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Diabetes and obesity are twin epidemics that are closely linked to each 

other. In the United States, diabetes currently affects approximately 29.1 million 

adults and children. The estimated economic cost of treating diabetic patients and 

their related complications reached $245 billion in the US in 2012.  Additionally, 

the prevalence of obesity is increasing during the recent decades. The National 

Health and Nutrition Examination Survey 2011-2012 reported that more than two-

thirds of US adults (68.5%) are overweight, and more than one-third (34.9%) were 

obese. 

Both diabetes and obesity are currently considered diseases. Although 

they cannot be completely cured, diabetes and obesity can sometimes be 

prevented by increasing physical activity and eating healthy foods. Producing 

healthy foods or healthy agro-produced supplements would be the first line of 

defense against such diseases. In search of plant products that can be used for 

preventative medicine, we recently discovered that grape pomace, the by-product 



from the waste of the wine and juice industries, has great potential to prevent 

diabetes and obesity. The fundamental goal of this research is to elucidate the 

molecular mechanism(s) of the grape pomace extract’s (GPE) preventive 

functions on diabetes and obesity, and to provide scientific evidence to guide its 

use in developing functional foods for diabetes and obesity prevention. We 

hypothesize that GPE may prevent diabetes and obesity through altering the 

expression of genes on the signaling or metabolic pathways that lead to diabetes 

and obesity manifestation. This research project targeted on 4 specific objectives: 

1) to characterize the action of GPE in reducing postprandial hyperglycemia 

through inhibition of alpha-glucosidase; 2) to understand the mode of molecular 

action of GPE in control of diabetes; 3) to understand the mode of molecular 

action of GPE in control of obesity; 4) to examine the effects of GPE on diabetes 

and obesity at genome wide. 

Throughout these research activities, we provided molecular evidence 

toward understanding the mode action of GPE in preventing diabetes and obesity. 

Such knowledge will provide guidance for future studies in developing GPE as 

an alternative therapeutic for the control of diabetes and obesity. Moreover this 

study may also lead to food industry applications in producing functional foods 

for diabetic and obese populations.  
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Introduction 
 

The metabolic syndrome refers to a cluster of risk factors leading to an 

increased risk of heart disease and other health problems. High blood glucose 

(diabetes) and obesity are two of the major factors used as diagnostics of metabolic 

syndrome. In fact, diabetes and obesity are considered twin epidemics, closely linked 

to each other. In the United States, diabetes currently affects approximately 29.1 

million adults and children. The estimated economic cost for treating diabetic 

patients and their related complications reached $245 billion in the U.S. in 2012.  The 

prevalence of obesity has also dramatically increased during recent decades. The 

National Health and Nutrition Examination Survey 2011-2012 reported that more 

than two-thirds of U.S. adults (68.5%) are overweight, and more than one-third 

(34.9%) are obese. Both diabetes and obesity are currently considered diseases. 

Although they cannot be completely cured, diabetes and obesity can both be 

prevented by increasing physical activity and eating healthy foods. Therefore, 

producing healthy foods or healthy agro-produced supplements would be the first 

line of defense in preventing such diseases.  

The grape, Vitis vinifera, is one of civilization’s oldest domesticated fruit 

crops and has become one of the most economically important crops adopted by 

many cultures. Health benefits of grapes and grape products, such as wine, are well 

documented in the literature. In recent research, grape pomace, the by-products of 

the waste of the wine and juice industries, was discovered to have great potential to 

prevent diabetes and obesity. The fundamental goal of this research is to elucidate 

the molecular mechanism(s) of grape pomace extract (GPE) in preventing against 
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diabetes and obesity and to provide scientific evidence to guide its use in developing 

functional foods for the prevention of diabetes and obesity. We hypothesize that GPE 

may help to prevent diabetes and obesity through altering the expression of genes, 

either known or novel, in the signaling or metabolic pathways leading to the 

manifestation of diabetes and obesity. The specific objectives for the current study 

were: 1) to characterize the action of GPE in reducing postprandial hyperglycemia 

through the inhibition of alpha-glucosidase; 2) to understand the mode of molecular 

action of GPE in the control of diabetes; 3) to understand the mode of molecular 

action of GPE in the control of obesity; 4) to examine the effects of GPE on genome-

wide transcriptome expression using the RNA-sequencing approach.  

Throughout these designated research activities, we provided molecular 

evidence toward understanding the mode action of GPE in preventing diabetes and 

obesity. Such knowledge could provide guidance for future studies in developing 

GPE as an alternative therapeutic for the control of diabetes and obesity. Moreover 

this study may also lead to food industry applications in producing functional foods 

for diabetic and obese populations.   

Detailed outlines for each specific objective, including methods and 

anticipated findings, were described as follow. 

 

Specific Objective 1: to characterize the action of GPE in reducing 

postprandial hyperglycemia through inhibition of alpha-glucosidase. 

In this objective, GPE was extracted from grape pomace and used in an in-

vitro yeast alpha-glucosidase inhibition assay to understand the kinetics of GPE-
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affected alpha-glucosidase inhibition. Additionally, the extracted GPEs were also 

gavaged to STZ-induced diabetic mice for 2h OGTT tests to examine the acute effects 

of GPE on the control of blood glucose. 

Through these experiments, we hypothesized that GPE could inhibit yeast 

alpha-glucosidase activity in vitro. This inhibition is dosage-dependent and through 

competing the active reaction site(s) with substrates. We also hope to demonstrate 

that GPE can reduce acute blood glucose level in mice when it is consumed with 

starch. 

Specific Objective 2: to understand the mode of molecular action of GPE in 

control of diabetes. 

Long term effects of GPE on treatment and prevention of diabetes were 

examined using a mouse model. For diabetes treatment experiments, mice were first 

STZ treated to induce diabetes. For the diabetes prevention experiment, mice were 

fed a high fat diet (HFD).  

All mice, including STZ treated or non-STZ-treated mice, were fed with 

HFD supplemented with (GPE treatment) or without (control) GPE for 12 weeks. 

Body weight, food intake, and blood glucose were monitored weekly. After the 

feeding experiment, blood and other tissues (pancreas, intestine, and liver) were 

collected and subjected to various examinations, including HbA1c and peptide 

hormones using ELISA and gene expression changes at RNA level using real time 

RT-PCR. 

No significant effects of GPE were found in STZ-induced diabetic mice, 

indicating that GPE may not be used for diabetic treatment. However, GPE can 
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significantly reduce blood glucose in non-STZ-treated mice with decreasing 

accumulation of GHbA1c. Glucose homeostasis-related peptide hormones such as 

GLP-1, glucagon, DPP-4, and insulin were significantly altered by GPE. 

Furthermore, GPE significantly downregulated the expression of insulin, glucagon 

and several gut hormones, as well as those regulating systemic inflammation. These 

results provide insights into the molecular mechanisms directing the effects of GPE 

in the prevention of diabetes. 

Specific Objective 3: to understand the mode of molecular action of GPE in 

control of obesity. 

To understand the role of GPE in the control of obesity, we first examined 

the effects of GPE on adipose cell differentiation using 3T3-L1 cell line.  Adipocyte 

differentiation and lipid accumulation was monitored and quantified by Oil-Red-O 

staining. Gene expression changes related to adipocyte differentiation were 

monitored using the RT-PCR approach. To further examine the role of GPE in obesity 

prevention, we then designed a long term feeding experiment using mouse model. 

All mice were fed with HFD supplemented with or without GPE for 12 weeks. Body 

weight, food intake, and fasting glucose were monitored weekly. After the mice were 

sacrificed, animal adipocytes was analyzed using the histo-chemistry approach. 

Tissues of liver, heart, kidney, pancreas and white adipose were collected for RNA 

expression analysis. The ARC and LHA regions of the hypothalamus tissue were also 

dissected and used to examine the expression of genes related to food intake. 

GPE significantly affected adipogenesis in 3T3-L1 cells, as indicated by 

decreased oil accumulation. GPE also altered gene expression patterns involved in 
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the adipogenesis transcriptional cascade in 3T3-L1 cells.  GPE reduced body weight 

and inhibited adiposity process in the mouse feeding experiment. Although no 

significant changes in gene expressions related to food intake in ARC and LHA 

regions were observed, GPE did attenuate the expressions of CEBPα, SREBF1 and 

PPARγ. GPE also significantly reduced systematic inflammation through the 

inhibition of PAI-1 and the increasing expression of adiponectin. 

Specific Objective 4: to examine the effects of GPE on genome-wide 

transcriptome expression using the RNA-sequencing approach.  

GPE plays important roles in prevention of diabetes and obesity. Several key 

genes regulating the secretion of peptide hormones related to glucose homeostasis 

and those to adipocyte differentiation were significantly altered by GPE. However, it 

is not clear how GPE affects gene expression changes on a genome-wide scale. Using 

the RNA-seq approach, in this objective, we intended to examine the role of GPE in 

tuning genome-wide gene expressions which lead to prevention against diabetes and 

obesity. Total RNAs were isolated from the livers of mice treated or untreated with 

GPE and subjected to high throughput transcriptome sequencing using RNA-seq 

techniques. Data were bioinformatically analyzed to identify those that are up- or 

down-regulated by GPE. 

Overall, more than 36 million clean reads were obtained from each sample, 

and approximately 95% of reads were mapped to the mouse reference genome. Over 

15,000 genes were identified that were expressed in the mouse. Only 181 genes were 

identified with altered expression by GPE. Most of the GPE upregulated genes were 

involved in the metabolism process to accelerate energy expenditure and solute 
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transport. However, GPE significantly downregulated a large number of genes 

related to immune responses, oxidative stress responses, and inflammation 

biomarkers. 

Finally, due to limited resources at VSU, all animal feeding experiments 

were conducted through collaborations or paid service at the University of Georgia 

(Dr. Tai L. Guo’s research group) or the China Agriculture University (Dr. 

Xiangdong Li’s research group), respectively.  The project was approved by the 

respective IACUCs of their institutions. Animal care, handling, feeding, and animal 

sacrifice were handled by staff in their research teams.  At no time was any animal 

handled by the author of this dissertation. However, all molecular experiments 

conducted after sacrifice of the mice used for these experiments and those not 

involving animal feedings were conducted by the author alone. 
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Chapter 1: Literature Review 
 

1.1 Metabolic syndrome and its prevention 
 

Metabolic syndrome is a cluster of risk factors that includes obesity; high 

triglycerides, blood pressure, and blood glucose and low high-density cholesterol. It 

increases the risk for heart disease and other health problems. Metabolic syndrome 

is caused by the imbalance of energy utilization and storage and can increase the risk 

of development of coronary heart disease, predominantly heart attack, stroke, kidney 

failure, gout, cancer, amputations and blindness (Eckel et al., 2005; Isaacs & 

Vagnini, 2006), and it is associated with morbidity and all-cause mortality (Malik et 

al., 2004; Lakka et al., 2002; Hu et al., 2005). The prevalence of metabolic syndrome 

has been increasing worldwide in recent decades. According to the 2003-2006 

National Health and Nutrition Examination Survey, in the United States, the 

prevalence of metabolic syndrome is approximately 34% of the adult population 

(Ford et al., 2005; Ford et al., 2010).   

Among the factors that can cause metabolic syndrome, genetics play a key 

role in controlling its development. People who have inherited the genetic tendency 

towards insulin resistance are candidates to develop metabolic syndrome. On the 

other hand, increased consumption of a high calorie diets and decreased physical 

activity have accelerated the prevalence of metabolic syndrome. Clinical and 

epidemiological evidence suggests that lifestyle factors, especially diet, are essential 

in controlling metabolic syndrome (Grundy et al., 2005).  Therapies adopting a 
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healthy lifestyle approach become the first-line of intervention on its prevention. A 

healthy lifestyle includes a balanced variety of foods and daily exercise. Consuming 

a healthy diet rich in fruits and vegetables is highly recommended, and it may reduce 

the risk of cancer and other chronic diseases (CDC State Indicator Report on Fruits 

and Vegetables 2013). Maintaining a healthy weight, waist measurement and body 

mass index (BMI) by increasing physical activity is another important lifestyle 

choice. Research has highlighted the potential therapeutic effects and nutraceutical 

properties found in natural products. Positive effects were revealed from food-based 

nutritional compounds for maintaining healthy body weight, lowering blood glucose, 

correcting lipid panels and decreasing the blood pressure (Ford et al., 2003). The 

anti-inflammatory and antioxidant effects of nutraceuticals have specific applications 

in preventing oxidative stress, which may play a role in the pathophysiology of 

diabetes, obesity and cardiovascular disease (Oberly, 1988; Rao, 2002). In a word, 

“An ounce of prevention is worth a pound of cure”. 

 

1.2 Diabetes 
 

Diabetes mellitus is a group of metabolic syndromes with a hallmark of 

hyperglycemia- increased blood glucose levels. It is caused by 1) interruption of the 

homeostasis of carbohydrate, protein and lipid metabolism, 2) lack of insulin 

secretion, or 3) increase of insulin resistance. Diabetes mellitus currently affects 200 

million people globally, approximately 5 % of the adult population. Diabetes is 

ranked as the 6th leading cause of death in the U.S. Diabetes effects young people as 

well as aging people. About 215,000 people younger than 20 years had diabetes (type 
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1 or type 2) in the U.S. in 2010. Approximately 25.8 million adults and children in 

the U.S. suffer from diabetes according to CDC’s National Diabetes Fact Sheet 2012. 

This number is expected to be over 40 million (Stephens et al., 2006) or more by 

2025, given that more than 86 million American adults were diagnosed as pre-

diabetes in 2012 (National Diabetes Statistics Report, 2014).  

The number of diabetic patients has dramatically increased in recent decades; 

the prevalence of diabetes was boosted by the increased consumption of refined sugar 

and processed foods with high calories, along with decreased physical activity 

(Stephens et al., 2006). The prevalence of diabetes is increasing dramatically 

worldwide. Growth is expected to occur in developing countries along with the 

consequences of population ageing, increasing urbanization, unhealthy diets, obesity 

and sedentary lifestyles. 

 

Insulin is a principal peptide hormone, produced by beta cells of the pancreas, 

that regulates the uptake of glucose from the blood. Based on the insulin secretion 

and response to insulin, diabetes has been classified into three categories: Type 1 

Diabetes: the failure of sufficient insulin production from β cells of pancreas causes 

of high blood sugar. It is an insulin-dependent diabetes, also called juvenile diabetes 

with early onset. Type 2 diabetes mellitus or "adult-onset diabetes" results from 

insulin resistance, a condition in which cells fail to use insulin properly, referred to 

as non-insulin-dependent diabetes, which is more than ninety percent of all cases of 

diabetes. The third type of diabetes is gestational diabetes caused by the hormonal 

changes (Biessels et al., 2004) during pregnancy, which lead to insulin insufficiency 
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or insulin resistance. Deficiency of insulin or the insensitivity of its receptors plays 

a critical role in all forms of diabetes mellitus (Bell et al., 1980). 

The serious long-term complications from diabetes are the major cause of 

hospitalization and death. Diabetes can cause retinopathy, cardiomyopathy, renal 

failure, altered immune functions, peripheral neuropathy, and intestinal dysfunction 

(Biessels et al., 2004; Martinez-Tellez et al., 2005). The economic cost of treating 

diabetic patients, and their related complications, reached $245 billion in 2012.  

Although long-term complications of diabetes develop gradually, untreated diabetes 

can cause many complications, even disability and death. Acute complications were 

common in Type I diabetes patients, including symptoms such as diabetic 

ketoacidosis and nonketotic hyperosmolar coma. Type 2 diabetes is the most 

common form of diabetes, affecting 90% to 95% of diabetes patients. Improperly 

treated diabetes can cause serious long-term complications. Over time, the high 

glucose levels in the blood can damage the nerves and small blood vessels of the 

eyes, kidneys, and heart.  Complications include diabetic retinopathy, nerve damage, 

stroke, cardiovascular disease, blindness, kidney failure, and macro and micro-

vascular damage, nephropathy, impaired immune functions, and lower limb 

amputation. (Martinez-Tellez et al., 2005). 

 

1.2.1 Diabetes treatment 
Diabetes is treatable and preventable. Conventional anti-diabetic drugs play 

a key role in diabetes treatment. However, side effects from these drugs can be 

problematic. Side effects include: 1) unwanted weight gain; 2) acidosis, caused by 
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buildup of acidic metformin byproducts in the blood stream; 3) several dangerous 

and life threatening symptoms such as malaise, fatigue, nausea and weakness; and 4) 

some anti-diabetes drugs, such as acarbose, sulfonylureas, metformin or 

thiazolidinediones, can cause gastrointestinal disturbances, upset stomach, nausea, 

diarrhea, constipation and increased flatulence.  

Fortunately, diabetes is preventable. Many plant species have shown 

promising effects in the management of diabetes. Medicinal plants, as well as 

agricultural by-products, are inherently safe because of their natural origin, and many 

have been traditionally used since ancient times by physicians to treat a great variety 

of human diseases.  

The existing conventional diabetes drugs, along with their molecular targets 

and sites of action, have been extensively studied (Prabhakar et al., 2011). Different 

diabetes drugs target different organs, such as liver, pancreas, small intestine, adipose 

tissue and muscle (Eurich et al., 2007). Based on each drug’s mode of action, they 

can be divided into two groups: 1) Insulin secretagogues (sulfonylureas, 

meglitinides, phenylalanine derivatives insulin) which stimulate insulin release by 

pancreatic beta cells; and 2) Insulin sensitizers (biguanides, metformin, 

thiazolidinediones) that reduce insulin resistance by activating PPAR-γ in fat and 

muscle to increase the peripheral glucose uptake and act on liver to decrease glucose 

production (Prabhakar et al., 2011).  

 

1.2.2. Carbohydrate metabolism and Alpha-glucosidase inhibitors  
Diabetes is, in part, related to the amount of carbohydrates in the diet. 
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Complex carbohydrates are digested primarily in the lumen of the small intestine by 

α-amylase to yield linear oligosaccharides and branched isomaltose 

oligosaccharides. Both of these can be further subjected to hydrolysis to release 

glucose and fructose by α-glucosidase and be absorbed into the bloodstream 

(Casirola et al., 2006). Alpha-glucosidase is a key membrane-bound intestinal 

enzyme presented in the brush-border of the small intestine mucosa. It inhibits 

glucoside hydrolase activity by controlling the delay of the carbohydrate absorption 

and lowering the postprandial glycaemia. α-glucosidase has been used widely as a 

target by the commercial antidiabetic medicines (for example acarbose, miglitol, and 

voglibose) in the regulation of blood glucose levels and treatment of type 2 diabetes 

(Yamazaki et al., 2007; Van et al., 2006; Casirola et al., 2006; Van et al., 2005; 

Nakamura et al., 2005; Fujisawa et al., 2005). Studies of the anti-hyperglycemic 

effects of α-glucosidase inhibitors have demonstrated its efficacy in reducing 

postprandial blood glucose levels, improving glycated haemoglobin (HbA1c) levels, 

and attenuating pancreatic islet damage (Negishi et al., 1996; Yamazaki et al., 2007). 

It attenuates postprandial hyperinsulinemia, increases the sensitivity of insulin 

receptor thus improve insulin sensitivity (Yamazaki et al., 2007), stimulating 

secretion and prolonging the effect of the key incretin hormone glucagon-like 

peptide-1 (GLP-1) (Yusuke et al., 2009), and it can delay or prevent the long-term 

complications of the type 2 diabetes (Lee et al., 1982). The effect of chronic alpha-

glycosidase inhibition on diabetic nephropathy in the db/db mouse is well 

established. Alpha-glucosidase inhibitors like acarbose can be used as a monotherapy 

and in combination therapy with other commercial diabetes drugs. Synergistic effects 
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have been reported with the combination of acarbose and DPP-4 inhibitors 

(inhibitors of dipeptidyl peptidase 4 reduce glucagon and blood glucose levels) (Aoki 

et al., 2012; Narita et al., 2012; Qualmann et al., 1995). Even though glucose 

lowering drugs were effectively used to manage blood glucose levels under normal 

range, it is very challenging to find a medicine that has no side effects. Side effects 

and other disadvantages of conventional antidiabetic drugs are very common. 

Gastrointestinal disturbances, upset stomach, nausea, diarrhea, constipation and 

increased flatulence caused by commercial α-glucosidase inhibitors have been 

reported (Prabhakar et al., 2011), as well as stomach pain and bloating, liver 

problems, skin reactions, and swelling due to fluid build-up  

 

1.2.3. Medicinal Plants: An Alternative Tool to Manage Diabetes 
An alternative to these synthetic conventional diabetes drugs is the use of 

many plant species that have shown promising effects in the management of diabetes. 

Medicinal plants have been traditionally used since ancient times by physicians to 

treat a great variety of human diseases. Currently, over 800 different natural 

medicines are widely used in several traditional medical systems to prevent diabetes 

(Casirola et al., 2006). Oriental countries such as China, Korea and India have long 

histories of using medicinal plants for the management of diabetes. Several medicinal 

plants have been investigated for their beneficial effects in the treatment of different 

types of diabetes. In addition, thousands of herb formulas and dietary supplements 

are available on the market for diabetic patients to use (Prabhakar et al., 2011). 

Dietary phytochemicals work through various metabolic pathways to reduce 

postprandial hyperglycemia. Plants with hypoglycemic activity have been the subject 
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of numerous studies; many of these natural medicines regulate blood sugar levels 

through a variety of mechanisms. In some cases, their effects are similar to 

conventional medicines. Multiple beneficial activities include regulating 

carbohydrate metabolism, preventing ß-cells apoptosis (which is one of the key point 

on triggering diabetes), increasing insulin releasing activity, and improving glucose 

uptake and utilization. 

 

1.3 Obesity 
Obesity is another complex disorder involving an excess of body fat 

accumulation. Obesity is defined by BMI (Body Mass Index), which is a 

measurement obtained by dividing a person's weight by the square of the person's 

height, by the World Health Organization 2006 Classification. People are classified 

as obese when their BMI exceeds 30 kg/m2. Obesity is a complex medical condition 

with a negative impact on health, leading to reduced mortality and mobility and 

augmented health problems (Haslam and James, 2005). The prevalence of obesity 

has been increasing during the recent decades. Obesity rates have more than doubled 

in adults and children since the 1970’s (National Center for Health Statistics, 2009). 

The National Health and Nutrition Examination Survey 2011-2012, reported that 

more than two-thirds of U.S. adults (68.5%) are overweight, and over one-third 

(34.9%) of adults were obese (Ogden et al., 2014). The trend for increased prevalence 

of obesity has persisted, particularly for adolescents and men (Ogden et al., 2004). 

The onset of obesity is happening earlier with 31.8% of children and adolescents 

being overweight or obese in the U.S. (Ogden et al., 2013).  
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Obesity, particularly excessive abdominal obesity, plays a key role in 

developing metabolic syndrome. It increases the risk of many common health 

problems. Numerous complications associated with obesity include the dramatic 

increase of diabetes mellitus (Colditz et al., 1995; Chan et al., 1994) , hypertension 

(Sjostrom et al., 2004; Huang et al., 1998), cardiovascular disorders (Suk et al., 2003; 

Millionis et al., 2004; Song et al., 2004), cancers (Calle et al., 2003; Danaei et al., 

2005),  dyslipidaemia (Datillo and Kris-Etherton, 1992),  non-alcoholic fatty liver 

disease (NAFLD) (Malnick et al., 2003; Hamaguchi et al., 2005), osteoarthritis (Hart 

et al., 1993; Cicuttini et al., 1996) and psychological disorders (Gortmaker et al., 

1993). The predominant treatment for obesity is lifestyle modification, increasing 

physical activity and improving lifestyle choices to maintain a healthy body weight 

and waist measurement. For certain patients, drugs or bariatric (weight-loss) surgery 

are recommended. The total medical cost related to managing obesity and related 

health problems is a burden on the public health system. The financial cost of 

combatting the current prevalence of obesity in the U.S. has increased annually. 

Based on the current trends in the growth of obesity, total healthcare costs 

attributable to obesity and obesity-related diseases will increase by as much as $66 

billion annually. By the year 2030, this annual cost will reach $861 to $957 billion, 

and will account for 16% to 18% of U.S. health expenditures (F as in Fat: How 

Obesity Threatens America's Future 2012). 

 

1.4 Close link between diabetes and obesity 
There has been a rapid increase in obesity prevalence worldwide during the 

past decades. The number of diabetes patients has increased by 40%, particularly the 
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number of individuals diagnosed with obesity and developing diabetes later. 

Diabetes and obesity have become major public health problems, with serious 

implications in industrialized countries as well as in developing nations. Smyth and 

Heron (2005) have reported that there is increased interest among researchers in the 

link between diabetes and obesity, the twin epidemics. A connection between obesity 

and diabetes was investigated and discovered that obese individuals had more than a 

10-fold increase in chances of developing type 2 diabetes compared to normal weight 

individuals (Must et al., 1999; Field et al., 2001). Obesity-derived cytokines and 

insulin resistance are the main factors involved in the development of type 2 diabetes. 

Several other factors, including glucose toxicity, lipotoxicity and beta cell failure 

(Stumvoll et al., 2005) also contribute to the development of type 2 diabetes. 

Numerous studies have revealed that insulin resistance plays a key role between 

obesity and diabetes (Jung and Choi, 2014) Obesity is characterized by increased 

storage of fatty acids in an expanded adipose tissue mass. It is closely associated with 

the development of insulin resistance. Individuals with insulin resistance are not 

sensitive to insulin, and cells in the body are unable to use insulin effectively. With 

the reduced response to insulin, pancreatic cells increase their production of insulin 

to combat the increased levels of blood glucose (Shanik et al., 2008). Meanwhile, 

insulin-resistance stimulates pancreatic β-cells proliferation, which leads to 

pancreatic β-cell deterioration and apoptosis, decreased insulin secretion and 

eventually to the development of diabetes (Dandona et al., 2005; Chetboun et al., 

2012; Butler et al., 2003). 
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 1.5 Chronic inflammation, obesity and insulin resistance 
 

1.5.1. Adipose tissue is an endocrine organ 
During the past two decades, the complex nature of adipose tissue stands out 

and has become an area of intense investigation. Fat tissue, or adipose, was formerly 

considered a passive energy storage element and related to lipid metabolism. For 

many years, it was believed that the main function of adipose was thought to store 

energy in the form of triglycerides during energy consumption, releasing fatty acids 

when energy expenditure exceeds energy intake. Another biological function of fat 

tissue was considered to act as a cushion and insulate the body to prevent heat lost.  

However, in 1994 with the identification and characterization of leptin, a 16-kDa 

polypeptide with structural homology to cytokine, adipose tissue was consequently 

confirmed to be a complex and highly active metabolic and endocrine organ 

(Kershaw and Filer, 2004; Zhang et al., 1994; Ahima et al., 2000; Fruhbeck et al., 

2001). Adipose tissue secretes numerous peptide hormones and receptors which have 

neuroendocrine functions, including effectively communicating with the brain and 

peripheral tissues to modulate glucose homeostasis, influencing energy metabolism, 

regulating appetite and insulin resistance and controlling immune function 

(Matsuzawa et al., 1999; Funahashi et al., 1999).  When immune cells, such as 

macrophages (Bornstein et al., 2000; Xu et al., 2003; Weisburg et al., 2003) and T 

lymphocytes (Kintscher et al., 2008; Rausch et al., 2007; Wu et al., 2007), infiltrate 

into adipose tissue in obese mice and humans, the infiltrated adipose tissue immune 

cells trigger insulin resistance by promoting a proinflammatory environment within 

the adipose tissue. This discovery has led to the second revolution in the field of 
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adipose tissue biology (Bonnie 2008). Inflammation and insulin resistance presented 

in adipose tissue link obesity and diabetes together. 

 

1.5.2. Adipose-derived hormones -- adipokines 
Adipose tissue contains numerous cell types such as adipocytes, immune 

cells, endothelia cells and fibroblasts. Abundant peptide hormones that are involved 

in signaling transduction pathways, are secreted and released into systemic 

circulation by adipose tissue. These adipocyte-specific proteins are known as 

adipokines (Kwon and Pessin, 2013). Functioning as classic circulating hormones, 

they have been shown to have a variety of local, peripheral, and central effects and 

to play a primary role in communication with other organs including liver, muscle, 

brain, intestine and immune system (Kwon and Pessin, 2013). Over the last two 

decades several research teams have explored the linkage of adipokines with obesity, 

type 2 diabetes and cardiovascular disease. Increased risk of developing diabetes has 

been observed in obese individuals (BMI≥30 kg/m2), compared to those with normal 

body weight (BMI<25 kg/m2) (Luft et al., 2013), even though the molecular 

mechanisms of the association of obesity and type 2 diabetes are still unclear.  

Inflammatory responses in adipose tissue have been shown to be a major factor 

explaining the mechanism of obesity-associated type 2 diabetes. Human and rodent 

animal models have been used to investigate how this low-grade chronic systemic 

inflammation contributes to the association between obesity and diabetes. Mild 

obesity-induced inflammation has been reported  in liver and muscle, and significant 

immune cells infiltration and inflammation has been observed in adipose tissue 

(Kwon and Pessin, 2013; Duncan et al., 2003; Hotamisligil, 2006; Luft  et al., 2013; 
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Shoelson et al., 2006; Schenk et al., 2008; Ouchi et al., 2011). Based on these studies, 

metabolism and immunity are undistinguishably linked to each other (Odegaard and 

Chawla, 2013). 

Adipose tissue secreted adipokines play important roles in regulating a 

variety of complex processes, including fat metabolism, feeding behavior, energy 

and glucose homeostasis, vascular tone and insulin sensitivity (Rondinone 2006). 

Chronic low‐grade inflammation is a key feature of obesity that is correlated with 

insulin resistance and type 2 diabetes (Kim et al., 2009). The inflammatory function 

of adipokines plays a crucial role in mediating obesity-induced insulin resistance. 

Adipose-derived hormones include tumor necrosis factor (TNF)-alpha, 

resistin, IL-6, IL-8, acylation-stimulating protein (ASP), angiotensinogen, 

plasminogen activator inhibitor-1 (PAI-1), leptin and adiponectin. Adipokines have 

been categorized into two groups: pro- and anti-inflammatory adipokines. 

 

1.5.3. Pro-inflammatory adipokines 
In 1994, Friedman et al. reported a novel gene called leptin (Lepob). Leptin 

was the first adipocyte-derived hormone to be discovered. Leptin receptor (Leprdb) 

was reported in 1995 and 1996; the db gene encodes the leptin receptor and is 

expressed in the hypothalamus, where it helps to regulate hunger and body weight 

gain (Tartaglia et al., 1995; Chan et al., 1994; Hua et al., 1996). Leptin regulates food 

intake and energy expenditure predominantly through hypothalamic pathways by 

acting on receptors in the hypothalamus (Williams et al., 2009). Leptin was named 

from the Greek “lepto” meaning “thin”. It was initially thought to be as a signal to 
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the brain to decrease food intake and lower body weight (Zhang, 1994). Humans and 

rodents that are leptin deficient Lepob/ Lepob and leptin receptor deficient 

Leprdb/Leprdb express the lack of a functional leptin or leptin receptor and exhibit 

a remarkable hyperphagia, obesity and insulin resistance. In Lepob/ Lepob mice, 

obesity was reduced and insulin sensitivity was restored by exogenous administration 

of leptin (Kwon and Pessin, 2013). However, the concept of leptin as an anti-obesity 

hormone has been questioned due to the phenomenon that the circulating levels of 

leptin and leptin resistance were increased in obese rodents and humans. The 

relationship between plasma leptin and adiposity in normal weight and overweight 

women were reported by Havel et al. Leptin concentration is directly associated with 

adiposity, and  plasma leptin levels increased with weight gain and decreased with 

weight loss (Havel et al., 1996), while adipocytes secreted leptin in a positive linear 

correlation to total body adipose tissue mass.  Thus, leptin is now viewed as signal 

of energy deficiency rather than a weight loss hormone.  

In addition to its effects on energy homeostasis, the biological function of 

leptin is to regulate neuroendocrine function (Galic et al., 2010; Howard et al., 2004; 

Ahima and Flier, 2000; Friedman and Halaas, 1998).  Blüher and Mantzoros reported 

that certain leptin levels are required to activate the hypothalamic-pituitary-gonadal 

and hypothalamic-pituitary-thyroid axes in men (Blüher and Mantzoros, 2004). 

Several other important endocrine effects of leptin were reported, including 

regulation of immune function by changing the cytokine production by immune cells, 

modulation of fetal and maternal metabolism, stimulation of endothelial cell growth, 

and the acceleration of beta islet cells proliferation. On the other hand, leptin interacts 
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with other hormones and energy regulators, such as insulin, glucagon, insulin-like 

growth factor, growth hormone, glucocorticoids and cytokines, which are also 

involved in numerous biological metabolisms (Kershaw and Flier, 2004; Margetic et 

al., 2002). 

Numerous adipose‐secreted factors have recently been described as potential 

mediators that link obesity‐derived chronic inflammation with insulin resistance 

(Figure 1-1). One such adipokine is inflammatory regulator interleukin‐6 (IL‐6) 

(Kim et al., 2009). IL-6 is a cytokine secreted by abundant cell types including 

adipocytes, adipose stromal cells and muscle cells (Kern et al., 2001; Crichton et al., 

1996). Approximate 1/3 of the IL-6 was produced by adipose tissue, and circulation 

of IL-6 concentrations was positively correlated with obesity. IL-6 impaired glucose 

tolerance and insulin resistance (Fernandez-Real and Recart, 2003), and decreased 

expression and circulating concentrations of IL-6 were detected with weight loss in 

obese and diabetes individuals (Kramer et al., 2006; Hotamisligil et al., 1995; Kern 

et al., 2001; Lazar, 2005). IL-6 appears to play a central role in regulating adipocytes 

and hepatocytes in the insulin signaling pathway. Senn et al., 2003 reported that IL-

6 is the key pro-inflammatory cytokines. By inducing SOCS3, a suppressor of 

cytokine signaling and a negative regulator of insulin signaling, the cascade genes 

expression including insulin-induced insulin receptor, IRS-1 tyrosine 

phosphorylation, p85 binding and down-stream PKB/Akt phosphorylation was 

impaired in liver cells (Galic et al., 2010; Senn et al., 2003). On the other hand, 

Matthews et al (2010) conducted a test to determine whether complete deletion of 

IL-6 in mice, an IL-6(-/-), results in induced obesity, hepatosteatosis, inflammation 
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and insulin resistance. IL-6 deficient mice displayed mature-onset obesity, 

hepatosteatosis, liver inflammation and insulin resistance when compared with 

control mice on a standard chow diet. A process related to defects in mitochondrial 

metabolism was found in IL-6 deficient mice; IL-6 deficiency exacerbates high fat 

diet-induced hepatic insulin resistance and inflammation (Matthews et al., 2010). To 

investigate the possible mechanism of the anti-obesity effect of IL-6, Wallenius et 

al., 2002) injected rats centrally and peripherally with IL-6 at low doses. IL-6 

treatment increased energy expenditure and reversed insulin resistance, indicating 

that IL-6 exerts anti-obesity effects in rodents (Wallenius et al., 2002). Furthermore, 

IL-6 was reported to promote fatty acids oxidation and glucose uptake in skeletal 

muscle (Galic et al 2010; Carey et al., 2006; Kelly et al., 2004). These discoveries 

shed a different light on the role of IL-6 in obesity and insulin resistance.    

Another adipocyte secretory protein involved in insulin resistance is Tumor 

Necrosis Factor α (TNFα), which was the first adipose derived factor associated in 

the induction of insulin resistance in obesity and type 2 diabetes. TNFα is a 

paracrine/autocrine factor highly expressed in adipose tissues that is associated with 

obesity, chronic inflammation and type 2 diabetes. The direct effects of TNFα on the 

functions of adipose tissue have been studied (Ruan and Lodish 2013).  The 

expression levels of TNFα were increased in both obese animals and human subjects. 

A positive association between adiposity and insulin resistance was reported. A 

number of studies have demonstrated that TNFα is implicated in the pathogenesis of 

obesity and in alterations in gene expression in metabolically important tissues such 

as adipocyte and liver (Ruan and Lodish 2013; Ruan et al., 2002). TNFα induces 
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genes implicated in inflammatory responses such as chemokines, cytokines, and their 

receptors in adipose tissue. It represses genes involved in glucose uptake and fatty 

acid metabolism in liver, increases plasma concentrations of free fatty acids and 

exhibits repressive effects on gene expression in skeletal muscle. TNFα also inhibits 

insulin signaling and attenuates insulin sensitivity in adipocytes (Hotamisligil 2003; 

Fernandez-Real and Ricart 2003). Over-expression of TNFα in adipose tissue will 

affect several downstream mediators in insulin signaling pathways. These include 

the increase of activation of serine kinase, which in turn increases serine 

phosphorylation of IRS1 and 2 (Insulin receptor Substrate 1 and 2), decreases the 

sensitivity of insulin receptors, thus leading to a critical decrease in insulin 

sensitivity. 

More recently, the finding of other adipocyte-specific factors was reported, 

such as resistin, CCL2, chemokine (C-C motif) ligand 2 which has also been referred 

to as monocyte chemotactic protein 1 (MCP1), plasminogen-activator inhibitor type 

1 (PAI-1), angiopoietin-like protein 2 and chemerin. Diet-induced obesity triggered 

immune cell infiltration into adipose tissue, and pro-inflammatory adipokines were 

secreted, circulating adipokines, leading to inflammation and prompting the 

development of insulin resistance and type 2 diabetes. 

 

1.5.4. Anti-inflammatory adipokines- adiponectin 
Adipose tissue is an active endocrine organ that secretes numerous 

adipokines, the majority of which are pro-inflammatory factors that lead to the 

development of insulin resistance and type 2 diabetes. However, the discovery of 
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adiponectin, the 247 amino acids peptide produced by adipose most abundant gene 

transcript 1 (apM1), shed light on the anti-inflamatory function of the adipokines 

(Maeda et al., 1996). Adiponectin was induced in differentiation from pre-adipocytes 

to adipocytes. It is entirely synthesized in white adipose tissue and secreted into the 

bloodstream. The circulating concentration is relatively high at approximately 0.01% 

of all plasma protein (about 5-10 μg/mL). Chandran et al. have demonstrated that 

plasma adiponectin levels have a strong and consistent inverse association with both 

insulin resistance and inflammatory states.  Adiponectin plays an important role in 

the regulation of glucose metabolism in human and animal models (Chandran et al., 

2003). Adiponectin levels were increased with the administration of insulin-

sensitizing drugs (Kershaw and Filer 2004; Chandran et al., 2003; Diez et al., 2003). 

Adiponectin has potent anti-inflammatory properties, and levels of adiponectin are 

decreased in patients with obesity, type 2 diabetes and atherosclerosis. Furthermore, 

circulating levels of adiponectin were significantly increased with weight loss 

(Vázquez-Vela 2008; Coppola et al., 2008; Yatagai et al., 2003).   

The mechanisms for adiponectin’s metabolic effects have been fully 

described in various organs, in both rodent and human models. The administration 

of adiponectin has been shown to regulate insulin signaling by increasing insulin-

induced tyrosine phosphorylation of the insulin receptor in skeletal muscle and 

improving whole-body insulin sensitivity (Yamauchi et al., 2001; Stefan et al., 2002). 

In the liver, adiponectin enhances insulin sensitivity by increasing tissue fat oxidation 

and reducing circulating fatty acid levels and intracellular triglyceride contents. Also, 

inhibited gluconeogenesis and increased glucose uptake were observed in liver.  In 
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vascular endothelial cells, adiponectin suppresses monocyte adhesion by inhibiting 

the expression of adhesion molecules, thereby reducing cytokine production from 

macrophages so as to decrease the inflammatory environments occuring during the 

early phases of atherosclerosis (Diez et al., 2003; Chandran et al., 2003). Taken 

together, adiponectin is a unique adipokine positively linking insulin resistance with 

obesity and diabetes. 

Understanding the mechanism of signaling pathways by which adipokines 

are controlled in target tissues such as skeletal muscle and liver may also expose 

novel therapies for obesity-related diseases (Galic et al., 2010). 
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Figure 1- 1 Sexretion of inflammatory adipokines from adipose tissue in obese state. 
In obese state, the enlarged adipose tissue leads to dysregulated secretion of adipokines 
and increased release of free fatty acids. The free fatty acids and pro-inflammatory 
adipokines get to metabolic tissues, including skeletal muscle and liver, and modify 
inflammatory responses as well as glucose and lipid metabolism, thereby contributing 
to metabolic syndrome. In addition, obesity induces a phenotypic switch in adipose 
tissue from anti-inflammatory (M2) to pro-inflammatory (M1) macrophages. On the 
other hand, the adipose production of insulin-sensitizing adipokines with anti-
inflammatory properties, such as adiponectin, is decreased in the obese state. - See 
more at: http://www.mdpi.com/1422-0067/15/4/6184/htm#sthash.0787EcKY.dpuf  

 

1.6 Network connection of multiple peripheral gastrointestinal hormones and 
hypothalamic central neuron peptide hormones to control energy balancing  

 

Obesity is a complex disorder involving an excess of body fat accumulation. 

It has been officially recognized as a chronic disease by the American Medical 

Association (AMA).  

When energy intake exceeds energy expenditure, obesity will develop. Food 
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intake and energy expenditure are the key factors contributing to adiposity and 

obesity. Maintenance of energy homeostasis and body weight involves the regulation 

of the coordinated network of peripheral gastrointestinal hormones and hypothalamic 

neuropeptides. During the past two decades, the complex nature of adipose tissue has 

become an area of intense investigation. The discovery of leptin, a 16-kDa 

polypeptide with structural homology to cytokine, has led to the redefinition of 

adipose tissue as a complex and highly active metabolic and endocrine organ 

(Kershaw and Filer, 2004; Zhang et al., 1994; Ahima et al., 2000; Fruhbeck et al., 

2001). Numerous studies have indicated that leptin has an anorexigenic effect and 

informs the brain of energy status (Aydin et al., 2008). Energy homeostasis is 

controlled by a complex neuroendocrine system consisting of peripheral signals 

(such as leptin), and central signals, in particular, neuropeptides. Several 

neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic 

(NPY, AgRP, and MCH) actions are involved in this complex controlling system 

(Hillebrand et al., 2002).  

 

The hypothalamus and its circuits that play a central role in controlling 

feeding behavior and regulating short-term and long-term food intake behavior 

(Clifford et al., 2002; Williams et al., 2001) are shown in Figure 1-2. Numerous 

neuropeptides produced by the hypothalamic arcuate nucleus (ARC), particularly 

neuropeptide Y (NPY) and agouti-related protein (AgRP), are involved in 

maintaining food intake and body weight control. NPY is a central stimulator of food 

intake (Chamorro et al., 2002). Ninety per cent of NPY neurons co-express with 
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AgRP (Schwartz et al., 2000). Leptin and insulin inhibit food intake and increase 

energy expenditure through inhibition of orexigenic NPY/AgRP neurons and 

stimulation of anorexigenic pro-opiomelanocortin (POMC)/cocaine- and 

amphetamine-regulated transcript (CART) neurons in the ARC. NPY/AgRP neurons 

simultaneously activate an anabolic pathway and inactivate a catabolic pathway (Shi 

et al., 2009; Baskin et al., 1999; Kristensen et al., 1998; Cowley et al., 2001). 

Control of food intake involves not only the hypothalamus in the central 

nervous system (CNS), but also the gastrointestinal (GI) tract signaling system, 

pancreas and liver (Figure 2-2). Numerous peripheral peptide hormones play a key 

role in regulating food intake and energy homeostasis (Naslund et al., 2007). Many 

of the peptides involved in controlling food intake and satiety signals in the 

hypothalamus are also present in the enteroendocrine cells of the mucosa of GI tract; 

neuropeptides in the CNS that influence food intake are influenced by peptide signals 

from the gut.  In the neuronal network, satiety signals from the gut were closely 

linked with hypothalamic centers for controlling food intake and eating behavior. 

Multiple gastrointestinal peptides that influence food intake are connected to the 

central neuron system controlling food intake. Ghrelin, secreted by endocrine cells 

in the stomach, is an orexigenic hormone that stimulates growth hormone release and 

enhances feeding and weight gain to regulate energy homeostasis (Tschöp et al., 

2000). Ghrelin acts on the hypothalamus to stimulate feeding. It was considered an 

appetite-stimulating hormone and was implicated in both short- and long-term 

appetite and body weight regulation. When acting as an orexigenic peptide, ghrelin 

stimulates food intake by activating NPY/AgRP neurons and balancing inhibitory 
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signals received from insulin, leptin and peptide YY (Hillebrand et al., 2002; Kojima 

et al., 1999; Tschöp et al., 1999; Wren et al., 2001).  In addition, high-fat diet (HFD) 

feeding caused ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti related 

peptide neurons (Briggs, 2011), and the hypothalamic circuitry became resistant to 

ghrelin. Anorexic peripheral peptides also play important roles in regulating food 

intake and energy homeostasis.  Cholecystokinin (CCK) is the most studied gut 

peptide regulating food intake (Ritter, 1999). It is secreted by cells in the duodenum 

and jejunum when they are exposed to food, and it induces satiety in the CNS. 

Glucagon-like peptides (GLP-1 and GLP-2) are peptide hormones that stimulate the 

secretion of insulin. GLP is released from the lower gastrointestinal tract following 

food intake and plays dual roles in the regulation of blood glucose concentrations 

through its concurrent insulin tropic and glucagonostatic actions (glucose-lowering 

effect) (Näslund et al., 1999; Ørskov, 1999). Numerous anorexic peripheral peptides 

such as Peptide YY, amylin, insulin, bombesin, glucagon, and GIP, are all known to 

be anorexigenic and are recognized as physiologic regulators of food intake 

contributing to the control of obesity (Arora 2006). This multiple-hormone-

controlled energy homeostasis has become a central target for the design of 

pharmacological agents to prevent and treat obesity.  
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Figure 1- 2 Control of energy homeostasis by arcuate nucleus neurons.There are two 
sets of neurons in the arcuate nucleus — Agrp/Npy and Pomc/Cart neurons — that are 
regulated by circulating hormones. Agrp (agouti-related protein) and Npy 
(neuropeptide Y) are neuropeptides that stimulate food intake and decrease energy 
expenditure, whereas the alpha-melanocyte stimulating hormone (a post-translational 
derivative of proopiomelanocortin, Pomc) and Cart (cocaine- and amphetamine-
regulated transcript) are neuropeptides that inhibit food intake and increase energy 
expenditure. Insulin and leptin are hormones that circulate in proportion to body 
adipose stores; they inhibit Agrp/Npy neurons and stimulate adjacent Pomc/Cart 
neurons. Lower insulin and leptin levels are therefore predicted to activate Agrp/Npy 
neurons, while inhibiting Pomc/Cart neurons. Ghrelin is a circulating peptide secreted 
from the stomach that can activate Agrp/Npy neurons, thereby stimulating food intake; 
this provides a potential molecular mechanism for integrating long-term energy balance 
signals with short-term meal pattern signals. Ghsr, growth hormone secretagogue 
receptor; Lepr, leptin receptor; Mc3r/Mc4r, melanocortin 3/4 receptor; Y1r, 
neuropeptide Y1 receptor. Adopt from Nature Reviews Genetics 3, 589-600.  
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1.7 Adipogenesis, a highly orchestrated multistep process of the transcriptional 
network 

Adipogenesis is the process of the differentiation of fibroblast like pre-

adipocytes into the well-established matured spherical adipocytes which contains 

lipids (Lefterova and Lazar, 2009). Take the advantage of the in vitro model of 3T3-

L1 and 3T3-F442A, the pre-adipocyte cell lines, the adipogenesis has been precisely 

illustrated (Rosen et al., 2000; Gregoire, 2001). A highly orchestrated multistep 

process of the transcriptional network was involved in adipogenesis (Ali et al., 2013). 

Several transcription factors are sequentially activated in adipogenesis transcriptional 

cascade. Remarkably CCAAT/enhancer binding proteins (C/EBPβ, C/EBPδ and 

C/EBPα) gene family, peroxisome proliferator activated receptor-γ (PPAR-γ) and 

Sterol regulatory element-binding transcription factor 1 (SREBF1), have been shown 

to have significant roles in promoting adipogenesis (White and Stephens, 2009). These 

factors are essential to promote the terminal or mature adipocyte phenotype. 

Differentiation of pre-adipocyte cells into adipocytes involves a series of events 

including growth-arrest, mitotic clonal expansion, and terminal differentiation and 

mature adipocytes (Sun et al., 2009; Lefterova and Lazar, 2009). In response to 

hormonal stimuli such as cortisol and insulin, C/EBPβ and C/EBPδ are induced 

immediately which in turn activate PPARγ and C/EBPα (Farmer, 2006). PPARγ and 

C/EBPα form a positive feedback loop to induce the expression of each other and 

regulate the adipocyte differentiation (Rosen et al., 2002). PPARγ and C/EBPα in turn 

to induce the expression of genes that are necessary for regulating fatty acid storage 

and glucose metabolism (Rosen, E.D. and MacDougald, 2006). They are highly 

expressed in adipose tissue and are key factors controlling the down-stream adipocyte 
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differentiation and adipocyte-specific gene expression (Lefterova et al., 2008), such 

as lipoprotein lipase (LPL), which is considered as the early stage marker for the 

adipocyte differentiation, and  adipocyte fatty acid–binding protein (aP2), which is an 

intermediate sign of adipocyte differentiation (Rosen and Spiegelman , 2000; 

(Bernlohr et al., 1984; Katz et al., 1999; Spiegelman et al., 1983; MacDougald et al., 

1995). Sterol regulatory element-binding proteins (SREBPs) are also involved in 

adipocyte differentiation. SREBPs are a family of transcription factors that regulate 

lipid homeostasis.  SREBPs are induced very early during adipocyte differentiation 

and stimulate the expression of PPARγ, and induce the fundamental coordinator of 

the adipocyte differentiation process (Eberlé et al., 2004; Shao and Espenshade, 2012; 

Saladin et al., 1999).  

 

Figure 1- 3 Transcriptional events in adipocyte differentiation. A summary (present 
view) of the molecular processes of adipocyte differentiation, focusing only on 
transcriptional events. Direct or indirect transcriptional events are indicated by solid 
lines. Broken lines represent interactions that are less well understood. Specific 
transcription factors are denoted with square boxes; unknown factors are indicated with 
question marks. Abbreviations: ADD1, adipocyte determination- and differentiation-
dependent factor 1; C-EBPalpha, CCAAT-enhancer binding protein-alpha; RXR, 
retinoid X receptor; SREBP, sterol regulatory element binding proteins; STAT, signal 
transducers and activators of transcription. Adapted from Morrison and Farmer. Picture 
was adopted from International Journal of Obesity (2003) 27, 147–161.  



33  

  

1.8 Health benefits of grape  
 

1.8.1 Grape and grape pomace 
The grape (Vitis vinifera) is one of the oldest fruit crops domesticated. 

Cultivation of grapes began 6,000–8,000 years ago in the Near East, and is one of 

the most economically important plants adopted by all cultures. Several phenolic 

compounds that can improve the human health are found in grapes. The well-known 

“French Paradox” identifies the fact that the epidemiological observation of despite 

high intake of dietary cholesterol and saturated fat, but low incidence of coronary 

heart disease (CHD) death rates are present in the Mediterranean region (Renaud et 

al., 1992). The routine consumption of red wine was considered as the factor 

lowering the development of coronary heart disease. This attracted more attention of 

scientists to define the chemical composition in grapes. A large number of different 

natural grape products are widely used in the nutritional products market, and the 

beneficial effects of using flavonoids and poly-phenolic compounds from grape and 

grape-derived products have been well studied.  The bioactivities of grape 

polyphenols and the health promoting effects of different varieties of grape have been 

documented. 

 

1.8.2. Bioactivites of phenolic compounds in grape products. 
Numerous phytochemicals are found in grapes. Among these, phenolic 

compounds are the most abundant and widely studied.  Different phenolic 

compounds are present in grape skin, seeds, fruit stems, as well as juice and wine 
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product. The phenolic compounds mainly include anthocyanins, flavanols, 

resveratrol and phenolic acids (Xia et al., 2010; Dopico-Garcia et al., 2008; Novaka 

et al., 2008; Spacil et al., 2008). Anthocyanins are pigments that mainly exist in grape 

skins. Red grape skin has more total polyphenols compared to white grape due to the 

lack of anthocyanins in white grape varieties. Flavan-3-ols are more abundant in 

white varieties. Flavonoids are widely distributed in grapes, especially in seeds and 

stems. Georgiev et al summarized the most common flavonoids found in grapes: they 

are anthocyanins (3-O-monoglucosides or 3,5-O-diglucosides of malvidin, cyanidin, 

peonidin, delphinidin, pelargonidin and petunidin, as well as their acetyl-, p-

coumaroyl- and/or caffeoyl-esters), flavonols (3-O-glycosides of quercetin, 

kaempferol, myricetin, laricitrin, isorhamnetin and syringetin), flavanols [(+)-

catechin, (−)-epicatechin, (−)-epicatechin-3-O-gallate], dihydroflavonols (astilbin 

and engeletin) and proanthocyanidins [principally contain (+)-catechins, (−)-

epicatechin and procyanidin polymers] (Georgiev et al., 2014; Chacona  et al., 2009; 

Bagchi  et al., 2000; Cantos et al., 2002). There are different phenolic compounds in 

different parts of the grape. The distribution and occurrence of polyphenols in grape 

are different.  

During 2014, more than 7.8 million tons of grapes were grown commercially 

in the U.S. (http://www.agmrc.org/commodities__products/fruits/grapes-profile/), 

and more than 60% of these were used to make wine or juice. Grape pomace is the 

main byproduct of wine and juice production and is primarily composed of skin, 

seed, pericarp, and fruit-stem; it comprises approximately 25% of grape weight 

during grape processing.  Grape pomace is currently used as fodder or fertilizer, or it 
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may be thrown away at a cost. The complex phytochemicals especially polyphenols 

in the seed and skin of grape pomace attracted more scientists to study the potential 

of turning the by-product waste to nutraceuticals and value adding products. On the 

other hand, grape pomace contains mixtures of flavonoid structures; different 

degrees of polymerization will occur during its secondary metabolism. This makes it 

difficult to establish which of the molecules are active. Furthermore, it is likely that 

the beneficial effects on human health may not be due to one molecule but a 

combination of effects of different phytochemicals (Pedrielli et al., 2002; Montagut 

et al., 2010). 

 

1.8.3. Antioxidants of grapes 
Numerous studies have shown that phenolic compounds from grape exerts 

positive benefits on human health; many of these compounds have been shown to 

have potent antioxidant activities. Significant antioxidant activity has been observed 

from pomace and seed flour extract of grapes (Ruberto et al., 2007; Parry et al., 

2006). Grape seed extract may be useful for the prevention of certain metabolic 

syndromes and cardiovascular disease. Grape and grape products also possess other 

important properties including anti-radiation, anti-mutagenic, anti-inflammatory, 

anti-bacterial, and other beneficial effects (Bagchi et al., 2003; Halliwel et al., 1992; 

Belleville, 2002; Sun et al., 2002). 

 

1.8.4. Protect against cardiovascular disease  
Grape derived products (especially grape seed extract) are commercially 

available as over counter medicine from many pharmacies and grocery stores. 
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Abundant animal model and preclinical evidence suggests that grape seed extract has 

beneficial effects on the cardiovascular system. The polyphenol resveratrol is found 

in grape seed. Resveratrol has been identified as the potential cause of beneficial 

properties in red wine (Tomé-Carneiro et al., 2012; Bertelli et al., 1998). The 

beneficial effects of resveratrol were also reported as decreasing insulin resistance, 

reducing ischemic heart disease, preventing heart failure and avoiding hypertension 

(Petrovski et al., 2011; Bertelli et al., 1998). The polyphenols in grapes can reduce 

phosphodiesterase-5 activity, decrease the risk of cardiovascular disease (Dell et al., 

2005), reduce platelet adhesion and aggregation and generate superoxide anion 

(Olaset al., 2008). 

 

1.8.5. Protect against metabolic syndrome: Diabetes and obesity 
Metabolic syndrome, especially diabetes and obesity are the most prevalent 

health problem affecting one third of U.S. population. Numerous flavonoid 

polyphenolics, including catechin, anthocyanin, isoflavones, quercetin, rutin are 

presented in grapes extracts. The mixture of these flavonoids structures in grape 

extracts were reported to have anti hyperglycemic effects. Abundant evidences 

suggest that flavonoids found in grapes play a key role in preventing the development 

of diabetes and obesity by acting as multi-target modulators with reducing the 

oxidative stress and lower the degree of systematic inflammation (Tsuda et al., 2012; 

Chuang et al., 2011), and improve the insulin resistance. Chuang et al (2012) 

screened different varieties of red, green, and blue-purple seeded and seedless 

California grapes to test the effects of freeze-dried grape powder and grape powder 

extracts on glucose tolerance and inflammation in obese mice, and found that grape 
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powder acutely improves glucose tolerance and chronically reduces inflammation in 

obese mice.  The polyphenols in the grape have demonstrated dramatic inhibitory 

effects in streptozotocin-induced diabetic rat models (Al-Awwadi et al., 2004; Al-

Awwadi and Bornet, 2004); reducing body growth, food intake and hyperglycemia, 

and increasing insulin sensitivity. Procyanidin, quercetin, resveratrol and 

proanthocyanidin derived from grape products have been widely studied. The benefit 

efficacy of stimulating glucose uptake in adipocyte cells, decreasing lipid 

peroxidation, increasing pancreatic glutathione levels, protecting pancreas β-cell 

function and protecting against β-cell loss,  have been fully reported (El-Alfy et al., 

2005; Baur et al., 2006; Lagouge et al., 2006).  Studies on Carols Muscadine also 

demonstrated the inhibitory and anti-diabetic effects of the extracts on α-glucosidase 

and pancreatic lipase were investigated (You et al., 2011; Montaguta et al., 2010; 

Moreno et al., 2003). Muscadine possessed the strongest anti-diabetic activity in the 

EtOH fractions. Competitive mode of action was shown in their enzymatic 

inhibitions.  

Diabetes and obesity could be manageable through a combination of diet, 

exercise and appropriate medications to lower adipogenesis. Many plant-based 

products show promising effects on the management and prevention of diabetes and 

obesity. Therefore, producing healthy foods or healthy agro-produced supplements 

would be the first line of defense against such metabolic syndrome.  In search of such 

products, we recently discovered that grape pomace has great potential to prevent 

diabetes and obesity. Water extracts of grape pomace (GPE) significantly reduced 

blood glucose levels and decreased body weight when fed to mice. However, neither 
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the long term effects of GPE on diabetes and obesity control nor the molecular 

mechanisms involved has yet been fully elucidated. Such information is critical for 

its practical use in prevention and management of diabetes and obesity. 

Understanding the molecular mechanism(s) underlying GPE’s role in preventing 

diabetes and obesity is important to guide its use in developing functional foods. The 

research plan proposed here is to define the long term effect(s) of GPE in preventing 

diabetes and obesity and unveil the possible molecular mechanism(s) of such 

prevention properties, focusing on different hormone peptides and the 

interrelationship among the central and peripheral neuropeptides. 

  

 1.9 Summary and hypothesis 
Grape pomace, the by-product from the wine and juice industry, may have 

great potential beneficial health effects in preventing diabetes and obesity. However, 

the molecular mechanisms of such preventative properties are largely unknown. This 

research project was designed to elucidate such mechanisms at the physiological and 

molecular levels to provide evidence on grape pomace’s roles in preventing diabetes 

and obesity. The designated research activities will target four specific objectives: 1) 

to characterize the action of grape pomace extract (GPE) in reducing postprandial 

hyperglycemia through inhibition of alpha-glucosidase; 2) to understand the mode 

of molecular action of GPE in control of diabetes; 3) using a 3T3-L1 pre-adipocyte 

cells and mouse model to examine the effects of long term GPE administration on 

reducing obesity through regulation of adipogenesis; and 4) to examine the effects 

of GPE on blood glucose and body weight control in genome wide with RNA-seq, 

whole transcriptome shotgun sequencing technology. Throughout these designated 
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research activities, we will provide molecular evidence toward understanding the 

mode action of GPE in preventing diabetes and obesity. Such knowledge will provide 

guidance for future studies in identifying bio-activate compounds from GPE to 

develop alternative medicines for the control of diabetes and obesity. More 

importantly, this study may lead to food industry applications in producing functional 

foods for diabetes and obesity populations. 

 The fundamental goal of this research is to begin to elucidate the molecular 

mechanism(s) of the GPE’s preventive functions on the metabolic syndrome, diabetes 

and obesity, and to provide scientific evidence to guide its application for the use as 

functional food or alternative medicine. We hypothesize that GPE may prevent 

metabolic syndrome including diabetes and obesity through alternating the expression 

of genes, known or novel, on the signaling or metabolic pathways that lead to 

reduction of diabetes and obesity. The project focused on examining such molecular 

mechanism(s) and hypothesis that support the incorporation of GPE as an alternative 

therapy for controlling postprandial blood sugar, regulate insulin resistance and 

preventing diabetes and obesity. Four specific objectives, as described following, will 

be addressed for this rpoject. 

Specific Objective 1: To characterize the action of GPE in reducing 

postprandial hyperglycemia through inhibition of alpha-glucosidase. GPE is rich in 

phytochemicals which could lower the blood glucose; however the fundamental 

mechanism remains unclear.  Grape products may lower blood glucose through α-

Glucosidase activity inhibition. This hypothesis will be tested using both an in vitro 

α-Glucosidase activity assay and an in vivo induced diabetes mouse model. Yeast α-
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Glucosidase will be used to monitor GPE’s inhibitory effects and the inhibitory 

kinetic assays will be conducted to determine the inhibition mode of GPE against a- 

glucosidase activity.  For the in vivo assay, the STZ-induced diabetes mice will be 

orally administrated starches with or without GPE supplementation at 400 mg/kg 

body weight. Postprandial blood glucose will be monitored to determine the effects 

of GPE on suppression of postprandial hyperglycemia.  

Specific Objective 2: To understand the mode of molecular action of GPE in 

control of diabetes.  

It is well known that diabetes occurrence is due to the disturbance of glucose 

metabolism and homeostasis. Peptide hormones play important roles in regulating 

glucose metabolism and homeostasis. However, how the GPE will affect these 

regulatory systems is currently unknown. This objective will examine the effects of 

GPE in regulating these key processes using mouse model. Our hypothesis is that the 

prolonged oral administration of GPE will regulate glucose homeostasis in small 

intestine and pancreas in mouse.  Mouse glycated hemoglobin (HbA1C) and 

molecular markers involved in peptide hormones (Ins, Lep, Adipo, Gip, Glp-1, Gcg, 

PAI-1 and Resis) will be analyzed at the transcriptional level to decode the effects of 

GPE in regulating these pathways. In addition, a shorter list of these markers (insulin, 

leptin, and adiponectin, ghrelin, GIP, GLP-1, glucagon, PAI-1, Resis) will also be 

tested in plasma at the protein level using ELISA assays. The results will be compared 

to elucidate the GPE’s regulation mechanisms at both transcriptional and translational 

levels. 

Specific Objective 3: To understand the mode of molecular action of GPE in 
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control of obesity. Consumption of a high fat diet can lead to obesity and insulin 

resistance (Qatanani and Lazar, 2007). Our current study approved that oral 

administration of GPE can alleviate obesity resulting from prolonged consumption of 

western-style diet. However, the mechanism(s) of this effect remain(s) unknown. In 

this objective, we will first focus on: 1) using adipocyte precursor cell model 3T3-L1, 

we will also examine the role of GPE in regulating genes expression involved in 

adipocyte differentiation, a major process to induce full maturation into adipocytes 

and generate fat mass; 2) the possible roles of GPE in regulating inflammation using 

a mouse model. The genes examined will include Adipoq, Cebpa, Pparg, Ppargc1a, 

(PGC-1a), Cebpα, Cebpβ, aP2, FAS, SREBP-1c, LPL, PGC-1α and PGC-1β; and 3) 

to examine the long term effects of GPE administration in reducing obesity through 

regulation of central neuropeptides.  

Energy homeostasis is controlled by a complex neuroendocrine system 

consisting of peripheral signals, such as leptin and CCK, and central signals, in 

particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, 

and CRH) and orexigenic (NPY, AgRP, and MCH) actions are involved in this 

complex controlling system (Hillebrand et al., 2002). NPY/AgRP neurons exist as 

neuronal targets of leptin in the ARC where they are concentrated in the ventromedial 

ARC and regulate food intake. This objective will focus on investigating the 

expression of these hypothalamic neuropeptide to test if GPE can alter their 

expression and hence regulate energy homeostasis.  

To test the hypothesis that GPE can regulate energy balancing, reduce body 

weight and acute blood glucose levels through controlling the central neuron system, 
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a 12-week mouse feeding experiment will be conducted to investigate GPE’s long 

term effect(s) on food intake, blood glucose control, as well as lipid accumulation.  

Specific Objective 4: By taking advantage of high throughput RNA 

sequencing technology, we will elucidate gene expression profiles at a genomic level 

caused by GPE treatment under high fat diet condition. Our specific focus will be on 

glucose and lipid metabolisms and their related signal transduction pathways.  

 

 1.10 Significant of research 
Grape products have been known to be abundant in various bioactive 

compounds. Known beneficial effects of bioactive compounds from grape products 

include: functional foods (dietary fiber + polyphenols), food processing 

(biosurfactants), cosmetics (grapeseed oil + antioxidants), pharmaceutical/biomedical 

(pullulan) and supplements (grape pomace powder) (Dwywe et al., 2014). The annual 

production of grape pomace (along with its multitude of applications) create an 

opportunity to discover an unexploited market with great commercial potential in the 

prevention of chronic diseases such as diabetes and obesity. 
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Chapter 2: Grape Pomace Aqueous Extract Inhibits α-
Glucosidase in vitro and Suppresses Postprandial 
Hyperglycemia in vivo 
 
 
2.1 Abstract 
 

Diabetes is a group of metabolic diseases, the serious long-term complications 

of which are a major cause of hospitalization and death. Postprandial hyperglycemia 

is a direct and independent risk factor for type 2 diabetes. Intestinal α-glucosidases 

are key enzymes in controlling carbohydrate digestion and glucose absorption. 

Recently, there has been growing interests in using food-based α-glucosidase 

inhibitors as alternative treatment for improving postprandial hyperglycemia and 

controlling blood glucose.   

A specific grape pomace (Cabernet Franc), the by-product from wine and 

juice manufacturing was prepared in water.  An in vitro yeast α-glucosidase inhibition 

assay, as well as the measurement of the kinetics of GPE-affected yeast α-

glucosidases inhibition were conducted. Total carbohydrates were evaluated by 

HPLC. Mice were treated with streptozocin to induce diabetes. Oral GPE treatment 

and starch challenge were performed on STZ-induced diabetic mice to determine 

whether the administration of GPE can moderate postprandial hyperglycemia through 

the inhibition of intestinal a-glucosidases. 

Grape pomace water extract (GPE) caused a dose-dependent reduction of 

yeast α-glucosidase activity with an IC50 value of 508.4μg equivalents/mL. Yeast α-

glucosidase activity was reduced by 87.1% when treated with 1mg equivalent/mL 

GPE for 30 min. The enzyme kinetic study revealed that the GPE was a competitive 
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inhibitor of α-glucosidase.  When consumed, GPE significantly decreased blood 

glucose by 43.6±7.5% in diabetic mice.  

The results in this current study strongly support the potential use of GPE as 

an alternative to commercial α-glucosidase inhibitors used in diabetes prevention and 

treatment. 

 

 2.2 Introduction 
Diabetes mellitus is a group of metabolic syndromes with a hallmark 

characteristic of hyperglycemia - increased blood glucose. The prevalence of diabetes 

is increasing dramatically worldwide, boosted by the increased consumption of refined 

sugar and processed foods with high calories, as well as by decreased physical activity 

(Stephens et al., 2006). Diabetes affects young as well as aging people. Based on the 

National Diabetes Statistics Report, 2014, approximately 29.1 million adults and 

children in the U.S. suffer from diabetes. This number is expected to rise to over 40 

million (Stephens et al., 2006; National Diabetes Statistics Report, 2014). The serious 

long-term complications from diabetes are major causes of hospitalization and death. 

The economic cost of treating diabetes and its related complications reached $245 

billion in 2012.  Although long-term complications of diabetes develop gradually, 

untreated diabetes can cause many complications and disabilities, even death. Over time, 

hyperglycemia can damage the nerves and small blood vessels of the eyes, kidneys, and 

heart. Furthermore, improperly treated diabetes can cause serious long-term 

complications, including diabetic retinopathy, nerve damage, stroke, cardiovascular 

disease, blindness, kidney failure, and macro and micro-vascular damage, nephropathy, 

impaired immune functions, and lower limb amputation (Biessels et al., 2004; Martinez-
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Tellez et al., 2005). 

 Diabetes is sometimes treatable and preventable. Conventional anti-diabetic 

drugs play a key role in diabetes treatment. However, side effects and other 

disadvantages of conventional anti-diabetic drugs are very common. These include 

unwanted weight gain (Prabhakar et al., 2011), stomach pain and bloating, liver 

problems, skin reactions, and swelling due to fluid build-up. Other symptoms such as 

malaise, fatigue, nausea, and weakness have also been reported. Medicinal plants, as 

well as agricultural by-products, have shown promising effects in the management of 

diabetes. Many have been traditionally used since ancient times to treat a great variety 

of human diseases. Several medicinal plants have been investigated for their beneficial 

effects in the treatment of different types of diabetes (Prabhakar et al., 2011). Bitter 

melon (Mormodicacharantia) has long been used in China and India as a vegetable and 

is reported to help control blood glucose levels. Hypoglycemic effects of bitter melon 

have been demonstrated in cell culture, animal models and human clinical studies. It’s 

powerful insulin lowering properties are currently being considered as an effective 

treatment for diabetes (McCarty, 2004; Krawinkel and Keding 2006). Panax Ginseng 

was used as a holly panacea in oriental cultures for thousands of years, especially for its 

healthy glucose level maintenance property. Chinese or Korean ginseng has the highest 

therapeutic potency among all ginseng varieties. Several studies have found that Korean 

red ginseng significantly stimulates insulin release from isolated rat pancreatic islets, 

decreases serum levels of glucose, and glycosylates hemoglobin A1c (HbA1c) in 

streptozotocin (STZ)-induced diabetic rats in a dosage-dependent manner (Kim 2008; 

Anoja et al., 2002; Hui et al., 2009). 
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    Diabetes is, in part, related to the amount of carbohydrate in the diet. 

Complex carbohydrates are digested primarily in the lumen of the small intestine by 

α-amylase to yield linear oligosaccharides and branched isomaltose. These are then 

further hydrolyzed by α-glucosidase to release glucose and fructose which will be 

absorbed into the bloodstream (Casirola et al., 2006). Alpha-glucosidase is a key 

intestinal enzyme presented in the brush-border of the small intestine mucosa. It 

controls the rate of carbohydrate absorption and adjusts postprandial glycaemia. 

Alpha-glucosidase has been used widely as a target by several commercial 

antidiabetic medicines (for example acarbose, miglitol, and voglibose) in the 

regulation of blood glucose and treatment of type 2 diabetes (Yamazaki et al., 2007; 

Van et al., 2006; Casirola et al., 2006; Van et al., 2005; Nakamura et al., 2005; 

Fujisawa et al., 2005, Yamamoto and Otsuki 2006; Chiasson et al., 2004).  

Studies of the anti-hyperglycemic effects of α-glucosidase inhibitors have 

demonstrated its efficacy in reducing postprandial blood glucose, improving glycated 

haemoglobin (HbA1c), and attenuating pancreatic islet damage (Negishi et al., 1996; 

Yamazaki et al., 2007). Alpha-glucosidase inhibitors diminish postprandial 

hyperinsulinemia and improve insulin sensitivity through increasing insulin receptor 

sensitivity (Yamazaki et al., 2007). α-glucosidase inhibitors stimulate insulin 

secretion by prolonging the effect of the key incretin hormone glucagon-like peptide-

1 (GLP-1) (Yusuke et al., 2009), and by preventing the long-term complications of  

type 2 diabetes (Lee et al., 1982). The alpha-glucosidase inhibitor acarbose can be 

used as a monotherapy. It also works well in combination therapy with other 

commercially available anti-diabetic drugs. Synergistic effects have been reported 
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with the combination of acarbose and DPP-4 inhibitors (inhibitors of dipeptidyl 

peptidase 4 reduce glucagon and blood glucose levels) (Aoki et al., 2012; Narita et 

al., 2012; Qualmann et al., 1995). Even though glucose lowering drugs were 

effectively used to manage blood glucose, it is very challenging to find a medicine 

that has no side effects.  

    Cultivation of grapes began 6,000 to 8,000 years ago in the Near East. It is 

one of the oldest fruit crops that has been domesticated and adopted by all cultures. 

Several phenolic compounds that can improve human health are found in grapes. The 

well-known “French Paradox” refers to the epidemiological observation of the high 

intake of dietary cholesterol and saturated fat and the low incidence of coronary heart 

disease (CHD) and related deaths present in the Mediterranean region (Renaud et al., 

1992). The routine consumption of red wine is considered to be the factor lowering 

the development of coronary heart disease. This attracted more attention from 

scientists seeking to define the chemical composition of grapes. A large number of 

different natural grape products are widely accepted in the nutritional products 

market. The beneficial effects of using flavonoids and poly-phenolic compounds from 

grape and grape-derived products have been well studied (Quiñones et al., 2013, Kim 

et al., 2014). Different phenolic compounds are present in grape skin, seeds, and fruit 

stems, as well as juice and wine products. The phenolic compounds mainly include 

anthocyanins, flavanols, resveratrol, and phenolic acids (Xia et al., 2010; Dopico-

Garcia et al., 2008; Novaka et al., 2008; Spacil et al., 2008; Montaguta et al., 2010; 

Al-Awwadi et al., 2004). Anthocyanins are pigments that mainly exist in grape skins. 

Red grape has more total polyphenols compared to white grape due to the lack of 
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anthocyanins in white grape varieties. On the other hand, flavan-3-ols are more 

abundant in white varieties. 

    During 2012, more than 7.3 million tons of grapes were grown 

commercially in the U.S. (http://www.agmrc.org/commodities products/fruits/grapes-

profile/), and over 60% of these were used to make wine or juice. Grape pomace is 

the main byproduct of wine and juice production and is primarily composed of skin, 

seed, pericarp, and fruit-stem; it comprises approximately 25% of grape weight during 

grape processing.  Grape pomace is currently used as either fodder or fertilizer, or it 

may be discarded at a cost. The complex phytochemicals, especially polyphenols, in 

the seed and skin of grape pomace have promoted the study of the potential of turning 

this waste by-product into nutraceuticals and value-added products. Grape pomace 

contains mixtures of flavonoid structures, and different degrees of polymerization will 

occur during its secondary metabolism. This makes it difficult to establish which of 

the molecules are active. Furthermore, it is likely that the beneficial effects on human 

health may not be due to one molecule but a combination of effects of different 

phytochemicals (Pedrielli et al., 2002; Montagut et al., 2010). 

    Grape pomace may have great potential health benefits in preventing 

diabetes. However, the molecular mechanisms of such preventative properties are 

largely unknown. In our previous study (Parry et al., 2011), grape pomace from 

variety Tinta Cao was investigated. High antioxidant activities, inhibition of the 

proliferation of HT-29 and Caco-2 colon cancer cells through the triggering of 

apoptosis pathway, and phytochemical compositions have been reported. In our 

current study, the anti-diabetic properties of grape pomaces were investigated. The in 
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vitro action of GPE in reducing postprandial hyperglycemia through inhibition of 

alpha-glucosidase was examined. In vivo studies of both diabetic mice and healthy 

human subjects were conducted. GPE’s inhibitory effect on postprandial 

hyperglycemia and the effects of GPE on acute insulin secretion and effects on lipid 

metabolism in human pilot trials were observed. 

 

2.3 Materials and methods 
 

Cabernet Franc grape pomace samples (fermented for 2 weeks) were obtained 

from Chrysalis Vineyards, Virginia in 2011.  Dulbecco's Modified Eagle's Medium 

(DMEM), antibiotic/ antimycotic, fetal bovine serum (FBS), and 0.25% trypsin with 

0.9 mM EDTA were purchased from Invitrogen (Carlsbad, CA). IEC-6 cell lines were 

purchased from American Type Culture Collection (Rockville, MD). Acarbose and 

p-Nitrophenyl- β- D-glucopyranoside (pNPG) were purchased from Sigma-Aldrich 

Co. LLC (St. Louis, MO). 

 

Sample preparation and extractions 

Grape pomace samples were air dried under low pressure. Dried pomace was 

milled to 40 mesh size using a Scienceware Bel Art Micromill, (Pequannock, NJ). 

The milled grape pomace was then extracted with water (1:10 m/v) by shaking for 2 

hours at ambient temperature. Following extraction, the mixture was centrifuged at 

4,000 rpm at 20oC for 30min. Supernatants were collected and freeze dried in the 

bench top freeze drier (AdVantage 2.0 BenchTop Freeze Dryer / Lyophilizer, SP 
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Scientific) to obtain GPE. 

 

In vitro yeast α-glucosidase inhibition assay  

Yeast α-glucosidase (Sigma Aldrich Chemical Co, USA) was dissolved in 

phosphate buffer (pH 6.8) at a concentration of (1 U/mL). p-Nitrophenyl- β- D-

glucopyranoside (pNPG) (Sigma Aldrich Chemical Co., U.S.A.) was used as the 

substrate for the yeast α-glucosidase activity assay. An inhibition assay was conducted 

according to the protocol described by Hogan et al, (2010) with a minor modification. 

In brief, the mixture of 80μl sample solution with 20μl enzyme solution (1 U/mL) was 

first incubated for 3 minutes at 37oC. After incubation, 100μl of 4 mM p-nitrophenyl-

α-d-glucopyranoside (pNPG) solution in phosphate buffer (pH 6.8) was added to the 

reaction and then incubated for additional 30 minutes at 37oC.  The α-glucosidase 

activity was quantified by measuring the p-nitrophenol release from pNPG at 405 nm 

wave-length. The phosphate buffer (pH 6.8) was used as control.  All measurements 

were taken in triplicate. The inhibition of Alpha-glucosidase activity was expressed 

as percentage of the control using the following formula: 

% Inhibition= [Abs (Control)-Abs (Sample)]/Abs (Control) X100 

                            

Kinetics of GPE-affected yeast α-glucosidases inhibition 

To further determine the time and dose effects of GPE on yeast a-glucosidase 

inhibition, a series of enzymatic reactions with different dosages of GPE (from 0 to 

1000 μg/ml) were conducted in a 96-well plate. Reactions were dynamically 

measured at 405 nm for 75 min with a 5-minute interval. The combinations of 
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different concentrations of substrate pNPG (0.4, 0.5, 1, 2 mM) and different 

concentrations of the GPE (0, 100, 200, 300, 400, and 500 μg/ml) were tested. The 

double reciprocal Lineweaver–Burke plots were prepared to illustrate the inhibition 

pattern. The IC50 value is defined as the concentration of an inhibitor required to 

inhibit 50% of the α-glucosidase activity, which is a measure of the inhibitor’s relative 

effectiveness.  Acarbose was used as a positive control. 

 

Determination of total carbohydrate  

Total carbohydrate was determined by the Phenol-Sulfuric Acid Method 

described by Nielson (Nielson et al., 2010). Trehalose was used for standardization. 

Individual sugar content was measured using HPLC according to Bogdanov 

(Bogdanov, et al., 1997) on a high-pressure SHIMADZU liquid chromatograph 

equipped with LC-10ATVP liquid chromatograph pumps, DGU-14A degasser, CTO-

10AVP column thermostat, RID-10A refractometric detector, POL-LAB CHROMA 

2001 software and SUPELCOSIL LC-NH2), 25 cm x 4.6 mm, 5 μm chromatograph 

column. 20 μl samples were injected onto the column and separation was conducted 

at 30°C with the mobile phase made up of acetonitrile: water (8:2) at a flow rate of 

1.3 ml/min. The identification of sugars in GPE was conducted by comparing 

retention times of individual sugars in the reference vs. tested solution. The 

quantitative assays were made of the following carbohydrates: fructose, glucose, 

sucrose, turanose, maltose, isomaltose, and trehalose.  

STZ induction of diabetic mice 

Six-week old male C57BL/6NCr mice, (National Cancer Institute, Frederick, 
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MD, USA) were housed in clean cages at 12-hour light dark cycle at 20°C to 22°C 

with 2 mice/cage with food access ad libitum. The animals were used after a 2-week 

acclimatization period before starting the experiment. The mice were maintained on 

rodent feed (Harlan Tekland Global Diets 2018 rodent diet containing 60% of calories 

from carbohydrate, 23% of calories from protein, and 17% of calories from fat; 

digestible energy of 3.4 Kcal/g, Madison WI, USA) with continuous access to tap 

water for the duration of the experiment. Animal husbandry, care, and experimental 

procedures were approved by the Institutional Animal Care and Use Committee of 

the University of Georgia. Streptozotocin was dissolved in ice-cold 100mM sodium 

citrate buffer (pH 4.5) and injected intraperitoneally immediately at a dose of 

150mg/kg body weight. Fasting blood glucose (FBG) was monitored on day 7 post 

injection. Values higher than 126 mg/dL were considered to be diabetic as previously 

described by Hogan (Hagon et al., 2010) and assigned to one of 3 groups (n = 10).  

Oral GPE treatment and starch challenge  

Diabetic mice were fasted for 14-hours in freshly cleaned cages with free 

access to water before the experiment. Basic Corn Starch, (Cargill incorporated, 

Cargill Gel # 03420) was suspended in 0.1 M sodium citrate buffer (pH 4.5) with 25 

mg/ml and vortexed vigorously. GPE was dissolved in starch-sodium citrate solution 

(250 mg/ml). Mice in the control group were given 0.2 mL of starch sodium citrate 

solution by oral gavage while the GPE treatment group mice were administered with 

the mixture of GPE and starch suspension 0.2 ml. Acarbose (Sigma Aldrich Chemical 

Co, USA) was suspended in the same starch solution and fed by oral gavage at 75 

mg/kg BW in the positive control group. 
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Samples of approximately 5 μL of whole blood were collected from the tail 

vein of each mouse at 7 time points 0, 15, 30, 45, 60, 90, and 120 minutes after 

treatment. Blood glucose was measured with a blood glucometer and accompanying 

test strips (ACCU-CHEK Meter®, Roche Diagnostics, Kalamazoo, MI). The area 

under the glucose tolerance curve (AUC0-120 min) was calculated using SPSS 

software. The total anti-hyperglycemic response (AUC0-120 min) was expressed as 

percentage of inhibition compared with the control group. 

Statistical Analysis 

Tests were conducted in triplicate with data reported as mean ± standard 

deviation. Analysis of variance (ANOVA) and Tukey’s post hoc analyses were used 

to determine differences among group means. Pearson Correlation Coefficients were 

used to determine correlations among means. Statistical significance was defined as 

P value less than 0.05. 

 

 2.5 Results 
 

In vitro yeast α-Glucosidase inhibition by GPE 

To examine whether GPE can inhibit α-glucosidase activity, enzymatic 

inhibitory assays were performed. The inhibitory effects of GPE on yeast α-

glucosidase activity at different concentrations were observed at different reaction 

times (Fig. 2-1). A dose-dependent pattern of the α-glucosidase inhibition was 

found (Fig. 2-1a). Inhibitory action of GPE against yeast α-glucosidase started to 

show when the enzymatic reaction was treated with 200μg/ml GPE, and at 



54  

400μg/ml GPE level, 37.9±8.1% of the α-glucosidase activity was inhibited.  An 

IC50 value of 508.4μg/mL was calculated. Yeast α-glucosidase activity was 

reduced by 87.1±1.0% after 30 min reaction at 1mg mL. Furthermore, GPE 

produced a dose-dependent pattern of yeast α- glucosidase inhibition (Fig. 2-1a). 

To determine the GPE’s mode action on α-glucosidase, a Lineweaver-Burk plot 

was performed. A strong competitive inhibition was observed indicating that GPE 

inhibits α-glucosidase through binding to the active site on the enzyme and 

preventing further substrate binding.  

    Enzymatic inhibition of α-Glucosidase was used for screening the 

potential capacity of GPE on controlling blood glucose through down regulation of 

carbohydrate digestion. To determine the GPE’s mode action towards α-

glucosidase, a Lineweaver-Burk double reciprocal plot was performed (Fig. 2-1c). 

The maximum velocity (Vmax) of the reaction was unchanged, and this was 

confirmed by the intersecting point for different doses of GPE occurring on the 1/v 

axis (1/vmax). The enzyme kinetic study revealed that GPE contains active 

compounds that bind to the catalytic site of the enzyme α-glucosidase and prevent 

further binding of the substrate to the enzyme.  

Determination of total carbohydrates  

The phenol-sulfuric acid method was used to determine total carbohydrate 

in GPE. This colorimetric method detected virtually all classes of carbohydrates in 

a sample, including mono-, di-, oligo-, and polysaccharides.  48.3± 0.5 mg/g of total 

carbohydrate were detected. Individual sugar content assayed by HPLC identified 

17.5 mg/g glucose, 21.0 mg/g fructose, 1.5 mg/g sucrose, 8.0 mg/g trehalose, and 
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0.17 mg/g rafinose. These results indicated that GPE contained very little 

carbohydrate and would not be expected to affect postprandial blood glucose 

significantly. 

Effects of the grape pomace treatment on postprandial blood glucose by oral 

administration of GPE in STZ-treated mice. 

Changes in postprandial blood glucose were measured after carbohydrate 

load to the fasted diabetic mice with or without co-administration of GPE. The 

commercial anti-diabetic drug acarbose was used as positive control. Blood glucose 

increased by 49.6±7.1 mg/dl after 30 min administration of corn starch to the 

control group. Only a 29.3±6.2 mg/dl blood glucose increase was observed in corn 

starch with 250 mg/kg bw GPE group. The highest inhibitory effect was observed 

at the 60-min time point with 53.1% of inhibition by GPE compared to the control 

group (Fig. 2-2a). A similar result was observed in the group of mice gavaged with 

corn starch and acarbose (75 mg/kg bw). GPE also exerted a significant decrease 

(p<0.05) of the increment in blood glucose; AUC0-120 min (Area Under the Curve 

for 120 min) (Fig. 2-2b). When corn starch was loaded, blood glucose AUC0-120 

min in the GPE and acarbose groups was reduced 47.7% and 43.4% respectively.  

No significant difference between GPE and acarbose tested groups was observed.  

 

 2.6 Discussion 
 

In the present study we examined the properties of GPE on α-glucosidase 

activity inhibition. Yeast α-glucosidase was used as a model for investigating the 
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potential capacities of GPE on α-glucosidase activity in vitro. GPE also exhibited 

inhibitory effects on mammalian α-glucosidase activity and suppressed postprandial 

hyperglycemia in STZ-induced diabetic mice in vivo. Similar results were reported 

by Hogan (Hogan et al. 2010). This prompted us to investigate whether grape pomace 

can be used to prevent diabetes through α-glucosidase inhibition in humans by 

lowering plasma glucose, prolonging glucose absorption, and suppressing peak 

levels of postprandial blood glucose for the future study.  

Complex carbohydrates cannot be absorbed in the small intestinal lumen and 

transported into blood circulation until the polysaccharides are digested and broken 

down into monosaccharides. Small intestinal alpha-glucosidase plays a key role in 

carbohydrate metabolism. Alpha-glucosidase inhibition has been used widely as a 

good model for investigating the effects of antidiabetic compunds. Alpha-glucosidase 

inhibition can delay the carbohydrate digestion and glucose absorption, eventually 

lowering postprandial hyperglycemia.  Pre-diabetes occurs when a patient’s blood 

glucose is higher than normal but not yet high enough to be diagnosed as diabetes 

(between 100 and 125 mg/dL). Pre-diabetes leads to a higher risk for developing type 

2 diabetes. 15% to 30% of people with pre-diabetes will develop type 2 diabetes within 

five years without lifestyle changes to improve their health. Recently, there has been 

a growing interest in food based α-glucosidase inhibitors, which provide a potential 

therapeutic approach in the prevention of diabetes among healthy people and in the 

management of pre-diabetic patients and type 2 diabetes. Our results suggest that 

grape pomace, a food based byproduct, could be an excellent candidate as an anti-

diabetic treatment. Few publications report the bioactive compounds in different grape 
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varieties, and the phenolic contents are the major contributors for the natural α-

glucosidase inhibitors (Horgan et al., 2010).  In our previous study with Tinta Cao 

pomace extract (Parry et al., 2011), high antioxidant activities were determined using 

an oxygen radical absorption capacity (ORAC) assay along with DPPH• and ABTS•+ 

scavenging capacities. Phytochemical compositions including total phenolic content 

(TPC); individual phenolic acids were also studied, and the results demonstrated that 

grape pomace extract has the potential to be a bioactive food ingredient. Similar results 

were reported with grape products (Gonzalez-Paramas, et al., 2004; Zhang et al., 

2011). Catechin, quercetin and ellagic acid were reported to exhibit very strong anti-

diabetic activities in muscadine against α-glucosidase (Yu et al., 2012).  

  The goal of controlling diabetes is to manage blood glucose so that it stays 

within healthy levels. Dietary change is recommended to control type 2 diabetes in 

patients with or without insulin intervention.  Numerous studies using cultured cell 

lines and rodents have been reported for the potential diabetic-prevention effects of 

grapes, grape skin, grape seeds, and grape polyphenol extracts. However, clinical 

trials addressing the effect of grape pomace on regulating blood glucose are limited. 

The effects of grape pomace water extract on improvement of postprandial 

hyperglycemia in vivo with human subjects will be tested. Alpha-glucosidase 

inhibitors such as Acarbose and Miglitol were widely used for managing diabetes; 

however, there were strong side effects associated with taking these drugs (Fujisawa 

et al., 2005). Alternative to these synthetic conventional diabetes medicines, natural 

products have shown promising effects on diabetes management. Thousands of herb 

formulas and dietary supplements are available on the market for diabetic patients 
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(Prabhakar et al., 2011; Casirola et al., 2006). Dietary phytochemicals work through 

various metabolic pathways to reduce postprandial hyperglycemia. Plant products 

with hypoglycemic activity have been the subject of numerous studies. These natural 

medicines regulate blood sugar through a variety of mechanisms including 

carbohydrate metabolism alternation, ß-cells apoptosis prevention (which is one of 

the key points in triggering diabetes), insulin releasing activity growth, and glucose 

uptake improvement and utilization. Understanding the long term effects of grape 

pomace on regulating carbohydrate metabolism and the molecular mechanism(s) 

involved is an important aspect and should be the focus of future studies.  

 

 2.6 Conclusion 
Grape pomace suppressed postprandial hyperglycemia through inhibitory 

effects on α-glucosidase activity. GPE also reduced acute blood glucose in vivo in 

STZ induced-diabetic mice. This study provides basic knowledge and information 

on the potential use of GPE in functional foods for preventing diabetes and possibly 

obesity as well. The long term effects of GPE on control of blood glucose and lipid 

metabolism warrants further investigation.      
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(C) 

Figure 2- 1 Kinetics studies of Cabernet Franc pomace extract on yeast α-glucosidase 
inhibition at different concentrations.a. Cabernet Franc pomace extract exerted a dose-
dependent pattern on yeast α-glucosidase inhibition at 37oC for 30 min. b. Time course 
responses during 66 minutes of different concentration of the pomace extracts on the 
enzyme activity; GPE exhibits a consentration-dependent manner on yeast α-
glucosidase inhibition. c. Lineweaver-Burk plots of kinetic analysis of yeast α-
glucosidase inhibition at different concentration of substrate pNPG (0.4, 0.5, 1, 2 mM)) 
with different concentrations (100-400 μg/ml) of Cabernet Franc pomace extract. 
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Figure 2- 2 Changes in postprandial blood glucose level (incremental AUC0-120 min) 
affected by administration of GPE in STZ-induced diabetic mice. a. Modified 2h OGTT 
(Oral Glucose Tolerant Test) shows the glycemic response curve in diabetic mice after 
corn starch challenge. b. Increment of the blood glucose AUC0-120 min (Area Under the 
Curve for 120 min) after administration of GPE. Results are expressed as Mean± SEM. 
*: p < 0.05 (n = 10)  
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Chapter 3: Grape Pomace Aqueous Extract (GPE) Prevents 
Western High Fat Diet-induced Diabetes and Attenuates 
Systemic Inflammation 
 

3.1 Abstract  
 

Diabetes mellitus is a group of metabolic syndromes with a hallmark of hyperglycemia. 

Serious long-term complications from diabetes are a major cause of hospitalization and 

death. We recently discovered that grape pomace, the by-product from the waste of the 

wine and juice industries, has great potential to prevent diabetes. In this study, we 

examined the potential use of grape pomace in controlling high blood glucose in 

response to Cabernet Franc Grape pomace aqueous extract (GPE). Both streptozotocin 

(STZ)-induced diabetic mice and non-STZ treated mice were fed with high fat diet that 

was supplemented with 2.4 g/kg GPE for 12 weeks. GPE had no significant effect on 

STZ-induced diabetic mice. However, GPE significantly reduced blood glucose by 

16.1% (p<0.05%) in non-STZ treated HFD-fed mice following a 10-week feeding 

period when compared with high fat diet controls. GPE reduction of hyperglycemia 

also promoted a significant reduction of GHbA1c accumulation. Circulating peptide 

hormones related to glucose homeostasis, including GLP-1, glucagon, DPP-4 and 

insulin, were drastically altered by GPE. Moreover, GPE attenuated the expressions of 

insulin, glucagon, and several gut hormones at the mRNA level. In addition, GPE 

significantly down regulated 5 biomarker genes for systematic inflammation. Taken 

together, our results highlight a role of GPE as a potential alternative approach to 

control diabetes epidemic. 
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3.2. Introduction 
Grape pomace is the main by-product of wine and juice production. It is 

primarily composed of skin, seed, pericarp, and fruit-stem; and it comprises 

approximately 25% of grape weight during grape processing.  The complex 

phytochemicals (especially polyphenols) in grape pomace have attracted many 

scientists to study the potential of turning the by-product waste to a nutraceutical and 

value added product. Numerous phenolic compounds, especially flavonoids, are widely 

distributed in grapes. Many of these have been shown to have beneficial health effects. 

The most common phenolic compounds found in grapes with bioactivities are 

anthocyanins, flavonols, flavanols, dihydroflavonols and proanthocyanidins (Georgiev 

et al., 2014; Chacona et al., 2009; Bagchi et al., 2000; Cantos et al., 2002). Grape 

derived products are commercially available as over-the-counter medicines from many 

pharmacies and grocery stores. Animal and preclinical studies suggest that grape seed 

extract has preventive effects on certain metabolic syndromes and protects the 

cardiovascular system (Georgiev et al., 2014). Furthermore, resveratrol is a major 

polyphenol that is thought to be a potential contributor of several beneficial properties 

of red wine (Tomé-Carneiro et al., 2012; Bertelli et al., 1998). Resveratrol decreases 

insulin resistance, prevents heart failure, and prevents hypertension (Petrovski et al., 

2011; Bertelli et al., 1998). It decreases the risk of cardiovascular disease (Dell et al., 

2005), and reduces platelet adhesion, aggregation and generation of superoxide anion 

(Olaset al., 2008). 

Diabetes is a group of metabolic syndromes with a hallmark of hyperglycemia. 

It is caused by an interruption in carbohydrate, protein and lipid metabolism. Lack of 

insulin secretion and increase of insulin resistance (Stumvoll et al., 2005). The network 
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of insulin, glucagon and multiple gastrointestinal hormones play key roles in the 

regulation of blood glucose homeostasis (Aronoff et al., 2004). Glucagon-like peptides 

(GLP-1 and GLP-2) and glucose-dependent insulinotropic peptide (GIP) are the major 

incretins that stimulate the secretion of insulin (Zunz and La Barre, 1929). GLPs are 

released from the lower gastrointestinal tract following food intake and play dual roles 

in the regulation of blood glucose concentrations through their concurrent insulin tropic 

and glucagonostatic actions (glucose-lowering effect) (Näslund et al., 1999; Ørskov, 

1999). GIP is recognized as a physiologic regulator of food intake contributing to the 

control of obesity (Arora, 2006). Energy balance and glucose homeostasis have become 

central targets for the design of pharmacological agents needed to prevent and treat 

diabetes. 

Abundant evidence suggest that  grape flavonoids play a key role in preventing 

the development of diabetes by acting as multi-target modulators that reduce oxidative 

stress, lower the degree of systematic inflammation (Tsuda et al., 2012; Chuang et al., 

2011), and improve insulin resistance and anti-hyperglycemic effects. In obese mice, 

grape powder has been shown to acutely improve glucose tolerance and chronically 

reduce inflammation (Chuang et al., 2012). In streptozotocin (STZ)-induced diabetic 

rat models (Al-Awwadi et al., 2004; Al-Awwadi and Bornet, 2004), polyphenols in the 

grape could reduce body weight, food intake and hyperglycemia, and increase insulin 

sensitivity. Grape pomace byproducts from the Norton grape have been reported to 

contain significant amount of antioxidants (Hogan et al., 2010), and consumption of 

Norton grape pomace for 3 months exerted an anti-inflammatory effect in a diet 

induced mouse obesity model (Hogan et al., 2011). 
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Diabetes can be manageable through a combination of diet, exercise and 

appropriate medications. Many plant-based products show promising effects on the 

management and prevention of diabetes. Producing healthy foods or healthy agro-

produced supplements could be a first line of defense against diabetes. However, the 

molecular mechanisms of such preventative properties are largely unknown. In our 

previous study (Parry et al., 2011), the grape pomace from the variety Tinta Cao was 

investigated. High antioxidant activities, and inhibition of the proliferation of HT-29 

and Caco-2 colon cancer cells through triggering apoptosis were demonstrated. The in 

vitro action of grape pomace aqueous extract (GPE) in reducing postprandial 

hyperglycemia through inhibition of alpha-glucosidase was also demonstrated. In 

addition, in vivo studies with diabetic mice and healthy human subjects revealed GPE’s 

effect on postprandial hyperglycemia, acute insulin secretion and lipid metabolism (Li 

et al., Submitted). However, neither the long-term effects of GPE on diabetes nor the 

molecular mechanisms involved have yet been fully elucidated. Such information is 

critical for its practical use in the prevention and management of diabetes. In our current 

study, the anti-diabetic properties of grape pomaces were investigated.  

 

3.3. Materials and Methods  
 

Sample Preparation and Extractions  

Cabernet Franc grape pomace samples (fermented for 2 weeks) were obtained 

from Chrysalis Vineyards, Virginia in 2011. Grape pomace was air dried under low 

pressure and milled to 40 mesh size using a Scienceware Bel Art Micromill 

(Pequannock, NJ). The milled grape pomace was then extracted with water (1:10 m/v) 
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with shaking for 2 hours at ambient temperature. Following extraction, the mixture was 

centrifuged at 4,000 rpm at 20oC for 30 min. Supernatants were collected and freeze 

dried in the bench top freeze drier (AdVantage 2.0 BenchTop Freeze Dryer / 

Lyophilizer, SP Scientific) to obtain GPE. 

 

STZ and High Fat Diet (HFD)-induction of Hyperglycemia in Mice 

Approximately sixteen-week old male C57BL/6NCr mice (National Cancer 

Institute, Frederick, MD, USA) were housed in clean cages at 12-hour light dark cycle 

at 20°C to 22°C with 5 mice/cage. Animal husbandry, care, and experimental 

procedures were approved by the Institutional Animal Care and Use Committee at 

University of Georgia. Streptozotocin was dissolved in ice-cold 100 mM sodium citrate 

buffer (pH 4.5) and injected intraperitoneally at a dose of 150 mg/kg body weight. A 

total of 24 STZ-induced diabetic mice with fasting blood glucose higher than 120 

mg/dL were used. 12 mice without STZ induction served as STZ treatment control. All 

36 mice were maintained on rodent chow (8728C Teklad Certified Rodent Diet, Harlan 

Laboratories, Inc, Frederick, MD) until the experiment started. Two groups of STZ-

induced mice (n=12 in each group) and non-STZ mice (n=6 in each group) were fed 

with either 1) high fat diet (D04011601), or 2) high fat diet mixed with GPE at 2.4 g/kg 

diet (D12121001). The composition of the animal diet is summarized in Table 3-1. 

Mice were fed with their respective diets for 12 weeks with water available ad libitum. 

Approximately 5 μL of whole blood was collected from the tail vein of each mouse 

once a week. Blood glucose was measured with a blood glucometer and accompanying 

test strips (ACCU-CHEK Meter®, Roche Diagnostics, Kalamazoo, MI). Body weight 
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was measured weekly. 

 

Animals and Tissue Collection 

At the end of the feeding study, diet was removed 12 h prior to sacrifice. Mice 

were anesthetized with CO2, and blood was collected by cardiac puncture into glass 

tubes for serum isolation. Seperate plastic vials that had been previously rinsed with 

potassium EDTA solution were used for HbA1c measuraments. The serum was 

separated after centrifugation at 1,000x g for 15 min at 4°C and stored for later use. 

Small intestine and pancreas were collected, immediately frozen in liquid nitrogen and 

stored in -80oC for analysis.  

 

Mouse Glycated Hemoglobin (HbA1C) Determination 

Glycosylated (or glycated) hemoglobin (hemoglobin A1c, Hb1c, or HbA1c, 

A1C) is a form of hemoglobin used primarily to identify the average plasma glucose 

concentration over prolonged periods of time. It is commonly used as a golden rule for 

measurement of blood glucose management in type 2 diabetes.  HbA1c was measured 

with a mouse glycated hemoglobin A1c (GHbA1c) ELISA Kit (Biotrend, CA, USA). 

Briefly, the microtiter plate was pre-coated with an antibody specific to GHbA1c. 

Standards or samples were then added to the appropriate microtiter plate wells with a 

biotin-conjugated polyclonal antibody preparation specific for GHbA1c and Avidin 

conjugated to Horse-radish Peroxidase (HRP), and incubated for 60 minutes. The TMB 

(3,3'5, 5' tetramethyl-benzidine) substrate solution was then added to each well 

following several washes. The enzyme-substrate reaction was terminated by the 
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addition of a sulphuric acid solution and the color change was measured at a 

wavelength of 450 nm ± 2 nm using a spectrophotometer. The concentration of 

GHbA1c in the samples was then determined by comparing the O.D. of the samples to 

the standard curve. 

 

RNA Isolation and Gene Expression Analysis 

Total RNA was extracted from small intestine and pancreas with RNeasy Plus 

Universal Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. The concentration and purity of RNA were determined by measuring the 

absorbance in a Nano drop spectrophotometer.  Total RNA was treated with DNase I 

at room temperature for 15 min to remove genomic DNA contamination. RT2 First 

Strand Kit from Qiagen (Qiagen, Hilden, Germany) was used to synthesize first strand 

complementary DNA (cDNA). The gene expression levels were analyzed by 

Quantitative real-time RT-PCR conducted on the Bio-Rad CFX-96 Real-Time PCR 

System using RT2 SYBR Green Master mix (Bio-Rad Laboratories, Hercules, CA). 

The customized Mouse Diabetes RT² Profiler™ PCR Array containing 84 genes related 

to the onset, development, and progression of diabetes was used to examine the 

expression patterns of the selected genes. The marker genes for diabetes and glucose 

homeostasis, inflammatory mediators tested are listed in Table 3-2. Hot-Start DNA Taq 

Polymerase was activated by heating at 95°C for 10 min and real time PCR was 

conducted for 40 cycles (15 s for 95°C, 1 min for 60°C). All results were obtained from 

at least three independent biological repeats. Data were analyzed using the ΔΔCT 

method. Actin gene was used as the house-keeping gene for expression calculation.  
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Gene Expression Analysis at Protein Levels  

To further verify the expression changes at mRNA level, Bio-Plex Pro Diabetes 

Assays were conducted to get insight for the selected genes’ expressions at the 

translational level using a Mouse Diabetes Multiplex magnetic bead–based multiplex 

assay kit by following the manufacturer’s instruction (Bio-Rad, Hercules, CA). Plates 

were run on a Bio-Plex MAGPIX™ Multiplex Reader with Bio-Plex Manager™ MP 

Software (Luminex, Austin, TX). Each biomarker concentration was calculated as 

pg/ml. The levels of sensitivity in this panel were 0.64, 4.31, 0.59, 0.5, 68.29, 5.07, 

2.98 and 184.89 pg/ml for ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1 and 

resistin, respectively.  

 

Statistical analysis 

All data collected, including blood glucose, ELISA and HbA1c, were expressed 

as mean ± SE, and analyzed using one-way ANOVA followed by Bonferroni’s multiple 

comparison post-hoc tests. Statistical significance was defined as p ≤ 0.05. 

 

3.4. Results 
Effect of Different Dietary Treatments on Blood Glucose and Body Weight 

STZ-induced diabetic mice and non-STZ treated mice were used to examine the 

efficacy of GPE on diabetes treatment and prevention. Figure 3-1 shows the effects of 

long-term consumption of GPE incorporated in a high fat diet on blood glucose. In STZ 

treated groups, there was no significant difference on blood glucose between the HFD 

fed and HFD+GPE fed mice. In non-STZ treated groups, at early treatment stages (first 
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4 weeks), there was no significant difference on blood glucose between HFD and 

HFD+GPE fed mice. However, after week 10, hyperglycemia was successfully induced 

by consumption of HFD diet with average blood glucose higher than 180 mg/dl. 

Importantly, consumption of GPE significantly inhibited such blood glucose increase 

induced by HFD. The blood glucose in HFD+GPE treatment group was 12.6%, 15.1% 

and 10.1% lower than that of HFD fed alone at week 8, 10 and 12 respectively (p=0.07, 

p< 0.01, p< 0.05, respectively). Furthermore, blood glucose of the HFD+GPE group 

did not differ actoss the 12-week experimental period. For body weight, no significant 

difference was observed among all groups during the 12-week feeding period (data not 

shown).  

 

Effect of Different Dietary Treatments on Glycated Hemoglobin, HbA1C 

HbA1C was measured at the end of the experiment (Figure 3-2).  We observed 

a significant decrease (32.8% at p< 0.05) in non-STZ treated mice fed with HFD+GPE 

compared to those fed with HFD only. No significant difference was observed between 

STZ-induced diabetic groups. As the level of plasma glucose increased, the fraction of 

glycated hemoglobin also increased.  

Effect of GPE on peptide hormones related to glucose homeostasis  

Circulating peptide hormones such as glucagon, insulin, PAI-1 and resistin are 

important biomarkers for glucose homeostasis. We quantitatively examined the amount 

of these hormones in serum using the Bio-Plex Pro Diabetes Assay. GPE consumption 

did not affect these peptide hormone levels in STZ-induced mice. No significant 

differences were observed between STZ-induced diabetic mice fed with HFD and those 
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fed with HFD+GPE. However, between non-STZ treated mouse groups, GPE 

significantly reduced serum levels of glucagon, PAI-1, insulin and resistin (Figure 3-

3). 

 

RNA expression profile of the peptide hormones regulating glucose homeostasis  

The mRNA expression profiles of the peptide hormones which potentially 

regulate glucose metabolism were also examined in non-STZ treated groups. These 

genes encoded peptide hormones, including glucagon, insulin, PAI-1, 

dipeptidylpeptidase-4 (DPP-4), GLP-1 and GIP. The expressions of glucagon, insulin 

and resistin were examined using pancreas RNA while PAI-1, DPP-4, GLP-1 and GIP 

were examined using small intestine RNA. As shown in Figure 3-4, long-term 

consumption of GPE downregulated the expression of glucagon (39.1%, P<0.05) and 

insulin (53.5% at P=0.07 level) in pancreas. GPE also downregulated PAI-1 (71.6%, 

P<0.05) and DPP-4 (46.7%, p<0.01) in small intestine. DPP-4 promotes the 

degradation of GLP-1 and GIP and enhances the release of glucagon (Kim and Egan, 

2008). Consistently, GLP-1 expression in small intestine was increased 44.7% (P<0.05) 

following consumption of GPE (Figure 3-4), while no significant change was observed 

for GIP expression (data not shown).  

 

GPE reduced inflammation cytokines expression  

Obesity is often considered as a systematic inflammation. During obesity 

development and its progression to hyperglycemia, various inflammation cytokines are 

expressed. To investigate the effect of GPE on systematic inflammation, we examined 
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the expression changes of several inflammation mediators in the small intestine (Figure 

3-5). Real-time RT-PCR showed that dietary GPE supplementation significantly 

suppressed the expression of inflammation cytokines TNF-α, INF-γ and IL-12β (Fig. 

3-6) by 63.3%, 38.4% and 64.8% respectively (P<0.05). Resistin was 31.7% down, 

(P<0.05) in pancreas. PAI-1 was also significantly downregulated (71.6% down, 

P<0.01) by GPE consumption. No significant changes in IL-6 were observed.  

3.5. Discussion 
A growing body of evidence suggests that the consumption of grapes and/or 

grape derived food products rich in polyphenols promotes a variety of health effects. 

Grape products show beneficial effects in preventing the development of metabolic 

syndromes, particularly diabetes, obesity and heart disease (El-Alfy et al., 2005; Kim 

et al., 2014; Kim et al., 2015; Pezzuto 2008; Seeram 2008).  In our previous studies (Li 

et al, submitted), grape pomace water extract showed a dose-dependent inhibition of α-

glucosidase activity and significantly decreased blood glucose in diabetic mice and 

normal human subjects within 3 hours of GPE consumption. In addition, GPE delayed 

carbohydrate digestion, absorption and transportat to the blood stream. These results 

prompted us to examine the long-term effects of GPE in regulating carbohydrate 

metabolism and to elucidate the molecular mechanism(s) involved.  

 

In this study, we found that GPE did not play a critical role on STZ-induced 

diabetic mice during the 12-week feeding period, although there was a slight reduction 

in blood glucose at week 8. In our previous studies using a modified 2h Oral glucose 

Tolerant Test, STZ-induced diabetic mice gavaged with GPE-corn starch suspension 

resulted in a significant decrease in postprandial blood glucose compared with the STZ-
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induced mice only gavaged with corn starch (Li et al., submitted). Taken together, our 

results suggest that GPE could suppress acute blood glucose but long-term 

consumption of GPE would not help treat diabetes. Interestingly, when we fed GPE to 

non-STZ treated mice supplied with HFD, we found that GPE had significant effects 

on preventing HFD-induced hyperglycemia. Circulating peptide hormones in the blood 

and HbA1c were also dramatically altered by GPE. Further, RNA expression of several 

peptide hormones related to glucose homeostasis were significantly changed by GPE. 

In addition, biomarker genes for systematic inflammation were also altered by GPE. 

These results suggest that daily consumption of GPE might prevent hyperglycemia 

caused by high fat diet.  Similar evidence was obtained by Laight et al., (2009) who 

reported that consumption of grape seed extract for 4 weeks significantly improved 

markers of inflammation and glycaemia in obese Type 2 diabetic subjects with 32 

patients involved in a double blind randomized placebo controlled trial. 

To elucidate the molecular mechanisms involved in blood glucose lowering 

properties of the GPE, we further evaluated the effects of GPE on the glucose 

homeostasis. Glucose homeostasis was primarily governed by the two counteracting 

hormones: the glucose-elevating hormone glucagon and the glucose-lowering hormone 

insulin (Aronoff et al., 2004). Disruption of the equilibration by augmented secretion 

of glucagon and decreased secretion of insulin typically promotes commenced 

postprandial hyperglycemia (Yabe et al., 2015; Unger & Cherrington, 2012). Incretins, 

such as GLP-1, GIP and DPP-4, stimulate insulin secretion from pancreatic β cells 

(Yabe et al., 2015; Drucker, 2013; Holst, 2007; Seino & Yabe, 2013); GLP-1 inhibits 

glucagon release from the alpha cells of the islets of Langerhans, while GIP enhances 
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glucagon secretion (Yabe et al., 2015; Christensen et al., 2014; Christensen et al., 2011; 

Drucker, 2013; Holst, 2007; Mentis et al., 2011; Seino & Yabe, 2013; Taminato et al., 

1977). Both GLP-1 and GIP are rapidly degraded by the enzyme DPP-4 (McIntosh et 

al., 2005; Behme et al., 1995; Dupre et al., 1995). Mice fed diet that was supplemented 

with GPE significantly decreased glucagon expression in this study. On the other hand, 

GLP-1 expression was significantly increased, which is consistent with the observation 

that DPP-4 expression was significantly decreased by GPE consumption. Numerous 

studies are in agreement with these findings. It has been reported that grape seed extract 

enriched in procyanidins (GSPE) improves glycemia by affecting the insulin release 

and decreasing glucose levels in Wistar female rats, increasing the active form of GLP-

1 and inhibiting intestinal DPP-4 activity (González-Abuín et al., 2014; González-

Abuín et al., 2014; González-Abuín et al., 2012).  

Accumulating evidence indicates that grape polyphenols work in many 

different ways to decrease blood glucose (Zhang et al., 2011), improve insulin 

resistance (Baur et al., 2006; Sun et al., 2007; Lagouge et al., 2006), suppress 

hyperinsulinemia (Hokayem et al, 2013), and reduce blood pressure and lipid 

concentration (Perez-Jimenez et al., 2008; Vislocky et al., 2010; Schini-Kerth et al., 

2010; Barona et al., 2012). Consistently, our results showed that the plasma glucose 

and insulin mRNA expression was significantly decreased in the non-STZ treated mice 

fed with GPE. Consumption of a high fat diet can increase body fat deposition, diminish 

glucose uptake and consumption in skeletal muscle, and consequently increase insulin 

resistance (Lovejoy et al., 2001; Mayer-Davis et al., 1997; Flanagan et al., 2008; 

Tanaka et al., 2007). Adipose tissue also increases the amount of adipocytes and 
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produces several hormones and cytokines that affect glucose homeostasis and fat 

metabolism (Ahima & Flier, 2000; Trujillo & Scherer, 2006). For example, resistin, a 

cysteine-rich adipose-derived peptide hormone, potentially links obesity and insulin 

resistance (Barnes & Miner, 2009). In rodents, exposure to resistin results in decreased 

response to insulin (Rangwala et al., 2004). Conversely, acute administration of resistin 

impairs glucose tolerance and insulin action (Kim et al., 2001). Our study demonstrated 

that GPE had a decreasing effect on circulating and mRNA expression level of resistin. 

This might contribute to an improvement of glucose metabolism and insulin resistance. 

Additional evidence indicate that excessive fatty acid consumption in high fat 

diets results in excessive lipid accumulation in adipose and peripheral tissues, and 

subsequent chronic low-grade systemic inflammation (Ouchi et al., 2011). Chuang et 

al. (2011) reported that grape powder extract rich in phenolic phytochemicals possess 

anti-oxidant and anti-inflammatory properties. It attenuated TNFα-mediated 

inflammation through inhibiting the expression of IL-6, IL-1β, IL-8, MCP-1, COX-2 

and TLR-2 and improves insulin resistance in primary cultures of newly differentiated 

human adipocytes. Increased expression of TNF-α mRNA in white adipose tissue in 

obese humans has a strong positive correlation with the level of hyperinsulinemia and 

can lead to insulin resistance (Hotamisligil et al., 1995; Hotamisligil et al., 1993). In 

our study, the mRNA expression levels of inflammation cytokine/ adipokines genes 

including PAI-1, TNF-α, INF-γ and IL-12β in small intestine were significantly 

suppressed by GPE consumption while IL-6 showed no significant difference. Similar 

to our findings, HFD-induced obese mice supplemented with the Norton grape pomace 

(250mg/kg body weight for 12 weeks) exhibited less oxidative stress (Hogan et al., 
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2010), and that one-year consumption of grape extract downregulated the expression 

of key pro-inflammatory cytokines (Tome-Carneiro et al., 2013).  

 

3.6. Conclusion 
Our main goal was to investigate the effects of a dietary grape pomace extract 

supplement on the prevention of hyperglycemia and diabetes. This study provides 

important evidence that long-term consumption of GPE can: 1) lower the blood glucose 

and improved HbA1c. 2) down-regulate the expression of several cytokines involved 

in chronic low-grade inflammation triggered by high fat diet, and 3) attenuate insulin 

resistance in HFD-induced diabetes mice, but not in STZ-induced diabetic mice. It is 

likely that GPE has more beneficial effects on diabetes prevention instead of its 

treatment. 
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Figure 3- 1 Effect of two different dietary treatments (with or without GPE) on blood 
glucose in STZ-treated and non-STZ mice. Blood glucose was expressed as the mean 
± SE (n=6-20). Means of blood glucose at each time point with asterisk indicated 
significant difference. *, p<0.05; **, p<0.01. 
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Figure 3- 2 Effect of two different dietary treatments (with or without GPE) on glycated 
hemoglobin, HbA1C in STZ-treated and non-STZ mice. Glycated hemoglobin A1C 
was expressed as the mean ± SE (n=6-20). Mean HbA1C for each group with * 
indicated significant difference from the corresponding control, p<0.05. 

  



79  

 

0

0

2 0

4 0

6 0

8 0

1 0 0

D i a t e r y  t r e a t m e n t

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l) S T Z - i n d u c e d  c o n t r o l

S T Z - i n d u c e d  G P E

N o n - S T Z  c o n t r o l

N o n - S T Z  G P E
* *

G lu c a g o n

  

(A)    

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

D i a t e r y  t r e a t m e n t

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l) S T Z - i n d u c e d  c o n t r o l

S T Z - i n d u c e d  G P E

N o n - S T Z  c o n t r o l

N o n - S T Z  G P E

*

I n s u l in

 

 (B) 

  

0

1 0 0 0

2 0 0 0

3 0 0 0

D i a t e r y  t r e a t m e n t

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l) S T Z - i n d u c e d  c o n t r o l

S T Z - i n d u c e d  G P E

N o n - S T Z  c o n t r o l

N o n - S T Z  G P E

*

P A I - 1

  

(C)  



80  

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

D i a t e r y  t r e a t m e n t

C
o

n
c

e
n

tr
a

ti
o

n
 (

p
g

/m
l) S T Z - i n d u c e d  c o n t r o l

S T Z - i n d u c e d  G P E

N o n - S T Z  c o n t r o l

N o n - S T Z  G P E

*

R e s i s t i n

 

 (D) 

 

Figure 3- 3 Effect of GPE on serum levels of insulin, glucagon, PAI1, resistin. Results 
were expressed as relative expression levels (mean ± SEM, n=6-12). Significant 
difference between control and GPE treatment was marked with asterisk (p<0.05).  
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Figure 3- 4 GPE affected peptide hormones which regulate blood glucose homeostasis 
in non-diabetic mice.A-D: GLP-1, glucagon, DPP-4 and insulin gene. Pancreas and 
small intestine were harvested from animals on different diets, total mRNA was 
extracted, and the mRNA level was determined using real-time PCR. Results are 
expressed as relative expression levels (mean ± SEM, n = 6) to control. Columns 
marked with * are significantly different from each other at p ≤ 0.05.   
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Figure 3- 5 Effects of GPE on inflammatory mediator genes in small intestine and 
pancreas.Pancreas and small intestine were harvested from animals on different diets, 
total mRNA was extracted, and the mRNA level was determined using real-time PCR. 
Results are expressed as relative expression levels (mean ± SEM, n = 6) to control. 
Columns marked with * are significantly different from each other at p ≤ 0.05.   
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Table 3-1. Macronutrient and micronutrient content of the mouse diets. 

 

 HFD HFD+GPE 
Product # D04011601 D12121001 

% gm kcal gm kcal 
Protein 24 20 24 20 
Carbohydrate 41 35 41 35 
Fat 24 45 24 45 
Total  100  100 
kcal/gm 4.7  4.7  
     
Ingredient gm kcal gm kcal 
Casein, 80 Mesh 200 800 200 800 
L-Cystine 3 12 3 12 
     
Corn Starch 0 0 0 0 
Maltodextrin 10 100 400 100 400 
Sucrose 245.

 
982 245.

 
982 

     
Cellulose, BW200 50 0 50 0 
     
Soybean Oil 25 225 25 225 
Lard 177.

 
1598 177.

 
1598 

     
Mineral Mix S10026 10 0 10 0 
Mineral Mix S10026B 0 0 0 0 
DiCalcium Phosphate 13 0 13 0 
Calcium Carbonate 5.5 0 5.5 0 
Potassium Citrate, 1 H2O 16.5 0 16.5 0 
     
Vitamin Mix V10001 10 40 10 40 
Choline Bitartrate 2 0 2 0 
     
Grape Extract 0 0 2.07 0 
     
FD&C Yellow Dye #5 0.05 0 0 0 
FD&C Red Dye #40 0 0 0 0 
FD&C Blue Dye #1 0 0 0.05 0 
     

Total 858.1
 

4057 860.2
 

4057 
     
Grape Extract (g/kg) 0  2.4  
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Table 3-2. List of genes encoding different peptide hormones related to glucose 

homeostasis and inflammatory cytokines. 

Peptide hormones related to glucose homeostasis: GLP-1, glucagon, 

insulin, GLP-1, DPP-4, GIP 

Inflammatory mediators: PAI-1, resistin, IL-12β, IL-6, TNFα, INF-γ 
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Chapter 4: Anti-obesity Activity of Grape Pomace Aqueous 
Extract on Suppressing Adipogenesis in Murine 3T3-L1 
Adipocytes and Reducing Obesity in High Fat Diet Induced 
Mice 
 
4.1 Abstract 
 
Obesity is a key factor leading to metabolic syndromes that are characterized by an 

increase in body fat accumulation. We have recently reported that grape pomace extract 

can prevent obesity. In this study, we examined the potential role of grape pomace 

extract in controlling adipogenesis and body weight. Cabernet Franc Grape pomace 

aqueous extract (GPE) was used in the experiments. 3T3-L1 pre-adipocyte cells were 

induced into adipocyte in culture medium with or without GPE. GPE significantly 

affected adipogenesis in 3T3-L1 cells supported by decreased oil accumulation and 

changes in gene expression patterns involved in the adipogenesis transcriptional 

cascade. In a second experiment, C57BLK/6J mice were fed a high fat diet 

supplemented with or without 2.4g/kg GPE for 12 weeks. GPE reduced body weight 

compared to the control group, and inhibited adiposity by promoting a significant 

reduction in abdominal fat accumulation. In addition, GPE attenuated the expression 

of CEBPα, SREBF1 and PPARγ and reduced systematic inflammation through 

inhibition of PAI-1 expression and increase of the anti-inflammatory adipokine 

adiponectin. Our results highlight the role of GPE as an alternative approach to 

preventing obesity occurrence and development. 

 
 
 
4.2 Introduction 
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Obesity significantly increases the risk of several life-threatening diseases, 

such as heart disease, type 2 diabetes and cancer. In 2013, the American Medical 

Association officially classified obesity as a disease (http://www.ama-assn.org). 

Obesity is dramatically increasing globally, with more than 1.9 billion adults (39%) 

overweight. Of these, over 600 million (13%) people worldwide are suffering from 

obesity according to World Health Organization (WHO report 2014, 

http://www.who.int/mediacentre/factsheets /fs311/en/). In the United States, based on 

published data by CDC, more than one-third of adults (34.9% or 78.6 million) are 

obese (Ogden et al., 2014).  

Overweight and obesity are defined as excessive fat accumulation in the body. 

It is caused by the interruption of the equilibrium of energy intake and expenditure 

(Spiegelman and Flier, 2001; Panico and Iannuzzi, 2004; Kopelman, 2000). Obesity 

is a major factor associated with serious health disorders such as type 2 diabetes. The 

infiltration of inflammatory cells into adipose tissue triggers a low-grade systematic 

inflammation and eventually impairs insulin sensitivity and develops into type 2 

diabetes (Hotamisligil and Erbay, 2008; Nath et al., 2006; Mokdad et al., 2003). 

Obesity has also been associated with several other disorders, such as hypertension 

(Dorresteijn et al., 2012), atherosclerosis (Ouimet 2013), and cardiovascular disease 

(Must 1999). In addition, obesity is closely associated with cancers of the colon, 

breast, endometrium, kidney, and esophagus (adenocarcinoma) (Calle and Thun, 

2004).  

 

Adipose tissue, until recently has been considered as an inactive reservoir for 
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energy storage. With the discovery and characterization of leptin, the 16-kDa 

polypeptide with structural homology to cytokine, adipose tissue was re-discovered 

and consequently recognized as a complex and highly active metabolic and endocrine 

organ (Kershaw and Filer, 2004; Zhang et al., 1994; Ahima et al., 2000; Fruhbeck et 

al., 2001). Adipose tissue plays an important role in the regulation of whole body fatty 

acid homeostasis (Galic et al., 2010) by secreting numerous bioactive peptide 

hormones, named “adipokines”. Adipokines, such as leptin, adiponectin, plasminogen 

activator inhibitor-1 (PAI-1) and resistin regulate metabolism from both the local 

(autocrine/paracrine) and systemic (endocrine) level (Kershaw and Filer, 2004). 

Adipose tissue expresses numerous receptors for traditional endocrine hormones, 

nuclear hormone receptors, cytokine receptors and catecholamine receptors. Those 

receptors connect the response of the traditional hormone system to the network of 

the central neuron system (Kershaw and Filer, 2004). The hormones and receptors 

secreted by adipose tissue effectively communicate with the brain and peripheral 

tissues to modulate glucose homeostasis, influence energy metabolism, regulate 

appetite, adjust insulin resistance and control immune function (Matsuzawa et al., 

1999; Funahashi et al., 1999).  

Adipogenesis is the process where fibroblasts like pre-adipocytes differentiate 

into the well-established matured spherical adipocytes, which contain lipids 

(Lefterova and Lazar, 2009). An in vitro model of 3T3-L1 and 3T3-F442A, the pre-

adipocyte cell lines, has been developed to study adipogenesis (Rosen et al., 2000; 

Gregoire, 2001). A highly orchestrated multistep process of the transcriptional 

network is involved in adipogenesis (Ali et al., 2013). Several transcription factors are 

sequentially activated in adipogenesis transcriptional cascade. Remarkably 
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CCAAT/enhancer binding proteins (C/EBPβ, C/EBPδ and C/EBPα) gene family, 

peroxisome proliferator activated receptor-γ (PPAR-γ) and Sterol regulatory element-

binding transcription factor 1 (SREBF1), have been shown to have significant roles 

in promoting adipogenesis (White and Stephens, 2009). These factors are essential in 

promoting the terminal or mature adipocyte phenotype. Differentiation of pre-

adipocyte cells into adipocytes involves a series of events including growth-arrest, 

mitotic clonal expansion, and terminal differentiation and mature adipocytes (Sun et 

al., 2009; Lefterova and Lazar, 2009). In response to hormonal stimuli such as cortisol 

and insulin, C/EBPβ and C/EBPδ are induced immediately which in turn activate 

PPARγ and C/EBPα (Farmer, 2006). PPARγ and C/EBPα form a positive feedback 

loop to induce the expression of each other and regulate the adipocyte differentiation 

(Rosen et al., 2002). PPARγ and C/EBPα in turn induce the expression of genes that 

are necessary for regulating fatty acid storage and glucose metabolism (Rosen, E.D. 

and MacDougald, 2006). They are highly expressed in adipose tissue and are key 

factors controlling the down-stream adipocyte differentiation and adipocyte-specific 

gene expression (Lefterova et al., 2008), such as lipoprotein lipase (LPL), which is 

considered as the early stage marker for the adipocyte differentiation, and  adipocyte 

fatty acid–binding protein (aP2), which is an intermediate sign of adipocyte 

differentiation (Rosen and Spiegelman , 2000; (Bernlohr et al., 1984; Katz et al., 1999; 

Spiegelman et al., 1983; MacDougald et al., 1995). Sterol regulatory element-binding 

proteins (SREBPs) are also involved in adipocyte differentiation. SREBPs are a 

family of transcription factors that regulate lipid homeostasis.  SREBPs are induced 

very early during adipocyte differentiation and stimulate the expression of PPARγ, 
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and induce the fundamental coordinator of the adipocyte differentiation process 

(Eberlé et al., 2004; Shao and Espenshade, 2012; Saladin et al., 1999).  

The prevalence of obesity has increased worldwide and negatively impacted 

human health. Systemic chronic inflammation due to adipogenesis is major factor for 

obesity.  The main causes of obesity are thought to be related to diet (high fat 

consumption) and lifestyle (lack of physical activities). The existing literatures 

indicated that prolonged consumption of a high fat diet can lead to obesity and insulin 

resistance. Thus, understanding adipogenesis has been a major focus of researchers. 

New therapeutic intervention strategies to combat obesity involve identifying factors 

that control fat accumulation. Bioactive food components have been well studied in 

their ability to prevent obesity. The grape (Vitis vinifera) is one of the world’s oldest 

domesticated fruit crops, as well as one of the most economically important fruit 

plants worldwide. A large variety of natural grape products are widely used as 

nutritional products. The bioactivities of grape polyphenols and the health promoting 

effects of different varieties of grape have been documented. Numerous bioactivities 

of phenolic compounds in grape products, especially flavonoids are widely distributed 

in grapes. Many of these have potent positive effects modulating human health 

(Georgiev et al., 2014; Chacona et al., 2009; Bagchi et al., 2000; Cantos et al., 2002). 

Flavonoids, for example, anthocyanins, flavonols, flavanols, dihydroflavonols and 

proanthocyanidins are the most common phenolic compounds found in grapes. 

Phenolic compounds from grapes also exert positive benefits on human health. Some 

of the more important benefits reported include anti-radiation, anti-mutagenic, anti-

inflammatory and anti-bacterial effects (Bagchi et al., 2003; Halliwel et al., 1992; 



91 

 

Belleville, 2002; Sun et al., 2002). These beneficial effects have also been 

pharmacologically documented as decreasing insulin resistance, reducing ischemic 

heart disease, preventing heart failure and avoiding hypertension (Petrovski et al., 

2011; Bertelli et al., 1998).  

Grape pomace, the by-product from the wine and juice industry, may have 

potential beneficial effects in preventing diabetes and obesity. In our previous studies, 

we have reported that oral administration of Grape Pomace Aqueous Extract (GPE) 

can attenuate diabetes through inhibiting small intestine α-glucosidase activity and 

decreasing post-prandial hyperglycemia resulted from the prolonged consumption of 

western-style diet. However, the mechanism(s) of the effect of GPE on adipogenesis 

and obesity remains unknown. In the present study, using adipocyte precursor cell 

model 3T3-L1, we examined the role of GPE in regulating expression of genes that 

are involved in adipocyte differentiation. In a second study, we investigated the 

possible roles of GPE in regulating obesity, inflammation and insulin resistance in a 

high-fat-diet fed mouse model.  

 
4.3 Materials and methods 
 

Materials 

Cabernet Franc grape pomace samples (fermented for 2 weeks) were obtained 

from Chrysalis Vineyards, Virginia in 2011. Dulbecco's Modified Eagle's Medium 

(DMEM), antibiotic/ antimycotic, fetal bovine serum (FBS), and 0.25% trypsin with 

0.9 mM EDTA were purchased from Invitrogen (Carlsbad, CA). 3T3-L1 cell line was 

purchased from the American Type Culture Collection (Rockville, MD). 
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Adipogenesis Assay Kit (Cell-Based), Adiponectin Mouse ELISA kit and Glycerol-

3-Phosphate Dehydrogenase (G3PDH) Colorimetric Assay Kits were purchased from 

Abcam, (Cambridge, MA). 

Sample Preparation and Extractions 

Grape pomace samples were air dried under low pressure. Dried pomace was 

milled to 40 mesh size using a Scienceware Bel Art Micromill, (Pequannock, NJ). 

The milled grape pomace was then extracted with water (1:10 m/v) by shaking for 2 

hours at ambient temperature. Following extraction, the mixture was centrifuged at 

4,000 rpm at 20oC for 30 min. Supernatants were collected and freeze dried in the 

bench top freeze drier (AdVantage 2.0 BenchTop Freeze Dryer / Lyophilizer, SP 

Scientific) to obtain GPE. 

Cell viability assay 

GPE extracted using water was re-dissolved in 10% DMSO. The 10% DMSO 

GPE mixtures were then examined for cytotoxicity on 3T3-L1 cells. Cells are 

propagated in T-75 flasks and maintained in Dulbecco's Modified Eagle's Medium 

(DMEM) containing 4 mM L-glutamine, 4500 mg/L glucose, 1 mM sodium pyruvate, 

and 1500 mg/L sodium bicarbonate  (ATCC® 30-2002™) with 10% fetal bovine 

serum and antibiotic/antimycotic. Cells were seeded at 5x104/well in 96-well plate at 

37oC in a humidified atmosphere with 5% CO2 supplied. Cells were treated with GPE 

at 0-4000μg/ml concentrations. Culture medium with 0.1% DMSO was used as 

negative control. Following 24 h exposure, cell viability was determined by the 

ATPlite™ Luminescence Assay System (PerkinElmer, Massachusetts, USA) 

according to the manufacturer’s direction. Absorbance at 570 nm will be directly 
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correlated to live cell number. All measurements were taken in triplicate with 

PerkinElmer VICTOR3 V Multilabel Readers 96-well plate reader (Massachusetts, 

USA).  

Cell culture differentiation 

Adipocyte differentiation of 3T3-L1 cells was measured with a cell-based 

adipogenesis assay kit following manufacture’s instructions. In brief, cells were 

cultured in 12-well plates to 100% confluence for 2 days and then transferred to 

differentiation medium (DM) containing 10 μg/ml insulin (Sigma, St. Louis, MO), 0.5 

μM dexamethasone (Sigma, St. Louis, MO), and 0.8 mM isobutylmethyl xanthine 

(IBMX). GPE were added in differentiation medium at 0, 200, 400, 800μg/ml. After 

a 3-day induction, the medium is changed to DMEM with 10% fetal bovine serum 

containing 10 μg/ml insulin for differentiation and DMEM with 10% fetal bovine 

serum for control group at 37 °C, 95% O2, and 5% CO2 for 4 days. Fresh medium 

was changed every other day. 

Oil Red O staining  

Seven days after adipocyte differentiation, an oil red staining assay was 

conducted. Culture medium was remove from the wells, and 75 μL diluted Lipid 

Droplets Assay Fixative was added to each well and incubate for 15 minutes. Wells 

were washed with 100 μL Wash Solution two times for five minutes each. The plate 

was dried completely and then 75 μL oil Red O Working Solution was added to all 

wells and incubated for 20 minutes. Oil Red O Solution was then removed and the 

cells were washed with distilled water several times until the water contained no 

visible pink color. After Oil Red-O stain, microscope images were taken to visualize 
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pink to red oil droplets staining in differentiated cells. Cells were photographed using 

a phase-contrast microscope (Olympus CKX41, Tokyo, Japan) in combination with a 

digital camera at 100X magnification. Differentiated cells were dried completely and 

400μL of dye extraction solution was added to each well and gently mixed for 15-30 

min. 250μl extraction solution with cells were added to 96-well plate and read the 

absorbance at 490-520 nm with a PerkinElmer VICTOR3 V Multilabel Readers 96-

well plate reader (Massachusetts, USA). 

Colorimetric Glycerol-3-Phosphate Dehydrogenase (G3PDH) Assay  

3T3-L1 adipocyte cells were plated in six-well plates with a density of 2 x 106 

cells per well. Two days after, differentiation medium (DM) was added to the cells. 

GPE was added at various concentrations, and cells were incubated at 37oC with 5% 

humidified CO2 for 3 additional days. Abcam colorimetric Glycerol-3-Phosphate 

Dehydrogenase (G3PDH) Assay was performed following manufacture’s protocol 

(Abcam, Cambridge, MA). In brief, the 3T3-L1 adipocytes were harvested 7 days 

after the initiation of differentiation with various concentrations of GPE. Cells were 

carefully washed twice with ice-cold PBS and collected with a scraper. Cells were 

spun down briefly and suspended in 200μL ice cold GPDH Assay Buffer. 50μL of 

sample and positive control were added to each well and mixed thoroughly with 50μL 

of the Reaction Mix containing 46µL of GPDH Assay Buffer, 2µL of GPDH Substrate 

and 2 µL of GPDH Probe. Reactions were incubated for 20-60 min at 37ºC and 

measured OD at 450 nm. Enzyme activity (%) was expressed as a ratio of the 

experimental condition relative to the control (which was set at 100% activity). 
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RNA isolation and gene expression analysis with quantitative real-time reverse 

transcription-polymerase chain reaction (RT-PCR) 

For gene expression analysis, highly sensitive and reliable real-time RT-

PCR’s were performed.  Total RNA was extracted from 3T3-L1 adipocytes, which 

had been treated with various concentrations of GPE for 7 days, with RNeasy Plus 

Universal Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. The quantity and quality of RNA was determined by measuring 

absorbance in a Nano drop spectrophotometer.  RNA was treated with DNaseI at 

room temperature for 15 min to remove genomic DNA contamination. RT2 First 

Strand Kit from Qiagen (Qiagen, Hilden, Germany) was used to synthesis first strand 

complementary DNA (cDNA).  Gene expression were analyzed by Quantitative real-

time RT-PCR conducted on the Bio-Rad CFX-96 Real-Time PCR System using RT2 

SYBR Green Master mix (Bio-Rad Laboratories, Hercules, CA).  

The Mouse Adipogenesis RT² Profiler™ PCR Array containing 84 genes 

related to the differentiation and maintenance of mature adipocytes was used to 

examine the expression patterns of the selected genes. The marker genes for 

adipogenesis are listed in Table 4-1. Genes encoding adipokines that were tested are 

listed in Table 4-2. Hot-Start DNA Taq Polymerase was activated by heating at 95°C 

for 10 min and real time PCR was conducted for 40 cycles (15 s for 95°C, 1 min for 

60°C). All results were obtained from at least three independent biological repeats. 

Data were analyzed using the ΔΔCT method. The expression of all genes was 

normalized using Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as internal 

control.  
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Gene expression analysis at protein levels  

Fully differentiated adipocytes (at 7 days after differentiation induction) were 

treated with the 0, 400 and 800 µg/ml of GPE for 72 h, and adiponectin concentrations 

in cell culture supernatants were determined. A quantitative adiponectin enzyme-linked 

immunosorbent assay (ELISA) was performed using a commercial Mouse adiponectin 

ELISA kit (Abcam, Cambridge, MA) according to the manufacturer’s protocols.  

Animal experiments 

Mouse food preparation:  

Rodent chow and western style high fat diet (HFD) was purchased from 

Research Diets, INC (New Brunswick, NJ). For GPE containing HFD diet, 2.4 grams 

of GPE was mixed with 1 kilogram of HFD by the same company. All mouse food 

was sterilized by irradiation to minimize bacterial contamination. Macronutrient and 

selected micronutrient content in the mouse diet is summarized in Table 4-3. 

Animals:  

6-week male C57BLK/6J mice, were housed in clean cages at 12-hour light 

dark cycle at 20°C to 22°C, with 4 mice/cage. The mice were maintained on rodent 

feed with continuous access to tap water so as to acclimatize to the experimental 

conditions for 1 week prior to being assigned to experimental groups.  

Experimental group assignment:  

Each mouse was assigned to one of the following groups: 1) group-1 mice fed 

with regular rat chow and served as control (n=14); 2) group-2 mice fed with HFD 

(n=14); 3) group-3 mice fed with HFD + GPE (n=14). All mice were fed with the 

respective diets for 12 weeks with water available ad libitum.  
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Food intake, body weight and fasting glucose measurements during the 

experiment:  

During the 12-week feeding experiment, food intake and body weight were 

recorded every week. Fasting blood glucose levels was also monitored weekly using 

a blood glucometer and the accompanying test strips (ACCU-CHEK Meter®, Roche 

Diagnostics, Kalamazoo, MI). Plasma insulin was monitored monthly at week 0, 4, 8 

and 12. A Mouse insulin ELISA kit from BioRad was used to quantify insulin 

following the manufacturer’s procedure.  

Animal sacrifice and tissue collection:  

Mice were anesthetized with CO2 at the end of feeding study. Blood samples 

were collected and the plasma was separated. Liver, heart, kidney, white adipose 

tissue and pancreas were dissected, weighed and immediately frozen in liquid nitrogen 

and stored in -80oC. The ARC and LHA regions of the hypothalamus were dissected 

under a binocular microscope and immediately frozen in liquid nitrogen.  

Histological analysis of animal adipocytes 

Freshly isolated epididymal WAT sections were fixed in 10% formalin for 24 

hours followed by embedding the tissues in paraffin. The paraffin-embedded samples 

were sectioned and stained with hematoxylin-eosin following the procedures used by 

An et al., 2010.  

 

RNA isolation and real-time RT-PCR in hypothalamus:  
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The ARC and LHA regions of the hypothalamus tissue were subjected to total 

RNA extraction with RNeasy Plus Universal Mini Kit (Qiagen USA). DNase I treated 

RNA samples were used to synthesis first strand complementary DNA (cDNA) using 

RT2 First Strand Kit from Qiagen (Qiagen USA). We used ARC tissue to test the 

NPY, AgRP, POMC, CART, and MC4R, and LHA tissue to test the MCH through 

quantitative real-time RT-PCR (qRT-PCR). Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) genes was used as an internal control. All data were 

analyzed using the ∆∆CT method. 

 

4.4. Results 
Effects of GPE on cell viability, adipocyte differentiation and triglyceride 

accumulation 

The ATPlite™ Luminescence Assay was performed to determine the effect of 

GPE on 3T3-L1 cell viability. 3T3-L1 cells were exposed to various concentrations 

of GPE. As shown in Fig 4-1, no significant effect on viability was observed at GPE 

concentrations up to 1000 µg/ml after 72h incubation with GPE.  

To investigate the effect of GPE on attenuation adipocyte differentiation and 

preventing lipid accumulation, 3T3-L1 adipocytes were incubated with differentiation 

medium supplemented with different concentrations of GPE. The total amount of lipid 

accumulation was examined by Oil-Red-O staining. Shown in Fig 4-2A, GPE 

significantly reduced lipid accumulation, as indicated by decreasing Oil Red-O 

staining. Triglyceride content in 3T3-L1 adipocytes was drastically decreased at 400 

µg/ml and 800 µg/ml GPE concentrations (p<0.01) to 79.7% and 68.2% respectively 

as compared to control cells (Fig. 4-2B). 
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Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that links 

carbohydrate metabolism and lipid metabolism. GPDH activity was verified to 

determine the effect of GPE on 3T3-L1 pre-adipocytes differentiation. GPDH activity 

in 3T3-L1 adipocytes was significantly decreased by GPE at 400 µg/ml and 800 µg/ml 

to 84.4% (p<0.05) and 79.8% (p<0.01) respectively. In contrast, no significant effect 

on GPDH activity was showed in control treatment (Fig. 4-3). 

 

Effect of GPE on 3T3-L1 adipocyte differentiation and the expression level of 

key adipogenesis genes 

Real-time RT-PCR was performed to examine the effect of GPE on the gene 

expression of adipogenic transcription factors in 3T3 L1 pre-adipocytes. Shown in 

Fig. 4-4, 3T3-L1 pre-adipocyte cells incubated with 800 µg/ml GPE exhibited 

markedly decreased mRNA expression of C/EBPα, C/EBPβ, PPARα, PPARγ, PGC-

1α, and SREBP1 (Fig. 4-4A-F) when compared with control (p<0.01). The expression 

of most these genes did not significantly differ between 400 µg/ml and 800 µg/ml 

GPE treatments.  Only C/EBPβ showed dosage dependent inhibition where 800 µg/ml 

GPE inhibited significantly more expression than that of 400 µg/ml GPE.  

Finally we also investigated the effect of GPE on the expression of adipocyte-

related genes that are known to participate in the adipogenesis. Shown in Fig 4-4. G-

J, LPL and ap2, were significantly decreased by 400 and 800 µg/ml of GPE treatments 

(p<0.05). The expression of the lipase gene was not inhibited until 800ug/ml GPE was 

added. No significant changes were detected on FAS, an important fatty acid 

biosynthesis enzyme (Fig. 4-4. G-J). 
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Effect of GPE on the expression of adipocytokines in 3T3-L1 pre-adipocyte 

Inflammatory cytokines released from adipose tissue are a major cause of 

systemic low-grade inflammation. To understand the molecular mechanism 

underlying the anti-inflammatory effect of GPE, adipocytokines during 3T3-L1 

adipocyte differentiation were investigated. The expression level of the key 

adipokines including angiopoietin, adiponectin, leptin, resistin, PAI1 (Fig. 4-5).  

These were examined by real-time RT-PCR. The expression of angiopoietin, resistin 

and PAI1 was significantly reduced (p<0.05 or p<0.01) after treatment with 800 µg/ml 

GPE (Fig 4-5A, B and E). 400 µg/ml GPE inhibited the expression of resistin 

(p<0.01). No changes were observed on the expression of leptin (Fig. 4-5C). An effect 

of GPE on adiponectin, was also observed. 800 µg/ml GPE significantly increased 

adiponectin expression in the fully differentiated adipocytes with a 1.8-fold increase 

compared to the control treatment. 

Effect of GPE on the secretion of adiponectin during 3T3-L1 adipocyte 

differentiation 

To understand the molecular mechanisms responsible for the GPE-induced 

upregulation of adiponectin expression, fully differentiated adipocytes were treated 

with 0, 200, 400 µg/mL and 800 µg/mL GPE, and the concentrations of adiponectin 

in cell culture supernatants were determined with ELISA kit. Shown in Fig 6, GPE 

significantly increased the secretion of adiponectin in a dose-dependent manner (Fig. 

4-6). Significant differences were observed at GPE concentrations of 400 and 800 

µg/mL with 20.6% and 50.6%, respectively (p<0.05). 
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Effect of GPE on body weight, abdominal fat weight and adiposity in HFD 

induced obese mice. 

We also conducted an animal study to evaluate the effect of GPE on fat 

metabolism and its potential capacity of being an anti-obesity treatment. As shown in 

Figure 4-7A, the HFD and HFD+GPE dietary treatments significantly increased body 

weight compared to the normal diet control group. However, significantly decreased 

body weight was shown in animals that were fed an HFD with GPE compared with 

HFD only. A significant difference between the HFD+ GPE group and the HFD group 

started at week 6 (𝑃𝑃 < 0.05), and was constantly maintained until the end of the 

experiment. No difference in food intake was observed between the HFD+ GPE group 

and the HFD group (data not show). To test whether body weight loss was caused by 

decreased adiposity, mice were sacrificed and abdominal white adipose tissue was 

dissected and weighed (Fig. 4-7B). Abdominal white adipose tissue was significantly 

reduced in the HFD+GPE group (p<0.01) with 26.6% less than in the HFD group. 

Abnormalities of epididymal white adipose tissue in the HFD group were observed in 

the histology WAT stained with hematoxylin and eosin (Fig. 4-7C). The size of the 

adipocytes in HFD+GPE group was markedly decreased when compared with that of 

the HFD group. 

 

Effects of GPE on blood glucose and organ weight in HFD induced obese mice. 

Blood glucose and organ weight (heart, liver and pancreas) were measured at 

week-12 and summarized in Table 4-2. A significant increase in blood glucose was 
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observed in the HFD fed group when compared with normal diet (p<0.01). However, 

HFD supplemented with GPE shown no difference in blood glucose after fed for 12 

weeks in comparison to normal diet (p<0.05), but decreased by 23.3% compared with 

HFD alone. No difference in liver and pancreas weights were observed between HFD 

and HFD+GPE. However, HFD increased the weight of the heart compared with 

normal diet and HFD+GPE. 

 

Effect of GPE on neuropeptides produced by the hypothalamic arcuate nucleus 

(ARC) in HFD induced obese mice. 

Neuropeptide Y (NPY)/agouti-related protein (AGRP) neurons, and the pro-

opiomelanocortin (POMC)/ cocaine and amphetamine related transcript (CART) 

neurons in the arcuate nucleus of the hypothalamus play a central role in controlling 

energy homeostasis and feeding behavior. We examined the mRNA expression of 

AGRP, NPY, POMC and CART to determine the effects of GPE on the hypothalamic 

gene expression (Fig. 4-8). No significant difference was observed for NPY among 

mice fed with different diets (Fig. 4-8B). Compared to the normal diet, the high-fat 

diet significantly increased AGRP expression by a factor of 3.5. Animals fed the GPE 

supplemented diet showed a similar increase in AGRP as mice fed a high-fat diet (Fig. 

4-8A). POMC, was up-regulated 92.2% and 74.5% in high-fat diets with or without 

GPE supplementation as compared to normal diet (Fig. 4-8C). CART expression 

exhibited no differences between the HFD diets and HFD supplemented with GPE 

(Fig. 4-8D). 
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Relative expression of genes related to adipogenesis and lipogenesis in HFD 

induced obese mice. 

To determine whether reduced adiposity was associated with reduced 

adipogenesis through the multiple transcription factors, C/EBPs, PPARs and SREBPs 

transcription cascade and the down-stream genes involved in fatty acid metabolism 

were evaluated. As shown in Fig. 4-9, no significant difference was observed for 

SREBP1 between normal diet and HFD diet, as well as between normal diet and 

HFD+GPE. However, 44.7% less expression of SREBP was observed in the HFD+ 

GPE group when compared with the HFD alone group (Fig. 4-9A). In mice fed the 

HFD CEBPα expression in adipose tissue was not different compared with the group 

fed the normal diet, but GPE supplementation reduced adipose CEBPα by 2-fold 

compared with HFD alone (Fig. 4-10B). PPARγ was significantly higher (42.6% 

increased) in mice fed with HFD as compared to mice on the normal diets. GPE 

consumption reduced its expression to 1.6-fold compared to mice fed with HFD only. 

High fat diet fed mice recorded significant increase (p<0.05) in mRNA expression of 

ap2 (p<0.05), and GPE supplementation significantly decreased ap2 gene expression 

by 75% (Fig. 4-9D). However, the expression of FAS, LPL, and lipase were not 

affected by the diet (data not show).  

GPE attenuated the inflammatory cytokines/adipokines expression in adipose 

tissue. 

Inflammatory cytokines/adipokines released from adipose tissue are key 

factors in promoting systematic inflammation, insulin resistance and obesity. To 

investigate the effect of GPE on systematic inflammation, we examined the 
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expression changes on several inflammation cytokines/adipokines in white adipose 

tissue (Fig. 4-10). Real-time RT-PCR showed that dietary supplement of HFD with 

GPE significantly suppressed the expression of inflammation factors PAI-1 (Fig. 4-

10A) by 48.0% comparing with HFD alone (P<0.05). There was no difference 

observed in comparison with a normal diet control. Leptin expression was not affected 

by GPE consumption (Fig. 4-10C). No significant changes on resistin, IFNγ, TNFα, 

and angiopoietin2 were observed (data not show). Adiponectin levels were also 

reduced in association with insulin resistance.  GPE consumption caused a significant 

increase in the adiponectin (~1.6 fold increase, p<0.05) compared to HFD (Fig. 4-

10C).  

4.5. Discussion 
Grape has been reported to have various biological activities and health 

benefits. As a nutraceutical product, its anti-cancer, anti-inflammatory and anti-

diabetes properties have been well documented (Bagchi et al., 2003; Belleville, 2002; 

Sun et al., 2002, Hogan et al., 2010, Zhang et al., 2011). We have reported that GPE 

inhibited post prandial hyperglycemia through inhibition of α-glucosidase activity in 

STZ induced diabetic mice and healthy human subjects (submitted data). 

Additionally, GPE significantly decreased both postprandial and random blood 

glucose levels in mice fed 12 weeks of HFD supplemented with GPE.  GPE regulates 

glucose homeostasis hormones and attenuates low-grade systemic inflammation. 

Nevertheless, the anti-obesity effects of GPE had not been explored. In the present 

study, we investigated the anti-obesity effects of GPE using 3T3-L1 adipocyte cells 

and HFD induced obese mice. This research was designed to elucidate the 

physiological and molecular mechanisms of grape pomace’s roles in preventing 
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obesity using an in vitro cell-based study and high fat induced obese mice model. We 

evaluated GPE for its putative effects on reducing adipocyte differentiation, 

decreasing fatty acid accumulation and G3PDH activity, controlling body weight, 

obesity-related biochemical parameters, and regulating adipose tissue gene expression 

in both 3T3-L1 pre-adipocyte and high-fat diet–induced obese mice. Our data clearly 

demonstrate when treated with GPE, maturation and lipid accumulation in the 3T3-

L1 cells were inhibited; consumption of GPE in high-fat diet induced obese mice 

exhibited noticeable attenuation of weight gain, adiposity and abdominal fat-pad 

weight.  GPE also inhibited transcriptional factors expression and the down-stream 

genes in adipogenesis and fatty acid synthesis and metabolism. The inflammatory 

cytokines such as PAI1 were also decreased. On the contrary, adiponectin, the anti-

inflammatory adipokine, was increased in mice fed with HFD supplemented with 

GPE. These results indicate that GPE exerts anti-obesity effects. 

Our data showed that GPE significantly decreased the mRNA levels of the 

inflammatory adipokines in both 3T3-L1 pre-adipocyte differentiation and high fat 

diet induced obese mice. This was in agreement with previous reported studies. Taey 

et al. reported that PAI-1, plasminogen activator inhibitor-1 plays a key role in obesity, 

diabetes and cardiovascular disease (Taey et al., 2005) and contributes directly to the 

complications of obesity, such as type 2 diabetes, pathogenesis of atherothrombosis 

and cardiovascular diseases. Elevation of PAI-1 can also be attributed to the 

accumulation of visceral fat (Kruithof, 1988; Skurk et al., 2004; Primrose et al., 1992). 

Direct inhibition of PAI-1 shows beneficial effects on obesity and insulin resistance. 

Arçari et al. found that yerba maté extract (Ilex paraguariensis) reduced the expression 
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of PAI-1 in high-fat diet–induced obese mice and exhibited anti-obesity effects 

(Arçari et al., 2009).  

Adiponectin is the most abundantly adipokine secreted by fat tissue. 

Biological functions of adiponectin and its close connection with obesity has been 

reported. Circulating levels of adiponectin are negatively correlated with obesity, 

insulin resistance, and coronary artery disease (CAD).  Plasma adiponectin is relevant 

in the prediction of insulin resistance and metabolic syndrome (Hara et al., 2006; Eglit 

et al., 2013). In addition, the anti-inflammatory capacity of adiponectin has become a 

major focus of research. Adiponectin plays a causal role in protecting against 

inflammation related diseases such as atherosclerosis, CVDs, and insulin resistance 

(Surmi et al., 2008, Villarreal-Molina and Antuna-Puente, 2012; Ouchi et al., 2007). 

Adiponectin targets inflammatory cells to stimulate the expression of the anti-

inflammatory cytokines and suppress the genes involved in inflammatory signaling 

pathway, such as NF-𝜅𝜅B, TNFα (Ouchi and Walsh, 2007; Nigro et al., Shibata et al., 

2004). The present study showed that adiponectin expression in white adipose tissue 

was significantly increased in mice administrated GPE with high fat diet for 12 weeks. 

Similar results were revealed in the 3T3-L1 pre-adipocytes. Both mRNA expression 

and protein secretion in the differentiating 3T3-L1 cells are dramatically increased 

after being treated with GPE. Beneficial effects of grape products on serum 

adiponectin and inflammation were also reported by Tomé-Carneiro et al.,  with a 75 

stable-CAD patients involved triple-blind, randomized, placebo-controlled,  3-arm 

pilot clinical trial, (Tomé-Carneiro et al., 2013). Grape resveratrol extract exhibited 

an increase of the anti-inflammatory serum adiponectin (p = 0.01) and a decrease of 
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the plasminogen activator inhibitor type 1 (PAI-1) (p = 0.05). These results indicated 

that grape and its derivations have potential anti-inflammatory effects and attenuate 

obesity related metabolic syndrome.  

Obesity is caused by the imbalance of energy intake and energy expenditure. 

Irregular adipocyte differentiation, lipogenesis, and excess amount of lipid droplets 

accumulated in the adipocyte all contribute to obesity. In the present study, GPE 

reduced oil droplets in adipocytes, depleted  fat storage and reduced the triglycerol 

content and inhibited the activity of H3PDH activity in in-vitro pre-adipocytes (Fig 4-

2 and 4-3).  GPE also decreased body weight, reduced blood glucose, attenuated 

abdominal fat weight, and affected white adipocyte morphology in high fat induced 

obese mice (Fig 4-7. And Table 4-2). The molecular mechanisms of GPE on the 

regulation of adipocyte differentiation were evaluated. Adipogenesis is a highly 

coordinated multistep process regulated by transcriptional activators synergistically 

interacted with the transcriptional regulators, such as PPARs, SREBPs and C/EBPs. 

They are sequentially activated in adipogenesis transcriptional cascade (Ali et al., 

2013). In the present study the mRNA expression of PPAR-γ was upregulated in 

visceral adipose tissue from mice fed the high-fat diet. The results presented in this 

study show that treatment with GPE recovered PPAR-γ expression to normal levels. 

Furthermore, GPE also decreased CEBPα and SREBF1 expression to attenuate 

adipogenesis in high fat induced mice. 

Our results indicate that GPE has potential anti-obesity effect through 

reduction of adipogenesis and lipogenesis. However, genome-wide studies of how 
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GPE regulate obesity remained to be conducted. Genome-wide transcriptome analysis 

should be conducted to provide insights and answers to many remaining questions. 

 

4.6. Conclusion 
Our primary goal was to investigate the effects of a dietary grape pomace 

extract supplement on the prevention of obesity. This study provides preliminary 

evidence that long-term consumption of GPE can: 1) lower the body weight. 2) down-

regulate the expression of several cytokines involved in chronic low-grade 

inflammation triggered by high fat diet, and 3) attenuate adipogenesis both in vitro and 

in vivo in 3T3-L1 pre-adipocytes and high fat diet induced obese mice. GPE shows 

beneficial effects on anti-obesity. 
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Figure 4- 1 Effect of GPE on pre-adipocyte cell 3T3-L1 viability.3T3-L1 pre-
adipocytes were treated with GPE at various concentrations (0, 100, 200, 400, 600, 800, 
1000, 2000, 4000 µg/mL) for 24 h. The results represent mean ± SD (n=4). *:p<0.05, 
**: p< 0.01. 
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Figure 4- 2 Effect of GPE on inhibiting 3T3-L1 adipocyte differentiation.3T3-L1 cells 
were differentiated using differentiation media with or without hormones for 3 days 
under different GPE treatments: 0, 100, 200, 400, 800µg/mL. (A) Intracellular lipids 
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GPE-200 GPE-400 GPE-800 
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stained with Oil Red-O. (B) Triglyceride content quantified by measuring absorbance. 
Non, undifferentiated cells; DM, differentiated medium. The results represent mean ± 
SD (n=3). *: p<0.05, **: p< 0.01. 
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Figure 4- 3 Effect of GPE on Glycerol-3-phosphate dehydrogenase (GPDH) activity 
during 3T3-L1 adipocyte differentiation.3T3-L1 cells were stimulated with 
differentiation media with hormones for 3 days under different GPE concentrations: 0, 
200, 400, 800µg/mL. The results represent mean ± SD (n=3). *: p<0.05, **: p< 0.01. 
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Figure 4- 4 Effect of GPE on adipogenesis gene expression. A-J: C/EBPα, C/EBPβ, 
PPARα, PPARγ, PGC-1α, SREBP1, ap2, FAS, and Lipase gene in 3T3-L1 adipocytes 
were investigated using real-time RT-PCR. 3T3-L1 cells were stimulated to 
differentiation with hormones for 3 days in different GPE concentrations: 0, 400, 
800µg/mL. The results represent mean ± SD (n=3). Columns marked with different 
letters are significantly different from each other at p ≤ 0.05.
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Figure 4-5 Effect of GPE on adipokines gene expression.A-E: angiotensinogen, 
adiponectin, leptin, resistin, and PAI1 in 3T3-L1 adipocytes were investigated using 
real-time RT-PCR. 3T3-L1 cells were stimulated to differentiation with hormones for 
3 days in different GPE concentrations: 0, 400, 800µg/mL. The results represent mean 
± SEM (n=3). Columns marked with different letters are significantly different from 
each other at p ≤ 0.05.
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Figure 4- 6 Effect of GPE on protein secretion in the cultured media.3T3-L1 cells were 
stimulated to differentiation with hormones for 3 days in different GPE concentrations: 
0, 200, 400, 800µg/mL. The results represent mean ± SEM (n=3). Columns marked 
with different letters are significantly different from each other at p ≤ 0.05. 
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(C) 

Figure 4- 7 GPE reduced body weight, abdominal fat weight and the size of white 
adipocytes in HFD-induced obese mice.8-week-old C57BLK/6J male mice were 
randomly divided into three dietary groups fed on ND (normal diet), HFD (high fat 
diet), HFD+ GPE (high fat diet supplemented with GPE) for 12 weeks (n=14 per 
group). (A) Body weight of the mice during the 12-week treatment. The results 
represent mean ± SEM (n=14). (B) Abdominal weight of the mice at 12th week 
treatment. The results represent mean ± SD (n=14). Columns marked with different 
letters are significantly different from each other at p ≤ 0.05. (C) Histology of white 
adipose tissue in HFD-induced obese mice. Representative epididymal WAT freshly 
isolated from each mouse group was fixed in 4% formalin and embedded in paraffin. 
Sections with 8 mm thick were stained with hematoxylin and eosin (magnification 
x200). 
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Figure 4-8 Expression of several hypothalamic neuropeptide genes in the 
hypothalamus.ARC region of hypothalamus were dissected from mice on different 
diets. Total RNA was extracted and the expression was determined using Real Time 
PCR. A-D: AGRP, NPY, POMC and CART gene. The results represent mean ± SEM 
(n=6). Columns marked with different letters are significantly different from each 
other at p ≤ 0.05. 
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Figure 4-9 Effects of GPE on adipogenesis related transcription factors. White 
adipocyte tissue were harvested from animals on different diets. A-D: SREBP1, 
C/EBPα, PPARγ and ap2 gene. Results were expressed as relative expression levels 
(mean ± SEM, n = 6) to normal diet. Columns marked with different letters are 
significantly different from each other at p ≤ 0.0.
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Figure 4-10 Effects of GPE on inflammatory cytokine/adipokine in adipose 
tissue.WATs were harvested from animals on different diets. A-C: PAI-1, adiponectin 
and leptin. Results were expressed as relative expression levels (mean ± SEM, n = 6) 
to normal diet. Columns marked with different letters are significantly different from 
each other at p ≤ 0.05. 
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Table 4-1. The list of genes encoding different peptide hormones related to glucose 

homeostasis.  

Adipogenesis regulation genes: Cebpb, Cebpd 

PPARγ Targets: Adiponectin, Cebpa, FAS, Fabp4, Lipe, Lpl, Pparg, 

Ppargc1α (Pgc-1α), Ppargc1β (Pgc-1β), Srebf1 

 

Table 4-2. The list of genes which are adipokines secreted in adipose tissue  

Anti-inflammation adipokines: adiponectin 

Pro-inflammation adipokines: leptin, angiotensinogen, resistin, PAI-
1 
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Table 4-3. Macronutrient and selected micronutrient content in the mouse diet. 

Rodent Diet with 60 kcal% Fat and 2.4 g Grape Extract /kg 

Product # D12492 D12492+GPE 
% gm kcal gm kcal 

Protein 26.2 20 26.2 20 
Carbohydrate 26.3 20 26.3 20 
Fat 34.9 60 34.9 60 
Total  100  100 
kcal/gm 5.2

 
 5.24  

     
Ingredient gm kcal gm kcal 
Casein, 80 Mesh 200 800 200 800 
L-Cystine 3 12 3 12 
     
Corn Starch 0 0 0 0 
Maltodextrin 10 125 500 125 500 
Sucrose 68.8 275

 
68.8 275 

     
Cellulose, BW200 50 0 50 0 
     
Soybean Oil 25 225 25 225 
Lard 245 2205 245 2205 
     
Mineral Mix S10026 10 0 10 0 
Mineral Mix S10026B 0 0 0 0 
DiCalcium Phosphate 13 0 13 0 
Calcium Carbonate 5.5 0 5.5 0 
Potassium Citrate, 1 H2O 16.5 0 16.5 0 
     
Vitamin Mix V10001 10 40 10 40 
Choline Bitartrate 2 0 2 0 
     
Grape Extract 0 0 2.4 0 
     
FD&C Yellow Dye #5 0.05 0 0 0 
FD&C Red Dye #40 0 0 0 0 
FD&C Blue Dye #1 0 0 0.05 0 
     

Total 773.8
 

4057 773.8
 

4057 
     
Grape Extract (g/kg) 0  2.4  
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Table 4-4. Effects of GPE on blood glucose, food intake, body weight, organ 

weight on 12th week of treatment. 

 DN HFD HFD+ GPE 

Blood glucose 136.80±3.95a 179.09±4.30b 136.35±1.78a 

Food intake 

(g/day) 

0.41±0.15a 0.31±0.16b 0.30±0.12b 

Heart weight 0.16±0.003a 0.22±0.015b 0.17±0.008a 

Liver weight 1.25±0.045a 1.81±0.15b 1.40±0.056b 

Pancreas 

weight 

0.24±0.022a 0.34±0.037a 0.30±0.041a 
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Chapter 5: Effects of Grape Pomace Extract on preventing 
Western Pattern Diet Induced Obesity Revealed by Hepatic 
RNA-sequencing Transcriptome Profile 
 

 

5.1. Abstract 
Obesity and diabetes are two of the leading risk factors causing health challenges 

worldwide. Western pattern diet (WPD) with its high fat and high sugar content is 

well known to cause obesity and diabetes. Recently, we and others have argued that 

plant-based products could provide a great potential in preventing WPD induced 

obesity and diabetes. Our previous studies and others’ have demonstrated that grape 

pomace extract (GPE) can reduce blood glucose and eliminate inflammation caused 

by high fat diet. In the present study, we investigated the role of GPE in the control of 

body weight.  In particular, we wanted to better characterize the molecular basis of 

how GPE could prevent obesity in mice fed a high fat diet by using an RNA-

sequencing (RNA-seq) approach. GPE marginally, but consistently increased body 

weight gain and significantly reduced circulating leptin. Hepatic transcriptome 

profiling analysis indicated that GPE significantly modulated expression of 181 genes. 

Further analysis indicated that GPE upregulated many genes involved in metabolic 

processes and those associated with energy expenditure and solute carrier transport. 

Additionally, a large number of genes related to immune responses, oxidative stress 

responses and inflammation biomarkers were significantly down regulated by GPE. 

Taken together, our results suggest that GPE can prevent obesity development through 

enhancing metabolism, accelerating energy expenditure, and reducing various stresses 

caused by WPD consumption. This study provides a molecular basis of GPE’s 
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potential as a functional food ingredient to prevent WPD-induced obesity 

development. 

   

5.2. Introduction 
Obesity is one of the leading risk factors for a number of diseases that have 

collectively been referred to as “metabolic syndrome”.  These include heart disease, 

diabetes and hypertension (Pi-Sunyer 2009 (ref27). In 2013, the American Medical 

Association officially classified obesity as a disease (http://www.ama-assn.org). 

According to the World Health Organization’s estimate, globally, more than 39% of 

adults aged 18 years and older are over-weight, and of these, more than half a billion 

are obese (www.who.int). In the United States, newly released statistics by the Centers 

for Disease Control and Prevention (CDC) indicated that 69.0% of Americans aged 

20 and older are over-weight and almost half of them are obese (CDC Statistics 2011-

2012 data).  

Obesity and diabetes are considered to be twin epidemics (Smyth & Heron, 

2006). They are two of the most serious public health challenges in developed 

countries, as well as in developing countries. In addition to genetic factors, the main 

causes for obesity are thought to be related to diet (high fat and high carbohydrate 

consumption) and lifestyle (lack of physical activity). It is believed that prolonged 

consumption of a western pattern diet (WPD), typically a high fat and high 

carbohydrate diet, can lead to obesity and insulin resistance (Newberry et al., 2006; 

Prada et al., 2005). 

Due to its great challenge to human health, molecular mechanisms that 

regulate obesity development are being intensively investigated. Adipose tissue, 
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traditionally considered to merely being used as the body’s energy storage tissues, has 

been re-examined and discovered to play important roles in secreting numerous 

protein hormones and receptors.  These include TNF-alpha, IL-6, leptin and 

adiponectin. These hormones and receptors effectively communicate with the brain 

and peripheral tissues to modulate glucose homeostasis, influence energy metabolism, 

regulate appetite and insulin resistance and control immune function (Matsuzawa et 

al., 1999; Funahashi et al., 1999). It is also well known that PPAR genes, a 

transcription factor family regulating glucose, lipid, and cholesterol metabolism in 

response to fatty acids, are highly expressed in adipose tissue and are key factors 

controlling adipocyte differentiation and adipocyte-specific gene expression (Jeong et 

al., 2012).  In addition, systemic chronic inflammation due to adipogenesis was also 

found as a major factor promoting obesity (Xu et al., 2003; Arkan et al., 2005).  

Long term high fat diet consumption significantly contributes to the 

development of both diabetes and obesity in both humans and rodents (Astrup et al., 

1994; Lin et al., 2000). At the molecular level, high fat diets cause genome-wide gene 

expression changes. Several genes encoding enzymes or signaling components related 

to lipid and glucose metabolism are significantly altered by high fat diet (Murase et 

al., 2001; Yu et al., 2000;  Maquoi et al., 2005; Croce et al., 2007; ). Using C57BL/6J 

mouse as human obesity model, Kim et al. (2004) examined genome-wide hepatic 

gene expression profiles affected by high fat diet by using a microarray analysis. 

Compared to a low fat diet (that was used as the control diet), high fat diet 

consumption significantly altered the expression of 97 hepatic genes involved in 

metabolism, inflammation responses, apoptosis and cell cycle, and transport (Kim et 
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al., 2004). These studies provided important insights on signals and molecules 

involved in the development of high fat diet induced obesity.  

Some forms of obesity are thought to be preventable through diet and lifestyle 

changes (Bray & Popkin, 1998; Leonard et al.,. 2001). In recent years, many 

researchers have focused on the identification of plant-based natural products which 

may play potential roles in preventing or delaying the development of obesity and 

diabetes (Prior et al., 2008; Decorde et al., 2009; Prior et al., 2010). One group of such 

natural products (including polyphenols, flavonoids and resveratrol) are derived from 

grapes and other fruits and vegetables. Flavonoids in grapes play a key role in 

preventing the development of diabetes by acting as multi-target modulators that 

reduce oxidative stress, lower the degree of systematic inflammation (Tsuda et al., 

2012; Chuang et al., 2011), and improve the insulin resistance and other anti-

hyperglycemic effects. In obese mice, grape powder has been shown to acutely 

improve glucose tolerance and chronically reduce inflammation (Chuang et al., 2012). 

Grape pomace from the Norton variety have been reported to contain significant 

amount of antioxidants (Hogan et al., 2010), and consumption of Norton grape 

pomace for 3 months exerted an anti-inflammatory effect in a high fat diet induced 

mouse obesity model (Hogan et al.,  2011). 

Previously we investigated the properties of GPE from a Tinta Cao grape 

variety. GPE had high antioxidant activities, and significantly inhibited the 

proliferation of HT-29 and Caco-2 colon cancer cells through triggering apoptosis 

(Parry et al., 2011). The in vitro action of GPE in reducing postprandial hyperglycemia 

through inhibition of alpha-glucosidase has also been demonstrated (Li et al, 2015a, 
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submitted). In-vivo studies with STZ-induced diabetic mice as well as with healthy 

human subjects have been conducted. GPE’s acute effect on postprandial 

hyperglycemia, acute insulin secretion and lipid metabolism were noted (Li et al., 

2015a Submitted). Furthermore, we examined several long term effects of GPE 

consumption on blood glucose regulation, as well as on several circulating peptide 

hormones. Although GPE did not affect blood glucose in STZ-induced diabetic mice, 

it significantly reduced blood glucose in WPD induced obese mice. In addition, GPE 

consumption significantly altered peptide hormones in circulation, such as insulin, 

GLP-1 and DPP-4. 

The liver is an essential organ for lipid and carbohydrate metabolism (Carey 

et al., 1983). It also plays a critical role in maintaining energy balance. Energy 

imbalance over a prolonged period can cause obesity. Therefore, in the current study, 

we focused on examination of hepatic gene expression profiles affected by long term 

consumption of GPE in a WPD induced obesity mouse model using RNA-seq 

approach. The present study was conducted to provide genome-wide molecular 

insights on how GPE balances the effects of WPD on induction of obesity, and 

prevents and delays the onset of obesity development caused by diets.   

 

5.3. Materials and Methods 
Sample preparation and extractions  

Grape pomace fruits were received from Chrysalis Vineyards, Virginia. GPE water 

extraction was prepared as previously described (Li et al., 2015 submitted). 

Animals and diet preparation 
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Animal husbandry, care, and experimental procedures in this study were 

approved by the Institutional Animal Care and Use Committee at the University of 

Georgia. Twelve-week old male C57BL/6NCr mice (National Cancer Institute, 

Frederick, MD, USA) were housed in clean cages at 12-hour light dark cycle at 20°C 

to 22°C with five mice per cage. After  two-week acclimation in the facility with 

standard rodent chow (8728C Teklad Certified Rodent Diet, Harlan Laboratories, Inc, 

Frederick, MD), twelve mice were randomly assigned to one of two dietary groups 

for a 12-week feeding experiment (n=6). Group 1 was fed with WPD diet (45% fat 

kcal, 35% carbohydrate, 20% protein); while the other group was fed with same WPD 

diet supplemented with GPE at 2.4 g/kg diet. All mice were fed with the respective 

diet for 12 weeks with water available ad libitum. Food intake and body weight were 

recorded every week.  

Tissue collection and sample analysis 

After completion of the experiments, diet was removed 12 h prior to sacrifice. 

Mice were anesthetized with CO2, and blood was collected by cardiac puncture with 

syringes previously rinsed with potassium EDTA solution (15% w/v). The plasma 

was separated by centrifugation at 1,000x g for 15 min at 4°C and transferred the 

serum to a clean polypropylene tube and stored at -80°C until analyzed. Liver tissues 

were collected and immediately frozen in liquid nitrogen and stored in -80°C for 

subsequent analysis.  

For collected serum, plasma leptin and ghrelin were measured using ELISA 

assay kit (Bio-Rad Laboratories, Hercules, CA). All assays were conducted according 

to the manufacturer’s protocols. 
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RNA isolation, library construction and RNA-seq sequencing 

Total RNA was extracted from liver samples using RNeasy Plus Universal 

Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

RNA integrity was monitored using a Nanodrop 2000 Spectrophotometer and an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Only those 

samples with RIN larger than 7.0 were used for RNA-seq library construction. Total 

RNA samples of two randomly chosen mice from each treatment were subject to 

RNA-seq analysis. Messenger RNAs (mRNA) was isolated with oligo (dT) selection 

through Dynal magnetic beads. The pair-end libraries were constructed using the 

TruSeq RNA sample preparation kit (Illumina, San Diego, CA, USA) following the 

manufacture’s instructions. Briefly, the mRNA was fragmented by exposure to 

divalent cations at 94°C and the fragmented mRNA was converted into double 

stranded cDNA. The cDNA ends were polished, the 3′-hydroxls extended with A 

bases, and ligated to Illumina-specific adapter-primers. The adaptor ligated DNA was 

amplified by 15 cycles of PCR followed by purification using  PCR purification kit 

(Qiagen, Hilden, Germany) to obtain the final library for sequencing. The DNA yield 

and fragment insert size distribution of the library was measured using an Agilent Bio-

analyzer. Library quantifications were performed by qPCR assays using the KAPA 

Library Quant Kit™ following the manufacturer's instructions. The constructed 

libraries were loaded on an Illumina flow cell and were sequenced on the HiSeq2000 

sequencing instrument using 101PE pair-ends protocol. Primary data analysis and 

base calling was performed by the Illumina instrument software. 
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Bioinformatics analyses and data mining 

RNA-seq mapping and expression analyses were performed using the Tuxedo 

pipeline (Trapnell et al., 2012), and using iPlant cyberinfrastructure resources as 

described previously (Goff et al., 2011; Mandadi and Scholthof, 2015). Briefly, raw 

RNA-seq reads were subjected to quality-based filtering and trimming using the 

FASTQ-quality trimmer and FASTQ-quality filter programs 

(hannonlab.cshl.edu/fastx_toolkit/index.html). Filtered RNA-seq reads were mapped 

to the mouse reference genome (NCBIm37) using the TopHat2 for paired-end reads 

program. The resulting alignments were used to assemble and quantify transcripts, 

and also were merged with the reference genome using Cufflinks2 and Cuffmerge2 

programs, respectively. Normalization of expression was performed using the 

fragments per kilobase transcript per million mapped fragment (FPKM) metric. 

Differential gene expression analysis was performed using the Cuffdiff2 program 

(Trapnell et al., 2013). Statistically significant changes in gene expression were 

identified after FDR corrections (FDR<0.05). 

Global quality assessment of the RNA-seq data was performed by density plot, 

box plot and scatter plot representation using the CummeRbund program (Trapnell et 

al., 2012). Statistically significant (FDR<0.05) differences in gene expression were 

visualized using volcano plots. Visualization of transcript assemblies in the genomic 

context was performed using the Integrative Genomics Viewer tool (Broad Institute) 

(Robinson et al., 2011).  

Gene ontology (GO)-based functional annotation of the differentially 

expressed genes was performed using Blast2Go PRO software (Conesa and Gotz, 
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2008). The assembled transcript sequences were used to perform BLASTX (E-value: 

1e-5) analysis against the reference mouse genome sequences, followed by mapping 

and annotation of the significant hits, according to the recommended instructions 

(Conesa and Gotz, 2008). Additionally, gene set enrichment analyses (GSEA) and 

directed acyclic graphs (DAG) of the enriched GO terms in biological process, 

molecular function and cellular component were performed using WEBbased GEne 

SeT AnaLysis Toolkit (WebGestalt) (Wang et al., 2013). The Hypergeometric 

statistical method and FDR correction, using the Benjamini & Hochberg (1995) 

method, was used for GSEA analysis (Benjamini and Hochberg, 1995) 

Statistical analysis 

All data were presented as means ±SEM. The differences between two groups 

were analyzed by t-test using Prism 6 (Graphpad). Differences were considered 

significant when the P value was ≤0.05. 

 

5.4. Result 
Effects of GPE on body weight gain and food intake in WPD-induced obesity 

mice 

We monitored body weight and food intake weekly during the feeding 

experiment. Before the start of the feeding program, the average body weight of the 

control group was 29.8g, the treatment group (WPD+GPE) weighed 29.8g. Although 

there was no statistically significant difference between the treatments, the body 

weight for WPD group was always slightly heavier than that of WPD+GPE feeding 

group, and reached 43.00g and 40.98g for WPD and WPD+GPE feeding groups 

respectively at the end of 12-week experiment. Total body weight gain during 12-
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week experiment was 13.2g for WPD group, and 11.2g for WPD+GPE feeding group. 

This difference represented 17.8% less gain on body weight by consumption of GPE.  

Food intake was also measured weekly. As shown in Table 5-1, mice fed GPE 

consumed significantly more food at weeks 5-8 and the 12th week than that fed with 

WPD only. Overall, on average, 246.1g of food was consumed by each mouse in GPE 

feeding group during the 12-week experiment, while only 216.0g was consumed for 

its counterpart in WPD group representing a 14.0% more food consumed by mice 

feeding with GPE.  

Although no statistic difference were detected for both body weight gain and 

food intake, such trends of changes indicated a potential positive role of GPE in 

control of body weight and therefore obesity development. 

 

Effects of GPE on serum peptide hormones related to obesity development  

To further investigate the role of GPE in control of obesity development, we 

examined the changes of two obesity related serum peptide hormones. Ghrelin is 

known as a hunger hormone and plays a significant role in regulating the energy 

distribution and use efficiency (Inui et al., 2004; Burger & Berner, 2014). Blood 

ghrelin level was not significantly altered by GPE consumption when compared to the 

control group (Figure 5-1). However, Leptin, another hormone that regulates energy 

balance (Friedman, 2010), was significantly altered by GPE feeding. As shown in 

Figure 5-1, mice from the GPE feeding group had significantly reduced leptin in the 

blood (95.5 ng/ml in GPE feeding group versus 28,9pg/ml in the control group).  

GPE alters hepatic gene expression profiles 
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We previously studied the effects of GPE on diabetes control and found that 

GPE can significantly reduce blood glucose and GHbA1C. In addition, GPE 

attenuated the expression of several peptide hormones related to glucose homeostasis 

(Li et al., 2015, submitted). Furthermore, we demonstrated in this study that GPE 

reduced body weight gain under western pattern diet condition and significantly 

inhibited the secretion of leptin in the circulating system. These results promoted us 

to further examine the role of GPE on regulating genome-wide transcriptome 

expression profiles. We conducted high throughput RNA sequencing using liver 

tissues from both mice fed with WPD and WPD+GPE. Two randomly chosen 

independent mice from each group were used as biological replicates and subjected to 

RNA-seq. 

After filtering and trimming short prematurely terminated sequences, low 

quality sequences and ambiguous bases, a total of more than 36 million high quality 

reads (left and right ends) from each library (WPD-1, WPD-2, GPE-1 and GPE-2) 

were generated  (Table 5-2). These reads were mapped to the mouse reference 

genome, and transcript assembly and gene expression analysis were conducted, using 

the Tuxedo RNA-seq data analyses pipeline (Trapnell et al., 2010, 2012, 2013; 

Mandadi and Scholthof, 2015) (Figure 5-2A). Approximately 95% reads from each 

library were successfully mapped to the mouse reference genome. Of the mapped 

sequences, 73% to 86% were unique, and mapped only once to a genomic locus in the 

mouse reference genome. Global inspection of the gene expression results was further 

performed using the CummeRbund program (Trapnell et al., 2012). Pairwise scatter 

matrix plots, density and box plots of the gene expressions revealed normal 
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distribution of the data, and no systematic biases (Figures 5-2A, 2B and 2C) (Dillies 

et al., 2013). Volcano matrix plots showed that a significant (FDR<0.05) number of 

transcripts were up- or down-regulated by GPE (Figures 2D). 

In total, we detected 15,759 genes from WPD only group with 1,384 genes 

uniquely expressed, and 15,276 genes from WPD+GPE feeding group with 901 genes 

uniquely expressed (Figure 5-3A). Using FPKM≥1 as cut off, these numbers were 

reduced to 11,168 (with 685 unique genes) and 11,118 (with 635 unique genes) 

respectively (Figure 5-3B). Furthermore, we identified 286 (2.6%) genes from the 

WPD group, and 270 (2.4%) genes from the WPD+GPE feeding group as previously 

unannotated genes that were expressed at FPKM≥1. Fourteen of these genes were 

significantly differently expressed between WPD group and WPD+GPE group at 

FDR value less than 0.05. BLASTX analysis against the publicly available reference 

sequence databases indicated that a few genes were unannotated within any gene 

models or genome annotations. Others had matches to putative orthologs in other 

species. For example, these genes encode endonuclease reverse transcriptase 

(XLOC_027768), NAD-dependent protein deacylase sirtuin (XLOC_033674), GTP-

Rho binding proteins (XLOC_019482 and XLOC_007568) and uncharacterized 

hypothetical proteins (XLOC_023889, XLOC_025814, XLCO_028520, and 

XLOC_030807). 

Differential gene expression analysis between WPD and WPD+GPE groups 

was conducted using Cuffdiff2. At FDR<0.05 correction, we identified a total of 181 

genes that showed significant difference between the two feeding groups. Of these, 

94 genes were significantly down regulated by GPE consumption, and 87 genes were 
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significantly upregulated by GPE. The hierarchical clustering (HCL) and the heat-

map analysis clearly showed that samples within the treatment grouped in one cluster 

distinct from control samples (Figure 5-3C).  Moreover, four genes (Cyp2a4, Gsta1, 

Sprr1a and XLOC-033998) were completely suppressed by GPE feeding while 

another 4 genes (Moxd 1, Crybb3, XLOC_006742 and XLOC_021098) were 

uniquely induced by GPE feeding. When using FDR<0.10 as cut off, we identified 

~240 genes with significantly different expressions between the groups. The list of 

these genes with their FPKM values, fold changes and p and FDR-adjusted p values 

(q values) are presented in Table 5-5 (upregulated genes) and Table 5-6 (down 

regulated genes). All the genes with significant changes in expression levels in 

response to GPE treatment at FDR<0.05 level were further analyzed and classified 

according to their functions using Blast2Go PRO software. 

Annotation and classification of differentially expressed genes into functional 

categories 

The Gene Ontology (GO) classification was conducted for all genes exhibiting 

a significant change in transcript levels using Blast2Go PRO software and against the 

reference mouse genome sequences as background. All genes were classified 

according to their biological process and molecular functions. Of the up-regulated 

genes that are classified based on biological functions, approximately 54% were 

involved in metabolic process including lipid and carbohydrate metabolisms and 

small molecule metabolism (Table 5-3). For the molecular function category, 39% 

were dedicated to catalytic activity (Table 5-4). However, in the genes that were 

down-regulated by GPE, 27.7% of genes were involved in negative regulation of 
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biological process, and 26.6% involved in responses to chemical stimulus. A total of 

21.3% of genes were involved in immune responses or innate immune responses 

(Table 5-3). Small amount of genes (3.1%) involved in lipoprotein transport were also 

down regulated by GPE. When categorized by molecular function, 61.7% of these 

genes were involved in binding, and of these, more than half (56.9%) were involved 

in ion binding. Proteins involved in growth factor binding (5.3%) were also down 

regulated by GPE (Table 5-4). 

Genes related to metabolism and energy expenditure were up regulated by GPE 

Several genes upregulated by GPE were involved in metabolism and energy 

expenditure. Many genes controlling metabolism were downregulated by HFD in liver 

when compared to regular diet (Kim et al., 2004). However, in our experiment (using 

diets that were high fat and high sugar) when supplemented with GPE, these genes 

appeared to be upregulated back to the level comparable to that of regular diet 

condition. These genes included Fabp5 with 1.5 fold change, Serpina4-ps1 with 2.9 

fold change, Slc22a7 with 2.8 fold change, 3'-phosphoadenosine 5'-phosphosulfate 

synthase 2 (Papss2, with 1.5 fold change), elongation of very long chain fatty acids 

(Elovl3 with 1.1 fold change), cystathionine beta-synthase (Cbs with 1.3 fold change), 

carbamoyl-phosphate synthetase 1 (Cps1 with 2 fold change), Lipin1 with 1 fold 

change and at least 6 cytochrome P450 (with 1 to 1.6 fold changes).  

Interestingly, genes involved in energy expenditure were also upregulated by 

GPE. The expression changes for some of these genes are presented individually as 

FPKM plots (Figure 5-4). Among the GPE altered genes, 6 major urinary proteins 

(Mup1, Mup 9, Mup11, Mup 12, Mup16, and Mup17) were significantly up regulated 
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by GPE with at least 2-fold changes (Figure 5-4). Although MUP proteins were 

originally identified in urine and played key roles in chemical signaling, recent studies 

suggested that circulating MUP proteins regulate glucose and lipid metabolism. Most 

members of this gene family are not yet well studied, however, MUP1 has been 

extensively investigated. It increases energy expenditure and serves as a regulator for 

glucose and lipid metabolism (Hui et al., 2009; Zhou et al., 2009). Additionally, 

ENHO (energy homeostasis associated gene) was also significantly up regulated by 

GPE (Figure 5-4). ENHO encodes a peptide, adropin which is a newly discovered, 

liver-secreted hormone, and is believed to regulate glucose and lipid metabolism 

(Kumar et al., 2008). 

Another gene family that appeared to be significantly upregulated by GPE is 

the solute carriers (SLC), which play important roles in transporting organic 

molecules and inorganic ions in and out of cells through cell membrane. We identified 

six SLC genes that were significantly altered by GPE. Four of them are upregulated 

and include Slc22a7, Slc7a2, Slco1a1 and Slco2a1 (Figure 5-4). Furthermore, four 

serpin peptidase inhibitors (Serpina11, Serpina1e, Serpina4-ps1 and Serpine2) were 

also significantly up regulated by GPE in liver tissues (Figure 5-4).    

Genes related to immune responses and stress responses were down regulated by 

GPE 

In contrast to the GPE up regulated genes, most genes down regulated by GPE 

were involved in immune responses and include biomarker genes for inflammation. 

For example, PPARγ, an important gene in regulating diabetes and obesity, was 

significantly down regulated by GPE, as noted with a 2.7 fold change (Figure 5-5). In 
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HFD induced obese mice, PPARγ was highly expressed. PPARγ promotes 

adipogensis and leads to synthesis and deposit of excess fat tissue. GPE consumption 

significantly reduced PPARγ expression that is induced by HFD suggesting the role 

of GPE in preventing adipogensis and fat tissue formation. Aox1 gene, a potential 

target of PPARα was also significantly down regulated by GPE. CD36 was another 

down regulated gene by GPE. CD36 is responsible for the transport of long chain fatty 

acids into the adipose tissue (Coburn et al., 2000) and induced by HFD (Kim et al., 

2004). Both PPARγ and CD36 are also involved in lipoprotein transport. Another 

lipoprotein transporter identified as being down regulated by GPE was Unc119. 

Additionally, several hepatic genes associated with stress responses were significantly 

down regulated by GPE. These genes include transcription factor myc, heat shock 

protein 1 (Hspb1), glutamate-cysteine ligase (catalytic subunit) (Gclc), 

metallothionein 1 (Mt1), and glutathione S-transferases (GSTs). Many of these genes 

were induced by HFD (Kim et al., 2004). The reduction in expression of these genes 

by GPE suggests that GPE significantly reduced the stress response caused by high 

fat contained diets. 

 

5.5. Discussion 
It is well known that western pattern diet induces obesity and diabetes in both 

mice and humans. We and others have demonstrated that grape and grape derived 

products have the potential to prevent or delay obesity development caused by western 

pattern diet (Décordé et al., 2009). The purpose of this study was to examine hepatic 

gene expression profiles affected by GPE in a WPD induced obese mouse model, and 

to provide molecular mechanisms that drive GPE’s action in prevention of obesity 
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development. After a 12-week feeding experiment, mice fed with WPD supplemented 

with 2.4g/kg GPE, gained 21% less in body weight. Interestingly, food intake analysis 

indicated that mice consuming GPE ate 13% more food than HFD consuming mice. 

The peptide hormone grehlin, a known factor in controlling food intake, did not show 

any difference between two treatments. However, leptin, another peptide hormone 

regulating obesity development, was significantly reduced in circulating system by 

GPE supplementation. Kang et al., (2011) also reported that feeding mice a mixture 

of red grape extract, soy isoflavone and L-carnitine improved high fat diet induced 

obesity through down regulation of plasma leptin. Taken together, our results and 

others strongly suggest that GPE may play positive roles in preventing increased body 

weight and obesity. 

The liver plays an essential role in maintaining energy balance. In general, 

obesity can be caused by energy imbalance over a prolonged time. Previously, the 

effects of HFD on transcriptional changes in liver were investigated in both the early 

stage of HFD intake (Gregorie et al., 2002) and a long term HFD feeding stage using 

microarray technology (Kim et al., 2004, 2005; Gu et al, 2009; Xie et al., 2010). Most 

of these studies identified approximately 100 genes (from 86 to 130 genes) that were 

significantly altered by HFD when compared to standard diet. In our current study, 

using the RNA-seq approach, we examined the role of GPE on regulating hepatic 

transcriptome profiles under high fat and high sugar conditions. We used a more 

stringent high fat diet, with 45% of calories derived from fat when compared to other 

studies with 35% of calories derived from fat (Kim et al, 2004, 2005). In addition, 

another 35% of the calories in our diet were derived from sugar. In total, more than 
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15,000 genes were detected in both WPD-fed and WPD+GPE fed mice. Of these, 

approximately 180 genes were significantly up- or down- regulated by GPE after FDR 

correction (<0.05). Based on our literature review, we found that ~50% of these genes 

were previously identified as either being induced or suppressed by high fat diet or 

were found in obese mice and humans, even though the specific roles for most of these 

genes in obesity development are not yet understood. Surprisingly, expression of 

many of these genes was adjusted by GPE supplementation. Expression levels were 

closer to that under the standard diet condition. Furthermore, about 45% of identified 

genes in the current research were previously unidentified in relation to obesity or 

diabetes.   

GO analysis showed that most of the up regulated genes were involved in 

metabolism. Solute carrier genes and serpin peptidase inhibitors were also upregulated 

by GPE. Interestingly, we also found that several hepatic genes that are involved in 

energy expenditure were significantly upregulated by GPE. These include several 

members of MUP family and ENHO. Upregulation of these genes is related to 

metabolism and energy expenditure by GPE and could enhance the efficient use of 

the excess energy derived from WPD, and in that way could prevent the deposit of 

unused energy into adipose tissue. On the other hand, those that were down regulated 

by GPE were involved in immune and stress responses. Accordingly, many immune 

responsive genes and stress defending genes were up regulated by high fat diet (Kim 

et al., 2004, 2005). Obesity causes systemic chronic inflammation, hence HFD leads 

to significant induction of biomarker genes related to inflammation (Xu et al., 2003; 

Arkan et al., 2005). Supplementation of GPE, along with WPD, significantly 
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downregulated expression of inflammation biomarkers, which are commonly induced 

by HFD. These included PPARγ, cd36, cd74 for immune responses; MTs and GSts 

for stress responses; and postn, gpc1 and saa2 for inflammation. Downregulation of 

these genes by GPE suggests that GPE can reduce stresses caused by WPD and delays 

obesity development under WPD condition. 

  

5.6. Conclusion 
Our hepatic transcriptome analysis has shown that GPE supplementation could 

enhance energy expenditure through upregulation of metabolism related genes and 

genes controlling energy homeostasis. Furthermore, GPE reduces various WPD-

induced stress responses and obesity-induced inflammation. This study provides 

insights at the molecular level into understanding GPE’s actions in preventing and 

delaying the development of obesity by a western pattern diet. Our previous research 

found that, when consumed with white bread, GPE can significantly reduce acute 

blood glucose level (Li et al., 2015). Taken together, our studies indicate that GPE 

may be a potential functional food ingredient that can potentially prevent or delay the 

onset of both diabetes and obesity. 
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Figure 5- 1 Circulated peptide hormone expression in WPD and WPD+GPE treated 
groups.A. Ghrelin expression showed no difference between treatments; B. Leptin 
expression was significantly reduced by GPE supplementation. 
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(A)        (B)       

 

(C)                                                           (D) 

Figure 5- 2 Global analysis of gene expression in WPD and WPD+GPE treated mice 
showed normal distribution of the expression data and differentially expressed genes.A. 
Expression scatter matrix, B. Expression density plots, C. Expression box plots, and D. 
Expression fold change volcano matrix 
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             (C) 
 
Figure 5- 3 Venn diagrams of the expressed genes and hierarchical cluster analysis of 
differentially expressed genes between WPD and WPD+GPE treatments. A. Venn 
diagram showing the distribution of all genes expressed in WPD group and WPD+GPE 
group. B. Venn diagram showing the distribution of genes with FPKM>1 in WPD 
group and WPD+GPE group. C. Cluster analysis of all genes with significant 
differences in their expression between the groups. Control group represents those fed 
with WPD only, treatment group represents mice with WPD+GPE feeding.  
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Figure 5-4 Expression plots of selected upregulated genes in GPE 
supplementation.Levels of expression (FPKM) of each individual gene is plotted to 
reveal the difference between WPD fed and WPD+GPE fed mice.  
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Figure 5-5 Expression plots of selected downregulated genes in GPE 
supplementation.Levels of expression (FPKM) of each individual gene is plotted to 
reveal the difference between WPD fed and WPD+GPE fed mice.  
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Table 5-1. Body weight gain and food intake during 12-week experiment in WPD and 

WPD+GPE mice 

  

Week 
WPD Body 
Weight (g) 

WPD+GPE 
Body 

Weight(g) 

WPD Food 
Consuming 

(g) 

WPD+GPE 
Food 

Consuming(g) 
  0 29.82±0.77 29.79±0.72   
  1 33.59±1.14 32.56±1.24 3.74±0.19 3.97±0.2 
  2 34.6±1.59 33.1±1.22 2.59±0.13 2.79±0.06 
  3 36.53±1.59 34.08±1.47 2.83±0.13 2.9±0.14 
  4 35.74±1.64 33.18+1.47 2.53±0.06 2.74±0.10 
  5 37.87±1.71 35.46+1.56 2.51±0.10 2.89±0.13* 
  6 38.28±1.57 36.35+1.48 2.33±0.02 2.71±0.14* 
  7 39.09±1.52 36.58+1.89 2.36±0.09 2.85±0.09** 
  8 39.79±1.59 38.16±2.33 2.45±0.08 3.02±0.12** 
  9 39.68±1.62 38.16±2.28 2.02±0.09 2.28±0.20 
  10 40.58±1.54 38.68±1.98 2.43±0.03 2.78±0.18 
  11 41.97±1.53 39.46±2.17 2.52±0.20 3.22±0.29 
  12 43± 1.49 40.98±2.04 2.54±0.06 3.01±0.18* 
  Total 

weight 
gain (g) 13.18 11.19   

   Total Food 
Consumed(g)  215.95 246.12 

  Difference 
(%) 1.99 (17.8%) 30.17 (14.0%) 

 

 

 

 

 



 

Table 5-2. Statistics of RNA-seq mapping analysis.  

 WPD-1 WPD-2 WPD+GPE-1 WPD+GPE-2 

Trimmed reads     

Left 18,145,626 19,501,734 18,446,697 19,181,364 

Right 18,113,614 19,469,121 18,418,621 19,152,427 

Mapped     

Unique left (%) 14,836,086(81.8) 15,188,107(77.9) 13,997,103(75.9) 14,058,494(73.3) 

Nonunique left (%) 2,517,763(13.9) 3,283,928(16.8) 3,568,483(19.3) 4,256,496(22.2) 

Unique right (%) 14,796,700(81.7) 15,150,906(77.8) 13,965,442(75.8) 14,036,156(73.3) 

Nonunique right (%) 2,504,632(13.8) 3,268,023(16.8) 3,553,152(19.3) 4,242,932(22.2) 

Overall alignment 95.55% 94.65% 95.15% 95.45% 

Total aligned pairs 16,628,026 17,537,998 16,762,308 17,539,443 

 

 

 



 

Table 5-3. GO enrichment analysis of differentially expressed genes in biological process category. 

GO term Description No. in input list No. in Ref P value FDR 
Genes in Group A     
GO:0044281 small molecule metabolic process 23 1821 6.57E-09 4.15E-06 
GO:0006082 organic acid metabolic process 14 731 7.76E-08 2.45E-05 
GO:0019752 carboxylic acid metabolic process 13 675 2.26E-07 4.75E-05 
GO:0043436 oxoacid metabolic process 13 717 4.49E-07 7.08E-05 
GO:1901606 alpha-amino acid catabolic process 5 57 1.14E-06 0.0001 
GO:0009063 cellular amino acid catabolic process 5 67 2.56E-06 0.0003 
GO:0046395 carboxylic acid catabolic process 6 148 8.57E-06 0.0007 
GO:0016054 organic acid catabolic process 6 148 8.57E-06 0.0007 
GO:0008152 metabolic process 47 8894 1.14E-05 0.0008 
GO:0044282 small molecule catabolic process 6 196 4.20E-05 0.0021 
Genes in Group B     

GO:0070887 
cellular response to chemical 

stimulus 21 1053 1.49E-10 1.21E-07 
GO:0042221 response to chemical stimulus 25 2020 3.62E-08 1.47E-05 
GO:0055114 oxidation-reduction process 15 919 1.20E-06 0.0002 
GO:0010035 response to inorganic substance 9 279 9.08E-07 0.0002 
GO:0006950 response to stress 22 2088 4.54E-06 0.0007 
GO:0006955 immune response 12 669 6.15E-06 0.0008 

GO:0048519 
negative regulation of biological 

process 26 2902 9.40E-06 0.0011 
GO:0071229 cellular response to acid 4 38 1.16E-05 0.0012 
GO:0045087 innate immune response 8 299 1.49E-05 0.0013 
GO:0042953 lipoprotein transport 3 14 1.72E-05 0.0014 

• Genes in Group A are upregulated by GPE supplementation; and genes in group B are down regulated by GPE supplementation 



 

 
Table 5-4. GO enrichment analysis of differentially expressed genes in molecular function category 

GO term Description No. in input list No. in Ref P value FDR 
Genes in Group A     
GO:0030170 pyridoxal phosphate binding 5 51 7.22E-07 3.84E-05 
GO:0009055 electron carrier activity 6 108 1.56E-06 3.84E-05 
GO:0008483 transaminase activity 4 24 1.12E-06 3.84E-05 

GO:0016769 
transferase activity, transferring nitrogenous 

groups 4 25 1.33E-06 3.84E-05 
GO:0070279 vitamin B6 binding 5 51 7.22E-07 3.84E-05 
GO:0020037 heme binding 6 114 2.15E-06 4.41E-05 
GO:0031406 carboxylic acid binding 7 189 3.07E-06 4.90E-05 
GO:0046906 tetrapyrrole binding 6 122 3.19E-06 4.90E-05 
GO:0004497 monooxygenase activity 6 143 7.97E-06 0.0001 
GO:0003824 catalytic activity 34 5105 8.72E-06 0.0001 
Genes in Group B     
GO:0050840 extracellular matrix binding 5 38 2.39E-07 3.01E-05 
GO:0005488 binding 58 10781 6.83E-06 0.0004 
GO:0016491 oxidoreductase activity 12 737 1.18E-05 0.0005 
GO:0019838 growth factor binding 5 107 4.17E-05 0.0013 
GO:0043236 laminin binding 3 22 6.51E-05 0.0016 
GO:0004364 glutathione transferase activity 3 26 0.0001 0.0021 
GO:0043167 ion binding 33 5208 0.0003 0.0054 
GO:0046983 protein dimerization activity 11 934 0.0005 0.0063 
GO:0008289 lipid binding 9 648 0.0005 0.0063 
GO:0005518 collagen binding 3 41 0.0004 0.0063 

• Genes in Group A are upregulated by GPE supplementation; and genes in group B are down regulated by GPE supplementation
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Table 5-5. List of significantly upregulated genes by GPE under WPD condition 

Gene Name 
FPKM-
WPD 

FPKM-
GPE 

log2 (fold 
change) p_value q_value 

Moxd1 0 36.0572 inf 
5.00E-

05 0.004307 

Crybb3 0 3.9232 inf 
5.00E-

05 0.004307 
XLOC_021098 0 9.05402 inf 0.0001 0.008061 
XLOC_006742 0 98.1434 inf 0.0004 0.023908 

Hsd3b5 3.61628 141.493 5.29008 
5.00E-

05 0.004307 

Cbx8 3.15135 48.0516 3.93054 
5.00E-

05 0.004307 

Mup16 16.359 196.478 3.58621 
5.00E-

05 0.004307 

Serpina1e 194.381 2187.37 3.49224 
5.00E-

05 0.004307 

XLOC_033674 1.06501 11.8183 3.47207 
5.00E-

05 0.004307 

Mup1 37.6937 379.341 3.3311 
5.00E-

05 0.004307 

Enho 1.81 16.6186 3.19874 
5.00E-

05 0.004307 
Scara5 0.463545 3.92739 3.08279 0.0003 0.019818 

Selenbp2 25.056 197.383 2.97777 
5.00E-

05 0.004307 

Serpina4-ps1 8.05187 60.2661 2.90395 
5.00E-

05 0.004307 

Slc22a7 6.6424 47.8653 2.84921 
5.00E-

05 0.004307 
Rabl2 1.66147 11.8461 2.83388 0.0007 0.036608 

Mup12 22.9421 162.792 2.82697 
5.00E-

05 0.004307 

Mup11 186.086 1215.61 2.70764 
5.00E-

05 0.004307 

C8b 30.4408 176.799 2.53803 
5.00E-

05 0.004307 

Slco1a1 21.6119 125.337 2.53592 
5.00E-

05 0.004307 

Mup17 306.03 1731.28 2.50009 
5.00E-

05 0.004307 

Ighm 7.3934 39.6005 2.42121 
5.00E-

05 0.004307 
XLOC_014487 1.50612 7.91347 2.39348 0.0016 0.069249 
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Mup9 35.1333 176.757 2.33086 
5.00E-

05 0.004307 
XLOC_027770 2.0418 9.88298 2.2751 0.00145 0.063699 

Slc43a1 0.89391 4.3248 2.27443 0.00265 0.09824 
Zbtb49 0.901191 4.14683 2.20211 0.0027 0.098843 

Egfr 32.2418 142.533 2.1443 0.0002 0.014286 

Upp2 38.5061 167.763 2.12327 
5.00E-

05 0.004307 
Acmsd 2.57294 10.8568 2.07711 0.0002 0.014286 
Lrrc16a 2.69661 11.2614 2.06217 0.0001 0.008061 

Marco 3.6366 15.1593 2.05954 
5.00E-

05 0.004307 

Cps1 178.254 727.483 2.02898 
5.00E-

05 0.004307 
XLOC_015037 1.74251 7.02461 2.01125 0.00195 0.079318 

Igkc 14.2835 56.6227 1.98703 
5.00E-

05 0.004307 

Acpp 1.62289 6.28508 1.95336 
5.00E-

05 0.004307 

Lifr 11.3699 43.8454 1.9472 
5.00E-

05 0.004307 
Socs2 1.54613 5.45279 1.81834 0.0024 0.093303 
Cadm4 1.24048 4.36957 1.81659 0.00255 0.095338 

Hamp 1274.89 4474.75 1.81143 
5.00E-

05 0.004307 
Avpr1a 1.60847 5.61163 1.80273 0.00085 0.042675 

XLOC_027768 2.43088 8.4263 1.79342 0.0009 0.044175 

Prhoxnb 17.3853 60.2084 1.79209 
5.00E-

05 0.004307 
XLOC_008927 2.03094 6.82999 1.74973 0.00195 0.079318 

Pold3 6.59681 21.5652 1.70886 0.00255 0.095338 
XLOC_026364 1.78265 5.81716 1.70629 0.0024 0.093303 

Igfbp2 75.4467 239.364 1.66568 
5.00E-

05 0.004307 

Susd4 4.71087 14.6646 1.63827 
5.00E-

05 0.004307 
Tat 240.842 747.02 1.63306 0.00015 0.011264 

Cyp2c70 106.006 325.516 1.61858 
5.00E-

05 0.004307 

Cyp7b1 41.6257 126.977 1.60902 
5.00E-

05 0.004307 
Tnrc18 1.37261 4.16457 1.60125 0.00245 0.094411 
Trim14 9.04926 27.148 1.58497 0.00015 0.011264 

Fabp5 23.34 69.309 1.57024 
5.00E-

05 0.004307 
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Mpv17l 4.89329 14.5088 1.56805 0.0003 0.019818 

Ces3b 68.2837 197.388 1.53142 
5.00E-

05 0.004307 

Cyp1a2 76.905 221.594 1.52677 
5.00E-

05 0.004307 

Emr1 3.51451 10.076 1.51952 
5.00E-

05 0.004307 
Tgm1 1.63912 4.64967 1.5042 0.0013 0.057979 

Serpine2 4.87296 13.8167 1.50355 
5.00E-

05 0.004307 

Cyp2c54 33.0642 93.1461 1.49422 
5.00E-

05 0.004307 
Camkk2 1.35482 3.7647 1.47444 0.0018 0.075669 

Fgl1 207.214 573.246 1.46804 
5.00E-

05 0.004307 

Papss2 23.4493 64.827 1.46705 
5.00E-

05 0.004307 
Eapp 7.75341 20.8587 1.42774 0.00255 0.095337 

Camk1d 6.06286 15.6069 1.36412 
5.00E-

05 0.004307 
Tfdp2 1.83488 4.719 1.36279 0.0005 0.02816 
Cela1 20.7264 52.2742 1.33463 0.00035 0.021809 

Nnmt 86.5215 217.402 1.32923 
5.00E-

05 0.004307 

Rnase4 249.116 623.428 1.32341 
5.00E-

05 0.004307 
Cbs 133.045 328.714 1.30492 0.0002 0.014286 

Cdh1 2.73557 6.74993 1.30303 0.0005 0.02816 
Ablim3 1.5797 3.83855 1.28091 0.00165 0.070717 

Got1 72.0253 173.019 1.26435 
5.00E-

05 0.004307 
Ankrd33b 2.12592 5.10462 1.26372 0.00085 0.042675 

Cyp4f14 49.6096 116.851 1.23598 
5.00E-

05 0.004307 

Agxt 77.9814 183.563 1.23507 
5.00E-

05 0.004307 
Tnfaip2 5.04012 11.8391 1.23204 0.0026 0.096795 

Ccbl1 32.4535 75.9433 1.22655 
5.00E-

05 0.004307 
Anubl1 5.2151 12.0711 1.21079 0.0005 0.02816 
Nudt7 310.368 717.806 1.20961 0.0001 0.008061 
Gabbr2 4.03488 9.23289 1.19426 0.0025 0.095338 
Rdh11 18.9883 43.1703 1.18493 0.0001 0.008061 
Dicer1 2.52702 5.71979 1.17853 0.0017 0.072156 
Pde9a 10.3118 23.3092 1.1766 0.0013 0.057979 
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Setd3 23.9092 53.8866 1.17236 0.00115 0.053744 

Slco2a1 5.17976 11.598 1.16291 
5.00E-

05 0.004307 

XLOC_028520 52.2106 116.183 1.15398 
5.00E-

05 0.004307 
BC029214 10.3873 23.019 1.14801 0.0019 0.078373 

Slc7a2 26.5029 58.6511 1.14601 0.00035 0.021809 
Gprc5c 15.0448 33.2781 1.14531 0.0017 0.072156 

2810007J24Rik 271.66 599.196 1.14122 0.0006 0.032743 
Gpcpd1 14.7812 32.2696 1.12641 0.0001 0.008061 
Elovl3 50.2301 109.576 1.12531 0.00035 0.021809 
Gnat1 16.1289 34.9645 1.11624 0.00125 0.057201 
Casp3 5.11642 11.0782 1.11451 0.002 0.080977 

C6 47.8015 103.33 1.11213 
5.00E-

05 0.004307 
Fam188a 15.4096 33.278 1.11074 0.0027 0.098843 

Eif4ebp2 17.1322 36.5717 1.09401 
5.00E-

05 0.004307 

Cml1 108.524 229.996 1.0836 
5.00E-

05 0.004307 
Prodh 51.4369 108.798 1.08078 0.00125 0.057201 
Nfix 7.8389 16.4177 1.06653 0.0011 0.051682 

Pstpip2 6.94864 14.5424 1.06546 0.0009 0.044175 
Serpina11 31.1668 64.7905 1.05577 0.0003 0.019818 

C9 134.528 279.541 1.05515 0.0022 0.086678 

Cyp2c44 73.232 151.388 1.0477 
5.00E-

05 0.004307 
Pdia5 13.2052 27.1489 1.03979 0.00025 0.017433 
Kcnk5 5.60549 11.4846 1.03479 0.0013 0.057979 
Hes6 69.1855 141.515 1.03242 0.00015 0.011264 
Mafb 7.36383 15.0254 1.02887 0.00045 0.026358 

Il13ra1 5.56609 11.2701 1.01776 0.0008 0.041346 
Lpin1 11.5968 23.1468 0.99708 0.0004 0.023908 
Als2 8.11245 16.0915 0.988088 0.00065 0.034612 
Sdc3 8.2911 16.3595 0.98049 0.001 0.048541 

Slc29a1 62.7708 122.298 0.962232 0.0018 0.075669 
F7 26.5526 50.4188 0.925108 0.0007 0.036608 

Cpn2 35.6567 67.0016 0.910021 0.0005 0.02816 
F11 13.4264 24.9979 0.896728 0.00205 0.081499 

Tmem86b 55.3413 102.926 0.895173 0.00105 0.050412 
Atg9a 11.5721 21.3438 0.883167 0.0011 0.051682 

Cyp4a12b 15.4838 28.503 0.880351 0.00205 0.081499 
Mthfd1 37.7002 69.3482 0.879289 0.0011 0.051682 
Igfals 28.2896 50.3251 0.831005 0.0019 0.078373 
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Aadat 31.6905 56.3069 0.829262 0.00255 0.095338 
Slc6a6 9.2793 16.327 0.815174 0.00185 0.077034 
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Table 5-6. List of significantly downregulated genes by GPE under WPD condition 

Gene Name 
FPKM-
WPD 

FPKM-
GPE 

log2 
(fold_change) p_value q_value 

Cyp2b9 73.0556 3.48953 -4.38789 5.00E-05 0.004307 
Cidec 59.7329 4.15838 -3.84443 5.00E-05 0.004307 

XLOC_030807 11.396 0.806843 -3.8201 0.00035 0.021809 
Slc22a29 6.87116 0.655381 -3.39015 5.00E-05 0.004307 

Plin4 6.27789 0.607294 -3.36981 0.00025 0.017433 
Wdr67 8.40753 0.963578 -3.12521 5.00E-05 0.004307 
Tceal8 36.8431 4.33769 -3.08639 5.00E-05 0.004307 
Ttc39a 3.81451 0.469118 -3.02348 0.00035 0.021809 
Themis 3.01026 0.381673 -2.97948 0.0011 0.051682 

Myc 6.47278 0.855089 -2.92024 0.0002 0.014286 
Pnldc1 23.0335 3.27144 -2.81573 0.0005 0.02816 
Ramp2 11.3924 1.6343 -2.80133 0.00165 0.070717 
Uap1l1 30.3376 4.61341 -2.7172 0.0003 0.019818 
Igfbp1 39.5268 6.10681 -2.69434 5.00E-05 0.004307 
Anxa2 53.3494 8.66955 -2.62144 5.00E-05 0.004307 
Cd36 105.851 18.0294 -2.55362 5.00E-05 0.004307 
Cd63 29.8768 5.10886 -2.54795 0.0003 0.019818 

Lgals1 139.644 24.1011 -2.53458 5.00E-05 0.004307 
Cgref1 10.2737 1.90823 -2.42864 0.00085 0.042675 

Cfd 17.6928 3.40088 -2.37918 0.0007 0.036608 
Gm10680 1948.71 377.857 -2.36661 0.00105 0.050412 

Apoa4 918.231 181.889 -2.3358 5.00E-05 0.004307 
Mt1 50.4376 10.3475 -2.28521 5.00E-05 0.004307 

Cyp3a11 866.007 177.775 -2.28432 5.00E-05 0.004307 
H2-Q1 10.2868 2.13004 -2.27185 5.00E-05 0.004307 
Wfdc2 49.6306 10.6468 -2.22081 5.00E-05 0.004307 

S100a11 61.1705 13.5342 -2.17622 5.00E-05 0.004307 
Gm11419 8.96552 2.015 -2.15361 5.00E-05 0.004307 

Raet1d 16.1388 3.65446 -2.1428 0.0001 0.008061 
Col1a2 5.57628 1.26349 -2.14189 5.00E-05 0.004307 
Unc119 17.4467 3.97793 -2.13286 5.00E-05 0.004307 
Col3a1 14.6281 3.35332 -2.12508 5.00E-05 0.004307 
Postn 9.07662 2.08395 -2.12284 5.00E-05 0.004307 

Tubb2a 108.361 25.1149 -2.10923 5.00E-05 0.004307 
Spon2 10.9116 2.57511 -2.08315 5.00E-05 0.004307 
Limk1 5.16549 1.24166 -2.05664 0.00055 0.030584 
Osbpl3 5.90132 1.43485 -2.04014 0.0003 0.019818 
4-Sep 10.1363 2.51407 -2.01144 5.00E-05 0.004307 

Cyp2c38 30.1022 7.49422 -2.00602 5.00E-05 0.004307 



162  

Spp1 124.633 33.6478 -1.88911 5.00E-05 0.004307 
XLOC_026575 10.3609 2.91741 -1.82838 5.00E-05 0.004307 

Anxa5 128.165 36.1193 -1.82716 5.00E-05 0.004307 
2010003K11Rik 65.8868 19.2202 -1.77736 5.00E-05 0.004307 
XLOC_023889 17.3503 5.14681 -1.75321 0.0006 0.032743 

St6gal1 42.1959 12.5805 -1.74591 0.00035 0.021809 
Ifi27l2b 28.0596 8.47923 -1.72649 0.00015 0.011264 
Hspb1 54.3618 16.5179 -1.71857 5.00E-05 0.004307 
Ccnd1 17.5741 5.44684 -1.68996 5.00E-05 0.004307 

XLOC_025814 10.3863 3.23401 -1.68329 5.00E-05 0.004307 
S100a10 305.285 97.807 -1.64215 5.00E-05 0.004307 
Gadd45g 15.7716 5.11409 -1.62478 0.0013 0.057979 

Tubb6 7.95814 2.58134 -1.62431 0.00135 0.059905 
Lyve1 5.86838 1.91127 -1.61843 0.00185 0.077034 
Mgst3 27.2076 8.93182 -1.60698 0.00015 0.011264 
Cyp2j9 5.86434 1.93339 -1.60084 0.0027 0.098843 

Fam126a 5.08877 1.69807 -1.58343 0.00065 0.034612 
Gpr98 9.53986 3.26245 -1.54801 0.00055 0.030584 
Aox1 48.3686 17.1363 -1.49701 5.00E-05 0.004307 
Rgs16 62.1802 22.116 -1.49136 5.00E-05 0.004307 
Pcolce 10.8077 3.8482 -1.48981 0.0009 0.044175 
Prss8 15.8814 5.66085 -1.48824 0.00255 0.095338 
Fabp4 41.2702 14.7232 -1.48701 0.0004 0.023908 

XLOC_019482 31.0554 11.1694 -1.47529 5.00E-05 0.004307 
Acnat2 23.7726 8.61251 -1.46479 5.00E-05 0.004307 
Gpc1 13.9353 5.10096 -1.4499 5.00E-05 0.004307 

Tm4sf1 8.1777 2.99996 -1.44675 0.00245 0.094411 
Abcc3 118.257 44.1636 -1.42099 0.00085 0.042675 

Cyp3a59 11.7773 4.41253 -1.41632 0.0004 0.023908 
Nid1 3.36952 1.2712 -1.40636 0.00035 0.021809 
Vnn1 50.0463 19.2761 -1.37645 5.00E-05 0.004307 
Aifm2 12.5959 4.94253 -1.34964 0.00095 0.046371 

Pyroxd2 13.494 5.32754 -1.34078 5.00E-05 0.004307 
Sparc 41.4332 16.5735 -1.32191 5.00E-05 0.004307 

9130409I23Rik 15.3932 6.27387 -1.29486 0.0005 0.02816 
Hsd17b6 58.9736 24.1439 -1.28841 5.00E-05 0.004307 

Pparg 14.4594 5.93214 -1.28538 0.0003 0.019818 
Reep5 6.91942 2.87242 -1.26838 0.0013 0.057979 
Rbp1 6.65631 2.77371 -1.26291 0.0023 0.090213 
Kdsr 6.34172 2.65333 -1.25707 0.00015 0.011264 
Plk3 24.6551 10.319 -1.25658 5.00E-05 0.004307 

Gstm1 1307.3 548.699 -1.2525 0.00015 0.011264 
Chkb 40.8391 17.2272 -1.24526 0.00075 0.038991 
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Abhd2 23.8715 10.1769 -1.22999 5.00E-05 0.004307 
Vcam1 5.56274 2.38051 -1.22453 0.00195 0.079318 
Srxn1 36.6311 15.704 -1.22194 0.0006 0.032743 
Acss3 8.165 3.50868 -1.21853 0.00125 0.057201 
Cxcl9 8.43835 3.72329 -1.18038 0.0015 0.065567 
Kctd2 20.492 9.15258 -1.16281 0.0004 0.023908 
Tpm1 32.5309 14.6819 -1.14777 5.00E-05 0.004307 

Hsd17b13 694.382 313.444 -1.14752 0.00015 0.011264 
Slc16a7 26.8333 12.251 -1.13113 5.00E-05 0.004307 
Rcan1 16.8597 7.81532 -1.1092 0.00045 0.026358 
Gclc 146.543 68.1511 -1.10451 0.0001 0.008061 
Cd9 22.535 10.6991 -1.07468 0.0021 0.083111 
Lcn2 51.7583 24.6078 -1.07267 0.00065 0.034612 
Orm2 73.0595 35.3577 -1.04705 0.00085 0.042675 
Mfge8 13.1544 6.37522 -1.045 0.0025 0.095338 
Gstm2 67.7112 32.8547 -1.04329 0.0002 0.014286 

XLOC_007568 7.8437 3.86274 -1.02191 0.0009 0.044175 
1500017E21Rik 44.6667 22.1219 -1.01372 5.00E-05 0.004307 

Cd74 74.2839 36.9092 -1.00907 0.0002 0.014286 
Krt8 176.855 90.4303 -0.96769 0.00035 0.021809 
Gas6 29.9915 15.3573 -0.96562 0.00125 0.057201 
Saa2 327.926 168.145 -0.96366 0.0004 0.023908 
Hexa 42.0673 21.587 -0.96254 0.00045 0.026358 

Adora1 7.67779 3.94294 -0.96142 0.00205 0.081499 
Mme 9.46745 4.89563 -0.95148 0.00145 0.063699 
Csad 51.2336 26.5667 -0.94747 0.00025 0.017433 

Mapre3 34.781 18.2388 -0.93129 0.00065 0.034612 
Vnn3 30.9468 16.5149 -0.90602 0.0016 0.069249 
Aqp8 261.857 141.749 -0.88544 0.00205 0.081499 
Sprr1a 12.5782 0 inf 5.00E-05 0.004307 
Gsta1 11.0491 0 inf 5.00E-05 0.004307 

Cyp2a4 10.2681 0 inf 5.00E-05 0.004307 
XLOC_033998 8.65451 0 inf 5.00E-05 0.004307 
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Summary 
 

 
It is promising and essential to investigate grape pomace’s health promoting 

potential as an important value adding products. Our main goal was to investigate 

the effects of a dietary grape pomace extract supplement on the prevention of diabetes 

and obesity. We demonstrated that GPE may prevent metabolic syndrome including 

diabetes and obesity through alternating the expression of genes, on the signaling or 

metabolic pathways that lead to reduction of diabetes and obesity. This current stusy 

was focused on examining such molecular mechanism(s) that support the 

incorporation of GPE as an alternative therapy for controlling postprandial blood 

sugar, regulate insulin resistance and preventing diabetes and obesity.  

Grape pomace can suppress postprandial hyperglycemia through inhibitory 

effects on α-Glucosidase activity in vitro. It also reduces acute blood glucose in vivo 

in induced-diabetic mice. qRT- PCR and ELISA tests confirmed that grape pomace 

extracts affected insulin signaling pathway at both RNA and protein levels. GPE could 

correct insulin resistance, decrease HbA1c and blood glucose levels, and consequently 

prevent type 2 diabetic through the regulation of glucose metabolism as well as 

glucose homeostasis at both transcriptional and translational levels. Also, grape 

pomace extracts translational regulation of the adipokine, cytokine/chemokine, 

inflammatory factors, lower systematic inflammation status, decreased the 

adipogenesis and lowering the fatty acids accumulation. High throughput RNA 

sequencing technology elucidated gene expression profiles at genomics level caused 

by GPE treatment under high fat diet condition. Genes involved in glucose and lipid 
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metabolisms and the related signal transduction pathways were altered. 

 

This project provided scientific evidence for the health beneficial effects of 

the grape pomace extract, and may promote the use of GPE as healthy dietary 

component and enhance food and agriculture economy. 
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Future perspective 
 

Isolate and identify the active compound(s) of GPE effect in diabetes and 

obesity and GPE effect on microbiome in the GI tract may be investigated in future 

studies. 

 

GPE has been studied for its effect and ability to regulate glucose homeostasis, 

and influence energy balance and control body weight through attenuation of the 

adipogenesis. Additional analyses should be conducted to isolate, purify and identify 

the active compound(s) of GPE to gain more understanding of GPE effects metabolic 

syndrome.      

 

The gut microbiome can be a factor involved in the control of host energy 

metabolism and systematic inflammation status. PGE will be further tested on the gut 

microbiota composition in rat models under high fat diet and its association with 

metabolic biomarkers. Fecal samples and colon sections can be collected from animals 

and determined by PCR-DGGE profiles followed by sequencing of selected bands 

from DGGE gels, the total number and types of microbes in GI tract can be determined. 

The associations between the gut microbiota and appetite-regulating hormones that 

may be important in terms of satiety and host metabolism.  

 

Molecular mechanism of GPE’s anti-diabetes, anti-obesity and anti- 

inflammatory effect and GPE’ long-term effect on metabolic disorder induced by 

western style diet may be investigated in future studies.  
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