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We investigate the vibrational relaxation of HF(v=2–5) in collisions with H 

atoms by means of fully-quantum reactive scattering calculations. Our calculations 

are based on the global ab initio potential energy surface of Stark and Werner which 

includes, specifically, an accurate description on the reaction barrier and the van der 

Waals wells in the reactant and product arrangements. 

We attribute discrepancies between early fluorescence experiments and quasi-

classical trajectory calculations to accuracies in the approximate potential energy 

surface used, in particular inaccuracies in the predicted barrier heights.  

By suitable linear combinations of the definite parity basis functions, we are 

able to separate the nominally indistinguishable inelastic relaxation pathways: 

(1) Inelastic vibrational relaxation unaccompanied by H atom exchange 



  

                                      H!+HF(v)" H!+HF(v! <v)                                                

(2) Inelastic vibrational relaxation accompanied by H atom exchange 

                                       H!+HF(v)" H+H!F(v! <v)                                               

In addition, reactive quenching also contributes to the overall vibrational removal of 

HF 

                          H!+HF(v)" H2(v!=0)+F                                                 

We report state-to-state and overall integral cross sections for each of these channels. 

The dominant removal process corresponds to vibrational relaxation without H-atom 

exchange.  The magnitude of the vibrational relaxation cross sections are in 

reasonable overall agreement with the limited experimental data.   

We also observe sharp structure in the energy dependence of the HF(v=3) 

removal cross sections.  We use an adiabatic-bender analysis to assign this structure 

to scattering resonances arising from quasi-bound van der Waals states in the HF–H 

entrance valley. 
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Chapter 1: Vibrational Relaxation of HF(v) Molecules by H 

Atoms in the Hydrogen Fluoride Chemical Laser System  

 

1.1. Introduction 

 

Interest in the vibrational relaxation of HF(v) molecules by H atoms dates 

back to the efforts to understand and model the HF chemical laser.1-4 In a chemical 

laser, energy liberated from an exothermic chemical reaction produces the necessary 

population inversion. The hydrogen fluoride (H
2
+F

2
) chemical laser is the most 

extensively studied of all chemical lasers. The detailed kinetics of the laser is fairly 

complex. The list of major processes that must be considered to model and 

understand the (H
2
+F

2
) chemical laser is shown in Table 1.1. The highly exothermic 

(ΔE ~ –32 kcal/mol) reaction of atomic hydrogen with molecular fluorine (pumping) 

can produce significant amounts of HF in high vibrational states.5  

Vibrationally excited HF can be deactivated by collisions with H
2
,6 F, H, 

other buffer gasses and by collision with HF itself. As a result, overall collisional 

deactivation is an involved process involving a combination of vibrational-

rotational/translational (V→R, T) energy transfer, vibrational-vibrational (V→V) 

energy transfer, reactive quenching, or other processes (such as wall collisions).4 The 

successful operation of chemical lasers such as the HF laser, requires that the 
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pumping of excited vibrational levels be rapid with respect to collisional removal and 

decay by spontaneous emissions.  

Table 1.1 Reaction scheme in the (H
2
+F

2
) chemical laser system  

(1) Initiation F
2
! 2F  

 
(2) Pumping F+H

2
! HF(v)+H  

H+F
2
! HF(v)+F  

 
(3) Vibrational relaxation (vibrational to 
translational and rotational energy transfer) 

HF(v)+M ! HF(v-1)+M

M=H, F, He, H
2
, F

2
, HF 

 

H
2
(v)+M! H

2
(v-1)+M  

 
(4) Vibration-vibration energy transfer HF(v)+HF(v')! HF(v+1)+HF(v'-1)  

HF(v)+H
2
(v')! HF(v+1)+H

2
(v'-1)  

H
2
(1)+H

2
(1)! H

2
(2)+H

2
(0)  

 
(5) Reactive quenching HF(v)+H! H+F+H! H

2
+F  

 
(6) Chain branching HF(v ! 4)+F

2
" 2F+HF(0)  

 
(7) Stimulated emission HF(v)+hv! HF(v-1)+2hv  

HF(v, j)+hv! " HF(v, j-1 or j-2)+2hv!  
 

(8) Rotational relaxation  HF(v, j)+M ! HF(v, j")+M  
 

 

Early classical trajectory calculations7,8 indicated that H atoms are the 

dominant deactivators in hydrogen halide laser systems. Thus, in the presence of 

excess atomic hydrogen, reactions of H atoms with vibrationally excited states of HF 

can be an important mechanism by which laser emission is terminated and the laser 

system is brought to chemical equilibrium. This occurs by a combination of vibration-

rotation/translation (V→R, T) processes.1,9 
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The vibrational relaxation of HF(v) molecules by H atoms can proceed by 

three channels (Fig.1.1) : (1) inelastic vibrational relaxation unaccompanied by H 

atom exchange 

                                      H!+HF(v)" H!+HF(v! <v)                                               (1.1a) 

(2) inelastic vibrational relaxation accompanied by H atom exchange 

                                       H!+HF(v)" H+H!F(v! <v)                                              (1.1b) 

and (3) reactive quenching 

                                       H!+HF(v)" H2(v!=0)+F                                                (1.1c) 

As is illustrated schematically in Fig. 2.1, because the F+H
2
! HF+H  reaction is 

endoergic by 1.388 eV (32.01 kcal/mol),10 the last process (1.1c) is possible only for 

sufficiently high degrees of HF vibrational and/or rotational excitation, or for 

sufficiently high translational energy.   

 

Figure 1.1 Schematic drawing showing three channels of vibrational relaxation of 

HF(v) in collisions with H atoms 

 

 

 

Reactants 
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1.2. Experimental study of HF+H vibrational relaxation 

 

Bott and Heidner11-13 reported an early experimental study of the deactivation 

of HF in v=3, 2 and 1 by collision with H at temperatures between T=200 and 295K.  

Vibrationally excited HF was produced by sequential absorption of infrared laser 

photons from a pulsed, transverse-excitation, atmospheric-pressure HF laser. The 

hydrogen atoms were created by a microwave discharge in H
2
. The absolute 

concentration of H atoms as a function of time was measured by isothermal 

calorimetry.  The decay of the H atom concentration was assumed to be equal to the 

decay of the vibrationally excited HF molecules.   

The decay times of HF(v=3, 2 and 1) were measured with the microwave 

discharge on (!
on

) and with the discharge off  (! off ) at the same flow rates.  If pseudo 

first-order conditions are assumed ([HF] >> [H]) then the overall removal rate 

constant for HF(v=1, 2, or 3), which is designated k, can be determined as follows: 

                                    ! on
"1
" ! off

"1
= k H[ ]                                                       (1.2)  

where [H] is the concentration of H atoms. This removal rate constant k represents a 

sum over removal by the three different channels [Eq. (1.1)]. Unfortunately, the 

experiment of Bott and Heidner cannot separate out these individual channels.  

In the experiments in which the HF(v=3) removal rate was measured, !
on

 was 

5 to 20 times smaller than ! off . In those studies in which the HF(v=2) removal rate 

was measured, !
on

 was only slightly shorter than ! off  at approximately the same H 

atom concentrations used for the HF(v=3) experiment. From the data obtained at 

several temperatures, Bott and Heidner11-13 concluded that the overall removal rate 
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constant for HF(v=3) is a factor of 100 faster than that for HF(v=2), while the rate for 

HF(v=2) removal was found to be only four times faster than the comparable process 

involving v=1.  

 

1.3. Vibrational relaxation of HF(v=3) by H atoms 

 

1.3.1. Channel (1.1c) 

Quasi-classical trajectory (QCT) calculations were carried out by Wilkins and 

Tompson8 based on a semiempirical London-Eyring-Polanyi-Sato (LEPS)14 potential 

energy surface. In the endothermic abstraction reaction of H with HF, these 

calculations7,8 show that vibrational energy will be more effective than translational 

or rotational energy in bringing about this reaction. This is because the transition state 

is collinear, so, as shown in Fig. 1.1, vibration leads directly to the bond breaking and 

forming which are necessary for the reaction to occur.  As a corollary, for the 

collinear approach the QCT calculations suggest that main inelastic (HF+H) energy 

transfer process involves vibrational energy conversion into translational energy and 

the minor energy transfer process is for vibrational energy to be converted into 

rotational energy.  

In the experiments of Bott and Heidner,11-13 the upper limit for  the 

H!+HF(v)" H2+F  abstraction reaction rate constant was estimated to be 3.0 !1013  

cm
3
/mol-sec  at T=295K . The observed temperature dependence of k(v=3) was fitted 

by Bott and Heidner to the expression  
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                                        k(v = 3) = 1.7 !1013T 0.179
e
"760 /RT  .                                   (1.3) 

As mentioned earlier in the introduction, the QCT calculations predicted fast 

rate constants for the H+HF(v) abstraction  with v≥3.  The calculated values were 

fitted to an expression similar to Eq. (1.3), namely 

                                            k(v = 3) = 1013.21T 0.010
e
!835 /RT                                        (1.4) 

Fig. 1.2 shows the dependence on temperature of the H!+HF(v=3)" H2+F  rate 

constants predicted by Eqs. (1.3) and (1.4). 

 

Figure 1.2 Comparison of the temperature dependence of the experimental estimate 

[Eq. (1.3)] and the QCT prediction [Eq. (1.4)] of the rate constant for the 

H!+HF(v=3)" H2+F  reaction 
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1.3.2. Channel (1.1a)+(1.1b) 

As already mentioned, the inelastic deactivation of vibrationally excited 

hydrogen fluoride HF(v) can occur in two different ways: (1.1a) transfer of 

vibrational energy into translational energy without H-atom exchange, and (1.1b) 

transfer of vibrational energy into translational energy with H-atom exchange. The 

first process corresponds to a non-reactive inelastic collision. When the H atom 

collides with HF(v) molecule, the HF(v) molecule loses or gains vibration energy and 

ends up in a final vibrational state v′ as HF(v′). The second process corresponds, in 

reality, to a reactive collision. When the H atom collides with an HF(v) molecule, the 

incident H atom replaces the H atom from HF(v), and a new HF(v′) molecule is 

formed in a lower vibrational state.  

The QCT calculations of Wilkins and Thompson8,15 show that the vibrational 

energy of HF(v) is converted mainly into translational energy in these two processes. 

The total QCT deactivation rate constants for both processes was fitted as 

                                          k(v = 3) = 1013.21T 0.010
e
!646 /RT                                           (1.5) 

At T=295K, the deactivation rate constant for v=3 was calculated to be 

1.7 !10
13
cm

3
/mol-sec .  It is not clear from the article by Wilkins and Thompson 

what exactly were the barrier heights in the LEPs surface they used. Bott and Heidner 

mentioned that Wilkins and Thompson had used values of 1.5, 2.5 and 40 kcal/mole12 

for the exchange reaction (process (1.1b)).  
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1.3.3. Channel (1.1a)+(1.1b)+(1.1c) 

If Bott and Heidner's estimated rate constant (1.4 ±1.5) !1013  cm3
/mol-sec  

for channel (1.1c) is subtracted from the experimental measurement, then the rate 

constant to be ascribed to the sum of channels (1.1a) and (1.1b) is 

(5 ± 3) !10
13
cm

3
/mol-sec . The trajectory calculations on LEPS surface do not 

predict as fast a rate. The comparison between the experimental measurement and 

QCT results at T=295K is shown in Table 1.2.  We observe that the QCT rate 

constants for the overall removal process are ~3 times smaller than experiment.  

 

Table 1.2 Relaxation rate constants ( cm3
/mol-sec ) of HF(v=3) by H atoms at 

T=295K 

 ktotal (v=3)  
 

kchannel(1c) (v=3)  kchannel(1a)+(1b)(v=3)  Reference 

Experimental 
measurements 
 

(6.3 ±1.5) !10
13  (1.4 ±1.5) !10

13  (5 ± 3) !10
13  12 

QCT 
calculations 
 

2.1!10
13  4.1!10

12  1.7 !10
13  8 

 

 

1.4. Vibrational relaxation of HF(v=2,1) by H atoms 

 

Because the energy of HF(v=2)+H lies below the F+H2 asymptote, the 

deactivation of HF(v=2,1) by H atoms can proceed only by the inelastic channels 

(1.1a) and (1.1b). As shown in Table 1.3, the QCT calculated rates are approximately 
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10 times faster than the quenching measurement, likely because Wilkins and 

Thompson were using the LEPS surface which has a low barrier height (1.5kcal/mol 

or 2.5kcal/mol) for exchange of the fluorine. As the result of the imposition of an 

artificially low reaction barrier, QCT calculations predicted that inelastic exchange 

process provides an alternative mechanism for the efficient relaxation of a diatomic 

molecule, since the rate constant for the deactivation of HF(v=2,1) molecules by H 

atoms resulting from reactive collisions is nearly 4 times that found for the 

deactivation of HF(v=2,1) molecules by H atoms resulting from non-reactive 

collisions. Table 1.3 shows the relaxation rates at T=295K. 

 

Table 1.3  Relaxation rate constants for  HF(v=2,1) by H atoms at T=295K 

 
v 

 ktotal (v)  
cm

3
/mol-sec  

 

kchannel(1a) (v)  
cm

3
/mol-sec  

kchannel(1b)(v)  
cm

3
/mol-sec  

Reference 

 
 

2 

Experimental 
measurements 
 

(6.6 ± 3) !10
11    13 

 QCT 
calculations 

 

9.5 !10
12    8 

 
 

1 

Experimental 
measurements 
 

(1.4 ± 0.4) !10
11    13 

 QCT 
calculations 

 

2.6 !10
12  5.1!10

11  2.1!10
12  8 
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1.5. Discrepancies and Questions 

 

The careful ab initio study by Stark and Werner (SW)16 of the FH2 potential 

energy surface (PES) predicts a reaction barrier for channel (1.1b) that lies above the 

v=1 and 2 states of HF. The numerical values of the barriers heights will be presented 

in Table 2.1. If the HF+H translational energy is not enough to surmount such a high 

barrier, then atom exchange will not contribute. Consequently, we would expect that 

calculations based on the SW PES will not support the conclusion from previous 

QCT calculations that the high efficiency of H atoms in relaxing vibrationally excited 

HF(v=1,2) molecules can be attributed to F atom abstraction from HF(v=1,2) 

molecules by translationally hot H atoms. 

The deactivation rates of HF(v) by H atoms can be expected to increase with 

v.3 As mentioned earlier, experiment shows that the rate constant for HF(v=2) 

removal by H appears to be 4 times faster then the comparable process involving v=1; 

however, the removal of HF(v=3) by H atoms is faster by a factor 100 than that for 

HF(v=2). The results of trajectory calculations predict that the rate constants will 

increase by a factor ~3 from v=1 to v=2 but only ~2–3 from v=2 to v=3. These 

disagreements might be due to accuracies in the early potential energy surface used, 

in particular inaccuracies in the predicted barrier heights.  

The first goal of our work, presented here, is the use of more modern 

techniques to investigate HF vibrational relaxation in collisions with H atoms.  We 
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shall base our calculations on the fully ab initio PES of Stark and Werner.16 

Furthermore, instead of quasi-classical trajectory calculations, we shall use fully 

quantum mechanical scattering calculations to determine cross sections and rate 

constants for collisions of H with HF(v) with v=2−5. In particular, we wish to answer 

the following questions: 

(1) For the collisional deactivation of HF(v=3)  by H atoms, classical trajectory 

calculations on the LEPS surface cannot explain the very fast deactivation 

rate of HF(v=3)  observed from the laser-induced fluorescence experiments.  

We shall attempt to resolve this discrepancy and also to predict the extent to 

which the H!+HF(v=3)" H2+F  reaction contributes to the overall 

deactivation. 

(2) For relaxation of highly vibrational states of HF(v ! 3) , are multiple-

quantum transitions (!v>1) more probable than are single-quantum 

transitions (!v=1)?   In more detail, what are the product vibrational state 

distributions for relaxation of each initial vibrational state? 

(3) In the classical trajectory calculations, the deactivation of HF(v=2) occurred 

by both reactive and nonreactive collisions when a potential energy surface 

with low barriers was used, but solely by non-reactive collisions when the 

barrier was taken to be 40 kcal/mol.  What will quantum mechanical 

calculations on an accurate ab initio potential energy surface show? 

(4) The vibrational relaxation of HF(v) by H involves a combination of 

vibration-rotation/translation (V→R,T) processes.  How, specifically, is the 
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vibrational energy distributed among rotation and translation?  How do these 

distributions vary with initial translational and vibrational energy? 

In the course of our investigation we discovered that the presence of quasi-

bound states trapped in the weak HF(v=3)–H van der Waals well can enhance the 

probability of vibrational relaxation.  The role of these quasi-bound states, and their 

connection with calculated peaks in the energy dependence of the calculated cross 

sections will be explored in Chapter 5 of this dissertation. 
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Chapter 2: Potential Energy Surface 

 

2.1. Ab initio Stark-Werner potential energy surface (SW-PES) 

 

In 1996, Knowles, Stark and Werner16,17 presented the first configuration 

interaction study of the global H−F−H potential energy surface. This SW-PES can be 

characterized by the following five various stationary points: (a) a linear saddle point 

(reaction barrier) 41.16 kcal/mol for the symmetric H!+HF" H+H'F  reaction; (b) a 

bent barrier of 32.84 kcal/mol high barrier for the H!+HF" H
2
+F  reaction; (c) a 

linear saddle point of a 33.23 kcal/mol high barrier for H!+HF" H
2
+F  reaction; (d) 

A C
2v

 symmetry van der Waals well in the F+H
2
 product valley; (e) A C

!v
 

symmetry well in both the H!+HF reactant and H+H!F  product valleys. The list of 

these stationary point properties of the SW-PES is given in Table 2.1. The list of 

barriers to the HF(v=0,1,2,3)+H′→H′F+H reaction is given in Table 2.2. The relative 

reactant energies, the position of the barriers and wells, and the position of the 

indicated F+H
2
and H+H!F  channels have been drawn to scale on the SW-PES in 

Fig. 2.1.  
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Table 2.1 Stationary points on the SW-PES for the H!+HF(v)" H+H!F(v! <v)  and 

H!+HF(v)" H
2
(v!)+F  reactions. 

 RHF
a rHH

a Eb Ec Angled 

H′+HF→H′F+H collinear barrier 2.125 2.125 41.16 1.78 0 
H′+HF→F+H2 bent barrier 2.922 1.457 32.84 1.42 61 

H′+HF→F+H2 colinear barrier 2.950 1.442 33.23 1.44 0 

Well depth in F+H2 arrangement 4.89 1.40 0.37 0.016 90 

Well depth in H′+HF 

arrangement. 
4.19 1.74 0.25 0.011 0 

a.  Distances in bohr, angles in degree. 
b.  Energies in kcal/mol 
c.  Energies in eV 
d.  Bending angles in degree 
 
 

Table 2.2  Barriers to the HF(v)+H′→H′F+H reaction. a 

 Ea 

v eV kcal/mol 

0 1.72 39.66 

1 1.23 28.36 

2 0.76 17.53 

3 0.31 7.15 

4 -0.12 -2.79 

a. The barrier to HF(v=3)+H′→H2(v=0)+F is 0.01eV (0.25 kcal/mol) 
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As shown in Fig. 2.1 and Table 2.2, the bent barrier lies 0.25 kcal/mol 

(0.01 eV) above the HF(v=3) state. This small barrier will certainly be overcome in 

reactive quenching process except at very low collision energy. The collinear barrier 

lies quite high above the HF(v=3) state (0.31 eV) but a little below the HF(v=4) state 

(0.12 eV). As we can see qualitatively in Table 2.2, inelastic collisions with H atom 

exchange at collision energies below 0.31eV can proceed only by tunneling. 

 

 

Figure 2.1 Schematic plot of the energetics of the three channels relevant to the 

vibrational relaxation of HF(v). The relative reactant energies, the position of the 

barriers and wells, and the position of the indicated F+H
2
and H+H!F  channels have 

been drawn to scale. 
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The actual topology of the linear saddle points for the H!+HF" H+H'F  and 

H!+HF" H
2
+F  reactions is illustrated by Figs. 2.2 and 2.3. Here, we plot the 

potential energy surface as the function of the bond coordinates RFH and RFH' (or 

RHH'). The asymptotic reactant or product arrangements correspond to the situation 

where one of the bond coordinates is large while the other is equal to the equilibrium 

internuclear separation of either HF or H2. 

If we start at a point A corresponding to reactants at large separation and let 

R
FH  decrease, the energy steadily increases if RFH' (or RHH') is more or less constant. 

It is as though we were traveling up a valley. However, motion in a perpendicular 

direction results in a rapid increase in energy. If we continue along the bottom of the 

valley, following the minimum energy pathway, the energy continues to increase until 

we reach point B, which is a saddle point. Motion forwards or backwards along the 

minimum energy path results in a decrease in energy but motion in a perpendicular 

direction results in a very large increase in energy. The saddle point B corresponds to 

the top of the activation barrier in simple transition state theory. The valley leading up 

to the saddle point is known as the entrance channel. Continuation along the 

minimum energy path from the saddle point results in a steady decrease in energy 

along the exit channel until one reaches the asymptotic product arrangement at large 

separation (point C).  
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Figure 2.2 Contour plot of the potential energy surface for collinear HFH′, starting 

from the entrance channel A, passing through the energy barrier B and ending along 

the exit channel C 
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Figure 2.3 Contour plot of the potential energy surface for collinear FHH′, starting 

from the entrance channel A, passing through the energy barrier B and ending along 

the exit channel C 
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Chapter 3: Treatment of the dynamics 

 

The quantum reactive scattering calculations are carried out in a manner 

similar to the recent work of Manolopoulos and co-workers on the F+H
2

18,19 and 

F+HD
20 reactions. We use a close-coupled, time-independent method21-24 based on 

the use of Delves hyperspherical coordinates.25 We assume that the Born-

Oppenheimer approximation between the electron and nuclear motions is valid and 

that the ground- state potential energy surface is known. All interactions involving 

nuclear and electronic spins and nuclear and electronic orbital angular momenta are 

neglected. The wave function for the nuclear motion (the scattering wavefunction) is 

expanded in a truncated parity-adapted basis set of products of vibrational-rotational 

states for each of three arrangement channels in the body-fixed frame.22,24,26  

By expansion in a basis, the Schrödinger equation for the motion of the three 

nuclei, which is a partial differential equation in the three internal degrees of freedom, 

becomes converted to a set of coupled ordinary 2nd order differential equations. 

Numerical solution of these “closed-coupled“ (or “coupled-channel”) equations is 

carried out by propagation from small to large hyperradius through a series of sectors. 

Canonical orthogonalization is then used to construct a set of orthogonal basis 

functions (called surface functions) in each sector. To solve the close-coupled 

equations, we use the ABC code of Manolopoulos and co-workers.24 

In the following sections, we shall present a few details about use of the 

coupled-channel (CC) method in heavy-particle collisions including energy transfer.  
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In particular, we shall explain how to construct the definite parity basis based on the 

symmetric property of the H-F-H potential, as well as the method used to separate the 

three different product channels in order to compare with the experimental 

measurement. 

 
 

3.1. Coupled Schrödinger Equations and Basis Functions in Space and Body-fixed 

Frames 

 

In Fig. 3.1 we show how the three-dimensional internal configuration space 

can be naturally divided into arrangement channel region subspaces, labeled by the 

indices ! = 1,2,3 , with ! = 1 for A+BC, ! = 2  for B+CA and ! = 3  for C+AB. In 

our particular case, the labels A, B and C correspond to F, H and H′ atoms. In each 

arrangement subspace we use Jacobi coordinates, which are defined by22,23,26 
  

!
R! , the 

vector from the center of mass of the diatomic moiety to the atom, which describes 

the asymptotic translational motion; 
  

!
r! , the bond axis of the diatomic moiety,  which 

describes the vibrational and rotational motions of the diatomic moiety; and ! " , the 

angle between 
  

!
R! and 

  

!
r! , with 

  
!" = cos

#1
(
!

R" $
!
r" ) .   

In arrangement 3 for example, the Schrödinger equation for the motion of the 

three nuclei is23 

  

!
!
2

2µC,AB
" "

R3

2 !
!
2

2µAB
" "

r3

2
+V (R3,r3,# 3) ! E

$

%
&

'

(
) *(

"
R3,
"
r3) = 0                           (3.1) 

where µ
C ,AB

 and µ
AB

 are reduced masses 
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µ
AB

=
m

A
m

B

m
A
+ m

B

         µ
C ,AB

=
m

C
(m

A
+ m

B
)

m
A
+ m

B
+ m

C

                                                          (3.2) 

We then define the mass-scaled Jacobi coordinates27 in terms of 
  

!
R! and

  

!
r!  by 

 
R! = d!R! , 

 
r! = d!r!                                                            

where, for α=3,          d! =3 =
µ
C ,AB

µ
AB

"

#$
%

&'

1/4

                                                                  (3.3) 

Then the Schrödinger equation becomes23 

 

!
!
2

2µ
"

R#

2 +"
r#

2( ) +V (R# ,r# ,$ # ) ! E
%
&'

(
)*
+(R#

" #"
,r#

"#
) = 0                                               (3.4) 

The advantage in using mass-scaled coordinates is the appearance of a single reduced 

mass µ  which is independent of the choice of arrangement 

µ =
m

A
m

B
m

C

m
A
+ m

B
+ m

C

!

"#
$

%&

1/2

                                                                                        (3.5) 

 

In a space-fixed frame,23,26 the spherical polar coordinates for the vectors 

 
R
!

! "!
,r

!

!"
 are (R! ,"R!

,#
R!

) and ( r! ,"r!
,#

r!
). If we express the Laplacian operators in 

terms of R
!
,r

!
and these angles, the Schrödinger equation can be written in terms of 

the rotational angular momentum operator 
 
j!  and orbital angular momentum operator 

 l
!  

 

!
!
2

2µ

1

R"

#2

#R"
2
R" +

1

r"

#2

#r"
2
r"

$

%&
'

()
+

j"
"

2

2µr"
2
+

l"
"
2

2µR"
2
+V (R" ,r" ,* " ) ! E

+

,
-
-

.

/
0
0
1(R"

# $#
,r"

#$
) = 0 (3.6) 
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The total angular momentum operator  J!  is the vector sum of 
 
j!  and  l! . Both its 

magnitude and space fixed projection M are conserved during the collision, 

independent of arrangement channel.  

The full space-fixed wavefunctions are then expanded as22,23  

 

! JM (R"

! "!
,r"

!"
) = # l" j"

JM
($R"

,%R"
;$r"

,%r" )Gl" j"

JM
(R" ,r" )

l" j"

&                                                  (3.7) 

! l" j"

JM
(#R"

,$R"
;#r"

,$r" ) = C( j"l" J;mj"
ml"

M )Yl"ml"
(#R"

,$R"
)Yj"mj"

(
mj"

,ml"

% #r"
,$r" )      (3.8) 

where C( jlJ;mmM )  is a Clebsch-Gordan coefficient;28 Yjm is a spherical harmonic;28 

andM and m are the projection quantum numbers of the angular momenta along the 

space-fixed OZ axis. 

We now introduce a body-fixed coordinate system23 OX′Y′Z′ as shown in Fig. 

3.2. The variables used to describe the system are R! ,"R!
,#

R!
,r! ,$ ! ,%! , as compared 

to R! ,"R!
,#

R!
,r! ,"r!

,#
r!

 in the space-fixed frame. Here, !"  is defined as the angle 

between the two planes OXZ and OX′Z′. A motion in which the variables 

R! ,"R!
,#

R!
,r! ,$ !  are kept constant but !"  varies corresponds to a “tumbling” of the 

triatomic system around the vector  R
!"

. For this reason !"  will be called the tumbling 

angle.  

The overall rotational motion is described by the quantum numbers j  and k, 

where the associated tumbling quantum number k specifies the component of the total 

angular momentum  J!  around the body-frame OZ′ axis. Since the component of the 

orbital angular momentum  l
!  around this axis vanishes, k also specifies the z  
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component of rotational angular momentum 
 
j!  in the body-fixed frame. In reactive 

scattering calculations, where the designation of the z axis depends on the 

arrangement (F–H
2
, HF–H′, or H′F–H), the body-frame projection differs from one 

arrangement to another. In the ABC code,24 which we use to solve the Schrödinger 

equations for the A+BC dynamics, this is called the helicity quantum number.  

 

The rotationally coupled body-fixed basis functions can be defined in terms of 

Wigner rotation matrix elements D
Mk

J 28 similarly to Eq. (3.7) and (3.8). We have 22,23 

 

!
JM
(R"

! "!
,r"

!"
) = D

Mk"

J
(#

R"
,$

R"
,0)%

Jk"
(R" ,r" ,& " ,'" )

k" =( J

J

)                                          (3.9) 

!Jk"
(R" ,r" ,# " ,$" ) = Yj" k"

(# " ,$" )wJj" k"
(R" ,r" )

j" = k"

%

& ; k
!
= "J,"J +1,..., J; J = 0,1,2,...  

(3.10) 

We combine Eqs. (3.9) and (3.10), and further separate the two nuclear distance 

variables R  and r  by expanding in a complete set of functions !vj (r)  which span the 

vibrational motion of the diatomic moiety. We then write the full basis functions for 

the triatomic system (ABC) in the body-fixed frame as:23 

 

! JM (R"

! "!
,r"

!"
) = DMk"

J
(#R"

,$R"
,0)Yj" k"

(% " ,&" )wj" k"

J
(R" ,r" )

j" = k"

'

(
k" =) J

J

(  

                    = DMk!

J
("R!

,#R!
,0)Yj! k!

($ ! ,%! )gv! j!
Jk! (R! )

"
v! j!
(r! )

R!r!v!

&
j! = k!

'

&
k! =( J

J

&          (3.11) 



 

 24 
 

where g
vj

Jk
(R)  describes the stretch of the HF-H complex, and Yjk (! ," )  is a spherical 

harmonic. One may show23 that the body-fixed and space-fixed representations may 

be related by using the equality 

DMk!

J
("! ,#! ,0)Yj! k!

($ ! ,%! ) =
4&
2J +1

'
()

*
+,
1/2

(-1) j! - k!C(Jj!l!;k! - k!0). l! j!

JM
(#R!

,"R!
;#r!

,"r! )
l!

/
(3.12) 

 

Both the body-fixed and space-fixed formalisms lead to the same number of 

coupled equations. In a body-fixed coordinate system, the matrix of the potential in 

Eq. (3.6) is diagonal in the helicity quantum number within a particular arrangement. 

This simplification is useful in the development of approximate theories. However, 

the orbital angular momentum l  in this helicity frame is no longer a good quantum 

number, since the matrix of  l!
2

 is no longer diagonal. 
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Figure 3.1 Vector plots showing the locations of the three atoms A, B and C relative 

to the center of mass O; CAB and CAC denote the locations of the center of mass of 

diatoms AB and AC. Also !
2
 is the bending angle between  R

!"

2  and  r
!

2 while !
3
 is the 

bending angle between  R
!"

3  and  r
!

3 . The  R
!"

1 ,  r
!

1  and !
1
 are not shown in this figure. 
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Figure 3.2 Plot of the ABC triatomic system in the space-fixed OXY and body-fixed 

OX′Y′Z′ frames. The variables used to describe the system in the body-fixed frame 

are R! ,"R!
,#

R!
,r! ,$ ! ,%! , which should be compared to R! ,"R!

,#
R!
,r! ,"r!

,#
r!

 in the 

space-fixed frame 
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3.2. Triatomic parity and definite parity basis 

 

The inversion operator commutes with the Hamiltonian for the triatomic 

system. Therefore, we are free to choose basis functions which are eigenfunctions of 

the inversion operator  I!  with eigenvalues ±1. If we use body-fixed variables 
 
R
!

! "!
 and 

 
r
!

!"
 to express the triatomic wave function as 

 
!

JM
(R

"

! "!
,r

"

!"
) , the action of the inversion 

operation can be shown to be: 

 
I!!

JM
(R" ,#R"

,$
R"
,r" ,% " ,&" ) = !

JM
(R" ,' (#

R"
,' + $

R"
,r" ,% " ,' (&" )                (3.13) 

The body-fixed basis functions are given by Eq. (3.11). Using the relationships29 

D
Mk!

J
("

R!
+ # ,# $%

R!
,0) = ($1)J D

M ,$k!

J
("

R!
,%

R!
,0)                                                 (3.14)  

Yj! k!
(" ! ,# $%! ) = Yj! ,$k!

(" ! ,%! )                                                                           (3.15) 

and changing the sign of k
!

, we find  

 

I!! JM (R"

" #"
,r"

"#
) = (#1)J DMk"

J
($R"

,%R"
,0)Yj" k"

(& " ,'" )gv" j"
J # k" (R" )

v"

(
j" = k"

)

(
k" =# J

J

(
$
v" j"
(r" )

r"R"

= ! JM (#R"

" #"
,#r"
"#
)  

                                                                                                                                (3.16) 
This result indicates that 

 
!

JM
(R

"

! "!
,r

"

!"
) is not an eigenfunction of the parity operator  I!  

unless J = 0 .  

Since  I!  commutes with the Hamiltonian, we can take linear combination of 

 
!

JM
(R

"

! "!
,r

"

!"
) s to create simultaneous eigenfunctions of  I

!  and the Hamiltonian, 

namely  

 

!
JM

P
(R

"

! "!
,r

"

!"
) =

1

2
!

JM
(R

"

! "!
,r

"

!"
) + P!

JM
(#R

"

! "!
,#r

"

!"
){ }                                               (3.17) 

where P = ±1. From Eq. (3.16), we see that 
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I!!

JM

P
(
"
R
"
,
"
r
"
) = (#1)

J
P!

JM

P
(
"
R
"
,
"
r
"
)                                                                        (3.18) 

Thus by constructing parity eigenfunctions, we can separate our coupled 

Schrödinger equations into two uncoupled sets – those with parity (!1)J  and those 

with parity !(!1)J . Using this triatomic parity decoupling method, we define the 

triatomic parity eigenvalue P= ± ( !1)J , and calculate the parity-adapted S-matrix 

elements S
!vjk ,a"v" j "k "

J ,P , where k and k′ are the initial and final helicity quantum numbers. 

In the ABC code, k  and k!  are restricted such that 0 ! k ! min(J, j)  and 

0 ! k" ! min(J, j") , while k = 0  and k! = 0  only occur in the parity block with 

P=( !1)
J . The unprimed and primed quantities refer to the initial and final states, 

while the label α designates the arrangement with α=1 for A+BC, α=2 for B+CA and 

α=3 for C+AB.  

After determining the S matrix we can convert the parity-adapted S-matrix 

elements S
!vjk ,a"v" j "k "

J ,P into standard helicity-representation S-matrix elements S
!vjk ,a"v" j "k "

J  

using the formulas24  

S!vjk ,! "v" j "k "
J

= S! "v" j "# k ",!vj# k
J

=

1

2
S!vjk ,! "v" j "k "
J ,+1

+ S!vjk ,! "v" j "k "
J ,#1$% &'

1

2
S!vjk ,! "v" j "k "
J ,+1

+ S!vjk ,! sv" j "k "
J ,#1$% &'

S!vjk ,! "v" j "k "
J ,+1

+ S!vjk ,! "v" j "k "
J ,#1

(

)

*
*
*

+

*
*
*

,

-

*
*
*

.

*
*
*

 

                                                                                                                                (3.19) 

and 

( k ! 0  and k! " 0 ) 

( k ! 0  k! = 0  or k = 0  k! " 0 ) 
 

( k = 0  and k! = 0 ) 
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S!vj" k ,! #v# j #k #
J

= S! #v# j #k #,!vj" k
J

= ("1)J

1

2
S!vjk ,! #v# j #k #
J ,+1 " S!vjk ,! #v# j #k #

J ,"1$% &'

1

2
S!vjk ,! #v# j #k #
J ,+1 " S!vjk ,! #v# j #k #

J ,"1$% &'

S!vjk ,! #v# j #k #
J ,+1 " S!vjk ,! #v# j #k #

J ,"1

(

)

*
*
*

+

*
*
*

,

-

*
*
*

.

*
*
*

 

                                                                                                                                (3.20) 

 

3.3. Diatomic parity and permutation symmetry  

 

In addition, the permutation symmetry in H!+HF" H!+HF  and 

H!+HF" H+H!F  reactions can be used to reduce the number of basis functions that 

must be simultaneously considered. The FH
2

 potential energy is symmetric with 

respect to interchange of the two hydrogen atoms, namely V(F,H,H′)=V(F,H′,H). To 

exploit this symmetry, we expand the wavefunction for the system as the symmetric 

and antisymmetric linear combinations of the primitive basis functions 

! p (F,H,H") =
1

2
!(F,H,H") + p!(F, "H ,H)[ ]                                                       (3.21) 

where p = ±1.  Because the Hamiltonian is invariant with respect to H-atom 

interchange, there will be no coupling between the symmetric (p = 1) and 

antisymmetric (p = –1) states, so that the coupled scattering equations are further 

reduced in size by a factor of ≈2. 

In practice, in the F+H
2

 arrangement, the triatomic wavefunction is expanded 

in the basis functions 

( k = 0  and k! = 0 ) 

( k ! 0  k! = 0  or k = 0  k! " 0 ) 
 
( k ! 0  and k! " 0 ) 
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JMKvjk =
1

r1

2J +1

4!
"
#$

%
&'
1/2

DMk
J*
((1,)1,0)Yjk (*1,+1)(vj (r1)                                 (3.22) 

where Yjk  describes the rotational, and 
1

r
!
vj

 the vibrational, motion of the H2 moiety. 

The vibrational  wavefunctions !
vj  are symmetric with respect to H! H"  exchange. 

This exchange corresponds to an inversion of the coordinate system of the H2 

molecule, so that the rotational wavefunctions have the symmetry 

 
P
HH'
!Yjk (! ,0) = ("1)

j
Yjk (! ,0)                                                                                   (3.23) 

Thus, for the F+H
2

 arrangement, the symmetric basis functions include only even-j 

terms, and the antisymmetric basis functions, only odd-j terms.  

For the HF+H′ and H′F+H arrangements, the wavefunctions are expanded in 

basis functions similar to Eq.3.22, which we designate 

JMKvjk,H =
1

r2

2J +1

4!
"
#$

%
&'
1/2

DMk
J*
((2,)2,0)Yjk (* 2,+ 2 )(vj (r2 )                         (3.24) 

and 

JMKvjk,H! =
1

r3

2J +1

4"
#
$%

&
'(
1/2

DMk
J*
()3,*3,0)Yjk (+ 3,, 3))vj (r3)                         (3.25) 

where the subscripts “2” and “3” refer, respectively, to the HF+H′ and H′F+H 

arrangements. Taking the permutation symmetry into consideration, as outlined in Eq. 

(3.21), we use linear combinations of the arrangement “2” and arrangement “3” basis 

functions 

JMKvjk, p =
1

2
JMKvjk,HF + p JMKvjk,H!F"# $%                                         (3.26) 
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In the ABC code, which we use for our calculations, the interchange index p = (!1) j  

is called jpar. Thus in the calculations, if the parameter jpar is +1, the total 

wavefunction is expanded in the symmetric (even j ) functions for the F+H
2

 

arrangement and the symmetric linear combination of H′F+H and HF+H′ basis 

functions; if jpar = −1, the odd j  F + H2 and antisymmetric F+HF linear combination 

are used [Eq.(3.26)].  

Each scattering calculation yields a parity- and interchange-adapted S matrix, 

with elements S
vjk ,v! j !k !

J ,P, p . The square of the S matrix element corresponds to the 

transition probability.  Suppose we are interested in HF+H→HF+H inelastic 

scattering, either with or without H-atom exchange.  Since the H atoms are 

indistinguishable, an experiment would measure the inelastic probability 

P
J ,P
(vjk! v" j"k") = S

vjk ,v" j "k "

J ,P,+1
2

+ S
vjk ,v" j "k "

J ,P,#1
2

                                                           (3.27) 

Note that there are no cross terms in Eq. (3.27), because the interchange 

symmetry label p is a good quantum number. Scattering of the +1 states and 

scattering of the −1 states occurs independently. The total inelastic probability is the 

sum of the probability associated with inelastic scattering of the +1 states added to the 

probability associated with inelastic scattering of the −1 states.  

Experimentally, is impossible to distinguish between those inelastic collisions 

which exchange, and those which do not exchange, the two H atoms. However, as 

theoreticians we can make this distinction. From Eq. (3.26), we see the 

distinguishable atom wavefunction can be written in terms of the symmetrized basis 

functions as followings: 
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JMKvjk,HF =
1

2
JMKvjk,+1 + JMKvjk,!1"# $%                                            (3.28a) 

and 

JMKvjk,H!F =
1

2
JMKvjk,+1 " JMKvjk,"1#$ %&                                          (3.28b) 

Consequently, the amplitude for the collision-induced transition for a non-H-

atom exchanging transition from an initial H!+HF(vjk)  state to a final H!+HF(v! j!k!)  

state is  

A
J ,P
(HF,vjk! HF,v" j"k") = AJ ,P

(H"F,vjk! H"F,v" j"k") =
1

2
S
vjk ,v" j "k "
J ,P,+1

+ S
vjk ,v" j "k "
J ,P,#1$% &'  

(3.29) 

The amplitude is identical for the H+H!F(vjk)" H+H!F(v! j!k!)  transition. Similarly, 

the amplitude for the collision-induced HF(vjk)! H"F(v" j"k")  transition is 

A
J ,P
(HF,vjk! H"F,v" j"k") = AJ ,P

(H"F,vjk! HF,v" j"k") =
1

2
S
vjk ,v" j "k "
J ,P,+1 # S

vjk ,v" j "k "
J ,P,#1$% &'  

(3.30) 

Thus, at the level of the S-matrix elements, the amplitudes for the non-atom-

exchanging and atom-exchanging inelastic transitions are the positive and negative 

combinations of the two corresponding definite-exchange-symmetry S-matrix 

elements.  The corresponding transition probabilities are: 

P
J ,P
(HF,vjk! HF,v" j"k") = PJ ,P

(H"F,vjk! H"F,v" j"k") =
1

4
S
J ,P,+1 2

+ S
J ,P,#1 2

+ 2Re S
J ,P,+1*

S
J ,P,#1( )$

%
&
'

                                                                                                                                (3.31) 

and 

P
J ,P
(HF,vjk! H"F,v" j"k") = PJ ,P

(H"F,vjk! HF,v" j"k") =
1

4
S
J ,P,+1 2

+ S
J ,P,#1 2 # 2Re SJ ,P,+1*SJ ,P,#1( )$

%
&
'

                                                                                                                                (3.32) 
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If we add Eqs. (3.31) and (3.32) and multiply by 2, we obtain Eq. (3.27).  

Thus, the experimentally measurable inelastic probability [Eq.(3.27)] is 

equivalent to the sum of the two distinguishable atom direct probabilities (HF! HF  

and H!F" H!F ) plus the two distinguishable-atom exchange processes (HF! H"F  

and H!F" HF ). 

We can subsequently define a total “direct” and total “exchange” probability 

as follows: 

PD
J ,P
(vjk! v" j"k") = PJ ,P

(HF,vjk! HF,v" j"k") + PJ ,P
(H"F,vjk! H"F,v" j"k")

=
1

2
S
J ,P,+1 2

+ S
J ,P,#1 2

+ 2Re S
J ,P,+1*

S
J ,P,#1( )$

%
&
'

 (3.33) 

PE
J ,P
(vjk! v" j"k") = PJ ,P

(HF,vjk! H"F,v" j"k") + PJ ,P
(H"F,vjk! HF,v" j"k")

=
1

2
S
J ,P,+1 2

+ S
J ,P,#1 2 # 2Re SJ ,P,+1*SJ ,P,#1( )$

%
&
'

 (3.34) 

 

3.4. Integral cross sections, Cumulative reaction probabilities, State-to-state rate 

constants and Vibrational relaxation rate constants 

 

3.4.1. Integral cross sections  

We are interested in calculating state-resolved integral cross sections 

!
v, j"v#, j # (EC )  and overall integral removal cross section ! vj (EC )  as the functions of 

collision energy E
C

 for three channels: H!+HF(v)" H!+HF(v!) , 

H!+HF(v)" H+H!F(v!)  and H!+HF(v)" H
2
(v!)+F . To do so, for each value of the 

total angular momentum J we use Eqs.(3.33) and (3.34) to determine, from the parity-
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adapted helicity-representation scattering (S) matrix S
vjk ,v ' j ' k '

J ,P, p
(E) , the probability for 

inelastic relaxation from an initial state either into a particular HF(v', j') final state 

either with or without H atom exchange. In a similar way, we can determine the 

probability for reactive quenching.  

From these transition probabilities, the intial- and final-state resolved integral 

cross section, summed over the final projection quantum number and averaged over 

the initial projection quantum number, is defined by 

!v, j"v#, j# (Ec ) =
$

(2 j +1)kvjk
2

(2J +1)Pvjk,v# j#k#
J

(E)

Jkk#

%                           (3.35) 

where vjk are the vibrational, rotational, and projection quantum numbers of the 

diatomic moiety (HF or H2, depending on the channel), and J is the total angular 

momentum. The sum over J is truncated at a value J
max

 beyond which the reaction 

probability is negligible. Here, also, E is the total energy and Ec is the initial collision 

(translational) energy, with Ec = E ! "vjk .  The quantity kvjk  is the initial 

wavevector, defined by 
 
kvjk

2
= 2µEc / !

2 .  

The overall integral removal cross section for a particular vibration-rotation 

level is obtained by summing Eq. (3.35) over all possible final states.  We have 

 

!vj (Ec ) = !vj" #v #j (Ec )

#v #j

$

=
%

(2 j +1)kvjk
2

(2J +1)! Svjk,v# j#k#
J

(E)
2

Jk #k #v #j

$ !.

 (3.36) 
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Alternatively, by limiting the sum over final states in Eq. (3.36), one can determine 

the vibrational removal cross section associated with the direct and exchange inelastic 

processes as well as with reactive quenching. 

As shown, schematically, in Fig. 3.3, other relevant quantities such as 

cumulative reaction probabilities N
v

J
(E) , detailed state-to-state rate constants 

k
v, j!v", j " (T )  and overall vibrational relaxation rate constant k

v
(T )  can be obtained 

from the fundamental S matrix.   These quantities will be introduced and defined in 

the following subsection. 

 

3.4.2. State-to-State Rate Constants and Vibrational Relaxation Rate Constants 

Let us imagine a collision event involving atom A and molecule BC.  Let the 

relative velocity be u.  If the concentration of A is [A] , the flux of atoms A impinging 

on BC is given by I
A
= u[A] . The infinitesimal change in intensity of the initial beam 

of atoms A due to scattering by BC after passing through a distance dl is  

dI
A
= !" (u)I

A
(l)[BC]dl                                                                                         (3.37) 

Here ! (u)  is the integral scattering cross section, which is the function of the 

incident translational energy (or, alternatively, of the velocity u).  Since I
A
= u[A]  

and u = dl / dt  

!(d[A] / dt) = u" (u)[A][BC]                                                                                  (3.38) 

In general, for a binary collision process, the second-order rate equation is given by 

!d[A] / dt = k(T ,u)[A][BC]                                                                                   (3.39) 
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where k(u) is the velocity-resolved rate constant.  Comparing Eqs. 3.38 and 3.39, we 

see that k(u) is just the integral cross section multiplied by the A–BC relative 

velocity.  

If we have a Maxwellian distribution of relative velocities, then the thermal 

rate constant k(T )  is obtained by velocity averaging, namely30 

k(T ) =< u! (u) >= 4" (µ / 2"k
B
T )

3/2
u
3! (u)exp(#µu2 / 2k

B
T )du

0

$

%                      (3.40) 

where k
B

 is Bolzmann’s constant.  

Consider the state-resolved process A+BC(v, j)! C+AB(v", j") .  For this 

process, the corresponding rate constant is kv, j!v", j " (T )  and the corresponding rate 

equation is31 

!
d[BC(v, j)]

dt
=
d[AB(v", j")]

dt
= k

v, j#v", j " (T )[A][BC(v, j)]                                     (3.41) 

The rate equation for the overall vibrational relaxation of the chemical species BC(v)  

can be expressed as 

!
d[BC(v)]

dt
= k

v, j"v#, j # (T )[A][BC(v, j)]
v# jj #

$                                                             (3.42) 

If we assume the rotational levels of the reactant are in thermal equilibrium at 

temperature T , then 

[BC(v, j)]

[BC(v)]
=
[BC(v, j)]

[BC(v, j)]
j

!
= f j (T )                                                                         (3.43) 

f j (T ) =
gj exp(!Evj / kT )

gj exp(!Evj / kT )
j

"
=
gj exp(!Evj / kT )

Qrot (T )
                                                  (3.44) 
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where gj = 2 j +1 is the degeneracy factor and Q
rot

 is the rotational partition function 

of a heteronuclear diatomic molecule. Substituting [BC(v, j)]  in Eq. (3.42) we obtain 

!
d[BC(v)]

dt
= k

v, j"v#, j # (T )[A][BC(v)] f j (T ) = kv(T )[A][BC(v)]
v# jj #

$                         (3.45) 

k
v
(T ) = f jkv, j (T )

j

! = f j kv, j"v#, j # (T )
v# j #

!
j

!                                                              (3.46) 

Thus, the vibrational relaxation rate constant k
v
(T )  can be calculated by 

summing the state-to-state rate constant kv, j!v", j " (T )  over final vib-rotational states 

v! j!  then averaging over initial rotational states j . The relationship between the 

integral cross section and the thermal vibrational relaxation rate constants is 

kv(T ) = f j 4! (µ / 2!kBT )
3/2

u
3" v, j#v$, j $ (u)exp(%µu

2
/ 2kBT )du

0

&

'
v$ j $

(
j

(                (3.47) 

Substituting f j by using Eq. (3.44) and integrating over the collision energy 

E
C
=
1

2
µu2 , we obtain 

k
v
(T ) = (

1

!µ
)

1

2 (
2

kBT
)

3

2
1

Qrot

ECe
"
EC

kBT gj #
v, j$v%, j % (EC )

v% j %

& e
"
Evj

kBT

j

& dEC
0

'

(                     (3.48) 

where EC =
h
2
k
vj

2

8!
2µ

= E " E
vj  is the translational energy of the system. If we change 

the integration variable to the total energy E of the system, this equation becomes31  

k
v
(T ) =

1

(2!µkBT / h
2
)
3/2
Qrot

gjh
"1
k
vj

2

!
#
v, j$v%, j % (E)

v% j %

&
j

& e
"

E

kBT dE
0

'

(                      (3.49) 

We can write this equation as  

 

k
v
(T ) =

1

Qtrans (T )Qrot (T )
h
!1
!
v
(E)e

!
E

kT dE
0

"

# =
P(T )

Q(T )
                                             (3.50) 
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with 

 

!
v
(E) = gj

k
vj

2

!
" v, j#v$, j $ (E)

v$ j '

%
j

%                                                                           (3.51) 

where Qtrans (T ) = (2!µkT / h
2
)
3/2  is the translation partition function for an ideal gas 

at temperature T .  

By using Eq. 3.35, the function 
 
!
v
(E)  can be expressed in terms of the 

collision S-matrix elements 

 

!
v
(E) = (2 j +1)

k
vj

2

!
"
vj#v$ j $ (E)

v$ j $

%
j

%

= (2J +1)! S
vjk , $v $j $k

J
(E)

2

Jk $k j $j v$

% = (2J +1)N
v

J
(E)

J

%
                                                 (3.52) 

Finally, it is easy to show that the vibrational relaxation rate constant can be 

written as the weighted average of the state-to-state rate constants 

k
v
(T ) =

gje
!
Evj

kBT k
v, j"v#, j # (T )

v# j #

$
j

$

Qrot (T )
                                                                           (3.53) 

Fig. 3.3 shows a flow chart that summarizes the computational procedure 

outlined in this chapter. Again, S
vjk ,v! j !k !

J ,P, p  designates an element of the parity-adapted S 

matrix, which is the output from our scattering calculation. More advanced 

observables such as state-to-state cross sections ! v, j"v#, j # (EC ) , overall cross sections 

!
v, j (EC ) , detailed state-to-state rate constants kv, j!v", j " (T )  and vibrational relaxation 

rate constants k
v
(T )  can be obtained from the S matrix for all relevant channels. The 

next chapter will present the results of our calculations for the vibrational relaxation 

of HF(v) in collisions with H atoms . 
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Figure 3.3 Calculation flow chart.  Here S  denotes the scattering matrix output from 

the ABC code; !  is the integral cross section and k  is the rate constant 
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Chapter 4: Results and Discussions 

 

4.1 Scattering calculations 

 

As far as we are aware, the work described here is the first application of 

quantum reactive scattering methodology to the study of inelastic HF scattering in 

collision with H atoms. Therefore, to ensure the accuracy of our results, we carried 

out extensive convergence tests with respect to increasing the size of the rotational-

vibrational basis and the number of propagation sectors. As we have stated earlier in 

Chapter 3, in the ABC code, the size of the channel basis is defined by three 

parameters: emax, jmax and kmax.  All HF (or H2) vibration-rotation states with 

rotational angular momentum less than or equal to jmax, and, simultaneously, energy 

less than emax are included. In addition, only projection states with k≤ kmax are 

included. 

For a defined vibration-rotation-projection basis, the precision of the 

scattering calculations is defined by two parameters:  rmax, which defines the 

maximum interparticle distance (technically, the maximum hyperradius) beyond 

which the potential is assumed to vanish, and nmax , which sets the number of 

numerical integration sectors.  In addition, the precision of the calculated integral 

cross sections depends on the parameter Jmax which defines the maximum partial 

wave included.  For total angular momenta larger than J, the centrifugal barrier is so 
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large that the collision partners never penetrate close enough for the inelastic coupling 

to be effective. 

 Table 4.1 lists the values of these parameters that we have used in our 

scattering calculations on the SW-PES. In general, the higher the total energy, the 

larger the basis set required.  For relaxation of HF(v) at a given collision energy, the 

higher the value of v, the greater the total energy.  Thus to determine cross sections 

for the higher vibrational levels of HF required, for convergence, larger basis sets – 

and, consequently, longer computation times. 

 

Table 4.1 Summary of parameters used in our scattering calculations on SW-PES 

 J 
e
max

 j
max

 k
max

 r
max

 nmax 

v=5 0-26 2.775 27 4 11 500 

v=4 0-24 2.825 26 4 12 550 

v=3 0-21 2.700 24 4 12 500 

v=2 0-20 2.1 20 3 14 500 

 

 

4.2 Comparison of the three channels for vibrational relaxation of HF(v=3)  

 

Figure 4.1 displays the integral cross sections for vibrational relaxation of 

HF(v=3, j=0) as a function of the collision energy. Cross sections for each of the three 

channels (direct inelastic, exchange inelastic and reactive quenching) have been 
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labeled.  At energies below 0.031eV, which is the difference between the lowest bent 

barrier and the HF(v=3, j=0) asymptote, there appear strong oscillations and narrow 

peaks in the integral cross sections. As we will discuss later in this thesis (Chapter 5), 

this structure is a manifestation of scattering resonances which arise because of the 

weak HF–H attractive van der Waals interaction.   

We observe in Fig. 4.1 that the direct inelastic process dominates at low 

energy.  As the energy increases, reactive quenching becomes more important and 

eventually dominates. This can likely be explained on energy gap arguments.  The 

HF(v=3, j=0)  level lies 0.035 eV above the H2(v=0, j=0) level.  However the 

HF(v=2, j=0) level lies  0.45 eV below the HF(v=3, j=0)  level.  In a simplistic model, 

the efficiency of reactive as compared to inelastic quenching will depend first on the 

energy gap between the initial and the two final states.  In general, the smaller the 

energy gap, the more efficient the energy transfer. Also, however, for a given energy 

gap, statistical arguments, based on the volume of available phase space, suggest that 

the larger the translational energy in the particular final state, the greater will be the 

cross section.31 

Although the energy gap is much smaller for the HF(v=3, j=0)+H→H2(v=0, 

j=0)+F channel, the product translational energy will be much larger for the HF(v=3, 

j=0)+H→ HF(v=2, j=0)+H channel.  Consequently, at low collision energy, where 

the difference in product translation energy is largest, the inelastic channel will 

dominate.  At higher collision energies, however, the reactive channel becomes 

increasingly important.  
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Figure 4.1 Plot of the integral cross sections (ICS) for vibrational relaxation of 

HF(v=3, j=0) as a function of the collision energy. Cross sections for each of the three 

channels (direct inelastic, exchange inelastic and reactive quenching) have been 

shown. 

 

4.3 Comparison of direct inelastic and exchange inelastic cross sections 

 

Fig. 4.2 shows the integral cross section for the two inelastic processes: direct 

and exchange, as a function of the initial HF vibrational quantum number v.  We find 

that inelastic collisions with atom exchange are much less efficient at relaxing 

vibrationally excited HF.  This is surely a result of the high barrier to atom exchange.  
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As shown in Table 2.2, on the SW potential energy surface the H–F–H barrier lies 

0.31 eV (7.15 kcal/mol) above the HF(v=3, j=0)+H asymptote, but 0.12 eV (2.79 

kcal/mol) below the HF(v=4, j=0)+H asymptote.   

For HF in v=3, 4 and 5 with j =0, inelastic collisions with atom exchange are 

not as efficient a process for vibrational relaxation as either the direct inelastic or 

reaction mechanisms.  For the direct inelastic processes, and as is typical for many 

other inelastic processes, the cross sections rise steeply with increasing collision 

energy. Vibrational relaxation is the result of distortion of the HF potential by 

approach of the H atom.  At very low collision energy, the basically repulsive HF–H 

interaction prevents the collision partners from approaching close enough to sample 

forces strong enough to result in significant vibrational inelasticity.   This effect may 

be compounded by the presence of a small, artificial barrier at long range in the SW 

potential energy surface due to an artifact in the fitting of the ab initio points.  We 

will discuss this small barrier in more detail in Chapter 5. 

As the energy increases, the inelastic cross sections rise and then fall at still 

higher collision energy.  As the energy increases, it is likely that rotational excitation 

within the HF(v) manifold takes away some flux from the vibrational relaxation 

process.  Consequently, as seen in Fig. 4.2, the vibrational relaxation cross sections 

drop slightly.   

We also observe in Figs. 4.2 and 4.3 a large amount of structure in the energy 

dependence of the cross sections for relaxation out of HF(v=3) and, to a lesser extent, 

out of HF(v=2).  As we will discuss in Chap. 5 below, this structure corresponds to 



 

 45 
 

scattering resonances due to the weak, long-range HF–H attractive van der Waals 

interaction. 

 

 

Figure 4.2 Plots of the integral cross section for the direct inelastic (left panel) and 

exchange inelastic (right panel) processes as a function of the initial HF vibrational 

quantum number v. The v=2 cross sections are too small to be distinguishable on 

these plots. 

 

4.4  Comparison of multi-quantum transitions and single-quantum transitions 

 

Figure 4.3 displays the integral cross sections for removal into particular 

vibrational final states with v' < v.   As can be seen, in all cases the single vibrational 

quantum (Δv = –1) transitions dominate.  This is particularly true for v=3 and 2.  This 

is predicted by the simplistic early theory developed by Schwartz, Slawsky, and 
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Herzfeld (SSH theory),32 which is based on the application of first-order perturbation 

theory and the assumption of simple, exponentially-repulsive vibrational coupling.   

We see that the lower the degree of initial HF vibrational excitation, the more 

dominant becomes the single quantum (Δv = –1) process.  At high collision energies, 

it appears (at least for v=5 and 4) that the direct correlation of the magnitudes of the 

integral cross sections with increasing Δv begins to break down. 

 

 

Figure 4.3 Plots of integral cross sections for direct inelastic 

H+H!F(v, j=0)" H+H!F(v! < v)  removal into particular final vibrational manifolds, 

summed over final rotational quantum number. 
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4.5 Final rotational state populations 

 

For the dominant direct inelastic process, Figs. 4.4 and 4.5 show the 

dependence of the final-state-resolved vibrational relaxation cross sections as a 

function of the final rotational quantum number at several values of the collision 

energy for the v=3→2 and v=3→1 transitions. The cross sections at low (0.0143 eV), 

intermediate (0.0515 eV) and higher (0.0915 eV) collision energies display a similar 

pattern.  In every case the vibrational relaxation is accompanied by a modest degree 

of rotational excitation, with a maximum at j'! 5.  The HF rotational constant is ~ 20 

cm–1, so that the rotational energy for j = 5 is ! 0.1 eV.  Since the vibrational spacing 

in HF is ! 0.5 eV, we see that most of the energy is lost into translation, particularly 

for the Δv=2 transitions.  Consequently, Fig. 4.4 confirms the conclusion, mentioned 

in Chapter 1, of the early quasi-classical trajectory calculations8 that the main 

inelastic (HF+H) energy transfer process involves vibrational energy conversion into 

translational energy and the minor energy transfer process is for vibrational energy to 

be converted into rotational energy. 
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Figure 4.4 Plots of the integral cross sections (ICS) to specific final rotational states j′ 

at collision energies of 0.0143 eV, 0.0515 eV and 0.0915 eV for the v=3→2 and 

v=3→1 transitions 

 

 
4.6 Removal rate constants and cumulative reaction probabilities 

 

We recall from Chap. 3 that the vibrational relaxation rate constant can be 

expressed as  

 

k(v;T ) =
1

Qtrans (T )Qrot (T )
h
!1

!v(E)!exp!(!
E
kT
)!dE

0

"
#                                     (4.1) 

where Qtrans (T )  is the translation partition function for an ideal gas at temperature T, 

and Qrot  is the rotational partition function of the HF molecule.  The function 
 
!v(E)  

is 
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!v(E) = (2 j +1)
kvjk

2

!
"vj#v$ j$ (E)

v$ j$

%
j

%

= (2J +1)! S
vjk, $v $j $k
JPp

(E)
2

JPpk $k j $j v$

% = (2J +1)Nv
J
(E)

J

%

                                        (4.2)                                               

Here Nv
J
(E)  is called the cumulative reaction probability33 at total energy E, and is 

defined by  

Nv
J
(E) = S

vjk, !v !j !k
JPp

(E)
2

Ppk !k j !j v!

"                                                                             (4.3) 

Fig. 4.5 plots the calculated cumulative reaction probabilities for the three 

H+H!F(v=3)  removal channels. We see, clearly here, two pronounced peaks (marked 

“A” and “C” on the figure) and a less distinct feature in between (marked “B” on the 

figure).  For total angular momentum J=0, all of these peaks occur above the 

threshold (Etot = 0.3035 eV) for the H+H!F(v=3)  reaction. As will be discussed in 

Chapter 5 of this thesis, these peaks correspond to enhancement of the overall 

vibrational removal cross section due to effect of quasi-bound resonances in the HF–

H valley.   

 

 

 

 



 

 50 
 

 

Figure 4.5 Plots of the calculated cumulative reaction probabilities for the three 

H+H!F(v=3)  removal channels as a function of total energy. Total angular 

momentum J=0  

 

From Eq. (3.40) we see that the thermal rate constant is an average over a 

Maxwellian velocity distribution of the product of the relative velocity times the cross 

section.  Thus, we can define a “thermal cross section” as 

 ! = k(T ) / u(T )  (4.4) 

where u(T) is the average speed 

 u(T ) =
8kT

!µ

"

#
$

%

&
'

!1/2

 (4.5) 

with µ being the HF–H reduced mass.  If we introduce the experimental or QCT rates 

into Eq. (4.4), we obtain the thermal cross sections shown in Tables 4.2 and 4.3. From 

Eq. (4.5) the average collision energy is 1

2
µu(T )2 = 4kT /! .  At T=295 K this is 

0.03 eV.  Tables 4.2 and 4.3 also show the corresponding integral cross section for 

vibrational relaxation of H+H′F(v=3, j=0) from our quantum scattering calculations at 
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this energy.  We observe considerably better agreement with the earlier experiments 

than in the case of the QCT calculations. 

 

Table 4.2 Thermal (T=295K) cross sections (bohr2) for vibrational deactivation of 

HF(v=3) by H atoms. 

 Total Channel (1c) Channel (1a)+(1b) 
Experimental 
measurements 
 

14.6 3.3 11.3 

QCT 
calculations 

 
4.9 0.95 4.0 

Quantum 
scattering 

calculations 
12.8 4.8 8.0 

 

 

Table 4.3 Thermal (T=295K) cross sections (bohr2) for vibrational deactivation of 

HF(v=2) by H atoms. 

 Total Channel (1c) Channel (1a)+(1b) 
Experimental 
measurements 

 
0.15 

 
… a 

 
0.15 

QCT 
calculations 

 
2.2 

 
… a 

 
2.2 

Quantum 
scattering 

calculations 
0.01 … a 0.01 

a.  The HF(v=2)+H→H2+F reaction is energetically inaccessible. 
 
 

We observe from a comparison of these two tables with Figs. (4.2) and (4.3) 

that the present fully-quantum scattering calculations on the ab initio Stark-Werner 
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potential energy surface yield vibrational removal cross sections which agree to better 

than an order of magnitude with the earlier experimental results and the results of 

QCT calculations based on a far cruder potential energy surface. 

 

4.7 Discussion and conclusion 

 

Our calculations predict substantial cross sections for vibrational relaxation of 

HF in collisions with H atoms.  By taking suitable linear combinations of the definite-

parity S-matrix elements, we can resolve cross sections for the inelastic 

[HF(v)+H→HF(v'<v)+H] relaxation pathway into the contributions due to direct 

inelastic scattering without H atom exchange and the contributions due to inelastic 

scattering accompanied by atom exchange.  For all energies and for all vibrational 

levels considered, we find that the direct inelastic scattering is the dominant 

relaxation mechanism, followed, in order of decreasing importance, by reactive 

quenching [HF(v)+H→H2+F], and by inelastic scattering due to atom exchange.   

The inefficiency of the latter process can be explained, in part, by the high 

energetic barrier to F atom exchange.  However, even for HF(v=5), which lies well 

above the barrier, we see in Fig. 4.2 that the cross sections for the atom exchange 

mechanism are only ~ 20% of those for direct inelastic relaxation.   

It is worthwhile to compare these cross sections with those for the relaxation 

of OH by collisions with H atoms, studied a few years ago in our research group by 

Atahan.34 This is a very different system.  The deep H2O well provides a mechanism 

for complex formation, in which initial OH vibrational energy can be efficiently 
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redistributed. Figure 4.6 shows, for reference, the vibrational removal cross sections 

determined by Atahan and Alexander.  The sharp increase in the cross sections at low 

collision energy is characteristic of a process involving transient complex formation, 

and so is very different from the low-energy behavior of the removal cross sections 

we calculate for the HF(v)+H system.  Nevertheless, except at the lowest energies, the 

magnitudes of the OH vibrational removal cross sections are on the order of 10 bohr2, 

which is not too much larger than we predict for the vibrational removal cross 

sections of FH, where there is no deep attractive well. 

 

Figure 4.6 Initial state selected vibrational removal cross sections for OH(v) in its 

lowest rotational level in collisions with H atoms.  Adapted from Fig. 7 of  Ref. 33.   
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In the investigation by Atahan, a statistical close-coupled model was used.35 

Within this model, because the OH+H' and OH'+H arrangements are not directly 

linked, it is impossible to distinguish between energy transfer with, or without, atom 

exchange.  Also, the O(1D)+H2 channel, which could, in principle, correspond to a 

reactive quenching process, is energetically inaccessible. 

 By contrast, recently Krems, Nordholm, and co-workers described close-

coupled calculations of vibrational relaxation cross sections for collisions of HF(v=1) 

with the closed-shell Ar atom.36 The computed cross sections are less than 10–3 bohr2 

for collision energies below ~ 0.25 eV. This is far lower than the H+HF vibrational 

removal cross sections we have calculated here.  It is the distortion of the diatomic 

vibrational potential, engendered by approach of the atomic target, which is 

responsible for vibrational relaxation.  Clearly, then, the distortion of the HF potential 

produced by approach of H is much stronger than by approach of Ar.  This is because, 

even for energies below the H−F−H barrier, the HF bond is substantially weakened 

by incipient atom exchange. 

We observed the presence of numerous narrow peaks in the energy 

dependence of both the integral cross section and cumulative reaction probabilities 

for vibrational relaxation of HF(v=3). As will be investigated in more detail in 

Chapter 5, these sharp peaks are evidence of the role of resonances, which reflect 

trapping in the weak HF–H van der Waals well.  It can explain the reason why the 

QCT calculation underestimates the rate constant that has been measured by 

fluorescence experiment. Classical trajectories cannot account for tunneling and the 
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LEPs surface over estimates the height of reaction barrier for both exchange inelastic 

collision and reactive quenching. The comparison between the integral cross section 

for HF(v=3) and HF(v=2) (Figs. 4.2 and 4.3) indicates that the vibrational relaxation 

of HF(v=3) is approximately 100 times faster than the vibrational relaxation of 

HF(v=2). As the consequence of tunneling in quantum reactive scattering, this result 

matches the experimental measurements very well. 
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Chapter 5: The role of van der Waals resonance in the 

vibrational relaxation of HF in collisions with H atoms 

 

5.1 Introduction 

 

This work is motivated by our earlier study of the vibrational relaxation of 

HF(v) molecules by H atoms and by several previously groundbreaking investigations 

on the role of resonances in the reaction of F with H
2
 and its isotopomers.5,19,37-40 

Here, the term “resonance”41,42 refers to a transient metastable or quasi-bound state 

which is formed as the reaction occurs. The first case, sometimes called a “reactive 

resonance state”,38,39 is the result of a deep and thin trapping well located near the 

repulsive barrier (transition state) on the potential energy surface (PES).  The second 

type of metastable state arises because of a shallow van der Waals well in the 

asymptotic region of a potential energy surface. A weakly bound “van der Waals 

state”19,40 can act to slow down the motion of the system allowing a more efficient 

transfer of internal energy into the degree of freedom corresponding to motion over a 

reaction barrier.42 

 Due to the difficulty of carrying out molecular beam investigations with 

sufficient energy and angular resolution to observe scattering resonances, relatively 

few unambiguous observations have been reported. The observation of bimolecular 
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reactive scattering resonances have been confined to two fundamental reactions: 

H+H2
43 , F+HD  and F+ H2.41,44 From a theoretical point of view, in a bimolecular 

reaction a popular characterization of a resonance involves determination of the delay 

time associated with the relative motion of the colliding reactants. That is, at a 

collision energy corresponding to a resonance, the motion of the colliding reactants is 

poorly coupled to the reaction coordinate (minimum-energy path). However, if a 

“time delay” in the collision occurs, then the required energy redistribution can take 

place to surmount the reaction barrier. The time delay corresponds to persistence of a 

temporary quasi-bound state. Therefore, resonance peaks can be related to one or 

more metastable states along the reaction path, either at the transition state or in the 

product or reactant arrangements. 

Our work on the role of resonances in HF(v)+H relaxation was inspired by the 

earlier work of Manolopoulos, Skodje and their coworkers on the appearance of 

resonance in the exothermic reaction of F with H2 and HD.19,38 In the latter case, the 

experimental signature of a resonance has been confirmed by Liu and coworkers.41 

This F+HD resonance had been investigated, theoretically, by means of several 

powerful tools, including time delay analysis,39,45 the vibrationally adiabatic 

approximation approximation19,46 and the spectral quantization method.47  

As we have seen in Sec. 4.4, the overall vibrational removal cross sections for 

HF(v=3) show pronounced structure as a function of energy. In order to understand 

the position of these features, which we attribute to resonances, we shall use an 

adiabatic bender analysis,48,49 similar to the analysis presented by Castillo et al.19 in 

their investigation of differential cross sections for the F+ H2 reaction. The position of 
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quasi-bound van der Waals states coincides precisely with the observed resonance 

energies. These calculations will, hopefully, provide motivation for future 

experimental search for resonance signatures in H+H!F  quenching. 

 

5.2 Scattering calculation 

 

The investigation of the role of resonances in HF vibrational relaxation starts 

with the determination of integral cross sections for inelastic collisions of HF(v, j=0) 

in collision with H atoms.  Here, we used an extremely fine grid of energies in order 

to map out completely the resonance features.  A more complete discussion of the 

computational details has been given in Chapter 3 of this thesis. 

Again, there are three distinct pathways for removal of vibrationally excited 

HF from v=3 state: (1) inelastic relaxation without atom exchange 

HF(v, j)+H'→HF(v'<v, j')+H'  ,                                               (5.1) 

(2) inelastic relaxation with atom exchange 

HF(v, j)+H'→H'F(v'<v, j')+H  ,                                               (5.2)  

and (3) chemical reaction 

HF(v, j)+H'→HH'+F  .                                               (5.3) 

As discussed earlier in Chapter 3, by taking a suitable linear combination of the S-

matrix elements associated with positive (p = 1) and negative (p = –1) interchange 

symmetry, it is possible to determine, separately, the cross sections associated with 

the direct and exchange inelastic channels [Eqs. (5.1) and (5.2)]. 
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The overall integral removal cross section for a particular vibration-rotation 

level is obtained by summing Eq. (3.35) over all possible final states.  We have 

 

!vj (Ec ) = !vj" #v #j (Ec )

#v #j

$

=
%

(2 j +1)kvjk
2

(2J +1)! !S
vjk, #v #j #k
J&

(E)!

J&k #k #v #j

$
!2
!.

              (5.4) 

Alternatively, by limiting the sum over final states in Eq. (5.4), one can determine the 

vibrational removal cross section associated with the direct and exchange inelastic 

processes as well as with reaction [processes (1)–(3)]. 

Figs. 5.1 and 5.2 display the energy dependence of these integral removal 

cross sections for processes (1), (2), and (3), for an initial state of HF(v=3, j=0). We 

observe that inelastic vibrational relaxation without exchange is the dominant 

pathway, followed, in importance, by reactive quenching.  Inelastic vibrational 

relaxation with exchange is relatively improbable, because the HF+H'→H'F+H 

barrier lies ~0.12 eV (2.74 kcal/mol) above the HF(v=3, j=0)+H asymptote.50 Since 

this value significantly exceeds the range of collision energies sampled in Figs. 5.1 

and 5.2, we conclude that over this range of collision energies inelastic vibrational 

relaxation with exchange occurs exclusively by quantum mechanical tunneling 

through the HF+H'→H'F+H barrier. 

We observe in Figs. 5.1 and 5.2 that the energy dependence of the vibrational 

removal cross sections is not monotonic, but, rather, punctuated by four or five 

narrow peaks.  As we shall demonstrate below, these peaks correspond to the position 

of quasibound states in the asymptotic HF–H valleys.  Finally, we observe that the 

peaks occur, identically, in the energy dependence of the integral removal cross 
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sections for each of the three distinct removal mechanisms:  inelastic relaxation with 

and without H-atom exchange and reaction.  This confirms that the quasi-bound states 

of relevance are located in the HF–H valley, rather than in the F–H2 valley, since the 

latter region of the potential energy surface is not accessed in the inelastic processes.  

In addition, since reactive quenching [process (3)] is exoergic by 0.0353 eV for 

HF(v=3), it is unlikely that weakly bound states in the F–H2 valley will play a role. 
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Figure 5.1 Dependence on collision energy of the HF(v=3, j=0) total removal cross 

section in bohr2 for inelastic relaxation without atom exchange (top trace) and for 

reaction (lower trace).  The HF(v=3, j=0) +H asymptote lies at 0.3035 eV above 

F+H2 (r=re), which defines the zero of  energy. 
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Figure 5.2 Dependence on collision energy of the HF(v=3, j=0) total removal cross 

section in bohr2 for inelastic relaxation with atom exchange.  The HF(v=3, j=0) +H 

asymptote lies at 0.3035 eV above F+H2 (r=re), which defines zero of energy. 
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In Fig. 5.3 and 5.4 we show the contribution to the total removal probability 

for various individual values of the total angular momentum, again for the dominant 

direct inelastic process, namely 

 Pvj
J
= (2J +1) S

vjk, !v !j !k
J"

(E)

"k !k !v !j

#
2

  .                                               (5.5) 

Starting with J=0, each of these partial removal probabilities exhibits a prominent 

Lorentzian-like peak.  The position of this peak shifts toward higher energy as J 

increases.  It is clear that the lowest energy peak at E=0.3054 eV in the plot of the 

integral removal cross section in Fig. 5.1 arises from the overlap of the first peak in 

the low-J (J=0–4) partial removal probabilities.  Also, the three narrow peaks in Fig. 

5.1 at E=0.3164, 0.3210, and 0.3258 eV correspond to the peaks seen in Fig. 5.4 for 

the partial removal probabilities for J=10, 11 and 12.  
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Figure. 5.3 Dependence on energy for the HF(v=3, j=0) partial removal probabilities 

[Eq. (5.5)] for values of the total angular momentum J=0, 2, 5, and 8.  The heavy 

vertical arrows indicate the position of the n=1, s=1 adiabatic-bender quasi-bound 

states for J=0, 2, 5, and 8 (Table 5.1). 
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Figure. 5.4 Dependence on energy for the HF(v=3, j=0) partial removal probabilities 

[Eq. (5.5)] for values of the total angular momentum J=8–13.  The vertical arrows 

indicate the position of the n=1, s=0 adiabatic-bender quasi-bound states for J=0, 2, 5, 

and 8 (Table 5.2). 

 

In the next Section we shall use a simple adiabatic-bender model to explain 

the origin of the narrow resonance peaks observed in Figs (5.1)−(5.4). 
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5.3 Adiabatic bender model 

 

In this section we shall use the adiabatic-bender model, first introduced by 

Holmgren, Waldman and Klemperer into the study of weakly-bound molecules,48 to 

examine the origin of the sharp peaks seen in Figs. 5.1–5.4.  A similar adiabatic 

model was used by Manolopoulos and co-workers19 in the analysis of similar energy-

dependent structure in F+H2 →HF+H reactive cross sections.  Grayce and Skodje 

have gone on to present a more extended adiabatic model19,46 to analyze reactive 

resonances in heavy-light-heavy chemical reactions. We shall show that the 

resonance peaks observed in Figs. 5.1–5.4 can be associated with the quasi-bound 

states trapped in the van der Waals well in the HF–H arrangement. 

The adiabatic-bender model starts first with an expansion of the scattering 

wavefunction in Jacobi coordinates appropriate to the HF–H product arrangement.  In 

terms of these coordinates the Hamiltonian can be written as23  
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Here  
!
R  is the vector joining the H atom with the center-of-mass of the HF molecule, 

 

!
r  is the HF bond axis, and γ  is the angle between  

!
R  and  

!
r [

 
! = cos

"1
(R
!"
# r
"
) ].  Also 

l̂  and ĵ  are the operators represents the orbital angular momentum of the HF–H pair 

and the rotational angular momentum of the HF moiety, while µ
HF

 and µ
H,HF

 are the 

corresponding reduced masses. 
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and 

 µ
H,HF

=
m
H
(m

H
+ m

F
)

m
H
+ m

H
+ m

H

                                                                               (5.7b)  

We shall use a body-frame26,28 development of the scattering wavefunction, 

identical to that used in the inelastic scattering of an atom by a molecule.22,23 We first 

expand in terms of eigenfunctions of the total angular momentum and its projection, 

which are constants of the motion, namely 

 

!(R
!"
,r
"
) = CJM

M ="J

J

#
J=0

$

# !JM
(R,r,% )  .                                                       (5.8)  

We expand !JM
(R,r," )  further as follows:26  

 !JM
(R,r," ) = DMk

J*
(#,$,% )&Jk
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1

R
gvj
Jk
(R) vjk

v

'
j= k

(

'
k=)J

J

'  ,        (5.9)  

where 

 !Jk
(R,r," ) =

1

R
gvj
Jk
(R) vjk

v

#
j= k

$

#  .                                                       (5.10) 

Here, the angles φ,  θ, and ψ describe the orientation of the triatomic FHH plane, 

DMk
J  is a Wigner rotation matrix element,28 gvj

Jk
(R)  describes the stretch of the HF–

H complex, and the coordinate representation of the vjk ket is 

 r! vjk = Yjk (! ,0)
"vj (r)

r
 .                                                                       (5.11)  

In this last equation !vj (r)designates a complete set of functions which span the 

vibrational motion of the diatomic moiety and Yjk (! ,0)  is a spherical harmonic.28 
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After premultiplication by D !M !k
J

(",#,$ )Y !j !k (% ,0)" !v !j (r)  and integration 

over the variables φR, θR, ψ, γ, and r, the Schrödinger equation reduces to a set of 

coupled 2nd order differential equations in the functions gvj
Jk
(R) .   
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The matrix elements of the centrifugal potential on the right-hand-side are51-53 

vj !k
l̂
2

2µR2
vjk = "# !k ,k±1 J(J +1) " k(k ±1)[ ]1/2 j( j +1) " k(k ±1)[ ]1/2  (5.13) 

We note that the matrix of the potential V(R,r,γ) is diagonal in the projection quantum 

number k, while the matrix of the centrifugal potential is diagonal in v and j, but a 

banded tri-diagonal matrix in k. 

Within the adiabatic-bender approximation, rather than solving this set of 

coupled equations, one first diagonalizes the matrix of the potential in the vjk  basis, 

with the addition of the diagonal εvj terms as a function of the separation coordinate 

R.  Let us designate this matrix as V(Jk)(R) , so that 

 V
vj, !v !j
(Jk)

(R) "
J(J +1) + j( j +1) # 2k2

2µR2
+ $vj

%

&
'
'

(

)
*
*
+vj, !v !j + v! j!k V (R,r,, ) vjk .(5.14) 

Let us further denote the eigenvalues of V(Jk)(R)  as !n
(Jk)

(R) , where n indexes the 

eigenvalues.  These are called the adiabatic-bender potentials.  The corresponding 

eigenvectors are designated cn
(Jk)

(R) . 
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To obtain an estimate of the bound-state energies, one solves the one-

dimensional Schrödinger equation for these adiabatic bender potentials 
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The elements of the potential coupling matrix can be evaluated by expanding the H–

HF triatomic potential V (R,r,! )  in Legendre polynomials, 

 V (R,r,! ) = V" (R,r)P" (cos! )
"
#  , (5.16) 

where  

V! (R,r) =
2! +1

2
V (R,r," )P! (cos" )

0

#
$ sin" d"   .  (5.17)  

Since the angular dependence of the vjk  functions is given by Yjk (! ,0)  [Eq. 

(5.11)], the matrix elements of the potential in Eqs. (5.12) and (5.14) – the 

v! j!k V (R,r," ) vjk  matrix elements – can be simplified to give21,52  
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(5.18) 

where (:::) is a Wigner 3j coefficient.28 Note that the matrix elements of V are 

independent of the total angular momentum J.   

For HF–H, the minima in the adiabatic bender potentials all lie at R! 6 bohr.  

For R greater than ~ 5 bohr, the potential is nearly vibrationally adiabatic, so that  

!v" j" (r)V# (R,r)$ !vj (r)dr % 0  (5.19) 
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for v'≠v.  Thus, for simplification, we eliminated all states with v≠3 in Eq. (5.9).  The 

one-dimensional adiabatic bender equations were then solved numerically.  As a 

further simplification we invoked the coupled-states approximation,51,54 wherein all 

Coriolis coupling between states with different k is neglected, so that the dimension 

of the V(Jk)(R)  matrix is equal to the number of rotational levels included in the 

expansion in Eq. (5.9). 

 

5.4 Results 

 

Figure 5.5 displays the k=0 adiabatic bender curves, !n
(J ,k=0)

(R) , that 

correlate asymptotically with HF(v=3, j=0,1,2,3,4)+H.  The lowest curve (n=1) 

correlates with HF(v=3, j=0) +H, the next curve (n=2) correlates with HF(v=3, 

j=1)+H, etc.  All the curves have a minimum at R ! 6 bohr.  This corresponds to the 

shallow van der Waals well in the H–HF valley of the SW-PES.  The corresponding 

bound-state eigenvalues Ens
(J ,k=0)were calculated by solving numerically Eq. (5.15). 

Here, the index s (s=0, 1, 2, …) indicates the degree of excitation of the van der 

Waals stretch mode in the nth adiabatic bender curve associated with total angular 

momentum J and projection quantum number k.  We used a fixed-stepsize DVR 

method, similar to that proposed by Colbert and Miller.55 A total of 20 rotational 

functions (j=0–19) was necessary to obtain fully converged adiabatic-bender 

potentials. 
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Figure 5.5 The first five adiabatic bender potentials for J=0 and k=0.  The positions 

of the calculated quasi-bound states are shown.  

 

We observe that for J=0 each of the lower adiabatic bender curves supports at 

least one bound state, whose position is indicated in Fig. 5.5.  Note that when we 

include the coupling between the individual adiabatic bender states, and the coupling 

between adiabatic states with v=0, 1, and 2, the bound states which are shown 

schematically in Fig. 5.4 become only quasi-bound. When the collision energy of the 

HF(v=3, j=0)+H collision energy equals the energies of these quasi-bound states, then 

interference will occur between the scattering wavefunction and the wavefunction 

corresponding to this quasi-bound state.  This will give rise to a resonance, with the 
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appearance of rapid variations in the energy dependence of the integral cross sections.  

In a time-dependent picture, these resonances will give rise to splitting, and delaying, 

of the initial scattering wavepacket.39,45 

Comparison of the energies of these J=0 adiabatic-bender bound states with 

the energy dependence of the J=0 partial removal probability (Fig. 5.3), reveals that 

each of the subtle features seen in Fig. 5.3 and 5.4 occurs at an energy which is within 

a few meV of the position of an adiabatic bender level.  In particular, the prominent 

peak at E=0.3052 eV in the J=0 partial removal probability corresponds to the n=1, 

s=1 quasi-bound state.  We note, however, that the lowest bend-stretch state (n=1, 

s=0, E=0.2940) lies below the HF(v=3, j=0)+H asymptote [E =0.3035 eV, relative to 

F+H2(r=re)], and thus will not be accessible in the scattering. 

As the total angular momentum increases, the increasing centrifugal term in 

Eq. (9) will raise the adiabatic-bender potentials, in what is commonly referred to as 

“J shifting.”19 This is illustrated in Fig. 5.6, which displays the lowest (n=1) adiabatic 

bender potentials for k = 0 and J = 0, 5, 9, 10, and 11.  Consequently, the energies of 

the quasi-bound states Ens
(Jk)will increase with J.  This can be seen in Tables 5.1 and 

5.2, which list the energies of the n=1, s=0 and n=1, s=1 states as a function of J.  
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Figure 5.6 The lowest adiabatic bender (n=1) potential for k=0 and J = 0, 5, 9, 10, 

and 11.  The positions of the s=0 quasi-bound levels are shown by solid horizontal 

lines.  The dashed horizontal line indicates the position of the next higher (s=1) level 

for J=0. 
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Table 5.1 Energies of the v=3, k=0, n=1, s = 0 quasi-bound HF–H van der Waals 

states on the SW-PES. a 

J Ens
(J ,k=0)  

0 0.2940 

2 0.2966 

5 0.3012 

7 0.3031 

8 0.3086 

9 0.3122 

10 0.3162 

11 0.3208 

12 0.3257 

13 0.3302 

14 … b 

a.  Energies in eV, relative to F+H2(r=re). 

b.  For J ≥ 14 no bound states exist for the v=3, k=0, n=1 adiabatic-bender potentials. 

 

Table 5.2 Energies of the v=3, k=0, n=1, s = 1 quasi-bound HF–H van der Waals 

states on the SW-PES. a 

J Ens
(J ,k=0)  

0 0.3051 

2 0.3058 

5 0.3088 

7 0.3125 

8 … b 

a.  Energies in eV, relative to F+H2(r=re). 

b.  For J ≥ 8 no s=1 bound states exist for the v=3, k=0, n=1 adiabatic-bender 

potentials. 
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We see that the first peak in the partial removal probabilities for J = 0, 2, 5, 

and 8 shown in Fig. 5.3 also shifts to higher energy with increasing J, and, in every 

case the position of this peak corresponds extremely closely to the energies of the 

n=1, s=1 quasi-bound states listed in Table 5.1.  If the increase in the position of the 

bound states were a consequence of J-shifting, then the energies would scale as 

J(J+1).  Fitting the energies tabulated in Tables 5.1 and 5.2 to the formula 

Ens
(Jk)

= Ens
(0k)

+ Bns
(k)
J(J +1)   , (5.21) 

gives, a value of B10
(0)= 0.187 meV (1.50 cm–1), with a rms error in the fit of 4 meV.  

For the s=1 states, the fit gives B11
(0)= 0.113 meV (0.91 cm–1), with a rms error in the 

fit of 1 meV. The s=1 states have a smaller rotational constant, because they are 

located at a larger HF–H distance. 

As J increases, the n=0 adiabatic bender curves become too shallow to 

support more than one bound state.  Consequently, the prominent peak in the partial 

removal probabilities which is associated with the s=1 resonance disappears, at J=8.  

However, as seen in Table 5.1, as J increases above 8, the position of the lowest 

adiabatic-bender quasi-bound state (n=1, s = 0), increases above the energy of the 

HF(v=3, j=0)+H asymptote (E=0.3035 eV).  Consequently, for total angular momenta 

in the range 9 ≤ J ≤ 12, additional resonances will occur, corresponding to these s=0 

quasi-bound states.  This is apparent in Fig. 5.4, which plots the partial removal rates 

out of HF(v=3, j =0) for J = 8–13. For values of the total angular momentum J >13, 

the adiabatic-bender curves are too shallow to support even a single bound state, so 

the resonances disappear. 
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The sharp structure due to the resonances survives the summation over J [Eq. 

(5.4)], so that the energy dependence of the integral removal cross sections shown in 

Fig. 5.1 reveals evidence of the low-J, s=1 quasi-bound states, manifest in the broad 

peak at low energy, and the high-J, s=0 quasi-bound states, manifest in the sharp 

peaks at higher energy. 

More insight is gained by examining the probability density of the quasi-

bound states, !Jk
(R,r," )2 . Within the adiabatic-bender model, and, in particular, 

within the restriction that the expansion of the r dependence of !Jk
(R,r," )  is 

limited, in Eqs. (5.9) and (5.12) to just the HF v=3 vibrational functions, we have (if 

we further restrict k to 0) 

!J ,k=0
(R,r," ) # gns

(k=0)
(R) cn

(Jk=0)
(R)Yjk (" ,0)

$v=3,j (r)

r
j

%    .         (5.21) 

Figures 5.7 and 5.8 show contour plots of the R,r dependence of 

!J ,k=0
(R,r," )2 for the n=1, s=0 and 1 states for J=0 for HFH collinear geometry 

(γ=0), and superimposes these plots on plots of the SW potential energy surface.  As 

we might have anticipated, since the r-dependence of !J ,k=0
(R,r," )  is restricted to 

just the HF v=3 vibrational functions, the r-dependence of the quasi-bound states 

displays the expected three-node topology of a v=3 vibrational functions.  The R 

dependence is localized, again as we might have anticipated, in the region of the well 

in the adiabatic-bender curves.  We also observe in Figs. 5.7 and 5.8, that for the 

values of R at which wavefunctions of the s=0 and, especially, the s=1 quasi-bound 

states are large, the r-dependence of the HF–H potential energy surfaces is little 
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different from what is seen asymptotically. This is an additional justification of the 

assumption of vibrational adiabaticity in our adiabatic-bender calculations. 
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Figure 5.7 Contour plot of the square of the bend-stretch wavefunction 

!J ,k=0
(R,r," ) for the J=0, n=1, s=0 quasi-bound state, for collinear HFH geometry, 

superimposed on a contour plot of the Stark-Werner potential energy surface. The 

“X” marks the position of the van der Waals minimum. This plot clear shows a state 

with three nodes along the asymmetric stretch (r direction) and zero node in the 

symmetric stretch (R direction), thus assigned to (v=3, n=1, s=0) states 
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Figure 5.8 Contour plot of the square of the bend-stretch wavefunction 

!J ,k=0
(R,r," ) for the J=0, n=1, s=1 quasi-bound state, for collinear HFH geometry, 

superimposed on a contour plot of the Stark-Werner potential energy surface. The 

“X” marks the position of the van der Waals minimum. This plot clearly shows a state 

with three nodes along the asymmetric stretch (r direction) and one node in the 

symmetric stretch (R direction), thus assigned to (v=3, n=1, s=1) states 
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Figure 5.9 displays contour plots of the R,γ dependence of !Jk
(R,r," )2  for 

the n=1, s=0 states for J=0 and for r held at the equilibrium value in HF (re=1.73 

bohr), and superimposes these plots on a contour plot of the SW potential energy 

surface. We see here that the quasi-bound HF–H states are located primarily at 

collinear HFH geometry, where the deepest van der Waals minimum occurs. 

 

 

Figure 5.9 Contour plot of the square of the bend-stretch wavefunction 

!J ,k=0
(R,r," ) for the J=0, n=1, s=0 quasi-bound state, for an HF distance of r=re 

superimposed on a contour plot of the Stark-Werner potential energy surface.  The 

“X” marks the position of the van der Waals minimum. 
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5.5 Rotational distributions 

  
 

We see clearly in Fig. 5.1 that the presence of resonances leads to sharp 

enhancements in the vibrational removal cross sections. In principle, it might be 

possible for the final HF rotational distributions to be considerably altered by the 

presence of a long-lived resonance.  To investigate this question we plot in Fig. 5.10 

the dependence of the HF(v=3→2, 1) vibrationally inelastic cross sections at two 

energies, one corresponding to the narrow resonance peak at Etot =0.3164 (Fig. 5.1) 

and the second (Ec=0.0155 eV) corresponding to the dip between the peaks at 

Etot =0.3164 and Etot = 0.3120 in Fig. 5.1. 

In both cases, the rotational distributions correspond very closely to those we 

have already presented in Fig. 4.4. There appears very little difference between these 

distributions at a resonant collision energy and one off-resonance. Thus, we conclude 

that in the case of HF(v=3)+H vibrational relaxation, the presence of quasi-bound van 

der Waals states has little effect of the rotational distribution of the quenched HF 

molecules. 
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Figure 5.10 Integral cross sections into specific rotational states at two collision 

energies, the first  (Ec=0.0129 eV) corresponding to the peak at Etot =0.3164 

(Fig. 5.1) and the second (Ec=0.0155 eV) corresponding to the dip between the peaks 

at Etot =0.3164 and Etot = 0.3120 in Fig. 5.1. 

 

 

5.5 Discussion and conclusions 

 

We have presented here a detailed study of the role of resonances in the 

vibrational relaxation of HF(v=3) by collisions with H atoms.  Fully quantum reactive 

scattering calculations were presented of the overall removal cross section for 

HF(v=3) in collisions with H atoms. This involves three processes: vibrationally 

inelastic scattering with and without H-atom exchange, and reaction. Of these 

processes inelastic scattering without atom exchange is the dominant relaxation 

mechanism, followed by reaction. Inelastic scattering with atom exchange is least 
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probable, because at low collision energy this can occur only by quantum tunneling 

through the H…F…H exchange barrier. 

The energy dependence of the removal cross section for each of these 

processes displays several narrow peaks. We have used an adiabatic-bender analysis, 

similar to that invoked by Castillo et al.19 in an earlier study of reactive F+H2 

scattering, to analyze this structure. We have shown that the most prominent peaks 

correspond to shape resonances involving quasi-bound HF–H states which are 

trapped behind a combination of the HF–H centrifugal potential and the HF–H weak 

van der Waals attraction. 

From a time-dependent point of view, trapping of the initial wavepacket in 

these quasi-bound states will increase the time the collision system is exposed to the 

weak coupling between v=3 and the lower vibrational manifolds, thus increasing the 

overall relaxation cross section.  Because the peaks seen in the energy dependence of 

the total removal cross section are due to interactions between the scattering 

wavefunction and quasi-bound states in the HF–H valley, the coupling will effect all 

collisions, regardless of the final outcome (inelastic scattering with or without H atom 

exchange and reaction).  Hence, as we see in Fig. 5.1, the resonance peaks are present 

in the removal cross sections for each of these processes. 

Several recent ab initio studies of the HF–H region of the FHH potential 

energy surface have shown50,56 that an artifact of the fit used by Stark and Werner 

will generate an small artificial barrier at large HF–H separations, outside of the van 

der Waals well. This barrier can be seen clearly in Fig. 5.5.  This presence of this 

barrier might artificially enhance the importance of the n=1, s=1 quasi-bound states, 
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which, as can be seen in Figs. 5.5 and 5.6, are barely bound and might disappear if a 

more accurate fit were done which resulted in removal of this barrier.  Alternatively, 

however, an improved ab initio treatment with a better description of the correlation 

energy could lead to a lowering in the HF–H van der Waals well, which would result 

in the s=1 states being bound regardless.  

As we have discussed, it is only the lowest energy peak in the removal cross 

sections which is a reflection of the s=1 quasi-bound states.  The peaks at higher 

energy are a reflection of coupling with the s=0 quasi-bound states.  As we see in 

Figs. 5.5 and 5.6, these quasi-bound states are rather deeply bound in each adiabatic 

bender potential, and will certainly persist even in the absence of an artificial barrier 

at long range. 

The present study focused exclusively on the relaxation of HF(v=3, j=0).  It is 

likely that similar resonance effects, involving quasi-bound HF–H states, would play 

a role in the relaxation of other vibrational levels. As we have seen, the major 

resonance effects were rotationally adiabatic, in the sense that the quasi-bound states 

in the adiabatic bender potentials which correlated with HF(v=3, j=0)+H played the 

major role.  We would expect then that for the relaxation of HF in rotational levels 

with j≠0, it would be quasi-bound states in the higher (n>1) adiabatic bender 

potentials which would provide the major resonant coupling.  As we see in Fig. 5.5, 

these higher (j>0) adiabatic bender potentials also support quasi-bound states.   

Another extension of the present study would be to carry out a quantum time-

dependent study of the HF+H vibrational removal dynamics, with a focus on the 

degree of time delay introduced by the resonant coupling with the quasi-bound states. 
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In addition, we certainly encourage the experimental study of the resonance 

effects uncovered here.   
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Chapter 6: Summary 

 

In this dissertation we presented the results of a fully quantum mechanical 

investigation of the vibrational relaxation of HF(v) in collisions with H atoms. The 

comparison between earlier quasi-classical trajectory (QCT) calculations and 

fluorescence experiments motivated our investigation to provide more detailed and 

accurate predictions of the dynamics of H+HF inelastic scattering.   

As outlined in Chapter 1, 30 years after the first experimental investigation of 

the relaxation of HF by H atoms, a key process in the HF chemical laser system, there 

is not yet satisfactory agreement between theoretical simulations and experiment.  

Likely this is due to inaccuracies in the approximate potential energy surface used in 

this early work, as well a purely classical treatment of the reaction dynamics, which 

does not allow quantum tunneling through the H–F–H reaction barrier.  As outlined in 

Chapter 2, our investigation is based on the recently developed Stark-Werner ab initio 

potential energy surface (SW-PES). As we saw in the following chapters, the location 

and magnitudes of the saddle points and small wells on the SW-PES play significant 

roles in the reaction dynamics, in particular in defining the quasi-bound states which 

lead to resonant enhancement of the vibrational removal cross sections. 

Chapter 3 reviewed the quantum scattering (coupled-channel) formalism in 

both space and body-fixed frames. We described fully the connection between the S 

matrices, which are the output of these scattering calculations, and the cross sections 

and rate constants which are the experimental observables. In particular, the use of a 

parity- and symmetry- adapted basis enables us both to reduce the overall size of the 



 

 87 
 

basis, and the computational expense, and to separate out inelastic relaxation with and 

without H atom exchange, which are not possible to distinguish experimentally. 

In Chapter 4, our results show that deactivation of HF(v=3) is a very fast 

process with rate constants on the order of 1013 cm3-mol/sec. Because of the high 

reaction barrier, atom exchange contributes little to the deactivation of HF(v=2). For 

the vibrational relaxation from highly excited vibrational states, such as HF(v=4,5), 

multiple quantum transitions contribute significantly to the overall removal cross 

section, while for HF(v≤3), vibrational relaxation occurs mainly through single 

quantum transitions. Quantum mechanical calculations also show that inelastic 

(HF+H) energy transfer is primarily a V→T process, involving vibrational energy 

conversion into translational energy, with V→R conversion of vibrational to 

rotational energy playing only a minor role.  Overall, our quantum calculations based 

on an ab initio potential energy surface agree better with the limited experimental 

data than the earlier quasi-classical simulations.  

Chapter 5 invokes an adiabatic bender model to explain successfully the 

prominent resonance peaks in the energy dependence of the cross sections for the 

relaxation of HF(v=3, j=0). These peaks correspond to shape resonances involving 

quasi-bound HF–H states which are trapped behind a combination of the HF–H 

centrifugal potential and the HF–H weak van der Waals attraction. 

Again, all of our calculations and conclusions depend critically on the features 

of the SW potential energy surface (van der Waals wells and barrier heights). Since 

this work is the first quantum mechanical investigation on H+HF reactions, more 

work need to be done in the future. For example, one major task in the future is that 
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we need to calculate the exact vibrational relaxation rate constant for a wide range of 

temperature. The finer grid of energies is encouraged to be used for quantum 

tunneling, in order to map out more detailed resonance feathers. Since the 

experimental data are 30 years old, we encourage some scientists to re-measure the 

vibrational relaxation rate constants for each channel. The challenge here might be 

the difficulty in measuring the rate for each reaction directly.   

The most surprising and interesting discovery in this thesis is the role of 

resonances in the vibrational relaxation of HF(v=3, j=0). As we can see in Fig. 5.5, 

the higher (j > 0) adiabatic bender potentials also support quasi-bound states, which 

indicates that we might expect to find resonance fingerprints in the relaxation of 

HF(v=3, j > 0). Also, it is likely that similar resonance effects, involving quasi-bound 

HF-H states, will play a role in the relaxation of other vibrational levels. Therefore, 

future theoretical studies might focus on the relaxation of these other rotational or 

vibrational levels, in the search for resonance fingerprints. 

Additional time-dependent theoretical techniques, specifically wave-packet 

methods or the use of time-delay tools, would cast additional light on the nature of the 

van der Waals resonances we have uncovered. A broader theoretical endeavor would 

the search for the signature of similar weakly-bound states in other collision events.  

Alternatively we encourage future experimental study of the role of resonances in 

HF+H vibrational relaxation. Eventually, discovery of these resonances could provide 

valuable experimental input into a future refinement of the FH2 potential energy 

surface.  



 

 89 
 

 Bibliography 
 
 
 

 

1 A. Benshaul, K. L. Kompa, and U. Schmailzl, J. Chem. Phys. 65, 1711 

(1976). 

2 M. J. Berry and G. C. Pimentel, J. Chem. Phys. 49, 5190 (1968); N. G. Basov, 

Chemical Lasers. (Springer-Verlag, Berlin, Germany 1990). 

3 H. L. Chen, R. L. Taylor, J. Wilson, P. Lewis, and W. Fyfe, J. Chem. Phys. 

61, 306 (1974). 

4 G. C. Manke and G. D. Hager, J. Phys. Chem. Refer. Data 30, 713 (2001). 

5 Y. T. Lee, Science 236, 793 (1987). 

6 J. F. Bott and R. F. Heidner, J. Chem. Phys. 72, 3211 (1980). 

7 D. L. Thompson, J. Chem. Phys. 57, 4170 (1972). 

8 R. L. Wilkins, J. Chem. Phys. 58, 3038 (1973). 

9 S. R. Leone, J. Phys. Chem. Refer. Data 11, 953 (1982). 

10 S. A. Nizkorodov, W. W. Harper, and D. J. Nesbitt, Faraday Disc. Chem. Soc. 

113, 107 (1999). 

11 J. F. Bott and R. F. Heidner, J. Chem. Phys. 68, 1708 (1978). 

12 J. F. Bott and R. F. Heidner, J. Chem. Phys. 66, 2878 (1977). 

13 R. F. Heidner and J. F. Bott, J. Chem. Phys. 63, 1810 (1975). 

14 D. L. Thompson, J. Chem. Phys. 56, 3570 (1972); T. Takayanagi and S. Sato, 

Chem. Phys. Lett. 144, 191 (1988). 



 

 90 
 

15 R. L. Wilkins, Mol. Phys. 29, 555 (1975). 

16 K. Stark and H. J. Werner, J. Chem. Phys. 104, 6515 (1996). 

17 P. J. Knowles, K. Stark, and H. J. Werner, Chem. Phys. Lett. 185, 555 (1991). 

18 J. F. Castillo, B. Hartke, H. J. Werner, F. J. Aoiz, L. Banares, and B. 

Martinez-Haya, J. Chem. Phys. 109, 7224 (1998). 

19 J. F. Castillo, D. E. Manolopoulos, K. Stark, and H. J. Werner, J. Chem. Phys. 

104, 6531 (1996). 

20 J. F. Castillo and D. E. Manolopoulos, Faraday Disc. Chem. Soc. 119 (1998). 

21 W. H. Miller, Dynamics of molecular collisions, Part A (Plenum, New York 

and London, 1976). 

22 R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987). 

23 G. C. Schatz and A. Kuppermann, J. Chem. Phys. 65, 4642 (1976). 

24 D. Skouteris, J. F. Castillo, and D. E. Manolopoulos, Comput. Phys. 

Commun. 133, 128 (2000). 

25 L. M. Delves, Nucl. Phys. 20, 275 (1960); B. R. Johnson, J. Chem. Phys. 73, 

5051 (1980); B. R. Johnson, J. Chem. Phys. 79, 1916 (1983). 

26 R. T. Pack, J. Chem. Phys. 60, 633 (1974). 

27 F. T. Smith, Physical Review 120, 1058 (1960); F. T. Smith, J. Chem. Phys. 

31, 1352 (1959). 

28 D. M. Brink and G. R. Satchler, Angular momentum, 2nd ed. (Clarendon P., 

Oxford, 1968). 

29 R. N. Zare, Angular Momentum (Wiley, New York, 1988). 



 

 91 
 

30 I. W. M. Smith, Kinetics and dynamics of elementary gas reactions 

(Butterworths, London, 1980). 

31 R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and 

Chemical Reactivity (Oxford University Press, New York 1987). 

32 R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 

(1952); J. D. Lambert, Vibrational and Rotational Relaxation in Gases. 

(Clarendon, Oxford, U.K., 1977). 

33 W. H. Miller, J. Chem. Phys. 62, 1899 (1975); W. H. Miller, Accounts Chem. 

Res. 26, 174 (1993). 

34 S. Atahan, PhD thesis, University of Maryland, 2006; S. Atahan and M. H. 

Alexander, J. Phys. Chem. A 110, 5436 (2006). 

35 E. J. Rackham, T. Gonzalez-Lezana, and D. E. Manolopoulos, J. Chem. Phys. 

119, 12895 (2003); E. J. Rackham, F. Huarte-Larranaga, and D. E. 

Manolopoulos, Chem. Phys. Lett. 343, 356 (2001). 

36 R. V. Krems and S. Nordholm, J. Chem. Phys. 115, 10581 (2001). 

37 S. E. Bradforth, D. W. Arnold, D. M. Neumark, and D. E. Manolopoulos, J. 

Chem. Phys. 99, 6345 (1993); Y. T. Lee, Science 236, 793; D. M. Neumark, 

A. M. Wodtke, G. N. Robinson, C. C. Hayden, and Y. T. Lee, J. Chem. Phys. 

82, 3045 (1985); M. H. Qiu, Z. F. Ren, L. Che, D. X. Dai, S. A. Harich, X. Y. 

Wang, X. M. Yang, C. X. Xu, D. Q. Xie, M. Gustafsson, R. T. Skodje, Z. G. 

Sun, and D. H. Zhang, Science 311, 1440 (2006); G. C. Schatz, J. M. 

Bowman, and A. Kuppermann, J. Chem. Phys. 58, 4023 (1973); D. E. 



 

 92 
 

Manolopoulos, K. Stark, H. J. Werner, D. W. Arnold, S. E. Bradforth, and D. 

M. Neumark, Science 262, 1852 (1993). 

38 S. D. Chao and R. T. Skodje, J. Chem. Phys. 113, 3487 (2000). 

39 S. D. Chao and R. T. Skodje, J. Chem. Phys. 119, 1462 (2003). 

40 T. Takayanagi and Y. Kurosaki, J. Chem. Phys. 109, 8929 (1998). 

41 K. Liu, R. T. Skodje, and D. E. Manolopoulos, Phys. Chem. Comm., 27 

(2002). 

42 R. N. Zare, Science 311, 1383 (2006). 

43 B. K. Kendrick, L. Jayasinghe, S. Moser, M. Auzinsh, and N. Shafer-Ray, 

Phys. Rev. Lett. 84, 4325 (2000); G. C. Schatz and A. Kuppermann, J. Chem. 

Phys. 59, 964 (1973). 

44 R. T. Skodje, D. Skouteris, D. E. Manolopoulos, S. H. Lee, F. Dong, and K. 

Liu, J. Chem. Phys. 112, 4536 (2000); R. T. Skodje, D. Skouteris, D. E. 

Manolopoulos, S. H. Lee, F. Dong, and K. P. Liu, Phys. Rev. Lett. 85, 1206 

(2000). 

45 C. L. Russell and D. E. Manolopoulos, Chem. Phys. Lett. 256, 465 (1996). 

46 B. B. Grayce and R. T. Skodje, J. Chem. Phys. 95, 7249 (1991). 

47 R. T. Skodje, J. Chem. Phys. 95, 7234 (1991). 

48 S. L. Holmgren, M. Waldman, and W. Klemperer, J. Chem. Phys. 67, 4414 

(1977). 

49 M. H. Alexander, S. Gregurick, and P. J. Dagdigian, J. Chem. Phys. 101, 2887 

(1994). 

50 M. H. Alexander, F. Lique, G. Li, and H.-J. Werner, to be published. 



 

 93 
 

51 P. McGuire and D. J. Kouri, J. Chem. Phys. 60, 2488 (1974). 

52 R. T. Pack, J. Chem. Phys. 60, 633 (1974). 

53 M. H. Alexander, D. E. Manolopoulos, and H. J. Werner, J. Chem. Phys. 113, 

11084 (2000). 

54 D. J. Kouri, in Atom-Molecule Collision Theory: A Guide for the 

Experimentalist, edited by R. B. Bernstein (Plenum, New York, 1979), pp. 

301. 

55 D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992). 

56 M. Hayes, M. Gustafsson, A. M. Mebel, and R. T. Skodje, Chem. Phys. 308, 

259 (2004). 

 

 


