using an aligner . 23

2.2.4 Datasets . 25
2.3 Results . 26

2.3.1 Performance-related approximations do not significantly affect
the likelihood score . 26
2.3.1.1 The likelihood score is robust under sampling. 27

ix

2.3.1.2 Aligner-based approximation correlates with the dynamic-
programming computation of the likelihood score. . . 28

2.3.1.3 The likelihood scores correlate with reference-based
validation . 30

2.3.1.4 The effect of a contaminant DNA on the assessment
of the assembly quality 38

2.3.1.5 A useful application: tuning assembly parameters . . 40
2.4 Discussion . 42

3 Comparing Metagenomic Assemblies 47
3.1 Introduction . 47
3.2 Methods . 49

3.2.1 Extending LAP to metagenomic assemblies 49
3.2.2 Integration into MetAMOS 52

3.3 Results . 52
3.3.1 Likelihood score maximized using correct abundances 52
3.3.2 Impact of errors on synthetic metagenomes 53
3.3.3 Likelihood scores correlate with reference-based metrics 55
3.3.4 Tuning assembly parameters for MetAMOS 61

3.4 Discussion . 62
3.5 Conclusion . 65

4 Regression Testing of Genome Assemblers 66
4.1 Introduction . 66
4.2 Related work . 71
4.3 Methods . 73

4.3.1 Regression testing framework 74
4.3.1.1 Assembly likelihood 74
4.3.1.2 Read-pair coverage 76

4.3.2 Evaluating changes in assembly quality 77
4.4 Results . 77
4.5 Discussion . 85
4.6 Conclusion . 87
4.7 Availability . 88

5 Finding Metagenomic Mis-Assemblies 89
5.1 Introduction . 89
5.2 Methods . 91

5.2.1 Types of mis-assemblies . 91
5.2.2 Estimating contig abundances using k-mers 93
5.2.3 Depth of coverage analysis . 93
5.2.4 Insert size consistency . 94
5.2.5 Identifying assembly breakpoints 94
5.2.6 Comparing multiple assemblies 95
5.2.7 VALET pipeline . 95

x

5.3 Results . 96
5.3.1 VALET achieves high sensitivity on a simulated metagenomic

community . 96
5.3.2 VALET accurately evaluates assemblies of a synthetic metage-

nomic community . 98
5.4 Discussion . 102
5.5 Conclusion . 104

6 Additional Contributions 106
6.1 Lossy Compression of DNA Sequence Quality Values 106

6.1.1 Abstract . 106
6.1.2 Introduction . 107
6.1.3 Methods . 110

6.1.3.1 Compression strategy: binning 110
6.1.3.2 Compression strategy: modeling 111
6.1.3.3 Compression strategy: profiling 113
6.1.3.4 Datasets . 115
6.1.3.5 Performance evaluation 116

6.1.4 Results . 117
6.1.4.1 Compression effectiveness versus information loss . . 117
6.1.4.2 Effects on sequence read preprocessing 119
6.1.4.3 Effects on genome assembly 121
6.1.4.4 Effects on read mapping 123

6.1.5 Discussion . 128
6.1.5.1 Lossy compression acceptable for subsequent biolog-

ical analyses . 128
6.1.5.2 Extension of 2-bin encoding 128
6.1.5.3 Extension of polynomial regression 129
6.1.5.4 Potential for operations on compressed data 130
6.1.5.5 Future of lossy compression in bioinformatics analyses130

6.1.6 Conclusion . 131
6.2 K-mulus: Strategies for BLAST in the Cloud 132

6.2.1 Abstract . 132
6.2.2 Introduction . 133
6.2.3 Methods . 135

6.2.3.1 MapReduce . 135
6.2.3.2 Parallelization strategies 136
6.2.3.3 Query segmentation. 136
6.2.3.4 Database segmentation. 138
6.2.3.5 Hybrid approach. 138
6.2.3.6 K-mer indexing . 139

6.2.4 Results . 141
6.2.4.1 Comparison of parallelization approaches on a mod-

est size cluster . 141
6.2.4.2 Analysis of database k-mer index 142

xi

6.2.5 Discussion . 145

7 Conclusion 148

Bibliography 150

xii

List of Tables

2.1 Rhodobacter sphaeroides 2.4.1 assembly evaluation 32
2.2 Staphylococcus aureus USA300 assembly evaluation. 33
2.3 Homo sapiens chr 14 assembly evaluation 34

3.1 Comparison of assembly statistics for HMP mock Even and mock
Staggered datasets . 59

3.2 Self-tuning MetAMOS using C. ruddii test dataset 61

4.1 Regression testing results for different SOAPdenovo versions using S.
Aureus (31-mer) dataset. The percentage of error-free basepairs are
calculated using REAPR. N50 is a commonly-used metric to measure
contiguity. 81

4.2 Code coverage for Influenza-A and zebrafish gene test cases. 82

5.1 VALET results for simulated mock community 100
5.2 VALET results for assemblies of the Shakya et al. [101] dataset 101

6.1 Mapping results of decompressed fastq files against Rhodobacter
sphaeroides reference genome . 127

List of Figures

2.1 Multiple optimal read alignments. 16

xiii

2.2 LAP-based evaluation of the assemblies for the Human chromosome
14 via sampling. 27

2.3 Comparison of the read probability calculation methods 29
2.4 Comparison between LAP scores and the rankings of the top assem-

blies generated in the Assemblathon 1 competition. 36
2.5 Effect of a contaminant DNA on the computation of the LAP scores. 39
2.6 Tuning SOAPdenovo k-mer parameter using LAP scores. 41

3.1 The metagenome of an environment 49
3.2 LAP scores for simulated metagenomic communities. 54
3.3 Synthetic errors in simulated E. coli and B. cereus (1 copy, 5.2Mbp)

community . 56
3.4 Frequency of contig abundances for assemblies of the HMP mock

Staggered dataset . 58

4.1 FASTA file containing two entries that represent the same circular
sequence . 68

4.2 LAP scores for original and shuffled R. sphaeroides dataset 78
4.3 LAP scores for SOAPdenovo assemblies across various versions 79
4.4 LAP scores for fault-seeded versions of Minimus 83

5.1 Overview of the VALET pipeline . 96
5.2 RC plot of a simulated mock community 97
5.3 Ribosomal genes found in region marked by VALET 103
5.4 Examining a 25 Kbp region flagged by VALET 105

6.1 Quality profiles obtained by k-means clustering on the fragment li-
brary from Rhodobacter sphaeroides 2.4.1 data set 112

6.2 Mean squared error versus bits/base-call for different compression
methods applied to the Rhodobacter sphaeroides 2.4.1, and Homo
sapiens chromosome 14 fragment libraries, and Escherichia coli str.
K-12 MG1655, and Mus musculus datasets 118

6.3 Preprocessing results of Rhodobacter sphaeroides 2.4.1, and Homo
sapiens chromosome 14 fragment libraries, and Escherichia coli str.
K-12 MG1655, and Mus musculus datasets 120

6.4 Rankings of compression methods based on Rhodobacter sphaeroides
assembly attributes . 124

6.5 Query segmentation approach for parallelizing BLAST 136
6.6 Runtimes of different BLAST parallelization approaches 141
6.7 Runtimes of database segmentation with k-mer index approach 143
6.8 Pair-wise k-mer intersubsection of 50 random samples of 3000 original

and repeat-masked nr sequences . 145

xiv

Chapter 1: Introduction

1.1 Genome assembly

The genome sequence of an organism is the blueprint for building that organ-

ism. It is a key resource that allows researchers to better understand the organism’s

function and evolution. Initially published in 2001, the human genome has under-

gone dozens of revisions over the years [1]. Researchers fill in gaps, and correct

mistakes in the sequence. It is not an easy task determining what parts of the

genome are missing, what parts are mistakes, and what parts are due to experimen-

tal artifacts from the sequencing machine. Obtaining the genome of any organism is

difficult as modern sequencing technologies can only “read” small stretches (under a

few thousand of basepairs/characters in length) of the genome (called reads). Dur-

ing the later years of the human genome project, the proposal that these tiny reads

could be pieced together to reconstruct the human genome (3.2 billion basepairs)

was the subject of vigorous scientific debate [2, 3]. The development of algorithms

and computational tools called genome assemblers able to reconstruct near-complete

genome sequences from the reads produced by sequencing machines played a pivotal

role in the modern genomic revolution.

Despite tremendous advances made over the past 30 years in both sequencing

1

technologies and assembly algorithms, genome assembly remains a highly difficult

computational problem. In all but the simplest cases, genome assemblers cannot

fully and correctly reconstruct an organism’s genome. Instead, the output of an

assembler consists of a set of contiguous sequence fragments (contigs), which can

be further ordered and oriented into scaffolds, representing the relative placement

of the contigs, with possible intervening gaps, along the genome.

1.1.1 Computational challenges of assembly

The genome assembly problem is often formulated as either a Hamiltonian or

an Eulerian path problem depending on how the reads and overlaps between reads

are represented [4]. In the overlap-layout-concensus (OLC) paradigm, reads are

represented as nodes in the graph with edges connecting reads that overlap. The

assembler seeks to reconstruct a path through the graph that contains all nodes, i.e.,

a Hamiltonian path. In de Bruijn graph-based assemblers, complete reads are not

necessarily represented as nodes in the graph. Instead, the reads are broken up into

overlapping strings of length k. Each k-length substring (k-mer) is represented as

an edge in the graph connecting the nodes corresponding to the k − 1-length prefix

and suffix of the k-mer. In this case, the assembler seeks to reconstruct a path in

the graph that uses all edges, i.e., an Eulerian path.

Theoretical analyses of the assembly problem have shown that assembly is NP-

hard [5,6], i.e., finding the correct optimal solution may require an exhaustive search

of an exponential number of possible solutions. The presence of repeated DNA

2

segments (repeats) exacerbates the difficulty of genome assembly. Repeats longer

than the length of the sequenced reads lead to ambiguity in the reconstruction of

the genome – many different genomes can be built from the same set of reads [7,8].

As a result, practical implementations of assembly algorithms (such as ABySS [9],

Velvet [10], SOAPdenovo [11], etc.) are forced to make tradeoffs between correct-

ness, speed, and memory. Although in most cases, it is common for the output of

assemblers to either contains errors, or be fragmented, or both.

Ideally, in a genome project, the assembly would be followed by the scrupulous

manual curation of the assembled sequence to correct the hundreds to thousands

of errors [12], and fill in the gaps between the assembled contigs [13]. Despite the

value of fully completed and verified genome sequences [14], the substantial effort

and associated cost necessary to conduct a finishing experiment to its conclusion

can only be justified for a few high-priority genomes (such as reference strains or

model organisms). The majority of the genomes sequenced today are automatically

reconstructed in a “draft” state. Despite the fact that valuable biological conclusions

can be derived from draft sequences [15], these genomes are of uncertain quality [16],

possibly impacting the conclusions of analyses and experiments that rely on their

primary sequence.

1.1.2 Assessing the quality of an assembly

Assessing the quality of the sequence output by an assembler is of critical im-

portance, not just to inform downstream analyses, but also to allow researchers to

3

choose from among a rapidly increasing collection of genome assemblers. Currently,

there are two ways to evaluate assemblies: reference-based and de novo evaluation.

When a reference genome is available, an assembly’s quality can be estimated based

on the percentage of its true genome reconstruction, number of incorrect bases,

structural errors, and additional biologically relevant information, such as the per-

cent of genes reconstructed. De novo evaluation relies on assessing an assembly’s

quality based on the sequencing data alone. De novo metrics include global “sanity

checks” (such as gene density, expected to be high in bacterial genomes, measured,

for example, through the fraction of the assembled sequence that can be recognized

by PFAM profiles [17]) and internal consistency measures [18] that evaluate the

placement of reads and mate-pairs along the assembled sequence.

Despite incremental improvements in the performance of genome assemblers,

none of the software tools available today outperforms the rest in all assembly tasks.

As highlighted by recent high profile assembly bake-offs [19,20], different assemblers

“win the race” depending on the specific characteristics of the sequencing data, the

structure of the genome being assembled, or the specific needs of the downstream

analysis process. Furthermore, these competitions have highlighted the inherent

difficulty of assessing the quality of an assembly - all assemblers attempt to find

a trade-off between contiguity (the size of the contigs generated) and accuracy of

the resulting sequence. Even with the availability of a gold standard, evaluating

this trade-off is difficult. In most practical settings, a reference genome sequence is

not available, and the validation process must rely on other, often costly, sources of

information, such as independently derived data from mapping experiments [21], or

4

from transcriptome sequencing [22]. Most commonly, validation relies on de novo

approaches based on the sequencing data alone. The validation approaches outlined

above can highlight a number of inconsistencies or errors in the assembled sequence,

information valuable as a guide for further validation and refinement experiments,

but difficult to use in a comparative setting where the goal is to compare the quality

of multiple assemblies of a same dataset. For example, given a reference genome

sequence, it is unclear how to weigh single nucleotide differences and short indels

against much larger structural errors (e.g., translocation or large scale copy-number

changes) [19] when comparing different assemblies. Furthermore, while recent ad-

vances in visualization techniques, such as the FRCurve of Narzisi et al. [23, 24],

have made it easier for scientists to appropriately visualize the overall tradeoff be-

tween assembly contiguity and correctness, there exist no established approaches

that allow one to appropriately weigh the relative importance of the multitude of

assembly quality measures, many of which provide redundant information [24].

1.2 Contributions of this dissertation

In Chapter 2, we present our LAP framework, an objective and holistic ap-

proach for evaluating and comparing the quality of assemblies derived from a same

dataset. Our approach defines the quality of an assembly as the likelihood that

the observed reads are generated from the given assembly, a value which can be

accurately estimated by appropriately modeling the sequencing process. We show

that our approach is able to automatically and accurately reproduce the reference-

5

based ranking of assembly tools produced by highly-cited assembly competitions:

the Assemblathon [19] and GAGE [20] competitions.

In Chapter 3, we extend our de novo LAP framework to evaluate metagenomic

assemblies. We will show that by modifying our likelihood calculation to take into

account abundances of assembled sequences, we can accurately and efficiently com-

pare metagenomic assemblies. We find that our extended LAP framework is able

to reproduce results on data from the Human Microbiome Project (HMP) [25, 26]

that closely match the reference-based evaluation metrics and outperforms other de

novo metrics traditionally used to measure assembly quality. Finally, we have inte-

grated our LAP framework into the metagenomic analysis pipeline MetAMOS [27],

allowing any user to reproduce quality assembly evaluations with relative ease.

In Chapter 4, we provide a novel regression testing framework for genome as-

semblers. Our framework that uses two assembly evaluation mechanisms: assembly

likelihood, calculated using our LAP framework [28], and read-pair coverage, cal-

culated using REAPR [29], to determine if code modifications result in non-trivial

changes in assembly quality. We study assembler evolution in two contexts. First,

we examine how assembly quality changes throughout the version history of the

popular assembler SOAPdenovo [30]. Second, we show that our framework can cor-

rectly evaluate decrease in assembly quality using fault-seeded versions of another

assembler Minimus [31]. Our results show that our framework accurately detects

trivial changes in assembly quality produced from permuted input reads and using

multi-core systems, which fail to be detected using traditional regression testing

methods.

6

In Chapter 5, we build on the pipeline described in Chapter 4 and introduce

VALET, a de novo pipeline for finding misassemblies within metagenomic assem-

blies. We flag regions of the genome that are statistically inconsistent with the data

generation process and underlying species abundances. VALET is the first tool

to accurately and efficiently find misassemblies in metagenomic datasets. We run

VALET on publicly available datasets and use the findings to suggest improvements

for future metagenomic assemblers.

In Chapter 6, we discuss our other contributions to bioinformatics relating to

the domains of clustering, compression, and cloud computing.

7

Chapter 2: Comparing Whole-Genome Assemblies

2.1 Introduction

Here we propose an objective and holistic approach for evaluating and com-

paring the quality of assemblies derived from a same dataset. Our approach defines

the quality of an assembly as the likelihood that the observed reads are generated

from the given assembly, a value which can be accurately estimated by appropriately

modeling the sequencing process. This basic idea was formulated in the 1990’s in

the pioneering work of Gene Myers [5], where he suggested the correct assembly of

a set of reads must be consistent (in terms of the Kolmogorov-Smirnoff test statis-

tic) with the statistical characteristics of the data generation process. The same

basic idea was further used in the arrival-rate statistic (A-statistic) in Celera assem-

bler [32] to identify collapsed repeats, and as an objective function in quasi-species

(ShoRAH [33], ViSpA [34]), metagenomic (Genovo [17]), general-purpose assem-

blers [35], and recent assembly evaluation frameworks (ALE [36], CGAL [37]).

In this chapter, we will describe in detail a mathematical model of the sequenc-

ing process that takes into account sequencing errors and mate-pair information, and

show how this model can be computed in practice. We will also show that this de

novo probabilistic framework is able to automatically and accurately reproduce the

8

reference-based ranking of assembly tools produced by the Assemblathon [19] and

GAGE [20] competitions. Our work is similar in spirit to the recently published

ALE [36] and CGAL [37]; however, we provide here several extensions of practical

importance. First, we propose and evaluate a sampling-based protocol for comput-

ing the assembly score which allows the rapid approximation of assembly quality,

enabling the application of our methods to large datasets. Second, we evaluate the

effect of unassembled reads and contaminant DNA on the relative ranking of assem-

blies according to the likelihood score. Finally, we will demonstrate the use of our

probabilistic quality measure as an objective function in optimizing the parameters

of assembly programs. The software implementing our approach is made available,

open-source and free of charge, at: http://assembly-eval.sourceforge.net/.

2.2 Methods

2.2.1 Theoretical foundation for probabilistic evaluation

In this section, we formalize the probabilistic formulation of assembly quality

and the model of the sequencing process that allows us to compute the likelihood

of any particular assembly of a set of reads. We will show that the proposed proba-

bilistic score is correct in the sense that the score is maximized by the true genome

sequence.

9

http://assembly-eval.sourceforge.net/

2.2.1.1 Likelihood of an assembly

Let A denote the event that a given assembly is the true genome sequence,

and let R denote the event of observing a given set of reads. In the following, we will

use the same symbol to denote the assembly sequence and the event of observing

the assembly. We will also use the same symbol to denote the set of reads and the

event of observing the set of reads.

According to Bayes’ rule, given the observed set of reads, the probability of

the assembly can be written as:

Pr[A|R] =
Pr[R|A] Pr[A]

Pr[R]
(2.1)

where Pr[A] is the prior probability of observing the genome sequence A. Any prior

knowledge about the genome being assembled (e.g., approximate length, presence of

certain genes, etc.) can be included in Pr[A]; however, for the purpose of this paper,

we will assume that this prior probability is constant across the set of “reasonable”

assemblies of a same set of reads. Given commonly available information about the

genomes, formulating a precise mathematical framework for defining Pr[A] is an

extensive endeavor beyond the scope of this paper.

Similarly, Pr[R] is the prior probability of observing the set of reads R. Since

our primary goal is to compare multiple assemblies of a same set of reads, rather

than to obtain a universally accurate measure of assembly quality, we can assume

Pr[R] is a constant as well. Thus, for the purpose of comparing assemblies, the

values Pr[A|R] and Pr[R|A] are equivalent. The latter, the posterior probability of

10

a set of reads, given a particular assembly of the data, can be easily computed on

the basis of an appropriately defined model of the sequencing process and will be

used in our paper as a proxy for assembly quality.

Under the assumption that individual reads are independent of each other

(violations of this assumptions in the case of mate-pair experiments will be discussed

later in this section), Pr[R|A] =
∏

r∈R Pr[r|A]. If the set of reads is unordered, we

need to account for the different permutations that generate the same set of reads.

As this value is a constant for any given set of reads, we ignore it in the rest of our

paper.

Pr[r|A], hereafter referred to as pr, can be computed using an appropriate

model for the sequencing process. Throughout the remainder of the paper, we

will discuss increasingly complex models and their impact on the accuracy of the

likelihood score.

2.2.1.2 True genome obtains the maximum likelihood

Any useful assembly quality metric must achieve its maximum value when

evaluating the true genome sequence; otherwise, incorrect assemblies of the data

would be preferred. We prove below that the likelihood measure proposed in our

paper satisfies this property.

Assuming that we have a set of reads R from the true genome, produced by

generating exactly one single-end read from each location in the genome without

errors and with a fixed length. Given the set of reads R, the probability a particular

11

read is generated from the true genome is precisely the number of times the read

occurs in R divided by the size of R (note that multiple reads can have the same

sequence, e.g., when generated from repeats). Let Ns denote number of times that

the sequence s occurs in R, and qs = Ns/|R| denote the probability that sequence

s is generated from the true genome. To show that the true genome maximizes

the likelihood score, let us assume that we have some assembly A and ps is the

probability that the sequence s is generated from the assembly A.

Given assembly A, our likelihood score is then the product of ps
Ns over all

sequences s in S, which can be rewritten as
∏

s∈S ps
qs|R| = (

∏
s∈S ps

qs)|R|. Now, note

that since |R| is a fixed constant, maximizing the likelihood score is equivalent to

maximizing

∏
s∈S

ps
qs

The likelihood can be re-written as

log(
∏
s∈S

ps
qs) =

∑
s∈S

qs log ps

=
∑
s∈S

qs log(
ps
qs

) +
∑
s∈S

qs log qs

= −DKL(Q||P)−H(Q),

where DKL(Q||P) is the KL-divergence for the distributions Q and P , and H(Q)

is the Shannon entropy of Q. Since the KL-divergence is always non-negative and

only equal to 0 if and only if Q = P , the average probability is maximized if the

assembly is equal to the true genome.

Even though the true genome does maximize the likelihood in this model,

12

there may be other assemblies that achieve the same optimal score as long as these

assemblies yield probabilities ps which are equal to the probabilities qs for every

sequence s. This can happen, for example, in the case of a misassembly that is

nonetheless consistent with the generated reads. This situation highlights the loss

of information inherent in modern sequencing experiments – without additional long-

range information, the information provided by the reads themselves is insufficient

to distinguish between multiple possible reconstructions of a genome [8].

2.2.1.3 Error-free model for fragment sequencing

The most basic model for the sequencing process is the error-free model. In

this model, we assume reads of a given fixed length (a more general read length

distribution can be included in the model but would not impact comparative anal-

yses of assemblies derived from a same set of reads). We further assume that reads

are uniformly sampled across the genome, i.e., that every position of the genome

is equally likely to be a starting point for a read. This simplifying assumption

is made by virtually all other theoretical models of genome assembly, despite the

biases inherent to all modern sequencing technologies. A more accurate, technology-

dependent, model can be obtained by including additional factors that account, for

example, for DNA composition biases. For the purpose of generality, we restrict

our discussion to the uniform sampling model. Furthermore, for the sake of sim-

plicity, we assume (1) that the true genome consists of a single circular contiguous

sequence, (2) that our assembly is also a single contig, and (3) that every read can

13

be mapped to the assembly. We will later discuss extensions of our model that relax

these assumptions.

Under these assumptions, we can compute the probability of a read r given

the assembled sequence as:

pr =
nr

2L
(2.2)

where nr represents the number of places where the read occurs in the assembled

sequence of length L. The factor 2 is due to the fact that reads are sampled with

equal likelihood from both the forward and reverse strands of a DNA molecule.

This formulation was previously used by Medvedev et al. [35] to define an objective

function for genome assembly.

2.2.2 A realistic model of the sequencing process

The error-free model outlined above makes many simplifying assumptions that

are not representative of real datasets. Here we demonstrate how the model can be

extended to account for artifacts such as sequencing errors, mate-pair information,

assemblies consisting of multiple contigs, and the presence of un-mappable reads.

2.2.2.1 Sequencing errors

All current technologies for sequencing DNA have a small but significant prob-

ability of error. Here we focus on three common types of errors: the insertion,

deletion, and substitution of a nucleotide.

In the error-free model, the probability of a read having been generated from

14

a position j in the sequence is one if the read exactly matches the reference at that

position and zero otherwise. We now extend this model such that the probability

of each read having been generated from any position j of the reference is a real

value between zero and one, representing the likelihood that a sequencing instrument

would have generated that specific read from that specific position of the reference.

This value clearly depends on the number of differences between the sequence of the

read and the sequence of the reference at position j. Given the assembled sequence,

the probability of a particular read will be the cumulative probability of the read

across all possible locations in the genome.

Specifically, let us denote the probability that read r is observed by sequencing

the reference, ending at position j by pr,j. Then, the total probability of the read r

is

pr =

∑L
j=1 p

forward
r,j +

∑L
j=1 p

reverse
r,j

2L
(2.3)

The individual probabilities pr,j can be computed if we do not model insertion

and deletion errors and only allow substitution errors which occur with probability ε.

The per-base probability of a substitution error can be set individually for each based

on the quality value produced by the sequencing instrument. Then, pr,j = εs(1−ε)l−s

, where s is the number of substitutions needed to match read r to position j of

the reference sequence. In the more general case, pr,j values can be computed using

dynamic programming.

15

2.2.2.2 Exact probability calculation via dynamic programming

For a model of the sequencing process that allows insertions, deletions, and

substitutions with specific probabilities, we can exactly compute probability, pr =

Pr[r|A], of observing a read r given an assembly A using a dynamic programming

algorithm. In general, we want to find the sum of the probabilities of all possible

alignments of a read to a position of the assembly.

ACCG ACCG

AC-GA-CG

Figure 2.1: Two different optimal alignments of the read ACG to the
assembly ACCG. Our dynamic programming algorithm finds the sum
of the probabilities of all possible alignments.

The number of such possible alignments grows exponentially as a function of

read length. Most of those alignments have a very small probability. However,

several alignments may have probabilities that are equal or close to the optimal.

For example, the two alignments of the same pair of sequences in Figure 2.1 have

the same probability and are both optimal alignments.

We use a dynamic programming algorithm (similar to the “forward” algorithm

in Hidden Markov Models) to efficiently calculate the sum of the probabilities of all

alignments of a read to the assembly as follows. In the formula (2.3), pforwardr,j and

preverser,j are the sum of the probabilities of all possible alignments of the read r to,

respectively, the reference and its reverse complement, ending at position j.

We define T [x, y] as the probability of observing prefix [1 . . . y] of the read

16

r, if y bases are sequenced from the reference, ending at position x. Therefore,

pr,j = T [j, l]. T [x, 0] represents the probability of observing an empty sequence if we

sequence zero bases and is set to 1. T [0, y] represents the probability of observing

prefix [1 . . . y] of the read if y bases are sequenced from the reference, ending at

position 0 (before the beginning), and is set to 0.

For x ≥ 1 and y ≥ 1, T [x, y] is recursively defined:

T [x, y] = T [x− 1, y − 1] Pr[Substitute(A[x], r[y])] (2.4)

+ T [x, y − 1] Pr[Insert(r[y])]

+ T [x− 1, y] Pr[Delete(A[x])],

where r[y] and A[x] represent the nucleotides at positions y and x of the read r and

the assembly A, respectively. Pr[Substitute(A[x], r[y])] is the probability of observ-

ing the nucleotide r[y] by sequencing the nucleotide A[x]. In our experiments, we

did not distinguish between different types of errors and considered their probability

to be ε and the probability of observing the correct nucleotide to be 1− ε.

The dynamic programming algorithm outlined above has a running time of

O(lL) per read. Even though the running time is polynomial, it is slow in practice.

However, we can speed it up by using alignment seeds. The seeds would give us the

regions of the assembly where a read may align with high probability. We can apply

the dynamic programming only to those regions and get a very good approximate

value of the total probability. We use exact seeds (k-mers) of a given length to build

a hash index of the assembly sequence. Then, each read is compared to the regions

17

where it has a common k-mer with the assembly sequence.

2.2.2.3 Mate pairs

Many of the current sequencing technologies produce paired reads – reads

generated from the opposite ends of the same DNA fragment. This information is

extremely valuable in resolving genomic repeats and in ordering the contigs along

long-range scaffolds; however, the paired reads violate the assumption that reads are

sampled independently, that we made in the discussion above. To address this issue,

we can use the pairs rather than the individual reads as the underlying objects from

which the assembly likelihood is computed. To address the possibility that assembly

errors may result in violations of the constraints imposed by the paired reads, we

only consider pairs for which both ends align to a same contig or scaffold within

the constraints imposed by the parameters of the sequencing experiment. Any pairs

that violate these constraints get classified as unassembled. Note that in addition

to sequencing errors, we now also handle fragment sizing errors – deviations of the

estimated distance between paired reads from the distance implied by the sequencing

experiment. We model the distribution of fragment sizes within a same library by

a normal distribution, using user-supplied parameters, and use this information to

appropriately scale the likelihood estimate for each possible placement of a mate

pair along the genome.

We modify the dynamic programming recurrence from formula (2.4) to handle

the probability calculation for the paired reads as follows. The probability of the

18

first read in the pair is calculated as the same as in the formula (2.4). For the

second read, we adjust the dynamic programming to ensure that it is aligned within

a certain distance downstream of the alignment of the first read. We modify the

first column of the dynamic programming table of the second read in the pair to

take into account the distance from the first read.

Formally, given a paired read, we define T2[x, y] as the probability of observing

prefix [1 . . . y] of the 2nd read in the pair, if y bases are sequenced from the reference,

ending at position x. Assume that the second read occurs after the first read and

is separated by a normally-distributed distance with mean µ and with a standard

deviation σ. Therefore,

T2[x, 0] =
x∑

i=1

Pr[insert(x− i)|N(µ, σ)))] + T1[x− i, l], (2.5)

where Pr[insert(n)|N(µ, σ)))] is the probability of observing an insert size of length

n from a normal distribution with parameters µ and σ, and l is the length of the

first read in the pair.

Instead of using two tables, we can concatenate the read pair together with a

special character (M), which will signal when the insert size should be taken into

account.

19

For x ≥ 1 and y ≥ 1, T [x, y] is recursively defined as follows:

T [x, y] = if r[y] == M

∑x
i=1 Pr[insert(x− i)|N(µ, σ)))] + T [x− i, y − 1]

else



T [x− 1, y − 1] Pr[Substitute(A[x], r[y])]

+T [x, y − 1] Pr[Insert(r[y])]

+T [x− 1, y] Pr[Delete(A[x])]

(2.6)

2.2.2.4 Assemblies containing more than one contig

As we mentioned in the introduction, the output of an assembler usually con-

sists of a (large) set of contigs rather than one single contig, representing the genome

being assembled. In the extreme case, an “assembler” may return the set of unassem-

bled input reads (or the set of all k-mers in De Bruijn-based assemblers) as its output.

Our likelihood score must be modified to account for such fragmented assemblies.

In practice, most assemblers join contigs only if they overlap by more than a

certain number of bases; however, we only consider the case where contigs are non-

overlapping substrings of the true genome. In this case, the length of the original

genome must be at least the sum of the lengths of the contigs, that is,
∑
Lj, where

Lj is the length of the jth contig. Therefore, the probability of every read is at

most:

nr

2
∑
Lj

(2.7)

20

Overlapping contigs can be handled by reducing the length of the contigs by

a value representing the minimum overlap required by the assembler, as performed,

for example, in Genovo [17].

2.2.2.5 Reads that do not align well

In practice, popular assemblers do not incorporate every read in the assembly.

Possible reasons include assembly errors (such as collapsed tandem repeats), reads

with high error rates, or contamination in the DNA sample. These “singleton” or

“chaff” reads cannot be modeled by our likelihood approach as the likelihood of

any assembly that does not incorporate every read is zero. When sequencing errors

are modeled, every read obtains a non-zero likelihood, even if it does not align to

the assembly. Since, in general, a non-trivial fraction of the total set of the reads

cannot be mapped to the assembly, by their sheer number, the singleton reads would

dominate the probability calculation.

To account for this factor, we argue that for any read that does not align well,

the overall probability of the assembly should not be lower than the probability of

the same assembly when the missing read is appended to its sequence as a separate

contig. The effect of such an addition on the overall probability can be calculated

as follows. First, the probability of observing this read exactly,
(
Pr[exact match]

2L

)
, is

multiplied to the product of the probabilities of all mapped reads. Second, the

probabilities of the mapped reads are decreased slightly due to the increase in the

length of the assembled sequence.

21

For simplicity, let us assume an error-free model where each read maps to

exactly one position on the assembled sequence. Let k denote the number of the

original reads. The ratio between the new probability for all original reads divided

by their probability before adding the new read is:

1
(L+l)k

1
Lk

=
(

L

L+ l

)k

=

(
1− l

L+ l

)k

≈ e−
lk
L

Therefore, if the probability of observing a read is less than

Pr[exact match]

2L
e−

l|R|
L , (2.8)

we consider this read as “unmapped” and use formula (2.8) as its probability. The

probability of an exact match Pr[exact match] is approximated by (1− ε)l, where ε

is the probability of an error (a mismatch, an insertion, or a deletion).

2.2.3 Performance considerations

2.2.3.1 Estimating the average read likelihood by sampling

Depending on the specific characteristics of the chosen sequencing model, the

computation of the probability Pr[R|A] can be expensive for the dataset sizes com-

monly encountered in current projects (tens to hundreds of millions of reads). In

such cases, we can approximate the likelihood of an assembly by using a random

subset of the reads R′ ⊆ R. To counteract the effect of the size of the sample on

the computed probability, we define the assembly quality as the geometric mean of

the individual read probabilities:

AP(R′) =

∏
r∈R′

pr

 1

|R′|
(2.9)

22

The logarithm of this value (Log Average Probability (LAP)) is reported in

the remainder of the paper as the assembly quality “score”:

LAP(R′) = log10 (AP(R′)) =

∑
r∈R′ log10 pr
|R′|

(2.10)

In other words, we define the assembly quality as the average log likelihood

of the reads given an assembly. This formulation also allows us to estimate the

accuracy of the approximate likelihood value produced by sub-sampling the set of

reads. According to sampling theory, the distribution of the scores across multiple

samples has the mean equal to the true likelihood of the assembly (computed from

all the reads) and a standard error proportional to 1√
|R′|

, i.e., the larger the sample

is, the more accurate our estimation is for the likelihood of the true assembly. Since

the probability of a read is bounded by formula (2.8), the variance of the sample

can also be bounded by this value.

In practice, we increase the sample size until the assemblies can be unam-

biguously distinguished by the LAP value. Specifically, we increase the sample size,

by binary search, until the LAP values are separated by at least a single standard

deviation. The level of subsampling required will, thus, be dependent on the extent

of the differences between the assemblies - for very different assemblies, low levels

of subsampling are sufficient.

2.2.3.2 Approximating the likelihood value using an aligner

Alternatively, when it is impractical to calculate exact probabilities for large

sets of reads, we can approximate these probabilities using fast and memory-efficient

23

alignment search programs, which internally model the sequencing process. We use

Bowtie 2 [38] to align the reads to the assembly. However, our programs are easy

to adapt for any read alignment tool that stores the alignment results in SAM [39]

format.

For each reported alignment, we use the number of substitutions s to compute

the probability pr. The probability of this alignment, pr,j, can be approximated by

εs(1− ε)l−s and

pr =

∑
j∈Sr

pr,j
2L

, (2.11)

where Sr is the set of alignments in the SAM file for the read r.

We can further extend this equation to mated reads. A pair of mated reads

aligns if the distance and orientation of the alignment of the pair are consistent with

the experimental design parameters. Given read i1 and its mate i2, we compute

p(i1,i2) by multiplying the probabilities of individually aligning each mate at their

respective positions with the probability that they are separated by their distance

from each other. That is,

p(i1,i2) =

∑
(j1,j2)∈S(i1,i2)

pi1,j1pi2,j2 Pr[insert(j2 − (j1 + l1))]

2(L− l)
, (2.12)

where pi1,j1 = εs1(1−ε)l1−s1 . Mate pair insert sizes follow a normal distribution with

mean and standard deviation being estimated from the parameters of the sequencing

process. Unless otherwise stated, the standard deviation is 10% of the insert size.

If only one of the mates, i1 or i2, maps, the probability p(i1,i2) is 0. We use (2.8) to

set the probability for this case.

24

In our experiments, Bowtie 2 was used to approximate the read probabilities

for the larger datasets; however, it could be substituted with any other aligner.

2.2.4 Datasets

The read data for Rhodobacter sphaeroides 2.4.1 was downloaded from http:

//gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides, and the corresponding ref-

erence sequence was obtained from the NCBI RefSeq database (NC 007493.1, NC 007494.1,

NC 009007.1, NC 007488.1, NC 007489.1, NC 007490.1, NC 009008.1). In addi-

tion, two more Rhodobacter genomes were selected as reference genomes, specifically

R. sphaeroides ATCC 17025 (NCBI IDs NC 009428.1, NC 009429.1, NC 009430.1,

NC 009431.1, NC 009432.1), and R. capsulatus SB1003 (NC 014034.1, NC 014035.1).

The read data for Stapylococcus aureus USA300 was downloaded from http://

http://gage.cbcb.umd.edu/data/Staphylococcus_aureus, and the correspond-

ing reference sequence was obtained from the NCBI RefSeq database (NC 010063.1,

NC 010079.1, NC 012417.1). In addition, two more Stapylococcus genomes were

selected as reference genomes, specifically S. aureus 04-02981 (CP001844), and S.

epidermidis ATCC 12228 (AE015929, AE015930, AE015931, AE015932, AE015933,

AE015934, AE015935).

The read data for human chromosome 14 was downloaded from http://gage.

cbcb.umd.edu/data/Hg_chr14/, and the corresponding reference sequence was ob-

tained from the NCBI RefSeq database (NC 000014.8).

The Assemblathon 1 competition evaluates assemblies on the simulated short

25

 http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides
 http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides
 http://http://gage.cbcb.umd.edu/data/Staphylococcus_aureus
 http://http://gage.cbcb.umd.edu/data/Staphylococcus_aureus
http://gage.cbcb.umd.edu/data/Hg_chr14/
http://gage.cbcb.umd.edu/data/Hg_chr14/

read dataset generated from the simulated 110 Mbp diploid genome. The com-

petition provides sequence libraries with varying insert sizes (200-10,000 bp) and

coverage (20-40x). Assemblathon 1 allowed teams to submit multiple entries, but

for our analyses, we only examine the top ranking assemblies from each team. The

raw reads and the consensus sequence of the top ranking assemblies were downloaded

from http://korflab.ucdavis.edu/Datasets/Assemblathon/Assemblathon1/.

Also used in our analyses is the E. coli K12 MG1655 dataset, generated us-

ing Illumina MiSeq technology (300 bp insert size, 370x coverage) (http://www.

illumina.com/systems/miseq/scientific_data.ilmn).

2.3 Results

2.3.1 Performance-related approximations do not significantly affect

the likelihood score

The full and exact computation of the assembly likelihood score is computa-

tionally intensive and ultimately impractical for the analysis of large genomes se-

quenced with the next generation technologies. We have highlighted in the Methods

section several approaches that can be used to reduce the computational require-

ments and allow the application of our methods in practical settings, including the

computation of the likelihood score on the subsets of the original set of reads and

the approximation of the score from the output of an alignment program. As we

will show below, our approximations do not affect the comparative ranking of the

multiple assemblies derived from a same dataset.

26

http://korflab.ucdavis.edu/Datasets/Assemblathon/Assemblathon1/
http://www.illumina.com/systems/miseq/scientific_data.ilmn
http://www.illumina.com/systems/miseq/scientific_data.ilmn

2.3.1.1 The likelihood score is robust under sampling.

To assess the effect of subsampling, we relied on a collection of the assemblies

of the human chromosome 14 made available by the GAGE assembly ‘bake-off’.

We sampled random subsets of increasing size (one trial per size) from the over 60

million reads and computed the likelihood score based only on the sampled reads.

-42

-40

-38

-36

-34

-32

-30

-28

-26

 10 100 1000 10000 100000

L
A

P

of reads sampled

truth
Allpaths-LG

SOAPdenovo
ABySS

Bambus2
Velvet

MSR-CA
CABOG

SGA

Figure 2.2: LAP-based evaluation of the assemblies for the Human chro-
mosome 14 via sampling. The x-axis represents the number of sampled
reads. For each assembly, we plot the corresponding LAP on a chosen
subsample along with the standard deviation. The relative ranking of
assemblies becomes fixed with 10,000 reads, which is less than 0.02% of
the original reads.

As seen in Figure 2.2, the overall ranking of the different assemblies stabilizes

after sampling just 10,000 reads, i.e., less than 0.02% of the entire dataset. After

this point, the scores of individual assemblies differ by more than the standard

27

deviation of the sub-sampled scores, indicating the relative ranking of the assemblies

can be determined with high statistical confidence. This result suggests a practical

strategy for computing the assembly likelihood wherein datasets of increasing size are

repeatedly sampled from the set of reads until the likelihood scores of the compared

assemblies can be distinguished from each other. The search for the appropriate

sample size can start from a reasonable ‘guess’ (e.g., 0.05% of the total set of reads),

which is then iteratively doubled until the likelihood scores are separated from each

other by a given multiple of the sampling-induced standard deviation.

2.3.1.2 Aligner-based approximation correlates with the dynamic-

programming computation of the likelihood score.

As outlined in the Methods section, we relied on an alignment program (in

our case, Bowtie 2 [38]) to estimate the likelihood of individual reads based on their

alignment along the assembly. This approach is substantially faster than the more

accurate dynamic programming algorithm that computes the cumulative likelihood

of all possible alignments of a read against the assembly.

Figure 2.3 compares the per-read likelihood values with respect to the com-

plete genome sequence of Staphylococcus aureus, using data provided by the GAGE

competition. In this plot, each read is represented by a point whose coordinates

represent the corresponding likelihood scores computed through full dynamic pro-

gramming (y axis) and from Bowtie 2 alignments (x axis). As the full dynamic

programming approach sums over all possible alignments, the corresponding likeli-

28

 1e-90

 1e-80

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1
e-

90

 1
e-

80

 1
e-

70

 1
e-

60

 1
e-

50

 1
e-

40

 1
e-

30

 1
e-

20

 1
e-

10

 1

P
ro

b
a
b
ili

ty
 p

e
r

re
a
d

 (
u
s
in

g
 D

y
n
a
m

ic
 P

ro
g
ra

m
m

in
g
 M

e
th

o
d
)

Probability per read (using Bowtie2)

Read Probability
y = x

threshold

Figure 2.3: Comparison of the read probability calculation methods for
S. aureus with 4,788,174 reads. Each mark on the plot represents a
single read. The read’s position is determined by the probability cal-
culated from our dynamic programming method (y-axis) and Bowtie 2
(x-axis). Points on the line y = x denote reads that were given the
same probability by both methods. Since Bowtie 2 only finds the best
alignment, it usually reports a slightly lower probability. A probability
threshold of 1e-30 is shown for the dynamic programming method. The
read probabilities that fall below this threshold would be rounded up to
1e-30 during LAP computation.

hood values are higher (points occur above the diagonal) than those estimated by

Bowtie 2. The difference between the two methods becomes less noticeable as the

likelihood increases as more of the probability mass is concentrated around the best

alignment of a read to the reference.

29

2.3.1.3 The likelihood scores correlate with reference-based valida-

tion

The recent assembly competitions GAGE [20] and Assemblathon 1 [19] relied

on a combination of de novo and reference-based metrics to compare and rank dif-

ferent assemblies. For the majority of these datasets, a complete or high-quality

draft sequence was available, allowing the authors to objectively determine all the

errors in the assemblies by aligning them to the reference sequences. Based on

this information, the GAGE and Assemblathon 1 teams proposed several assem-

bly quality metrics that simultaneously capture some aspects of the contiguity and

correctness of an assembly. Here we compare our de novo likelihood score to these

reference-based metrics.

Generally, the de novo LAP scores agree with the reference-corrected contigu-

ity values (see Tables 2.1, 2.2, and 2.1). Furthermore, the reference genome assem-

bly (assumed to be the most correct reconstruction of the genome being analyzed)

achieves the highest LAP score while the references derived from the closely-related

organisms are considerably worse than all the other assemblies. In other words, the

de novo LAP scores accurately capture the relative quality of the different assem-

blies.

It is important to note that there are several exceptions to these general ob-

servations. In the case of S. aureus USA300 (Table 2), the read-based LAP scores

for the Abyss assembly (computed on both contigs and scaffolds) are better than

those obtained for the reference genome, contradicting our intuition, since ABySS’s

30

reference-corrected contiguity is worse. This result highlights the importance of

accurately modeling the sequencing experiment when computing the LAP scores.

Once mate-pair information is taken into account, the LAP scores correctly identify

the best assembly. This phenomenon is due to the fact that the Abyss assembly is

able to incorporate more of the reads however their placement in the assembly is

inconsistent with the mate-pair linkage information.

31

Contigs Scaffolds

Assembler LAP reads LAP mates N50 (kb) CN50 (kb) LAP reads LAP mates N50 (kb) CN50 (kb) Unaligned reads (frac) Unaligned mates (frac)

ABySS -20.924 -27.365 5.9 4.2 -20.929 -27.320 9 5 0.228 0.524
Allpaths-LG -20.795 -27.141 42.5 34.4 -20.796 -27.099 3,192 3,192 0.212 0.441

Bambus2 -21.528 -27.439 93.2 12.8 -21.531 -27.424 2,439 2,419 0.270 0.501
CABOG -22.550 -27.749 20.2 17.9 -22.550 -27.714 66 55 0.345 0.540
MSR-CA -21.496 -27.407 22.1 19.1 -21.497 -27.324 2,976 2,966 0.268 0.478

SGA -20.896 -27.575 4.5 2.9 -21.030 -27.416 51 51 0.237 0.541
SOAPdenovo -20.816 -27.160 131.7 14.3 -20.816 -27.152 660 660 0.214 0.453

Velvet -20.903 -27.314 15.7 14.5 -20.907 -27.246 353 270 0.219 0.471
R. sphaeroides ATCC 17025 -29.391 -29.973 3,218 3,218 -29.391 -29.973 3,218 3,218 0.813 0.904

R. capsulatus -29.953 -29.997 3,739 3,739 -29.953 -29.997 3,739 3,739 0.978 0.995
truth -20.769 -27.071 3,189 3,189 -20.769 -27.071 3,189 3,189 0.209 0.432

Table 2.1: Assembly likelihood scores for Rhodobacter sphaeroides 2.4.1 from the GAGE project [19]. The results are presented
separately for the contigs and scaffolds and include the number of unassembled reads (singletons), the LAP scores computed on
unmated reads (LAP reads) or mate-pairs (LAP mates), the N50 contig/scaffold sizes (N50), and the reference-corrected N50
contig/scaffold sizes (CN50). The best (maximum) value for each genome-measure combination is highlighted in bold. The
results for the reference assembly (either complete genome or high-quality draft) is given in the row marked truth. In addition,
we provide the results for a closely related strain and species. All values, except the LAP scores, were taken from the GAGE
publication. A threshold probability of 1e-30 was used for calculating the LAP scores. The standard deviations for the LAP’s
reads and LAP’s mates scores are 0.00685 and 0.00969, respectively.

32

Contigs Scaffolds

Assembler LAP reads LAP mates N50 (kb) CN50 (kb) LAP reads LAP mates N50 (kb) CN50 (kb) Unaligned reads (frac) Unaligned mates (frac)

ABySS -16.608 -24.692 29.2 24.8 -16.611 -24.584 34 28 0.318 0.522
Allpaths-LG -18.018 -23.974 96.7 66.2 -18.018 -23.760 1,092 1,092 0.374 0.494

Bambus2 -18.083 -24.256 50.2 16.7 -18.085 -23.899 1,084 1,084 0.375 0.503
MSR-CA -18.282 -24.258 59.2 48.2 -18.282 -23.926 2,412 1,022 0.389 0.508

SGA -17.937 -27.019 4 4 -18.250 -24.906 208 208 0.384 0.578
SOAPdenovo -17.830 -23.892 288.2 62.7 -17.830 -23.862 332 288 0.362 0.499

Velvet -17.867 -24.258 48.4 41.5 -17.867 -23.925 762 126 0.363 0.503
S. aureus 04-02981 -19.960 -25.314 2,821 2,821 -19.960 -25.314 2,821 2,821 0.456 0.572

S. epidermidis -29.635 -29.951 2,499 2,499 -29.635 -29.951 2,499 2,499 0.972 0.988
truth -17.741 -23.509 2,873 2,873 -17.741 -23.509 2,873 2,873 0.358 0.473

Table 2.2: Assembly likelihood scores for Staphylococcus aureus USA300 from the GAGE project [19]. The results are presented
separately for the contigs and scaffolds and include the number of unassembled reads (singletons), the LAP scores computed on
unmated reads (LAP reads) or mate-pairs (LAP mates), the N50 contig/scaffold sizes (N50), and the reference-corrected N50
contig/scaffold sizes (CN50). The best (maximum) value for each genome-measure combination is highlighted in bold. The
results for the reference assembly (either complete genome or high-quality draft) is given in the row marked truth. In addition,
we provide the results for a closely related strain and species. All values, except the LAP scores, were taken from the GAGE
publication. A threshold probability of 1e-30 was used for calculating the LAP scores. The standard deviations for the LAP’s
reads and LAP’s mates scores are0.00740 and 0.0105, respectively.

33

Contigs Scaffolds

Assembler LAP reads LAP mates N50 (kb) CN50 (kb) LAP reads LAP mates N50 (kb) CN50 (kb) CGAL Score Unaligned reads (frac) Unaligned mates (frac)

ABySS -18.473 -23.801 2 2 -18.474 -23.787 2.1 2 -15.21 x 108 0.257 0.504

Allpaths-LG -15.813 -21.413 36.5 21 -15.824 -21.314 81,647 4,702 -13.11 x 108 0.115 0.239
Bambus2 -18.606 -23.474 5.9 4.3 -18.642 -23.343 324 161 - 0.258 0.422

CABOG -15.625 -21.128 45.3 23.7 -15.626 -21.041 393 26 -12.25 x 108 0.109 0.229
MSR-CA -16.421 -22.428 4.9 4.3 -16.436 -21.861 893 94 - 0.122 0.276

SGA -15.712 -22.990 2.7 2.7 -16.909 -22.326 83 79 - 0.134 0.328
SOAPdenovo -15.702 -21.705 14.7 7.4 -15.734 -21.594 455 214 * 0.101 0.269

Velvet -18.000 -23.468 2.3 2.1 -18.140 -23.375 1,190 27 - 0.214 0.442

truth -15.466 -21.001 107,349.50 107,349.50 -15.466 -21.002 107,349.50 107,349.50 -11.25 x 108 0.093 0.211

Table 2.3: Assembly likelihood scores for human chromosome 14 from the GAGE project [19] using a 10,000 read sample. The
results are presented separately for the contigs and scaffolds and include the number of unassembled reads (singletons), the
LAP scores computed on unmated reads (LAP reads) or mate-pairs (LAP mates), the N50 contig/scaffold sizes (N50), and
the reference-corrected N50 contig/scaffold sizes (CN50). The best (maximum) value for each genome-measure combination is
highlighted in bold. The results for the reference assembly (either complete genome or high-quality draft) is given in the row
marked truth. In addition, we provide the results for a closely related strain and species. CGAL scores calculated from the long
insert library were taken from the CGAL publication. The authors only provided scores for the top three assemblies (Bowtie2
could not successfully map reads to the SOAPdenovo assembly). All values, except the LAP and CGAL scores, were taken from
the GAGE publication. A threshold probability of 1e-30 was used for calculating the LAP scores. The standard deviation for
both the LAP’s reads and LAP’s mates scores is 0.15.

34

In the case of the human chromosome 14 assembly (Table 3), the scaffold-based

results do not agree with the reference-corrected contiguity values: the CABOG

assembler outperforms Allpaths-LG in all but the corrected scaffold N50 measure.

This result highlights the inherent difficulty of assessing the assembly quality even

when a reference sequence is available. In this case, Allpaths-LG scaffold covers a

larger stretch of the genome; however, at the cost of errors both within the contigs

and in their relative placement. Furthermore, the CABOG assembler is able to align

nearly 0.1% more mate-pairs than Allpaths-LG, despite having a far smaller scaffold

size.

The Assemblathon 1 competition [19] further demonstrated the difficulty of

accurately assessing the relative quality of genome assemblies even when a correct

reference sequence is available. The authors developed a collection of quality metrics

that measure the stretch of a correctly assembled sequence (for example, contig path

NG50 and scaffold path NG50), the amount of structural errors (such as insertions,

deletions, and translocation), the long range contiguity (for example, the average

distance between correctly paired genomic loci), the number of copy number errors,

and the coverage within the assembly or only within coding regions. All these

metrics were computed with respect to two reference haplotypes, from which the

read data were simulated. The authors ranked the different assemblies by each of

the metrics and used the combined information to rank the assemblies quality.

In Figure 2.4, we compare the rankings provided by our LAP score to the

rankings generated by the Assemblathon 1 competition. In addition to LAP, the

figure also includes two variants of the most commonly used de novo measure of

35

BGI

BCCGSC

CSHL

WTSI-P

IOBUGA

Broad

WTSI-S

RHUL

CRACS

EBI

DOEJGI

NABySS

NVelv

ASTR

IRISA

DCSISU

NCLC

UCSF

CIUOC

GACWT

L
A
P

C
ov tot

C
PN

G
50

O
verall

N
G
5
0

C
ov genic

SPN
G
50

C
C
50

N
5
0

C
opy num

Subs

Struct

A
s
s
e
m

b
ly

Metric

1

5

10

15

20

R
a
n
k

Figure 2.4: Comparison between LAP scores and the rankings of the top
assemblies generated in the Assemblathon 1 competition. The colors
represent the relative ranking provided by the individual metrics (best
- green, worst - red): log average probability (LAP), overall coverage
(Cov tot), contig path NG50 (CPNG50), sum of all rankings from As-
semblathon 1 (Overall), weighted median contig size based on estimated
genome size (NG50), coverage within coding sequences (Cov genic),
scaffold path NG50 (SPNG50), length for which half of any two valid
columns in the assembly are correct in order and orientation (CC50),
weighted median contig size based on total assembly size (N50), propor-
tion of columns with a copy number error (Copy num), total substitution
errors per correct bit (Subs), and sum of structural errors (Struct). Col-
umn descriptions and underlying data obtained from Table 3 in Earl et
al. [19]. Columns are sorted according to the level of concordance with
the LAP ranking. De novo measures are highlighted in bold.

assembly size, N50 – the weighted median contig size, that is, the length of largest

contig c such that the total size of the contigs larger than c exceeds half of the

genome size. N50 uses the total assembly size as a proxy for the genome size while

the NG50 value uses a guess of the actual genome size to compute the N50 value.

36

The more accurate estimation of the genome size results in a better NG50’s ranking,

confirmed by the concordance with our LAP score.

The overall coverage measure (percentage of the reference haplotypes covered

by a particular assembly) correlates better with the LAP score than the other met-

rics. This result is not surprising as the LAP score is strongly affected by the num-

ber of the reads that can be correctly mapped to an assembly, which is ultimately

correlated with the concordance between the assembly and the correct reference se-

quence. Interestingly, the overall rankings differ between LAP and the conclusions

of the Assemblathon 1 study. Our analysis suggests that the BGI assembly is the

best while the Assemblathon 1 picked the Broad assembly as the winner. This dis-

crepancy can be partially explained in part by the Broad’s high performance within

the genic regions (LAP does not distinguish between genic and inter-genic segments)

and the large weight placed on the BGI’s assembly’s poor performance in terms of

substitution errors which have a relatively small effect on the LAP score.

It is important to note that while LAP and the Assemblathon 1 results dis-

agree in the exact total ranking of the assemblies, the top 11 assemblies are the

same, meaning they are fundamentally of better quality than the remaining 9 as-

semblies presented in the Assemblathon 1 paper. In fact, the Assemblathon overall

score jumps from 74 for the 11th (WTSI-P) assembly to 99 for the 12th (DCSISU)

assembly, indicating a substantial qualitative difference. This is also reflected in the

corresponding jump in the LAP score from -37.326 to -39.441 for the 11th (DOEJGI)

and 12th (NABySS) assemblies, respectively.

37

2.3.1.4 The effect of a contaminant DNA on the assessment of the

assembly quality

The Assemblathon 1 dataset provides an interesting challenge to the assem-

bly assessment. The simulated libraries, generated in this project from the human

chromosome 13, also included approximately 5% of the contaminant DNA from an

Escherichia coli genome to simulate commonly encountered laboratory contamina-

tion that possibly occur due to the fragments of the cloning vector being sequenced

along with the genome of interest. The participants to the Assemblathon 1 competi-

tion were given the option to either remove the contaminant DNA prior to assembly

or retain the corresponding sequences in their assembly. This decision has little ef-

fect on comparison between the resulting assembly and the correct reference genome

in the Assemblathon 1; however, the ability of an assembler to correctly reconstruct

the contaminant genome significantly affects the corresponding LAP score.

Indeed, the LAP score (Figure 2.5) computed from the entire set of reads (the

red crosses) and that computed after the contaminant reads were removed (the blue

crosses) are strongly correlated, the latter scores are slightly lower since they were

computed on the smaller dataset. In several cases, the assembly was performed after

removal of the contaminant DNA (see “jumps” in Figure 2.5). These assemblies are

penalized by our framework for not assembling the contaminant DNA, a penalty

that is removed once the same set of reads is used for both assembly and quality

assessment.

It is important to stress that the LAP scores can only be meaningfully com-

38

-26.5

-26

-25.5

-25

-24.5

-24

-23.5

 0 10 20 30 40 50 60

L
A

P

Assembler #

Original reads
True reads

Figure 2.5: Effect of a contaminant DNA on the computation of the
LAP scores. Red crosses are the LAP scores computed on the entire
read set (including contamination). Blue crosses are the LAP scores
computed only on the ‘true’ reads that map to the genome of interest.
The corresponding LAP scores are quite similar (those obtained from
a smaller set of reads are correspondingly smaller) except for those of
assemblies that removed the contaminant DNA prior to assembly, and
receive a boost in the LAP scores obtained on the “true” data.

pared across the assemblies generated from the same read set. If a contaminant

is known it should either be removed from or retained within the dataset for all

assemblers being compared; otherwise, the corresponding scores can not be directly

compared. Note that this property is not unique to our measure: ignoring or as-

sembling contaminant DNA also affects other traditional measures of quality, such

as the N50 value or any reference-based measures, for example, in the case where

the contaminant DNA shares significant similarity to the genome being assembled.

39

In practice, a ‘contaminant’ is not known a priori, and its definition depends

on the specifics of an experiment. In general, it is difficult, if not impossible, to

distinguish between environmental contaminants and true artifacts in the data, both

in the context of metagenomic projects and in the case of isolate genomes. For

example, the Bacillus anthracis samples from the bioterror attack in 2001, which

were originally presumed to be uniform, contained a mixture of very closely related

strains, and the characteristics of this mixture formed an important forensic marker

in the investigation [40].

2.3.1.5 A useful application: tuning assembly parameters

Our discussion so far has focused on comparing the output of different assem-

bly software with the goal of choosing the best assembler for a particular dataset.

The developed probabilistic framework can also be used to better choose the com-

bination of parameters that allow a particular assembly to achieve better results.

To demonstrate this use case, we target the task of selecting the “best” (in terms

of final assembly quality) k-mer length for a de Bruijn graph-based assembler. We

focus here on SOAPdenovo assemblies of the Escherichia coli K12 MG1655 genome

(Figure 2.6).

Without the availability of a reference sequence, users of assembly software

usually rely on the N50 value as a proxy for the assembly quality. In this case,

there is a clearly defined peak in N50 at k=79 (114,112 bp). After adjusting for the

assembly errors, there is a collection of the assemblies (k=47-51, 55-75) with nearly

40

Figure 2.6: Tuning SOAPdenovo k-mer parameter using LAP. LAP, N50,
and corrected N50 are plotted for various SOAPdenovo assemblies of E.
coli K12 MG1655 dataset for different k-mer sizes (k=23-123). ALE [36]
scores are plotted alongside the LAP to show the differences between
their underlying likelihood models. Also included is a breakdown of the
errors along with the percentage of the unaligned reads for the various
SOAPdenovo assemblies. Two vertical lines (at k=79 and k=87) corre-
spond to the maximum ALE and LAP score, respectively.

41

identical corrected N50s (∼64,000 bp). These assemblies range in N50 from ∼80-115

kbp. Our de novo measure LAP shows a clear peak at k=87, which corresponds to

a corrected N50 of 59,352 bp. It is important to note that despite roughly a 7%

difference from the peak in corrected N50 (k=63), the best LAP assembly contains

4 fewer indels larger than 5 bp, while also aligns roughly 54,000 more reads.

Alongside our LAP, we plot the likelihoods calculated from another assembly

evaluator framework, ALE [36]. The assembly with the highest ALE score (k=79)

corresponds to the N50 peak. Compared to the LAP selected assembly, the ALE

selected assembly contains 10 more indels larger than 5 bp and has a 49% drop from

N50 to corrected N50 compared to the 35% drop between those values for the LAP’s

selected assembly.

2.4 Discussion

In this chapter, we have proposed a paradigm for the de novo evaluation

of genome assemblies. While the general paradigm could, in principle, be used

to provide an objective score of assembly quality, our practical implementation of

this paradigm, called the Log Average Probability (LAP), is dataset specific and

should only be used to provide relative rankings of different assemblies of the same

dataset. Unlike traditional measures of assembly contiguity (such as the N50 value),

our reference-independent LAP scores correlate with reference-based measures of

assembly quality.

We would like to stress that de novo measures of assembly quality, such as

42

ours, are critically needed by researchers targeting an assembly of yet unknown

genomes. The specific characteristics of the data being assembled have a significant

impact on the performance of genome assemblers (in the Assemblathon 1 [19] and

GAGE [20] competitions, for example, different assemblers ‘won’ the competition

depending on the analyzed dataset); thus, the reference-based quality assessments

cannot be reliably generalized to new genome projects.

In this chapter, we have made a number of simplifying assumptions for model-

ing the sequencing process; specifically, that the sequencing process is uniform (both

in the coverage, and the error profile), and that the reads are independently sam-

pled from the genome (with the exception of the dependence imposed by mate-pair

experiments). While our approach can detect copy number differences (unless the

entire genome is exactly duplicated), it is with the caveat that sequencing biases

within repetitive regions can possibly mask mis-assemblies. More precise models of

the sequencing process that relax these assumptions can be easily incorporated into

our framework (e.g., effects of G/C content on sequencing depth, or technology-

specific error profiles). We plan to create technology-specific variants of our score to

keep up with the rapid changes in the characteristics of the sequencing data as new

instruments and/or chemistries become available. Furthermore, the probabilistic

framework presented here can be used to incorporate other types of information on

the assembly quality, for example, optical mapping data [21].

In our assembler parameter-tuning experiment, we generated assemblies of Es-

cherichia coli K12 MG1655 using every allowed k-mer value. While this approach

may be computationally feasible for smaller genomes, it is inefficient for very large,

43

complex genomes. One solution would be to use an optimization strategy for select-

ing potential k-mer values, e.g., with simulated annealing.

While there are differences between the LAP score and recent likelihood-based

metrics, ALE and CGAL, these differences are quite small (Table 3 and Figure 2.6).

Thus, it is important to discuss the technical improvements over ALE and CGAL.

ALE’s score did not perform quite as well as our LAP score on the parameter tuning

experiment, and CGAL is unable to evaluate all of the GAGE assemblies due to

the technical limitations of Bowtie 2. Bowtie 2 was not designed for reporting

all read alignments, which makes it very slow on large genomes. This problem

will become more prevalent as sequencing costs continue to decrease, allowing for

more complex genomes to be sequenced and assembled. Our framework overcomes

CGAL’s limitations by allowing users to calculate the LAP score via the dynamic

programming method on a subset of the reads or by using the SAM file produced

from a read alignment tool designed for finding all alignments (e.g., mrsFAST [41]).

Our original goal was not to detect assembly errors, but to provide a global

measure of how good an assembly may be. We plan to extend our framework to

detect assembly errors by adopting a similar approach to that demonstrated by

ALE.

It is important to note that we have focused on a very specific use case for

assembly – the complete reconstruction of a given genome. Assembly algorithms

are used in a number of other biological applications, whose specific characteristics

affect the validation of the resulting assembly. For example, studies targeting the

genic regions of an organism may tolerate large-scale rearrangements as long as the

44

individual genes are correctly reconstructed. In this context, the validation frame-

work would penalize substitution errors and small insertions or deletions (which po-

tentially affect gene structure) more than mis-joins within intergenic regions. Such

application specific tuning is possible within the proposed overall framework, and we

envisage the creation of a collection of community-supported modules that compute

application-specific LAP scores.

Our discussion has focused on the assembly of single genomes, however the

LAP score, as described, can also be directly used in the context of diploid genomes

or metagenomic mixtures. In this case, our score implicitly assumes that the goal

of the assembler is to correctly reassemble both the sequence and the relative abun-

dances of the individual haplotypes. Assume, for example, a simple metagenomic

sample that contains two organisms; one that is twice as abundant as the other one.

An assembler that produces three sequences, corresponding to the three ‘haplo-

types’ in the sample (whether explicitly outputting two, perhaps identical, versions

of the abundant organism or reporting the copy-number difference in some other

way) would obtain a better LAP score than an assembler that only reported two

sequences without any indication of their relative abundance. As a result, the ma-

jority of metagenomic assemblers available today, which only output the consensus

sequence and not the relative abundance of the contigs, would score poorly under

our score. We hope that our work will inspire the developers of future metagenomic

assemblers to also output information on the relative abundance of the reconstructed

sequences, information that is critical to the analysis of the data, yet rarely reported

by existing tools.

45

Finally, we propose that measures such as ours, which objectively capture

the fit between the data being assembled and the output produced by the assembler

without relying on curated reference data sets, become a standard tool in evaluating

and comparing assembly tools, allowing the community to move beyond simplistic

measures of contiguity such as the ubiquitous N50 measure.

46

Chapter 3: Comparing Metagenomic Assemblies

3.1 Introduction

Despite the unresolved challenges of clonal genome assembly, the decreasing

costs of sequencing technology has led to a sharp increase in metagenomics projects

over the past decade. These projects allow us to better understand the diver-

sity and function of microbial communities found in the environment, including

the ocean [42–44], Arctic regions [45], other living organisms [46] and the human

body [47,48]. Traditional de novo genome assemblers have trouble assembling these

datasets due to the presence of closely related species and and the need to dis-

tinguish between true polymorphisms and errors arising from the sequencing tech-

nology. Metagenomic assemblers often use heuristics based on sequencing (Meta-

IDBA [49] and MetaVelvet [50]) and k-mer (Ray Meta [51]) coverage to split the

assembly graph into subcomponents that represent different organisms, then apply

traditional assembly algorithms on the individual organisms.

As the number of metagenomic assemblers available to researchers continues

to increase, the development of approaches for validating and comparing the output

of these tools is of critical importance. Despite the incremental improvements in

performance, none of the assembler tools available today outperforms the rest in all

47

cases (as highlighted by recent assembly bake-offs GAGE [20] and Assemblathons

1 [19] and 2 [52]). Different assemblers “win” depending on the specific downstream

analyses, structure of the genome, and sequencing technology used. These competi-

tions highlight the inherent difficulty of assessing assembly quality – where do you

set the line between increased contiguity and decreasing accuracy of the resulting

sequence? Evaluating the trade-off between increased contiguity and errors is diffi-

cult even when there is a gold standard reference genome to compare to, which is

not available in most practical assembly cases. Thus, we are forced to heavily rely

on de novo approaches based on sequence data alone.

Most of the previous de novo and reference-based validation methods have

been designed for single genome assembly. Currently, there are no universally-

accepted reference-based metrics for evaluating metagenomic assemblies. Despite

reference sequences being available for a small fraction of organisms found in metage-

nomic environments [53, 54], it is not clear how to distinguish errors from genomic

variants found within a population. Furthermore, it is not clear how to weigh errors

occurring in more abundant organisms. Likelihood-based frameworks, such as ALE

[36], CGAL [37], and LAP [28], rely on the assumption that the sequencing process

is approximately uniform across the genome; however, the sequencing depth across

genomes in metagenomic samples can vary greatly [55–58].

In this chapter, we describe an extension to our LAP framework to evaluate

metagenomic assemblies. We will show that by modifying our likelihood calculation

to take into account contig abundances, we can accurately and efficiently evaluate

metagenomic assemblies. We evaluate our extended framework on data from the

48

Organism A

Organism B
(2x as abundant)

Metagenome:

Organism B Organism B Organism A

Figure 3.1: The metagenome of an environment can be viewed as the
concatenation of the organisms found in the environment whose multi-
plicity is determined by their abundance.

Human Microbiome Project (HMP). Finally, we show how our LAP framework can

be used automatically by the metagenomic assembly pipeline, MetAMOS [27], to

select the best assembler for a specific dataset, and to provide users with a measure of

assembly quality. The software implementing our approach is made available, open-

source and free of charge, at: http://assembly-eval.sourceforge.net/ and with

the MetAMOS package: https://github.com/treangen/MetAMOS.

3.2 Methods

3.2.1 Extending LAP to metagenomic assemblies

An important simplifying assumption of our framework is that the sequencing

process is uniform in coverage. In metagenomics, however, the relative abundances

of organisms are rarely uniform [55–58], reflecting the difference in abundance be-

tween the different organisms within a community. Here we show that taking this

abundance information into account allows us to extend the LAP framework to

49

http://assembly-eval.sourceforge.net/
https://github.com/treangen/MetAMOS

metagenomic data. We now assume that while the abundances of each organism

may vary dramatically, the sequencing process still has uniform coverage across the

entire community. For example, consider a simple community containing two organ-

isms (A and B), one which is twice as abundant as the other. This community, thus,

comprises twice as much of A’s DNA than that of B. Assume, for simplicity, that the

community contains exactly three chromosomes (two of A and one of B). A random

sequencing process would sample each of these equally, and an ideal metagenomic

assembler would produce two contigs, one covered twice as deep as the other.

In essence, we view the collection of individual genomes and their relative

abundances as a single metagenome where each genome is duplicated based on

their abundance (Figure 3.1). This setting is similar to that of repeats in single

genome assembly, where a repetitive element can now include an entire genome.

Like in the case of single genomes, the assembler that correctly estimates these

repeat counts maximizes the LAP score. In other words, in order to accurately

evaluate the metagenomic assemblies using our LAP framework, the abundance (or

copy number) of each contig is needed. As most metagenomic assemblers do not

report this information, here we use the average coverage of the contig (provided by

the MetAMOS pipeline) to represent the copy number.

In the error-free model, we compute the probability of a read, pr, given the

assembled sequence and abundance as:

pr =

∑
c∈Contigs abun(c) ∗ nrc

2L̂
(3.1)

50

L̂ =
∑

c∈Contigs

abun(c) ∗ Lc (3.2)

where abun(c) is the abundance of contig c, nrc is the number of times read r occurs

in contig c, and L̂ is the adjusted total assembly length. In the case where the

abundance of each contig is 1, calculating pr is identical to the original LAP (single

genome) formulation. A similar modification can be done to handle sequencing

errors outlined in [28].

Our prior work has shown we can approximate the probabilities using fast

and memory efficient search alignment programs (e.g., Bowtie2 [38]) when it is

impractical to calculate the exact probabilities for large read sets. We can apply the

metagenomics modification above to the alignment tool-based method:

pr =

∑
j∈Sr

abun(jcontig) ∗ pr,jsubs

2L̂
(3.3)

where Sr is the set of alignments in the SAM file for the read r and the probability

of alignment, pr,jsubs
, is approximated by εsubs(1− ε)l−subs where ε is the probability

of an error (a mismatch, an insertion, or a deletion).

An important factor in any likelihood-based assembly evaluation framework

is the handling of reads that do not align well to the given assembly. In practice,

unalignable reads are often the result of sequencing errors and contaminants. If

these reads are given a probability close to 0, then the best assembler would be the

one that incorporates the most reads. In our original LAP framework, a read that

does not align well does not decrease the overall assembly probability more than

the probability of an assembly that contains the appended read as an independent

51

contig. This does not change when we handle metagenomic data, since the average

coverage of the “new” contig is one.

3.2.2 Integration into MetAMOS

In addition to being a standalone framework, the software implementing our

metagenomic LAP approach comes packaged with the MetAMOS pipeline [59]. This

allows users the option to run MetAMOS with different assemblers and have our

framework automatically select the assembly with the highest LAP score without

any prior knowledge from the user. The first step of the MetAMOS pipeline is

to Preprocess the reads, optionally filtering out low quality reads. Those reads

are used by the next step Assemble. Users specify the desired assembler using the

-a parameter of runPipeline. We modified MetAMOS so users can now specify

multiple assemblers (comma-separated) after the -a parameter, and runPipeline

will run all assemblers and select the assembly yielding the highest LAP score to be

used in downstream analyses.

3.3 Results

3.3.1 Likelihood score maximized using correct abundances

A key property of our framework is that the correct copy numbers (abun-

dances) and assemblies maximizes our LAP score. To illustrate this property, we

simulated two metagenomic communities and calculated the LAP of the reference

genomes with a combination of abundances. The first simulated community con-

52

sisted of Bacillus cereus and Acinetobacter baumannii at a ratio of 1:4. We gener-

ated 200bp reads at 20x coverage of the metagenome (20x of B. cereus and 80x of

A baumannii). We calculated the LAP scores of the error-free reference genomes

for all combinations of abundances (ranging from 1 copy to 8 copies) for each bacte-

ria. The second simulated community consisted of Bacillus cereus and Actinomyces

odontolyticus at a ratio of 4:7. We generated 200bp reads at 20x coverage of the

metagenome (80x of B. cereus and 140x of A odontolyticus). We calculated the

LAP scores of the error-free reference genomes for all combinations of abundances

(ranging from 1 copy to 13 copies) for each bacteria.

We expect the highest LAP scores for the assemblies that contain the correct

abundance ratios (1:4 or 2:8 in the first community, and 4:7 in the second com-

munity). As seen in Figs. 3.2(a) and 3.2(b), our LAP score is able to accurately

reflect the varying organism abundance ratios present in the sample. The LAP score

increases as the estimates approach the true abundance ratios, with the true ratio

yielding the highest LAP scores in both communities.

3.3.2 Impact of errors on synthetic metagenomes

One of the often overlooked aspects of metagenomic assembly evaluation is the

weighing of errors that occur in contigs with different abundances. In metagenomic

samples the relative organism abundances can vary by orders of magnitudes. A typ-

ical reference-based evaluation would equally weight the errors irrespective of the

abundance of the erroneous contigs. The proposed metagenomic LAP score, how-

53

’./data.abun’ using 1:2:3

 1 2 3 4 5 6 7 8

B. cereus abundance

 1

 2

 3

 4

 5

 6

 7

 8

A
.
b
a
u

m
a
n

n
ii

 a
b
u
n

d
an

ce

-14.3

-14.2

-14.1

-14

-13.9

-13.8

L
A

P

(a) B. cereus (1 copy, 5.2MB) and A. baumannii (4 copies, 4.0MB)

’./data2.abun’ using 1:2:3

 2 4 6 8 10 12

B. cereus abundance

 2

 4

 6

 8

 10

 12

A
.
o

d
o

n
to

ly
ti

cu
s

ab
u

n
d
an

ce

-14.1

-14.05

-14

-13.95

-13.9

-13.85

-13.8

(b) B. cereus (4 copies, 5.2MB) and A. odontolyticus (7 copies,

2.4MB)

Figure 3.2: LAP scores for simulated metagenomic communities. Each
cell (x,y) represents the LAP score for a mixture of x copies of the x-
label bacteria and y copies of the y-label bacteria. In both groups, the
true abundance ratios maximize the LAP score (indicated by a black
rectangle in respective plots).

54

ever, automatically handles this situation and appropriately weighs errors according

to genome abundance. To illustrate this, we simulated a small metagenomic commu-

nity consisting of Escherichia coli and Bacillus cereus at a 5:1 ratio. We introduced

an increasing number of common assembly errors (single-base substitutions, inser-

tions, deletions, and inversions) into the two organisms assemblies and observed the

resulting LAP score.

As shown in Figure 3.3, the higher the number of synthetic errors, the lower

the LAP score. Insertions/deletions were more deleterious to the LAP score than

substitutions, since in addition to causing a mismatch, an insertion/deletion changes

the overall genome size. Although inversions did not change the overall genome

size (and would therefore not be detected by simplistic measures such as N50),

these errors had the greatest impact on the LAP score because they prevented the

alignment of reads across the boundaries of the inversions.

As expected, errors introduced into the more abundant organism, E. coli, had

a greater affect on the LAP score than those inserted into B. cereus. Our LAP score

was able to accurately weigh the errors by the abundance of each organism.

3.3.3 Likelihood scores correlate with reference-based metrics

With real metagenomic samples, it is difficult to make evaluations given the

lack of high quality references. Using purely simulated data has the issue of not

accurately capturing the error and bias introduced by sequencing technology. Thus,

to evaluate our LAP score, we use two ‘mock’ communities (Even and Staggered)

55

-8.985

-8.98

-8.975

-8.97

-8.965

-8.96

-8.955

-8.95

-8.945

-8.94

 0 100 200 300 400 500

L
A

P

Errors

E. coli - substitutions

E. coli - insertions

E. coli - deletions

E. coli - inversions

B. cereus - substitutions

B. cereus - insertions

B. cereus - deletions

B. cereus - inversions

Figure 3.3: Synthetic errors in simulated E. coli (5 copies, 4.9Mbp) B.
cereus (1 copy, 5.2Mbp) community.

provided by the Human Microbiome Project (HMP) consortium [25, 26]. These

communities were created using specific DNA sequences from organisms with known

reference genomes (consisting of over 20 bacterial genomes and a few eukaryotes)

and abundances. The mock Even community consisted of 100,000 16S copies per

organism per aliquot, while the mock Staggered community consisted of 1,000 to

1,000,000 16S copies per organism per aliquot. Data used from the HMP mock

communities are available at http://www.ncbi.nlm.nih.gov/bioproject/48475.

We calculated the LAP score on assemblies produced by MetAMOS [27] using several

assemblers: SOAPdenovo [30], Metavelvet [50], Velvet [10], and Meta-IDBA [49].

The additional de novo and reference-based metrics for the assemblies were taken

from MetAMOS [27]. These metrics include:

56

http://www.ncbi.nlm.nih.gov/bioproject/48475

• number contigs (# ctgs) – total number of contigs/scaffolds in the assembly

• good contigs (Good Ctgs) – fraction of contigs that mapped without errors to

reference genomes

• total aligned (Total aln) – total amount of sequence (in Mbp) that can be

aligned to the reference genomes

• slight mis-assemblies (Slt) – alignments that cover 80% or more of the aligned

contig in a single match (Slt)

• heavy misassemblies (Hvy) – alignments that cover less than 80% of the aligned

contig in a single match or have two or more matches to a single reference

• chimeras (Ch) – contigs with matches to two distinct reference genomes

• size at 10 megabases (Size @ 10 Mbp) - the size of the largest contig c such

that the sum of all contigs larger than c is more than 10 Mbp (similar to the

commonly used N50 size)

• max contig size (Max ctg size) – size of the largest contig in the assembly

• errors per megabase (Err per Mbp) – average number of errors per Mbp in the

assembly

Generally, the de novo LAP scores agree with the referenced-based metrics

(Table 3.1). In the mock Even dataset, SOAPdenovo has the greatest LAP score,

the highest fraction of contigs that can align to a reference genome without error,

total amount of sequence that can be aligned to a reference genome, while also having

57

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350

F
re

q
u

en
cy

Contig abundance

SOAPdenovo
Meta-IDBA

Figure 3.4: Frequency of contig abundances for assemblies of the HMP
mock Staggered dataset.

the lowest amount of misassemblies (including chimeric) and errors per Mbp. It is

important to note that if user selected an assembly based on the best contiguity

at 10Mbp, they would select the MetaVelvet assembly, which contains double the

error rate per Mbp as the SOAPdenovo assembly while aligning 2Mbp less to the

references.

58

Dataset Assembler LAP #ctgs Good ctgs Total aln Slt Hvy Ch Size @ 10 Mbp Max ctg size Err per Mbp Aligned reads

mockE SOAPdenovo -27.031 63107 99.3% 51 166 131 1 28,208 249,819 5.8 85.75%

mockE Velvet -28.537 12,830 96.2% 41 256 100 2 42,269 179,673 8.7 83.30%

mockE MetaVelvet -27.102 22,772 96.8% 49 462 156 4 62,138 367,458 12.7 85.65%

mockE Meta-IDBA -31.166 22,032 95.4% 47 362 151 3 26,141 249,069 11 81.81%

mockS SOAPdenovo -60.161 44,928 98.8% 28 135 98 0 5,672 186,064 8.3 69.78%

mockS Velvet -60.711 21,050 95.8% 28 485 115 1 6,060 119,120 21.5 67.26%

mockS MetaVelvet -60.442 20,551 95.3% 28 517 143 3 6,685 217,330 20.1 67.72%

mockS Meta-IDBA -58.851 4,559 92.5% 18 101 83 0 13,150 119,604 10.2 70.67%

Tongue SOAPdenovo -13.844 35,230 89.10% 11 1,138 2,618 0 11,359 238,051 341.5 88.14%

Tongue Meta-IDBA -21.368 25,698 88.70% 7 710 2,087 0 4,215 59,188 399.6 58.89%

Table 3.1: Comparison of assembly statistics for HMP mock Even and mock Staggered datasets.Numbers in bold represent the
best value for the specific dataset.

59

Since the abundances of each organism in the mock Even dataset are fairly

similar, the mock Staggered abundance distribution creates a more realistic scenario

encountered in metagenomic environments. Here, the Meta-IDBA assembly has

the greatest LAP score, but aligns roughly a third less sequences to the reference

genomes than SOAPdenovo. The Meta-IDBA assembly contains approximately a

tenth of the amount of contigs (4,559 vs. 44,928) as SOAPdenovo. The SOAPdenovo

assembly contains a greater number of contigs at a very low abundance (Figure 3.4).

On large contigs Meta-IDBA performs better than SOAPdenovo and has a lower

error rate (see Figure 4 in [27]). However, Meta-IDBA assembles a smaller fraction

of the low-abundance genomes than SOAPdenovo, leading fewer sequences to align.

The LAP score penalizes misassemblies within abundant contigs in the SOAPdenovo

results.

Next, we applied our framework on real data where we did not know the actual

genomes comprising the sample (HMP tongue dorsum female sample, SRS077736)

(Table 3.1). Although we do not know for certain which organisms are present

in the sample, the HMP identified a reference genome set with high similarity to

the sequences within the sample (HMP Shotgun Community profiling SRS077736).

The reference-based error metrics only consider chimeric errors due to the possi-

bility of structural difference between an organism and its version in the reference

database. We calculated the LAP of the assemblies using a single library consisting

of 42,013,917 reads. The SOAPdenovo assembly had a far greater LAP score than

the Meta-IDBA assembly. The higher score is due to the SOAPdenovo assembly

recruiting more reads (88.14% to 58.89%) in relation to its genome size (46Mbp to

60

Assembler Contigs LAP N50 (Kbp) Errors

newbler 1 -13.064 156 1
SOAPdenovo 23 -14.238 9 3
Velvet 3 -13.157 92 0
MetaVelvet 3 -13.157 92 0

Table 3.2: Self-tuning MetAMOS using C. ruddii test dataset.

37Mbp) than the Meta-IDBA assembly. Furthermore, the MetAMOS metrics show

that the SOAPdenovo assembly contained approximately 60 less errors per Mbp

than the Meta-IDBA assembly.

3.3.4 Tuning assembly parameters for MetAMOS

Assemblathon1 [19] has shown that assembly experts can often get drastically

different assemblies using the same assemblers, highlighting the difficulty of choosing

the right parameters for a given assembler. Our metagenomic LAP framework comes

packaged with the MetAMOS pipeline, allowing users the option to run MetAMOS

with different assemblers and automatically select the assembly with the highest

LAP score. This step occurs without any prior knowledge from the user.

We showcase the ease of use of the automated assembler selection within

MetAMOS using the Carsonella ruddii (156Kbp) dataset packaged with MetAMOS

(Table 3.3.3). Errors were found using DNADIFF [60] and MUMmer [61]. The

newbler assembly produced one contig containing the complete C. ruddii genome.

The SOAPdenovo assembly produced a severely fragmented assembly with the most

number of errors. The MetaVelvet and Velvet produced identical assemblies, con-

taining 3 contigs of sizes 92Kbp, 65Kbp, and 1.7Kbp, but contained an additional

61

158bp compared to the C. ruddii genome. Upon closer inspection, there were over-

laps between the contigs ranging from 38bp to 73bp. This is not surprising given

MetaVelvet’s and Velvet’s de bruijn graph-based approach could not resolve repet-

itive regions between the contigs. Newbler, on the other hand, contained only a

single insertion error. The LAP score of the Newbler assembly was greater due to

more reads being able to align across the regions that were broken apart in the

MetaVelvet and Velvet assemblies. Additionally, the Newbler assembly did not con-

tain the duplicated sequence found in the other assemblies. MetAMOS was able

to select the most likely assembly without requiring any additional input from the

user.

3.4 Discussion

In this chapter, we have proposed an extension to our LAP framework to per-

form de novo comparisons of metagenomic assemblies. Unlike traditional de novo

metrics used for measuring assembly quality, our extended LAP score correlates well

with reference-based measures of metagenomic assembly quality. However, in this

study, we have realized that there is a lack of reference-based metrics when evaluat-

ing metagenomic assemblies. Misjoins betweens organisms may be more deleterious

than misjoins within a single genome. Furthermore, current reference-based metrics

do not take into account the relative abundances of the organisms when evaluating

metagenomic assemblies. The metrics provided by MetAMOS do not factor in the

contig abundances when examining assembly errors. This made it difficult to com-

62

pare our LAP score to their reference-based metrics because, intuitively, an error in

a highly abundant organism should be worse than an error in a rare, low coverage

organism. Our LAP score implicitly weighs the errors in abundant contigs more

than those in lesser abundant contigs. In our results, we have proposed one such

reference-based metric that scales the errors by the relative abundance of the contig

it occurs within.

It is important to note that we have only focused on the complete reconstruc-

tion of the metagenome from the set of reads. Assembly algorithms are designed with

specific biological applications in mind, such as, the conservative reconstruction of

the genic regions. Studies focusing on the genic regions may tolerate large-scale rear-

rangements as long as the genic regions were correctly assembled. Conversely, other

studies may want to focus on the reconstruction and detection of rare pathogenic

bacteria in an environment. These application specific assembly algorithms all at-

tempt to optimize their formulation of the assembly problem.

Our metagenomic LAP extension relies heavily on the idea that the sequencing

process of the metagenome is roughly uniform, and that the reads are independently

sampled from the genome. Biases exist in all steps of the sequencing process, from

the extraction of DNA from organisms with different cell membranes/walls [55, 56]

to the sequencing protocol used [57, 58]. In the future, we would like to implement

a more specific model that better captures the sequencing process.

Results from GAGE [20] and Assemblathon [19,52] have shown that the specific

characteristics of the data being assembled has a great impact on the performance of

the assembler. This problem is magnified in metagenomic assembly. By integrating

63

our LAP framework in MetAMOS, we have allowed researchers to accurately and

effortlessly run and evaluate assemblies without any prior knowledge on evaluating

assembly quality.

In our framework, we use the average coverage of the contig (provided by

MetAMOS) to estimate abundance. There are issues with this measure as it is

possible that mis-assembled repeats within a contig will affect our estimate of depth

of coverage and could impact our underlying statistics. A better approach is to

use something more robust than the mean coverage, such as the median coverage,

to avoid being influenced by such regions. While the user can supply the median

coverage to our standalone framework, future work includes building this feature

into MetAMOS. Another approach involves breaking contigs at regions of differing

coverage (using tools such as AMOSvalidate [60]), so there will be less deviation in

the average coverage within the contig.

It should be noted that in some cases it may not be tractable to run the com-

plete collection of assemblers with MetAMOS. In such cases, we should first employ

heuristics (such as [62]) to aid in selecting potential assemblers (and parameters) to

run. For the assembler selection process, we can use the LAP framework’s sampling

procedure in combination with calculating read probabilities in parallel to reduce

runtime.

Our goal was to provide a global measure of how good a metagenomic assembly

may be, not to detect assembly errors. Other likelihood-based frameworks, such as

ALE, use frequencies of certain sequences to aid in detection of possible chimeric

contigs. We are able to apply similar modifications to our LAP framework to find

64

regions of possible misassembly. Finally, we plan to extend our framework to give a

more detailed breakdown of the LAP scores of segments assembled using the same

subset of reads across different assemblies. The goal would be to take high-scoring

assembled segments from individual assemblies to recreate an assembly with overall

greater likelihood. This approach will be of great benefit to the field of metagenomic

assembly since assemblers are often designed with different constraints and goals

in mind, e.g., low memory footprint, assembling high/low coverage organisms, or

tolerating population polymorphisms. For example, on the mock Staggered dataset,

Meta-IDBA best assembled the most abundant genomes while SOAPdenovo had

a better representation of the low abundance organisms. Providing a systematic

way of combining assembler approaches using our LAP score will produce better

assemblies for downstream analyses.

3.5 Conclusion

In this chapter we have described an extension to our de novo assembly eval-

uation framework (LAP) for comparing metagenomic assemblies. We showed that

the true metagenome and correct relative abundances maximizes our extended LAP

score. Furthermore, we have integrated our framework into the metagenomic as-

sembly pipeline MetAMOS, showing that any user is able to reproduce quality eval-

uations of metagenomic assemblies with relative ease.

65

Chapter 4: Regression Testing of Genome Assemblers

4.1 Introduction

The issues with testing “non-testable programs” were first raised by Davis and

Weyuker in a 1981 paper [63]. An important characteristic of such programs is the

absence of a test oracle, the mechanism that determines whether a software under

test (SUT) executed correctly for a test case. Without a test oracle, a test case

has no way to pass or fail. This calls into question the overall purpose and value of

software testing.

Although there has been work in the area of testing such non-testable pro-

grams [64–72], in practice this problem continues to be a significant hurdle for test

automation in many scientific domains, where it is either very expensive or impos-

sible to determine the correct answer for a scientific problem [73] (e.g., validating

machine learning classifiers [74], analyses of feature models [75]) or computation

(e.g., processing large XML files [76]. image segmentation [77], mesh simplifica-

tion [78]). This is especially problematic for the domain of bioinformatics, a largely

software-intensive field. Bugs in bioinformatics software have the potential to lead

to incorrect scientific conclusions. As observed by Chen et al. [79], “incorrectly com-

puted results may lead to wrong biological conclusion, and ... misguide downstream

66

experiments.”

Consider the classic problem in bioinformatics – de novo genome sequence

assembly. The genome sequence of an organism is important for understanding its

life cycle and evolution. Current sequencing technology is only able to produce reads

(sequenced fragments) that are drastically shorter than the genome. Therefore,

in order to carry out meaningful biological analyses, one must first assemble the

original genome using assemblers. The result of the assembly is one or more contigs

(contiguous sequence fragments) that can be ordered and oriented into scaffolds with

gaps (unknown parts in the sequence). Current formulations of the genome assembly

problem are optimization problems on graphs, which are known to be NP-hard [6].

In practice, assemblers are only able to return an approximate solution.

Because of the nature of the domain, it is very difficult to validate the cor-

rectness (quality [1]) of an assembly – the correct/expected solution is not known.

In software testing terms, the test oracle is unavailable. Moreover, when researchers

develop a new assembler, they often run it on a new dataset, making comparisons

difficult. Monya [1] notes that the bioinformatics community needs to find “ways to

assess and improve assemblers in general.”

Hence, the community faces the following scenario: iteratively improve the as-

sember, ensuring at each step that the assembly did indeed improve, and that no

new bugs that might degrade the assembler’s output were introduced. This puts

us in the realm of regression testing. One way to determine whether bugs have not

degraded a software’s output is by using what we call a diff-based approach, i.e.,

running test cases on the old and new versions of the code and identifying differ-

67

ences in the tests’ outcome [80]. Thus, regression testing employed by assemblers

may compare the text output of an assembler on test datasets with previously com-

puted assemblies to determine if the code changes produced a different assembly.

Comparing the raw text outputs of an assembler is not robust enough to capture

whether there were actual differences in the quality of assembly. Multiple assem-

blies of the same set of reads are acceptable as correct. Reordering the reads may

produce different assemblies that have the same overall quality, but contain trivial

differences, such as the assembly starting a different position in circular bacteria

genome (Fig. 4.1).

>sample circular sequence

AGCATCTTTATTGGAGATGTGCCACAGCACATTG

>sample circular sequence rotated 1 char

GAGCATCTTTATTGGAGATGTGCCACAGCACATT

Figure 4.1: FASTA file containing two entries that represent the same
circular sequence. Each entry consists of a single line descriptor starting
with the > symbol, followed by the biological sequence. Text comparison
tools would detect that these two sequences are different.

In this chapter, we present a novel assembler-specific regression testing frame-

work that uses two assembly evaluation mechanisms: assembly likelihood, calculated

using LAP [28], and read-pair coverage, calculated using REAPR [29], to determine

if code modifications result in non-trivial changes in assembly quality. The log av-

68

erage probability, LAP, is the log of the geometric mean of the probability that the

observed reads are generated from the given assembly. By modeling the sequencing

process, we are able to accurately calculate this probability. REAPR is tool for

detecting misassemblies using the coverage of read-pairs.

We evaluate our framework using SOAPdenovo [11] and Minimus [31]. SOAP-

denovo is a widely popular de novo assembler designed for short reads that has

been used in many high profile genome assemblies, including the giant panda [39].

Minimus is one of the several assembly pipelines in the AMOS software package.

Minimus provides a good case study for software engineering in bioinformatics due

to its open-source nature, modular design, and active developer community.

We study assembler evolution in two contexts. First, we examine how assembly

quality changes throughout the version history of SOAPdenovo. Second, we show

that our framework can correctly evaluate decrease in assembly quality using fault-

seeded versions of Minimus. Our results show that our framework accurately detects

trivial changes in assembly quality produced from permuted input reads and using

multi-core systems, which fail to be detected using traditional regression testing

methods.

Here we make the following contributions:

• Provides a regression testing framework novel to the domain of de novo genome

assembly.

• Illustrates the benefits of developing a regression testing framework for untestable

software leveraging existing third party tools.

69

• All of the software from our regression testing framework, experimental se-

quence data, assemblers, and results are available online.

We believe that this research is both timely and relevant. As sequencing tech-

nology becomes cheaper, assemblers will operate on increasingly larger data sets,

requiring large multi-core machines in order to assemble these datasets in a reason-

able time frame. Developers need to design test cases that match the complexity

and size of practical datasets to adequately test their assembler. Depending on the

underlying algorithms, concurrent programs may produce different outputs. Assem-

blers may produce slightly different assemblies than their single-threaded version,

making it difficult to compare the raw text outputs.

In the next section, we describe how the problem of testing without an oracle

is not limited to bioinformatics, and the different strategies typically used and their

limitations. In Section 4.3, we describe our regression testing approach, briefly

outlining the theory behind assembly likelihood and read-pair coverage and why

they are our main measure of assembly quality. In Section 4.4, we show how our

framework is able to accurately evaluate the trivial changes in assembly quality using

real sequencing data. Then, we examine how assembly quality changes throughout

the release history of SOAPdenovo. We wrap up our results showing the fault

detection power of our framework using manually seeded faults within Minimus. In

Section 4.5, we discuss the significance and limitations of our framework, and the

lack of adequate testing within the assembler community. Finally, in Section 4.6,

we conclude with a discussion of future research directions.

70

4.2 Related work

The difficulty in software testing without an oracle is not limited to genome

assembly, but has been encountered in many other fields such as bioinformatics,

weather prediction, and image and speech processing. In bioinformatics, for ex-

ample, a common task is to find all potential mappings of a sequence to another

reference sequence which contains at most a certain number of mismatches. Without

an oracle, it is hard to check whether a sequence has been mapped to all positions in

the reference sequence [81]. In weather prediction, software has no oracle to verify if

it is functioning correctly. Discrepancies between the predicted and actual result can

be attributed to an error in the model employed by the weather prediction program

rather than an error in the software. However, this prediction model involves very

complex computation, which makes it very hard to verify its output. Testing done

on weather prediction is frequently used to test performance and scalability of the

framework instead of the accuracy of the predictions [82], [83].

Literature has witnessed several techniques developed to address the lack of

oracle in software testing. The first technique is dual coding or “pseudo-oracle” [84],

where developers independently create a program with the same specification as the

original. Identical input datasets are used and outputs from both programs are,

then, compared. The extra overhead involved in creating a duplicate program as

complex as genome assembler often makes this technique impractical. In order to

reduce this overhead in some instances, McMinn [64] proposed program transfor-

mation which automatically creates pseudo-oracles by transforming aspects of the

71

SUT into alternative versions. He also proposed using search-based testing tech-

niques to generate two types of inputs that have the potential to produce different

outputs from the pseudo-oracles and the original program. The first type of in-

put targets programs with numerical computations while the second one focuses on

multi-threaded code with the presence of race conditions.

Metamorphic testing [85] proposed by Chen et al. is another common tech-

nique to deal with testing applications without oracle. It identifies expected relation

properties among inputs and their corresponding outputs, which can detect incorrect

output but cannot validate the correct one. Metamorphic testing is widely-applied

in many specific domains such as mesh simplification programs, stochastic optimiza-

tion algorithms, machine learning classifiers and feature models. Chan et al. applied

metamorphic testing to mesh simplification programs which create 3-D polygonal

models similar to an original polygonal model, yet with fewer polygons [68,78]. The

test oracle problem in this domain is that the programs produce different graphic

despite the same original polygonal model being used. The proposed iterative so-

lution uses a reference model of the SUT as the pseudo-oracle to train a classifier

which categorizes a test case into “failed” or “passed”. However, since the passed

test cases may be misclassified, they are then inputted into a metamorphic testing

model as initial test cases to generate follow-up test cases which in turn are classified

by the classifier. Yoo [67] focused on solving the same oracle problem in stochastic

optimization algorithms whose performance depends not only on the correctness of

implementations but also on the problem instances they are used to solve. The

paper provides a comparison and evaluation of the impact of different problem in-

72

stances on the effectiveness of metamorphic testing of stochastic optimization. Xie

et al. [74] used metaphoric testing to test machine learning classifiers. Their solution

first identifies all the necessary metamorphic relations that classifiers would be ex-

pected to demonstrate, then checks if the corresponding classifier algorithm satisfies

these relations. A failure to exhibit the relation indicates a fault. In feature model

analysis tools, output is very difficult to evaluate due to the combinatorial complex-

ity and numerous operations of the analyses. The current testing method is very

time-consuming and error-prone; thus, metamorphic testing is used to automatically

generate test data for the tools.

There are, however, some limitations in metamorphic testing such as manually

intensive, insufficient number of metamorphic properties and ineffective fault detec-

tion in individual functions. In order to reduce these limitations, Christian proposed

metamorphic runtime checking [65], which specifies the metamorphic properties at

the function level rather than at the application level, and automated metamorphic

system testing, [66] which requires little manual intervention.

4.3 Methods

Here we present an assembler regression testing framework that utilizes a non-

traditional test oracle, one that need not assess whether a test case passed or failed;

rather, it computes “goodness of output” measure or quality for assemblers. Our

framework uses two mechanisms to accurately assess assembly quality: assembly

likelihood and read-pair coverage. These mechanisms serve as our testing oracle

73

in the sense that we will be modeling a process (sequencing) that the software

(assembler) is trying to reverse. We will outline the importance of each mechanism

and the software used in our framework.

4.3.1 Regression testing framework

4.3.1.1 Assembly likelihood

The correct assembly of a set of sequences should be consistent with the sta-

tistical characteristics of the data generation process [86]. In other words, we can

evaluate an assembly based on the likelihood that the reads could have been gen-

erated from it. An important property of this mechanism is that the true genome

maximizes this likelihood [28]. Recent tools have utilized this theory: ALE [36],

CGAL [37], and LAP [28].

For our testing framework, we have selected LAP as our tool to evaluate as-

sembly likelihood. The LAP framework defines the quality of an assembly as the

probability that the observed reads, R, are generated from the given assembly, A:

Pr[R|A]]. This conditional probability is the product of the individual read proba-

bilities, pr (assuming that the event of observing each read is independent). That

is,

Pr[R|A] =
∏
r∈R

pr (4.1)

The probability of each read, pr, is calculated by modeling the data generation

process, which varies depending on the sequencing technology used. If we assume

the reads are generated error-free and uniformly at random from the given genome,

74

then a read may be sequenced starting from any position of the genome with equal

probability. Thus, if a read matches at nr positions on the assembly of length L,

then

pr =
nr

2L
(4.2)

The assembly length is doubled due to the double-stranded nature of DNA molecules.

Modifying the calculation of pr to handle practical contraints such as sequenc-

ing errors, paired-reads, and large datasets are detailed in [28].

We can provide a brief demonstration of the effectiveness of the LAP in detect-

ing trivial differences in assembly quality using the sample circular sequence from

Fig. 4.1. The length of the circular sequence is 35 characters, known as base pairs

(bps). Due to the inability to represent the circular nature of the sequence in the file

format used for storing sequences (FASTA), we must arbitrarily break the circular

sequence into a linear fragment. Let’s assume we are able to generate error-free

reads of length 5 from each position in the circular sequence, resulting in 35 reads:

>sample circular sequence

AGCATCTTTATTGGAGATGTGCCACAGCACATTG

Reads:

AGCAT, GCATC, ..., CATTG (31 total)

Reads that wrap around:

ATTGA, TTGAG, TGAGC, GAGCA (4 total)

Assuming that each read aligns exactly at most one location, then 31 reads

75

will align exactly 1 time, while the 4 reads that span the end of the sequence will

be unable to align. If we align the reads to the sample circular sequence rotated 1

base pair, then it should be apparent that we get the same number of reads that

match exactly 1 time (albeit different reads), and the same number of reads that do

not match. Therefore, Pr[R|A] = Pr[R|Arotated] and the LAP of each assembly will

be equal. We are able to determine that these assemblies are of equivalent quality,

unlike the diff -based method.

We use LAP in our framework over CGAL and ALE because the LAP score

can be calculated accurately and efficiently using a sample of the reads, making it

practical for large datasets.

4.3.1.2 Read-pair coverage

Many current sequencing technologies produce read-pairs, where reads are

sequenced from opposing ends of the same fragment. These read-pairs are used to

resolve genomic repeats as well as orient contigs into scaffolds (contigs with gaps

that are connected by a known distance). Since we know what the distribution of

fragment sizes should be, we can use this as a constraint when evaluating the quality

of our assembly. REAPR [29] is a tool that leverages this constraint and evaluates

the accuracy of the assembly using read-pair coverage. REAPR determines the

fragment coverage by first independently aligning the read-pairs to the assembly.

A fragment is defined as the distance from the end points of proper read-pairs

(those that are determined to have correct orientation and separated by the correct

76

distance). REAPR is able to find base-level errors by comparing the fragment

coverage of a given base with the theoretical coverage.

Although the LAP score implicitly captures the quality of alignable read-pairs,

REAPR provides assembler developers with a detailed breakdown of the specific

errors in their assembly, giving the user the option to automatically break assemblies

at locations of error. We use the specific error locations to calculate the percentage

of error-free bases of the assembly.

4.3.2 Evaluating changes in assembly quality

Since the LAP is computed over a sample of the reads, for our experiments, we

consider assemblies of equal quality if they are within one standard deviation of each

other (see Section Estimating the average read likelihood by sampling in [28]). Users

are free to select how large of a deviation they want to allow between assemblies.

We also provide the user with the percentage of error-free bases in the assembly

using results generated by REAPR. Both of these analyses are performed on the

assemblies during the validation step of the assembly pipeline iMetAMOS [59, 87].

MetAMOS generates a summary HTML page for the assembly quality results.

4.4 Results

To illustrate the inadequacy of the diff -based approach, we first generate

assemblies with SOAPdenovo and Minimus using bacterial sequences from a re-

cent high-profile assembly competition, GAGE [20]. The Rhodobacter sphaeroides

77

-9.35

-9.3

-9.25

-9.2

-9.15

-9.1

-9.05

-9

-8.95

-8.9

original reads shuffled reads

L
A

P

Library

1 thread
8 threads

Figure 4.2: SOAPdenovo assemblies of the 1,408,188 R. sphaeroides
error-corrected reads. The LAP was determined using a sample of
100,000 reads. The assemblies produced from the original reads and
shuffled reads are within the acceptable standard deviation.

dataset contains 1,408,188 reads of length 101 bps. Assemblies are created using

the original reads, along with a shuffled version of the original reads and compared

using unix command diff. Since SOAPdenovo allows the use of multiple threads, we

run the assembler using one and eight (the default in SOAPdenovo) threads. Both

assemblers produce different assemblies depending on whether they use the original

or shuffled reads. By doing a diff of the text outputs, we are unable to determine

if there is a non-trivial change in assembly quality.

Next, we evaluate the Rhodobacter sphaeroides assemblies using our proposed

78

-18.1

-17.1

-16.1

-15.1

-14.1

-13.1

-12.1

-11.1

-10.1

V1.0
0

V1.0
1

V1.0
2

V1.0
3

V1.0
4

V1.0
5

V2.0
0

V2 r
22

3

V2 r
23

8

V2 r
23

9

V2 r
24

0

LA
P

SOAPdenovo version

C. Rudii(31-mer)

C. Rudii(55-mer)

S. Aureus(31-mer)

S. Aureus(55-mer)

R. spaer.(31-mer)

R. spaer.(55-mer)

Figure 4.3: LAP scores for SOAPdenovo assemblies produced from dif-
ferent versions, using R. sphaeroides, S. aureus, and C. Rudii datasets.
The LAP was determined using all reads. LAPs approaching zero rep-
resent more probable assemblies.

regression testing framework. The LAP is able to accurately detect trivial changes

in assembly quality that raw text comparisons cannot (Fig. 4.2). For SOAPdenovo,

the LAP of the assemblies generated from the original and shuffled reads are within

the acceptable standard deviation. Furthermore, assemblies produced using 1 and

8 threads contain nearly identical LAPs.

The purpose of regression testing is to ensure that a code change does not

introduce new faults, but our framework has the added benefit of detecting positive

changes in assembly quality. Ideally, we want to use our framework alongside the

development of an assembler to evaluate how code changes affect assembly qual-

79

ity. Fortunately, SOAPdenovo’s source code and previous versions are available

for download. We have created custom assembler specification files for each of the

11 assembler versions so that they can be run by MetAMOS [87]. We evaluate

the different versions of SOAPdenovo using LAP and REAPR on the Rhodobacter

sphaeroides, Staphylococcus aureus, and Carsonella ruddii datasets (Fig. 4.3). The

R. sphaeroides dataset contains 762,266 Quake-corrected [88] read-pairs with insert

sizes of 180bps. The S. aureus dataset contains 408,285 Quake-corrected read-pairs

with insert sizes of 180bps. The Carsonella ruddii dataset contains 50,000 read-pairs

with insert sizes ranging from 500bps to 3,500bps and comes packaged as test data

for MetAMOS. We assemble the data using MetAMOS with our custom SOAPde-

novo assemblers, then run the LAP and REAPR tools on the resulting assemblies

at the contig-level. SOAPdenovo is a de Bruijn assembler and requires the user to

specify a parameter, k-mer, to construct the de Bruijn graph. For each dataset we

construct assemblies using two different k-mer sizes: 31 and 55. The default binaries

for SOAPdenovo versions 1.00 - 1.05 were only able to build assemblies using k-mer

sizes <= 31. Versions 2.00 and higher were used to process up to 127-mers.

The respective assemblies of each dataset using 31-mers are identical across

SOAPdenovo versions 1 to 1.03. The changelists for versions 1.01 through 1.03 state

that only bugs were fixed. The bug fixes in these versions are not covered by our

test cases. The changelist for version 1.04 mentions an improved gap filling module,

which is used during the scaffolding step of assembly. Our framework detects an

increase in assembly quality between version 1.04 and the previous versions across

the S. aureus, R. sphaeroides, and C. Rudii datasets. The LAP indicates a more

80

Table 4.1: Regression testing results for different SOAPdenovo versions using S.
Aureus (31-mer) dataset. The percentage of error-free basepairs are calculated using
REAPR. N50 is a commonly-used metric to measure contiguity.

Assembler LAP Error-free bps (%) N50 (bps)

V1.00 -11.961 78.34 8,751
V1.01 -11.961 78.34 8,751
V1.02 -11.961 78.34 8,751
V1.03 -11.961 78.34 8,751
V1.04 -11.816 81.93 12,568
V1.05 -11.816 81.94 12,568
V2.00 -14.474 49.04 2,428
V2 r223 -11.816 81.62 12,568
V2 r238 -11.816 81.62 12,568
V2 r239 -11.816 81.62 12,568
V2 r240 -11.816 81.62 12,568

probable assembly was produced in 1.04. This positive change in assembly quality

is supported by our REAPR results. The percentage of error-free bases increased

from 78.34% to 81.93% and 65.28% to 72.75% in the S. aureus and R. sphaeroides

datasets, respectively. A breakdown of the S. Aureus (31-mer) assemblies are given

in Table 4.4. REAPR agrees with the LAP scores, showing a correlation with the

percentage of error-free bases across the different versions of SOAPdenovo.

Interestingly, SOAPdenovo version 2.00 produces a less likely assembly for the

S. aureus and R. sphaeroides datasets (using 31-mers) than the earlier versions.

Our framework detects that this code change produced a lower quality assembly

in terms of LAP and percentage of error-free bases, signaling that developers need

to investigate further. SOAPdenovo versions beyond 2.00 appear to have fixed the

issue resulting in the lower quality assemblies.

The quality of assemblies using 55-mers remain largely unchanged across the

81

version history. There was a slight increase in LAP of the S. Aureus assembly from

versions 2.00 to 2r223, but there was only an increase of 0.01% in error-free bases.

Finally, we introduce faults into the core modules of the Minimus source code

to evaluate how well our framework detects the resulting change in assembly qual-

ity (Fig. 4.4). Minimus consists of three core modules: hash-overlap, tigger,

and make-consensus. Hash-overlap computes the overlaps between reads using a

special type of hash seed called a minimizer [89]. The tigger uses the computed

overlaps to assemble reads into individual contigs. The make-consensus module

then improves the layout of the contigs using alignment data from the reads. For

our tests, we seed faults into the hash-overlap and tigger modules and produce

assemblies using the Influenza-A and zebrafish gene datasets packaged with Min-

imus. In order to find the shared regions of code executed between both datasets,

we first obtain the code coverage (summarized in Table 4.2).

Table 4.2: Code coverage for Influenza-A and zebrafish gene test cases.

Testcase Lines(Hit / Total) Functions(Hit / Total) Branches(Hit / Total)

Influenza-A 5724 / 46333 = 12.4% 3170 / 19019 = 16.7% 4333 / 21029 = 20.6%
Zebrafish 5606 / 46333 = 12.1% 3108 / 19019 = 16.3% 4247 / 21029 = 20.2%

We insert three faults into the hash-overlap module. The first fault allows

all errors to be accepted between overlaps that contain a minimizer. Accepting

all overlaps, regardless of quality, will increase the number of reads that can be

combined. This fault produces an identical assembly as the fault-free version of the

code in the Influenza-A dataset, thus is not detected by our framework. A noticeable

82

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

free 1 2 3 4 5

L
A

P

Fault

Influenza-A
Zebrafish gene

Figure 4.4: The LAP of fault-seeded versions of Minimus using the
Influenza-A and zebrafish gene datasets. Faults 1, 2, and 3 were inserted
into the hash-overlapper module and Faults 4, and 5 were inserted into
the tigger module. All faults were detected in the zebrafish gene dataset;
however, faults 1 and 3 were not detected in the Influenza-A dataset.

drop in assembly quality is detected in the zebrafish gene dataset.

The next two faults modify the functionality of the minimizers. Minimizers

need to be sorted so a more computationally expensive dynamic programming al-

gorithm can be used to connect them across mismatching sequence. Both faults

attempt to break the initialization and sorting of the minimizers. The faults pro-

duced assemblies of lower quality in the zebrafish gene dataset; however, only one

fault produced a lower quality assembly of the Influenza-A dataset.

83

We insert two faults into the tigger module. The first fault disrupts a method

that hides transitive edges within the assembly graph. An edge between nodes A and

C is transitive if there exists an edge between nodes A and B and an edge between

nodes B and C. Without the ability to hide transitive edges, Minimus will encounter

more nodes that have multiple outgoing edges. Minimus will be unable to compress

these paths into unitigs, resulting in additional contigs. Our framework correctly

detects the drop in assembly quality in both the zebrafish gene and Influenza-A

datasets.

The second fault is related to the first, but breaks Minimus’s ability to remove

nodes from the graph that are contained by an overlap between two other nodes.

Our framework correctly detects the resulting drop in assembly quality across both

test datasets. The Influenza-A assembly produced using this faulted version has the

same N50 size as the fault-free version of Minimus. The N50 size is the weighted

median contig size, i.e., the length of largest contig c such that the total size of the

contigs larger than c exceeds half of the genome size. Including this commonly-used

metric serves as an example of the importance of using the LAP as the main criteria

for accessing changes in assembly quality. The N50 metric would mislead developers

into believing that the assemblers were of equal quality due to their nearly equal

size.

84

4.5 Discussion

Regression testing without an oracle can potentially delay the release of soft-

ware as developers attempt to track down a non-existent error due to differing

results. In the worst case, developers may modify a correct program in order to re-

produce incorrect results. Utilizing assembly likelihood (via LAP) and read-pair cov-

erage (via REAPR), assembler developers will spend less time deciphering changes

in assembly quality, allowing them to focus on algorithm improvements and other

bug fixes. If a significant change in assembly quality is detected, the inclusion of

REAPR provides developers with an additional breakdown of potential error loca-

tions in the assembly. Comparing the error locations between version histories may

aid in tracking down sources of potential error within the code.

MetAMOS greatly simplifies the assembler regression testing process. Al-

though all de novo assemblers require a set of reads as input, it is difficult to auto-

mate the assembly process utilizing multiple assemblers, since different parameters

are used by different assemblers. Assembler parameters can change across soft-

ware versions. It is common in large-scale assembly projects to combine the results

of multiple assemblers in order to achieve what they believe is the best assembly.

MetAMOS provides a standard generic assembler format for developers where they

can specify how an assembler should run given a set of predefined keywords, such

as k-mer length. This gives users the ability to specify a single parameter in MetA-

MOS, which is then automatically translated to the appropriate runtime parameter

for the corresponding assemblers.

85

A frequently used strategy to test software without an oracle is to run the

program on a simplified dataset for which the correctness of the result can be ac-

curately determined [84]. In general, software is often tested this way, since ex-

hausting testing is not practical. A simplified dataset may uncover some easy to

find faults, but the complex cases are usually more error-prone. The Minimus test

cases, Influenza-A and zebrafish gene, contain only 151 and 153 reads, respectively.

However, typical assembly datasets consist of millions of reads, such as the S. aureus

and R. shpaeroides datasets presented in Section 4.4. Two of the faults we seeded

do not affect the assembly quality of Influenza-A dataset, but do affect the zebrafish

gene assembly quality. The zebrafish gene dataset executes 0.8% and 0.2% and more

code in the hash-overlap and tigger modules, respectively. Although the faults

are inserted into shared sections of code, it is difficult to determine how much more

complex the state of the assembler becomes due to the increase code execution.

Ideally, once a fault is discovered, a test case is added that exercises the code

path containing the fault. Unit tests are one of way testing the method containing

the fault, but the state of an assembler is often very large with many complex

interactions. Thus, assemblers heavily rely upon end-to-end testing. However, it

is difficult to modify existing test cases to exercise the fixed fault. Modifying the

reads could have unforeseen side effects. Altered reads could produce new overlaps,

changing the execution path of the code and potentially skipping the fixed fault.

Unlike Minimus, SOAPdenovo does not come packaged with a test set of se-

quences and assemblies. The changelist for the three versions following the initial

release of SOAPdenovo only states that they, “fixed some bugs.” The details of

86

these bugs are not given, nor their affect on assembly quality using their in-house

test data. In addition, users may employ different software/hardware configurations

than those tested by the developers. It is crucial for the user to have the means

to verify that they have correctly installed said software and are able to verify that

the software is operating as the developers intended. Otherwise, results published

from these users could lead to incorrect biological conclusions and misguided future

studies.

4.6 Conclusion

Assembler developers face a difficult task: iteratively improving their assem-

blers to handle the exponential increases in biological data, while ensuring that

changes at each step do not introduce any bugs. Traditional methods of comparing

the text outputs of assemblers are unable to detect trivial differences in assemblies

that are the result of using multi-core systems (a requirement to process increasingly

large datasets) or the circular nature of bacterial genomes. We have developed a

regression testing framework for genome assembly software that leverages existing

assembly tools to accurately evaluate changes in assembly quality that traditional

regression testing methods do not. We have examined the change in assembly qual-

ity over the version history of the popular assembler, SOAPdenovo. Lastly, our

regression testing framework was able to detect manually inserted faults into the

Minimus assembler.

Future work includes the addition of interactive visual analytics tools for

87

genome assembly to our regression testing framework. In cases where our frame-

work detects non-trivial changes in assembly quality, it could be easier for the user

to understand the differences if the assemblies were displayed visually.

4.7 Availability

Software to calculate the LAP is available for download at assembly-eval.

sourceforge.net. REAPR is available for download at http://www.sanger.ac.

uk/resources/software/reapr/. Both tools are available for automatic instal-

lation with MetAMOS (https://github.com/treangen/metAMOS). Sequence li-

braries are available GAGE assembler competition at http://gage.cbcb.umd.edu/

data/index.html.

88

assembly-eval.sourceforge.net
assembly-eval.sourceforge.net
http://www.sanger.ac.uk/resources/software/reapr/
http://www.sanger.ac.uk/resources/software/reapr/
https://github.com/treangen/metAMOS
http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html

Chapter 5: Finding Metagenomic Mis-Assemblies

5.1 Introduction

Genome assembly of single organisms is made difficult due to the presence of se-

quencing errors and repeats. This difficulty is compounded in metagenomic samples

due to the addition of varying organism abundances, intrapopulational variations,

and conserved genomic regions between closely-related species. Since many down-

stream applications rely on these assembled genomes, it is critical that the assembly

is error-free. Existing methods for finding mis-assemblies have primarily focused on

single genome assembly and fall into two categories: reference-based and de novo

evaluation.

Reference-based methods rely on having a collection of, often manually cu-

rated, reference genomes, while de novo methods look for inconsistencies between

characteristics of the data generation process and the resulting assembly. QUAST [90]

is a tool that can identify mis-assemblies and structural variants when provided with

a reference genome. QUAST leverages existing methods (Plantagora [91], Gene-

Mark.hmm [92], GlimmerHMM [93]) and quality metrics (GAGE [20]). QUAST

uses the Plantagoras definition of a mis-assembly, i.e., a mis-assembly breakpoint is

defined as a position in the assembled contigs where (1) the left flanking sequence

89

aligns over 1kb away from right flanking sequence on the reference, or (2) the se-

quences overlap by over 1kb, or (3) the right flanking sequence aligns on opposite

strands or different chromosomes.

De novo techniques for detecting mis-assemblies in single genomes rely on

looking for inconsistencies between the sequence generation process and the result-

ing assembly. In other words, given a model of the sequencing process, could the

sequences have been generated if the assembly was the truth (inserted into the se-

quencing machine)? Regions of the assembly that do not meet these assumptions

are signatures of potential mis-assemblies. One assumption is that the sequence

generation process is roughly uniform, i.e., sequences starting at any position have

equal probability. Substantially divergent coverage may indicate mis-assembly. If

the sequences are paired-end or mate-pair then additional constraints based on insert

size can be used.

Amosvalidate [18] is a de novo pipeline for detecting mis-assemblies that incor-

porates the above constraints. As mentioned in the previous chapter, REAPR [29]

is a tool that leverages insert size constraints and evaluates the accuracy of the

assembly using read-pair coverage. REAPR determines the fragment coverage by

first independently aligning the read-pairs to the assembly. A fragment is defined

as the distance from the end points of proper read-pairs (those that are determined

to have correct orientation and separated by the correct distance). REAPR is able

to find base-level errors by comparing the fragment coverage of a given base with

the theoretical coverage.

Although all the above-mentioned tools were designed to work on single genomes,

90

they do not function correctly on metagenomic assemblies. QUAST relies on the

existence of reference genomes, which are simply not available for most metagenomic

samples. Furthermore, if the correct reference strain is not available, then QUAST

may erroneously flag correct and biologically novel sequence as mis-assembled. The

de novo tools REAPR and amosvalidate rely on global uniform sequence coverage

to flag regions. In previous chapters, we have shown that contigs within the metage-

nomic assemblers vary widely in abundances. Assuming uniform coverage will cause

these tools to erroneously flag regions as mis-assembled. In this chapter, we detail

how to modify the constraints of existing tools to allow them to work with metage-

nomic assemblies. The result is VALET, the first de novo pipeline for detecting

mis-assemblies in metagenomic assemblies.

5.2 Methods

5.2.1 Types of mis-assemblies

The majority of mis-assemblies fall into two categories: (1) compression/expansion

of repetitive sequence and (2) sequence rearrangements. The first category of mis-

assembly results when an assembler is unable to determine the correct copy count of

repeats, leading to additional or fewer copies. The second category results when an

assembler erroneously links separate unique portions of the genome that lie adjacent

to a repeat. The repeat acts as a bridge joining the two separate parts of the genome

together. Each category of mis-assembly has its own signatures that can be used to

identify potential mis-assemblies.

91

The sequencing process of randomly-sheared fragments follows a Poisson dis-

tribution [94]. Regions within the assembly that show high variance in depth of

coverage are a potential signature of compressed/expanded repeats, chimeric con-

tigs, and other types of contamination.

The reads given to the assembler should be alignable to the resulting assem-

bly. In practice, however, a read may fail to align for a few reasons. In metagenomic

samples, an unaligned read can be from a rare, low coverage organism, and was never

assembled with any other reads. A read with a large amount of errors will be unable

to align within a specified similarity to the assembly. A read can be sequenced from

a unfiltered contaminant or primer. If a read does not fall into one of the above

categories, then it may be a sign of a potential mis-assembly.

Another signature that is used to find mis-assemblies relies on finding regions

of the assembly that violate mate-pair insert size constraints. Certain sequencing

technology allows researchers to sequence from the ends of a DNA fragment of a

known insert size. Although the sequence technology can only give the raw sequence

of the first couple hundred basepairs from the ends of the fragment, the distance

between the ends of the sequences can be used to aid in resolving repeats, and

orienting and scaffolding contigs. Regions of an assembly containing a dispropor-

tionate number of mate-pairs (reads from the same fragment) with incorrect insert

sizes may be a potential mis-assembly.

VALET flags regions of the assembly based on (1) sampling depth, (2) alignabil-

ity of the sequences, and (3) insert size constraints.

92

5.2.2 Estimating contig abundances using k-mers

An important part of most metagenomic pipelines is determining the relative

abundance of each contig. The presence of repeats among different species poses

a serious problem for estimating abundances. Short-read alignment tools such as

Bowtie2 often randomly assign sequences that align equally well to multiple positions

ignoring the relative abundances of the underlying contigs. This poses a chicken or

the egg type problem because the sequence alignments are used to determine the

contig abundances. Here we solve this problem by using the uniquely alignable

sequences to establish an initial contig abundance. Then when we encounter a

sequence that can align multiple locations, we randomly assign it based on the

relative abundance of the corresponding contigs. We update the contig abundances

and repeat the above step for a given number of iterations (30 by default). This

approach is similar in spirit to that of Sailfish [95] which performs alignment-free

abundance estimation of RNA-seq reads.

5.2.3 Depth of coverage analysis

In order to find regions of unexpectedly high/low coverage, we first learn the

distribution of per-base coverages across a given contig. Using this distribution,

bases are marked if their coverage falls below or above a certain threshold. We set

the lower cutoff as the first quartile minus 1.5 × the interquartile range (IQR), which

is the difference between the first and third quartile. 1.5 × IQR is the value used

by Tukeys box plot [96]. Regions whose coverage is greater than the third quartile

93

plus 1.5 × IQR are marked as high coverage.

Using the per-base coverages may result in a large number of regions erro-

neously marked as mis-assemblies due to the inherent noisiness of the data, so we

also provide a sliding window approach to smooth out the per-base coverages. The

larger the window, the fewer the regions marked as mis-assemblies. VALET uses a

window size of 300 bp by default.

5.2.4 Insert size consistency

VALET relies on the REAPR [29] pipeline to identify mate-pair insert size

inconsistencies. REAPR works by first sampling the fragment coverage across the

genome to get average fragment length and depth of coverage. Using this informa-

tion, REAPR scans the assembly for observed regions that differ from the expected

fragment length distribution and orientations.

REAPR is designed to work with single genome assemblies, more specifically,

assemblies with a global uniform coverage. Since the contig abundances can vary

drastically in metagenomic assemblies, VALET first bins contigs by similar abun-

dances and then executes the REAPR pipeline on the binned contigs.

5.2.5 Identifying assembly breakpoints

Possible breakpoints in the assembly are found by examining regions where

a large number of partial reads are able to align. We evenly split each unaligned

read into sister reads. The sister reads are then aligned independently back to the

94

reference genome. We partition the provided assembly into bins (100 bp by default)

and record which bins correspond to the sister reads. If we find a pair of bins that

contain at least two different pairs of sister reads, then we mark it as a breakpoint

location.

5.2.6 Comparing multiple assemblies

We visualize the quality of an assembly by recording the number of errors

accumulated as we add contigs in decreasing order of length. This allows us to

visually compare a set of metagenomic assemblies.

5.2.7 VALET pipeline

VALET takes as input a metagenomic assembly FASTA file and a collection

of paired and un-paired reads (Figure 5.1). Assembled contigs are first filtered out

based on size (2x the average read length by default). Next the abundances of

contigs are calculated using our k-mer-based approach described above. Contigs

undergo an additional filtering step based on abundance (10x by default). Higher

coverage and longer sequence provide a better baseline for detecting mis-assemblies.

Once filtering has finished, regions of the assembly are flagged based on the in-

consistencies described above. In practice, most mis-assembly signatures have high

false positive rates which can be reduced by looking at regions where multiple signa-

tures agree. Therefore, any window of the assembly (2000 in length by default) that

contains multiple mis-assembly signatures are marked as suspicious. The flagged

95

REAPR	
 REAPR	

VALET	
 pipeline	

Filter	
 assembly	

based	
 on	
 coverage	

and	
 length.	

Depth	
 of	
 coverage	
 Breakpoint	
 detec:on	
 Bin	
 con:gs	
 by	
 coverage	

REAPR	

summary.gff	
 &	
 suspicious.gff	

#contig_name length abun low_cov low_cov_bps…
scaffold_0 502453 54 4 1630…
scaffold_100 28452 108 4 1458…
scaffold_101 26395 105 4 1744…
…

summary.tsv	

scaffold_0_0 DEPTH_COV Low_coverage 101 503…
scaffold_0_0 DEPTH_COV Low_coverage 101 503…
scaffold_0_0 REAPR Read_cov 101 103…

Postprocessing	

INPUT:	

assembly.fasta	

lib_1.fastq	

lib_2.fastq	

OUTPUT:	

Figure 5.1: Overview of the VALET pipeline.

and suspicious regions are stored in a GFF file, which allows users to visualize the

mis-assemblies using any genomic viewers, such as IGV [97].

5.3 Results

5.3.1 VALET achieves high sensitivity on a simulated metagenomic

community

We examine the sensitivity of VALET on a toy simulated metagenomic commu-

nity consisting of four bacteria at varying abundances: Bacteroides vulgatus (80x),

Bacillus cereus (60x), Actinomyces odontolyticus (40x), and Acinetobacter bauman-

nii (20x). Approximately four million reads are simulated using wgsim [98] with

96

#	
 errors	

W
ei
gh
te
d	

cu
m
ul
a2

ve
	
 	

as
se
m
bl
y	

le
ng
th
	

Figure 5.2: FRC plot provided by VALET of a simulated mock community.

default parameters. The dataset was assembled using IDBA-UD [99], MetaVel-

vet [50], SPAdes [100], and SOAPdenovo2 [30]. We ran VALET on the assemblies

and compared the errors found with the reference-based mis-assemblies detected by

QUAST (Table 5.1 and Figure 5.2). If any part of a region flagged by VALET over-

laps with a mis-assembled region reported by QUAST, we consider it a true positive

(mis-assembly correctly identified by our method).

Across all assemblers, VALET detects greater than 80% of mis-assemblies de-

tected by QUAST.IDBA-UD has the greatest N50 after breaking the assembly at re-

gions marked by QUAST (206.7 Kbp), followed by SPAdes (128.1 Kbp), MetaVelvet

(29.5 Kbp), and SOAPdenovo2 (10.8 Kbp). These rankings match those provided

by VALET (Figure 5.2).

97

5.3.2 VALET accurately evaluates assemblies of a synthetic metage-

nomic community

A major challenge of evaluating assemblies of environmental datasets is that a

sizeable portion of the organsisms are unknown or lack a draft genome to compare

against. In silico simulations often lack the complexity and sequencing biases present

in real environmental samples. Fortunately, Shakya et al. provide a gold standard

synthetic metagenomic dataset containing a mixture of 64 organisms (16 members

of Archaea and 48 organisms from 18 Bacteria phyla) with complete or high-quality

draft genomes and 200-fold differences in abundances [101]. The dataset consists of

53.4 million reads (101 bp in length). Due to the greater size and complexity of this

dataset compared to the previous simulation, we assemble the dataset using two

recent, fast metagenomic assemblers: Omega [102] and MEGAHIT [103]. We run

VALET on the assemblies and compare the errors found with those reference-based

mis-assemblies detected by QUAST (Table 5.3.2).

While the MEGAHIT and Omega assemblies are close in total size (192.3

Mbp vs. 194 Mbp, respectively), MEGAHIT has nearly twice as many contigs as

Omega (19,145 vs. 10,284). QUAST detects far more mis-assemblies in the Omega

assembly compared to MEGAHIT (56,917 vs. 770, respectively). VALET detects

34.80% and 96.10% of these mis-assemblies found by QUAST in the MEGAHIT and

Omega assemblies, respectively. While Omega has a higher N50 than MEGAHIT

(44.1 Kbp vs. 38.9 Kbp), after breaking at mis-assemblies, the N50 drops well below

MEGAHIT’s (11.9 Kbp vs. 33.5 Kbp), illustrating why the N50 metric is not always

98

a good indicator of assembly quality. VALET is able to accurately assess the quality

of the two assemblies without using the reference genomes.

We investigate the high false positive rate by examining a small number of

regions flagged by VALET, but not marked by QUAST within the MEGAHIT as-

sembly. One contig, roughly 25 Kbp in size, had a 5 Kbp region at the start of

the contig marked as high coverage (Figure 5.3). This region was roughly 4x the

median coverage of the remaining contig. Using NCBI’s BLAST [104] and reference

database, the region aligned to the organism Nostoc sp. PCC 7120. Upon closer in-

spection, this region contained 16S, 23S, and 5S rRNA genes and was found at four

locations in Nostoc sp. PCC 7120. This region was only found once in the assembly,

so all the sequences from the repeats aligned to this region, inflating the coverage.

This noticeable and consistent increase in coverage caused VALET to mark it as mis-

assembled. Unsurprisingly, QUAST did not mark this as a mis-assembly because

the actual sequence within this region matched the reference.

99

Mis-assembly signatures Suspicious regions

Assembler Len (Mbp) Ctgs N50 (Kbp) NA50 Errs Num Valid Sens Num Valid Sens Mismatches per Kbp

IDBA-UD 16.5 200 208.8 206.7 36 804 36 100.00% 25 8 22.20% 23.95
MetaVelvet 16.3 1,117 29.5 29.5 21 2,802 19 90.50% 4 2 9.50% 35.52
SPAdes 16.4 330 130.9 128.1 37 1,117 31 83.80% 17 4 10.80% 22.43
Soapdenovo2 12.3 2,161 10.8 10.8 1 4,983 1 100.00% 2 0 0% 13.37

Table 5.1: VALET results for simulated mock community consisting of four bacteria at varying abundances: Bacteroides vulgatus
(80x), Bacillus cereus (60x), Actinomyces odontolyticus (40x), and Acinetobacter baumannii (20x). Reads were assembled using
the four provided assemblers. General assembly statistics include length in Mbp (Len), number of contigs (Ctgs), N50 contig
size (N50), N50 of contigs after broken at mis-assemblies (NA50), number of errors detected by QUAST (Errs), number of
flagged regions by VALET (Num), number of flagged regions that overlap an error found by QUAST (Valid), sensitivity (Sens),
and mismatches per Kbp.

100

Mis-assembly signatures Suspicious regions

Assembler Len (Mbp) Ctgs N50 (Kbp) NA50 (Kbp) Errs Num Valid Sens Num Valid Sens Mismatches per Kbp

MEGAHIT 192.3 19,145 38.9 33.5 770 30,377 268 34.80% 2,239 100 13.00% 92.24
Omega 194 10,284 44.1 11.9 56,917 1,425,127 55,108 96.10% 17,758 13,935 96.80% 98.55

Table 5.2: VALET results for assemblies of the Shakya et al. [101] dataset. General assembly statistics include length in Mbp
(Len), number of contigs (Ctgs), N50 contig size (N50), N50 of contigs after broken at mis-assemblies (NA50), number of errors
detected by QUAST (Errs), number of flagged regions by VALET (Num), number of flagged regions that overlap an error found
by QUAST (Valid), sensitivity (Sens), and mismatches per Kbp.

101

5.4 Discussion

In practice, VALET has high sensitivity for mis-assembly detection, but also a

high false positive rate. While we can tune parameters, such as window size, to trade-

off between the measures, the high false positive rate still remains fairly prevalent.

Some of the false positives can be explained as the assembler deduplicates repetitive

regions of the genome, e.g., the ribosomal genes. This highlights an important issue

prevalent in metagenomic assemblers. In the Shakya et al. dataset, a more correct

Nostoc sp. PCC 7120 assembly would include an additional contig consisting solely

of the ribosomal genes. Then during the abundance estimation step of VALET,

a quarter of the sequences would align to the original contig due to the flanking

unique region and the remaining three quarters would align solely to the new contig

containing the ribosomal genes. VALET would no longer mark this region in the

original contig.

Assemblathon1 [19] has stated that assemblers have trouble with polymor-

phism and heterozygosity. This problem is compounded in metagenomic assemblies

due to closely-related strains having uneven abundances. MetaCompass [105], a

reference-based metagenomic assembler, was used to assemble the HMP Sample

SRS024655 (retroauricular crease of a male). A 25 Kbp region was flagged as

having low coverage by VALET, but not reported by QUAST (Figure 5.4). After

further investigation, the 25 Kbp region belonged exclusively to the one of the refer-

ence genomes chosen by MetaCompass: Propionibacterium acnes KPA171202. The

higher coverage flanking regions aligned to both Propionibacterium acnes KPA171202

102

Coverage

Signatures

Suspicious

Figure 5.3: A closer examination of a region flagged by VALET, but no
mis-assembly reported by QUAST. This region contained 16S, 23S, and
5S rRNA genes and was found at four locations in the Nostoc sp. PCC
7120 genome.

and Propionibacterium acnes ATCC 11828. Propionibacterium acnes KPA171202

contains nearly 70 Kbp of insertions. Despite being found at a lower abundance, the

KPA171202 strain of Propionibacterium acnes was chosen for the reference-guided

assembly because all reads that were align to the ATCC 11828 strain also aligned

to the KPA171202 strain. Since the KPA171202 strain was actually found in the

dataset, QUAST detected no structural errors. A more correct assembly would

include both complete genomes.

103

5.5 Conclusion

VALET is the first de novo pipeline for detecting mis-assemblies in metage-

nomic datasets. VALET searches for regions of the assembly that are statistically

inconsistent with characteristics of the data generation process. VALET finds mis-

assemblies on a simulated and synthetic metagenomic mock community.

104

Figure 5.4: A 25 Kbp low coverage region flagged by VALET, but no mis-assembly reported by QUAST. The
low coverage region was due to MetaCompass selecting only a single strain of Propionibacterium acnes to use for
assembly instead of both.

105

Chapter 6: Additional Contributions

During my time at the University of Maryland, I have had the privilege to

work on a wide array of interesting problems in key areas of bioinformatics. The

ever-increasing amount of sequencing data poses a challenge to commodity hardware

both in terms of storage and analysis. In this chapter, I describe my contributions

to the fields of lossy compression and clustering. In Section 6.1, I show how we

use lossy compression algorithms to greatly reduce the required storage for next

generation sequencing data with little effect on downstream analyses. In Section

6.2, I show how we leverage the power of cloud computing to cluster sequencing

data and speedup sequence alignment. I mentored two undergraduate students to

complete this project.

6.1 Lossy Compression of DNA Sequence Quality Values

6.1.1 Abstract

The fastq file format has become the de facto standard for storing next-

generation sequencing data, containing nucleotide information along with a quanti-

tative measure of the reliability of individual base calls. As the cost of sequencing

106

continues to decrease, the rate of sequencing data production is increasing, requiring

efficient ways of storing and transferring this vast amount of data. Most methods

on sequencing data compression focus on compressing nucleotide information with-

out any loss of information. Quality data, however, have different properties than

nucleotide data, and methods compressing nucleotide sequences efficiently do not

perform as well on quality sequences. Furthermore, while lossless representation

is necessary for nucleotide sequences, it is not an essential requirement for quality

values.

Existing methods for compressing quality sequences mostly focused on mini-

mizing the loss of information with less emphasis on effects on subsequent analyses.

In this chapter, we evaluate several different compression methods for quality values

that compromise accuracy for better storage efficiency, and their resulting impact

on common bioinformatic analyses using sequence read data.

Lossy compression of quality information can greatly decrease storage and

memory requirements with little discernible effects on subsequent analysis results.

The three compression strategies in this study were able to produce similar results

to those obtained with uncompressed quality sequences in terms of quality control,

genome assembly, and alignment of short read to a reference sequence.

6.1.2 Introduction

Read data from high-throughput sequencing constitutes the largest category of

data in genomics research because of great redundancy, inclusion of quality values,

107

and read-level naming and metadata. Because of this abundance effective compres-

sion of read data has the potential for substantial improvement in data storage and

transfer efficiency.

Quality values comprise a standard component of fastq files [106], a very

common format for sequence read data. At the level of sequence read the probability

of error for each base-call is typically represented by phred quality value, which

is defined as Q = −10 log10P [107]. Depending on the sequencing technology these

quality values can range from 0 to 93, and are represented with the ascii characters

33 to 126 (with some offset). There is a single quality value per base-call for Illumina

sequence reads.

Quality values can be used throughout bioinformatics pipelines. Among the

most fundamental uses of sequence quality values is as part of the quality assessment

and quality control (qa/qc) processes prior to subsequent analysis steps. Quality

control based on quality values generally includes two operations: i. filtering, the

elimination of reads that on the whole do not meet arbitrary quality standards,

which reduces the total number of reads; and ii. trimming of low quality base-

calls from reads, which reduces the number total number of bases. Quality values

can be used by genome assembly software to produce better assemblies [108, 109].

Short-read alignment software, such as Bowtie2 [38], use quality values to weight

mismatches between read and reference sequences. Software for detecting single

nucleotide polymorphisms (snps) can use quality values [110], and identified snps

with high-quality calls are deemed more reliable than those with low-quality calls,

particularly in low coverage regions.

108

Previous literature on sequence data compression has largely focused on loss-

less compression of base calls [111–120]. Among the several challenges for compres-

sion of read data is dealing with different error profiles resulting from differences in

underlying chemistries, signal detection and processing mechanisms, inherent biases,

and other idiosyncratic properties of distinct high-throughput sequencing technolo-

gies. Sequence reads generated by instruments such as an Illumina HiSeq, the focus

of this research, are characterized by having relatively few insertion and deletion

errors, but substitution (miscall) errors are much more frequent and have context-

specific patterns. These errors are non-uniformly distributed over the read length

(e.g., error rates increase up to ∼16× at the 3′ end, and 32.8 – 67.9% of reads have

low quality tails at the 3′ end [121]).

Although we recognize the need for lossless compression for some purposes

and contexts (e.g., archiving, provenance), our perspective is largely pragmatic with

a focus on the use of quality values in subsequent analyses. From this perspective

some loss of information is deemed acceptable if the inferences from analyses are

relatively unaffected. Here we describe our research investigating lossy compression

of sequence read quality values, specifically those associated with Illumina instru-

ments, with the objective to provide some perspective on several strategies rather

than to develop a robust high-quality software for use. Recognizing these proper-

ties of Illumina sequence reads motivates our exploration of three general classes

of lossy compression methods – binning, modeling, and profiling – and consider an

exemplar of each class. [112] and [114] evaluated the effects of lossy compression on

identifying variants within a dataset. We build on these prior works and access the

109

effects of quality value information loss resulting from compression on additional

subsequent genomic analyses including read preprocessing (filtering and trimming),

genome assembly, and read mapping.

6.1.3 Methods

6.1.3.1 Compression strategy: binning

Quality values can be binned, and the minimum number of bins that allows

for a any distinction among quality values is two, i.e., two categories “good” and

“bad” quality. We implement 2-bin encoding by setting a quality value threshold

empirically determined by the distribution of quality values across reads. Base-calls

are marked “bad” if their quality value falls below the first quartile minus 1.5 ×

the interquartile range (IQR), which is the difference between the first and third

quartile. 1.5 × IQR is the value used by Tukey’s box plot [96]. The main benefit of

this approach is that it is completely data-dependent, and no assumptions regarding

the distribution of the quality values need to be made.

With 2-bin encoding binary encoding is possible, allowing us to use a single bit

to represent the quality of a base instead of the standard 8 bits used to store quality

values in ascii. An additional benefit of 2-bin encoding is the potential for increased

adjacency of identical values and repeating patterns, properties that may increase

effectiveness of subsequent compression using established algorithms [122–124].

The economic costs of memory use for binning, in general terms, include no

fixed costs, and marginal costs that are a function of the number of base-call quality

110

values times the cost of the encoding.

[118] provide three similar lossy compression strategies based on binning

the base error probability distribution: UniBinning, Truncating, and LogBinning.

UniBinning evenly splits the error probability distribution into a user-defined num-

ber of partitions. Truncating treats a user-defined number of highest quality values

as a single bin. LogBinning works similar to UniBinning, except with the log of

the error probability distribution, which effectively bins the ascii quality values

evenly. Our 2-bin encoding is a combination of LogBinning and Truncating in that

we are placing the highest quality values (as defined above) of the log of the error

probability distribution into a single bin.

6.1.3.2 Compression strategy: modeling

If quality values are modeled, compression is conceivably possible by replacing

the original quality values by a representation of the model. For example, quality

values can be conceptualized as bivariate data with the ordered nucleotides (1 to

read length) representing the abscissa, and quality values representing the ordinate.

In this research we model read quality values as polynomial functions obtained

with least-squares fitting, as one approach to compression read quality values by

modeling.

Despite the fact that polynomial functions have significantly lower number of

parameters (i.e. one to six coefficients) than a read-length string of raw quality val-

ues, the necessity of using floating point numbers to store coefficients greatly limits

111

Figure 6.1: Quality profiles obtained by k-means clustering on the frag-
ment library from Rhodobacter sphaeroides 2.4.1 data set using k = 128,
with each row corresponding to a quality profile. Dark to light colors
represent low to high quality values. It is readily visible that the two
most distinctive features of quality profiles is their drop-off position and
average overall quality. One can also see sporadic low-position values
in a handful of profiles, likely capturing intermittent problems in the
sequencing process affecting thousands of reads at a time.

112

the compression potential of the method. In order to get meaningful compression

on single-precision four-byte floating point numbers, one would have to relax on the

least-squares approximation constraint to obtain compressible values on the byte

level which is outside the scope of this study.

The economic costs of memory use for model-based compression, in general

terms, include no fixed costs, and marginal costs that are a function of the number

of reads times the cost representing the model parameters.

QualComp is a lossy compression tool that models quality values as a multi-

variate Gaussian distribution, computing the mean and covariance for each position

in the read [116]. Once the model parameters are calculated, they are stored by the

decoder to later reconstruct a representative quality value. QualComp takes as

input a user-specified rate (bits per read) and then poses an optimization problem

of how to allot these bits for a given position while minimizing the mse. The quality

values can be clustered before hand to produce more accurate models.

6.1.3.3 Compression strategy: profiling

As large sets of quality strings show similar trends of quality over their length,

it makes sense to identify such common patterns in the data and use them as refer-

ence profiles to approximate individual sequences of quality values. Such patterns

can be readily determined by clustering data points (i.e. quality vectors) and using

the resulting cluster centers as representative profiles.

k-means clustering is a vector quantization method, partitioning a set of sam-

113

ples into k sets that minimize within-cluster sum of squares [125]. Using a random

subset of read quality values, a compression method can use the computed cluster

centers as read quality profiles. As the problem is NP-hard, we use a heuristic it-

erative refinement approach by quickly converging to a locally optimal minimum

provided by R [126].

First, the method samples an adjustable number of reads randomly from the

file to be used as a training set. Quality values are represented by vectors containing

their phred scores corresponding to each position along the read. Subsequently,

k-means clustering is performed on the training set until convergence. The obtained

cluster centers will be the quality profile prototypes for the dataset.

Once the k quality profiles are determined, all reads are passed through the

trained k-means predictor, with the nearest quality profile in Euclidean space being

assigned to every read as their compressed representation.

The compressed quality file therefore consists of an index enumerating the k

quality profiles, and a binary part containing the assigned quality profile index for

each read.

Although this approach is not able to capture randomly occurring outlier qual-

ity values, it ensures that the overall trends in quality value patterns are retained.

Quality profiles capture different overall qualities and different drop-off positions

and gradients. An example of 128 quality profiles are shown on Figure 6.1.

The economic costs of memory use for profile-based compression, in general

terms, include fixed costs associated with representing the profiles, which is a func-

tion of the number of profiles times the cost of encoding them, and these fixed costs

114

are amortized over the entire set of reads to which they apply. Additionally there

are marginal costs that are a function of the number of reads encoded.

6.1.3.4 Datasets

We used several Illumina sequence read datasets in this research, which are

taken from data from the gage (Genome Assembly Gold-Standard Evaluations) [?]

except as noted. These datasets are as follows.

Rhodobacter sphaeroides 2.4.1, which are generated from a fragment library

(insert size of 180 nt; 2,050,868 paired-end reads) and short-jump library (insert

size of 3,500 nt; 2,050,868 reads). The corresponding reference sequence was ob-

tained from the NCBI RefSeq database (NC 007488.1, NC 007489.1, NC 007490.1,

NC 007493.1, NC 007494.1, NC 009007.1, NC 009008.1).

Homo sapiens chromosome 14 data, which are generated from a fragment li-

brary (insert size of 155 nt; 36,504,800 paired-end reads) and short-jump library

(insert sizes ranging from 2283-2803 nt; 22,669,408 reads). The corresponding ref-

erence sequence was obtained from the NCBI RefSeq database (NC 000014.8).

Escherichia coli str. K-12 MG1655 MiSeq data was downloaded from http://

www.illumina.com/systems/miseq/scientific_data.html, which are generated

from a fragment library (insert size of 180 nt; 1,145,8940 paired-end reads). The

corresponding reference sequence was obtained from the NCBI RefSeq database

(NC 000913.2).

Mus musculus data was downloaded from http://trace.ddbj.nig.ac.jp/

115

http://www.illumina.com/systems/miseq/scientific_data.html
http://www.illumina.com/systems/miseq/scientific_data.html
http://trace.ddbj.nig.ac.jp/DRASearch/run?acc=SRR032209
http://trace.ddbj.nig.ac.jp/DRASearch/run?acc=SRR032209

DRASearch/run?acc=SRR032209, which consisted of 18,828,274 reads of length 36.

6.1.3.5 Performance evaluation

As a measure of compression effectiveness we use bits/base-call, and define it

as the size of the compressed representation of quality values (in bits) divided by the

number of quality values represented. As a measure of information loss we use mean

squared error (mse) as a loss function, and define it as 1
n

∑n
i=1 (Q′i −Qi)

2, where n

is the number of sequences, Q′i is the compressed/decompressed quality value, and

Qi is the original quality value associated with sequence position i.

We evaluate effects of information loss from quality value compression on

quality control steps of read filtering and trimming, which were performed using

Sickle [127], and make comparison to uncompressed data.

We evaluate effects of information loss from quality value compression on de

novo genome assembly performance using contiguity statistics, log average read

probability (lap) [28], and a collection of reference-based metrics. The contiguity

statistics include N50, which is defined as the median contig size (the length of

largest contig c such that the total size of the contigs larger than c exceeds half of

the assembly size) and corrected N50, which is the recalculated N50 size after the

contigs are broken apart at locations of errors. The lap score can be viewed as a

log likelihood score, where a value closer to 0 is better. We use a script provided by

gage reference-based evaluation to count single nucleotide polymorphisms (snps),

relocations, translations, and inversions. The reference-based metrics are normalized

116

http://trace.ddbj.nig.ac.jp/DRASearch/run?acc=SRR032209
http://trace.ddbj.nig.ac.jp/DRASearch/run?acc=SRR032209

by the length of the assembly to facilitate comparison. For the genome assembly

we used software that makes use quality values in the assembly process: allpaths-

lg [109] version r50191 with default settings and 32 threads.

6.1.4 Results

6.1.4.1 Compression effectiveness versus information loss

We compare the mse versus bits/base-call of the Rhodobacter sphaeroides

2.4.1, Homo sapiens chromosome 14, Escherichia coli str. K-12 MG1655, and

Mus musculus datasets (Figure 6.2). We only include the fragment libraries for

the Rhodobacter sphaeroides 2.4.1, and Homo sapiens chromosome 14 data sets,

but the additional short-jump library results are available in the Supplementary of

the submitted manuscript. Storing the uncompressed quality values requires 1 byte

per base-call because they are stored in ascii format and is denoted by the dotted

black asterisk in the figure. The lossless compression of each dataset using bzip2

ranges from 2.19 - 3.10 bits/base-call and is denoted by the colored asterisks on

the abscissa. The compression methods tend to cluster together across the different

datasets. Across all datasets, the 0-degree polynomial regression, profile encodings,

and qualcomp have the lowest bits/base-call.

117

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

Rhodobacter sphaeroides Escherichia coli Homo sapiens Mus musculus

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

Rhodobacter sphaeroides Escherichia coli Homo sapiens Mus musculus

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

Rhodobacter sphaeroides Escherichia coli Homo sapiens Mus musculus

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

Rhodobacter sphaeroides Escherichia coli Homo sapiens Mus musculus

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

black Escherichia coli Homo sapiens Mus musculus Rhodobacter sphaeroides

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

black Escherichia coli Homo sapiens Mus musculus Rhodobacter sphaeroides

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

black Escherichia coli Homo sapiens Mus musculus Rhodobacter sphaeroides

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

black Escherichia coli Homo sapiens Mus musculus Rhodobacter sphaeroides

2B

R0

R1

R3

R5

R7

P64

P128
P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3
R5

R7
P64 P128P256
Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6

Q10

Q30

Q100

2B

R0

R1

R3

R5
R7

P64
P128

P256

Q6
Q10

Q30

5

6

7
8
9

10

20

30

40

50

60

70
80
90

100

200

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10

Quality bits per bp

M
ea

n
S

qu
ar

ed
 E

rr
or

Rhodobacter sphaeroides Escherichia coli Homo sapiens Mus musculus

Figure 6.2: Mean squared error versus bits/base-call for different compression methods applied to the Rhodobacter sphaeroides
2.4.1, and Homo sapiens chromosome 14 fragment libraries, and Escherichia coli str. K-12 MG1655, and Mus musculus datasets.
2B — 2-bin encoding; Pn — profiling with n profiles; Rn — modeling with polynomial regression models of degree n; Qn —
qualcomp with rate parameter of n. Asterisks denote the corresponding lossless compression using bzip2, with the black asterisk
corresponds to original uncompressed data.

118

qualcomp with the rate parameter set to 100 bits/read has the lowest mse,

but requires 10-15x more storage than the profile encoding methods for only a

2-3x reduction in mse. When qualcomp’s rate parameter is set to match the pro-

file encoding methods, qualcomp performs slightly worse in terms of mse. In the

Rhodobacter sphaeroides 2.4.1 fragment library, qualcomp with rate 10 bits/read

(0.099 bits/bp) has a mse of 17.29. Using 256-profile encoding requires less storage

(0.079 bits/bp) and has a lower mse (11.85).

As the order of the polynomial increases, the bits/base-call increase and the

mse decreases at an exponential rate. The 7th-degree polynomial regression has the

highest bits/base-call and in the Mus musculus dataset, and requires more storage

than the ascii original quality values. A 7th-degree polynomial requires storing

eight floating point values, resulting in 32 bytes per sequence of quality values. The

read length of the Mus musculus dataset is only 26, so the 7th-degree polynomial

regression is storing six more bytes than necessary for lossless encoding the quality

data.

6.1.4.2 Effects on sequence read preprocessing

The majority of compression methods retain more base-pairs after preprocess-

ing than the uncompressed sequences (Figure 6.3). In general, as a given compression

model increases in complexity, i.e., as the number of profiles, polynomial degrees, or

rate increases, the amount of base-pairs kept approaches the number base-pairs kept

using the uncompressed sequences. The compression methods on the Mus musculus

119

2−bin

regression (0)

regression (1)

regression (3)

regression (5)

regression (7)

profile (64)

profile (128)

profile (256)

QualComp (6)

QualComp (10)

QualComp (30)

QualComp (100)

1.00 1.05 1.10 1.15 1.20

Proportion of bases kept compared to original

Rhodobacter sphaeroides Escherichia coli

Homo sapiens Mus musculus

Figure 6.3: Preprocessing results of Rhodobacter sphaeroides 2.4.1, and
Homo sapiens chromosome 14 fragment libraries, and Escherichia coli
str. K-12 MG1655, and Mus musculus datasets. Sequences were
trimmed using Sickle. The total amount of bases filtered by each com-
pression method is compared with the amount of bases filtered using the
uncompressed sequences.

dataset have the greatest proportion of retained base-pairs compared to the uncom-

pressed sequences. The Escherichia coli str. K-12 MG1655 MiSeq dataset has the

smallest range.

The 2-bin approach is the only compression method that results in a higher

number of filtered base-pairs across all datasets. Sickle uses a sliding window ap-

proach to smooth the read quality values before it trims the sequence based on a

specific quality threshold. In the 2-bin approach, there is not an even distribution of

120

values per bin. In other words, bad quality values may range from 0-33, whereas good

values may only range from 34-40. Thus, mid-range quality values that are above

the threshold (20 by default) are set below the quality threshold when compressed,

resulting in an increased number of filtered bases.

The 0-degree polynomial regression results in the highest proportion of bases

kept. If the mean quality value of the read is above the filtering threshold, then no

base-pairs are trimmed. Only reads that are comprised of mainly low quality values

will be filtered.

It is important to highlight that the even though a compression method may

result in the same number of filtered base-pairs as the uncompressed sequences, it

does not mean the same base-pairs were filtered. The 1st-degree and 5th-degree

polynomial regression of the Rhodobacter sphaeroides fragment library filters nearly

as many bases as each other. However, if we examine the specific reads filtered,

the 5th-degree polynomial regression discards approximately two thirds less reads

than the 1st-degree polynomial regression that are kept by the uncompressed reads

(4,640 and 12,066 reads, respectively).

6.1.4.3 Effects on genome assembly

No assembly of the Rhodobacter sphaeroides 2.4.1 dataset outperforms all oth-

ers in all metrics (Table 6.4). Among the compression methods, the 256-, 64-,

128-profile encoding had the highest ranks, followed by qualcomp with rates 10

bits/read, 30 bits/read, 100 bits/read, then 7th-degree polynomial regression, fol-

121

lowed by the qualcomp with rate 6 bits/read, the 2-bin encoding, and lastly, the

3rd-degree, 5th-degree, and 0-degree polynomials.

The lossy compression methods largely preserve the contiguity found in the

assembly produced using the reads with unmodified quality values. All compression

methods other than 0-degree polynomial regression produce an N50 ranging from

3.17–3.22 Mbps (see Supplementary of manuscript). Despite the similar contiguity

statistics, the different compression methods vary noticeably in the amount of snps.

The order of polynomial has an inverse relationship with the amount of snps de-

tected. The 2-bin and profile methods detected the least amount of snps compared

to the reference genome, outperforming the assembly using the original quality val-

ues. A more in-depth evaluation is needed to determine whether these compression

methods are missing actual snps.

It is important to highlight that using uncompressed reads does not produce

the best assembly in terms of any of the metrics. The uncompressed reads scores

worse than the top overall assembly (256-profile encoding) in terms of assembled

bases, missing reference bases, N50, snps, indels >5bp, and relocations. The assem-

bly using uncompressed reads has an error rate of roughly 8.75 errors per 100 kb of

assembled sequence, while the 256-profile encoding has an error rate of 8.02 errors

per 100 kb.

In general, the greater the polynomial order, the better overall assembly; how-

ever, the 5th-degree polynomial regression performs slightly worse than the 3rd-

degree polynomial. The respective ranks in terms of N50 and relocations are fairly

distant, which lowers the overall ranking of the 5th-degree polynomial slightly below

122

that for 3rd-degree polynomial model. The 1st- and 0-degree polynomial regression

methods perform poor in all metrics except assembled bases. One explanation is that

the high error portions of reads are being marked as high quality, so allpaths-lg

is unable to trim or error correct the sequences. Assembled sequences that overlap

maybe unable to align across the errors at the end of the reads, artificially inflating

the assembled genome size.

Among the different qualcomp rate parameters, the 10 bits/read rate ranked

highest overall, outperforming the other rate parameters in terms of corrected N50,

least missing reference bases, snps, and indels >5bp. With the exception of the 6

bits/read rate, the assemblies decrease in rank with the increase in the rate param-

eter in terms of corrected N50, and least missing reference bases. This trend runs

counter to the the decrease in mse of the different rates.

6.1.4.4 Effects on read mapping

Certain short read alignment tools use the quality value information when find-

ing potential alignments. Bowtie2 (version 2.2.3) was used to evaluate the different

decompressed fastq files. Bowtie2 uses quality values written in the fastq files

when mapping reads against a reference genome. The original uncompressed and de-

compressed fastq files were mapped with Bowtie2 against Rhodobacter sphaeroides

reference genome. The generated sam file for each compressing approach were com-

pared with the uncompressed sam file. The total, shared and unique proportional

numbers of mapped reads are calculated with respect to the uncompressed sam

123

O
ve

ra
ll

ra
nk

in
g

LA
P

A
ss

em
bl

y
si

ze
M

is
si

ng
 re

f b
as

es

N
50

C
or

re
ct

ed
 N

50
A

ve
ra

ge
 Id

en
tit

y

S
N

P
s

In
de

ls
 >

5b
p

In
ve

rs
io

ns
R

el
oc

at
io

ns
Tr

an
sl

oc
at

io
ns

regression (0)

regression (1)

regression (5)

regression (3)

2−bin

QualComp (6)

regression (7)

QualComp (100)

QualComp (30)

none

QualComp (10)

profile (128)

profile (64)

profile (256)

Figure 6.4: Rankings of compression methods based on Rhodobacter
sphaeroides assembly attributes sorted by overall rank. Assemblies were
constructed using allpaths-lg. Rankings above the median value are
in cyan, those below the median value in magenta.

matches as shown in table 6.1. Additionally, to monitor the effect of quality values

on mapping in general, Bowtie2 was adjusted so that the maximum and minimum

mismatch penalty were equivalent to maximum and minimum quality scores (with

parameters: –mp 6,6 and –mp 2,2 respectively).

We evaluate the compression methods using two approaches. In the first ap-

proach, we order the compression methods based on how similar the alignment

124

results are using the original uncompressed quality values, i.e., the amount of reads

aligned by both the uncompressed and compressed methods plus the amount of

reads unaligned by both methods minus the amount of reads uniquely aligned by

the uncompressed and compression method. In the second approach, we order the

compression methods by total proportion of aligned reads.

The best compression method in terms of similarity with the uncompressed

reads is qualcomp with rate 100 bits/read, followed by qualcomp with rate 30

bits/read, 256-, and 128-profile encoding, then 2-bin encoding, 64-profile encoding,

qualcomp with rate 10 bits/read, 7th-degree polynomial regression, qualcomp with

rate 6 bits/read, and finally, 5th-degree through 0-degree polynomial regression.

Ranking the compression methods by overall alignment rate produces an iden-

tical ordering as above. Aside from 0-degree polynomial regression (83.1%), all other

compression methods have an alignment rate between 87% and 86.1%. The align-

ment rate of the uncompressed reads is 87%.

Most of the compression methods did not vary greatly in terms of the number

of reads that were mapped only by the compression method; however, there is a

sizable difference in the amount of reads that are originally mapped, but unmapped

by the compressed methods. qualcomp with rate 100 bits/read results in the fewest

missing original read alignments (159). Increasing the regression model polynomial

degree results in a decreasing amount of reads that are originally mapped, but

unmapped by the regression model (40,931 to 1,134 reads for 0-degree and 7th-

degree, respectively). There is no such trend for reads that are mapped only by the

regression model.

125

Setting all bases as minimum quality results in the highest proportion of

mapped reads 88.1%. Conversely, setting all bases as maximum quality results

in the lowest proportion of mapped reads 72.8%.

126

MaxQual MinQual 2-bin Degree 0 Degree 1
mapped unmapped mapped unmapped mapped unmapped mapped unmapped mapped unmapped

mapped 746716 145897 892613 0 891864 749 851682 40931 883390 9223
original unmapped 0 132821 10821 122000 186 132635 67 132754 55 132766

proportion 0.728 0.272 0.881 0.119 0.870 0.130 0.831 0.169 0.862 0.138

Degree 3 Degree 5 Degree 7 Profile (64) Profile (128)
mapped unmapped mapped unmapped mapped unmapped mapped unmapped mapped unmapped

mapped 889537 3076 891019 1594 891479 1134 891753 860 891952 661
original unmapped 117 132704 155 132666 154 132667 144 132677 143 132678

proportion 0.868 0.132 0.869 0.131 0.870 0.130 0.870 0.130 0.870 0.130

Profile (256) qualcomp (6) qualcomp (10) qualcomp (30) qualcomp (100)
mapped unmapped mapped unmapped mapped unmapped mapped unmapped mapped unmapped

mapped 892051 562 891375 1238 891777 836 892233 380 892454 159
original unmapped 119 132702 304 132517 265 132556 220 132601 172 132649

proportion 0.870 0.130 0.870 0.130 0.870 0.130 0.870 0.130 0.870 0.130

Table 6.1: Mapping results of decompressed fastq files against Rhodobacter sphaeroides reference genome using Bowtie2.
Numbers corresponds to the proportion of mapped reads with respect to the uncompressed fastq. “Shared” denotes the
percentage of mapped reads by both the uncompressed and decompressed data. “Uncompressed only” denotes the percentage
of reads mapped from the uncompressed data that are not mapped after decompression. “Compressed only” denotes the
percentage of reads mapped from the decompressed data that were not mapped before compression.

127

6.1.5 Discussion

6.1.5.1 Lossy compression acceptable for subsequent biological anal-

yses

The primary concern of using lossy compression methods is naturally the ex-

tent of information loss, that we quantified by mse in this study. mse and com-

pressibility provide information in the theoretical context to the methods, but they

are not the end-all of evaluation criteria. The performance of compressed datasets

in different subsequent analyses and applications are just as important. Our bench-

marks showed that some of the compression methods with high error rates are still

practical for certain kinds of applications. Many subsequent tools proved to have

enough additional redundancy built-in to handle such loss in information. Passing

the decompressed quality values through quality control software shows that most

methods filter nearly as many bases as using original quality sequences. Assem-

blers performing sequence alignment use percent similarity scores that are typically

robust to standard sequencing errors.

6.1.5.2 Extension of 2-bin encoding

2-bin encoding has the nice property of being simple to compute and has

good bits/base-call values. The 2-bin encoding suffers from having a high mse,

but fortunately, we have shown that in the case of genome assembly, 2-bin en-

coding outperforms all polynomial regressions encodings with degree less than 3.

128

2-bin encoding of the fragment and short-jump libraries of Rhodobacter sphaeroides

have mses of 2.42× and 10.76× the 3rd-degree polynomial regression encodings,

respectively. This further highlights the importance of using additional contextual

information of the subsequent analyses when evaluating compressed quality values.

A potential extension to 2-bin encoding is to incorporate an additional bin

(okay). The okay value can be used where the base qualities fall within a 2-bin

range. Because the distribution of quality values is skewed towards higher quality,

we need to experiment with different cutoffs for the okay value and determine if the

additional storage is noticeable in subsequent analyses.

6.1.5.3 Extension of polynomial regression

The downside of modeling quality sequences using polynomial regression is

that the model often requires a high number of degrees to achieve the same mse as

the profile and QualComp methods. However, storing a high number of coefficients

requires more storage than losslessly compressing the original data. In order to

increase the compressibility of modeling, we can attempt to store the profiles of

certain polynomial functions. In other words, we can use a spline (a function that

is piecewise-defined by polynomial functions) to represent a given quality sequence.

Similar to our profile-encoding method, the user can specify how many polynomial

functions they wish to store. Then a quality sequence can be divided evenly into a

given number of segments, and each segment can be annotated with a polynomial

function profile that closely matches its quality sequence.

129

6.1.5.4 Potential for operations on compressed data

Perhaps one of the greatest potential benefits of compressing quality values is

the potential to perform quality control and possibly other operations directly on

the compressed representations of the data. This is easiest to to consider for profile-

based compression. The k profiles can be evaluated for (pre-)processing operations

such as filtering and trimming, and the operations transitively applied to the entire

set of reads, thus saving substantial computation associated with evaluating the full

set of reads.

6.1.5.5 Future of lossy compression in bioinformatics analyses

We have simply provided here the initial steps in analyzing the effect of lossy

compression on quality values using a single, high-coverage bacterial dataset. More

work needs to be done using additional biological datasets, such as human and

mouse, along with different sequencing technologies. A more direct comparison

against related lossy compression tools, such as SlimGene [115] and qualcomp [116],

needs to be performed. Additionally, other types of sequencing data can be analyzed

apart from the Illumina data examined here. For example, the PacBio sequencing

instruments produce very long reads (with average read lengths on the order of 10

kbp), but with the trade-off of having a high error-rate (∼15%). Unlike the class

of quality values we have examined here, the distribution of erroneous bases is rela-

tively uniform [128]. The assembly complexity of bacterial genomes can be greatly

simplified, producing near complete genome assemblies, by utilizing a single run of

130

these long reads [129]. If long read sequencing technologies such as PacBio become

more widely adopted, it would be of huge benefit to examine the potential of lossy

compression algorithms on not only the quality values, but the biological sequencing

data themselves.

6.1.6 Conclusion

In this chapter we have examined lossy compression on sequence quality val-

ues and their effect on subsequent analyses. Although most previous examinations

on lossy compression primarily focused on information loss, we have shown that

typically used bioinformatics software today have additional built-in sensitivity to

handle significant loss of information in the compressed quality values.

131

6.2 K-mulus: Strategies for BLAST in the Cloud

6.2.1 Abstract

With the increased availability of next-generation sequencing technologies, re-

searchers are gathering more data than they are able to process and analyze. One

of the most widely performed analysis is identifying regions of similarity between

DNA or protein sequences using the Basic Local Alignment Search Tool, or BLAST.

Due to the large amount of sequencing data produced, parallel implementations of

BLAST are needed to process the data in a timely manner. While these implementa-

tions have been designed for those researchers with access to computing grids, recent

web-based services, such as Amazon’s Elastic Compute Cloud, now offer scalable,

pay-as-you-go computing. In this paper, we present K-mulus, an application that

performs distributed BLAST queries via Hadoop MapReduce using a collection of

established parallelization strategies. In addition, we provide a method to speedup

BLAST by clustering the sequence database to reduce the search space for a given

query. Our results show that users must take into account the size of the BLAST

database and memory of the underlying hardware to efficiently carry out the BLAST

queries in parallel. Finally, we show that while our database clustering and index-

ing approach offers a significant theoretical speedup, in practice the distribution of

protein sequences prevents this potential from being realized.

132

6.2.2 Introduction

Identifying regions of similarity between DNA or protein sequences is one of the

most widely studied problems in bioinformatics. These similarities can be the result

of functional, structural, or evolutionary relationships between the sequences. As

a result, many tools have been developed with the intention of efficiently searching

for these similarities [130–132]. The most widely used application is the Basic Local

Alignment Search Tool, or BLAST [130].

With the increased availability of next-generation sequencing technologies, re-

searchers are gathering more data than ever before. This large influx of data has

become a major issue as researchers have a difficult time processing and analyz-

ing it. For this reason, optimizing the performance of BLAST and developing new

alignment tools has been a well researched topic over the past few years. Take the

example of environmental sequencing projects, in which the biodiversity of various

environments, including the human microbiome, is analyzed and characterized to

generate on the order of several terabytes of data [48]. One common way in which

biologists use these massive quantities of data is by running BLAST on large sets

of unprocessed, repetitive reads to identify putative genes [133,134]. Unfortunately,

performing this task in a timely manner while dealing with terabytes of data far

exceeds the capabilities of most existing BLAST implementations.

As a result of this trend, large sequencing projects require the utilization of

high-performance and distributed systems. BLAST implementations have been cre-

ated for popular distributed platforms such as Condor [135] and MPI [136, 137].

133

Recently, MapReduce [138] has become one of the de-facto standards for distributed

processing. There are a few advantages of using the MapReduce framework over

other existing parallel processing frameworks. The entirety of the framework rests

in two simple methods: a map and a reduce function. The underlying framework

takes care of the communication between nodes in the cluster. By abstracting the

communication between nodes, it allows software developers to quickly design soft-

ware that can run in parallel over potentially thousands of processors. Although

this makes it simple to program, without direct control of the communication, it

may be more inefficient compared to other distributed platforms.

While these parallel implementations of BLAST were designed to work on large

computing grids, most researchers do not have access to these types of clusters, due

to their high cost and maintenance requirements. Fortunately, cloud computing

offers a solution to this problem, allowing researchers to run their jobs on demand

without the need of owning or managing any large infrastructure. Web-based ser-

vices, such as Amazons Elastic Compute Cloud (EC2) [139], have risen in recent

years to address the need for scalable, pay-as-you-go computing. These services al-

low users to select from a collection of pre-configured disk images and services, and

also allow more fine-grained customization down to the number of CPUs, speed,

and amount of memory in their rented cluster.

In this paper, we present K-mulus, a collection of Hadoop MapReduce tools

for performing distributed BLAST queries. We show that a limitation to previous

cloud BLAST implementations is their “one size fits all” solution to parallelizing

BLAST queries. We provide several different strategies for parallelizing BLAST

134

depending on the underlying cloud architecture and sequencing data, including: (1)

parallelizing on the input queries, (2) parallelizing on the database, and then a (3)

hybrid, query and database parallelization approach. Finally, we describe a k-mer

indexing heuristic to achieve speedups by generating database clusters which results

in a reduction of the search space during query execution.

6.2.3 Methods

6.2.3.1 MapReduce

The MapReduce framework was created by Google to support large-scale par-

allel execution of data intensive applications using commodity hardware [138]. Un-

like other parallel programming framework where developers must explicitly handle

inter-process communication, MapReduce developers only have to focus on two ma-

jor functions, called map and reduce.

Prior to running a MapReduce program, the data must be first stored in the

Hadoop Distributed File System (HDFS). The user then specifies a map function

that will run on the chunks of the input data in parallel. MapReduce is “data

aware,” performing computation at the nodes containing the required data instead

of transferring the data across the network. The map function processes the input

in a particular way according to the developers specifications, and outputs a series

of key-value pairs. Once all nodes have finished outputting their key-value pairs, all

the values for a given key are aggregated into a list (via Hadoop’s internal shuffle

and sort mechanisms), and sent to the assigned reducer. During the reduce phase,

135

the (key, list of values) pairs are processed. This list of values is used to compute

the final result according to the applications needs. For more details and examples,

please see [138].

6.2.3.2 Parallelization strategies

	

>seq_1
GSVEDTTG
>seq_2
SQSLAALL
>seq_3
NKCKTPQG
>seq_4
LMDKNRIE

>seq_1
GSVEDTTG
>seq_2
SQSLAALL

BLAST

1. Split fasta file into chunks. 2. Send chunks to compute
nodes to run BLAST.

Compute nodes must
have BLAST and DB
pre-loaded. >seq_3

NKCKTPQG
>seq_4
LMDKNRIE

BLAST

NR
Input.fasta

NR

Figure 6.5: Query segmentation approach for parallelizing BLAST.

K-mulus uses three main strategies to perform distributed BLAST queries

using Hadoop MapReduce. As we will show, the efficacy of these strategies are all

dependent on the underlying hardware and data being used.

6.2.3.3 Query segmentation.

Arguably the simplest way to parallelize an application using MapReduce is to

set the map function to the given application and execute it on subsets of the input.

The individual results of the map functions are then aggregated by a single reducer.

This query segmentation is the default implementation of CloudBLAST [140], a

136

popular MapReduce implementation of BLAST. Instead of writing custom map and

reduce functions, CloudBLAST takes advantage of Hadoop’s streaming extension

that allows seamless, parallel execution of existing software on Hadoop without

having to modify the underlying application.

The first step of the query segmentation approach is to partition the query file

into a predetermined number of chunks (usually the number of computing nodes)

and send them to random nodes (Fig. 6.5). This partitioning of the query sequences

can be done automatically as the sequence files are uploaded to the HDFS. The user

must pay special attention to the size of their query sequence file because the block

sizes for the HDFS are 128MB by default. It is possible to underutilize the Hadoop

cluster, since the map functions are often assigned to blocks of the input data. If a

user uploads a 128MB sequence file to HDFS and uses Hadoop’s streaming extension,

then despite the number of nodes they request, BLAST will be performed only using

the node containing the block of the data.

During runtime, the map function receives as input a block of FASTA-formatted

sequences. Each map function simply executes the included BLAST binary against

the included database sequences and outputs the results directly to disk. Although

there is no need to use a reducing step for this strategy, one reducer can be used to

aggregate the results.

137

6.2.3.4 Database segmentation.

Instead of segmenting the query, we can segment the database into a predeter-

mined number of chunks. By segmenting the database, we can reduce the overhead

of disk I/O for databases that do not fit completely into memory. Otherwise, as

soon as the database grows larger than the amount of main memory, the runtime

increases by orders of magnitude [136]. Therefore, it is important to examine the

underlying hardware limitations and database size before using the default query

segmentation approach.

During runtime, the query sequences are uploaded to the HDFS and sent to all

nodes using the DistributedCache feature of Hadoop. The DistributedCache feature

ensures that all nodes involved in the MapReduce have access to the same files. The

map function is only responsible for passing the path of the database chunks to

the reducer. Each reduce function executes BLAST on the complete set of input

sequences.

Since BLAST takes into account the size of the database when computing

alignment statistics, the individual BLAST results must have their scores adjusted

for the database segmentation. Fortunately, BLAST provides the user an option to

specify the effective length of the complete database.

6.2.3.5 Hybrid approach.

One potential problem with the database segmentation approach is that if

we evenly partition the database across all nodes in our cluster, then the database

138

chunks may only fill up a small portion of the available memory. In this case, we

must use a hybrid approach, where we segment the database into the least number

of chunks that can fit entirely into memory. Afterwards, we replicate the database

chunks across the remaining machines. During runtime, the query sequences are split

and sent to the different the databases chunks, but only sent once to each of the

database chunk replicates. This hybrid approach is also utilized by mpiBLAST [136],

a widely-used distributed version of BLAST using MPI, which can yield super-linear

speed-up over running BLAST on a single node.

During runtime, each map function receives a chunk of the query sequences

and is responsible for sending out the chunk to each database partition. For each

database partition i, the map function randomly selects a replicate to send the query

chunk to in the form of a tuple (dbi,replicate num, query chunk). The reducer receives a

collection of query chunks for a given database partition and replicate and BLASTs

the query chunk against the database partition.

6.2.3.6 K-mer indexing

One of the original algorithms that BLAST uses is “seed and extend” align-

ment. This approach requires that there be at least one k-mer (sequence sub-string of

length k) match between query and database sequence before running the expensive

alignment algorithm between them [130]. Using this rule, BLAST can bypass any

database sequence which does not share any common k-mers with the query. Using

this heuristic, we can design a distributed version of BLAST using the MapReduce

139

model. One aspect of BLAST which we take advantage of is the database indexing

of k-mers. While some versions of BLAST have adopted database k-mer index-

ing for DNA databases, it seems that this approach has not been feasibly scaled

to protein databases [141]. For this reason, BLAST iterates through nearly every

database sequence to find k-mer hits. Here we describe an approach for K-mulus

that attempts to optimize this process by using lightweight database indexing to

allow query iteration to bypass certain partitions of the database.

In order to cluster the database, for each sequence, we first create a vector of

bits in which the value at each position indicates the presence of a specific sequence

k-mer. The index of each k-mer in the vector is trivial to compute. We then

cluster these bit vectors using a collection of clustering algorithms: k-means [126],

and k-medoid [142]. Our algorithms perform clustering with respect to the presence

vectors of each input sequence. For each cluster, a center presence vector is computed

as the union of all sequence presence vectors in the cluster. The distance between

clusters is taken as the Hamming distance, or number of bitwise differences, between

these cluster centers. This design choice creates a tighter correspondence between

the clustering algorithm and the metrics for success of the results, which depend

entirely on the cluster presence vectors as computed above. We also keep track of

the centers for each cluster as they play the crucial role of identifying membership

to a cluster.

After the database has been clustered, we compare the input query sequences

to all centers. The key idea is that by comparing the input query sequence to the

cluster centers, we can determine whether a potential match is present in a given

140

cluster. If this is the case, we run the BLAST algorithm on the query sequence and

the database clusters that we determined as relevant for the query.

6.2.4 Results

6.2.4.1 Comparison of parallelization approaches on a modest size

cluster

0	

20	

40	

60	

80	

100	

120	

Query Database
(100 chunks)

Database
(500 chunks)

Hybrid

R
un

tim
e

(m
in

ut
es

)

Parallelization Approach

Figure 6.6: Runtimes of different BLAST parallelization approaches.

We evaluated the different parallelization approaches of protein BLAST on

30,000 translated protein sequences randomly chosen from the Human Microbiome

Project [48] (Fig. 6.6). The sequences were BLAST against NCBI’s non-redundant

(nr) protein database (containing 3,429,135 sequences). For our analyses we used

a 46 node Hadoop (version 0.20.2) cluster. Each node had 2 map/reduce tasks and

2GB of memory, reproducing a typical cloud cluster.

The nr database used was 9GB in size and unable to completely fit into the

memory of a single node in our cluster. We segmented the database into 100 and 500

141

chunks to test our database segmentation approach. With 100 database chunks, the

database will be roughly split across each reduce task. We included a partitioning

of 500 database chunks to show the effects of over-partitioning the database.

Segmenting the database into 100 and 500 partitions resulted in a 26% and

16% decrease in runtime compared to the query segmentation approach, respectively.

Although using a smaller number of database partitions was faster, there are still

advantages for using more database partitions. Assuming an even distribution of

query workload, if a node fails near the end of its BLAST execution, then that task

must be restarted and the overall runtime is essentially doubled. Over-partitioning

the database allows for a failed task to restart and complete faster.

Our hybrid query and database segmentation approach resulted in a 44%

decrease in runtime compared to only query segmentation. Considering that the

memory of each node in our cluster was 2GB, and the nr database was 9GB, we

partitioned the database into 5 chunks, each roughly 2GB in size. This allows the

databases to fit completely into memory at each node.

6.2.4.2 Analysis of database k-mer index

Using our clustering and k-mer index approach, we show noticeable speedups

on well clustered data. To demonstrate this we simulated an ideal dataset of 1,000

sequences, where the sequences were composed of one of two disjoint sets of 3-mers.

The database sequences were clustered into two even-size clusters. The sample query

was 10,000 sequences, also comprising one of two disjoint sets of 3-mers. Figure

142

0
2
4
6
8

10
12
14
16

Query segmented Hybrid with k-mer index

R
un

tim
e

(m
in

ut
es

)

Parallelization Approach

1 core

2 cores

Figure 6.7: Runtimes of database segmentation with k-mer index approach.

6.7 shows the result of running BLAST on the query using Hadoop’s streaming

extension with query segmentation (the method used by CloudBLAST to execute

BLAST queries) and K-mulus. K-mulus running on 2 cores with 2 databases yields

a 56% decrease in runtime over BLAST using Hadoop’s streaming extension on 2

cores. In practice, this degree of separability is nearly impossible to replicate, but

this model allows us to set a practical upper bound for the speedup contributed by

clustering and search space reduction.

For a more practical BLAST query using the nr database, our database and k-

mer indexing approach took 2.75x as long compared to the naive Hadoop streaming

method using a realistic query of 30,000 sequences from the HMP project. The

poor performance is due to the very high k-mer overlap between clusters and uneven

cluster sizes. Due to the high k-mer overlap, each query sequence is being replicated

and compared against nearly all clusters.

K-mulus’ database clustering and k-mer indexing approach shows poor per-

143

formance due entirely to noisy, overlapping clusters. In the worst case, K-mulus

will map every query to every cluster and devolve to a naive parallelized BLAST on

database segments, while also including some overhead due to database indexing.

This is close to the behavior we observed when running our clustering and k-mer

index experiments on the nr database. In order to describe the best possible clus-

ters we could have generated from a database, we considered a lower limit on the

exact k-mer overlap between single sequences in the nr database (Fig. 6.8). We

generated this plot by taking 50 random samples of 3000 nr sequences each, com-

puting the pairwise k-mer intersubsection between them, and plotting a histogram

of the magnitude of pairwise k-mer overlap. This shows that there are very few

sequences in the nr database which have no k-mer overlap which makes the gen-

eration of disjoint clusters impossible. Furthermore, this plot is optimistic in that

it does not include BLASTs neighboring words, nor does it illustrate comparisons

against cluster centers which will have intersubsection greater than or equal to that

of a single sequence.

One strategy to improve the separability of the clusters and reduce the k-mer

intersubsection between clusters is to use repeat masking software. In order to show

the improvement offered by repeat masking, we ran SEG [143] on the sequences

before computing the intersubsection (Fig. 6.8). On average, SEG resulted in a

6% reduction in the number of exact k-mer overlap between two given sequences.

Repeat masking caused a significant, favorable shift in k-mer intersubsection and

would clearly improve clustering results. However, the nr database had so much

existing k-mer overlap that using SEG preprocessing would have almost no effect

144

on the speed of K-mulus’ clustering and k-mer index approach.

0	

200000	

400000	

600000	

800000	

1000000	

1200000	

1400000	

1600000	

1800000	

2000000	

1	
 16
	

31
	

46
	

61
	

76
	

91
	

10
6	

12
1	

13
6	

15
1	

16
6	

18
1	

19
6	

21
1	

22
6	

24
1	

O
cc
ur
en

ce
s	

Number	
 of	
 shared	
 k-­‐mers	

Repeat	

masked	

sequences	

Original	

sequences	

Figure 6.8: Pair-wise k-mer intersubsection of 50 random samples of
3000 original and repeat-masked nr sequences.

6.2.5 Discussion

With Amazon EC2 and other cloud platforms supporting Hadoop, develop-

ers should not make assumptions about the underlying hardware. Here we have

provided K-mulus, which gives users the versatility to handle the common ways to

perform distributed BLAST queries in the cloud without making assumptions of

the underlying hardware and data. The default approach of most Hadoop imple-

mentations of BLAST is to segment the query sequences and run BLAST on the

chunks in parallel. This approach works best when the entire BLAST database can

fit into memory of a single machine, but as sequencing becomes cheaper and faster,

this will become less likely. Computing clusters provided by services such as EC2

often contain commodity hardware with low memory, which we have shown makes

145

the default query segmentation approach poor in practice. The query segmentation

approach works quite well on more powerful clusters that are able to load the entire

database into memory. By providing users with the different parallel strategies, they

are free to choose the one that is most effective with their data and hardware.

We have also provided a way to speed up BLAST queries by clustering and

indexing the database using MapReduce. The speedup potential is largely depen-

dent on the clusterability of the data. Protein sequences lie in high-dimensional

non-Euclidean space, so by comparing them, we encounter the curse of dimension-

ality, where almost all pairs of sequences are equally far away from one another.

This problem maybe slightly alleviated if we are trying to cluster multiple datasets

of highly redundant sequences (multiple deep coverage whole genome sequencing

projects with distinct, non-intersecting k-mer spectra). Future work includes clus-

tering and indexing the query sequences, which may have higher redundancy than

the database sequences.

Although our clustering and indexing approach was used on protein sequences,

the logical next step is to include nucleotide database indexing, which has historically

had more success in speeding up sequence alignment [132]. With a four character

alphabet and simplified substitution rules, nucleotides are easier to work with than

amino acids, and allow for much more efficient hashing by avoiding of the ambiguity

inherent in amino acids.

It should be noted that the parallelization strategies presented here would also

benefit other commonly used bioinformatics tools. Short read alignment tools (such

as Bowtie2 [38]) can be parallelized by partitioning the reference index as well as the

146

query sequences. More work needs to be done to determine the best parallelization

strategies for these tools running on commodity clusters.

147

Chapter 7: Conclusion

The genome is the blueprint for building an organism and helps researchers

better understand the organism’s function and evolution. Since its initial publication

in 2001, researchers have periodically corrected mistakes in the human reference

genome [1]. Determining what parts of the genome are missing or mistakes is a

difficult task. The biological problem of genome assembly can be formulated as the

computer science problem of reconstructing a text (genome) from a collection of

randomly sampled word fragments with errors (sequence reads). The focus of this

dissertation was to develop the theory and computational methods to compare and

evaluate the reconstructed texts (assemblies).

I have developed computational tools that use the characteristics of the se-

quence data generation process to reproduce evaluations conducted by assembly ex-

perts without the use of reference genomes. I extended our likelihood-based frame-

work and show that by taking into account abundances of assembled sequences,

I can accurately compare different metagenomic assemblies. Lastly, I introduced

VALET, the first de novo pipeline that flags regions in metagenomic assemblies

that are statistically inconsistent with the data generation process. VALET has

detected mis-assemblies in publicly available datasets and highlights shortcomings

148

in currently available metagenomic assemblers.

By providing the computational tools for researchers to accurately evaluate

their assemblies, I decrease the chance of incorrect biological conclusions and mis-

guided future studies.

149

Bibliography

[1] Monya Baker. De novo genome assembly: what every biologist should know.
Nat Meth, 9(4):333–337, 04 2012.

[2] Philip Green. Against a whole-genome shotgun. Genome Research, 7(5):410–
417, 1997.

[3] James L Weber and Eugene W Myers. Human whole-genome shotgun se-
quencing. Genome Research, 7(5):401–409, 1997.

[4] Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. How to apply
de Bruijn graphs to genome assembly. Nature biotechnology, 29(11):987–991,
2011.

[5] Eugene W Myers. Toward simplifying and accurately formulating fragment
assembly. Journal of Computational Biology, 2(2):275–290, 1995.

[6] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno.
Computability of models for sequence assembly. pages 289–301, 2007.

[7] Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence as-
sembly: theory and applications to next generation sequencing. Journal of
computational biology, 16(7):897–908, 2009.

[8] Carl Kingsford, Michael C Schatz, and Mihai Pop. Assembly complexity of
prokaryotic genomes using short reads. BMC bioinformatics, 11(1):21, 2010.

[9] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein,
Steven JM Jones, and Inanç Birol. ABySS: a parallel assembler for short
read sequence data. Genome research, 19(6):1117–1123, 2009.

[10] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome research, 18(5):821–829, 2008.

150

[11] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin
Shi, Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, et al. De novo
assembly of human genomes with massively parallel short read sequencing.
Genome Research, 20(2):265–272, 2010.

[12] Steven L. Salzberg and James A. Yorke. Beware of mis-assembled genomes.
Bioinformatics, 21(24):4320–4321, 2005.

[13] Niranjan Nagarajan, Christopher Cook, MariaPia Di Bonaventura, Hong Ge,
Allen Richards, Kimberly A Bishop-Lilly, Robert DeSalle, Timothy D Read,
and Mihai Pop. Finishing genomes with limited resources: lessons from an
ensemble of microbial genomes. BMC genomics, 11(1):242, 2010.

[14] Claire M Fraser, Jonathan A Eisen, Karen E Nelson, Ian T Paulsen, and
Steven L Salzberg. The value of complete microbial genome sequencing (you
get what you pay for). Journal of bacteriology, 184(23):6403–6405, 2002.

[15] Elbert Branscomb and Paul Predki. On the high value of low standards.
Journal of bacteriology, 184(23):6406–6409, 2002.

[16] GSC Consortia, HMP Jumpstart Consortia, PSG Chain, DV Grafham,
RS Fulton, MG FitzGerald, J Hostetler, D Muzny, JC Detter, J Ali, et al.
Genome project standards in a new era of sequencing. Science (New York,
NY), 326(5950), 2009.

[17] Jonathan Laserson, Vladimir Jojic, and Daphne Koller. Genovo: de novo
assembly for metagenomes. Journal of Computational Biology, 18(3):429–443,
2011.

[18] Adam M Phillippy, Michael C Schatz, and Mihai Pop. Genome assembly
forensics: finding the elusive mis-assembly. Genome Biology, 9(3):R55, 2008.

[19] Dent Earl, Keith Bradnam, John St John, Aaron Darling, Dawei Lin, Joseph
Fass, Hung On Ken Yu, Vince Buffalo, Daniel R Zerbino, Mark Diekhans, et al.
Assemblathon 1: a competitive assessment of de novo short read assembly
methods. Genome research, 21(12):2224–2241, 2011.

[20] Steven L Salzberg, Adam M Phillippy, Aleksey Zimin, Daniela Puiu, Tanja
Magoc, Sergey Koren, Todd J Treangen, Michael C Schatz, Arthur L Delcher,
Michael Roberts, et al. GAGE: A critical evaluation of genome assemblies and
assembly algorithms. Genome research, 22(3):557–567, 2012.

[21] Shiguo Zhou, Michael C Bechner, Michael Place, Chris P Churas, Louise Pape,
Sally A Leong, Rod Runnheim, Dan K Forrest, Steve Goldstein, Miron Livny,
et al. Validation of rice genome sequence by optical mapping. BMC genomics,
8(1):278, 2007.

151

[22] Catherine Adamidi, Yongbo Wang, Dominic Gruen, Guido Mastrobuoni, Xin-
tian You, Dominic Tolle, Matthias Dodt, Sebastian D Mackowiak, Andreas
Gogol-Doering, Pinar Oenal, et al. De novo assembly and validation of pla-
naria transcriptome by massive parallel sequencing and shotgun proteomics.
Genome research, 21(7):1193–1200, 2011.

[23] Giuseppe Narzisi and Bud Mishra. Comparing de novo genome assembly: the
long and short of it. PloS one, 6(4):e19175, 2011.

[24] Francesco Vezzi, Giuseppe Narzisi, and Bud Mishra. Feature-by-feature–
evaluating de novo sequence assembly. PloS one, 7(2):e31002, 2012.

[25] Makedonka Mitreva et al. Structure, function and diversity of the healthy
human microbiome. Nature, 486:207–214, 2012.

[26] Barbara A Methé, Karen E Nelson, Mihai Pop, Heather H Creasy, Michelle G
Giglio, Curtis Huttenhower, Dirk Gevers, Joseph F Petrosino, Sahar
Abubucker, Jonathan H Badger, et al. A framework for human microbiome
research. Nature, 486(7402):215–221, 2012.

[27] Todd J Treangen, Sergey Koren, Daniel D Sommer, Bo Liu, Irina Astrovskaya,
Brian Ondov, Aaron E Darling, Adam M Phillippy, and Mihai Pop. Meta-
mos: a modular and open source metagenomic assembly and analysis pipeline.
Genome biology, 14(1):R2, 2013.

[28] Mohammadreza Ghodsi, Christopher M Hill, Irina Astrovskaya, Henry Lin,
Dan D Sommer, Sergey Koren, and Mihai Pop. De novo likelihood-based
measures for comparing genome assemblies. BMC research notes, 6(1):334,
2013.

[29] Martin Hunt, Taisei Kikuchi, Mandy Sanders, Chris Newbold, Matthew Ber-
riman, and Thomas D Otto. Reapr: a universal tool for genome assembly
evaluation. Genome biology, 14(5):R47, 2013.

[30] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying
Yuan, Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, et al. SOAPden-
ovo2: an empirically improved memory-efficient short-read de novo assembler.
Gigascience, 1(1):18, 2012.

[31] Daniel D Sommer, Arthur L Delcher, Steven L Salzberg, and Mihai Pop.
Minimus: a fast, lightweight genome assembler. BMC bioinformatics, 8(1):64,
2007.

[32] Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P
Fasulo, Michael J Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ
Reinert, Karin A Remington, et al. A whole-genome assembly of drosophila.
Science, 287(5461):2196–2204, 2000.

152

[33] Osvaldo Zagordi, Arnab Bhattacharya, Nicholas Eriksson, and Niko Beeren-
winkel. ShoRAH: estimating the genetic diversity of a mixed sample from
next-generation sequencing data. BMC bioinformatics, 12(1):119, 2011.

[34] Irina Astrovskaya, Bassam Tork, Serghei Mangul, Kelly Westbrooks, Ion
Măndoiu, Peter Balfe, and Alex Zelikovsky. Inferring viral quasispecies spectra
from 454 pyrosequencing reads. BMC bioinformatics, 12(Suppl 6):S1, 2011.

[35] Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly.
Journal of computational Biology, 16(8):1101–1116, 2009.

[36] Scott Clark, Rob Egan, Peter I Frazier, and Zhong Wang. ALE: a generic
assembly likelihood evaluation framework for assessing the accuracy of genome
and metagenome assemblies. Bioinformatics, page bts723, 2013.

[37] Atif Rahman and Lior Pachter. CGAL: computing genome assembly likeli-
hoods. Genome Biology, 14(1):R8, 2013.

[38] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with
Bowtie 2. Nature methods, 9(4):357–359, 2012.

[39] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, Richard Durbin, et al. The sequence align-
ment/map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[40] David A Rasko, Patricia L Worsham, Terry G Abshire, Scott T Stanley, Ja-
son D Bannan, Mark R Wilson, Richard J Langham, R Scott Decker, Lingxia
Jiang, Timothy D Read, et al. Bacillus anthracis comparative genome anal-
ysis in support of the amerithrax investigation. Proceedings of the National
Academy of Sciences, 108(12):5027–5032, 2011.

[41] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc
Birol, Evan E Eichler, and S Cenk Sahinalp. mrsFAST: a cache-oblivious
algorithm for short-read mapping. Nature methods, 7(8):576–577, 2010.

[42] Douglas B Rusch, Aaron L Halpern, Granger Sutton, Karla B Heidelberg,
Shannon Williamson, Shibu Yooseph, Dongying Wu, Jonathan A Eisen, Jeff M
Hoffman, Karin Remington, et al. The sorcerer ii global ocean sampling ex-
pedition: northwest atlantic through eastern tropical pacific. PLoS biology,
5(3):e77, 2007.

[43] Dongying Wu, Martin Wu, Aaron Halpern, Douglas B Rusch, Shibu Yooseph,
Marvin Frazier, J Craig Venter, and Jonathan A Eisen. Stalking the fourth do-
main in metagenomic data: searching for, discovering, and interpreting novel,
deep branches in marker gene phylogenetic trees. PLoS One, 6(3):e18011,
2011.

153

[44] Shibu Yooseph, Granger Sutton, Douglas B Rusch, Aaron L Halpern, Shan-
non J Williamson, Karin Remington, Jonathan A Eisen, Karla B Heidelberg,
Gerard Manning, Weizhong Li, et al. The sorcerer ii global ocean sampling
expedition: expanding the universe of protein families. PLoS biology, 5(3):e16,
2007.

[45] Thibault Varin, Connie Lovejoy, Anne D Jungblut, Warwick F Vincent, and
Jacques Corbeil. Metagenomic analysis of stress genes in microbial mat com-
munities from antarctica and the high arctic. Applied and environmental mi-
crobiology, 78(2):549–559, 2012.

[46] Shaomei He, Natalia Ivanova, Edward Kirton, Martin Allgaier, Claudia
Bergin, Rudolf H Scheffrahn, Nikos C Kyrpides, Falk Warnecke, Susannah G
Tringe, and Philip Hugenholtz. Comparative metagenomic and metatranscrip-
tomic analysis of hindgut paunch microbiota in wood-and dung-feeding higher
termites. PloS one, 8(4):e61126, 2013.

[47] Steven R Gill, Mihai Pop, Robert T DeBoy, Paul B Eckburg, Peter J Turn-
baugh, Buck S Samuel, Jeffrey I Gordon, David A Relman, Claire M Fraser-
Liggett, and Karen E Nelson. Metagenomic analysis of the human distal gut
microbiome. science, 312(5778):1355–1359, 2006.

[48] Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Lu Wang,
Jeffery A Schloss, Vivien Bonazzi, Jean E McEwen, Kris A Wetterstrand,
Carolyn Deal, et al. The nih human microbiome project. Genome research,
19(12):2317–2323, 2009.

[49] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Meta-idba:
a de novo assembler for metagenomic data. Bioinformatics, 27(13):i94–i101,
2011.

[50] Toshiaki Namiki, Tsuyoshi Hachiya, Hideaki Tanaka, and Yasubumi Sakak-
ibara. MetaVelvet: an extension of velvet assembler to de novo metagenome
assembly from short sequence reads. Nucleic acids research, 40(20):e155–e155,
2012.

[51] Sébastien Boisvert, Frédéric Raymond, Élénie Godzaridis, François Laviolette,
Jacques Corbeil, et al. Ray meta: scalable de novo metagenome assembly and
profiling. Genome biology, 13(12):R122, 2012.

[52] Keith R Bradnam, Joseph N Fass, Anton Alexandrov, Paul Baranay, Michael
Bechner, İnanç Birol, Sébastien Boisvert10, Jarrod A Chapman, Guillaume
Chapuis, Rayan Chikhi, et al. Assemblathon 2: evaluating de novo methods of
genome assembly in three vertebrate species. arXiv preprint arXiv:1301.5406,
2013.

154

[53] Florent E Angly, Ben Felts, Mya Breitbart, Peter Salamon, Robert A Edwards,
Craig Carlson, Amy M Chan, Matthew Haynes, Scott Kelley, Hong Liu, et al.
The marine viromes of four oceanic regions. PLoS biology, 4(11):e368, 2006.

[54] Elizabeth A Dinsdale, Robert A Edwards, Dana Hall, Florent Angly, Mya Bre-
itbart, Jennifer M Brulc, Mike Furlan, Christelle Desnues, Matthew Haynes,
Linlin Li, et al. Functional metagenomic profiling of nine biomes. Nature,
452(7187):629–632, 2008.

[55] Cora Carrigg, Olivia Rice, Siobhán Kavanagh, Gavin Collins, and Vincent
OFlaherty. Dna extraction method affects microbial community profiles from
soils and sediment. Applied microbiology and biotechnology, 77(4):955–964,
2007.

[56] M Krsek and EMH Wellington. Comparison of different methods for the
isolation and purification of total community dna from soil. Journal of Micro-
biological Methods, 39(1):1–16, 1999.

[57] Jenna L Morgan, Aaron E Darling, and Jonathan A Eisen. Metage-
nomic sequencing of an in vitro-simulated microbial community. PLoS One,
5(4):e10209, 2010.

[58] Ben Temperton, Dawn Field, Anna Oliver, Bela Tiwari, Martin Mühling, Ian
Joint, and Jack A Gilbert. Bias in assessments of marine microbial biodiver-
sity in fosmid libraries as evaluated by pyrosequencing. The ISME journal,
3(7):792–796, 2009.

[59] Sergey Koren, Todd J Treangen, Christopher M Hill, Mihai Pop, and Adam M
Phillippy. Automated ensemble assembly and validation of microbial genomes.
BMC bioinformatics, 15(1):126, 2014.

[60] A.M. Phillippy, M.C. Schatz, and M. Pop. Genome assembly forensics: finding
the elusive mis-assembly. Genome Biology, 9(3):R55, 2008.

[61] Arthur L Delcher, Steven L Salzberg, and Adam M Phillippy. Using mum-
mer to identify similar regions in large sequence sets. Current Protocols in
Bioinformatics, pages 10–3, 2003.

[62] Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size selec-
tion for genome assembly. arXiv preprint arXiv:1304.5665, 2013.

[63] Martin D Davis and Elaine J Weyuker. Pseudo-oracles for non-testable pro-
grams. In Proceedings of the ACM ’81 conference, ACM ’81, pages 254–257,
New York, NY, USA, 1981. ACM.

[64] Phil McMinn. Search-based failure discovery using testability transformations
to generate pseudo-oracles. In Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, GECCO ’09, pages 1689–1696, New
York, NY, USA, 2009. ACM.

155

[65] Christian Murphy. Metamorphic testing techniques to detect defects in ap-
plications without test oracles. PhD thesis, New York, NY, USA, 2010.
AAI3420778.

[66] Christian Murphy, Kuang Shen, and Gail Kaiser. Automatic system testing of
programs without test oracles. In Proceedings of the eighteenth international
symposium on Software testing and analysis, ISSTA ’09, pages 189–200, New
York, NY, USA, 2009. ACM.

[67] Shin Yoo. Metamorphic testing of stochastic optimisation. In Proceedings
of the 2010 Third International Conference on Software Testing, Verifica-
tion, and Validation Workshops, ICSTW ’10, pages 192–201, Washington,
DC, USA, 2010. IEEE Computer Society.

[68] Wing Kwong Chan, Jeffrey CF Ho, and TH Tse. Finding failures from passed
test cases: improving the pattern classification approach to the testing of mesh
simplification programs. Softw. Test. Verif. Reliab., 20(2):89–120, June 2010.

[69] Tsong Yueh Chen, TH Tse, and Zhiquan Zhou. Semi-proving: an integrated
method based on global symbolic evaluation and metamorphic testing. In
Proceedings of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis, ISSTA ’02, pages 191–195, New York, NY, USA, 2002.
ACM.

[70] Ljubomir Lazić and Nikos Mastorakis. Applying modeling and simulation
to the software testing process: one test oracle solution. In Proceedings of
the 7th WSEAS international conference on Automatic control, modeling and
simulation, ACMOS’05, pages 248–256, Stevens Point, Wisconsin, USA, 2005.
World Scientific and Engineering Academy and Society (WSEAS).

[71] René Just and Franz Schweiggert. Automating software tests with partial
oracles in integrated environments. In Proceedings of the 5th Workshop on
Automation of Software Test, AST ’10, pages 91–94, New York, NY, USA,
2010. ACM.

[72] René Just and Franz Schweiggert. Automating unit and integration testing
with partial oracles. Software Quality Control, 19(4):753–769, December 2011.

[73] Daniel Hook and Diane Kelly. Testing for trustworthiness in scientific software.
In Proceedings of the 2009 ICSE Workshop on Software Engineering for Com-
putational Science and Engineering, SECSE ’09, pages 59–64, Washington,
DC, USA, 2009. IEEE Computer Society.

[74] Xiaoyuan Xie, Joshua W. K. Ho, Christian Murphy, Gail Kaiser, Baowen Xu,
and Tsong Yueh Chen. Testing and validating machine learning classifiers by
metamorphic testing. J. Syst. Softw., 84(4):544–558, April 2011.

156

[75] Sergio Segura, Robert M. Hierons, David Benavides, and Antonio Ruiz-Cortés.
Automated metamorphic testing on the analyses of feature models. Inf. Softw.
Technol., 53(3):245–258, March 2011.

[76] Dae S. Kim-Park, Claudio de la Riva, and Javier Tuya. An automated test
oracle for xml processing programs. In Proceedings of the First International
Workshop on Software Test Output Validation, STOV ’10, pages 5–12, New
York, NY, USA, 2010. ACM.

[77] Kambiz Frounchi, Lionel C. Briand, Leo Grady, Yvan Labiche, and Rajesh
Subramanyan. Automating image segmentation verification and validation by
learning test oracles. Inf. Softw. Technol., 53(12):1337–1348, December 2011.

[78] Wing Kwong Chan, Shing-Chi Cheung, Jeffrey CF Ho, and TH Tse. Pat: A
pattern classification approach to automatic reference oracles for the testing
of mesh simplification programs. Journal of Systems and Software, 82(3):422–
434, 2009.

[79] Tsong Chen, JoshuaWK Ho, Huai Liu, and Xiaoyuan Xie. An innovative ap-
proach for testing bioinformatics programs using metamorphic testing. BMC
Bioinformatics, 10:1–12, 2009.

[80] Alessandro Orso and Tao Xie. Bert: Behavioral regression testing. In Proceed-
ings of the 2008 international workshop on dynamic analysis: held in conjunc-
tion with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2008), WODA ’08, pages 36–42, New York, NY, USA,
2008. ACM.

[81] Tsong Y Chen, Joshua WK Ho, Huai Liu, and Xiaoyuan Xie. An innova-
tive approach for testing bioinformatics programs using metamorphic testing.
BMC bioinformatics, 10(1):24, 2009.

[82] Javier Delgado, S Masoud Sadjadi, Marlon Bright, Malek Adjouadi, Hector
Duran-Limon, et al. Performance prediction of weather forecasting software
on multicore systems. In Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8.
IEEE, 2010.

[83] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and
W. Wang. The weather research and forecast model: Software architecture
and performance. In Proceedings of the 11th ECMWF Workshop on the Use
of High Performance Computing In Meteorology, volume 25, page 29. World
Scientific, 2004.

[84] Elaine J Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

157

[85] Tsong Y Chen, Shing C Cheung, and SM Yiu. Metamorphic testing: a new
approach for generating next test cases. Department of Computer Science,
Hong Kong University of Science and Technology, Tech. Rep. HKUST-CS98-
01, 1998.

[86] Eugene W Myers. Toward simplifying and accurately formulating fragment
assembly. Journal of Computational Biology, 2(2):275–290, 1995.

[87] Todd J Treangen, Sergey Koren, Irina Astrovskaya, Dan Sommer, Bo Liu,
and Mihai Pop. Metamos: a metagenomic assembly and analysis pipeline for
amos. Genome Biology, 12(1):1–27, 2011.

[88] David R Kelley, Michael C Schatz, Steven L Salzberg, et al. Quake:
quality-aware detection and correction of sequencing errors. Genome Biol,
11(11):R116, 2010.

[89] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and
James A Yorke. Reducing storage requirements for biological sequence com-
parison. Bioinformatics, 20(18):3363–3369, 2004.

[90] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler.
QUAST: quality assessment tool for genome assemblies. Bioinformatics,
29(8):1072–1075, 2013.

[91] Roger Barthelson, Adam J McFarlin, Steven D Rounsley, and Sarah Young.
Plantagora: modeling whole genome sequencing and assembly of plant
genomes. PLoS One, 6(12):1–9, 2011.

[92] Alexander V Lukashin and Mark Borodovsky. GeneMark.HMM: new solutions
for gene finding. Nucleic acids research, 26(4):1107–1115, 1998.

[93] William H Majoros, Mihaela Pertea, and Steven L Salzberg. TigrScan and
GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinfor-
matics, 20(16):2878–2879, 2004.

[94] Eric S Lander and Michael S Waterman. Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics, 2(3):231–239, 1988.

[95] Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-
free isoform quantification from RNA-seq reads using lightweight algorithms.
Nature biotechnology, 32(5):462–464, 2014.

[96] Robert McGill, John W Tukey, and Wayne A Larsen. Variations of box plots.
The American Statistician, 32(1):12–16, 1978.

[97] Helga Thorvaldsdóttir, James T Robinson, and Jill P Mesirov. Integrative
genomics viewer (IGV): high-performance genomics data visualization and
exploration. Briefings in bioinformatics, page bbs017, 2012.

158

[98] Heng Li. wgsim-read simulator for next generation sequencing, 2013.

[99] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. IDBA-UD:
a de novo assembler for single-cell and metagenomic sequencing data with
highly uneven depth. Bioinformatics, 28(11):1420–1428, 2012.

[100] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail
Dvorkin, Alexander S Kulikov, Valery M Lesin, Sergey I Nikolenko, Son Pham,
Andrey D Prjibelski, et al. SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. Journal of Computational Biology,
19(5):455–477, 2012.

[101] Migun Shakya, Christopher Quince, James H Campbell, Zamin K Yang,
Christopher W Schadt, and Mircea Podar. Comparative metagenomic and
rrna microbial diversity characterization using archaeal and bacterial synthetic
communities. Environmental microbiology, 15(6):1882–1899, 2013.

[102] Bahlul Haider, Tae-Hyuk Ahn, Brian Bushnell, Juanjuan Chai, Alex
Copeland, and Chongle Pan. Omega: an overlap-graph de novo assembler
for metagenomics. Bioinformatics, page btu395, 2014.

[103] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah
Lam. MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de bruijn graph. Bioinformatics, page
btv033, 2015.

[104] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang,
Zheng Zhang, Webb Miller, and David J Lipman. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic acids
research, 25(17):3389–3402, 1997.

[105] Bo Liu and Mihai. Pop. Metacompass: comparative assembly of metagenomic
sequences, 2015.

[106] Peter JA Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer, and
Peter M Rice. The Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants. Nucleic Acids Res, 38(6):1767–71,
Apr 2010.

[107] Brent Ewing and Phil Green. Base-calling of automated sequencer traces using
Phred. II. Error probabilities. Genome Research, 8(3):186–94, Mar 1998.

[108] Douglas W Bryant, Weng-Keen Wong, and Todd C Mockler. QSRA: a quality-
value guided de novo short read assembler. BMC Bioinformatics, 10:69, 2009.

[109] S Gnerre, I MacCallum, D Przybylski, FJ Ribeiro, JN Burton, BJ Walker,
T Sharpe, G Hall, TP Shea, S Sykes, AM Berlin, D Aird, M Costello, R Daza,

159

L Williams, R Nicol, A Gnirke, C Nusbaum, ES Lander, and DB Jaffe. High-
quality draft assemblies of mammalian genomes from massively parallel se-
quence data. Proc Natl Acad Sci USA, 108:1513–1518, 2011.

[110] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kris-
tian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey
Gabriel, Mark Daly, and Mark A DePristo. The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res, 20(9):1297–303, Sep 2010.

[111] Himanshu Asnani, Dinesh Bharadia, Mainak Chowdhury, Idoia Ochoa, Itai
Sharon, and Tsachy Weissman. Lossy compression of quality values via rate
distortion theory. arXiv preprint arXiv:1207.5184, 2012.

[112] Rodrigo Cánovas, Alistair Moffat, and Andrew Turpin. Lossy compression of
quality scores in genomic data. Bioinformatics, 30(15):2130–6, Aug 2014.

[113] Faraz Hach, Ibrahim Numanagić, Can Alkan, and S Cenk Sahinalp. SCALCE:
boosting sequence compression algorithms using locally consistent encoding.
Bioinformatics, 28(23):3051–7, Dec 2012.

[114] Lilian Janin, Giovanna Rosone, and Anthony J Cox. Adaptive reference-free
compression of sequence quality scores. Bioinformatics, page btt257, 2013.

[115] Christos Kozanitis, Chris Saunders, Semyon Kruglyak, Vineet Bafna, and
George Varghese. Compressing genomic sequence fragments using SlimGene.
J Comput Biol, 18(3):401–13, Mar 2011.

[116] Idoia Ochoa, Himanshu Asnani, Dinesh Bharadia, Mainak Chowdhury, Tsachy
Weissman, and Golan Yona. QualComp: a new lossy compressor for quality
scores based on rate distortion theory. BMC Bioinformatics, 14:187, 2013.

[117] Waibhav Tembe, James Lowey, and Edward Suh. G-SQZ: compact encoding
of genomic sequence and quality data. Bioinformatics, 26(17):2192–4, Sep
2010.

[118] Raymond Wan, Vo Ngoc Anh, and Kiyoshi Asai. Transformations for the com-
pression of FASTQ quality scores of next-generation sequencing data. Bioin-
formatics, 28(5):628–35, Mar 2012.

[119] Y William Yu, Deniz Yörükoglu, and Bonnie Berger. Traversing the k-mer
landscape of NGS read datasets for quality score sparsification. In Roded
Sharan, editor, Research in Computational Molecular Biology - 18th Annual
International Conference, RECOMB 2014, Pittsburgh, PA, USA, April 2-5,
2014, Proceedings, volume 8394 of Lecture Notes in Computer Science, pages
385–399. Springer, 2014.

160

[120] Jiarui Zhou, Zhen Ji, Zexuan Zhu, and Shan He. Compression of next-
generation sequencing quality scores using memetic algorithm. BMC bioinfor-
matics, 15(Suppl 15):S10, 2014.

[121] André E Minoche, Juliane C Dohm, Heinz Himmelbauer, et al. Evaluation of
genomic high-throughput sequencing data generated on Illumina HiSeq and
Genome Analyzer systems. Genome Biology, 12(11):R112, 2011.

[122] DA Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers, 40:1098–1101, 1952.

[123] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

[124] Jacob Ziv and Abraham Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 24(5):530–
536, 1978.

[125] James MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, pages 281–297. Oakland, CA,
USA., 1967.

[126] John A Hartigan and Manchek A Wong. Algorithm AS 136: A k-means
clustering algorithm. Applied statistics, pages 100–108, 1979.

[127] Joshi NA and Fass JN. Sickle: A sliding-window, adaptive, quality-based
trimming tool for FastQ files (version 1.33), 2013.

[128] Marco Ferrarini, Marco Moretto, Judson A Ward, Nada Šurbanovski, Vladimir
Stevanović, Lara Giongo, Roberto Viola, Duccio Cavalieri, Riccardo Velasco,
Alessandro Cestaro, and Daniel J Sargent. An evaluation of the PacBio RS
platform for sequencing and de novo assembly of a chloroplast genome. BMC
Genomics, 14:670, 2013.

[129] Sergey Koren, Gregory P Harhay, Timothy P L Smith, James L Bono,
Dayna M Harhay, Scott D Mcvey, Diana Radune, Nicholas H Bergman, and
Adam M Phillippy. Reducing assembly complexity of microbial genomes with
single-molecule sequencing. Genome Biol, 14(9):R101, 2013.

[130] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology,
215(3):403–410, 1990.

[131] Sean R Eddy et al. A new generation of homology search tools based on
probabilistic inference. In Genome Inform, volume 23, pages 205–211. World
Scientific, 2009.

161

[132] W James Kent. BLAT-the blast-like alignment tool. Genome research,
12(4):656–664, 2002.

[133] Ying Li, Hong-Mei Luo, Chao Sun, Jing-Yuan Song, Yong-Zhen Sun, Qiong
Wu, Ning Wang, Hui Yao, André Steinmetz, and Shi-Lin Chen. Est analysis
reveals putative genes involved in glycyrrhizin biosynthesis. BMC genomics,
11(1):268, 2010.

[134] J Murray, J Larsen, TE Michaels, A Schaafsma, CE Vallejos, and KP Pauls.
Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng)
rflp clones and their conversion to STSs. Genome, 45(6):1013–1024, 2002.

[135] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference of Distributed
Computing Systems, June 1988.

[136] Aaron Darling, Lucas Carey, and Wu-chun Feng. The design, implementation,
and evaluation of mpiblast. Proceedings of ClusterWorld, 2003, 2003.

[137] Jack J Dongarra, Rolf Hempel, Anthony JG Hey, and David W Walker. A
proposal for a user-level, message passing interface in a distributed memory
environment. Technical report, Oak Ridge National Lab., TN (United States),
1993.

[138] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[139] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc.,
http://aws.amazon.com/ec2, 2008.

[140] Andréa Matsunaga, Mauŕıcio Tsugawa, and José Fortes. Cloudblast: Combin-
ing mapreduce and virtualization on distributed resources for bioinformatics
applications. In IEEE Fourth International Conference on eScience, 2008.,
pages 222–229. IEEE, 2008.

[141] Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L Madden,
Richa Agarwala, and Alejandro A Schäffer. Database indexing for production
megablast searches. Bioinformatics, 24(16):1757–1764, 2008.

[142] Mark Van der Laan, Katherine Pollard, and Jennifer Bryan. A new parti-
tioning around medoids algorithm. Journal of Statistical Computation and
Simulation, 73(8):575–584, 2003.

[143] John C Wootton and Scott Federhen. Statistics of local complexity in amino
acid sequences and sequence databases. Computers & chemistry, 17(2):149–
163, 1993.

162

	List of Tables
	List of Figures
	Introduction
	Genome assembly
	Computational challenges of assembly
	Assessing the quality of an assembly

	Contributions of this dissertation

	Comparing Whole-Genome Assemblies
	Introduction
	Methods
	Theoretical foundation for probabilistic evaluation
	A realistic model of the sequencing process
	Performance considerations
	Datasets

	Results
	Performance-related approximations do not significantly affect the likelihood score

	Discussion

	Comparing Metagenomic Assemblies
	Introduction
	Methods
	Extending LAP to metagenomic assemblies
	Integration into MetAMOS

	Results
	Likelihood score maximized using correct abundances
	Impact of errors on synthetic metagenomes
	Likelihood scores correlate with reference-based metrics
	Tuning assembly parameters for MetAMOS

	Discussion
	Conclusion

	Regression Testing of Genome Assemblers
	Introduction
	Related work
	Methods
	Regression testing framework
	Evaluating changes in assembly quality

	Results
	Discussion
	Conclusion
	Availability

	Finding Metagenomic Mis-Assemblies
	Introduction
	Methods
	Types of mis-assemblies
	Estimating contig abundances using k-mers
	Depth of coverage analysis
	Insert size consistency
	Identifying assembly breakpoints
	Comparing multiple assemblies
	VALET pipeline

	Results
	VALET achieves high sensitivity on a simulated metagenomic community
	VALET accurately evaluates assemblies of a synthetic metagenomic community

	Discussion
	Conclusion

	Additional Contributions
	Lossy Compression of DNA Sequence Quality Values
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	K-mulus: Strategies for BLAST in the Cloud
	Abstract
	Introduction
	Methods
	Results
	Discussion

	Conclusion
	Bibliography

