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System-level modeling, simulation, and synthesis using dataflow models of

computation are widespread in electronic design automation (EDA) tools for digi-

tal signal processing (DSP) systems. Over the past few decades, various dataflow

models and techniques have been developed for different DSP application domains;

and many system design tools incorporate dataflow semantics for different objec-

tives in the design process. In addition, a variety of digital signal processors and

other types of embedded processors have been evolving continuously; and many

off-the-shelf DSP libraries are optimized for specific processor architectures.

To explore their heterogeneous capabilities, we develop a novel framework

that centers around the dataflow interchange format (DIF) for helping DSP system

designers to integrate the diversity of dataflow models, techniques, design tools, DSP

libraries, and embedded processing platforms. The dataflow interchange format is

designed as a standard language for specifying DSP-oriented dataflow graphs, and

the DIF framework is developed to achieve the following unique combination of



objectives: 1) developing dataflow models and techniques to explore the complex

design space for embedded DSP systems; 2) porting DSP designs across various

tools, libraries, and embedded processing platforms; and 3) synthesizing software

implementations from high-level dataflow-based program specifications.

System simulation using synchronous dataflow (SDF) is widely adopted in de-

sign tools for many years. However, for modern communication and signal processing

systems, their SDF representations often consist of large-scale, complex topology,

and heavily multirate behavior that challenge simulation — simulating such sys-

tems using conventional SDF scheduling techniques generally leads to unacceptable

simulation time and memory requirements. In this thesis, we develop a simulation-

oriented scheduler (SOS) for efficient, joint minimization of scheduling time and

memory requirements in conventional single-processor environments.

Nowadays, multi-core processors that provide on-chip, thread-level parallelism

are increasingly popular for the potential in high performance. However, current

simulation tools gain only minimal performance improvements due to their sequen-

tial SDF execution semantics. Motivated by the trend towards multi-core processors,

we develop a novel multithreaded simulation scheduler (MSS) to pursue simulation

runtime speed-up through multithreaded execution of SDF graphs on multi-core

processors. Our results from SOS and MSS demonstrate large improvements in

simulating real-world wireless communication systems.
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Chapter 1

Introduction

1.1 Overview

Communication and digital signal processing (DSP) systems play increasingly

important roles in our daily life, including various wired and wireless communi-

cation devices, e.g., cellular phones, and many types of audio, image, and video

processing devices, e.g., MP3 players, digital cameras, and camcorders. A signifi-

cant amount of these electronic devices fall into the category of embedded systems,

where combinations of hardware (e.g., microcontrollers, programmable digital signal

processors (PDSPs), field programmable gate arrays (FPGAs), application-specific

integrated circuits (ASICs), and other types of embedded processors) and software

(e.g., embedded operating systems, drivers, codecs, DSP functions, and other types

of embedded software) are designed jointly to perform dedicated functionalities.

For embedded systems in the areas of communication and DSP applications

(which we refer to henceforth as embedded DSP systems), the growing demands for

high performance, increased functionality, low power, low cost, and short time-to-

market make the design space more and more complex. Due to such large complex-

ity, the design of modern embedded DSP systems is usually aided by a variety of

electronic design automation (EDA) tools [72]. In general, different EDA tools aid

different phases of the design process, ranging from physical layout, logical verifica-

1



tion, all the way up to system-level (or high-level) modeling, simulation, and synthe-

sis. Particularly, for system- or high-level design, model-based design methodologies

are widely used in EDA tools, e.g., Simulink from Mathworks, Advanced Design Sys-

tem (ADS) from Agilent Technologies, LabVIEW from National Instruments, and

Ptolemy II from U.C. Berkeley, to name a few. In model-based design methodolo-

gies, design representations in terms of formal models of computation (MoC) are

used to capture, analyze, simulate, and in some cases, optimize and synthesize the

targeted applications.

Dataflow has proven to be a useful model of computation in DSP system de-

sign [7, 37, 44, 74]. Modeling communication and signal processing systems through

coarse-grain dataflow graphs is widespread in the DSP design community. Vari-

ous dataflow models have been presented for different types of DSP applications,

e.g., synchronous dataflow (SDF) [51], cyclo-static dataflow (CSDF) [10], multi-

dimensional synchronous dataflow (MDSDF) [62], and parameterized dataflow [3].

Furthermore, many scheduling and optimization techniques have been developed in

these models for different aspects of DSP design — e.g., see [7], [60], and [38].

A variety of commercial and research-oriented EDA tools incorporate dataflow

semantics (mainly SDF or its closely related models), including ADS from Agilent

[67], the Autocoding Toolset from MCCI [70], CoCentric System Studio from Syn-

opsis [14], Compaan from Leiden University [76], Gedae from Gedae Inc., Grape

from K. U. Leuven [48], LabVIEW from National Instruments [2], MLDesigner

from MLDesign Technologies, Inc., PeaCE from Seoul National University [77], and

Ptolemy II from U. C. Berkeley [21]. In general, these tools provide graphical design

2



environments and are developed for various primary objectives, e.g., simulation vs.

synthesis; they use different specification formats, provide different sets of functional

libraries, and target different sets of embedded processing platforms.

Among various embedded processing platforms, digital signal processors (e.g.,

those available from Texas Instruments and Analog Devices), FPGAs (e.g., those

available from Xilinx and Altera), and other types of embedded processors are widely

used in many embedded DSP systems. Their architectures are generally vendor-

dependent or application-specific in nature, and many PDSP and FPGA vendors

and third-party companies provide DSP functions and IP modules that are optimized

for specific architectures and design requirements, e.g., TI DSP libraries [80, 79] and

Xilinx IP cores [83].

System- or high-level modeling, simulation, and synthesis are the key features

provided by model-based EDA tools for embedded system design. With the support

of design environments and component libraries, designers can easily design algo-

rithms and construct architectures for the targeted applications within short time.

Formal models of computation then capture the design semantics, and system-level

simulation based on the formal model is in general the most major capability pro-

vided by these tools. System simulation verifies the correctness of algorithms and

architectures in the early design stage, and further analysis, optimization, and trade-

offs can be performed iteratively based on the simulation results. Some design tools

also provide synthesis capabilities for automatic generation of C-code implemen-

tations for PDSPs or other types of embedded processors, or for Verilog/VHDL

implementations on FPGAs.
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Figure 1.1: Overview of DSP system design.

Figure 1.1 presents an overview of the aforementioned scenarios. In this thesis,

we focus on the integration perspective of DSP system design through dataflow

techniques; we also address advanced simulation techniques in the dataflow domain

for modern communication and signal processing systems.

1.2 Contributions of this Thesis

1.2.1 Dataflow Interchange Format Framework

All of the aforementioned dataflow models, EDA tools, DSP libraries, and

embedded hardwares play important roles in different phases of DSP system design,

and their heterogeneous capabilities introduce a large design space. Integrating these

heterogeneous capabilities is beneficial because of their complementary features, e.g.,
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simulation vs. synthesis, hardware vs. software support, optimization trade-offs, etc.

Motivated by this perspective, we have developed the dataflow interchange format

framework for integrating various dataflow models, techniques, design tools, DSP

libraries, and embedded processing platforms.

In particular, the dataflow interchange format (DIF) [35, 31] has been designed

as a standard language for specifying DSP-oriented dataflow graphs; and the DIF

package — the software tool providing dataflow graph library, algorithm implemen-

tations, and infrastructure for porting and software synthesis — has been developed

and continues to evolve for experimenting with dataflow models and techniques, and

working with DSP applications across the growing family of design tools, libraries,

and embedded processing platforms.

1.2.2 Porting DSP Designs

Migrating or developing DSP designs across multiple tools and libraries often

becomes desirable due to their complementary capabilities, even though the hetero-

geneity makes it very challenging. Such migration typically requires tedious effort

and is highly error-prone. Porting DSP applications across design tools and libraries

is a powerful feature if it is attained through a high degree of automation, and a

correspondingly low level of manual fine-tuning. When comprehensively supported,

this portability is equivalent to porting across all underlying embedded processing

platforms supported by these tools and libraries.

This prospect motivates a new DIF-based porting methodology [33] that we de-
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velop through the dataflow information captured by the DIF language, and through

additional infrastructure for converting dataflow-based application models to and

from DIF, as well as for mapping tool-specific actors based on specifications in our

novel actor interchange format [33]. The key idea behind the porting methodology

is that except for actor information, dataflow semantics for a DSP application re-

mains the same in DIF regardless of which design tool is used to generate it, and

furthermore, porting DSP applications can be achieved by properly mapping the

tool-dependent actors, while transferring the dataflow semantics unaltered.

With the DIF-based porting methodology and the porting infrastructure de-

veloped in the DIF package, migrating or developing DSP designs across tools and

libraries can be achieved in a systematic manner. Through a case study of a syn-

thetic aperture radar (SAR) application, we demonstrate the efficiency and the high

degree of automation offered by our porting methodology.

1.2.3 Software Synthesis from Dataflow Models

Since the DIF language is designed as an interchange format as well as a

dataflow programming language (in particular, it is designed to be read and writ-

ten intuitively by designers, not just to be generated and parsed by tools), software

synthesis capability provides a new path to implementation from high-level dataflow-

based programming. We have developed the DIF-to-C software synthesis framework

[36] for automatically generating monolithic C-code implementations from DSP sys-

tem specifications that are programmed in DIF.
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In particular, our DIF-to-C software synthesis framework integrates a signif-

icant amount of scheduling, buffering, and code generation techniques, and allows

designers to associate dataflow actors with their desired C functions either designed

by themselves or obtained from existing libraries. Because most programmable dig-

ital signal processors and other types of embedded processors provide C compilers,

and furthermore, many PDSP vendors and third-party companies provide hand-

optimized C libraries, the DIF-to-C framework offers a valuable, vendor-neutral

link between formal, domain-specific DSP design and coarse grain dataflow opti-

mizations with hand-optimized libraries and processor/platform-specific compiler

optimization techniques. Furthermore, because the DIF package implements a vari-

ety of algorithms and is open for integration of new techniques, this framework allows

designers to efficiently explore the complex range of implementation trade-offs that

are available through various dataflow-based methods for software optimization.

Embedded hardware/software synthesis has been addressed extensively in the

literature. In contrast to this prior work, the synthesis counterpart in the DIF

framework emphasizes the “integration” perspective, where interoperability of se-

mantics and methods across tools and libraries is a key objective. In this thesis,

we demonstrate the novel capabilities offered by the DIF-to-C software synthesis

framework through experiments that involve synthesis of several DSP applications,

including CD/DAT sampling rate conversion systems, filter banks, SAR, and JPEG

subsystem.
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1.2.4 Efficient Simulation of Critical Synchronous Dataflow Graphs

Our work also focuses on the simulation context, which is relatively unexplored

in any explicit sense in the dataflow domain. For system simulation, simulation time

(including static scheduling at compile-time; and overall execution, with dynamic

scheduling in some cases, during run-time) is the primary metric, while memory

usage (including memory for buffering and for the schedule) must only be managed

to fit the available memory resources. These considerations are quite different com-

pared to the conventional synthesis context, where memory requirements are often

of critical concern, while tolerance for compile time is relatively high [56].

System simulation using synchronous dataflow (SDF) is widespread in EDA

tools for DSP system design. SDF representations of modern communication and

signal processing systems typically result in critical SDF graphs — they consist of

hundreds of components (or more) and involve complex inter-component connec-

tions with highly multirate relationships (i.e., with large variations in average rates

of data transfer or component execution across different subsystems). Simulating

such systems using conventional SDF scheduling techniques generally leads to un-

acceptable simulation time and memory requirements on modern workstations and

high-end PCs.

We have developed a novel simulation-oriented scheduler [37, 38] , called SOS,

that strategically integrates several graph decomposition and SDF scheduling tech-

niques to provide effective, joint minimization of time and memory requirements

for simulating large-scale and heavily multirate SDF graphs. We have also imple-
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mented SOS in the Advanced Design System (ADS) from Agilent Technologies [67].

Our results from this implementation demonstrate large improvements in terms

of scheduling time and memory requirements in simulating real-world, large-scale,

highly-multirate wireless communication systems (e.g. 3GPP, Bluetooth, 802.16e,

CDMA 2000, XM radio, EDGE, and Digital TV).

1.2.5 Multithreaded Simulation of Synchronous Dataflow Graphs

Nowadays, multi-core processors are increasingly popular desktop platforms

for their potential performance improvements through on-chip, thread-level paral-

lelism. This type of on-chip, thread-level parallelism can be further categorized into

chip-level multiprocessing (CMP) [29] (e.g., dual-core or quad-core CPUs from Intel

or AMD) and simultaneous multithreading (SMT) [20] (e.g., hyper-threading CPUs

from Intel). However, without novel scheduling and simulation techniques that

explicitly explore thread-level parallelism for executing SDF graphs, current EDA

tools gain only minimal performance improvements from these new sets of proces-

sors. This is largely due to the sequential (single-thread) SDF execution semantics

that underlies these tools.

Motivated by the trend towards multi-core processors, we have also developed a

multithreaded simulation scheduler, called MSS, to pursue simulation runtime speed-

up through multithreaded execution of SDF graphs on multi-core processors. MSS

strategically integrates graph clustering, intra-cluster scheduling, actor vectoriza-

tion, and inter-cluster buffering techniques to construct inter-thread communication
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(ITC) graphs at compile-time. MSS then applies efficient synchronization and dy-

namic scheduling techniques at runtime for executing ITC graphs in multithreaded

environments. We have also implemented MSS in the Advanced Design System. On

an Intel dual-core hyper-threading (4 processing units) processor, our results from

this implementation demonstrate up to 3.5 times speed-up in simulating modern

wireless communication systems (e.g., WCDMA3G, CDMA 2000, WiMax, EDGE,

and Digital TV).

1.3 Outline of Thesis

The organization of this thesis is as follows: We review dataflow models of

computation in Chapter 2 and related work in Chapter 3. In Chapter 4, we introduce

the DIF language, the DIF package, and our envisioned methodology of using DIF.

Next, we present the DIF-based porting methodology in Chapter 5 and the DIF-

to-C software synthesis framework in Chapter 6. In Chapter 7, we introduce the

simulation-oriented scheduler, and then in Chapter 8, we present the multithreaded

simulation scheduler. We conclude and discuss the future work in the final chapter.
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Chapter 2

Dataflow Models of Computation

In the dataflow modeling paradigm, the computational behavior of a system

is represented as a directed graph G = (V, E). A vertex (node, or actor) v ∈ V

represents a computational module or a hierarchically nested subgraph. A directed

edge e ∈ E represents a FIFO buffer from its source actor src(e) to its sink actor

snk(e), and imposes precedence constraints for proper scheduling of the dataflow

graph. An edge e can have a non-negative integer delay del(e) associated with it.

This delay value specifies the number of initial data values (tokens) that are buffered

on the edge before the graph starts execution. Dataflow graphs operate based on

data-driven execution: an actor v can execute (fire) only when it has sufficient

numbers of data values (tokens) on all of its input edges in(v). When firing, v

consumes certain numbers of tokens from its input edges, executes its computation,

and produces certain numbers of tokens on its output edges out(v).

2.1 Synchronous Dataflow

Synchronous dataflow (SDF) [51] is the most popular form of dataflow models

for DSP system design. In SDF, the number of tokens produced onto (consumed

from) an edge e by a firing of src(e) (snk(e)) is restricted to be a constant posi-

tive integer that must be known at compile time; this integer is referred to as the
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production rate (consumption rate) of e and is denoted as prd(e) (cns(e)). We

say that an edge e is a single-rate edge if prd(e) = cns(e), and a multirate edge if

prd(e) 6= cns(e).

The constant integer restriction makes SDF very suitable for modeling multi-

rate systems and benefits SDF with the compile-time capabilities such as deadlock

detection, bounded memory determination, and static scheduling [7], but at the cost

of limited expressive power and reconfigurability.

2.1.1 SDF Scheduling Preliminaries

Before execution, a schedule of a dataflow graph is computed. Here, by a

schedule, we mean a sequence of actor firings or more generally, any static or dynamic

sequencing mechanism for executing actors. An SDF graph G = (V, E) has a valid

schedule (is consistent) if it is free from deadlock and is sample rate consistent —

that is, it has a periodic schedule that fires each actor at least once and produces no

net change in the number of tokens on each edge [51]. In more precise terms, G is

sample rate consistent if there is a positive integer solution to the balance equations :

∀e ∈ E, prd(e)× x[src(e)] = cns(e)× x[snk(e)]. (2.1)

When it exists, the minimum positive integer solution for the vector x is called the

repetitions vector of G, and is denoted by qG. For each actor v, qG[v] is referred to

as the repetition count of v. A valid minimal periodic schedule (which is abbreviated

as schedule hereafter in this paper) is then a sequence of actor firings in which each

actor v is fired qG[v] times, and the firing sequence obeys the data-driven properties
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imposed by the SDF graph.

To provide for more memory-efficient storage of schedules, actor firing se-

quences can be represented through looping constructs [7]. For this purpose, a

schedule loop, L = (n T1T2 · · ·Tm), is defined as the successive repetition n times

of the invocation sequence T1T2 · · ·Tm, where each Ti is either an actor firing or

a (nested) schedule loop. A looped schedule S = L1L2 · · ·LN is an SDF schedule

that is expressed in terms of the schedule loop notation. If every actor appears only

once in S, S is called a single appearance schedule (SAS), otherwise, S is called

a multiple appearance schedule (MAS). Every valid (looped) schedule has a unique

actor firing sequence that can be derived by unrolling all of the loops in the sched-

ule. For example, the schedule S = a(3b)(2a(2b)a(3b)) represents the firing sequence

abbbabbabbbabbabbb. Hereafter in this thesis, we assume that an SDF schedule is rep-

resented in the looped schedule format.

2.1.2 SDF Buffering Preliminaries

Although edges in an SDF graph conceptually represent FIFO buffers, imple-

menting a FIFO structure usually leads to runtime and memory overhead due to

maintaining the strict FIFO operations. In many practical implementations, only

the necessary amount of memory space is allocated for dataflow edges, and edge

buffers are managed between actor firings such that actor firings always access the

correct subsets of live tokens.

Once a schedule is determined, buffer sizes of dataflow edges can be computed
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either statically or dynamically for allocating memory space to the buffers that

correspond to graph edges. In the non-shared buffering model [7], given a schedule

S, the buffer size required for an edge e, buf (e), is defined as the maximum number

of tokens simultaneously queued on e during an execution of S, and the total buffer

requirement of an SDF graph G = (V, E) to be the sum of the buffer sizes of all

edges:

buf (G) =
∑

∀e∈E

buf (e). (2.2)

2.2 Single-Rate Dataflow and Homogeneous Synchronous Dataflow

Single-rate dataflow is a special case of SDF that models single-rate systems,

where in single-rate systems all actors execute at the same average rate. In single-

rate dataflow, the number of tokens produced onto an edge by the source actor

equals to the number of tokens consumed from the same edge by the sink actor. In

other words, we have prd(e) = cns(e) for every edge e in single-rate graphs.

Homogeneous synchronous dataflow (HSDF) [51, 75] is a restricted form of

single-rate dataflow and SDF in which every actor produces and consumes only one

token from each of its input and output edges in a firing. In HSDF graphs, the

production rate and consumption rate are restricted to be one on all edges. HSDF

is widely used in throughput analysis and multiprocessor scheduling. Algorithms for

converting between SDF, single-rate, and HSDF graphs can be found in [75]. Such

conversion is illustrated in Figure 2.1.
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Figure 2.1: Conversion between SDF, single-rate, and HSDF.

2.3 Cyclo-Static Dataflow

In cyclo-static dataflow (CSDF) [10], the production rate and consumption

rate are allowed to vary as long as the variation forms a fixed and periodic pattern.

Explicitly, each actor v in a CSDF graph is associated with a fundamental period

τ(v) ∈ Z+, which specifies the number of phases in one minimal period of the cyclic

production/consumption pattern of v. Each time an actor is fired in a period,

a different phase is executed. For each edge e ∈ out(v), prd(e) is specified as a

τ(v)-tuple pe,1, pe,2, . . . , pe,τ(v); similarly, for each e ∈ in(v), cns(e) is specified as

ce,1, ce,2, . . . , ce,τ(v), where each pe,i (ce,i) is a non-negative integer that gives the

number of tokens produced onto (consumed from) e by v in the i-th phase of each

period of v. CSDF offers more flexibility in representing phased behavior of an

actor, but its expressive power at the level of overall individual actor functionality

is the same as SDF.
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2.4 Multidimensional Synchronous Dataflow

Modeling multidimensional signal processing systems by one-dimensional SDF

and other stream-based dataflow models are often inefficient because streaming mul-

tidimensional data may obscure potential data parallelism and increase runtime and

memory overhead in dimensional transformations. Multidimensional synchronous

dataflow (MDSDF) [62] has been developed as an extension of SDF to better ac-

commodate multidimensional representation.

In M-DSDF graphs, actors produce and consume M-dimensional data. For

example, 2DSDF is very suitable for modeling image processing systems where

actors process images and 2-dimensional data. In M-DSDF, production rate and

consumption rate are specified as M-tuples, e.g., r1, r2, . . . , rM , where each ri is

a positive integer that gives the size of data in the ith dimension; and dataflow

semantics are now determined by the M-dimensional production rates, consumption

rates, and delays.

2.5 Parameterized Dataflow

Parameterized dataflow [3] is a meta-modeling technique that can be applied

to a variety of “base” dataflow models that have a well-defined notion of a graph it-

eration. Applying parameterized dataflow in this way augments the base model with

powerful capabilities for dynamic reconfiguration and quasi-static scheduling. Com-

bining parameterized dataflow with SDF forms parameterized synchronous dataflow

(PSDF), a dynamic dataflow model that has been investigated in depth and shown
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to have useful properties [3].

A PSDF actor is characterized by a set of parameters that can control the

actor’s functionality as well as the actor’s dataflow behavior, e.g., production rate

and consumption rate. A DSP application is modeled in PSDF through a PSDF

subsystem. A PSDF subsystem consists of three PSDF graphs: the init graph, the

subinit graph, and the body graph. Intuitively, the body graph models the main

functional behavior of the specification, whereas the init and subinit graphs control

the behavior of the body graph by appropriately configuring the parameters. For

complete syntax and semantics of PSDF modeling, we refer the reader to [3].
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Chapter 3

Related Work

3.1 Dataflow Related Tools and Languages

A variety of commercial and research-oriented design tools incorporate dataflow

semantics, including ADS from Agilent [67], the Autocoding Toolset from MCCI

[70], CoCentric System Studio from Synopsis [14], Compaan from Leiden University

[76], Gedae from Gedae Inc., Grape from K. U. Leuven [48], LabVIEW from Na-

tional Instruments [2], MLDesigner from MLDesign Technologies, Inc., PeaCE from

Seoul National University [77], and Ptolemy II from U. C. Berkeley [21].

Silage [27] and StreamIt [81] are two existing textual languages for designing

DSP systems. DIF is different from Silage and StreamIt in its emphasis on support-

ing and unifying a broad range of different dataflow modeling semantics, and its

emphasis on high-level dataflow-based analysis and optimization, such as analysis

of interactions among dataflow production and consumption rates, and optimiza-

tions for scheduling, memory requirements, and performance.

SystemC is a C++-based modeling language/library for system level design

[28]. The simulation kernel in SystemC is based primarily on discrete event se-

mantics. Patel and Shukla [65] have extended SystemC with different simulation

kernels — including kernels for communicating sequential processes, synchronous

dataflow, and finite state machines — to improve simulation efficiency. Haubelt
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et al. [30] recently presented a SystemC-based solution supporting automatic de-

sign space exploration, performance evaluation, and system generation for mixed

hardware/software solutions mapped onto FPGA-based platforms.

Several tools provide code generation capabilities from dataflow and related

models — e.g., Simulink with Real-Time Workshop from the MathWorks, and

Ptolemy II from U.C. Berkeley. Zhou et al. [84] recently presented a code gen-

eration framework for actor-oriented models in Ptolemy II. This framework applies

model analysis to discover data types, buffer sizes, parameter values, model struc-

ture and model execution schedules, and then applies partial evaluation on the

known information to generate implementations in the target language (currently,

C). However, in order to generate actor code, this framework requires the corre-

sponding code blocks to be implemented in the target language in the same structure

of the Ptolemy Java actor. In contrast, our DIF-to-C software synthesis framework

[36] allows users to directly integrate arbitrary kinds of C library functions into

dataflow-oriented software synthesis (see Section 6.3).

3.2 Scheduling Related Work

Various scheduling algorithms and techniques have been developed for different

applications of SDF graphs. For example, Bhattacharyya et al. [7] has presented

a heuristic for minimum buffer scheduling. A simpler variant of this algorithm has

been used in both the Gabriel [50] and Ptolemy [13] environments, and a similar

algorithm is also given in [18]. We refer to these demand-driven, minimum-buffer
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scheduling heuristics as classical SDF scheduling. This form of scheduling is effective

at reducing total buffer requirements, but its time complexity, and the lengths of its

resulting schedules generally grow exponentially in the size of multirate SDF graphs.

In general, the problem of computing a buffer-optimal SDF schedule is NP-

complete, and the lengths of buffer-optimal schedules usually increase exponentially

in the size of the SDF graph. A single appearance schedule (SAS) [7] is often

preferable due to its compact code size. A valid SAS for any consistent, acyclic SDF

graph can be easily derived from the flat strategy [7], but at the cost of relatively

large buffer requirements and latencies.

Bhattacharyya, Ko, and Murthy have developed several scheduling algorithms

for joint code and data minimization in software synthesis. The acyclic pairwise

grouping of adjacent nodes (APGAN) [7] technique is a heuristic to generate a

buffer-efficient topological sort (and looped schedule) for acyclic graphs. The dy-

namic programming post optimization (DPPO) [7] performs dynamic programming

over a given actor ordering (topological sort) to generate a buffer-efficient looped

schedule. It can be combined with different cost functions to be adapted to dif-

ferent objectives — for example, GDPPO [7], CDPPO [85], and SDPPO [59]. For

graphs containing cycles, the loose interdependence algorithm framework (LIAF) [7]

has been developed for generating single appearance schedules whenever they exist.

Beyond single appearance schedules, [45] presents a recursive procedure call (RPC)

based technique such that the resulting procedural implementation is bounded poly-

nomially in the graph size with low memory requirements. These algorithms are im-

plemented in the DIF package [36] for synthesis of embedded DSP software. Some
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of these algorithms are also integrated in the simulation-oriented scheduler in novel

ways that more efficiently address the constraint of simulation efficiency.

Task-level vectorization, or block processing, is a useful dataflow graph trans-

formation that can significantly improve execution performance by allowing subse-

quences of data items to be processed through individual task invocations. Block

processing has been studied in single-processor software synthesis in various previ-

ous efforts, e.g., [69, 47, 46]. In contrast to these efforts, we focus in this thesis

on actor vectorization techniques that are suited to multithreaded implementation

contexts.

Based on developments in [11], the cluster-loop scheduler has been developed in

the Ptolemy design tool [13] as a fast heuristic — i.e., with scheduling run-time as a

primary criterion. This approach recursively encapsulates adjacent groups of actors

into loops to enable possible execution rate matches and then clusters the adjacent

groups. Multirate transitions, however, can prevent this method from completely

clustering the whole graph. Since any un-clustered parts of the graph are left to

classical SDF scheduling, this can result in large run-times and storage requirements

for constructing the schedule. Our experiments in Section 7.5 demonstrate problems

encountered with this method on critical graphs.

Pino, Bhattacharyya, and Lee [66] have studied hierarchical scheduling in the

multiprocessor scheduling context for reducing the complexity of scheduling SDF

graphs onto multiprocessors. In the DIF framework, we develop hierarchical schedul-

ing for a different purpose in software synthesis — that is, preserving the original

hierarchical structure (i.e., the design hierarchy) in the generated code.
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Oh, Dutt, and Ha [64] have developed the dynamic loop count single appearance

scheduling technique. This approach generates a looped single appearance schedule,

and iteration counts of loops can be determined at run-time by evaluating statements

that encapsulate states of edges. This algorithm is geared towards minimizing buffer

requirements for software synthesis, but its complexity and run-time overhead are

relatively high.

3.3 Buffering Related Work

The total buffer requirement defined in Equation (2.2) is based on the non-

shared memory model, i.e., each buffer is allocated individually in memory and

is live throughout a schedule. Several scheduling algorithms described above are

developed for improving memory requirements based on this model. Ade et al. [1]

have developed methods to compute lower bounds on buffer requirements based on

analysis of each directed or undirected cycle; Geilen et al. [26] have also developed

an approach to compute minimum buffer requirements based on model checking.

However, the complexities of these approaches are not polynomially bounded in

the graph size. As a result, they are not acceptable for the purposes that we are

addressing in this thesis.

In practice, memory space can be reduced by sharing memory across multiple

buffers as long as their lifetimes (at the granularity of actor firings) do not over-

lap, and a systematic buffer sharing technique has been developed in [59] based

on this motivation. Furthermore, merging opportunities that are present at the

22



input/output buffers of individual actors are exploited by the buffer merging tech-

nique [6], which is based on a form of actor characterization called the CBP (con-

sumed before produced) parameter. The CBP parameter characterizes the lifetimes

of individual tokens at the granularity of an actor invocation. Murthy and Bhat-

tacharyya [60] then present an integrated approach that combines both techniques

(sharing and merging) to explore buffer minimization opportunities at both levels.

These techniques have been shown to produce significant memory reductions over

the non-shared memory model. However, due to a general lack of pre-defined CBP

characterizations for off-the-shelf DSP libraries, we only implement the buffer shar-

ing technique in the DIF-to-C framework. In addition, buffer sharing and buffer

merging are geared more for synthesis of streamlined embedded software, and their

relatively high complexity makes them not ideally suited for our primary concerns

of simulation time reduction and algorithm scalability in critical SDF graphs.

Oh, Dutt, and Ha [63] have also presented the shift buffering technique for

buffer management. This technique shifts samples from higher buffer indices to

lower indices in order to avoid wrap-around accesses in traditional circular (mod-

ulo) buffering. Wrap-around accesses prohibit using library functions that generally

assume linear data storage. For efficient shifting, a given looped schedule is flat-

tened and shift operations are inserted. However, the resulting schedule may not be

able to loop back, and this can lead to an increase in code size. This shifting ap-

proach can also introduce significant run-time overhead — for example, when there

are large amounts of initial delays. However, because of the novel trade-offs that

it introduces, this shifting approach is generally useful to consider during software
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synthesis.

3.4 Multiprocessor Related Work

Multiprocessor scheduling for HSDF and related models has been extensively

studied in the literature, e.g., see [42, 73, 75, 41]. Sarkar [73] presented partitioning

and scheduling heuristics that essentially apply bottom-up clustering of tasks to

trade-off communication overhead and parallelism. Sriram and Bhattacharyya [75]

reviewed an abundant set of scheduling and synchronization techniques for embed-

ded multiprocessors, including various techniques for inter-processor communication

conscious scheduling, the ordered-transactions strategy, and synchronization opti-

mization in self-timed systems [8, 9].

In general, the above multiprocessor scheduling techniques work on HSDF

graphs. However, converting an SDF graph to an equivalent HSDF graph can result

in an exponential increase in the number of actors. Pino et al. [66] proposed a

hierarchical scheduling framework that reduces the complexity of scheduling SDF

graphs onto multiprocessors. The core of this framework is a clustering algorithm

that decreases the number of nodes before SDF-to-HSDF transformation.

Regarding SDF scheduling specific to multithreaded simulation, the only pre-

vious work that we are aware of is the thread cluster scheduler developed by Kin and

Pino [43] in Agilent ADS. This approach applies recursive two-way partitioning on

single-processor schedules that are derived from the cluster loop scheduler and then

executes the recursive two-way clusters with multiple threads in a pipelined fashion.
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Experimental results in [43] show an average of 2 times speedup on a four-processor

machine. However, according to our recent experiments, in which we used the same

scheduler to simulate several wireless designs, this approach does not scale well to

simulating highly multirate SDF graphs.
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Chapter 4

Dataflow Interchange Format

The dataflow interchange format (DIF) [35, 31] is proposed as a standard

language for specifying and integrating arbitrary dataflow-oriented semantics for

DSP system design. The DIF language syntax for dataflow semantic specification is

designed based on dataflow theory and is independent of any design tool. Therefore,

DIF is suitable as an interchange format for different design tools that incorporate

dataflow semantics because it can fully capture essential modeling information. For

a DSP application, the dataflow semantic specification is unique in DIF regardless

of the design tool used to originally enter the specification. Moreover, because most

design tools are fundamentally based on actor-oriented design [53], DIF also provides

syntax to specify tool-specific actor information. Although this information may be

irrelevant to many dataflow-based analyses, it is essential in porting (see Chapter

5) and software synthesis (see Chapter 6).

DIF is not aimed to directly describe detailed executable code. Such code

should be placed in detailed implementations (e.g., using a commercial dataflow-

based design tool), or in libraries that can be optionally associated with DIF spec-

ifications (e.g., in C code libraries for DIF-to-C synthesis). Unlike other descrip-

tion languages or interchange formats, such as XML [82], the DIF language is also

designed to be read and written by designers who wish to specify or understand
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applications based on a common, unified, DSP-oriented dataflow graph notation.

As a result, the language is clear, intuitive, and easy to learn and use for those who

have familiarity with dataflow semantics.

In this chapter, we introduce the DIF language in Section 4.2 and illustrate

how to use DIF to specify dataflow graphs in Section 4.3. We then introduce the as-

sociated DIF package in Section 4.4, and in Section 4.5, we discuss the methodology

of using DIF in DSP system design.

4.1 The DIF Hierarchy

Dataflow models of computation has been reviewed in Chapter 2. For a so-

phisticated DSP application, the overall system is usually modeled as a hierarchical

graph in which the computations associated with certain actors, called hierarchical

actors, can be specified as nested dataflow graphs. This is a well-known approach,

but the formal dataflow graph definition does not describe such hierarchical nest-

ing. Therefore, a hierarchy structure is introduced in DIF for specifying hierarchical

dataflow graphs. In DIF semantics, an actor can represent either an indivisible com-

putation or a hierarchically nested subgraph (called a supernode in DIF).

A hierarchy H = (G, I, M) consists of a graph G with an interface I and a set

of mappings M . Suppose that a supernode s in G represents a nested sub-hierarchy

H ′ = (G′, I ′, M ′), then a refinement H ′ = M(s) is established for refining s to H ′.

The sub-hierarchy H ′ of s is denoted as sub(s), and G′ is called a subgraph of s. The

set of mappings M can be described as a function whose domain is simply the set of
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supernodes in G and whose range is obtained through the property M(s) = sub(s)

for every supernode s. A directed port p of the hierarchy H is a dataflow gateway

through which tokens flow into (input port) or flow out of (output port) the graph

G. The interface I is a set consisting of all ports in H . Viewed from within G, a

port p ∈ I associates with a node v in G, and this is denoted as v = asc(p). Suppose

that H is a sub-hierarchy represented by a supernode s′′ in a higher level graph G′′,

i.e. H = M ′′(s′′), then viewed from outside of G, a port p ∈ I can either connect

to an edge e′′ in the higher level graph G′′ or connect to a port p′′ in the higher

level hierarchy H ′′ = (G′′, I ′′, M ′′); these are denoted as e′′ = cnt(p) or p′′ = cnt(p),

respectively.

In nested hierarchical dataflow graphs, for a node associated with an output

(input) port p, the production (consumption) rate of that connection is specified

with p and denoted as prd(p) (cns(p)) — this is because the edge in that connection

is outside the graph. Furthermore, because production and consumption rates of a

supernode depend on the repetitions vector of the subgraph, they are left unspecified

and are computed during scheduling.

4.2 The DIF Language

Dataflow interchange format is designed as a standard language for specifying

DSP-oriented dataflow graphs. DIF provides a unique set of semantic features to

specify graph topologies, hierarchies, dataflow-related and actor-specific informa-

tion. DSP applications specified by the DIF language are usually referred to as DIF
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specifications. In particular, the DIF language grammar and the associated parser

framework are developed using a Java-based compiler-compiler called SableCC [22].

We introduce the DIF version 0.2 language syntax, as presented in Figure 4.1, in

this section. For complete DIF language grammar (in SableCC) and detailed syntax

description, we refer the reader to [31].

In Figure 4.1, items in boldface are built-in keywords; non-bold items are

specified by users or generated by tools; items enclosed by squares are optional;

and “...” represents optionally repeated statements. The dataflow model keyword

dataflowModel specifies the dataflow model that is used to model the application,

e.g., dif, sdf, csdf, mdsdf, etc. The graphID specifies the name (identifier) of the

dataflow graph.

The basedon block provides a convenient way to reuse the structure of a pre-

defined graph graphID. As long as the referenced graph has compatible topology,

interface, and refinement blocks, designers can simply refer to it and override the

graph name, parameters, and attributes to instantiate a new graph. In many DSP

applications, duplicated subgraphs usually have the same topologies but different

parameters or attributes. The basedon block is designed to support this character-

istic and promote conciseness and code reuse.

The topology block sketches the topology of a dataflow graph G = (V, E). The

nodes statement specifies nodeID for each node v ∈ V . The edges statement specifies

edgeID (sourceNodeID, sinkNodeID) for each edge e = (src(e), snk(e)) ∈ E.

The interface block defines the interface I of a hierarchy H = (G, I, M). The

inputs statement defines portID : nodeID for each input port p ∈ I and the inside
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dataflowModel graphID {
basedon {graphID;}
topology {

nodes = nodeID, ..., nodeID;
edges = edgeID (sourceNodeID, sinkNodeID), ..., edgeID (sourceNodeID, sinkNodeID);

}
interface {

inputs = portID [: nodeID], ..., portID [: nodeID];
outputs = portID [: nodeID], ..., portID [: nodeID];

}
parameter {

parameterID [: parameterType]; ...; parameterID [: parameterType];
parameterID [: parameterType] = value; ...; parameterID [: parameterType] = value;
parameterID [: parameterType] : range; ...; parameterID [: parameterType] : range;

}
refinement {

subgraphID = supernodeID;
subPortID : edgeID; ...; subPortID : edgeID;
subPortID : portID; ...; subPortID : portID;
subParameterID = parameterID; ...; subParameterID = parameterID;

}
...
builtInAttribute {

[elementID] = value; ...; [elementID] = value;
[elementID] = ID; ...; [elementID] = ID;
[elementID] = ID, ..., ID; ...; [elementID] = ID, ..., ID;

}
...
attribute userDefinedAttribute {

[elementID] = value; ...; [elementID] = value;
[elementID] = ID; ...; [elementID] = ID;
[elementID] = ID, ..., ID; ...; [elementID] = ID, ..., ID;

}
...
actor nodeID {

computation = “stringDescription”;
attributeID [: attributeType] = value; ...; attributeID [: attributeType] = value;
attributeID [: attributeType] = ID; ...; attributeID [: attributeType] = ID;
attributeID [: attributeType] = ID, ..., ID; ...; attributeID [: attributeType] = ID, ..., ID;

}
...

}

Figure 4.1: The dataflow interchange format version 0.2 language syntax.
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node association v = asc(p) ∈ V . Similarly, the outputs statement defines each out-

put port and its associated node. DIF permits defining an interface port without

an associated node, so nodeID is optional.

In many DSP applications, designers often parameterize important attributes

such as the order of an FFT actor. In interval-rate, locally-static dataflow [78],

unknown production and consumption rates are specified by their minimum and

maximum values. In parameterized dataflow [3], production and consumption rates

are even allowed to be parameterized and dynamically determined. The parameter

block is designed to support parameterizing values, ranges of values, and value-

unspecified attributes. In a parameter definition statement, a parameter identifier

parameterID is defined, and addition information can be given optionally in param-

eterType, e.g., the data type of a parameter. The value of a parameter is assigned in

value, but it is not necessary because DIF permits to define a parameter alone. DIF

supports various value types; these value types will be introduced shortly. DIF also

supports specifying the range range of possible values for a parameter. A range is

specified in interval format such as (1, 2), (3.4, 5.6], [7, 8.9), [−3.1E+3, +0.2e−2], or

a set of discrete numbers such as {−2, 0.1,−3.6E−9}, or a combination of intervals

and discrete sets such as (1, 2) + (3.4, 5.6] + {−2, 0.1,−3.6E−9}.

The refinement block is used to refine hierarchical structures. For each su-

pernode s in a graph G = (V, E), there should be a corresponding refinement block

in the DIF specification to specify the supernode-subgraph refinement H ′ = sub(s)

by subgraphID = supernodeID. In addition, for every port p′ ∈ I ′ in sub-hierarchy

H ′ = (G′, I ′, M ′), the outside connection e = cnt(p′) or p = cnt(p′) is also speci-
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fied by subPortID : edgeID or subPortID : portID, where e ∈ E, p ∈ I, and

H = (G, I, M). Moreover, unspecified parameters (parameters whose values are

unspecified) in subgraph G′ can also be specified by parameters in G through sub-

ParameterID = parameterID.

The built-in attribute block is used to specify dataflow modeling information.

Every dataflow model in DIF can define its own built-in attributes and its own

method to process those built-in attributes. The DIF language parser treats built-in

attributes in a special way such that the method defined in the corresponding parser

is invoked to handle them. The keyword builtInAttribute points out which built-in

attribute associated with the dataflow model is specified. The element identifier,

elementID, can be a node identifier, an edge identifier, or a port identifier to which

the builtin attribute belongs. elementID can also be left blank; in this case, the

built-in attribute belongs to the graph itself. DIF supports assigning an attribute

by value in a variety of value types, an identifier ID, or a list of identifiers ID, ...,

ID.

In general, production, consumption, and delay are commonly-used built-in

attributes for an edge in many dataflow models to specify the production rate, con-

sumption rate, and delay associated with the dataflow edge. In hierarchical dataflow

models as discussed in Section 4.1, built-in attributes production and consumption

are also used for a port to specify data rates of the associated node, because such

node have no edges on the corresponding connections.

The user-defined attributes block allows designers to define and specify their

own attributes. The syntax is the same as the built-in attributes block. The only
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difference is that this block starts with the keyword attribute followed by the user-

defined attribute identifier, userDefinedAttribute.

The actor block is designed to specify tool-specific actor information. The

associated computation is a built-in actor attribute for specifying the actor’s com-

putation in “stringDescription” (e.g., what the actor does, or what the associated

function is). Other actor information is specified as attributes — e.g., the identifier

of an actor’s component such as a port, an argument, or a parameter is used as

attributeID. Moreover, additional information of the component can be optionally

given in attributeType, e.g., to indicate that the component is input, output, or a

parameter of an actor. An actor attribute can be assigned a value value, or an

identifier ID for specifying its associated element (e.g., edge, port, or parameter),

or a list of identifiers ID, ..., ID for indicating multiple associated elements of the

attribute.

DIF supports most commonly used value types in DSP operations: integer,

double, complex, integer matrix, double matrix, complex matrix, string, boolean,

and array. Scientific notation is supported in DIF in the double format, e.g.,

+1.2E−3, −4.56e+7. A complex value is enclosed by parentheses as (real part, imag-

inary part), and the real and imaginary parts are double values. For example, a

complex value 1.2E−3 − 4.56e+7i is represented as (1.2E−3,−4.56e+7) in DIF. Ma-

trices are enclosed by brackets; “,” is used to separate elements in a row; and “;” is

used to separate rows, e.g., [1, 2; 3, 4]. A string value should be double quoted as

“string”. A boolean value is either true or false. These value types in DIF should

be sufficient in most DSP applications. If a certain value type is not supported, it
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can be handled to some extent by representation through the string type.

4.3 DIF Specifications for Dataflow Graphs

Note that any dataflow semantics can be specified using the DIF model of

dataflow supported by DIF and the corresponding DIFGraph intermediate repre-

sentation (see Section 4.4). In this DIF model, which provides the most general

form of dataflow supported by DIF, the dataflowModel keyword is dif, and there

is no restriction in using any syntax or semantics provided by the DIF language

to describe a DIF graph. However, for performing sophisticated analyses and op-

timizations for a particular dataflow model of computation, it is usually useful to

have more detailed and customized features in DIF that support the model. This is

why support and exploration of different dataflow models for incorporation into DIF

is an important area for development of the language and software infrastructure

(also see Section 4.4).

The current version of the DIF language is capable of specifying synchronous

dataflow (SDF) [51], single-rate dataflow, homogeneous synchronous dataflow

(HSDF) [51, 75], cyclo-static dataflow (CSDF) [10], multidimensional synchronous

dataflow (MDSDF) [62], parameterized synchronous dataflow (PSDF) [3], Boolean-

controlled dataflow (BDF) [11], integer-controlled dataflow (IDF) [12], binary cyclo-

static dataflow (BCSDF) [31], and interval-rate locally-static dataflow (ILDF) [78].

Here, we present DIF specification examples for SDF, CSDF and MDSDF. Examples

for other dataflow models can be found in [31].
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In SDF, the dataflowModel keyword is sdf. The three edge attributes, prd(e),

cns(e), and delay(e), are specified as SDF built-in attributes, production, con-

sumption, and delay, and their values are restricted to integers. In hierarchical

SDF graphs, for a node v associated with an output/input port p, the produc-

tion/consumption rate of that connection is denoted as prd(p)/cns(p). Since pro-

duction and consumption rates of a supernode depend on the repetitions vector of

the subgraph [7], they are left unspecified and are computed during scheduling. Fig-

ure 4.2 presents a tree-structured filter bank modeled in SDF. The corresponding

DIF specification is shown in Figure 4.3.

In CSDF, the dataflowModel keyword is csdf, and built-in attributes produc-

tion, consumption, and delay are specified as integer vectors. Figure 4.4 presents an

up/down sampling example modeled in CSDF. The corresponding DIF specification

is presented in Figure 4.5.

In MDSDF, the dataflowModel keyword is mdsdf, and built-in attributes pro-

duction, consumption, and delay are specified as M-tuple integer vectors. Figure 4.6

presents a 2-D discrete wavelet transform modeled in MDSDF. The corresponding

DIF specification is presented in Figure 4.7.

4.4 The DIF Package

The DIF package is a Java software package developed along with the DIF

language. In general, it consists of three basic building blocks: the DIF front-end,

the DIF representation, and algorithm implementations.
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Figure 4.2: Hierarchical SDF graphs of a tree-structured filter bank. (Supernodes
are shown in bold blocks; and production and consumption rates are indicated at
the ends of edges and alongside ports.)

sdf Analysis1 {
topology { nodes = Fork, HP, LP; edges = e1 (Fork, HP), e2 (Fork, LP); }
interface { inputs = in : Fork; outputs = o1 : HP, o2 : LP; }
production { e1 = 1; e2 = 1; o1 = 1; o2 = 1; }
consumption { e1 = 2; e2 = 2; in = 1; }
attribute datatype { e1 = “float”; e2 = “float”; in = “float”; ...; }
actor HP { computation = “FIR”; decimation = 2; interpolation = 1; coefs = [...]; }
...

}
sdf Analysis2 { basedon { Analysis1; } }
sdf Synthesis1 {...}
sdf Synthesis2 { basedon { Synthesis1; } }
sdf filterBank {

topology { nodes = In, An1, An2, Sy1, Sy2, Out; edges = e1 (In, An1), ..., e7 (Sy1, Out); }
refinement { Analysis1 = An1; in : e1; o1 : e2; o2 : e3; }
refinement { Analysis2 = An2; in : e3; o1 : e4; o2 : e5; }
refinement { Synthesis1 = Sy1; i1 : e2; o2 : e6; ot : e7; }
refinement { Synthesis2 = Sy2; i1 : e4; o2 : e5; ot : e6; }
...
production { e1 = 1; }
consumption { e7 = 1; }
attribute datatype { e1 = “float”; ...; e7 = “float”; }
...

}

Figure 4.3: The DIF specification of Figure 4.2.
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Figure 4.4: A CSDF graph of an up/down sampling example.

csdf upDownSampling {
topology {

nodes = IN, UP3, FIR, DOWN2, OUT;
edges = e1(IN, UP3), e2(UP3, FIR), e3(FIR, DOWN2), e4(DOWN2, OUT);

}
production {

e1=1; e2=[1,1,1]; e3=1; e4=[1,0];
}
consumption {

e1=[1,0,0]; e2=1; e3=[1,1]; e4=1;
}

}

Figure 4.5: The DIF specification of Figure 4.4.

4.4.1 DIF Representation

For each supported dataflow model, the DIF package provides an extensible set

of data structures (object-oriented Java classes) for representing and manipulating

dataflow graphs in the model. In the context of the DIF package, these graph-

theoretic object representations for the dataflow model are referred to as the DIF

representation of the model. The collection of all dataflow graph classes along with

their associated support classes in the DIF package forms the DIF dataflow graph

library. Figure 4.8 presents the central class hierarchy in the DIF dataflow graph

library.

The DIFGraph is the most general graph class; It represents the basic dataflow

graph structure and provides methods that are common to all models. For a more

specialized dataflow model, development can proceed naturally by extending the

general DIFGraph class (or suitable subclass) and overriding and adding new meth-
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Figure 4.6: A MDSDF graph of two dimensional discrete wavelet transform.
(a): 2DSDF graph of 2DDWT, where DWT256V, DWT256H, DWT128V, and DWT128H

are supernodes for processing 1-D DWT for 256-pixel/128-pixel columns/rows. (b):
1DSDF subgraph of DWT256V and DWT256H.

mdsdf dwt256h {
topology { nodes = HP, LP, D2H, D2L, ...; edges = e1(FRK, SEH), ..., e8(D2L, APD); }
interface { inputs = in : FRK; outputs = out : APD; }
production { e1 = [256]; e2 = [262]; e3 = [256]; ..., e7 = [256]; e8 = [128]; out = [256]; }
consumption { e1 = [256]; e2 = [262]; e3 = [256]; ..., e7 = [256]; e8 = [128]; in = [256]; }
actor HP { computation = “vsip convolve1d d”; ...; }
actor LP { computation = “vsip convolve1d d”; ...; }
... }

mdsdf dwt256v { basedon { dwt256h; } }
mdsdf dwt128h { ... production { e1 = [128]; ...; } consumption { e1 = [128]; ...; } ... }
mdsdf dwt128v { basedon { dwt128h; } }
mdsdf TDDWT {

topology { nodes = DWT256V, ...; edges = e1(IMGR,BUF1), ..., e8(BUF3,IMGW); }
refinement { dwt256v = DWT256V; in : e2; out : e3; }
refinement { dwt256h = DWT256H; in : e3; out : e4; }
refinement { dwt128v = DWT128V; in : e5; out : e6; }
refinement { dwt128h = DWT128H; in : e6; out : e7; }
production { e1 = [256,256]; e2 = [256,256]; ..., e5 = [128,128]; e8 = [256,256]; }
consumption { e1 = [256,256]; e4 = [256,256]; ..., e7 = [128,128]; e8 = [256,256]; }
... }

Figure 4.7: The DIF specification of Figure 4.6.

38



DIFGraph

SingleRateGraph

HSDFGraph

CSDFGraph

SDFGraph

MDSDFGraph PSDFGraph

BCSDFGraphBDFGraph

Figure 4.8: The DIF graph class hierarchy.

ods to perform more specialized functions. For example, CSDF, SDF, single-rate

dataflow, and HSDF are related in a way that each succeeding model among these

four is a special case of the preceding model. Accordingly, CSDFGraph, SDFGraph,

SingleRateGraph, and HSDFGraph form a class hierarchy in the DIF package such

that each succeeding graph class inherits from the more general one that precedes

it (see Figure 4.8).

In addition to the aforementioned fundamental dataflow graph classes, the DIF

package also provides MDSDFGraph for multidimensional synchronous dataflow,

BDFGraph for Turing-complete Boolean-controlled dataflow [11], PSDFGraph for

reconfigurable PSDF model, and BCSDFGraph for binary cyclo-static dataflow [31].

Furthermore, a variety of other dataflow models are being explored in DIF.

4.4.2 DIF Front-End

The DIF front-end provides an integrated interface for automatic conversion

between DIF specifications (.dif files) and the DIF representations (Java dataflow

graph objects). The DIF front-end consists of a Reader class, a set of language
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Figure 4.10: The DIF front-end writer.

parsers (LanguageAnalysis classes), a Writer class, and a set of dataflow graph writer

classes. In particular, the language parser framework are automatically generated

using SableCC [22], a Java-based compiler compiler.

The Reader class is the unique front-end interface that automatically con-

structs the corresponding DIF representation from a given DIF specification. As

illustrated in Figure 4.9, Reader invokes the right language analysis class based on

the model keyword specified in the DIF specification. On the other hand, the Writer

class is the unique front-end interface to generate a DIF specification from a given

DIF representation. As illustrated in Figure 4.10, Writer invokes the right graph

writer class based on the type of the given dataflow graph object.
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In our implementation, LanguageAnalysis is the base class to parse DIF graph

specifications and to construct DIFGraph objects. The differences between language

analysis classes are in processing model specific built-in attributes and initiating

graph objects. Similarly, DIFWriter is the base class to generate DIF specifications

from DIFGraph objects, and graph writer classes are only different in generating

model specific built-in attributes and model keywords. Therefore, all specialized

classes are extended from the base classes, and only a small set of model-specific

methods are overridden or added.

4.4.3 Algorithm Implementation

For supported dataflow models, the DIF package also provides efficient im-

plementations of various useful analysis, scheduling, and optimization algorithms

in Java that operate on the DIF representations (dataflow graph objects). Algo-

rithms currently available in the DIF package are mainly in SDF and its closely

related models, and they are based primarily on well-developed algorithms such

as repetitions vector computation, consistency validation, buffer minimization, and

scheduling [7, 45, 60].

The dataflow-based algorithms in the DIF package provide designers an effi-

cient programming interface to analyze and optimize DSP applications. By building

on the DIF representations and existing algorithms, emerging techniques can be de-

veloped easily in the DIF package. It is also worthwhile to integrate DSP design

tools with the DIF package and then utilize the powerful scheduling and optimiza-
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Figure 4.11: The role of DIF in DSP system design.

tion features in the DIF package.

4.5 The Methodology of Using DIF

In the previous sections, we have presented the overall DIF framework includ-

ing the DIF language, DIF package, DIF-based porting methodology, and DIF-to-C

software synthesis framework. Here, we introduce a general approach to using the

DIF framework in dataflow-based DSP system design. Figure 4.11 illustrates the

end-user viewpoint of the DIF framework. DIF supports a layered design methodol-

ogy covering: 1) DSP application domains, 2) dataflow models, 3) the DIF package,

4) DSP design tools, 5) DSP libraries, and 6) embedded processing platforms.
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In general, our target application domain is the broad domain of digital sig-

nal processing, including applications for processing of signals associated with dig-

ital communications, and with audio, image, video, and multimedia data streams.

Dataflow models of computation have been shown very useful in modeling appli-

cations in this general domain (e.g., see [51, 7, 44, 37, 74]. Specific forms of

dataflow that are relevant to DSP system design include 1) static dataflow mod-

els such as synchronous dataflow [51], cyclo-static dataflow [10], homogeneous syn-

chronous dataflow [51, 75], multi-dimensional synchronous dataflow [62], windowed

synchronous dataflow [40], and scalable synchronous dataflow (SSDF) [69]; 2) dy-

namic dataflow models such as Boolean-controlled dataflow (BDF) [11], well-behaved

dataflow [24], reactive process networks [25], Compaan process networks [19], and

the general DIF model (see Section 4.3); and 3) meta-modeling techniques such as

parameterized dataflow (PDF) [3] and blocked dataflow (BLDF) [44]. Many of the

above dataflow models are currently supported in DIF or under investigation for

future incorporation into DIF.

The primary DSP design tools that we have been experimenting with in our

development of DIF so far are the SDF domain of Ptolemy II [21], developed at

UC Berkeley; the Autocoding Toolset developed by MCCI [70]; the ADS tool from

Agilent Technologies [67]; LabVIEW from National Instruments [2]; and Compaan

from Leiden University [76]. However, DIF is in no way designed to be specific to

these tools; our work with these tools is only as a starting point for experimenting

with DIF in conjunction with sophisticated academic and industrial DSP design

tools.
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The embedded processing platforms layer in Figure 4.11 gives examples of

platforms supported by Ptolemy II, the Autocoding Toolset, and Texas Instruments

(TI) DSP libraries. Ptolemy II runs on Java; the Autocoding toolset is able to

generate C code for Mercury DSPs and Ada for the Virtual Design Machine (VDM)

[55]; and TI DSP libraries are optimized for TI DSPs. In general, this layer rep-

resents all embedded processing platforms that are supported by DSP design tools

and DSP libraries.

The DIF language and the DIF package provide an intermediate layer between

abstract dataflow models and various practical implementations. DIF provides users

an integrated programming interface to work with different layers in Figure 4.11.

Using the DIF language, DSP applications modeled in various dataflow semantics

can be specified as textual DIF specifications, and then realized in DIF representa-

tions (dataflow graph objects) through the DIF front-end interface. Alternatively,

users can also construct DIF representations directly by using the DIF dataflow

graph library. Once they are working with DIF specifications, users can then utilize

various dataflow-based algorithms provided in the DIF package to analyze, sched-

ule, and optimize their DSP applications. The extensibility of the DIF package also

benefits users in developing new dataflow models and algorithms — emerging tech-

niques can be implemented easily by building on or extending the existing dataflow

graph classes and algorithms.

As discussed in Chapter 1, integrating complementary capabilities and plat-

form support capabilities from different design tools and libraries is an important

objective for DSP system designers. With the novel DIF-based porting methodol-
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ogy that uses DIF as an intermediate format and AIF for specifying actor mapping

information, migrating or developing DSP designs across multiple tools and libraries

can be done systematically. This approach indeed relies on the support of DIF from

tools (i.e., exporting and importing capabilities). Building support between DIF

and design tools can also provide the DSP design industry a useful front-end to use

DIF and the DIF package, e.g., utilizing the powerful scheduling and optimization

features in the DIF package.

In addition to the synthesis capabilities provided by design tools, the DIF-

to-C software synthesis framework in conjunction with off-the-shelf DSP libraries

provides users a new path to software implementations from standalone use of the

DIF package. With the novel DIF-to-C framework, DIF users can easily utilize differ-

ent DSP library functions, integrate their own actor implementations with dataflow

models, and explore performance trade-offs through various dataflow techniques.

By integrating software synthesis with our DIF-based porting methodology, users

can further explore design and implementation choices (tools, libraries, platforms)

through the DIF framework.
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Chapter 5

DIF-Based Porting Methodology

In this chapter, we present the DIF-based porting methodology for system-

atically porting DSP applications across design tools and libraries. Our porting

methodology integrates DIF tightly with the specific exporting and importing mech-

anisms which interface DIF to specific DSP design tools. In conjunction with this

porting mechanism, we present a novel language, called actor interchange format

(AIF), for transferring relevant information pertaining to DSP library components

across different tools. Through a case study of a synthetic aperture radar (SAR)

application, we demonstrate the efficiency and the high degree of automation offered

by our DIF-based porting approach.

5.1 Exporting and Importing

In DIF terminology, exporting means translating a DSP application from a

tool’s specification format to DIF (either to the DIF language or directly to the

appropriate form of DIF representation). On the other hand, importing means

translating a DIF specification or a DIF representation to a design tool’s specifi-

cation format or its internal representations. In general, exporting and importing

processes are tool-dependent. Directly parsing and translating between DIF and

tools’ specification formats is usually inefficient.
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We develop a new exporting and importing approach based on dataflow graph

mapping. Our general approach for exporting is to comprehensively traverse graph-

ical representations in a design tool and then map the encountered components into

corresponding components or equivalent groups of components that are available in

DIF dataflow graph library; and similarly, the approach for importing is done in the

reverse manner. Dataflow-based design tools usually have their own specific repre-

sentations instead of just the abstract components defined in theoretical dataflow

models. However, since DIF provides 1) a complete set of object-oriented classes

(DIF dataflow graph library) for representing dataflow graphs and 2) a front-end

interface (DIF front-end) for converting between the representations and the DIF

language, traversing and mapping between the graphical (internal) representations

of tools and the formal dataflow representations in DIF is feasible and is typically

more efficient to develop and execute.

Even though DIF is developed in Java and may not directly be used by C/C++

based design tools, through our new development [17] of C/C++ library interfaces

to DIF via Java Native Interface (JNI) [54] along with a wrapper generator system

(JACE), our approach is now feasible in both Java and C/C++ environments.

Specifying an actor’s computation and all necessary operational information is

referred to as actor specification. Although this detailed information is not directly

used by many dataflow-based analyses, it is essential in porting across tools and

in hardware/software synthesis since every actor’s functionality must be fully pre-

served. The actor block in the DIF language is designed for the actor specification.

Lets take the FFT operation as an example to illustrate actor specification in DIF.
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actor nodeID {
computation = “ptolemy.domains.sdf.lib.FFT”;
order = intValue or intParamID;
input = incomingEdgeID;
output = outgoingEdgeID;

}

Figure 5.1: DIF actor specification of an FFT actor.

In Ptolemy II, the FFT actor is referred to as ptolemy.domains.sdf.lib.FFT, and it

has a parameter order and two ports, input and output. The corresponding DIF

actor specification is presented in Figure 5.1.

5.2 Porting Mechanism

The DIF-based porting mechanism consists of three major steps: 1) exporting

— exporting a design from a tool to a DIF specification through a tool-specific DIF

exporter, 2) actor mapping — mapping attributes of the original actors in the DIF

specification to attributes associated with the corresponding target actors based

on the given actor mapping information specified by the actor interchange format

(AIF), and 3) importing — importing the mapped DIF specification to the target

tool through a tool-specific DIF importer.

The porting mechanism illustrated in Figure 5.2 is based on an experiment of

porting from the Autocoding Toolset [70] to Ptolemy II [21]. The first step is to

export a DSP application developed in the Autocoding Toolset (AT), which uses

MCCI’s Signal Processing Graph Notation (SPGN) as its specification format, to the

corresponding DIF specification through the DIF-AT exporter developed by MCCI.

In this DIF specification, actor information is specified for the Autocoding Toolset.
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Figure 5.2: The DIF-based porting mechanism.

In the second step, actor mapping mechanism interchanges the tool-dependent ac-

tor information from the Autocoding Toolset to Ptolemy II in the DIF specifica-

tion. DIF is used as an intermediate state in the porting process. The final step

is to import the DIF specification with actor information specified for Ptolemy II

to the corresponding Ptolemy II graphical representation and then to an equiva-

lent Ptolemy II Modeling Markup Language (MoML) [52] format. This importing

process is handled by the DIF-Ptolemy exporter/importer developed in this work.

The key idea behind the DIF-based porting approach is that except for actor

information, a DIF specification for a DSP application represents the same dataflow

semantics regardless of which design tool is used to generate it, and furthermore,

porting DSP applications can be achieved by properly mapping the tool-dependent

actors, while transferring the dataflow semantics unaltered.
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5.3 Actor Mapping

The objective of actor mapping is to map an actor in a design tool to an ac-

tor or a set of actors in another design tool while preserving the same functionality.

Because different design tools generally provide different sets of actor libraries, prob-

lems may arise due to actor absence, actor mismatch, and actor attribute mismatch.

If a design tool does not provide the corresponding actor, the actor absence

problem arises. If corresponding actors exist in both libraries but the specific func-

tionalities of those actors do not completely match, we encounter the actor mis-

match problem. For example, the FFT domain primitive (library function) in the

Autocoding Toolset allows users to indicate an FFT or IFFT operation through its

parameter FI, but the FFT actor in Ptolemy II does not. Actor attribute mismatch

arises when attributes are mapped between actors but the values of corresponding

attributes cannot be directly interchanged. For example, the parameter order of the

Ptolemy FFT actor specifies the FFT order, but the corresponding parameter N of

the Autocoding Toolset FFT domain primitive specifies the length of FFT.

We develop the actor interchange format (AIF) for specifying how to map

actors (i.e., actor-to-actor mapping and actor-to-subgraph mapping) across pairs of

tools. AIF can significantly ease the burden of actor mismatch problems by allowing

designers to specify how multiple actors in the target design tool can construct a

subgraph such that the subgraph’s functionality is compatible with the source actor.

Such conversions reduce the need for users to introduce new actor definitions in the

target tool.
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We also develop the actor interchange methods that can be optionally given

in AIF specifications to perform conditional checks or to evaluate attribute values.

Actor interchange methods can solve attribute mismatch problems by evaluating a

target attribute in a consistent, centrally-specified manner, based on any subset of

source attribute values.

For absent actors, most design tools provide ways to create actors through

some sort of actor definition language. Once users determine equivalent counterparts

for absent actors and specify the mapping information in AIF properly, DIF porting

mechanism can take over the job efficiently and systematically.

5.3.1 Actor Interchange Format

Actor interchange format (AIF) is a specification format dedicated to actor

mapping. It provides syntax to specify actor interchange information, including:

1) mapping from a source actor (an actor in the source design tool) to a target actor

(an actor in the target design tool), 2) mapping from a source actor to a subgraph

consisting of a set of target actors, 3) mapping from source attributes to target

attributes, and 4) optionally specifying the prior condition to trigger a mapping as

well as the method and expression to determine an attribute value. We present AIF

syntax partially in Figure 5.3 and Figure 5.4, where items in boldface are built-in

keywords; non-bold items are specified by users or generated by tools; items enclosed

by squares are optional; and “...” represents optionally repeated statements.

The actor-to-actor mapping syntax, as presented partially in Figure 5.3, spec-
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actor targetActor <− sourceActor [ | methodID(arg, ..., arg) ] {
targetAttributeID = value;
targetAttributeID <− sourceAttributeID [ | methodID(arg, ..., arg) ];
...

}

Figure 5.3: The AIF actor-to-actor mapping syntax.

ifies the mapping information from a source actor sourceActor to a target actor

targetActor. A method methodID is given optionally to specify a prior condition

that must be satisfied to trigger the mapping. AIF allows users to directly as-

sign a value value for a target attribute targetAttributeID. In addition, the value of

targetAttributeID can also be directly assigned by the value of a source attribute

sourceAttributeID, or a method methodID can be given optionally to evaluate the

value of targetAttributeID based on the runtime values of source actor attributes.

The actor-to-subgraph mapping syntax, as presented partially in Figure 5.4,

specifies the mapping from a source actor sourceActor to a subgraph targetGraph

consisting of a set of target actors. It is designed for use when matching to a stan-

dalone actor in the target tool is not possible. The topology block portrays the

topology of targetGraph. The interface block defines the input and output ports

of targetGraph, and also specifies mappings from the interface attributes sourceAt-

tributeID of sourceActor to the interface ports portID of targetGraph. The actor

information of each node in targetGraph is specified in a separate actor block, where

the syntax is pretty much the combination of the DIF actor block and the AIF

actor-to-actor mapping block.

AIF grammar and AIF parser are developed based on SableCC [22]. For more

detailed information about AIF, we refer the reader to [31].
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graph targetGraph <− sourceActor [ | methodID(arg, ..., arg) ] {
topology {

nodes = nodeID, ..., nodeID;
edges = edgeID (sourceNodeID, sinkNodeID), ..., edgeID (sourceNodeID, sinkNodeID);

}
interface {

inputs = portID [: nodeID] <− sourceAttributeID, ...,
portID [: nodeID] <− sourceAttributeID;

outputs = portID [: nodeID] <− sourceAttributeID, ...,
portID [: nodeID] <− sourceAttributeID;

}
actor nodeID {

computation = “stringDescription”;
attributeID = value;
attributeID = ID;
attributeID = ID, ..., ID;
targetAttributeID <− sourceAttributeID [ | methodID(arg, ..., arg) ];
...

}
}

Figure 5.4: The AIF actor-to-subgraph mapping syntax.

5.3.2 Actor Interchange Methods

The methods optionally given in AIF specifications are referred to as actor

interchange methods. A set of commonly-used interchange methods is defined in a

built-in Java class in the DIF package. Users can extend this class and design specific

interchange methods for more complicated or specialized actor mapping scenarios.

There are three built-in actor interchange methods in the DIF package: 1) if-

Expression(“expression”) evaluates the Boolean expression and returns true or false;

2) assign(“expression”) evaluates expression and returns the evaluated value; and

3) conditionalAssign(“valueExpression”, ”conditionalExpression”) returns the value

of valueExpression if the conditionalExpression is true. Note that the attributes of

the source actor can be used as variables in expressions and their values are used at

runtime during evaluation.
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actor ptolemy.domains.sdf.lib.FFT <− D FFT | ifExpression(“FI == 0”) {
order <− N | conditionalAssign(“log(N)/log(2)”,“(log(N)/log(2))-rint(log(N)/log(2))==0”);
input <− X;
output <− Y;

}

Figure 5.5: AIF specification for mapping FFT.

5.3.3 Case Study: FFT

According to the actor mismatch and attribute mismatch problems described

in Section 5.3, the Autocoding Toolset FFT domain primitive (which is referred to

as D FFT in MCCI domain primitive library) can be mapped to the Ptolemy FFT

actor only when its parameter FI is not set to indicate IFFT operation. Moreover,

the parameter N of D FFT can be mapped to the parameter order of Ptolemy’s

FFT actor only when N = 2order is satisfied. The AIF specification for mapping

the FFT operation from the Autocoding Toolset to Ptolemy II is partially shown in

Figure 5.5.

The D FFT domain primitive also has a parameter B, which specifies the first

point of its output sequence, and a parameter M, which specifies the number of

output points. Furthermore, there is a factor of N difference between the IFFT

operation of D FFT and the Ptolemy IFFT actor. One way to solve this problem

is to create a new IFFT actor in Ptolemy, but this approach is relatively time-

consuming. The actor-to-subgraph mapping feature in DIF can be used as a more

convenient alternative. Figure 5.6 presents the critical part of this AIF mapping

specification. If a D FFT domain primitive indicates an IFFT operation (FI ==

1 ) and it outputs only part of its sequence (M 6= N), it is mapped to a Ptolemy
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graph ptolemy.actor.TypedCompositeActor <− D FFT | ifExpression(“FI==1 && M!=N”) {
topology {

nodes = IFFT, Scale, SequenceToArray, ArrayExtract,ArrayToSequence;
edges = ...;

}
interface {

inputs = in : IFFT <− X;
outputs = out : ArrayToSequence <− Y;

}
actor IFFT {

computation = “ptolemy.domains.sdf.lib.IFFT”;
order <− N | conditionalAssign(“log(N)/log(2)”,

“(log(N)/log(2))-rint(log(N)/log(2))==0”);
...

}
actor Scale {

...
factor <− N;

}
actor ArrayExtract {

...
sourcePosition <− B | assign(“B-1”);
extractLength <− M;

}
...

}

Figure 5.6: AIF specification for mapping IFFT.

subgraph consisting of an IFFT actor for performing an IFFT operation, a Scale

actor for adjusting each sample by a factor of N, and three array processing actors

for extracting a certain part of the output sequence. The input and output ports

of the subgraph, in and out, are mapped from parameters X and Y of D FFT. For

complete AIF specification of this mapping, we refer the reader to [31].

5.4 Experiment

In the experiment, we port a synthetic aperture radar (SAR) benchmark ap-

plication from the Autocoding Toolset [70] to Ptolemy II [21]. Figure 5.7 shows

the SAR system developed in Autocoding Toolset. Figure 5.7.(a) illustrates the
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Figure 5.7: The SAR system in the Autocoding Toolset.

top-level dataflow graph, which consists of two major building blocks: RANGE

processing in Figure 5.7.(b) and AZIMUTH processing in Figure 5.7.(c). With a

properly-designed actor interchange specification together with actor interchange

methods available in the DIF package [31], the DIF actor mapping mechanism can

translate the DIF specification of Figure 5.7, which is exported from the Autocoding

Toolset, to an equivalent DIF specification for Ptolemy II. The DIF-Ptolemy im-

porter then imports this equivalent specification, and the resulting SAR application

in Ptolemy II is shown in Figure 5.8. Figure 5.8.(a), (b), and (c) correspond to

Figure 5.7.(a), (b), and (c), respectively. Note that the mismatched actor IFFT in

Figure 5.7.(c) is mapped to the IFFT SUBGRAPH in Figure 5.8.(d) through the

AIF actor-to-subgraph mapping capability.

The ported SAR benchmark application in Ptolemy II works correctly. Figure
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Figure 5.8: The ported SAR system in Ptolemy II.

Figure 5.9: SAR simulation results in Ptolemy II and the Autocoding Toolset.
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5.9 compares the output samples generated by both tools. The simulation results

are the same except for tolerable precision errors.
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Chapter 6

DIF-to-C Software Synthesis

In this chapter, we present our DIF-to-C software synthesis framework for

automatically generating C-code implementations from high-level dataflow model-

ing of DSP systems that are programmed in DIF. Comparing to general software

synthesis tools, the DIF-to-C framework possesses the following unique features:

1. Library-neutral : In contrast to built-in actor libraries in conventional EDA

tools, our software synthesis framework is library-neutral such that DIF program-

mers can associate actors with desired C functions either designed by themselves

or obtained from existing libraries. The DIF-to-C framework currently supports

general C-based libraries, e.g., DSP libraries from Texas Instruments [80, 79], and

can be easily extended to support more specialized C-based APIs, such as VSIPL

[39].

2. Design space exploration: The DIF package provides representations of var-

ious dataflow models and efficient implementations for many scheduling algorithms

and buffering techniques. This large and growing set of models, algorithms, and

techniques spans a broad range of the design space: designers can easily explore dif-

ferent combinations and determine trade-offs among key metrics such as code size,

memory requirements, and performance.
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3. Portability : By integrating the DIF-to-C framework with the systematic

DIF-based porting approach (see Chapter 5), a DIF specification of a design can be

ported and synthesized on various embedded processing platforms.

The DIF-to-C software synthesis framework is presently based on SDF seman-

tics. Figure 6.1 illustrates the design flow that underlies the DIF-to-C framework.

In the programming phase, we model a DSP application using SDF, and specify

the modeling information in DIF, including graph topologies, hierarchical struc-

tures, dataflow behavior (production rates, consumption rates, and delays), actor

attributes (actor-function associations, edge/port connections, parameters, etc.),

and all other relevant information (e.g., data types). In particular, actors in the

DIF specification are specified based on the chosen C functions. Next, we use

the DIF front-end interface to construct the internal DIF representation, i.e., the

dataflow graph objects realizing the DIF specification. This object representation is

then passed as input to the subsequent scheduling, buffering, and code generation

techniques.

In the rest of this chapter, we introduce the novel developments in the schedul-

ing and code generation phases and present the simulation results of several synthe-

sized DSP applications.

6.1 Scheduling

In the scheduling phase, we compute a schedule of the SDF graph through

one of various scheduling algorithms. By a schedule, we mean a sequence of actor
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Figure 6.1: DIF-to-C software synthesis framework.

firings or more generally, any static, dynamic, or hybrid static/dynamic sequenc-

ing mechanism for executing actors. The DIF-to-C framework is mainly based on

SDF semantics. As a result, we focus on purely static scheduling, which is most

natural for SDF graphs. There is a complex range of trade-offs involved during the

scheduling phase, and the DIF package provides a variety of scheduling algorithms

and strategies for exploring trade-offs.

6.1.1 SDF Scheduling Preliminaries

As reviewed in Section 2.1.1, an SDF graph G = (V, E) has a valid schedule

(is consistent) if it is free from deadlock and is sample rate consistent — i.e., if there
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is a positive integer solution to the balance equations :

∀e ∈ E, prd(e)× x[src(e)] = cns(e)× x[snk(e)] . (6.1)

The minimum positive integer solution qG for the vector x is called the repetitions

vector of G. A valid minimal periodic schedule is then a sequence of actor firings

in which each actor v is fired for its repetition count qG[v] times, and the firing

sequence obeys the data-driven properties imposed by the SDF graph.

Based on Section 2.1.2, given a schedule S, we define the buffer size required

for an edge e, buf (e), to be the maximum number of tokens simultaneously queued

on e during an execution of S, maxToken(e, S); and the total buffer requirement of

an SDF graph G = (V, E) to be the sum of the buffer sizes of all edges:

buf (G) =
∑

∀e∈E

maxToken(e, S) . (6.2)

As discussed in Section 2.1.1, actor firing sequences can be represented through

looping constructs [7] for memory-efficient storage. A schedule loop,

L = (n T1T2 · · ·Tm), is defined as the successive repetition n times of the invocation

sequence T1T2 · · ·Tm, where each Ti is either an actor firing or a (nested) schedule

loop. A looped schedule S = L1L2 · · ·LN is an SDF schedule that is expressed in

terms of the schedule loop notation. If every actor appears only once in S, S is

called a single appearance schedule (SAS), otherwise, S is called a multiple appear-

ance schedule (MAS).

Any SAS for an acyclic SDF graph can be represented in the R-schedule form

[7], which can be naturally represented as a schedule tree. A schedule tree is in

turn a binary tree where an internal node represents a sub-schedule and a leaf node
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represents an actor firing. It provides a convenient internal representation for SDF

scheduling, and is widely used in computing schedules and buffer minimization. An

example of an R-schedule and the corresponding schedule tree is shown in Figure

6.3.

6.1.2 Scheduling Algorithms

The thorough review of SDF scheduling algorithms is provided in Chapter

3. In general, the problem of computing a buffer-optimal SDF schedule is NP-

complete, and buffer-optimal schedules are usually MASs whose lengths generally

increase exponentially in the size of the SDF graph. An SAS is often preferable in

software synthesis due to its optimally compact implementation containing only a

single copy of code for every actor. A valid SAS exists for any consistent and acyclic

SDF graph and can be easily derived from a flat scheduling strategy, i.e., a strategy

that computes a topological sort of an SDF graph G and iterates each actor v qG[v]

times. However, flat scheduling may also lead to relatively large buffer requirements

and latencies in multirate systems [7].

For joint code and data minimization in software synthesis, several schedul-

ing algorithms have been developed in acyclic SDF graphs. The acyclic pairwise

grouping of adjacent nodes (APGAN) [7] technique is a heuristic to generate a

buffer-efficient topological sort (and looped schedule). The dynamic programming

post optimization (DPPO) [7] performs dynamic programming over a given actor

ordering (topological sort) to generate a buffer-efficient looped schedule. It has sev-
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Figure 6.2: A CD-DAT SDF graph.

eral forms for different cost functions, e.g., GDPPO [7], CDPPO [85], and SDPPO

[59].

For a graph containing cycles, an SAS may or may not exist depending on

whether the numbers and locations of delays in its cycles satisfy certain sufficiency

conditions. The loose interdependence algorithm framework (LIAF) [7] has been

developed for generating SASs whenever they exists. Beyond SASs, the work of [45]

presents a recursive procedure call (RPC) based technique that generates MASs from

a given R-schedule through recursive graph decomposition. The resulting procedural

implementation is proven to be bounded polynomially in the graph size. This MAS

technique significantly reduces memory requirement over SAS at the expense of

some moderate runtime overhead.

The aforementioned algorithms are implemented in the DIF package and in-

tegrated in the DIF-to-C framework. Figure 6.2 shows an SDF graph of a multi-

rate CD-to-DAT sampling rate conversion system. Table 6.1 presents schedules

computed from various SDF scheduling algorithms and their corresponding buffer

requirements.
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Table 6.1: Schedules and buffer requirements.
Algorithm Schedule Buffer
Flat (147A)(147B)(98C)(56D)(40E)(160F) 1273
APGAN (49(3AB)(2C))(8(7D)(5E(4F))) 438
DPPO (7(7(3AB)(2C))(8D))(40E(4F)) 347
RPC-based (2(1(1(7(1(1AB)(2(AB)C))D)D)(5E(4F)))(2(1(1(7(1(1AB) 69
MAS (2(1AB)C))D)D)(5E(4F)))(1E(4F))))(1(1(1(7(1(1AB)

(2(1AB)C))D)D)(5E(4F)))(1E(4F)))

6.1.3 Scheduling Hierarchical SDF Graphs

The aforementioned scheduling algorithms are designed for scheduling flat-

tened SDF graphs. As a useful alternative to this form of scheduling, a hierarchical

scheduling strategy is developed in the DIF-to-C framework. In hierarchical schedul-

ing, the original hierarchical structure (i.e., the design hierarchy) is preserved in the

generated code. Specifically, in our approach, each hierarchical subsystem is in-

stantiated as a separate subroutine. Hierarchical scheduling is desirable in cases

where it is useful to maintain a correspondence between the design hierarchy and

the structure of the generated code. For example, such a correspondence can be

useful as a debugging aid, and it can also lower the complexity of scheduling. Our

approach to hierarchical scheduling is primarily based on SDF clustering [7]. That

is, our hierarchical scheduling approach operates by recursively scheduling all sub-

graphs using any given scheduling algorithms, and then updating the production

and consumption rates of supernodes such that firing a supernode corresponds to

executing one iteration of the minimum periodic schedule of the subgraph.

To accommodate situations in which designers do not need to impose the hier-

archical scheduling constraint, we also provide a flattened scheduling strategy in our
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framework. In this approach, all nested hierarchies are flattened before scheduling.

This form of scheduling can in general lead to more efficient schedules (because the

design space of permissible schedules is usually much larger); however, the schedules

are much more difficult to understand in relation to the original SDF graph.

For the algorithm of both strategies, we refer the reader to [36].

6.2 Buffering

The last step in the scheduling phase is to allocate and manage buffers. Al-

though edges in an SDF graph conceptually represent FIFO buffers, implementing a

FIFO structure usually leads to severe runtime and memory overhead due to main-

taining the strict FIFO operations. In the DIF-to-C framework, only the necessary

amount of memory space is allocated for each edge, and buffers are managed be-

tween actor firings (i.e., function or subroutine calls) such that actor firings always

access the correct subsets of live tokens. In this section, we present several buffering

techniques that have been implemented in the DIF-to-C framework for exploring

buffering trade-offs.

6.2.1 Buffer Allocation

The total buffer requirement defined in Equation (2.2) is based on the non-

shared memory model, i.e., each buffer is allocated individually in memory and

is live throughout a schedule. In fact, the scheduling algorithms described above

are developed for improving memory requirements based on this model. Given a
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Figure 6.3: A buffer sharing example.

schedule, the non-shared buffering technique simply allocates a buffer (declares an

array) for each edge independently.

In practice, memory space can be reduced by sharing memory across multiple

buffers as long as their lifetimes (at the granularity of actor firings) do not overlap,

and a systematic buffer sharing technique has been developed in [59] based on this

motivation. In this technique, an R-schedule is first computed through SDPPO [59],

and then a schedule tree is constructed to efficiently extract lifetime parameters.

Next, the first-fit heuristic is applied to pack arrays efficiently into memory and

determine the actual memory requirement and the buffer (array) locations. Figure

6.3 presents a simple example for illustrating this technique, and for a complete

derivation, we refer the reader to [59].

As discussed in Chapter 3, the concept of buffer merging is developed formally

in [6]. Certain DSP computations can be executed in-place such that a single buffer

is sufficient for both input and output edges, e.g., the discrete cosine transform

(IMG fdct 8x8) in the Texas Instruments DSP library [79]. An in-place actor is

naturally suitable for merging its input and output edges, and buffer merging may be
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Figure 6.4: An in-place buffer merging example in JPEG.

strictly required if the in-place actor is invoked through a pre-defined function that

has only one argument for both input and output. We have developed the in-place

buffer merging technique to merge buffers for an in-place actor or a sequence of in-

place actors. In dataflow modeling, it is not natural to represent a single merged edge

for an in-place actor, because dataflow edges also impose precedence constraints. For

this reason, an edge attribute merge is dedicated in DIF to specify exactly where

in-place buffer merging takes place. Figure 6.4 presents a sequence of in-place actors

in a JPEG subsystem and the corresponding buffer merging specification in DIF.

A sequence of edges e1, e2, . . . , eN in an SDF graph G can be merged for in-

place execution if 1) they are connected, i.e., snk(e1) = src(e2), snk(e2) = src(e3), ...,

snk(eN−1) = src(eN ), 2) the production rate and consumption rate of each in-place

actor are the same, i.e., cns(e1) = prd(e2), cns(e2) = prd(e3), ...,

cns(eN−1) = prd(eN ), and 3) the edges are delayless. In our approach, we allo-

cate (declare) only a single buffer (array) for an edge ei and merge (assign) others

to it. Given a schedule S, ei is chosen such that the least common ancestor of

src(ei) and snk(ei) is the highest internal node in the schedule tree of S, and this

guarantees maxToken(ei, S) to be the maximum among e1, e2, . . . , eN , and in turn
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prevents from buffer overflow.

6.2.2 Buffer Management

Knowledge of just the buffer size, buf (e), and the buffer (array) address,

add(e), is not enough for actors to access the right place in the buffer at a par-

ticular iteration. Buffer management through circular buffer technique has been

developed in [4]. In the DIF-to-C framework, inputs and outputs of actors (C func-

tions) are passed by pointers through function arguments. This is a widely used

convention in implementing DSP library functions, e.g., see [80, 79], and this con-

vention generally assumes that input and output data are consecutive in memory

space. However, this assumption prevents us from directly applying the circular

buffer approach, since a particular firing may access tokens that circle around the

buffer.

In the DIF-to-C framework, we develop the semi-circular buffer approach such

that circular buffer is preserved, and input (output) data can be consumed (pro-

duced) consecutively. Given a schedule S, a buffer (array) is initially allocated (de-

clared) for an edge e with enlarged size,

buf (e) = maxToken(e, S) + max(prd(e), cns(e))− 1, to accommodate circled-around

tokens for the worst case situation. The read and write pointers, rp(e) and wp(e),

are initialized as: rp(e) = 0 and wp(e) = del(e) mod maxToken(e, S).

For each firing of src(e), it writes to the buffer at add(e) + wp(e), and for each

firing of snk(e), it reads from the buffer at add(e) + rp(e). Before a firing of snk(e),
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if rp(e) + cns(e) > maxToken(e), the first rp(e) + cns(e)−maxToken(e) tokens are

copied to the position after maxToken(e, S)− 1 for accessing circled-around tokens

in a linear manner. Similarly, after a firing of src(e), if

wp(e) + prd(e) > maxToken(e), wp(e) + prd(e)−maxToken(e) tokens after the po-

sition maxToken(e, S)− 1 are copied to the front. In addition, rp(e) is updated as

rp(e) = (rp(e) + cns(e)) mod maxToken(e, S), and wp(e) is update as

wp(e) = (wp(e) + prd(e)) mod maxToken(e, S)

This approach can support all kinds of schedules and arbitrary edge delays.

However, it also introduces buffer overhead for consecutive access and runtime over-

head due to modulo and memory copy operations. If the input graph is delayless

and the given schedule is an SAS, we can derive that maxToken(e, S) is sufficient

for periodic firings without circled-around access, and read and write pointers can

be statically reset without modulo operations. Since a broad range of DSP sub-

systems can be modeled as acyclic, delayless SDF graphs, and because SASs are

usually preferable, we develop the static read/write pointer resetting technique in

the DIF-to-C framework for improving runtime and memory performance.

Given a delayless graph G and an SAS S, an edge e is only live in the sched-

ule loop L that corresponds to the least common ancestor of src(e) and snk(e)

in the schedule tree of S, i.e., neither src(e) nor snk(e) appears beyond L in S.

In addition, maxToken(e, S) is equal to the total number of tokens exchanged

between src(e) and snk(e) within L. Based on these observations, we allocate

buf (e) = maxToken(e, S) for e, reset rp(e) and wp(e) at the beginning of the loop L,

and update them after each firing of src(e) and snk(e) without modulo operations,
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i.e., rp(e) = rp(e) + cns(e) and wp(e) = wp(e) + prd(e).

In fact, the worst case buffer requirements for the semi-circular buffer approach

can be improved by simulating the buffer access behaviors at compile-time and

allocating the exact semi-circular buffer requirements. This approach can be easily

implemented and integrated in our framework.

6.3 Code Generation

By integrating the DIF representations, scheduling algorithms, and buffering

techniques, the code generation phase in the DIF-to-C framework is able to generate

C implementations automatically. In this section, we describe our code generation

algorithm and introduce how several strategies in this regard are developed in a

systematic way. Finally, an executable is compiled from the generated code together

with fine-grain actors (functions) or library links.

6.3.1 Function Prototype

Unlike general design tools that provide their own actor libraries, the DIF-to-C

software synthesis framework is designed to support most C-based libraries. In order

to support various C functions (actors), we impose the least-possible constraints:

1) input and output data should be passed by pointers through function arguments;

and 2) the production and consumption rates should be fixed and known at compile

time. Most C functions naturally conform these constraints.

Figure 6.5 illustrates the prototype of the vector multiplication function in the
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void DSPF sp vecmul(float *x, float *y, float *r, int n)

SrcX

VecMul SnkR

SrcY

8 1

1
8

1
8

e3

e1

e2

actor VecMul {

computation = “DSPF sp vecmul”;
x = e1;
y = e2;
r = e3;
n = 8;

}

Figure 6.5: Function prototype and actor specification.

Texas Instruments DSP Library [80]. The inputs x, y and output r are passed by

“float*” pointers. The argument n indicates the number of elements in x, y, and r,

which also implies that the production/consumption rate of x, y, and r is n. Figure

6.5 also shows an SDF example and the corresponding actor specification. Note that

in current code generation approach, the order of actor attributes should preserve

the order of arguments in the function prototype.

In practice, the data types of edges are required in code generation. The

attribute datatype is used in the DIF-to-C framework for specifying the data type of

edges, type(e), and interface ports, type(p), e.g., see Figure 4.3. In code generation, a

buffer for e is declared as “type(e) e[size ]”, where the buffer size is determined based

on Section 6.2; when instantiating a subroutine for a subhierarchy, “type(p) ∗ p” is

generated as a subroutine argument for passing the buffer pointer from the outside

connection.
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6.3.2 DIFtoC Code Generator

In the DIF-to-C framework, DIFtoC is the base code generation class. It is de-

veloped based on the hierarchical scheduling strategy, non-shared buffer allocation,

and the semi-circular buffer approach. In our code generation approach, a main()

function is generated for the top-level hierarchy, and a subroutine is constructed for

each sub-hierarchy recursively. For each loop in the schedule, a for loop construct

is instantiated, and for each actor (or supernode) in the schedule, a function call

(or a subroutine call) is instantiated. Edge buffers are declared as arrays, and code

for managing circular buffers and updating read and write pointers is generated

between function/subroutine invocations. The flattening scheduling strategy is also

supported by flattening the top level hierarchy before scheduling. For the DIFtoC

code generation algorithm in detail, we refer the reader to [36].

The DIFtoC code generation class schedules an SDF graph based on a properly

given scheduling algorithm, and therefore provides flexibility in terms of scheduling.

In our framework, integration with different buffering strategies can be implemented

naturally by extending and overriding DIFtoC. Figure 6.6 presents the classes in the

current DIF-to-C software synthesis framework. For SASs (in R-schedule form) and

delayless graphs, we develop: 1) DIFtoCsrw that extends DIFtoC to implement

static read/write pointer resetting, 2) DIFtoCbs that extends DIFtoCsrw to imple-

ment the buffer sharing technique, and 3) DIFtoCipbm that extends DIFtoCsrw to

implement the in-place buffer merging technique. These code generation classes to-

gether with various scheduling algorithms in the DIF package provide a broad range
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Figure 6.6: The class hierarchy in the DIF-to-C framework.

of design space.

The generated C code consists of two parts: The initialization part statically

allocates buffers and declares read/write pointers and other parameters; The main

body is mainly a looped sequence of function invocations (determined by the com-

puted schedule) and interleaved with buffer management routines.

6.4 Experiment

The DSP applications in our DIF-to-C experiment include (a) CD-DAT and

(b) DAT-CD sample rate conversion systems, (c) a four-level tree-structured fil-

ter bank, (d) a synthetic aperture radar (SAR) system, and (e) a JPEG encoder

subsystem. We program the five coarse-grain SDF graphs in DIF, and then gener-

ate various C implementations based on different strategies through the DIF-to-C

framework. Together with actor implementations either obtained from Texas In-

struments signal and image processing libraries [80, 79] or manually implemented in

C, we compile and simulate them in the Texas Instruments Code Composer Studio.

The target simulation platform is the TMS320C64x DSP series and the compiler

optimization setting is none.
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Figure 6.7: DIF-to-C simulation results. (a) CD-DAT, (b) DAT-CD, (c) filter bank,
(d) SAR, (e) JPEG.
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Figure 6.7 presents the SDF graphs and the simulation results of the five appli-

cations. In our experiment, the combinations of scheduling and buffering strategies

include (1) DIFtoC with the flat scheduling (C-F), (2) DIFtoC with APGAN-DPPO

(C-AD), (3) DIFtoC with RPC-MAS (C-RPC), (4) DIFtoCsrw with APGAN-DPPO

(SRW-AD), (5) DIFtoCbs with SDPPO [59] (BS-SD), and (6) DIFtoCipbm (for us-

ing in-place actors in the JPEG application) with APGAN-DPPO (IPBM-AD).

Since the filter bank and SAR systems are modeled using hierarchical SDF graphs,

we also present both the hierarchical and flattening scheduling results. Note that

the actual possible combinations are much more than above.

The metrics we examined are: 1) memory (in bytes) — the total buffer memory

space allocated for all dataflow edges, 2) code size (in bytes) — the compilation

size of the generated C-code (including all of the automatically generated main

function and subroutines, but excluding actor functions obtained from libraries or

implemented by hand), 3) CPU-excluded (in cycles) — the cycles spent only in the

generated code for one iteration of a minimum periodic schedule of the application

SDF graph, and 4) CPU-total (in cycles) — the total CPU cycles for one iteration

of the complete executable.

According to Figure 6.7, we found that there exists a complex range of trade-

offs. For the CD-DAT and DAT-CD applications, RPC-based MAS significantly

reduces memory requirements at the expense of code size. For the filter bank appli-

cation, the buffer sharing method is an efficient approach, and the flattening strategy

generally performs better than the hierarchical strategy. Even though the DIFtoC

code generator allows MAS, it causes severe overhead in the SAR and JPEG appli-
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cations. In these two cases, static read/write pointer resetting and buffer sharing

can improve the situation significantly. For the JPEG application, since several

operations can be executed in-place, the buffer-merging technique is very suitable.

Regarding to the CPU-total metric for all applications, we found that the dataflow

overhead (schedules, buffer allocation, and buffer management) is insignificant when

taking large repetitions of heavily-computational actors into account. In general,

such heavily computation-involved actors are usually optimized through compiler

techniques or by hand.

6.5 Software Synthesis for MDSDF Graphs

MDSDF is introduced in Section 2.4. One of the problems in developing

MDSDF-based software synthesis is that efficient mechanisms are required to rear-

range data between MDSDF semantics and one-dimensional memory layouts.

The vector, signal, and image processing library (VSIPL) [39] is an open source,

C-based API that provides various commonly used functions in vector and matrix

computation, and many areas of signal processing. VSIPL adds a layer of abstraction

involving the concepts of blocks and views to support portability across diverse

memory and processor architectures. VSIPL blocks represent contiguous memory

spaces where data is stored. VSIPL functions operate on views in a way that sets

or subsets of data can be virtually arranged as vectors (1-D), matrices (2-D), or

tensors (3-D). This feature makes VSIPL a particularly good match for integration

with SDF and MDSDF semantics in software synthesis from DIF.
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We have implemented the multi-dimensional dataflow representations, MDS-

DFGraph, and scheduling techniques in the DIF package. We have also devel-

oped DIF-to-VSIPL software synthesis capability [32] that supports both SDF and

MDSDF by extending the original framework. Given the buffer space (1- or M-D)

for a dataflow edge computed by scheduling and buffering techniques, the DIF-to-

VSIPL code generation process creates a VSIPL block with size equal to the product

of all dimensions. It also creates two VSIPL views (vector, matrix, or tensor views

based on dimensions) associated with the block for source and sink actors (VSIPL

functions). The length attributes of the views are decided by the production and

consumption rates (1- or M-D), the stride attributes are determined by the buffer

space (1- or M-D), and the offset attributes are adjusted between VSIPL functions

based on the looped schedule (1- or M-D).

Figure 4.6 presents the input, output, and intermediate images computed by

our synthesized C/VSIPL implementation of two-dimensional discrete wavelet trans-

form (2DDWT).

This DIF-to-VSIPL capability augments the support of the DIF software syn-

thesis framework to multiple useful dataflow models and extends the reach of DIF-

based interchange to the wide variety of platforms that support VSIPL.
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Chapter 7

Efficient Simulation of Critical Synchronous Dataflow Graphs

Synchronous dataflow (SDF) model of computation is widely used in EDA

tools for system-level simulation. SDF representations of modern wireless communi-

cation systems typically result in critical SDF graphs — they consist of a large num-

ber of components and involve complex inter-component connections with highly

multirate behavior. Simulating such systems using traditional SDF scheduling tech-

niques generally leads to unacceptable simulation time and memory requirements

on modern workstations and high-end PCs. In this chapter, we present a novel

simulation-oriented scheduler (SOS) to provide effective, joint minimization of time

and memory requirements for simulating critical SDF graphs. We have implemented

SOS in the Advanced Design System (ADS) from Agilent Technologies. Our results

from this scheduler demonstrate large improvements in simulating real-world, large-

scale, and highly multirate wireless communication systems (e.g., 3GPP, Bluetooth,

802.16e, CDMA 2000, XM radio, EDGE, and Digital TV).

7.1 Introduction

SDF scheduling and buffering preliminaries are introduced in Section 2.1; A

thorough review of SDF scheduling algorithms and buffering techniques is presented

in Chapter 3.
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Generally, the design space of SDF schedules is highly complex, and the sched-

ule has a large impact on the performance and memory requirements of an implemen-

tation [7]. For synthesis of embedded hardware/software implementations, memory

requirements (including memory requirements for buffers and for program code) are

often of critical concern, while tolerance for compile time is relatively high [56], so

high complexity algorithms can often be used. On the other hand, for system simu-

lation, simulation time (including time for scheduling and execution) is the primary

metric, while memory usage (including memory for buffering and for the schedule)

must only be managed to fit the available memory resources.

Scheduling in the former context (embedded hardware/software implementa-

tion) has been addressed extensively in the literature. In this chapter, we focus on

the latter context (simulation), which is relatively unexplored in any explicit sense.

Our target simulation platforms are single-processor machines including worksta-

tions and desktop PCs, which are widely used to host system-level simulation tools.

The large-scale and highly multirate nature of todays wireless communication appli-

cations is our driving application motivation: for satisfactory simulation, the wireless

communication domain requires SDF scheduling techniques that are explicitly and

effectively geared towards simulation performance as the primary objective.

The organization of this chapter is as follows: In Section 7.2, we discuss prob-

lems that arise from simulating modern wireless communication systems. In Section

7.3, we introduce the simulation-oriented scheduler (SOS) for efficient simulation of

large-scale, highly multirate synchronous dataflow graphs. We present the overall

integration in Section 7.4 and simulation results in Section 7.5.
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7.2 Problem Description

Real-world communication and signal processing systems involve complicated

physical behaviors, and their behavioral representations may involve hundreds of

coarse-grain components that are interconnected in complex topologies, and have

heavily multirate characteristics. For example, simulating wireless communica-

tion systems involves complex encoder/decoder schemes, modulation/demodulation

structures, communication channels, noise, and interference signals. In transmitters,

data is converted progressively across representation formats involving bits, symbols,

frames, and RF signals. The corresponding conversions are then performed in re-

verse order at the receiver end. These transmitter-receiver interactions and the

data conversions are often highly multirate. In addition, simulating communication

channels may involve various bandwidths, noise, and multiple interference signals

that may originate from different wireless standards. All of these considerations

introduce heavily multirate characteristics across the overall system.

Modeling such communication and signal processing systems usually results

in critical SDF graphs. By a critical SDF graph, we mean an SDF graph that has:

large scale (consists of hundreds (or more) of actors and edges); complex topology

(contains directed and undirected cycles across the graph components); and heavily

multirate behavior (contains large variations in data transfer rates or component

execution rates across graph edges). Here, we define multirate complexity as a

measure of overall multirate behavior.

Definition 7.1 (Multirate Complexity). Given an SDF graph G = (V, E), its mul-
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tirate complexity (MC) is defined as an average of its repetitions vector components:

MC (G) =

(

∑

∀v∈V

qG[v]

)

/|V |, (7.1)

where |V | is the number of actors in G. In other words, it is an average number of

firings per component in one iteration of a minimal periodic schedule.

A complex topology complicates the scheduling process because the properties

of data-driven and deadlock-free execution must be ensured. However, large-scale

and heavily multirate behavior cause the most serious problems due to the following

three related characteristics:

1. High multirate complexity. Multirate transitions in an SDF graph, i.e.,

{e ∈ E | prd(e) 6= cns(e)}, generally lead to repetition counts that increase ex-

ponentially in the number of such transitions [7]. Critical SDF graphs usually

have extremely high multirate complexities, even up to the range of millions,

as we show in Section 7.5. Such high multirate complexity seriously com-

plicates the scheduling problem (i.e., sequencing large sets of firings for the

same actors in addition to sequencing across actors), and has heavy impact on

implementation metrics such as memory requirements, schedule length, and

algorithm complexity.

2. Large number of firings. Highly multirate behavior together with large

graph scale generally makes the number of firings in a schedule (i.e., the sum

of the repetitions vector components) increase exponentially in the number of

multirate transitions, and also increase proportionally in the graph size. In
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critical SDF graphs, schedules may have millions or even billions of firings, as

we show in Section 7.5. As a result, any scheduling algorithm or schedule rep-

resentation that works at the granularity of individual firings is unacceptable

in our context.

3. Large memory requirements. Increases in multirate complexity lead to

corresponding increases in the overall volume of data transfer and the length

of actor firing sequences in an SDF graph. Simulation tools usually run on

workstations and PCs where memory resources are abundant. However, due

to exponential growth in multirate complexity, algorithms for scheduling and

buffer allocation that are not carefully designed may still run out of memory

when simulating critical SDF graphs.

In this chapter, we present the simulation-oriented scheduler (SOS) for sim-

ulating critical SDF graphs in EDA tools. Our objectives include: 1) minimizing

simulation run-time; 2) scaling efficiently across various graph sizes, topologies,

and multirate complexities; and 3) satisfying memory constraints. Our simulation-

oriented scheduler statically computes schedules and buffer sizes with emphasis on

low-complexity, static scheduling and memory minimization. Static scheduling and

static buffering allow tools to simulate systems and allocate buffers with low set-up

cost and low run-time overhead. Low-complexity algorithms scale efficiently across

various kinds of SDF graphs and minimize scheduling run-time. In SOS, the mem-

ory requirements for storing schedules and buffering data are carefully kept under

control to prevent out-of-memory problems, and alleviate virtual memory swapping
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behavior, which causes large run-time overhead.

7.3 Simulation-Oriented Scheduler

Our SOS approach integrates several existing and newly-developed algorithms

for graph decomposition and scheduling. Figure 7.1 illustrates the overall architec-

ture. Among these techniques, LIAF, APGAN, and DPPO have been developed

in [7], and the concept of recursive two-actor graph decomposition has been devel-

oped in [45]. These techniques were originally designed for code and data memory

minimization in software synthesis, and have not been applied with simulation of

critical SDF graphs as an explicit concern. In SOS, we develop a novel integration

of these methods, and incorporate into this integrated framework the following new

techniques: 1) cycle-breaking to achieve fast execution in LIAF [34], 2) single-rate

clustering (SRC) to alleviate the complexity of APGAN and DPPO, and 3) buffer-

optimal two-actor scheduling for handling nonzero delays on graph edges in addition

to delayless two-actor graphs.

In this section, we present the novel integration as well as the algorithms and

theory associated with the new techniques. As discussed in Section 2.1.1, we assume

that an SDF schedule is represented in the looped schedule format [7].

7.3.1 SDF Clustering

SDF clustering is an important operation in SOS. Given a connected, consis-

tent SDF graph G = (V, E), clustering a connected subset Z ⊆ V into a supernode
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Figure 7.1: Architecture of the simulation-oriented scheduler.

α means: 1) extracting a subgraph Gα = (Z, {e | src(e) ∈ Z and snk(e) ∈ Z}); and

2) transforming G into a reduced form G′ = (V ′, E ′), where V ′ = V − Z + {α} and

E ′ = E − {e | src(e) ∈ Z or snk(e) ∈ Z}+ E∗. Here, E∗ is a set of “modified” edges

in G that originally connect actors in Z to actors outside of Z. More specifically, for

every edge e that satisfies (src(e) ∈ Z and snk(e) /∈ Z), there is a modified version

e∗ ∈ E∗ such that src(e∗) = α and prd(e∗) = prd(e)× qGα
(src(e)), and similarly,

for every e that satisfies (src(e) /∈ Z and snk(e) ∈ Z), there is a modified version

e∗ ∈ E∗ such that snk(e∗) = α and cns(e∗) = cns(e)× qGα
(snk(e)).

In the transformed graph G′, execution of α corresponds to executing one

iteration of a minimal periodic schedule for Gα. SDF clustering guides the scheduling

process by transforming G into a reduced form G′ and isolating a subgraph Gα of G

such that G′ and Gα can be treated separately, e.g., by using different optimization

techniques. SDF clustering [7] guarantees that if we replace every supernode firing

α in a schedule SG′ for G′ with a minimal periodic schedule SGα
for Gα, then the

result is a valid schedule for G.
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7.3.2 LIAF Scheduling

The loose interdependence algorithms framework (LIAF) [7] aims to decompose

and break cycles in an SDF graph such that algorithms for scheduling or optimiza-

tion that are subsequently applied can operated on acyclic graphs. Existence of

cycles in the targeted subsystems prevents or greatly restricts application of many

useful optimization techniques.

Given a connected, consistent SDF graph G = (V, E), LIAF starts by cluster-

ing all strongly connected components 1 Z1, Z2, . . . , ZN into supernodes α1, α2, . . . , αN ,

and this results in an acyclic graph Ga [16]. For each strongly connected subgraph

Gi = (Zi, Ei), LIAF tries to break cycles by properly removing edges that have “suf-

ficient” delays. An edge ei ∈ Ei can be removed in this sense if it has enough initial

tokens to satisfy the consumption requirements of its sink actor for a complete itera-

tion of Gi — that is, if del(ei) ≥ cns(ei)× qGi
(snk(ei)) — so that scheduling without

considering ei does not deadlock Gi. Such an edge ei is called an inter-iteration edge

in our context.

Now suppose that Gi
∗ denotes the graph that results from removing all inter-

iteration edges from the strongly connected subgraph Gi. Gi is said to be loosely

interdependent if Gi
∗ is not strongly connected, and Gi is said to be tightly inter-

dependent if G∗
i is strongly connected. If Gi is found to be loosely interdependent,

then LIAF is applied recursively to the modified version G∗
i of Gi.

1A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices

Z ⊆ V such that for every pair of vertices u and v in Z, there is a path from u to v and a path

from v to u.
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In our application of LIAF in SOS, tightly interdependent subgraphs are sched-

uled by classical SDF scheduling, which is discussed in more detail in Section 7.3.4,

and the acyclic graphs that emerge from the LIAF decomposition process are fur-

ther processed by the techniques developed in Section 7.3.5 through 7.3.9. The

process that we employ for breaking cycles in strongly components, which has been

described intuitively above, is described in more detail in Section 7.3.3 below.

7.3.3 Cycle-Breaking

Careful decomposition of strongly connected SDF graphs into hierarchies of

acyclic graphs — a process that is referred to as subindependence partitioning or

cycle-breaking — is a central part of the LIAF framework. LIAF does not specify

the exact algorithm that is used to break cycles, but rather specifies the constraints

that such an algorithm must satisfy so that schedulers derived from the framework

can construct single appearance schedules whenever they exist and satisfy other

useful properties [7, 5].

For using LIAF in SOS, we have developed the cycle-breaking algorithm [34],

which is presented in Figure 7.2. Particularly, our cycle-breaking algorithm is de-

signed to be well suited for the acyclic scheduling techniques in Section 7.3.5 through

7.3.9, and it is also designed for low complexty, which is important for use in SOS,

as well as in other environments where scheduling runtime is critical.

In Figure 7.2, given a strongly connected SDF graph G = (V, E) to CYCLE-

BREAKING, we first remove all inter-iteration edges from G (lines 2-4). If G is
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CYCLE-BREAKING(G ≡ (V, E)) /*The input G is a strongly connected SDF graph*/
1 E′ ← ∅

2 for e ∈ E
3 if del(e) ≥ cns(e)× qG[snk(e)] E ← E − e, E′ ← E′ + e end

4 end

5 if IS-CONNECTED(G)
6 {SCC1, SCC2, . . . , SCCN} ← TOPOLOGICALLY-SORTED-SCC(G)
7 if N = 1 G is tightly interdependent, E ← E + E′, . . .
8 else

9 for e ∈ E′

10 if !(src(e) /∈ SCC1 and snk(e) ∈ SCC1) E ← E + e, E′ ← E′ − e end

11 end

12 G is no longer strongly connected . . .
13 end

14 else

15 {CC1, CC2, . . . , CCM} ← CONNECTED-COMPONENTS(G)
16 {SCC1, SCC2, . . . , SCCP }← TOPOLOGICALLY-SORTED-SCC(GCC1

≡(CC1, ECC1
))

17 for e ∈ E′

18 if !(src(e) /∈ SCC1 and snk(e) ∈ SCC1) E ← E + e, E′ ← E′ − e end

19 end

20 G is no longer strongly connected . . .
21 end

Figure 7.2: Cycle-breaking algorithm.

connected (line 5), we compute the strongly connected components SCC1, SCC2,

. . . , SCCN of G in topologically sorted order (line 6). By a topologically sorted

order of SCCs, we mean a topological sort 2 of the acyclic graph that results from

clustering the SCCs in G. In addition, for a vertex that does not belong to any SCC

that contains at least two vertices, we say that this vertex is an SCC by itself.

If G is still strongly connected (N = 1 in line 7), we conclude that G is tightly

interdependent; restore G to its original state (before any edge removals); and mark

it for processing by the tightly interdependent scheduling techniques, e.g., classical

scheduling discussed in Chapter 3. On the other hand, if G is connected, but not

strongly connected (N > 1 in line 7), then we put all previously removed edges

2A topological sort of a directed acyclic graph G = (V, E) is a linear ordering of V such that

for every edge (u, v) in G, u appears before v in the ordering.
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(which are stored in E ′) back in G, except edges from {V − SCC1} to SCC1 (lines

9-11).

If G becomes disconnected after removing all inter-iteration edges (that is,

if control passes to the else branch rooted at line 14), then we compute the con-

nected components (CCs) CC1, CC2, . . . , CCM (line 15). Here, M > 1, and the

CCs can be ordered arbitrarily. Next, we compute the strongly connected compo-

nents SCC1, SCC2, . . . , SCCP (P ≥ 1) in some topologically sorted order for one

of the connected subgraphs GCC1
= {CC1, ECC1

} (line 16). Lastly, we return all

previously-removed edges back to G, except edges from {V − SCC1} to SCC1 (lines

17-19), and complete the process.

The following theorem proves the correctness of the cycle-breaking algorithm.

Theorem 7.2. Suppose a strongly connected SDF graph G = (V, E) is applied as

input to the CYCLE-BREAKING algorithm, then G is determined to be tightly in-

terdependent in line 7, is determined (after modification) to not be strongly connected

in line 12, or is determined (again, after modification) to not be strongly connected

in line 20.

Proof. CASE I: In line 7, G is tightly interdependent because after removing all

inter-iteration edges (lines 2-4), it is still strongly connected (line 6-7).

CASE II: Just after line 8, the modified version of G (after removing all inter-

iteration edges) is connected and has N > 1 SCCs, SCC1, SCC2, . . . , SCCN , ordered

in a topologically sorted fashion. We can then determine that G is not strongly

connected (since there are N > 1 SCCs), and there is no edge from {V − SCC1}
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to SCC1 (since SCC1 is the first SCC in topologically sorted order). By putting

back all previously removed edges, except edges from {V − SCC1} to SCC1 (lines

9-11), the resulting graph G (line 12) is not strongly connected because for any

u ∈ SCC1 and v ∈ {V − SCC1}, there is a path from u to v (since the original

input G is strongly connected), but no path from v to u (since there is no edge from

{V − SCC1} to SCC1).

CASE III: Just after line 16, the modified version of G (after removing all inter-

iteration edges) is disconnected, and SCC1 here is the first SCC in topologically

sorted order in the connected subgraph GCC1
≡ {CC1, ECC1

}. We can then derive

that there is no edge from {V − SCC1} to SCC1 (since there is no edge between

CCs, and SCC1 is the first SCC in topologically sorted order in GCC1
). By putting

back all previously removed edges, except edges from {V − SCC1} to SCC1 (lines

17-19), the resulting graph G (line 20) is connected but not strongly connected

because for any u ∈ SCC1 and v ∈ {V − SCC1}, there is a path from u to v (since

the original input G is strongly connected), but no path from v to u (since there is

no edge from {V − SCC1} to SCC1).

The following theorem establishes key properties provided by our CYCLE-

BREAKING algorithm.

Theorem 7.3. If a loosely interdependent, strongly connected SDF graph G = (V, E)

is applied as input to the CYCLE-BREAKING algorithm, then the resulting graph

G is connected. Also, suppose that SCC ′
1, SCC ′

2, . . . , SCC ′
L are the L > 1 SCCs in

any topologically sorted order of the resulting graph G (line 12 or line 20). Then the
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edges removed by the CYCLE-BREAKING algorithm are edges from {V − SCC ′
1}

to SCC ′
1. Furthermore, SCC ′

1 is equal to SCC1 in line 6 or line 16.

Proof. Continuing from the proof of Theorem 7.2 for both CASE II and CASE III,

we can derive that 1) SCC1 is a strongly connected component in the resulting

graph G; and for any u ∈ SCC1 and v ∈ {V − SCC1}, 2) there is a path from u

to v, but 3) there is no path from v to u. As a result, the resulting graph G is

connected. In addition, SCC1 must be the first SCC in any topologically sorted

order of the resulting graph G, i.e., SCC1 = SCC ′
1; and the removed edges, i.e.,

inter-iteration edges from {V − SCC1} to SCC1, must be edges from succeeding

SCCs, SCC ′
2, SCC ′

3, . . . , SCC ′
L, to the first SCC ′

1 in the resulting graph G.

The following theorem pertains to the complexity of our cycle-breaking algo-

rithm.

Theorem 7.4. Given a strongly connected SDF graph G = (V, E), the complexity

of the CYCLE-BREAKING algorithm is Θ(|V |+ |E|).

Proof. Determining whether a graph is connected (IS-CONNECTED) as well as

computing connected components of a disconnected graph (CONNECTED-

COMPONENTS) can be implemented in linear time (i.e., in time that is linear

in the number of actors and edges in G). This can be done, for example, by using

depth-first search. A linear time algorithm to compute SCCs of a directed graph

in topologically sorted order (TOPOLOGICALLY-SORTED-SCC) can be found in

[16]. Computing the repetitions vector of an SDF graph can also be implemented

in linear time [7]. Furthermore, with efficient data structures, operations in lines
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2-4, lines 9-11, and lines 17-19, can be implemented in linear time. As a result, the

complexity of CYCLE-BREAKING is Θ(|V |+ |E|).

With the CYCLE-BREAKING algorithm, operations for decomposing and

breaking cycles in LIAF can be implemented in time that is linear in the number of

actors and edges in the input SDF graph.

7.3.4 Classical SDF Scheduling

As described in Chapter 3, classical SDF scheduling is a demand-driven,

minimum-buffer scheduling heuristic. By simulating demand-driven dataflow be-

havior (i.e., by deferring execution of an actor until output data from it is needed

by other actors), we can compute a buffer-efficient actor firing sequence and the asso-

ciated buffer sizes. The complexity of classical SDF scheduling is not polynomially-

bounded in the size of the input graph, and we use it only as a backup process

for scheduling tightly interdependent subgraphs from LIAF. Fortunately, this does

not cause any major limitation in SOS because tightly interdependent subgraphs

arise very rarely in practice [7]. For example, we have tested SOS on a suite of 126

wireless network designs and 267 wireless communication designs, and among all of

these designs, no tightly interdependent subgraphs were found.

7.3.5 Single-Rate Clustering

Intuitively, a single-rate subsystem in an SDF graph is a subsystem in which

all actors execute at the same average rate. In practical communication and signal
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processing systems, single-rate subsystems arise commonly, even within designs that

are heavily multirate at a global level. In precise terms, an SDF graph is a single-

rate graph if for every edge e, we have prd(e) = cns(e). Since clustering single-rate

subsystems does not increase production and consumption rates at the interface

of the resulting supernodes, we have developed the single-rate clustering (SRC)

technique to further decompose an acyclic graph into a reduced (smaller) multi-

rate version along with several single-rate subgraphs. Due to their simple structure,

single-rate subgraphs can be scheduled and optimized effectively by the accompa-

nying flat scheduling (Section 7.3.6) algorithm in a very fast manner. Furthermore,

the reduced multirate graph, which is scheduled using the more intensive techniques

described in Sections 7.3.7 through 7.3.9, takes less time to schedule due to its sig-

nificantly smaller size — that is, since each single-rate subsystem is abstracted as a

single actor (supernode).

Definition 7.5 (Single-Rate Clustering). Given a connected, consistent, acyclic

SDF graph G = (V, E), the single-rate clustering (SRC) technique clusters disjoint

subsets R1, R2, . . . , RN ⊆ V such that: 1) in the subgraph Gi = (Ri, Ei), we have

that ∀ei ∈ Ei = {e | src(e) ∈ Ri and snk(e) ∈ Ri}, prd(ei) = cns(ei); 2) the cluster-

ing of Ri does not introduce any cycles into the clustered version of G; 3) Ri satisfies

|Ri| > 1 (i.e., Ri contains at least two actors); and 4) each Ri contains a maximal

set of actors that satisfy all of the three conditions above. Such Ris are defined as

single-rate subsets; and such Gis are defined as single-rate subgraphs.

The targeting of “maximal” clusters in the fourth condition is important in
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Figure 7.3: Single-rate clustering examples.

order to effectively reduce the size of the clustered graph, and maximize the extent

of the overall system that can be handled with the streamlined techniques available

for single-rate graphs.

Simply clustering a set of actors that is connected through single-rate edges

may introduce cycles in the clustered graph. Figure 7.3 illustrates how this simple

strategy fails. Nodes A, B, C, and D in Figure 7.3.(a) are connected by single-rate

edges, and clustering them will result in a cyclic graph as shown in Figure 7.3.(b).

In contrast, Figure 7.3.(c) and Figure 7.3.(d) present two acyclic SDF graphs after

valid single-rate clustering. The following theorem provides a precise condition for

the introduction of a cycle by a clustering operation.

Theorem 7.6 (Cycle-Free Clustering Theorem). Given a connected, acyclic SDF

graph G = (V, E), clustering a connected subset R ⊆ V introduces a cycle in the

clustered version of G if and only if there is a path v1→v2→· · ·→vn (n ≥ 3) in G

such that v1 ∈ R, vn ∈ R, and v2, . . . , vn−1 ∈ {V −R}. Clustering R is cycle-free if

and only if no such a path exists.

Proof. Without loss of generality, suppose that we cluster R into a supernode α, and

this results in a subgraph Gα and the clustered version G′. Based on SDF clustering,

as discussed in Section 7.3.1, we have: 1) for every edge
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e ∈ {e | src(e) ∈ R and snk(e) /∈ R}, it becomes an output edge e′ = (α, snk(e)) of

α in G′, and every output edge of α comes from this transformation; and 2) for every

edge e ∈ {e | src(e) /∈ R and snk(e) ∈ R}, it becomes an input edge e′ = (src(e), α)

of α in G′, and every input edge of α comes from this transformation. Therefore, a

path v1→v2→· · ·→vn in G, where v1 ∈ R, vn ∈ R, and v2 · · · ∈ {V −R}, becomes

a cycle α→v2→· · ·→α in G′. In addition, a cycle containing α in G′ can only come

from such a path in G.

We have developed the SRC algorithm as presented in Figure 7.4. Given a

connected, acyclic SDF graph G = (V, E), we first duplicate G into G′ = (V ′, E ′)

to prevent us from modifying G before actually clustering the single-rate subsets.

Given G′ and an actor v, the subroutine SRS (single-rate subset) returns a single-

rate subset that contains v or returns ∅ if no such single-rate subset exists for v. In

lines 2-7, all single-rate subsets R1, R2, . . . , RN are computed, and particularly, the

“next actor” in line 3 refers to the next actor that has not yet been visited in the

remaining V ′ after each call of SRS. In line 8, we cluster R1, R2, . . . , RN in G by

repeatedly calling the SDF clustering operation CLUSTER.

SRS iteratively determines whether an adjacent actor x of v belongs to the

single-rate subset R in a breadth-first fashion. An adjacent, non-clustered successor

x = snk(a) of v in line 11 can be included in R if 1) every edge connecting v to x is

single-rate (i.e., B = ∅ in line 15) and 2) clustering v and x does not introduce a

cycle (i.e., IS-CYCLE-FREE(G′,v,x) returns TRUE). If both criteria are satisfied,

x is included in R (line 18), and G′ is transformed to mimic the effect of clustering
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SRC(G ≡ (V, E)) /*The input G is a connected acyclic SDF graph*/
1 G′ ≡ (V ′, E′)← G
2 i← 1
3 for the next actor v ∈ V ′

4 Ri ← SRS(G′, v)
5 if Ri 6= ∅ i← i + 1 end

6 end

7 N ← i− 1
8 for i from 1 to N CLUSTER(G, Ri) end

SRS(G′, v)
9 R← {v}

10 for the next edge a ∈ {in(v) + out(v)}
11 if src(a) = v and x← snk(a) is not in any subset
12 A← {e ∈ in(x) | src(e) = v and prd(e) = cns(e)}
13 B ← {e ∈ in(x) | src(e) = v and prd(e) 6= cns(e)}
14 C ← {e ∈ in(x) | src(e) 6= v}
15 if B = ∅ and IS-CYCLE-FREE(G′, v, x)
16 for each e ∈ out(x) src(e)← v end

17 for each e ∈ C snk(e)← v end

18 R← R + {x}, E′ ← E′ −A, V ′ ← V ′ − {x}
19 end

20 else if snk(a) = v and x← src(a) is not in any subset
21 A← {e ∈ out(x) | snk(e) = v and prd(e) = cns(e)}
22 B ← {e ∈ out(x) | snk(e) = v and prd(e) 6= cns(e)}
23 C ← {e ∈ out(x) | snk(e) 6= v}
24 if B = ∅ and IS-CYCLE-FREE(G′, x, v)
25 for each e ∈ in(x) snk(e)← v end

26 for each e ∈ C src(e)← v end

27 R← R + {x}, E′ ← E′ −A, V ′ ← V ′ − {x}
28 end

29 end

30 end

31 if R = {v} return ∅ else return R end

IS-CYCLE-FREE(G′, y, z)
32 Eyz ← {e | src(e) = y and snk(e) = z}
33 if {out(y)− Eyz} = ∅ or {in(z)− Eyz} = ∅ return TRUE
34 else return ! IS-REACHABLE((V ′, {E′ − Eyz}), y, z)
35 end

Figure 7.4: Single-rate clustering (SRC) algorithm.
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x in lines 16-18. After that, the actor v in G′ represents the R-clustered supernode.

On the other hand, for an adjacent predecessor x = src(a) of v, similar operations

are performed in lines 20-29. Note that after each iteration, v’s incident edges

{in(v) + out(v)} in line 10 may have been changed because the on-line topology

transformation removes and inserts incident edges of v, and particularly, the “next”

edge in line 10 refers to the next edge that has not yet been visited.

IS-CYCLE-FREE determines whether clustering a source node y and a sink

node z of an edge in G′ is cycle-free based on Theorem 7.6 (i.e., by checking whether

there is a path from y to z through other actors). If all output edges of y connect to

z or all input edges of z connect from y, we can immediately determine that no such

path exists (line 33). Otherwise in line 34, we test to ensure that z is not reachable

from y when all edges connecting y to z are removed.

Property 7.7. The set R returned by SRS in the SRC algorithm is a single-rate

subset.

Proof. The set R is a single-rate subset if it satisfies the conditions in Definition

7.5. Because an adjacent actor x of v (in line 11 and line 20) can be included in R if

every edge connected between x and v is single-rate and clustering x and v is cycle-

free, and since v represents the up-to-date R-cluster, condition 1 and 2 in Definition

7.5 are satisfied. Condition 3 is simply checked by line 31. Condition 4 can be

satisfied if at the end of iterations, every surrounding edge of R has been searched

for determining whether the adjacent actor x belongs to the single-rate subset. This

is true because SRS iterates over every incident edge of v in a breadth-first way and
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updates v’s incident edges in each iteration.

Before discussing the complexity of the SRC algorithm, and the complexity of

the algorithms in the following sections, we make the assumption that every actor has

a constant (limited) number of input and output edges, i.e., |V | and |E| are within

a similar range. This is a reasonable assumption because actors in simulation tools

are usually pre-defined, and practical SDF graphs in communications and signal

processing domains are sparse in their topology [7].

Property 7.8. The complexity of the SRC algorithm is O(|E|2), where E denotes

the set of edges in the input graph.

Proof. By the combination of the for loop in line 3 and the for loop in line 10,

an edge can be visited by line 10 once (if clustered), twice (if not clustered), or

none (if there are parallel edges between two nodes). Therefore, the total number

of edges examined in line 10 is O(|E|). With efficient data structures and the

assumption that every actor has a limited number of incident edges, operations (lines

11-29) within the for loop in line 10 require constant time, except for IS-CYCLE-

FREE, which takes O(|E ′|+ |V ′|) time. As a result, the running time to compute all

single-rate subsets (lines 3-6) is O(|E|2). In the last step, the complexity to cluster

R1, R2, . . . , RN in line 8 is bounded by O(|V |+ |E|). Therefore, the complexity of

the SRC algorithm is O(|E|2).
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7.3.6 Flat Scheduling

Given a consistent, acyclic SDF graph G = (V, E), a valid single appearance

schedule S can be easily derived by flat scheduling. Flat scheduling simply computes

a topological sort v1 v2 · · · v|V | of G, and iterates each actor vi qG[vi] times in suc-

cession. More precisely, the looped schedule constructed from the topological sort

in flat scheduling is S = (qG[v1] v1) (qG[v2] v2) · · · (qG[v|V |] v|V |). The complexity of

flat scheduling is O(|V |+ |E|) — topological sort can be performed in linear time

[16], and the repetitions vector can also be computed in linear time [7]. However,

in general, the memory requirements of flat schedules can become very large in

multirate systems [7].

We apply flat scheduling only to single-rate subgraphs, which do not suffer from

the memory penalties that are often associated with flat scheduling in general SDF

graphs. This is because in a single-rate subgraph, each actor only fires once within

a minimal periodic schedule. Thus, the buffer size of each single rate edge e can

be set to buf (e) = prd(e) + del(e), which is the minimum achievable size whenever

del(e) < prd(e).

7.3.7 APGAN Scheduling

In general, computing buffer-optimal topological sorts in SDF graphs is NP-

hard [61]. The acyclic pairwise grouping of adjacent nodes (APGAN) [7] technique

is an adaptable (to various cost functions) heuristic to generate topological sorts.

Given a consistent, acyclic SDF graph G = (V, E), APGAN iteratively selects and
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clusters adjacent pairs of actors until the top-level clustered graph consists of a single

supernode. The clustering process is guided by a cost function f(e) that estimates

the impact of clustering of actors src(e) and snk(e) into a supernode. In each

iteration, APGAN clusters an adjacent pair {src(e), snk(e)} in the current version

of G such that 1) clustering this pair does not introduce cycles in the clustered graph;

and 2) the applied cost function f is maximized for e over all edges e∗ for which

{src(e∗), snk(e∗)} can be clustered without introducing cycles. Once the clustering

process is complete, a topological sort is obtained through depth-first, source-to-sink

traversal of the resulting cluster hierarchy.

In our incorporation of APGAN in SOS, we use the following as the cost

function f : gcd(qG[src(e)], qG[snk(e)]), where gcd represents the greatest common

divisor operator. This cost function has been found to direct APGAN towards

solutions that are efficient in terms of buffering requirements [7].

The complexity of APGAN is O(|V |2|E|) [7]. At first, this appears relatively

high in relation to the objective of low complexity in this work. However, due to

the design of our SOS framework, which applies the LIAF and SRC decomposition

techniques, |V | and |E| are typically much smaller in the instances of APGAN that

result during operation of SOS compared to the numbers of actors and edges in the

overall SDF graph.
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7.3.8 DPPO Scheduling

Given a topological sort L = v1 v2 · · · v|V | of an acyclic SDF graph G = (V, E),

the dynamic programming post optimization (DPPO) technique [7] constructs a

memory-efficient hierarchy of nested two-actor clusters. This hierarchy is con-

structed in a bottom-up fashion by starting with each two-actor subsequence vi vi+1

in the topological sort and progressively optimizing the decomposition of longer

subsequences. Each l-actor subsequence Li,j = vi vi+1 · · · vj=i+l−1 is “split” into

two shorter “left” (Li,k = vi vi+1 · · · vk) and “right” (Lk+1,j = vk+1 vk+2 · · · vj) subse-

quences. In particular, the split position k is chosen to minimize the buffer require-

ment of Li,j — i.e., the sum of buffer requirements associated with the left and right

subsequences plus the buffer requirements for the set

Ei,j,k = {e | src(e) ∈ {vi, vi+1, . . . , vk} and snk(e) ∈ {vk+1, vk+2, . . . , vj}} of edges

that cross from left to right. Through dynamic programming, where the outer

loop l iterates from 2 to |V |, the middle loop i iterates from 1 to |V | − l + 1, and

inner loop k iterates from i to i + l − 2, the best split position and minimal buffer

requirement for every subsequence can be derived. A memory-efficient hierarchy is

then built in a top-down fashion by starting from the topological sort L1,|V |, and

recursively clustering the left Li,k and right Lk+1,j subsequences through the best

split position k of Li,j.

In SOS, we have developed an adapted DPPO where each split k of Li,j is in-

terpreted as a two-actor SDF graph Gi,j,k = ({αi,k, αk+1,j}, E
′
i,j,k), where the left Li,k

and right Lk+1,j subsequences make up the two hierarchical actors αi,k and αk+1,j,
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and every edge e′ ∈ E ′
i,j,k is a transformation from the corresponding edge e ∈ Ei,j,k

such that prd(e′) = prd(e)× qG[src(e)]/gcd(qG[vi], qG[vi+1], . . . , qG[vk]) and

cns(e′) = cns(e)× qG[snk(e)]/gcd(qG[vk+1], qG[vk+2], . . . , qG[vj ]) based on SDF clus-

tering concepts. This two-actor graph is further optimized, after DPPO, by the

buffer-optimal two-actor scheduling algorithm discussed in Section 7.3.9. Further-

more, the optimal buffer requirements for E ′
i,j,k can be computed in constant time

(based on Theorem 7.17, which is developed below) without actually computing a

two-actor schedule for each split.

DPPO can be performed in O(|V |3) time [7]. The complexity of our adapted

DPPO is also O(|V |3) because the cost function — that is, the optimal buffer re-

quirement of each two-actor graph Gi,j,k — can be computed in constant time. Also,

as with the techniques discussed in the previous section, the value of |V | for instances

of our adapted DPPO technique is relatively small due to the preceding stages of

LIAF- and SRC-based decomposition.

7.3.9 Buffer-Optimal Two-Actor Scheduling

The concept of recursive two-actor scheduling for a nested two-actor SDF hi-

erarchy was originally explored in [45]. For delayless SDF graphs, the resulting

schedules are proven to be buffer-optimal at each (two-actor) level of the cluster hi-

erarchy. These schedules are also polynomially bounded in the graph size. However,

the algorithm in [45] does not optimally handle the scheduling flexibility provided

by edge delays, and therefore, it does not always achieve minimum buffer sizes in

102



presence of delays. We have developed a new buffer-optimal two-actor scheduling

algorithm that computes a buffer-optimal schedule for a general (with or without

delays), consistent, acyclic, two-actor SDF graph. This algorithm is applied in SOS

to schedule each two-actor subgraph in the DPPO hierarchy. An overall schedule

is then constructed by recursively traversing the hierarchy and replacing every su-

pernode firing by the corresponding two-actor sub-schedule. In this subsection, we

present definitions, analysis, and an overall algorithm that are associated with our

generalized, two-actor scheduling approach.

Property 7.9. A consistent, acyclic, two-actor SDF graph G = ({vsrc, vsnk}, E)

has a general form as shown in Figure 7.5, where for each ei ∈ E, src(ei) = vsrc,

snk(ei) = vsnk, pi = prd(ei), ci = cns(ei), di = del(ei), gi = gcd(pi, ci), p∗ = pi/gi,

and c∗ = ci/gi. For consistency, the coprime positive integers p∗ and c∗ must satisfy

pi/ci = p∗/c∗ for every ei ∈ E.

Definition 7.10 (Primitive Two-Actor SDF Graph). Given a consistent, acyclic,

two-actor SDF graph G = ({vsrc, vsnk}, E) as described in Property 7.9, its primitive

form is defined as a two-actor, single-edge SDF graph G∗ = ({vsrc, vsnk}, {e
∗}) as

shown in Figure 7.6, where src(e∗) = vsrc, snk(e∗) = vsnk, prd(e∗) = p∗, cns(e∗) = c∗,

gcd(p∗, c∗) = 1, and del(e∗) = d∗ = min ei∈E (bdi/gic). The values p∗, c∗, and d∗ are

defined as the primitive production rate, primitive consumption rate, and primitive

delay of G, respectively. An edge ei that satisfies bdi/gic = d∗ is called a maximally-

constrained edge of G.

Here, we also define some notations that are important to our development of
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Figure 7.6: Primitive two-actor SDF graph.

two-actor scheduling. Suppose that we are given a consistent SDF graph G = (V, E)

and a valid minimal periodic schedule S for G. By a firing index for S, we mean a

non-negative integer that is less than or equal to the sum QG of repetitions vector

components for G (i.e., QG =
∑

v∈V qG[v]). In the context of S, a firing index value

of k represents the kth actor execution within a given iteration (minimal period) of

the execution pattern derived from repeated executions of S.

Now let σ(S, k) denote the actor associated with firing index k for the schedule

S; let τ(S, v, k) denote the firing count of actor v up to firing index k (i.e., the number

of times that v is executed in a given schedule iteration up to the point in the firing

sequence corresponding to k); and let

tokG(S, e, k) = τ(S, src(e), k)× prd(e)− τ(S, snk(e), k)× cns(e) + del(e) (7.2)

denote the number of tokens queued on edge e ∈ E immediately after the actor

firing associated with firing index k in any given schedule iteration. Firing index
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0 represents the initial state: for k = 0, σ(S, 0) is defined to be ∅ (the “null

actor”), τ(S, v, 0) is defined to be 0, and tokG(S, e, 0) is defined as del(e). Note that

from the properties of periodic schedules, the values of σ, τ , and tokG are uniquely

determined by k, and are not dependent on the schedule iteration [7]. The repeated

execution of S leads to an infinite sequence x1, x2, . . . of actor executions, where

each xi corresponds to firing index ((i− 1) mod QG) + 1.

For example, suppose that we have an SDF graph G = ({a, b}, {e = (a, b)}),

where prd(e) = 7, cns(e) = 5, and del(e) = 0. Suppose also that we have the sched-

ule S = (1(2ab)(1a(2b)))(1(1ab)(1a(2b))). Then we can unroll S into a firing se-

quence abababbababb, where σ(S, 1) = a, σ(S, 6) = b, τ(S, a, 6) = 3, τ(S, b, 6) = 3,

tokG(S, e, 0) = 0, and tokG(S, e, 2) = 2.

The following lemma is useful in simplifying scheduling and analysis for acyclic,

two-actor SDF graphs.

Lemma 7.11. A schedule S is a valid minimal periodic schedule for a consistent,

acyclic, two-actor SDF graph G if and only if S is a valid minimal periodic schedule

for the primitive form G∗ of G.

Proof. Without loss of generality, suppose G is in a general form as shown in Figure

7.5, and suppose Figure 7.6 represents its primitive form G∗. First, we prove the

only if direction. S is a valid minimal periodic schedule for G if and only if 1) S

fires vsrc qG[vsrc] times and fires vsnk qG[vsnk] times, and 2) S is deadlock-free.

Because qG[vsrc] = c∗ = qG∗ [vsrc] and qG[vsnk] = p∗ = qG∗ [vsnk], we know that S fires

vsrc qG∗ [vsrc] times and fires vsnk qG∗ [vsnk] times in G∗ — (A). Furthermore, S is
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deadlock-free for G if and only if the number of tokens queued on every edge ei

is greater than or equal to ci before every firing of vsnk. In other words, for every

ksnk ∈ {k | σ(S, k) = vsnk}, tokG(S, ei, ksnk − 1) ≥ ci is true for every ei. Through

Equation (7.3), where τ(S, vsrc, ksnk − 1) is denoted as a, and τ(S, vsnk, ksnk − 1) is

denoted as b, we can derive that tokG∗(S, e∗, ksnk − 1) ≥ c∗ for every ksnk — that

is, the number of tokens queued on e∗ before every firing of vsnk is greater than or

equal to c∗ in G∗, so S is deadlock-free for G∗ — (B). Based on (A) and (B), the

only if direction is proved.

∀i tokG(S, ei, ksnk−1) = pi × a− ci × b + di ≥ ci

⇔ ∀i p∗ × gi × a− c∗ × gi × b + bdi/gic × gi + di mod gi ≥ c∗ × gi

⇔ ∀i p∗ × a− c∗ × b + bdi/gic ≥ c∗

⇔ p∗ × a− c∗ × b + d∗ = tokG∗(S, e∗, ksnk−1) ≥ c∗

(7.3)

The if direction can be proved in a similar manner by applying the same

derivations in reverse order and based on the reverse direction in Equation (7.3).

We omit the details for brevity.

Definition 7.12 (SASAP Schedule). A sink-as-soon-as-possible (SASAP) schedule

S for a consistent, acyclic, two-actor SDF graph G = ({vsrc, vsnk}, E) is defined as

a valid minimal periodic schedule such that: 1) S fires vsrc qG[vsrc] times and fires

vsnk qG[vsnk] times; 2) for every firing index ksnk ∈ {k | σ(S, k) = vsnk}, we have

that tokG(S, ei, ksnk − 1) ≥ ci for every ei ∈ E, and τ(S, vsnk, ksnk − 1) < qG[vsnk];

and 3) for every firing index ksrc ∈ {k | σ(S, k) = vsrc}, either there exists an edge

ei ∈ E such that tokG(S, ei, ksrc − 1) < ci or τ(S, vsnk, ksrc − 1) = qG[vsnk]. If an
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actor firing subsequence (sub-schedule) S ′ satisfies 2) and 3), we say that S ′ fires

vsnk as-soon-as-possible (ASAP).

Intuitively, an SASAP schedule can be viewed as a specific form of demand-

driven schedule for periodic scheduling of acyclic, two actor SDF graphs. An SASAP

schedule defers execution of the source actor in an acyclic, two-actor configuration

until the sink actor does not have enough input data to execute. This form of

scheduling leads to minimum buffer schedules as we state in the following property

because tokens are produced by the source actor only when necessary.

Property 7.13. An SASAP schedule for a consistent, acyclic, two-actor SDF graph

G is a minimum buffer schedule for G.

The following lemma relates SASAP schedules and primitive forms.

Lemma 7.14. A schedule S is an SASAP schedule for a consistent, acyclic, two-

actor SDF graph G if and only if S is an SASAP schedule for the primitive form

G∗ of G.

Proof. The validity and minimal periodic property of S in both directions is proved

in Lemma 7.11. Here, we prove the SASAP property. Again, without loss of gen-

erality, suppose G is in a general form as shown in Figure 7.5, and suppose Figure

7.6 represents its primitive form G∗. We first prove the only if direction. S is

an SASAP schedule for G if and only if 1) for every ksnk ∈ {k | σ(S, k) = vsnk},

tokG(S, ei, ksnk − 1) ≥ ci for every ei and τ(S, vsnk, ksnk − 1) < qG[vsnk], and 2) for

every ksrc ∈ {k | σ(S, k) = vsrc}, either there exists at least one ei where
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tokG(S, ei, ksrc − 1) < ci or τ(S, vsnk, ksrc − 1) = qG[vsnk]. Through Equation (7.3)

and based on qG[vsnk] = p∗ = qG∗ [vsnk], we can derive that for every

ksnk ∈ {k | σ(S, k) = vsnk}, tokG∗(S, e∗, ksnk − 1) ≥ c∗ and

τ(S, vsnk, ksnk − 1) < qG∗ [vsnk]. Furthermore, through Equation (7.4), where

τ(S, vsrc, ksrc − 1) is denoted as a, and τ(S, vsnk, ksrc − 1) is denoted as b, we can

derive that for every ksrc ∈ {k | σ(S, k) = vsrc}, either tokG∗(S, e∗, ksrc − 1) < c∗ or

τ(S, vsnk, ksrc − 1) = qG∗ [vsnk]. Therefore, if S is an SASAP schedule for G, then S

is an SASAP schedule for G∗.

∃i tokG(S, ei, ksrc−1) = pi × a− ci × b + di < ci

⇔ ∃i p∗ × gi × a− c∗ × gi × b + bdi/gic × gi + di mod gi < c∗ × gi

⇔ ∃i p∗ × a− c∗ × b + bdi/gic ≤ c∗ − 1

⇔ p∗ × a− c∗ × b + d∗ ≤ c∗ − 1

⇔ p∗ × a− c∗ × b + d∗ = tokG∗(S, e∗, ksrc−1) < c∗

(7.4)

As with Lemma 7.11, the if direction can be proved in a similar manner by

applying the same derivations in reverse order and based on the reverse directions

in both Equation (7.3) and Equation (7.4).

The following corollary follows from Property 7.13 and Lemma 7.14.

Corollary 7.15. A minimum buffer schedule for a consistent, acyclic, two-actor

SDF graph can be obtained by computing an SASAP schedule for its primitive form.

The following property follows from Equation (7.2) and Definition 7.10 and

relates the buffer activity in an acyclic, two-actor SDF graph to that of its primitive

form.
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Property 7.16. Suppose S is a valid schedule for a consistent, acyclic, two-actor

SDF graph G = ({vsrc, vsnk}, E) and for the primitive form

G∗ = ({vsrc, vsnk}, {e
∗}) of G. Then for every edge ei ∈ E, and for every firing index

k, tokG(S, ei, k) = tokG∗(S, e∗, k)× gi + di − d∗ × gi, where di = del(ei),

gi = gcd(prd(ei), cns(ei)), and d∗ = min ei∈E (bdi/gic).

Theorem 7.17. For a consistent, acyclic, two-actor SDF graph

G = ({vsrc, vsnk}, E), the minimum buffer requirement for an edge ei ∈ E is

pi + ci − gi + di − d∗ × gi if 0 ≤ d∗ ≤ p∗ + c∗ − 1, and is di otherwise. Here,

pi = prd(ei), ci = cns(ei), di = del(ei), gi = gcd(pi, ci), p∗ = pi/gi, c∗ = ci/gi, and

d∗ = min ei∈E (bdi/gic).

Proof. For a consistent, single-edge, two-actor SDF graph

({vsrc, vsnk}, {e = (vsrc, vsnk)}), Bhattacharyya at al. [7] have proved that the mini-

mum buffer requirement for e is p + c− g + d mod g if 0 ≤ d ≤ p + c− g, and is d

otherwise, where p = prd(e), c = cns(e), d = del(e), and g = gcd(p, c). As a result,

the minimum buffer requirement for e∗ is p∗ + c∗ − 1 if 0 ≤ d∗ ≤ p∗ + c∗ − 1, and is

d∗ otherwise. From Lemma 7.14, Property 7.13, Property 7.16, and the minimum

buffer requirement for e∗, the proof is complete.

Theorem 7.17 presents a constant-time minimum buffer computation for any

consistent, acyclic, two-actor SDF graph, and it is used in our adapted form of DPPO

to compute buffer requirements for each nested two-actor subgraph

Gi,j,k = ({αi,k, αk+1,j}, E
′
i,j,k) as described in Section 7.3.8.

In order to build an overall schedule from a nested two-actor DPPO hierar-
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chy, we compute an optimal buffer schedule for each two-actor subgraph. Based on

Corollary 7.15, we have developed the BOTAS (buffer-optimal two-actor scheduling)

algorithm. This algorithm is shown in Figure 7.7. The BOTAS algorithm com-

putes a minimum buffer schedule for a consistent, acyclic, two-actor SDF graph

G = ({vsrc, vsnk}, E) by constructing an SASAP schedule for its primitive form.

In Figure 7.7, we first compute p∗, c∗, and d∗ of G to construct the primi-

tive form G∗ = ({vsrc, vsnk}, {e
∗}). Then in lines 6-19, we compute two sequences

of scheduling components A1, A2, . . . , AI and B1, B2, . . . , BI , where I denotes the

iteration i that ends the while loop. Table 7.1 illustrates how to compute the sets of

scheduling components for p∗ = 7 and c∗ = 5. For convenient schedule loop repre-

sentation in Figure 7.7, we define the expression (k×L) for a positive integer k and

a schedule loop L = (n T1T2 · · ·Tm) as a new schedule loop with the same loop body

T1T2 · · ·Tm and the new iteration count k × n, i.e., (k × L) = (k×n T1T2 · · ·Tm).

From the results of this computation, we construct an SASAP schedule S for

G∗. If the initial token population d∗ = 0, S can be immediately built from AI and

BI by line 22. Otherwise, in lines 25-38, we first use the scheduling components Ai

and Bi from i = 1 to I to consume initial tokens until either the token population d

on e∗ is 0 or we exhaust execution of vsnk. Then in lines 39-49, we use the scheduling

components from i = I to 1 to make up the remaining firings of vsrc and vsnk, and

bring the token population back to its initial state d∗. Table 7.1 illustrates how to

compute SASAP schedules for d∗ = 0, 6, and 12.

From the BOTAS algorithm, we can directly derive the following properties.
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BOTAS(G ≡ ({vsrc, vsnk}, E)) /*The input G is a consistent acyclic two-actor SDF graph*/
1 p∗ ← prd(e1)/gcd(prd(e1), cns(e1))
2 c∗ ← cns(e1)/gcd(prd(e1), cns(e1))
3 d∗ ← minei∈E(bdel (ei)/gcd(prd(ei), cns(ei))c)
4 A1 ← vsrc, B1 ← vsnk, p1 ← p∗, c1 ← c∗, mA1

← 1, nA1
← 0, mB1

← 0, nB1
← 1

5 i← 1
6 while !(pi mod ci = 0 or ci mod pi = 0)
7 if pi > ci

8 Ai+1 ← (1 Ai (bpi/cic ×Bi)), pi+1 ← pi mod ci

9 mAi+1
← mAi

+ bpi/cic ×mBi
, nAi+1

← nAi
+ bpi/cic × nBi

10 Bi+1 ← (1 Ai (dpi/cie ×Bi)), ci+1 ← ci − pi mod ci

11 mBi+1
← mAi

+ dpi/cie ×mBi
, nBi+1

← nAi
+ dpi/cie × nBi

12 else

13 Ai+1 ← (1 (dci/pie ×Ai) Bi), pi+1 ← pi − ci mod pi

14 mAi+1
← dci/pie ×mAi

+ mBi
, nAi+1

← dci/pie × nAi
+ nBi

15 Bi+1 ← (1 (bci/pic ×Ai) Bi), ci+1 ← ci mod pi

16 mBi+1
← bci/pic ×mAi

+ mBi
, nBi+1

← bci/pic × nAi
+ nBi

17 end

18 i← i + 1
19 end

20 I ← i
21 if d∗ = 0
22 if pI > cI S ← AI (pI/cI ×BI) else S ← (cI/pI ×AI) BI end

23 return S
24 else

25 S ← ∅, d← d∗, m← c∗, n← p∗

26 for i from 1 to I
27 if d ≥ ci

28 if (x← bd/cic)× nBi
> n break end

29 S ← S (x×Bi), d← d mod ci, m← m− x×mBi
, n← n− x× nBi

30 if d = 0 break end

31 end

32 if d ≥ pi

33 if (x← d(ci − d)/pie)× nAi
+ nBi

> n break end

34 S ← S (x×Ai) Bi, d← d + x× pi − ci

35 m← m− x×mAi
−mBi

, n← n− x× nAi
− nBi

36 if d = 0 break end

37 end

38 end

39 for i from I to 1
40 x←min(bm/mAi

c,bn/nAi
c,d(ci−d)/pie)

41 if x ≥ 1
42 S ← S (x×Ai), d← d + x× pi, m← m− x×mAi

, n← n− x× nAi

43 end

44 x← min(bm/mBi
c, bn/nBi

c, bd/cic)
45 if x ≥ 1
46 S ← S (x×Bi), d← d− x× ci, m← m− x×mBi

, n← n− x× nBi

47 end

48 end

49 S ← S (m×A1)
50 return S
51 end

Figure 7.7: Buffer-optimal two-actor scheduling (BOTAS) algorithm.
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Table 7.1: Demonstration of buffer-optimal two-actor scheduling for p∗ = 7, c∗ = 5,
and d∗ = 0, 6, 12, where a = vsrc and b = vsnk.

Computing scheduling components for p∗ = 7 c∗ = 5

lines i Ai Bi pi ci

4-20 1 a b 7 5
2 (1 A1 B1) (1 A1 (2 B1)) 2 3
3 (1 (2 A2) B2) (1 A2 B2) 1 1

Two-actor scheduling for d∗ = 0

lines S

22-23 A3B3 = (1(2ab)(1a(2b)))(1(1ab)(1a(2b)))

Two-actor scheduling for d∗ = 6

lines i S

25-38 1 B1 = b
3 S B3 = b(1(1ab)(1a(2b)))

39-48 2 S (2A2) = b(1(1ab)(1a(2b)))(2ab)
1 S A1B1 = b(1(1ab)(1a(2b)))(2ab)ab

Two-actor scheduling for d∗ = 12

lines i S

25-38 1 (2B1) = (2b)
2 S A2B2 = (2b)(1ab)(1a(2b))

39-48 2 S A2 = (2b)(1ab)(1a(2b))(1ab)
1 S A1B1 = (2b)(1ab)(1a(2b))(1ab)ab

49 N/A S A1 = (2b)(1ab)(1a(2b))(1ab)aba
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Property 7.18. In the BOTAS algorithm, each Ai produces pi tokens and fires vsnk

ASAP, and each Bi consumes ci tokens and fires vsnk ASAP whenever there are ci

tokens.

Property 7.19. In the BOTAS algorithm, for every i ∈ {1, 2, . . . , I − 1},

pi+1 + ci+1 = min(pi, ci).

The following property is derived from the BOTAS algorithm, Euclid’s algo-

rithm for computation of greatest common divisors, and mathematical induction.

Property 7.20. In the BOTAS algorithm, for every i ∈ {1, 2, . . . , I},

gcd(pi, ci) = 1.

Proof. Initially, gcd(p1, c1) = gcd(p∗, c∗) = 1. Suppose in an iteration i > 1,

gcd(pi, ci) = 1. By Equation (7.5) when pi > ci, and by Equation (7.6) when pi < ci,

we can derive that gcd(pi+1, ci+1) = 1.

gcd(pi, ci) = 1 ⇒ gcd(ci, pi mod ci) = 1 and gcd(ci, ci − pi mod ci) = 1

⇒ gcd(pi+1, ci+1) = 1

(7.5)

gcd(ci, pi) = 1 ⇒ gcd(pi, ci mod pi) = 1 and gcd(pi, pi − ci mod pi) = 1

⇒ gcd(ci+1, pi+1) = 1

(7.6)

By mathematical induction, ∀i ∈ {1, 2, . . . , I}, gcd(pi, ci) = 1.

Directly from Property 7.20, we can derive the following termination property.

Property 7.21. In the BOTAS algorithm, the while loop in line 6 terminates when

either pi = 1 or ci = 1.
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The following lemma determines a bound on the number of iterations I of the

while loop in line 6. In practical cases, I is usually much smaller than the bound.

Lemma 7.22. In the BOTAS algorithm, the iteration number I that terminates the

while loop in line 6 is bounded by log2 min(p∗, c∗).

Proof. From Property 7.19, it follows that min(pi+1, ci+1) ≤ min(pi, ci)/2. Because

the while loop ends when pi = 1 or ci = 1 (Property 7.21), it takes at most

log2 min(p1, c1) iterations to achieve pi = 1 or ci = 1. Therefore, the iteration i = I

that terminates the while loop is bounded by log2 min(p∗, c∗).

Finally, we establish the correctness, optimality, and complexity of the BOTAS

algorithm in Theorem 7.23, Property 7.24, and Property 7.25.

Theorem 7.23. In the BOTAS algorithm, suppose there are no initial tokens on

edge e∗ (d∗ = 0), and define the schedule S = AI (pI/cI ×BI) if pI > cI , and

S = (cI/pI ×AI)BI , otherwise (line 22). Then S is an SASAP schedule for G∗.

Proof. From Property 7.18, it follows that S fires vsnk ASAP. We then show that S

fires vsrc c∗ times and vsnk p∗ times to prove that S is an SASAP schedule.

For pI > cI and pI−1 > cI−1, because pI = pI−1 mod cI−1,

cI = cI−1 − pI−1 mod cI−1 = 1, dpI−1/cI−1e=bpI−1/cI−1c+ 1, S=AI (pI/cI BI),

AI = (1 AI−1 (bpI−1/cI−1c BI−1)), and BI = (1 AI−1 (dpI−1/cI−1e BI−1)), we can

derive that S fires AI−1

1 + pI/cI = 1 + cI−1 − 1 = cI−1 times,

and S fires BI−1
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bpI−1/cI−1c+ pI/cI × dpI−1/cI−1e

=bpI−1/cI−1c+(cI−1−1)×bpI−1/cI−1c+pI−1 mod cI−1 = pI−1 times.

By using a similar approach, we can derive that S fires AI−1 cI−1 times and

fires BI−1 pI−1 times for the following cases: (a) pI > cI and pI−1 < cI−1; (b) pI ≤ cI

and pI−1 > cI−1; and (c) pI ≤ cI and pI−1 < cI−1.

Now, suppose S fires Ai ci times and fires Bi pi times for some

i ∈ {2, 3, . . . , I − 1}. Then if pi−1 > ci−1, we can derive that S fires Ai−1

(ci−1 − pi−1 mod ci−1) + (pi−1 mod ci−1) = ci−1 times,

and S fires Bi−1

(ci−1 − pi−1 mod ci−1)× bpi−1/ci−1c+ (pi−1 mod ci−1)× dpi−1/ci−1e

= ci−1 × bpi−1/ci−1c+ pi−1 mod ci−1 = pi−1 times,

because Ai = (1 Ai−1 (bpi−1/ci−1c Bi−1)), Bi = (1 Ai−1 (dpi−1/ci−1e Bi−1)),

pi = pi−1 mod ci−1, and ci = ci−1 − pi−1 mod ci−1.

In a similar way, when pi−1 < ci−1, we can derive that S fires Ai−1 ci−1 times

and fires Bi−1 pi−1 times.

As a result, if S fires Ai ci times and fires Bi pi times for some

i ∈ {2, 3, . . . , I − 1}, then S fires Ai−1 ci−1 times and fires Bi−1 pi−1 times. Be-

cause we have proved that S fires AI−1 cI−1 times and fires BI−1 pI−1 times, we can

conclude by mathematical induction that S fires Ai ci times and fires Bi pi times

for every i ∈ {1, 2, . . . , I − 1}. Taking i = 1, we have that S fires vsrc c∗ times and

fires vsnk p∗ times.

Using demand-driven analysis on the state of e∗ (i.e., d in BOTAS) and the

115



numbers of remaining firings of vsrc and vsnk (i.e., m and n in BOTAS), the follow-

ing result can be shown. This result, together with Theorem 7.23, establishes the

correctness of the BOTAS algorithm.

Property 7.24. Suppose that there are d∗ initial tokens on edge e∗ (d∗ > 0). Then

the BOTAS algorithm in lines 25-49 constructs an SASAP schedule for G∗.

Property 7.25. The complexity of the BOTAS algorithm is O(log2 min(p∗, c∗)).

Proof. From Lemma 7.22, the iteration I that ends the while loop in line 6 is

bounded by log2 min(p∗, c∗). The first for loop (lines 26-38) and the second for

loop (lines 39-48) are both bounded by I. All other operations can be imple-

mented in constant time. As a result, the complexity of the BOTAS algorithm

is O(log2 min(p∗, c∗)).

7.3.10 Buffering for Cycle-Broken Edges

From Section 7.3.2, even though scheduling acyclic graphs that emerge from

the LIAF decomposition process without considering the removed inter-iteration

edges never violates data precedence constraints, buffer sizes of the removed edges

should still be properly computed based on the scheduling results. Otherwise, during

execution, the graph may deadlock or produce memory corruption due to buffer

overflow. In this section, we analyze buffer bounds for inter-iteration edges that are

removed by cycle-breaking.

Our analysis here assumes that the acyclic graphs that emerge from LIAF are

scheduled based on R-schedule or R-hierarchy. A valid single appearance schedule S
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is an R-schedule if S and each of the nested schedule loops in S has either 1) a single

iterand, and this single iterand is an actor, or 2) exactly two iterands, and these two

iterands are schedule loops having coprime iteration counts [7] . In general, an R-

schedule can be viewed as providing a single appearance, minimal periodic schedule

for each two-actor graph in the R-hierarchy. Here by R-hierarchy, we mean the

nested two-actor cluster hierarchy that is obtained from the looped binary structure

in the R-schedule.

A variety of single appearance scheduling techniques fall into the domain of

R-schedules — for example, APGAN [7], DPPO [7], and RPMC [58]. Furthermore,

the recursive procedure call based technique [45] and the buffer-optimal two-actor

scheduling algorithm (see Section 7.3.9) also work on recursive, multiple appearance

schedules of each two-actor graph in the R-hierarchy.

Analysis of buffer bounds on the removed inter-iteration edges can be per-

formed by studying the configuration of the removed edges in the R-hierarchy. Sup-

pose that we are given a consistent, loosely interdependent, strongly connected SDF

graph G. Suppose also that the CYCLE-BREAKING algorithm (see Section 7.3.3)

removes a subset of inter-iteration edges E ′ from G, and suppose G′ is the acyclic

SDF graph that is constructed by clustering the SCCs of the resulting graph G. As

described earlier, we assume that R-schedule or R-hierarchy based techniques are

applied to scheduling G′. Then we have the following observations: 1) By joint anal-

ysis of G′ and the given R-schedule, a R-hierarchy H can always be constructed such

that each two-actor graph in H is consistent and acyclic, and the order of the leaf

actors encountered in depth-first, source-to-sink traversal of H gives a topological
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Figure 7.8: Presence of cycle-broken edge in the two-actor graph.

sort of G′. 2) According to Theorem 7.3, a removed inter-iteration edge e′ ∈ E ′ must

connect a succeeding actor (or SCC supernode) to the first actor (or SCC supern-

ode) in the topological sort. 3) The final schedule S ′ of G′ can be decomposed such

that for each two-actor SDF subgraph in H , there exists a corresponding minimal

periodic sub-schedule (single appearance or multiple appearance) in S ′.

Based on 1), 2), and 3), analysis of buffer bounds on a removed inter-iteration

edge e′ can be performed in the unique two-actor graph in H ,

Gu,v = ({u, v}, Eu,v = {e | src(e) = u and snk(e) = v}), such that src(e′) is in the

v-cluster and snk(e′) is in the u-cluster. In other words, there exists a unique, con-

sistent, acyclic, two-actor SDF graph Gu,v in H such that the presence of e′ is in the

reverse direction across the two actors in Gu,v. Figure 7.8 shows a general form of

such configuration, where for each ei ∈ Eu,v, pi = prd(ei), ci = cns(ei), di = del(ei).

The following theorem pertains to the buffer bounds on the removed inter-

iteration edges.

Theorem 7.26. Suppose that we are given a consistent, loosely interdependent,

strongly connected SDF graph G. Suppose G′ is the acyclic SDF graph that is con-

structed by applying the CYCLE-BREAKING algorithm on G and clustering the
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SCCs of the resulting graph G. Suppose H is the R-hierarchy in scheduling G′. Sup-

pose that e′ is an inter-iteration edge that is removed by the CYCLE-BREAKING al-

gorithm. Suppose Gu,v = ({u, v}, Eu,v = {e | src(e) = u and snk(e) = v}) is the con-

sistent, acyclic, two-actor SDF graph in H such that src(e′) is in the v-cluster and

snk(e′) is in the u-cluster. Then the buffer size required for e′ is bounded by

del(e′) + g × d∗ if d∗ ≤ p∗ × c∗

del(e′) + g × p∗ × c∗ if d∗ > p∗ × c∗.

(7.7)

Here, p∗, c∗, and d∗ are the primitive production rate, primitive consumption rate,

and primitive delay of Gu,v, respectively; and in addition, g = gcd(p, c),

p=prd(e′)×qG[src(e′)]/gv, c=cns(e′)×qG[snk(e′)]/gu, gu =gcdα∈u−cluster(qG[α]),

and gv = gcdα∈v−cluster(qG[α]).

Proof. Based on Definition 7.10 and Lemma 7.11, analysis of Gu,v in Figure 7.8 is

equivalent to analysis of its primitive form G∗
u,v = ({u, v}, {e∗ = (u, v)}) in Figure

7.9, where for each ei ∈ Eu,v, pi = prd(ei), ci = cns(ei), di = del(ei), gi = gcd(pi, ci),

p∗ = pi/gi, and c∗ = ci/gi; for e∗, prd(e∗) = p∗, cns(e∗) = c∗, gcd(p∗, c∗) = 1, and

del(e∗) = d∗ = min ei∈Eu,v
(bdi/gic).

Furthermore, because of the properties of SDF clustering, we can derive that

1) p∗ × gu = c∗ × gv, 2) execution of u consists of executing snk(e′) for qG[snk(e′)]/gu

times, and 3) execution of v consists of executing src(e′) for qG[src(e′)]/gv times.

As a result, we can transform e′ in Figure 7.8 to an equivalent edge e in Figure 7.9

such that src(e) = v, snk(e) = u, prd(e) = p, cns(e) = c, and del(e) = d = del(e′).

Note that adding e to G∗
u,v preserves consistency because 1) p∗/c∗ = c/p — this is
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because of the balance equation on e′:

prd(e′)× qG[src(e′)] = cns(e′)× qG[snk(e′)], (7.8)

and 2) d is large enough for the consumption requirements of u for a complete

iteration of G∗
u,v — this is because e′ is an inter-iteration edge for G so that

d = del(e′) ≥ cns(e′)× qG[snk(e′)] = c× gu ≥ c× c∗ (7.9)

Based on Lemma 7.11, suppose S is any valid minimal periodic schedule for

Gu,v as well as G∗
u,v. According to Equation (7.2), we can derive that

tokG∗

u,v
(S, e, k) = τ(S, v, k)× p− τ(S, u, k)× c + d (7.10)

and

tokG∗

u,v
(S, e∗, k) = τ(S, u, k)× p∗ − τ(S, v, k)× c∗ + d∗ (7.11)

Then, we can derive the following equation based on Equation (7.10) and

Equation (7.11).

tokG∗

u,v
(S, e, k) = d + g × (d∗ − tokG∗

u,v
(S, e∗, k)) (7.12)

Because S is a valid minimal periodic schedule, for any firing index k, we can derive

that

tokG∗

u,v
(S, e∗, k) ≥ 0 if d∗ ≤ p∗ × c∗,

tokG∗

u,v
(S, e∗, k) ≥ d∗ − p∗ × c∗ if d∗ > p∗ × c∗.

(7.13)

Finally, substituting Equation (7.13) into Equation (7.12) gives us

tokG∗

u,v
(S, e, k) ≤ d + g × d∗ if d∗ ≤ p∗ × c∗,

tokG∗

u,v
(S, e, k) ≤ d + g × p∗ × c∗ if d∗ > p∗ × c∗.

(7.14)

The proof is complete.
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Figure 7.9: Presence of cycle-broken edge in the primitive two-actor graph.

7.3.11 Schedule Representation

In our implementation of SOS, we have also given attention to efficient man-

agement of the data structure that stores the computed schedule. In this data struc-

ture, each schedule loop is created only once, and multiple references to a schedule

loop across the overall schedule are implemented as pointers to the single version.

We apply this concept in the construction of scheduling components in the two-

actor algorithm as well as in supernode/sub-schedule replacements across cluster

boundaries. This implementation can significantly reduce the memory requirement

for representing the overall schedule, and is more suited to the simulation-based

context of this work than the procedure-call based implementation format of [45],

which is more suited to software synthesis.

7.4 Overall Integration

The overall integration of component algorithms in SOS is illustrated in Figure

7.1. A major contribution of this work is the selection, adaptation, and integration

of these algorithms — along with development of associated theory and analysis —

into a complete simulation environment for the novel constraints associated with

simulating critical SDF graphs. In fact, the complexity involved in the overall SOS
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approach is dominated by the complexity of scheduling subgraphs that it isolates

in its top-down process of LIAF- and SRC-based decomposition. For this reason,

we are able to apply the intensive APGAN, DPPO, and buffer-optimal two-actor

scheduling algorithms in SOS without major degradation in simulation performance.

This is beneficial because these intensive techniques provide significant reductions

in the total buffer requirement.

Figure 7.10 presents an example to illustrate SOS. Given a connected, con-

sistent SDF graph (e.g., Figure 7.10.(a)), SOS first applies LIAF (Section 7.3.2)

to decompose all strongly connected components in order to derive an acyclic SDF

graph (as illustrated in Figure 7.10.(d)) and break cycles for strongly connected sub-

graphs (as illustrated in Figure 7.10.(b) and Figure 7.10.(c)). If a subgraph is loosely

interdependent, LIAF is applied recursively to derive a schedule for the subgraph

(e.g., (1F (1(7I)J)) for Figure 7.10.(b) and (1(1(2G)H)(1GH)) for Figure 7.10.(c)).

For the acyclic graph, SOS applies SRC (Section 7.3.5) to isolate single-rate

subgraphs, and reduce the acyclic graph into a smaller multirate version. This

is illustrated in Figure 7.10.(g). For single-rate subgraphs (e.g., Figure 7.10.(e)

and Figure 7.10.(f)), SOS efficiently computes schedules (e.g., (1ABD) for Figure

7.10.(e) and (1ZC) for Figure 7.10.(f)) by the flat scheduling approach (Section

7.3.6).

After SRC, SOS uses APGAN (Section 7.3.7) to obtain a buffer-efficient topo-

logical sort (e.g., Figure 7.10.(h)) for the multirate, acyclic graph. Then from the

topological sort, SOS applies DPPO (Section 7.3.8) to construct a buffer-efficient

two-actor hierarchy. This is illustrated in Figure 7.10.(i). Finally, SOS computes a
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Table 7.2: Characteristics of wireless communication designs.

Design Description number of number of edges Multirate
# actors (single-/multirate) Complexity

1 3GPP Uplink Source 82 133 (101 / 32) 1.86 E6

2 3GPP Downlink Source 179 236 (194 / 42) 1.10 E6

3 Bluetooth Packets 104 107 (97 / 10) 808

4 802.16e Source Constellation 71 73 (49 / 24) 9.95 E6

5 CDMA2000 Digital Distortion 707 855 (805 / 50) 3.83 E6

6 XM Radio 269 293 (245 / 48) 5.43 E6

7 Edge Signal Source 186 222 (192 / 30) 36.36 E6

8 Digital TV 114 126 (74 / 52) 1.37 E6

9 WiMax Downlink Source 368 389 (276 / 113) 73191

buffer-optimal schedule for each two-actor subgraph based on the two-actor schedul-

ing algorithm (Section 7.3.9) — for example, (1(3K)W ) for the two-actor subgraph

{K, W}, (1E(5T )) for the subgraph {E, T}, (1(5Y )U) for the subgraph {Y, U}, and

V (1(1XV )(1X(2V )))(2XV )XV for the top-level two-actor graph {X, V }. An over-

all schedule is then obtained by traversing the constructed hierarchies and replacing

supernodes with the corresponding sub-schedules.

7.5 Simulation Results

We have implemented and integrated the simulation-oriented scheduler in Agi-

lent ADS [67]. Here, we demonstrate our simulation-oriented scheduler by scheduling

and simulating state-of-the-art wireless communication systems in ADS. However,

the design of SOS is not specific to ADS, and the techniques presented in this

chapter can be generally implemented in any simulation tool that incorporates SDF

semantics.
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The experimental platform is a PC with 1GHz CPU and 1GB memory. In our

experiments, we include 9 wireless communication designs from Agilent Technolo-

gies in the following standards: 3GPP (WCDMA3G), Bluetooth, 802.16e (WiMax),

CDMA 2000, XM radio, EDGE, and Digital TV. Table 7.2 presents characteris-

tics of the 9 designs, including the numbers of actors, numbers of edges (single-

rate/multirate), and approximate multirate complexities. These designs contain

from several tens to hundreds of actors and edges, and possess very high multirate

complexities. In particular, the multirate complexities in designs 1, 2, 4, 5, 6, 7, and

8 are in the range of millions.

We simulate the 9 designs with our simulation-oriented scheduler (SOS), and

the present default cluster-loop scheduler (CLS) in ADS. The simulation results of

CLS, SOS, and the performance ratio (CLS/SOS) are shown in three tables: Ta-

ble 7.3 presents the total buffer requirements for SDF edges (in number of tokens);

Table 7.4 presents the average scheduling time of ten runs (in seconds); and Table

7.5 presents the average total simulation time of ten runs (in seconds). As shown in

these tables, SOS outperforms CLS in almost all designs in terms of memory require-

ments, scheduling time, and total simulation time (except design 3 and 9, which are

comparable due to their relatively small multirate complexities). In particular, SOS

is effective in reducing buffer requirements within short scheduling time. For design

9, CLS requires less scheduling time because of its capabilities as a fast heuristic.

However, for design 2, it requires a very long scheduling time due to its heavy depen-

dence on classical SDF scheduling. CLS fails in design 5 due to an out-of-memory

problem during scheduling (OOM-sc), and also fails in designs 1, 4, 6, and 7 due to
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Table 7.3: Total buffer requirements (tokens).

Design CLS SOS Ratio
(CLS/SOS)

1 50445629 229119 220

2 9073282 43247 210

3 3090 3090 1

4 89428569 669273 134

5 OOM-sc 9957292 N/A

6 48212523 5385031 9

7 1870248382 451862 4139

8 8257858 1976318 4

9 1834606 1832926 1

Table 7.4: Average scheduling time (seconds).

Design CLS SOS Ratio
(CLS/SOS)

1 0.08 0.08 1.00

2 279.11 0.16 1744.44

3 0.06 0.06 1.00

4 0.49 0.45 1.09

5 OOM-sc 13.50 N/A

6 10.72 0.67 16.00

7 0.92 0.87 1.06

8 2.73 0.53 5.15

9 3.59 9.98 0.36

out-of-memory problems in buffer allocation (OOM-ba). With SOS, we are able to

simulate these heavily multirate designs.

7.6 Conclusion

In this chapter, we have introduced and illustrated the challenges in schedul-

ing large-scale, highly multirate synchronous dataflow (SDF) graphs for simulation

tools that incorporate SDF semantics. We have defined critical SDF graphs as
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Table 7.5: Average total simulation time (seconds).

Design CLS SOS Ratio
(CLS/SOS)

1 OOM-ba 7.12 N/A

2 349.33 55.31 6.32

3 930.56 876.72 1.06

4 OOM-ba 203.95 N/A

5 OOM-sc 2534.06 N/A

6 OOM-ba 406.86 N/A

7 OOM-ba 28940.77 N/A

8 636.63 415.40 1.53

9 1566.92 1542.39 1.02

an important class of graphs that must be taken carefully into consideration when

designing such tools for modeling and simulating modern large-scale and heavily

multirate communication and signal processing systems. We have then presented

the simulation-oriented scheduler (SOS). SOS integrates several existing and newly-

developed graph decomposition and scheduling techniques in a strategic way for

joint run-time and memory minimization in simulating critical SDF graphs. We

have demonstrated the efficiency of our scheduler by simulating practical, large-

scale, and highly multirate wireless communication designs.
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Chapter 8

Multithreaded Simulation of Synchronous Dataflow Graphs

For system simulation, synchronous dataflow (SDF) has been widely used as

a core model of computation in design tools for digital communication and signal

processing systems. The traditional approach for simulating SDF graphs is to com-

pute and execute static schedules in single-processor desktop environments. Nowa-

days, however, multi-core processors are increasingly popular desktop platforms for

their potential performance improvements through on-chip, thread-level parallelism.

Without novel scheduling and simulation techniques that explicitly explore thread-

level parallelism for executing SDF graphs, current design tools gain only minimal

performance improvements on multi-core platforms. In this chapter, we present a

new multithreaded simulation scheduler, called MSS, to provide simulation runtime

speed-up for executing SDF graphs on multi-core processors. MSS strategically

integrates graph clustering, intra-cluster scheduling, actor vectorization, and inter-

cluster buffering techniques to construct inter-thread communication (ITC) graphs

at compile-time. MSS then applies efficient synchronization and dynamic scheduling

techniques at runtime for executing ITC graphs in multithreaded environments. We

have implemented MSS in the Advanced Design System (ADS) from Agilent Tech-

nologies. On an Intel dual-core, hyper-threading (4 processing units) processor, our

results from this implementation demonstrate up to 3.5 times speed-up in simulating
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modern wireless communication systems (e.g., WCDMA3G, CDMA 2000, WiMax,

EDGE, and Digital TV).

8.1 Introduction

Nowadays, multi-core processors are increasingly popular desktop platforms

for their potential performance improvements through on-chip, thread-level paral-

lelism. This type of on-chip, thread-level parallelism can be further categorized into

chip-level multiprocessing (CMP) [29] (e.g., dual-core or quad-core CPUs from Intel

or AMD) and simultaneous multithreading (SMT) [20] (e.g., hyper-threading CPUs

from Intel). However, without novel scheduling and simulation techniques that

explicitly explore thread-level parallelism for executing SDF graphs, current EDA

tools gain only minimal performance improvements from these new sets of proces-

sors. This is largely due to the sequential (single-thread) SDF execution semantics

that underlies these tools.

In general, the design space of scheduling dataflow graphs for parallel compu-

tation is highly complex. For synthesis of DSP systems onto embedded multipro-

cessors, scheduling and synchronization techniques in the domain of homogeneous

synchronous dataflow (HSDF) [75] have been extensively studied in the literature

(see Chapter 3). Detailed definitions and background related to SDF and HSDF are

given in Section 8.2.

Based on a scheduling taxonomy presented in [49], scheduling HSDF graphs

for multiprocessor implementation consists of the following tasks: assignment —
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assigning actors (individual dataflow tasks) to processors, ordering — ordering ex-

ecution of actors on each processor, and timing — determining when each actor

executes.

In this chapter, we focus on multithreaded simulation of SDF graphs, which

is a new research area motivated by the increasing popularity of on-chip, thread-

level parallel computation. Our target simulation platforms are current multi-core

processors, and the objective is to speed up simulation runtime (including time for

scheduling and execution) by executing SDF graphs using multiple software threads.

Our target applications are modern wireless communication and signal processing

systems. According to Chapter 7, SDF representations of such systems typically

result in critical SDF graphs that challenge simulations — here, by critical, we

mean an SDF graph that has large-scale (a large number of actors and edges),

complex topology, and heavily multirate behavior.

The key problem behind multithreaded SDF simulation is scheduling SDF

graphs for on-chip, thread-level parallel computation. Scheduling in our context

consists of the following related tasks:

1. Clustering — Partitioning and clustering actors in the SDF graph into multi-

ple clusters such that actors in the same cluster are executed sequentially by

a single software thread. This task is analogous to “assignment” in multipro-

cessor scheduling.

2. Ordering — Ordering multiple firings of the same actor as well as firings

across different actors inside each cluster. This task is similar to “ordering” in

multiprocessor scheduling, but involves additional considerations for satisfying
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multirate SDF consistency.

3. Buffering — Computing buffer sizes for edges inside and across clusters. In

dataflow semantics, edges generally represent infinite FIFO buffers, but for

practical implementations, it is necessary to impose such bounds on buffer

sizes.

4. Assignment — Creating certain numbers of threads, and assigning clusters to

threads for concurrent execution, under the constraint that each cluster can

only be executed by one software thread at any given time.

5. Synchronization — Determining when a cluster is executed by a software

thread, and synchronizing between multiple concurrent threads such that all

data precedence and buffer bound constraints are satisfied. This task is anal-

ogous to “timing” in multiprocessor scheduling.

Scheduling SDF graphs for multithreaded simulation is quite different than

scheduling HSDF graphs for embedded multiprocessor implementation. In our con-

text, software threads present additional exploration space between SDF graphs

and processing units. Creation and usage of software threads are part of scheduling

tasks (assignment); while the operating system schedules the usage of processing

units among threads that come from the simulation process as well as from other

processes. In addition, because our objective is to speed up simulation runtime,

low-complexity scheduling is of major concern; while for embedded multiprocessor

implementations, tolerance for compile-time is relatively high (e.g., in multiproces-

sor scheduling, an SDF graph is often converted to an equivalent HSDF graph [8],

and this can in general exponentially increase the number of actors). Furthermore,
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our focus is on long term simulation — for satisfactory simulation, SDF graphs are

executed over and over again for significant numbers of iterations. As a result, to

speed up simulation runtime, throughput is one of the key factors; while latency has

relatively low priority.

In this thesis, we develop the multithreaded simulation scheduler (MSS) to sys-

tematically exploit multithreading capabilities when simulating SDF-based designs.

The compile-time scheduling framework in MSS strategically integrates graph clus-

tering, actor vectorization, intra-cluster scheduling, and inter-cluster buffering tech-

niques to jointly perform static clustering, static ordering, and static buffering for

trading off between throughput, synchronization overhead, and buffer requirements.

From this compile-time framework, inter-thread communication (ITC) SDF graphs

are constructed for multithreaded execution. The runtime scheduling in MSS then

applies either the self-timed (static assignment) or self-scheduled (dynamic assign-

ment) multithreaded execution model to schedule and synchronize multiple software

threads for executing ITC graphs at runtime.

The organization of this chapter is as follows: We review related background

in Section 8.2. In Section 8.3, we present Ω-scheduling, the theoretical foundation

of MSS. We then introduce our compile-time scheduling framework in Section 8.4,

and our runtime scheduling approach in Section 8.5. In Section 8.6, we demonstrate

simulation results, and we conclude in the final section.
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8.2 Background

Synchronous dataflow (SDF) and SDF scheduling preliminaries are presented

in Section 2.1, and SDF clustering is discussed in Section 7.3.1. Homogeneous syn-

chronous dataflow (HSDF) is introduced in Section 2.2. HSDF is widely used in

throughput analysis and multiprocessor scheduling. Any consistent SDF graph can

be converted to an equivalent HSDF graph based on the SDF-to-HSDF transfor-

mation [75] such that samples produced and consumed by every invocation of each

actor in the HSDF graph remain identical to those in the original SDF graph.

Let Z+ denote the set of positive integers. Given an HSDF graph G = (V, E),

we denote the execution time of an actor v by t(v), and denote fT : V → Z+ as an

actor execution time function that assigns t(v) to a finite positive integer for every

v ∈ V (the actual execution time t(v) can be interpreted as cycles of a base clock).

The cycle mean (CM) of a cycle c in an HSDF graph is defined as

CM (c) =

∑

v in c t(v)
∑

e in c del(e)
. (8.1)

The maximum cycle mean (MCM) of an HSDF graph G is defined as

MCM (G) = max
cycle c in G

CM (c). (8.2)

Theorem 8.1. [68] Given a strongly connected HSDF graph G, when actors execute

as soon as data is available at all inputs, the iteration period is MCM (G), and the

maximum achievable throughput is 1/MCM (G).
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8.3 Ω-Scheduling

As described in Section 8.1, the problem of scheduling SDF graphs for mul-

tithreaded execution is highly complex. Our first step is to assume unbounded

processing resources — that is, we can schedule the graph with as many processing

resources as desired. In this case, the scheduling tasks of clustering, ordering, and as-

signment become trivial because the best strategy is to assign each actor exclusively

to a processor. Then the problem can be simplified as follows: given unbounded

processing resources, how do we schedule (including buffering and synchronization)

SDF graphs to achieve maximal throughput? In this section, we develop a set of

theorems and algorithms to solve this problem. Note that the developments in this

section are not specific to multithreaded execution, and we envision that they can

be applied to many contexts for parallel execution of SDF graphs.

8.3.1 Definitions and Methods for Throughput Analysis

We assume a graph starts execution at time t = 0. We denote the count of

complete firings of an actor v until time t since the graph starts execution by ct(v, t).

Note that by definition, ct(v, 0) = 0. We denote the number of tokens — the state

— on an edge e at time t by

tok(e, t) =ct(src(e), t)× prd(e)−

ct(snk(e), t)× cns(e) + del(e).

(8.3)

We assume actor firing is an atomic operation, and define that the state tran-

sition — i.e., the change in the number of tokens on an edge e happens imme-
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diately when either src(e) or snk(e) finishes its firing (execution). Suppose actor

v starts execution at time t0, and suppose none of v’s adjacent actors finish ex-

ecution between t0 and t1 = t0 + t(v). Then at time t1, v finishes its execution,

and for every e ∈ in(v), tok(e, t1) = tok(e, t0)− cns(e), and for every e ∈ out(v),

tok(e, t1) = tok(e, t0) + prd(e).

In dataflow-related tools, actors may have internal state that prevents exe-

cuting multiple invocations of the actors in parallel, e.g., FIR filters. Furthermore,

whether or not an actor has internal state may be a lower level detail in the actor’s

implementation that is not visible to the tool (e.g., to algorithms that operate on

the application dataflow graph). This is, for example, the case in Agilent ADS, the

specific design tool that provides the context for our study and the platform for

our experiments. Thus, exploring data-level parallelism by duplicating actors onto

multiprocessors, e.g., [71], is out of the scope of this thesis.

In pure dataflow semantics, data-driven execution simply assumes infinite edge

buffers. For practical implementations, it is necessary to impose bounds on buffer

sizes. Given an SDF graph G = (V, E), we denote the buffer size of an edge e ∈ E

(i.e., the bound on the size of a FIFO buffer or the size of a circular buffer [4] or

other types of buffer implementations) by buf (e), and denote fB : E → Z+ as a

buffer size function that assigns buf (e) to a finite positive integer for every e ∈ E.

In the following definition, we refine the fireable condition to take bounded-buffers

into account.

Definition 8.2. Given an SDF graph G = (V, E) and a buffer size function fB, an
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actor v ∈ V is (data-driven) bounded-buffer fireable at time t if 1) v is fireable — i.e.,

v has sufficient numbers of tokens on all of its input edges (data-driven property) —

∀e ∈ in(v), tok(e, t) ≥ cns(e), and 2) v has sufficient numbers of spaces on all of its

output edges (bounded-buffer property) — ∀e ∈ out(v), buf (e)− tok(e, t) ≥ prd(e).

In the rest of the chapter, we use the term “fireable” to indicate conven-

tional data-driven semantics, and the term “data-driven bounded-buffer fireable” or

simply “bounded-buffer fireable” to indicate the data-driven semantics implied by

Definition 8.2.

Recall that the task of synchronization is to maintain data precedence and

bounded-buffer constraints. As a result, the most intuitive scheduling strategy for

maximal throughput is to fire an actor as soon as it is bounded-buffer fireable.

We define such a scheduling strategy as follows, where actors are synchronized by

bounded-buffer fireability.

Definition 8.3. Given a consistent SDF graph G = (V, E), Ω-scheduling is defined

as the SDF scheduling strategy that 1) statically assigns each actor v ∈ V to a

separate processing unit, 2) statically determines a buffer bound buf (e) for each

edge e ∈ E, and 3) fires an actor as soon as it is bounded-buffer fireable.

In the following definitions, we define the concepts of the Ω-SDF graph and

the Ω-HSDF graph, which are important to throughput analysis for Ω-scheduling.

Definition 8.4. Given an SDF graph G = (V, E) and a buffer size function fB,

the Ω-SDF graph of G is defined as GΩ = (V, {E + EΩ
b + EΩ

s )}. Here, EΩ
s is the

set of self-loops that models the sequential execution constraint for multiple fir-
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Figure 8.1: SDF graph G, Ω-SDF graph GΩ given buf (e) = 8, and the transformed
Ω-HSDF graph GH .

ings of the same actor (on a single processing unit) — that is, for each actor

v ∈ V , there is an edge es ∈ EΩ
s such that src(es) = v, snk(es) = v, prd(es) = 1,

cns(es) = 1, del(es) = 1. EΩ
b is the set of edges that models the bounded-buffer

constraint in Ω-scheduling — that is, for each edge e ∈ E, there is a correspond-

ing edge eb ∈ EΩ
b such that src(eb) = snk(e), snk(eb) = src(e), prd(eb) = cns(e),

cns(eb) = prd(e), del(eb) = buf (e)− del(e).

Definition 8.5. Given an SDF graph G = (V, E) and a buffer size function fB, the

Ω-HSDF graph GH of G is defined as the HSDF graph that is transformed from

the Ω-SDF graph GΩ based on the SDF-to-HSDF transformation (as described in

Section 8.2).

Figure 8.1 presents an SDF graph G, the Ω-SDF graph GΩ given buf (e) = 8,

and the corresponding Ω-HSDF graph GH . Next, we analyze the throughput upper

bound for Ω-scheduling in the following theorems.

Theorem 8.6. Suppose that we are given an SDF graph G = (V, E) and a buffer

size function fB. An actor is bounded-buffer fireable in G if and only if it is fireable
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in the Ω-SDF graph GΩ.

Proof. By Definition 8.4 and Equation (8.4), we can derive that for each e ∈ E and

its bounded-buffer counterpart eb ∈ EΩ
b , the data-driven condition tok(eb, t) ≥ cns(eb)

in GΩ is equivalent to the bounded-buffer condition buf (e)− tok(e, t) ≥ prd(e) in

G.

tok(eb, t) =ct(src(eb), t)× prd(eb)−

ct(snk(eb), t)× cns(eb) + del(eb)

=ct(snk(e), t)× cns(e)−

ct(src(e), t)× prd(e) + buf (e)− del(e)

=buf (e)− tok(e, t)

(8.4)

Then by Definition 8.2 and the fact that EΩ
s does not affect the fireable condition,

the proof is complete.

Theorem 8.7. Suppose that we are given a consistent SDF graph G, a buffer size

function fB, and an actor execution time function fT . Then the maximum achiev-

able throughput in Ω-scheduling is the inverse of the maximum cycle mean of the

corresponding Ω-HSDF graph GH —

1

MCM (GH)
. (8.5)

Proof. By Definition 8.4, the Ω-SDF graph GΩ is strongly connected. Then based

on the SDF-to-HSDF transformation (as described in Section 8.2), GΩ and GH are

equivalent, and GH is strongly connected. Finally by Theorem 8.6 and Theorem

8.1, the proof is complete.

138



Theorem 8.8. Suppose that we are given a consistent, acyclic SDF graph G = (V, E)

and an actor execution time function fT . Then the maximum achievable throughput

in Ω-scheduling is

1

maxv∈V (qG[v]× t(v))
. (8.6)

Proof. Suppose for every edge e ∈ E, buf (e) is assigned a positive integer that ap-

proaches infinity ∞. Let GH = (V H , {EH + EH
b + EH

s )} denote the Ω-HSDF graph

transformed from the Ω-SDF graph GΩ = (V, {E + EΩ
b + EΩ

s )}, where V H , EH , EH
b ,

and EH
s are transformed from V , E, EΩ

b , and EΩ
s , respectively. Let C denote the set

of all cycles in GH , and let Cs denote the set of cycles transformed from self-loops

EΩ
s . Based on the SDF-to-HSDF transformation (as described in Section 8.2), we

can derive that: 1) for every eb ∈ EH
b , del(eb)→∞; 2) for every c ∈ {C − Cs}, c

contains at least one edge eb ∈ EH
b , and as a result, CM (c)→ 0; and 3) for ev-

ery v ∈ V , there exists a cycle c ∈ Cs transformed from the corresponding self-loop

es ∈ EΩ
s , and thus, CM (c) = qG[v]× t(v). Therefore,

MCM (GH) = maxc∈Cs
CM (c) = maxv∈V (qG[v]× t(v)).

By Theorem 8.7, the proof is complete.

Theorem 8.9. Given a consistent, acyclic SDF graph G = (V, E) and an actor

execution time function fT , there exists a finite buffer size function fB that gives the

maximum achievable throughput — Equation (8.6) — in Ω-scheduling.

Proof. This result involves the same hypotheses as Theorem 8.8, and we prove this

result by continuing with the notations and arguments given in the proof of Theorem
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8.8. First, we define T = maxv∈V (qG[v]× t(v)) and L =
∑

v∈V (qG[v]× t(v)). Now

suppose fB sets

buf (e) = T × L× prd(e)× qG[src(e)] + del(e)

for each edge e ∈ E. Based on the SDF-to-HSDF transformation (as described in

Section 8.2), we can derive that: 1) for every eb ∈ EH
b , del(eb) ≥ T × L; 2) for every

c ∈ {C − Cs}, c contains at least one edge eb ∈ EH
b , and because L is an upper

bound on the cycle length in GH , CM (c) ≤ T ; and 3) for every v ∈ V , there exists

a cycle c ∈ Cs transformed from the corresponding self-loop es ∈ EΩ
s , and again,

CM (c) = qG[v]× t(v). Based on the above derivation and by Theorem 8.7, the

maximum achievable throughput is

1/MCM (GH) = 1/maxc∈CCM (c) = 1/T .

Finally, because for every v ∈ V , qG[v] and t(v) are finite, we have that buf (e) is

finite for every e ∈ E.

Theorem 8.10. Given a consistent SDF graph G = (V, E) and an actor execution

time function fT , Equation (8.6) is the throughput upper bound in Ω-scheduling —

that is, the maximum achievable throughput is less than or equal to Equation (8.6).

Proof. Let GH = (V H , {EH + EH
b + EH

s )} denote the Ω-HSDF graph transformed

from the Ω-SDF graph GΩ = (V, {E + EΩ
b + EΩ

s )}, where V H , EH , EH
b , and EH

s

are transformed from V , E, EΩ
b , and EΩ

s , respectively. Let C denote the set of all

cycles in GH ; let Cs denote the set of cycles transformed from self-loops EΩ
s ; let Cb

denote the set of cycles that contain at least one eb ∈ EH
b ; and let Cc = C − Cs − Cb.
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Suppose that G contains one or more cycles. Then based on the SDF-to-HSDF

transformation (as described in Section 8.2), we can derive that Cc 6= ∅ and each

cycle in Cc is transformed from a corresponding cycle in G. Given sufficient buffer

sizes such that Cb does not dominate the maximum cycle mean (as with the proof

of Theorem 8.9), we have that

MCM (GH) = maxc∈{Cs+Cc}CM (c) ≥ maxc∈Cs
CM (c) = maxv∈V (qG[v]× t(v)).

By Theorem 8.7 and Theorem 8.8, the proof is complete.

In summary, Equation (8.6) is an upper bound on throughput for a consis-

tent SDF graph in Ω-scheduling, and is the maximum achievable throughput for a

consistent, acyclic SDF graph in Ω-scheduling.

8.3.2 Buffering

Based on the previous derivations, providing sufficient buffer sizes is important

to achieve maximum achievable throughput in Ω-scheduling. In this subsection, we

develop buffering techniques for Ω-scheduling. We start with a few definitions.

A dataflow graph G = (V, E) is in general a directed multigraph (i.e., multiple

edges can have the same source and sink vertices). Here, we define a parallel edge

set [u, v] as a set of edges {e ∈ E|src(e) = u and snk(e) = v} that connect from the

same source vertex u to the same sink vertex v. The following property, definition,

and theorem are useful in abstracting parallel edge sets in order to simplify the

developments of buffering techniques.
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Figure 8.2: (a) Consistent parallel edge set. (b) Primitive edge.

Property 8.11. Given a consistent SDF graph G = (V, E). Every parallel edge

set [u, v] ∈ E has a general form as shown in Figure 8.2(a), where for each edge

ei ∈ [u, v], pi = prd(ei), ci = cns(ei), di = del(ei), gi = gcd(pi, ci), p∗ = pi/gi, and

c∗ = ci/gi. For consistency, the coprime positive integers p∗ and c∗ must satisfy

pi/ci = p∗/c∗ for every ei ∈ [u, v].

Definition 8.12. Given a consistent SDF graph G = (V, E), the primitive graph

G∗ = (V, E∗) is constructed by replacing each parallel edge set [u, v] ∈ E, as shown

in Figure 8.2(a), with a single edge e∗, as shown in Figure 8.2(b), where prd(e∗) = p∗,

cns(e∗) = c∗, del(e∗) = d∗ = minei∈[u,v]bdi/gic, and gcd(p∗, c∗) = 1. The edge e∗ is

called the primitive edge of [u, v], and the values p∗, c∗, and d∗ are called the primi-

tive production rate, primitive consumption rate, and primitive delay of [u, v], respec-

tively. An edge ei ∈ [u, v] that satisfies bdi/gic = d∗ is called a maximally-constrained

edge of [u, v].

Property 8.11 and Definition 8.12 are the generalized versions of two-actor

SDF graphs defined in Section 7.3.9.

Theorem 8.13. Given a consistent SDF graph G = (V, E) and its primitive graph

G∗ = (V, E∗), and given the same actor execution function fT for both G and G∗,

142



suppose Equation (8.7) is satisfied for each parallel edge set [u, v] ∈ E and its prim-

itive edge e∗ ∈ E∗.

∀ei ∈ [u, v], buf (ei) = buf (e∗)× gi + di − d∗ × gi (8.7)

Then Ω-scheduling for G is equivalent to Ω-scheduling for G∗ — that is, an actor is

bounded-buffer fireable in G if and only if it is bounded-buffer fireable in G∗.

Proof. Initially at time t = 0, for each v ∈ V , ct(v, 0) = 0 for both G and G∗. Sup-

pose that for some time t ≥ 0, for each v ∈ V , ct(v, t) is the same for both G and

G∗. Then at this time t, we can derive that Equation (8.8) and Equation (8.9) are

satisfied for every parallel edge set [u, v] ∈ E and its primitive edge e∗ ∈ E∗.

∀ei ∈ [u, v], tok(ei, t) ≥ ci

⇔ ∀ei ∈ [u, v], ct(u, t)× pi − ct(v, t)× ci + di ≥ ci

⇔ ∀ei ∈ [u, v], ct(u, t)× p∗ × gi − ct(v, t)× c∗ × gi+

bdi/gic × gi + di mod gi ≥ c∗ × gi

⇔ ∀ei ∈ [u, v], ct(u, t)× p∗ − ct(v, t)× c∗ + bdi/gic ≥ c∗

⇔ ct(u, t)× p∗ − ct(v, t)× c∗ + d∗ ≥ c∗

⇔ tok(e∗, t) ≥ c∗

(8.8)

143



∀ei ∈ [u, v], buf (ei)− tok(ei, t) ≥ pi

⇔ ∀ei ∈ [u, v], buf (ei)− (ct(u, t)× pi − ct(v, t)× ci + di) ≥ pi

⇔ ∀ei ∈ [u, v], buf (e∗)× gi + di − d∗ × gi−

(ct(u, t)× p∗ × gi − ct(v, t)× c∗ × gi + di) ≥ p∗ × gi

⇔ buf (e∗)− (ct(u, t)× p∗ − ct(v, t)× c∗ + d∗) ≥ p∗

⇔ buf (e∗)− tok(e∗, t) ≥ p∗

(8.9)

Thus, at time t, for each v ∈ V , v is bounded-buffer fireable in G if and only if it is

bounded-buffer fireable in G∗. Because Ω-scheduling fires an actor as soon as it is

bounded-buffer fireable, we have that at time (t + 1), for each v ∈ V , ct(v, t + 1) is

the same for both G and G∗. By mathematical induction, the proof is complete.

The following property observes the periodic behavior in Ω-scheduling, and is

important to our developments.

Property 8.14. Given a consistent SDF graph G = (V, E), a buffer size function

fB, and an actor execution time function fT , suppose the iteration period of G under

Ω-scheduling is T . Then after a finite transient phase, each actor v ∈ V can enter

a periodic phase such that v fires qG[v] times in period T . Furthermore, for any

kth firing of v in the periodic phase, the time between the kth and the (k + qG[v])th

firing is T .

Note that the time for each actor to enter its periodic phase may be different.

In other words, the periods for different actors may not align to the same time

instances.
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Many existing techniques for joint buffer and throughput analyses rely on

prior knowledge of actor execution times. However, exact actor execution time

information may be unavailable in practical situations. In this thesis, we focus

on minimizing buffer requirements under the maximum achievable throughput in

Ω-scheduling without prior knowledge of actor execution time. In the following

theorem, we first provide such analysis for two-actor SDF graphs.

Theorem 8.15. Given a consistent, acyclic, two-actor SDF graph

G = ({u, v}, [u, v]), the minimum buffer size to sustain the maximum achievable

throughput in Ω-scheduling over any actor execution time function is given by Equa-

tion (8.10):

∀ei ∈ [u, v], buf (ei) =































(pi + ci − gi)× 2 + di − d∗ × gi ,

if 0 ≤ d∗ ≤ (p∗ + c∗ − 1)× 2

di, otherwise

(8.10)

Here, pi = prd(ei), ci = cns(ei), di = del(ei), gi = gcd(pi, ci), p∗ = pi/gi, c∗ = ci/gi,

and d∗ = minei∈[u,v]bdi/gic.

Proof. Without loss of generality, suppose that G is in the general form shown in

Figure 8.2(a), and suppose Figure 8.2(b) represents the primitive graph G∗. Based

on Theorem 8.13, we first solve the problem for the primitive graph G∗ and then

apply Equation (8.7).

Suppose c∗ × t(u) = p∗ × t(v) = T . Based on Theorem 8.8 and Property 8.14,

in order to achieve the maximum achievable throughput in the periodic phase,

u must execute c∗ times continuously, and v must execute p∗ times continuously
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in a period T . Let t0 denote the time when u and v enter the periodic phase,

and denote tok(e∗, t0) by n0. By state enumeration of the ith period in the pe-

riodic phase (i ∈ {0, 1, . . .}), there is a total of p∗ + c∗ − 1 different states in a

period T — that is, 1) tok(e∗, t0 + i× T ) = n0, 2) for each k ∈ {1, 2, . . . , p∗ − 1},

tok(e∗, t0 + i× T + k × t(v)) is a unique state from

{n0 − (p∗ − 1), n0 − (p∗ − 2), . . . , n0 − 1}, and 3) for each k ∈ {1, 2, . . . , c∗ − 1},

tok(e∗, t0 + i× T + k × t(u)) is a unique state from {n0 + 1, n0 + 2, . . . , n0 + c∗ − 1}.

Figure 8.3 illustrates the state enumeration for p∗ = 5, c∗ = 3, i = 0, and

t(u)× 3 = t(v)× 5.

For each k ∈ {1, 2, . . . , p∗ − 1}, in order for v to be fireable immediately at time

t0 + i× T + k × t(v), we must have tok(e∗, t0 + i× T + k × t(v)) ≥ c∗. As a result,

n0 ≥ (p∗ − 1) + c∗ must be satisfied to achieve the maximum achievable throughput.

On the other hand, for each k ∈ {1, 2, . . . , c∗ − 1}, in order for u to be fireable imme-

diately at time t0 + i× T + k × t(u), we must have

buf (e∗)− tok(e∗, t0 + i× T + k × t(u)) ≥ p∗. Thus, to achieve the maximum achiev-

able throughput, buf (e∗) ≥ n0 + c∗ − 1 + p∗ must be satisfied.

Now consider the case where d∗ ≤ (p∗ + c∗ − 1)× 2. Because p∗ and c∗ are

co-prime, tok(e∗, t0) = n0 = p∗ + c∗ − 1 is a reachable state from tok(e∗, 0) = d∗ in

the transient phase. Therefore, buf (e∗) = (p∗ + c∗ − 1)× 2 is the minimum buffer

size for G∗ to achieve the maximum achievable throughput in Ω-scheduling, — i.e.,

1/max(c∗ × t(u), p∗ × t(v)) by Equation (8.6), or equivalently,

MCM (G∗H) = CM (cu) = c∗ × t(u) = CM (cv) = p∗ × t(v),
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where G∗H denotes the Ω-HSDF graph of G∗, and cu and cv denote the cycles in

G∗H transformed from the self-loops of u and v, respectively.

On the other hand, when d∗ > (p∗ + c∗ − 1)× 2, buf (e∗) = d∗ is the minimum

buffer size to achieve the maximum achievable throughput because buf (e∗) must

accommodate d∗ initial tokens, and larger d∗ may only decrease cycle means resulting

from e∗ and its bounded-buffer counterpart, but does not affect CM (cu) nor CM (cv).

In summary, when c∗ × t(u) = p∗ × t(v) = T , Equation (8.11) can achieve the

maximum achievable throughput 1/max(c∗ × t(u), p∗ × t(v)) = 1/T .

buf (e∗) =















(p∗ + c∗ − 1)× 2, if 0 ≤ d∗ ≤ (p∗ + c∗ − 1)× 2

d∗, otherwise

(8.11)

When c∗ × t(u) > p∗ × t(v), by applying Equation (8.11) on G∗, we can derive

that smaller t(v) reduces CM (cv) as well as other cycle means that involve v, but

does not affect CM (cu). As a result,

MCM (G∗H) = CM (cu) = max(c∗ × t(u), p∗ × t(v)).

On the other hand, when c∗ × t(u) < p∗ × t(v), by applying Equation (8.11) on G∗,

we can derive in a similar manner that

MCM (G∗H) = CM (cv) = max(c∗ × t(u), p∗ × t(v)).

Therefore, Equation (8.11) can sustain the maximum achievable throughput regard-

less of t(u) and t(v). Finally, by substituting Equation (8.11) into Equation (8.7),

the proof is complete.

Note that given exact actor execution times, the minimum buffer requirement

to achieve the maximum achievable throughput in Ω-scheduling may be less than
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Figure 8.3: State enumeration for p∗ = 5, c∗ = 3, and t(u)× 3 = t(v)× 5.

Equation (8.10). However, Equation (8.10) is the minimum buffer requirement to

“sustain” the maximum achievable throughput in Ω-scheduling over arbitrary actor

execution times. In order to generalize the above derivation to acyclic SDF graphs,

it is useful to employ the notion of biconnected components.

Definition 8.16. Given a connected graph G = (V, E), a biconnected component is

a maximal set of parallel edge sets A ⊆ E such that any pair of parallel edge sets

in A lies in a simple undirected cycle. A bridge is then a parallel edge set that does

not belong to any biconnected component, or equivalently, a parallel edge set whose

removal disconnects G.

Traditionally, biconnected components and bridges are defined with respect to

single edges [16] rather than parallel edge sets. Because we are only interested in

the topology formed by parallel edge sets, we adapt the original definition to our

context. For example, Figure 8.4 shows biconnected components and bridges of an

example graph, where bridges are marked with dashed lines.

In the following theorem, we generalize Theorem 8.15 to acyclic SDF graphs
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Figure 8.4: Biconnected components and bridges.

that do not contain biconnected components.

Theorem 8.17. Suppose that we are given a consistent SDF graph G = (V, E), and

suppose that G does not contain any biconnected components. Then the minimum

buffer sizes to sustain the maximum achievable throughput in Ω-scheduling over any

actor execution time function are given by Equation (8.12):

∀[u, v] ∈ E

∀ei ∈ [u, v], buf (ei) =































(pi + ci − gi)× 2 + di − d∗ × gi ,

if 0 ≤ d∗ ≤ (p∗ + c∗ − 1)× 2

di, otherwise

(8.12)

Here, for each parallel edge set [u, v] ∈ E, and for each edge ei ∈ [u, v], pi = prd(ei),

ci = cns(ei), di = del(ei), gi = gcd(pi, ci), p∗ = pi/gi, c∗ = ci/gi, and

d∗ = minei∈[u,v]bdi/gic.

Proof. Without loss of generality, let L = v1, v2, . . . , v|V | denote a traversal of G

such that any actor vk in L is adjacent to at least one actor in {v1, v2, . . . , vk−1}.

For example, L can be constructed from any undirected depth-first or breadth-first

traversal. Let V1,k = {v1, v2, . . . , vk} denote a subset of the first k actors in L. Let
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G1,k = (V1,k, E1,k) denote a subgraph consisting of V1,k and

E1,k = {e ∈ E|src(e) ∈ V1,k and snk(e) ∈ V1,k}. Lastly, let us denote gcdv∈V1,k
qG[v]

by gV1,k
.

Suppose for every v ∈ V , qG[v]× t(v) equals a constant value T . Based on

Theorem 8.8 (here G is acyclic because it contains no biconnected components)

and Property 8.14, in order to achieve the maximum achievable throughput in the

periodic phase, every actor v ∈ V must fire continuously at rate qG[v]/T after a

finite transient phase.

Initially for G1,2, by Theorem 8.15, given Equation (8.10) in Ω-scheduling, v1

can fire continuously at rate (qG[v1]/gV1,2
)/(T/gV1,2

) after a finite transient phase,

and v2 can fire continuously at rate (qG[v2]/gV1,2
)/(T/gV1,2

) after a finite transient

phase. Next, for a particular G1,k, where 2 < k < |V |, suppose given Equation (8.12)

in Ω-scheduling, each actor v ∈ V1,k can fire continuously at rate

(qG[v]/gV1,k
)/(T/gV1,k

) after a finite transient phase.

Now consider G1,k+1. Because G has no biconnected components, there is one

and only one actor u ∈ V1,k that connects vk+1. By Theorem 8.15, given Equation

(8.10) for the two-actor graph [u, vk+1] (or [vk+1, u]) alone in Ω-scheduling, u can

fire continuously at rate (qG[u]/g{u,vk+1})/(T/g{u,vk+1}) after a finite transient phase,

and vk+1 can fire continuously at rate (qG[vk+1]/g{u,vk+1})/(T/g{u,vk+1}) after a finite

transient phase, where g{u,vk+1} = gcd(qG[u], qG[vk+1]).

Based on the observations above, we can derive that given Equation (8.12)

for G1,k+1, Ω-scheduling is able to make each actor v ∈ V1,k+1 fire continuously at

rate (qG[v]/gV1,k+1
)/(T/gV1,k+1

) after a finite transient phase — this is because 1)
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Ω-scheduling can always delay an actor firing until it is bounded-buffer fireable for

adapting to the effect of inserting vk+1, and 2) the time to enter the periodic phases

of G1,k and [u, vk+1] (or [vk+1, u]) is finite.

By mathematical induction, given Equation (8.12) for G in Ω-scheduling, each

actor v ∈ V can fire continuously at rate qG[v]/T = 1/t(v) after a finite transient

phase. As a result, by Property 8.14, the iteration period of G in Ω scheduling is

MCM (GH) = T , where GH is the Ω-HSDF graph of G. Furthermore, by Theorem

8.15, Equation (8.10) is the minimum buffer sizes for each acyclic pair of adjacent

actors to fire continuously in the periodic phase. Therefore, Equation (8.12) gives

the minimum buffer sizes to achieve the maximum achievable throughput, or equiv-

alently, minimum achievable iteration period MCM (GH) = T in Ω-scheduling when

qG[v]× t(v) = T for every v ∈ V .

Now consider the case where qG[v]× t(v) is not constant across v ∈ V . Let us

denote maxv∈V (qG[v]× t(v)) by T , and denote Vmax = {v ∈ V |qG[v]× t(v) = T}.

Compared to the above case where where qG[v]× t(v) = T for every v ∈ V , for an

actor v ∈ {V − Vmax}, the smaller qG[v]× t(v) only reduces cycle means involving

v, but does not affect the cycle means of the self loops of Vmax. As a result, given

Equation (8.12) for G in Ω-scheduling, MCM (GH) = maxv∈V (qG[v]× t(v)).

Based on the above derivations, Equation (8.12) gives the minimum buffer

sizes to sustain the maximum achievable throughput in Ω-scheduling over any actor

execution time function.

Applying Equation (8.12) to general acyclic SDF graphs may cause deadlock
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Figure 8.5: Buffering deadlock example.

Ω-ACYCLIC-BUFFERING(G)
input: a consistent acyclic SDF graph G = (V, E)
1 EB = BRIDGES(G)
2 for each [u, v] ∈ EB compute buffer sizes by Equation (8.10) end

3 {E1, E2, . . . , EN} = BICONNECTED-COMPONENTS(G)
4 for each biconnected subgraph Gi = (Vi, Ei) from i = 1 to N
5 {V 1

i , V 2
i , . . . , V M

i } = BICONNECTED-FREE-PARTITION(Gi)
6 G′

i = (V ′

i , E′

i) = CLUSTER(Gi, {V
1
i , V 2

i , . . . , V M
i })

7 compute buffer sizes for E′

i by Equation (8.12) on G′

i

8 for each partitioned subgraph Gj
i = (V j

i , Ej
i ) from j = 1 to M

9 Ω-ACYCLIC-BUFFERING(Gj
i )

10 end

11 end

Figure 8.6: Ω-Acyclic-Buffering algorithm.

in Ω-scheduling. Figure 8.5 presents such an example: if the buffer size for edge

(a, c) is set to 2, then the graph is deadlocked because neither b nor c can fire due

to insufficient buffer size on (a, c). In order to allocate buffers for general acyclic

SDF graphs in Ω-scheduling, we have developed the Ω-Acyclic-Buffering algorithm

as shown in Figure 8.6, and we prove the validity of the algorithm in Theorem 8.18.

In Figure 8.6, we compute bridges EB of G and set buffer sizes of each par-

allel edge set in EB by Equation (8.10) in lines 1-2. Next, we compute the bi-

connected components E1, E2, . . . , EN of G in line 3. For each biconnected sub-

graph Gi = (Vi, Ei) induced from the biconnected component Ei (where Vi is the

set of source and sink actors of edges in Ei) for i ∈ {1, 2, . . . , N}, we first com-

pute a biconnected-free partition V 1
i , V 2

i , . . . , V M
i of Vi in line 5 such that clustering

V 1
i , V 2

i , . . . , V M
i in Gi in line 6 does not introduce any biconnected component in
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the clustered version G′
i = (V ′

i , E
′
i) of Gi. After that, we apply Equation (8.12) on

G′
i to compute buffer sizes for E ′

i. Then in line 8, we apply the Ω-Acyclic-Buffering

algorithm recursively to each acyclic subgraph Gj
i = (V j

i , Ej
i ) that is induced from

the partition V j
i for j ∈ {1, 2, . . . , M}.

Theorem 8.18. Given a consistent, acyclic SDF graph G = (V, E), the Ω-Acyclic-

Buffering algorithm gives buffer sizes that sustain the maximum achievable through-

put in Ω-scheduling over any actor execution time function.

Proof. Let gVi
denote gcdv∈Vi

qG[v], and let vj
i ∈ V ′

i denote the supernode of V j
i for

j ∈ {1, 2, . . . , M} in G′
i.

Suppose for every v ∈ V , qG[v]× t(v) equals a constant value T . First, we

assume the buffer sizes of each individual biconnected subgraph Gi = (Vi, Ei) for

i ∈ {1, 2, . . . , N} are set such that each actor v ∈ Vi can fire continuously at rate

(qG[v]/gVi
)/(T/gVi

) after a finite transient phase. We refer to this assumption as

Assumption (a) . With this Assumption (a) and based on Theorem 8.17, by setting

buffer sizes for bridges EB as in line 2, each actor v ∈ V can fire continuously at the

rate qG[v]/T after a finite transient phase — this is because by starting with a bridge

[u, v] ∈ EB or a biconnected component Ei and gradually including adjacent bridges

and biconnected components, we can derive by mathematical induction (similar to

the proof in Theorem 8.17) that each actor in the graph induced from the current

included bridges and biconnected components can fire continuously after a finite

transient phase.

Next we show that lines 5-10 make each biconnected subgraph Gi satisfy As-
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sumption (a). First, in line 5, a biconnected-free partition V 1
i , V 2

i , . . . , V M
i of Gi

always exists for M = 2 because clustering any 2-way partition based on a topolog-

ical sort of an acyclic SDF graph always results in an acyclic two-actor SDF graph,

which is free from biconnected components.

We now make another assumption (Assmption b) that by applying Ω- Acyclic-

Buffering recursively to each individual subgraph Gj
i for j ∈ {1, 2, . . . , M}, each

actor v ∈ V j
i can fire continuously at rate (qG[v]/gV j

i
)/(T/gV j

i
).

Based on SDF clustering [7], we can derive that for each supernode vj
i ∈ V ′

i ,

qG′

i
[vj

i ] = gV j
i
/gVi

, and for each edge e′ ∈ E ′, e′ is transformed from an edge

e ∈ {e ∈ E|src(e) ∈ V j
i and snk(e) ∈ V k

i and j 6= k} such that

prd(e′) = prd(e)× qG[src(e)]/gV j
i

and cns(e′) = cns(e)× qG[snk(e)]/gV k
i
. We refer

to this property as Property (c) in the remainder of this proof.

Now based on Assumption (b) and Property (c), the execution time for vj
i can

be interpreted as T/gV j
i
. Then by setting buffer sizes for E ′

i as in line 7 and based

on Theorem 8.17, each vj
i is able to fire continuously after a finite transient phase

— we refer to this property as Property (d).

Based on Assumption (b) and Properties (c) and (d), we can derive that

Assumption (a) is satisfied for each biconnected subgraph.

Assumptions (a) and (b) are interdependent in the recursive application of the

Ω-Acyclic-Buffering algorithm. However, we can always reach a subgraph that con-

tains no biconnected components at the end of the recursion because a biconnected-

free partition always exists for an acyclic biconnected graph. As a result, the interde-

pendence of assumptions (a) and (b) can be solved in a recursive way. Therefore, in
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the case when qG[v]× t(v) equals a constant T for every v ∈ V , Ω-Acyclic-Buffering

is able to make each actor v ∈ V fire continuously at rate qG[v]/T = 1/t(v) after

a finite transient phase, this results in the maximum achievable throughput 1/T

by Property 8.14 and Theorem 8.8. We refer to this property in the subsequent

discussion as Property (e).

As in the proof of Theorem 8.17, we denote maxv∈V (qG[v]× t(v)) by T , and

Vmax = {v ∈ V |qG[v]× t(v) = T}. Comparing (e) to the case where qG[v]× t(v) is

not constant across v ∈ V , for an actor v ∈ {V − Vmax}, the smaller qG[v]× t(v)

does not affect the cycle means of the self loops of Vmax. Therefore, the Ω-Acyclic-

Buffering algorithm gives the maximum achievable throughput

1/maxv∈V (qG[v]× t(v)) in Ω-scheduling over any actor execution time function.

In our implementation of Ω-Acyclic-Buffering, we apply 2-way partitioning for

each biconnected subgraph. For efficiency, our approach simply computes a topo-

logical sort of a biconnected subgraph and chooses the best 2-way cut that results

in least buffer requirements for cross edges (E ′
i). With efficient data structures, the

operations in Ω-Acyclic-Buffering can be implemented in linear time (i.e., in time

that is linear in the number of nodes and edges in the graph) — computing bicon-

nected components and bridges can be done in linear time [16]; given a topological

sort, finding the best 2-way cut can be implemented in linear time; and topological

sorting has linear time complexity as well [16].
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8.4 Compile-Time Scheduling Framework

In the previous section, we introduced Ω-scheduling and associated strategies

for throughput analysis and buffering. In this section, we develop compile-time

scheduling techniques (including techniques for clustering, ordering, and buffering)

based on the Ω-scheduling concept to construct inter-thread communication (ITC)

SDF graphs for multithreaded execution.

8.4.1 Clustering and Actor Vectorization

The simplest way to imitate Ω-scheduling in multithreaded environments is

to execute each actor by a separate thread and block actor execution until it is

bounded-buffer fireable. However, threads share processing resources, and the avail-

able resources on a multi-core processor is limited — usually 2 or 4 processing units.

As a result, threads are competing for processing units for both execution and syn-

chronization, i.e., checking bounded-buffer fireability. Since the ideal situation is to

spend all processing time in actor execution, minimizing synchronization overhead

becomes a key factor. In Ω-scheduling, synchronization overhead increases with

the repetitions vector of the SDF graph because bounded-buffer fireability must

be maintained for every actor firing. Here, we use QG =
∑

v∈V qG[v] to represent

the synchronization overhead associated with a consistent SDF graph G = (V, E) in

Ω-scheduling.

Clustering combined with static intra-cluster scheduling is one of our strategies

to reduce synchronization overhead. After clustering partitions of nodes based on
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SDF clustering [7], each cluster is subject to single-thread execution, and the sched-

ule of each cluster (subgraph) is statically computed. We formalize this scheduling

strategy in Definition 8.19 and Definition 8.20. The strategy is defined in a general

way such that each cluster is assigned to a processing unit (instead of to a thread

specifically) and is applicable to scheduling SDF graphs for resource-constrained

multiprocessors by controlling the number of partitions.

Definition 8.19. Given a consistent SDF graph G = (V, E), a consistent partition

P of G is a partition Z1, Z2, . . . , Z|P | of V such that the SDF graph GP resulting

from clustering Z1, Z2, . . . , Z|P | in G is consistent.

Note that actors in a subset Zi are not necessarily connected. For this reason,

we extend the definition of SDF clustering [7] to allow clustering a disconnected sub-

set Zi ⊂ V by adding the following provision: if

Gi = (Zi, Ei = {e ∈ E|src(e) ∈ Zi and snk(e) ∈ Zi}) is disconnected, qGi
[v] is de-

fined as qG[v]/gcdz∈Zi
qG[z] for each actor v ∈ Zi.

Definition 8.20. Given a consistent SDF graph G = (V, E), Π-scheduling is de-

fined as the SDF scheduling strategy that 1) transforms G into a smaller consistent

SDF graph GP = (VP = {v1, v2, . . . , v|P |}, EP ) by clustering a consistent partition

P = Z1, Z2, . . . , Z|P | of G; 2) statically computes a minimal periodic schedule Si for

each subgraph Gi = (Zi, Ei = {e ∈ E|src(e) ∈ Zi and snk(e) ∈ Zi}) such that exe-

cution of supernode vi ∈ VP corresponds to executing one iteration of Si; and 3)

applies Ω-scheduling on GP .

After clustering a subset Zi into a supernode vi, the repetition count of vi in GP
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becomes qGP
[vi] = gcdv∈Zi

qG[v]. With well-designed clustering algorithm, clustering

can significantly reduce synchronization overhead from the range of QG =
∑

v∈V qG[v]

down to the range of QGP
=
∑

v∈VP
qGP

[v], but at the expense of buffer requirements

and throughput. Clustering may increase buffer requirements because the interface

production and consumption rates of the resulting supernodes are multiplied in or-

der to preserve multirate consistency [7]. Clustering also decreases throughput due

to less parallelism. In the following theorem, we analyze the clustering effect on

the throughput of Ω-scheduling, assuming negligible runtime overhead in executing

static schedules and determining bounded-buffer fireability.

Theorem 8.21. Suppose that we are given a consistent SDF graph G = (V, E), a

buffer size function fB, and an actor execution time function fT . Suppose also that

P = Z1, Z2, . . . , Z|P | is a consistent partition of G and

GP = (VP = {v1, v2, . . . , v|P |}, EP ) is the SDF graph resulting from clustering P .

Then a throughput upper bound for G in Π-scheduling, or equivalently, a throughput

upper bound for GP in Ω-scheduling is

1

maxZi∈P (
∑

v∈Zi
(qG[v]× t(v)))

. (8.13)

In addition, if GP is acyclic, Equation (8.13) gives the maximum achievable through-

put.

Proof. Based on Definition 8.20, because each supernode vi ∈ VP is assigned to a

separate processing unit, and because firing vi corresponds to executing one iteration

of a minimal periodic schedule of the corresponding subgraph Gi = (Zi, Ei), the exe-

cution time of vi is t(vi) =
∑

v∈Zi
(qGi

[v]× t(v)). By Theorem 8.10, the throughput
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upper bound for GP in Ω-scheduling is

1/maxvi∈VP
(qGP

[vi]× t(vi))

=1/maxvi∈VP
(qGP

[vi]×
∑

v∈Zi

(qGi
[v]× t(v)))

=1/maxZi∈P (gcdz∈Zi
qG[z]×

∑

v∈Zi

(qG[v]/gcdz∈Zi
qG[z]× t(v)))

=1/maxZi∈P (
∑

v∈Zi

(qG[v]× t(v)))

By Theorem 8, Equation (8.13) is the maximum achievable throughput if GP is

acyclic.

Given a consistent SDF graph G = (V, E), Theorem 8.21 tells us that for

clustering a set of actors Zi ⊆ V into a supernode vi, a metric that significantly

affects the overall throughput is the sum of the repetition count (in terms of G) -

execution time products among all actors v ∈ Zi. For convenience, we denote this

value by SRTP and define SRTP(vi) = SRTP(Zi) =
∑

v∈Zi
(qG[v]× t(v)). Based

on Theorem 8.21, the cluster with the largest SRTP value dominates the overall

throughput.

In single-processor environments (single-processing unit), the ideal iteration

period for executing a consistent SDF graph G = (V, E) is

SRTP(G) =
∑

v∈V (qG[v]× t(v)) — that is, the time to execute one iteration of a

minimal periodic schedule of G. Now considering an N -core processor (N -processing

units), the ideal speed-up over a single-processor is N . In other words, the ideal

iteration period on an N -core processor is
∑

v∈V (qG[v]× t(v))/N , and equivalently,

the ideal throughput is N/
∑

v∈V (qG[v]× t(v)). In the clustering process, by im-
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posing Equation (8.14) as the constraint for each cluster (partition) Zi, the ideal

N -fold speed-up can be achieved theoretically when the SRTP threshold parameter

M in Equation (8.14) is greater than or equal to N .

∑

v∈Zi

(qG[v]× t(v)) ≤
∑

v∈V

(qG[v]× t(v))/M (8.14)

In practice, exact actor execution time information is in general unavailable,

and execution time estimates may cause large differences between compile-time and

run-time SRTP values. As a result, the SRTP threshold parameter M is usually

set larger than N in order to tolerate unbalanced runtime SRTP values — that is,

by having more small (in terms of compile-time SRTP value) clusters and using

multiple threads to share processing units. Based on our experiments, when N = 4,

the best M is usually between 16 and 32 depending on the graph size and other

factors.

Actor vectorization (actor looping) is our second strategy to reduce synchro-

nization overhead. Previous work related to actor vectorization in other contexts is

discussed in Chapter 3. The main idea in our approach to actor vectorization is to

vectorize (loop together) actor executions by a factor of the repetition count of the

associated actor. We define actor vectorization as follows.

Definition 8.22. Given a consistent SDF graph G = (V, E), vectorizing (loop-

ing) an actor v ∈ V by a factor k of qG[v] means: 1) replacing v by a vector-

ized actor vk such that a firing of vk corresponds to executing v consecutively

k times; and 2) replacing each edge e ∈ in(v) by an edge e′ ∈ in(vk) such that

cns(e′) = cns(e)× k, and replacing each edge e ∈ out(v) by an edge e′ ∈ out(vk)
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such that prd(e′) = prd(e)× k. For consistency, the vectorization factor must be

a factor of the repetition count of v. After vectorization, t(vk) = t(v)× k and

qG[vk] = qG[v]/k.

In practical highly multirate SDF graphs, repetitions vectors usually consist

of large, non-prime numbers [37]. As a result, actor vectorization is suitable for

synchronization reduction in this context, but at the possible expense of larger

latency (due to delaying the availability of output tokens in some cases) and larger

buffer requirements (due to the multiplication of production and consumption rates).

Because we never vectorize an actor beyond its repetition count, and again, because

long term simulations require significant numbers of iterations, latency has relatively

low priority in our context. Also note that actor vectorization does not change the

SRTP value of an actor.

8.4.2 Overview of Compile-Time Scheduling Framework

In our multithreaded simulation scheduler (MSS), we have developed a compile-

time scheduling framework that jointly performs the clustering, ordering, and buffer-

ing tasks as described in Section 8.1 at compile time. In this framework, we

strategically integrate several graph clustering and actor vectorization algorithms

in a bottom-up fashion such that each subsequent algorithm works on the clus-

tered/vectorized version of the graph from the preceding algorithm. This architec-

ture is presented in Figure 8.7. We also incorporate into this framework intra-cluster

scheduling techniques (which include ordering and buffering) as we developed in the
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Consistent ITC SDF graph

Consistent SDF graph

Figure 8.7: Architecture of the clustering and actor vectorization algorithms in MSS.

simulation-oriented scheduler (SOS) (see Chapter 7) such that static intra-cluster

schedules (as well as buffer sizes) can be computed along the way in the bottom-up

clustering process. Finally, we apply the inter-cluster buffering techniques as pre-

sented in Section 8.3.2 to compute buffer sizes for the top-level graph to achieve the

maximum achievable throughput theoretically in Ω-scheduling.

Given a consistent SDF graph v ∈ V as input to the compile-time scheduling

framework, the resulting graph Gitc = (Vitc, Eitc) is called an inter-thread communi-

cation (ITC) SDF graph (or simply ITC graph) because each node (cluster) in Gitc

is executed by a thread. The ITC graph is then passed to the runtime scheduling

part of MSS for multithreaded execution (see Section 8.5). In MSS, ITC graphs

are carefully constructed from input SDF graphs for proper trade-offs among the

following three related metrics:
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1. Synchronization overhead — Synchronization overhead is reduced by clus-

tering and actor vectorization such that the repetitions vector of the clus-

tered/vectorized SDF graph is much smaller, and hence, the time spent in

checking bounded-buffer fireability is minimized.

2. Throughput — Based on Theorem 8.21, clustering decreases throughput. In

order to approach the ideal throughput in a multi-core processor, Equation

(8.14) is imposed in the clustering process given a well-defined SRTP threshold

parameter M . As a result, the SRTP value of each resulting cluster in Gitc is

kept below the SRTP threshold — that is,
∑

v∈V (qG[v]× t(v))/M with respect

to the input graph G — if possible.

3. Buffer requirements — Simulation tools usually run on workstations and high-

end PCs where memory resources are abundant. However, without careful

design, clustering and actor vectorization may still run-out of memory due to

large multirate complexity [37]. In our approach, total buffer requirements are

managed within the given buffer upper bound. A proper buffer memory upper

bound can be derived from the available memory resources in the simulation

environment and other relevant considerations.

In this framework, all of the integrated algorithms emphasize low complexity

for minimizing the time spent in compile-time scheduling. In addition, clustering

algorithms are carefully designed to prevent introduction of cycles in the clustered

version of the graph. This is because cycles may cause deadlock due to cyclic data

dependence. Furthermore, even without deadlock, cycles may cause limitations in

the maximum achievable throughput. The following theorem provides a precise
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condition for the introduction of a cycle by a clustering operation. The proof can

be found in Section 7.3.5.

Theorem 8.23. Given a connected, acyclic SDF graph G = (V, E), clustering a sub-

set R ⊆ V introduces a cycle in the clustered version of G if and only if there is a path

v1→v2→· · ·→vn (n ≥ 3) in G such that v1 ∈ R, vn ∈ R, and v2, . . . , vn−1 ∈ {V −R}.

Clustering R is cycle-free if and only if no such a path exists.

In the following subsections, we introduce our algorithms for clustering and

actor vectorization. The complexity of an algorithm is represented in terms of

the number of vertices |V | and edges |E| in the input graph G = (V, E) for each

individual algorithm (not the overall graph to the scheduling framework). Based on

this, |V | and |E| (the input sizes for the various algorithms) get progressively smaller

through the bottom-up clustering process. For complexity analysis, we make the

assumption that every actor has a constant (limited) number of input and output

edges, i.e., |V | and |E| are within a similar range. This is a reasonable assumption

because actors in simulation tools are usually pre-defined, and practical SDF graphs

in communications and signal processing domains are sparse in their topology [7].

Our clustering and actor vectorization algorithms extensively use the iterative

approach, i.e., applying the same operations iteratively to the clustered or vectorized

version of the graph from the previous iteration. The following operations and

complexity analysis concepts are common to our algorithms. First, the repetitions

vector of the overall graph can be computed in linear time (i.e., in time that is linear

in the number of nodes and edges in the graph) [7], and once the repetitions vector
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has been computed, the SRTP value of each individual actor can be obtained in

constant time. Second, suppose G = (V, E) is an input SDF graph to an individual

algorithm. Based on SDF clustering [7], clustering a subset of actors Z ⊆ V into

a supernode α takes O(|Z|) running time. Suppose now that G′ is the graph that

results from the aforementioned clustering operation. Then the repetition count

and SRTP value of supernode α in G′ can be computed by qG′[α] = gcdv∈ZqG[v]

and SRTP(α) =
∑

v∈Z SRTP(v). As a result, repetition counts and SRTP values of

supernodes are available after clustering operations.

8.4.3 Strongly Connected Component Clustering

According to Theorem 8.10, the existence of cycles in an ITC SDF graph

may decrease the maximum achievable throughput depending on the locations and

magnitudes of edge delays in those cycles. Moreover, the presence of cycles re-

stricts application of many useful scheduling techniques in our framework. Cluster-

ing strongly connected components 1 (SCCs) is a well-known technique to generate

acyclic graphs [16]. Based on our analysis, if the SRTP value of each SCC satis-

fies Equation (8.14), clustering SCCs does not cause limitations in the achievable

throughput.

Given a consistent SDF graph, we first apply strongly connected component

clustering to cluster all SCCs, and this results in an acyclic SDF graph to be further

1A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices

Z ⊆ V such that for every pair of vertices u and v in Z, there is a path from u to v and a path

from v to u.
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processed by the subsequent algorithms. Each SCC subgraph is then scheduled

efficiently by the simulation-oriented scheduler (see Chapter 7). SCC clustering has

linear-time complexity — computing SCCs of a directed graph can be implemented

in linear time [16], and the complexity of clustering all SCCs is bounded by the

number of nodes and edges in the graph.

8.4.4 Iterative Source/Sink Clustering

In practical communication and signal processing systems, subsystems hav-

ing the form of chain- or tree-structures arise frequently. Based on Theorem 8.23,

clustering such subsystems at the source-end or sink-end does not introduce cycles

because there is only one connection between the subsystems and the rest of the

graph. In addition, if the SDF production and consumption rate (data rate) be-

havior involved in such a subsystem is successively divisible in certain ways, then

clustering such a subsystem does not increase the production or consumption rates

of the resulting supernode. Figure 8.8 illustrates our targeted subsystems. The idea

of iterative source/sink clustering (ISSC) is to jointly explore the chain- or tree-

structures and the successively divisible rate behavior in a low-complexity manner

such that clustering is always cycle-free and does not increase the buffer require-

ments.

Here, we first define some notation that is useful to our development. Given

a directed graph G = (V, E), we say that a vertex v ∈ V is a source if v does not

have any input edges (in(v) = ∅), and is a sink if v does not have any output edges
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Figure 8.8: Examples of targeted subsystems in ISSC.

(out(v) = ∅). For an edge e ∈ E, we say that src(e) is a predecessor of snk(e), and

snk(e) is a successor of src(e). For a vertex v, we denote all of v’s predecessors by

pre(v), denote all of v’s successors by suc(v), and denote all of v’s adjacent actors

by adj (v) = {pre(v) + suc(v)}. We then define the ISSC technique as follows.

Definition 8.24. Given a consistent, acyclic SDF graph G = (V, E), the iterative

source/sink clustering (ISSC) technique iteratively clusters:

1) a source actor u with its successor if 1-a) u has one and only one successor v, 1-b)

qG[u] is divisible by qG[v], and 1-c) SRTP(u) + SRTP(v) is less than or equal to

the SRTP threshold; or

2) a sink actor v with its predecessor if 2-a) v has one and only one predecessor

u, 2-b) qG[v] is divisible by qG[u], and 2-c) SRTP(u) + SRTP(v) is less than or

equal to the SRTP threshold.

Clustering based on these conditions continues until there is no further clustering

can be performed. After each iteration, G represents the clustered version of the

graph that is subject to the next iteration.

Note that condition 1-b in Definition 8.24 can also be interpreted as: ∀e ∈ [u, v],

cns(e) is divisible by prd(e); and similarly, condition 2-b can be interpreted as:

∀e ∈ [u, v], prd(e) is divisible by cns(e). Because of divisible data rates, each two-
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ISSC(G)
input: a consistent acyclic SDF graph G = (V, E)
1 for the next actor v in G

/* the next actor refers to the supernode from the previous iteration or
the next actor that has not yet been visited in the current G */

2 if v satisfies condition 1 or condition 2 in Definition 8.24
3 cluster v and its adjacent actor
4 end

5 end

Figure 8.9: Iterative source/sink clustering algorithm.

actor cluster constructed in ISSC iterations can be scheduled efficiently by flat

scheduling (see Section 7.3.6).

Figure 8.9 presents the ISSC algorithm. In the for loop in line 1, “the next

actor” represents the new supernode from the previous iteration if the previous

iteration has performed clustering, or the next actor that has not yet been visited in

the current version of G. By this definition, the number of actors processed by the

for loop is bounded by O(|V |). With efficient data structures, obtaining “the next

actor” can be performed in constant time, and verifying qualification of an actor

for Definition 8.24 also takes constant time. As a result, the ISSC algorithm has

linear-time complexity.

8.4.5 Single-Rate Clustering

Intuitively, a single-rate subsystem in an SDF graph is a subsystem in which all

actors execute at the same average rate. In precise terms, an SDF graph is a single-

rate graph if for every edge e, we have prd(e) = cns(e). In practical communication

and signal processing systems, single-rate subsystems arise commonly, even within

designs that are heavily multirate at a global level. Since clustering single-rate
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subsystems does not increase production and consumption rates at the interface of

the resulting supernodes, we integrate the single-rate clustering (SRC) technique in

our framework. SRC has been developed in the simulation-oriented scheduler (see

Chapter 7), and Section 7.3.5 presents the SRC algorithm, which takes O(|E|2) time.

Here, we define SRC again as follows. For the associated algorithm and theorems,

we refer the reader to Section 7.3.5.

Definition 8.25. Given a connected, consistent, acyclic SDF graph G = (V, E), the

single-rate clustering (SRC) technique clusters disjoint subsets R1, R2, . . . , RN ⊆ V

such that: 1) in the subgraph Gi = (Ri, Ei), we have that

∀ei ∈ Ei = {e ∈ E | src(e) ∈ Ri and snk(e) ∈ Ri}, prd(ei) = cns(ei); 2) the cluster-

ing of Ri does not introduce any cycles into the clustered version of G; 3) Ri satisfies

|Ri| > 1 (i.e., Ri contains at least two actors); and 4) each Ri contains a maximal

set of actors that satisfy all of the three conditions above. Such Ris are defined as

single-rate subsets; and such Gis are defined as single-rate subgraphs.

In addition to Definition 8.25, in order to maintain the achievable throughput

in multithreaded execution, a single-rate subset Ri whose SRTP value is larger than

the SRTP threshold is further partitioned into multiple single-rate clusters such that

each cluster satisfies Equation (8.14) whenever possible. By partitioning Ri based

on a topological sort2, clustering single-rate clusters is cycle-free. This additional

process requires only linear time because topological sorts can be computed in linear

time [16]. Due to their simple structure, single-rate subgraphs (clusters) can be

2A topological sort of a directed acyclic graph G = (V, E) is a linear ordering of V such that

for every edge (u, v) in G, u appears before v in the ordering.
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statically scheduled and optimized effectively by flat scheduling [7] in linear time,

which simply computes a topological sort and iterates each actor by its repetition

count. For more details, we refer the reader to Section 7.3.5.

8.4.6 Parallel Actor Clustering

In practical communication and signal processing systems, subsets of parallel

actors often exist. Here, we say actors u and v are parallel if they are mutually

unreachable 3 — that is, there is no path from u to v nor from v to u. According

to Theorem 8.23, clustering parallel actors is cycle-free because there is no path

between any pair of parallel actors. In addition, based on our extended definition of

SDF clustering, clustering parallel actors with the same repetition count does not

increase the production and consumption rates of the resulting supernode.

In general, computing reachability information of a directed graph requires

Θ(|V |3) time by the Floyd-Warshall algorithm [16], and updating reachability in-

formation after a clustering operation requires at least O(|V |2) time. However, the

complexity of this process is too high to satisfy our goal in minimizing scheduling

runtime. Moreover, arbitrarily clustering parallel actors often introduces new bi-

connected components or expands existing biconnected components. Figure 8.10

illustrates such an example: actors d and e are parallel and have the same repe-

tition count, but clustering {d, e} introduces a biconnected component. Based on

Ω-Acyclic-Buffering, introduction and expansion of biconnected components gener-

ally complicates the buffer computation problem and may increase the overall buffer

3Given a directed graph, a vertex v is reachable from u if there is a path from u to v.

170



a

d

b

e

c

1

10 1

1

1

1

101
a b

de

c

1

10 1

11

1

101

Figure 8.10: Introduction of a biconnected component due to clustering.

requirements.

The idea of parallel actor clustering is to jointly explore parallel structures

and associated repetition count properties such that clustering does not increase

the production and consumption rates of the resulting supernodes and does not

introduce cycles nor biconnected components.

Here, we first present a topological ranking technique as shown in Figure 8.11

that helps us to explore certain parallel structures in linear running time. This

technique is motivated by graph drawing technique employed in DOT [23]. Given

a directed acyclic graph G = (V, E), the idea of topological ranking is to assign an

integer value (rank) r(v) to each vertex v ∈ V such that for each edge e ∈ E, we

have r(snk(e)) > r(src(e)), and vertices with the same rank are parallel.

Property 8.26. Suppose the topological ranking algorithm (as presented in Figure

8.11) is applied to a directed acyclic graph, then vertices with the same rank are

parallel.

Note that parallel actors may not have the same rank. Topological ranking is

primarily developed as a low-complexity approach to explore certain parallel struc-

tures in directed acyclic graphs. With the above technique, we present the parallel
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TOPOLOGICAL-RANKING(G)
input: a directed acyclic graph G = (V, E)
1 for v ∈ V r(v) = −∞ end

2 list L = TOPOLOGICAL-SORT(G)
3 pop the first vectex v from L, set r(v) = 0
4 while L is not empty
5 for v ∈ L in the forward direction
6 P = {α ∈ pre(v)|r(α) 6= −∞}
7 if P 6= ∅ r(v) = maxα∈P r(α) + 1, remove v from L end

8 end

9 for v ∈ L in the reverse direction
10 S = {α ∈ suc(v)|r(α) 6= −∞}
11 if S 6= ∅ r(v) = minα∈Sr(α) − 1, remove v from L end

12 end

13 end

Figure 8.11: Topological ranking algorithm.

actor clustering technique as follows.

Definition 8.27. Given a consistent, acyclic SDF graph G = (V, E) and a topologi-

cal rank of G, the parallel actor clustering (PAC) technique iteratively clusters a set

of actors R (|R| > 1) that satisfy the following conditions until no further clustering

can be made:

1) all actors in R have the same rank;

2) all actors in R have the same repetition count;

3) {(all actors in R have the same predecessor v) and (the edges between v and R,

Ev,R = {e|src(e) = v and snk(e) ∈ R}, belong to the same biconnected compo-

nent or Ev,R are bridges)} or

{(all actors in R have the same successor u) and (the edges between R and u,

ER,u = {e|src(e) ∈ R and snk(e) = u}, belong to the same biconnected compo-

nent or ER,u are bridges)}; and

4) SRTP(R) is less than or equal to the SRTP threshold.
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Such R is defined as a parallel actor subset. After each iteration, the resulting

supernode inherits the same rank, and G represents the clustered version of the

graph that is subject to the next iteration.

In Definition 8.27, condition 3 prevents introduction of biconnected compo-

nents. Scheduling for a parallel actor subset R is trivial. Because precedence con-

straints do not exist in R, and since actors in R have the same repetition count,

a static schedule can be easily constructed by firing each actor once in any order.

Buffering is not required because parallel actor subgraphs do not contain edges.

Figure 8.12 presents the PAC algorithm. In Figure 8.12, we first compute a

topological ranking for G in linear time. For fast implementation, we also compute

biconnected components E1, E2, . . . , EN of G in advance. Then for each edge e in

a biconnected component Ei, we assign an identifier b(e) = i, and for each bridge

edge e, we assign b(e) = 0. This process can also be done in linear time. Now

given pre(v) in line 4, parallel actor subsets can be computed by 1) sorting and

partitioning pre(v) based on the same rank values, the same repetition counts, and

the same biconnected component identifiers of the corresponding edges to v, and

then 2) partitioning each resulting subset if its SRTP value is larger than the SRTP

threshold. With efficient data structures, computing parallel actor subsets from

pre(v) can be implemented in O(|pre(v)| log(|pre(v)|)) time. We apply the same

approach for suc(v) in line 7. After clustering a parallel actor subset R into a

supernode α, α can inherit the same rank and the same repetition count, and the

resulting input and output edges of α can inherit the same biconnected component
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PAC(G)
input: a consistent acyclic SDF graph G = (V, E)
1 TOPOLOGICAL-RANKING(G)
2 {E1, E2, . . . , EN} = BICONNECTED-COMPONENTS(G)
3 for the next actor v in G

/* the next actor refers to the next actor that has not yet been visited in the
current version of G including the supernodes from the previous iterations */

4 if pre(v) contains parallel actor subsets R1, R2, . . . , Rm

5 cluster R1, R2, . . . , Rm

6 end

7 if suc(v) contains parallel actor subsets Z1, Z2, . . . , Zn

8 cluster Z1, Z2, . . . , Zn

9 end

10 end

Figure 8.12: Parallel actor clustering algorithm.

identifiers without further computation.

In the for loop in line 3, “the next actor” refers to the next actor that has not

yet been visited in the current version of G, which includes the newly constructed

supernodes from previous iterations. Again, with efficient data structures, obtaining

“the next actor” can be done in constant time, and the number of actors processed

by the for loop is bounded by O(|V |). As discussed in Section 8.4.2, we assume every

actor has limited number of input and output edges. Therefore, the PAC algorithm

has linear-time complexity O(|E|).

Based on our experiments, parallel actor clustering is very effective at cluster-

ing parallel structures such as that shown in Figure 8.13. In some well-structured

cases, parallel actor clustering can even eliminate biconnected components.

8.4.7 Divisible-Rate Clustering

In practical communication and signal processing systems, data rate behavior

associated with an actor and its surrounding actors possesses certain valuable prop-

174



ba c

e

d

10

1

1

10

1

1

88 a

b

c

d

10
1

11

10
1

1010

Figure 8.13: Parallel actor clustering examples.

erties that can be explored in our clustering framework. For example, single-rate

clustering exploits single-rate subsystems. In this section, we present the divisible-

rate clustering technique to explore both single-rate and multirate behavior of an

actor in relation to its adjacent actors such that buffer requirements can be main-

tained after clustering.

Definition 8.28. Given a consistent, acyclic SDF graph G = (V, E), the divisible-

rate clustering (DRC) technique iteratively clusters an actor v with one of its can-

didate adjacent actors u ∈ adj (v) such that:

1) either 1-a) qG[v] = qG[u] or 1-b) for every x ∈ adj (v), qG[v] is divisible by qG[x],

and qG[u] is divisible by qG[x];

2) SRTP(v) + SRTP(u) is less than or equal to the SRTP threshold; and

3) clustering {v, u} is cycle-free.

This clustering process continues until no further clustering can be performed. After

each iteration, G represents the clustered version of the graph that is subject to the

next iteration.

In the divisible-rate clustering process, a candidate pair of adjacent actors

{v, u} is carefully chosen in each iteration. Suppose {v, u} satisfies condition 1-a
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in Definition 8.28, then clustering {v, u} does not increase the interface data rates

of the resulting supernode. Suppose {v, u} satisfies condition 1-b and suppose α

represents the resulting supernode, then based on SDF clustering [7], for an edge

e ∈ in(α), if cns(e) has been increased due to clustering, then prd(e) is divisible

by cns(e), and for an edge e ∈ out(α), if prd(e) has been increased, then cns(e)

is divisible by prd(e). In many intra-cluster scheduling and inter-cluster buffering

scenarios, this divisible-rate property maintains the buffer requirements of input and

output edges for the resulting supernodes. In addition, the two-actor cluster {v, u}

can be scheduled efficiently by the flat scheduling [7] because qG[v] is divisible by

qG[u].

Figure 8.14 presents the DRC algorithm. Verifying a target actor v and finding

a candidate adjacent actor u of v for both condition 1 and condition 2 in Definition

8.28 take O(|adj (v)|) time. For condition 3, we have developed an algorithm in

Section 7.3.5 to determine whether clustering a pair of adjacent actors is cycle-free

based on Theorem 8.23, and this algorithm takes O(|V |+ |E|) time. Again, as with

Figure 8.9, obtaining “the next actor” in the for loop in line 1 can be performed in

constant time, and the number of actors processed by the for loop is bounded by

O(|V |). As a result, the complexity of the DRC algorithm is O(|E|2).

8.4.8 Consumption-/Production-Oriented Actor Vectorization

Modeling real-world communication and signal processing systems as SDF

graphs usually involves large numbers of components that are interconnected in
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DRC(G)
input: a consistent acyclic SDF graph G = (V, E)
1 for the next actor v in G

/* the next actor refers to the supernode from the previous iteration or
the next actor that has not yet been visited in the current G */

2 if there exists an adjacent actor u of v that satisfy Definition 8.28
3 cluster {v, u}
4 end

5 end

Figure 8.14: Divisible-rate clustering algorithm.

complex topologies, and have heavily multirate behavior. The techniques introduced

from Section 8.4.4 to Section 8.4.7 are effective in clustering such SDF graphs (for

synchronization reduction) while maintaining the buffer requirements. The resulting

SDF graphs in general have significantly smaller sizes and contain mixes of single-

rate and multirate edges. The remaining single-rate edges are largely due to the

SRTP threshold that prevents us from completely clustering single-rate subsets.

Here, we define an SDF edge e to be rate-indivisible if prd(e) and cns(e) are

mutually indivisible; to be production-rate-divisible if prd(e) is divisible by cns(e);

and to be consumption-rate-divisible if cns(e) is divisible by prd(e). By further

investigation of multirate behavior in the practical SDF graphs, we have observed

that subsystems containing neighboring, production-rate-divisible or consumption-

rate-divisible interconnections often exist in highly multirate systems, and these

subsystems may also interact with rate-indivisible interconnections.

In the remainder of this section, we focus on actor vectorization techniques.

Given a consistent, acyclic SDF graph G = (V, E), the ideal situation for actor vec-

torization is to vectorize each actor v ∈ V by its repetition count qG[v], and have

the total buffer requirement of the vectorized version of G remain within the given
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upper bound. Again, in our context, a proper buffer memory upper bound can be

derived from the available memory resources and other relevant considerations. In

this case, the resulting ITC graph is just a single-rate SDF graph, and the synchro-

nization overhead is reduced to the range of |V |. However, due to large-scale and

heavily multirate behavior involved in modern communication and signal processing

systems, the ideal situation may not happen in general.

For this purpose, we develop the consumption-oriented actor vectorization

(CAV) technique and the production-oriented actor vectorization (PAV) technique in

this subsection and the iterative actor vectorization (IAV) technique in the following

subsection to strategically trade off buffer cost for synchronization reductions. In

the vectorization process, the total buffer requirement is carefully kept under control

within the given upper bound to prevent out-of-memory problems. Given a buffer

computation function fB for G, we use fI(G, fB, v → vk) to denote the increase in

buffer requirements when vectorizing an actor v by a factor k. This notation is

important to our developments of actor vectorization techniques.

By Definition 8.22, a vectorization factor must be a factor of the actor’s rep-

etition count in order to maintain graph consistency. However, heavily multirate

systems often result in extremely high repetition counts, e.g., even up to the range

of millions, as we show in Section 7.5. As a result, the complexity to determine op-

timal vectorization factors is in general unmanageable in highly multirate systems.

In this subsection, we use divisible multirate properties associated with an actor v

and its adjacent actors to determine possible vectorization factors — that is, for an

adjacent actor u of v, if qG[v] is divisible by qG[u], then qG[v]/qG[u] is considered
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as a vectorization factor for v.

The idea of our CAV technique is to take advantage of consumption-rate-

divisible edges for actor vectorization and to explore single-rate clustering opportu-

nities exposed by such actor vectorizations. CAV favors latency because the source

actor of a consumption-rate-divisible edge is vectorized to match the rate of the sink

actor. The design of CAV also prevents propagation of indivisible rates — without

careful design, such propagation may cause larger buffer requirements and reduce

opportunities for proper clustering. Here, we present the CAV technique as follows.

Definition 8.29. Suppose that we are given a consistent, acyclic SDF graph

G = (V, E), a buffer computation function fB, and a buffer memory upper bound U .

The consumption-oriented actor vectorization (CAV) technique iteratively selects an

actor v for vectorization and clustering until there no further vectorization can be

performed or the total buffer requirement approaches the upper bound U . An actor

v ∈ V is considered as a candidate for vectorization if:

1) for every x ∈ suc(v), qG[v] is divisible by qG[x];

2) there exists an actor u ∈ suc(v) such that for every x ∈ suc(v), qG[u] is divisible

by qG[x]; and

3) the buffer cost increase fI(G, fB, v → vk) resulting from vectorizing v by a factor

k = qG[v]/qG[u] does not overflow the upper bound U .

In each iteration, CAV selects a candidate actor v whose repetition count qG[v] is

maximal over all candidates and then vectorizes v by the factor k. After vectoriza-

tion, CAV iteratively clusters v with its adjacent actor u ∈ adj (v) if:
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a) qG[v] = qG[u] (single-rate);

b) SRTP(v) + SRTP(u) is less than or equal to the SRTP threshold; and

c) clustering {v, u} is cycle-free.

After each actor vectorization and clustering iteration, G represents the vectorized

or clustered version of the graph that is subject to the next iteration.

In Definition 8.29, conditions 1 and 2 prevent propagation of indivisible rates,

and condition 3 prevents buffer overflow. After each clustering operation, the

two-actor cluster {v, u} can be scheduled efficiently by flat scheduling [7] because

qG[v] = qG[u].

Figure 8.15 presents the CAV algorithm. In our implementation within MSS,

we first apply the Ω-Acyclic-Buffering algorithm as fB to compute buffer require-

ments, and we also keep the hierarchical structures constructed from the decom-

positions of biconnected components in Ω-Acyclic-Buffering. By maintaining the

hierarchical structures, the buffer requirements for bridge edges (EB in Figure 8.6)

can be computed in constant time based on the updated production and consump-

tion rates, and the buffer requirements for edges across clusters (E ′
i in Figure 8.6)

can also be computed in constant time based on the updated production and con-

sumption rates and the updated repetition counts of the clusters.

Given a consistent, acyclic SDF graph G = (V, E), based on Definition 8.29,

the complexity to verify an actor v as a candidate and to determine the vectoriza-

tion factor k is O(|suc(v)|). In each iteration, the running time to select a can-

didate actor v whose repetition count is maximal over all candidates is bounded
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CAV(G,fB,U)
input: a consistent acyclic SDF graph G = (V, E),

a buffer computation function fB, and a buffer memory upper bound U
1 compute buffer sizes by fB

2 while there exists a repetition-count-maximal, candidate actor v based on Definition 8.29
3 vectorize v by the vectorization factor k determined by Definition 8.29
4 iteratively cluster v with its adjacent actors adj (v) based on Definition 8.29
5 update buffer sizes
6 end

Figure 8.15: Consumption-oriented actor vectorization algorithm.

by O(
∑

v∈V |suc(v)|) = O(|E|). In addition, the complexity involved in lines 3-5 is

bounded by O(|E|). As a result, the complexity of an actor vectorization iteration

is O(|E|). Finally, consider the worst case situation where the repetition counts for

every pair of actors in V are divisible, and each actor repetition count in qG is a

unique value. Then an actor can be selected for vectorization in a maximum of |V |

different iterations. Therefore, the complexity of the joint actor vectorization and

clustering technique is bounded by O(|V |2|E|).

At first, this complexity appears relatively high in relation to the objective of

low complexity. However, due to the design of our compile-time scheduling frame-

work, which applies a series of clustering techniques (as described in Section 8.4.3

to Section 8.4.7), |V | and |E| are typically much smaller compared to the numbers

of actors and edges in the overall SDF graph.

The PAV technique is similar to CAV, but PAV focuses on production-rate-

divisible edges. In MSS, CAV is applied before PAV because buffer cost can be

traded off for both synchronization overhead and latency by CAV.

181



8.4.9 Iterative Actor Vectorization

The actor vectorization techniques discussed in the previous subsection are

able to explore both actor vectorization and clustering opportunities in subsystems

that contain consecutive, consumption-rate-divisible or production-rate-divisible in-

terconnections. In this subsection, we present a general actor vectorization ap-

proach, called iterative actor vectorization (IAV). This approach trades off buffer

cost for synchronization cost, and also handles indivisible multirate interconnections.

As discussed in Section 8.4.1, we use QG =
∑

v∈V qG[v] to represent syn-

chronization overhead associated with a consistent SDF graph G = (V, E) in Ω-

scheduling. Based on this representation, after vectorizing an actor v ∈ V by a

factor k of qG[v], the amount of synchronization reduction can be represented by

qG[v](1− 1/k). Then, a general strategy is to vectorize a properly-chosen actor by

a well-determined factor such that the synchronization reduction can be maximized

while the penalty in buffer cost is minimal. Based on this observation, we define the

synchronization reduction to buffer increase ratio (or simply S/B ratio) —

RS/B :
qG[v](1− 1/k)

fI(G, fB, v → vk)
(8.15)

as the cost function for actor vectorization.

As discussed in the previous subsection, the complexity of finding optimal

vectorization factors is in general unmanageable in highly multirate systems. In

this approach, we use multirate behavior associated with an actor v and its adjacent

actors to determine candidate vectorization factors — that is, for an adjacent actor

u of v, if qG[v] > qG[u], then qG[v]/gcd(qG[v], qG[u]) is considered as a vectorization
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factor for v.

Based on the above derivations, we develop the iterative actor vectorization

technique as follows.

Definition 8.30. Suppose that we are given a consistent, acyclic SDF graph

G = (V, E), a buffer computation function fB, and a buffer memory upper bound U .

The iterative actor vectorization (IAV) technique iteratively vectorizes an actor v by

a factor k of qG[v] until there no further vectorization can be performed or the total

buffer requirement approaches the upper bound U . An actor v ∈ V is considered

for vectorization if v is a local maximum — that is,

1) for every adjacent actor u ∈ adj (v), qG[v] ≥ qG[u], and

2) there exists at least one adjacent actor u ∈ adj (v) such that qG[v] > qG[u].

For such a local maximum actor v, the vectorization factor k is determined from the

factors
{

qG[v]

gcd(qG[v], qG[u])
, ∀u ∈ {u ∈ adj (v)|qG[u] < qG[v]}

}

(8.16)

such that the S/B ratio is maximized — that is, we maximize

RS/B :
qG[v](1− 1/k)

fI(G, fB, v → vk)

subject to the constraint that the buffer cost increase fI(G, fB, v → vk) does not

overflow the upper bound U . In each iteration, a local maximum actor v is chosen

such that the S/B ratio is maximized for v over all local maximum actors. After

vectorization, IAV iteratively clusters v with its adjacent actor u ∈ adj (v) if:

a) qG[v] = qG[u] (single-rate);

b) SRTP(v) + SRTP(u) is less than or equal to the SRTP threshold; and
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IAV(G,fB ,U)
input: a consistent acyclic SDF graph G = (V, E),

a buffer computation function fB, and a buffer memory upper bound U
objective: actor vectorization on G based on Definition 8.30
1 compute buffer sizes by fB

2 while there exists an actor v and a vectorization factor k
based on Definition 8.30 to maximize the S/B ratio for G

3 vectorize v by k
4 iteratively cluster v with its adjacent actors adj (v) based on Definition 8.30
5 update buffer sizes
6 end

Figure 8.16: Iterative actor vectorization algorithm.

c) clustering {v, u} is cycle-free.

After each iteration, G represents the vectorized version of the graph that is subject

to the next iteration.

Figure 8.16 presents the IAV algorithm as defined in Definition 8.30. We apply

the same buffering approach fB as described in Section 8.4.8. Given a consistent,

acyclic SDF graph G = (V, E), based on Definition 8.30, the number of possible

vectorization factors of an actor v ∈ V is bounded by O(|adj (v)|). For a vectorization

factor, the running time to compute the corresponding S/B ratio is O(|adj (v)|) —

this is because vectorizing v may increase the buffer sizes of its input and output

edges, and these increases should all be taken into account in determining the buffer

cost increase fI . As a result, the complexity to compute a vectorization factor that

maximizes the S/B ratio for v is O(|adj (v)|2).

In each iteration, considering the worst case situation where all actors are local

maxima, the complexity to jointly determine an actor and a vectorization factor that

maximizes the S/B ratio for G is O(
∑

v∈V |adj (v)|2). Let A denote the maximum

number of adjacent actors that an actor can have in G and the clustered versions
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of G. Because O(
∑

v∈V |adj (v)|) = O(|E|), we can represent O(
∑

v∈V |adj (v)|2) by

O(|E|A). Again, as discussed in Section 8.4.2, we assume every actor has limited

number of input and output edges — that is, for large G, A can be considered as

a constant. In addition, the complexity involved in lines 3-5 is bounded by O(|E|).

As a result, the complexity of an actor vectorization iteration is O(|E|). Finally,

considering the worst case situation that each actor repetition count in qG is a unique

value, each actor can be selected for vectorization in a maximum of |V | different

iterations. Therefore, the complexity of iterative actor vectorization is O(|V |2|E|).

8.5 Runtime Scheduling

In the previous section, we introduced the compile-time scheduling frame-

work in MSS. This framework integrates graph clustering, actor vectorization, intra-

cluster scheduling, and inter-cluster buffering techniques to construct inter-thread

communication (ITC) SDF graphs. In this section, we develop runtime scheduling

techniques for the assignment and synchronization tasks in scheduling ITC graphs

for multithreaded execution.

As discussed in Section 8.4, given a consistent SDF graph G = (V, E), the

compile-time scheduling framework constructs an ITC graph Gitc = (Vitc, Eitc) for

multithreaded execution. Here, we refer to vertices and edges in Gitc as ITC nodes

and ITC edges. An ITC node v ∈ Vitc represents either 1) an actor in G or 2) a

cluster of actors in G that is constructed during the clustering process. Firing v

once means executing either 1) the actor or 2) the static schedule (by intra-cluster
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scheduling) of the cluster for a specific vectorization factor that is determined during

the actor vectorization process. For each ITC edge e ∈ Eitc, its buffer size buf (e)

must also be set during the inter-cluster buffering process (Ω-Acyclic-Buffering) for

Gitc.

8.5.1 Self-Timed Multithreaded Execution Model

In the following definition, we develop the self-timed multithreaded execution

model to imitate Ω-scheduling for executing ITC graphs in multithreaded environ-

ments.

Definition 8.31. Given a consistent ITC SDF graph Gitc = (Vitc, Eitc), the self-

timed multithreaded execution model allocates a number of threads equal to the

number of ITC nodes |Vitc| and assigns each ITC node v ∈ Vitc to a separate thread.

Each thread executes the associated ITC node v as soon as v is bounded-buffer

fireable and blocks otherwise.

This execution model performs one-to-one static assignment between ITC

nodes and threads, and synchronizes multiple threads by bounded-buffer fireabil-

ity. It is called “self-timed” because each thread determines the time to fire its

own ITC node by itself. By Theorem 8.13, Ω-scheduling for Gitc is equivalent to

Ω-scheduling for the primitive graph G∗
itc = (Vitc, E

∗
itc) of Gitc, so we can even trans-

form Gitc to G∗
itc for efficient runtime synchronization — that is, when verifying

bounded-buffer fireability, parallel edge sets are now abstracted to primitive edges.

Figure 8.17 presents the SELF-TIMED-EXECUTION function that is exe-
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cuted by each thread in the self-timed execution model. For a calling thread, the

input graph G is either the ITC graph or the primitive version of the ITC graph,

and the input node v is the ITC node assigned to the calling thread. In Figure 8.17,

we use several multithreading-specific operations that are widely available in multi-

thread APIs, e.g., NSPR (Netscape Portable Runtime) [57] and Pthreads (Portable

Operating System Interface threads) [15]. These operations are underlined for em-

phasis: lock 4 and unlock are used for mutually exclusive access of an object; wait

5 blocks a thread until the condition variable for which it is waiting is signaled;

and signal (signal in Pthreads and notify in NSPR) wakes up all threads that are

waiting for the associated condition variable. For more details, we refer the reader

to [57, 15].

In the while loop in Figure 8.17, we first check whether the given ITC node

is bounded-buffer fireable. If the result is true, we fire v, otherwise, we force the

thread to wait for the signal indicating state transitions in any surrounding edges of

v in line 17. After firing v in line 6, we update the number of tokens tok(e) on each

input and output edge e of v. Then for each adjacent node u of v, we signal the

thread associated with u — if the thread is waiting, it is woken up to check whether

u is bounded-buffer fireable due to v’s firing. For synchronization purposes and for

4Any thread that attempts to acquire a lock that is held by another thread blocks until the

holder of the lock exits.
5wait should be called by a thread while the lock (mutex in Pthreads) associated with the

condition variable is locked, and the thread will automatically release the lock while it waits. After

a signal is received and a thread is awakened, the lock will be automatically locked for use by the

thread.
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SELF-TIMED-EXECUTION(G,v)
input: a consistent SDF graph G = (V, E), an assigned actor v
1 while simulation is not terminated
2 lock v’s lock
3 if v is bounded-buffer-fireable
4 unlock v’s lock
5 n = min(mine∈in(v)btok(e)/cns(e)c, mine∈out(v)b(buf (e)− tok(e))/prd(e)c)
6 fire v for n times
7 for each edge e ∈ in(v)
8 lock e’s lock, tok(e) = tok(e)− n× cns(e), unlock e’s lock
9 end

10 for each edge e ∈ out(v)
11 lock e’s lock, tok(e) = tok(e) + n× prd(e), unlock e’s lock
12 end

13 for each node u ∈ adj (v)
14 lock u’s lock, signal u’s condition-variable, unlock u’s lock
15 end

16 else

17 wait for v’s condition-variable to be signaled
18 unlock v’s lock
19 end

20 end

Figure 8.17: Self-timed multithreaded execution function.

correctness in multithreaded implementation, the lock (lock in NSPR and mutex

in Pthreads) associated with an ITC node is locked when verifying bounded-buffer

fireability as well as calling signal and wait operations. In addition, a lock mechanism

is also required when updating the state tok(e) on an edge e. To prevent from firing

consecutive invocations of v one at a time (which is wasteful of synchronization

operations), the number of times n to be repeated atomically for v is determined at

runtime in line 5.

8.5.2 Self-Scheduled Multithreaded Execution Model

In multithreaded environments, multithread APIs and operating systems sched-

ule the activities of threads and the usage of processing units. In the self-timed
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multithreaded execution model, the number of threads to be scheduled is equal to

the number of nodes in an ITC graph, even though the processing units are very

limited, e.g., 2 or 4 processing units in current multi-core processors. When the

number of fireable ITC nodes is larger than the number of processing units, multi-

threading APIs and operating systems take responsibility for scheduling. Motivated

by this observation, we also develop the self-scheduled multithreaded execution model

to provide an alternative method for executing ITC graphs in multithreaded envi-

ronments.

Definition 8.32. Given a consistent ITC graph Gitc = (Vitc, Eitc), the self-scheduled

multithreaded execution model allocates a number of threads equal to the number of

processing units. Each thread dynamically selects and executes an ITC node v ∈ Vitc

that is bounded-buffer fireable and free for execution (i.e., v is not executed by other

thread), and blocks when none of the ITC nodes are bounded-buffer fireable and

free for execution.

This execution model performs dynamic assignment between ITC nodes and

threads and synchronizes threads based on bounded-buffer fireability. It is called

“self-scheduled” because threads perform dynamic assignment by themselves.

Figure 8.18 presents the SELF-SCHEDULED-EXECUTION function that is

executed by each thread in the self-scheduled execution model. Again, the input

graph G is either the ITC graph Gitc or its primitive version. Initially before calling

this function, for each ITC node v ∈ Vitc, if v is bounded-buffer fireable, we push

v onto a fireable list L and set v’s state to fireable, otherwise, we set v’s state to
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not-fireable. The input list L then contains the ITC nodes that are initially bounded-

buffer fireable. Here, the state of an ITC node v is used to verify whether v is in L

or whether v is under execution in constant time such that other concurrent threads

do not mistakenly re-insert v into L (line 22).

Once execution control enters the while loop in line 3, we check whether there

are ITC nodes in L. If the result is true, we pop the first ITC node v from L, and

execute v for a number of times n that is determined at runtime. If L is empty —

i.e., no ITC nodes are bounded-buffer fireable and free for execution — we force the

thread to wait for a signal indicating changes in L (line 31). Returning back to line

8, after firing v, we update the number of tokens on input and output edges of v, and

examine whether v and whether the adjacent nodes of v are bounded-buffer fireable

— this is because state transitions in surrounding edges of v only affect bounded-

buffer fireability of v and its adjacent nodes. If they become bounded-buffer fireable,

we push them onto L. Finally, we signal the possible changes in L, and if there

are threads waiting for fireable ITC nodes, this will wake them up. Again, for

synchronization purposes and for correctness in multithreaded implementation, the

lock mechanism is applied whenever there is a change of state related to ITC nodes,

ITC edges, and the fireable list L.

8.6 Simulation Results

In practical implementation of MSS, estimates of actor execution times are

required in order to compute the SRTP value of each actor and the SRTP thresh-
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SELF-SCHEDULED-EXECUTION(G,L)
input: a consistent SDF graph G = (V, E), a fireable list L
1 while simulation is not terminated
2 lock L’s lock
3 if L is not empty
4 pop the first actor v from L
5 unlock L’s lock
6 n = min(mine∈in(v)btok(e)/cns(e)c, mine∈out(v)b(buf (e)− tok(e))/prd(e)c)
7 fire v for n times
8 for each edge e ∈ in(v)
9 lock e’s lock, tok(e) = tok(e)− n× cns(e), unlock e’s lock

10 end

11 for each edge e ∈ out(v)
12 lock e’s lock, tok(e) = tok(e) + n× prd(e), unlock e’s lock
13 end

14 lock v’s lock
15 if v is bounded-buffer fireable
16 unlock v’s lock, lock L’s lock, push v in L, unlock L’s lock
17 else

18 set v’s state to not-fireable, unlock v’s lock
19 end

20 for each node u ∈ adj (v)
21 lock u’s lock
22 if u is bounded-buffer fireable and u’s state is not-fireable

23 set u’s state to fireable, unlock u’s lock
24 lock L’s lock, push u in L, unlock L’s lock
25 else

26 unlock u’s lock
27 end

28 end

29 lock L’s lock, signal L’s condition-variable, unlock L’s lock
30 else

31 wait for L’s condition-variable to be signaled
32 unlock L’s lock
33 end

34 end

Figure 8.18: Self-scheduled multithreaded execution function.
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old for graph clustering at compile-time. In general, a single actor’s functionality

may range from simple operations, such as addition, multiplication, etc., to complex

operations such as FFT, FIR, etc.. Due to this reason (and also based on our ex-

periments), setting unity actor execution time usually causes unacceptable results.

Furthermore, using an actor’s production and consumption rates as execution time

cost functions also results in poor performance. In our approach, we perform actor

execution time profiling to collect estimates of actor execution times before schedul-

ing. The profiling process repeatedly runs an actor for a short time and takes an

average.

We have implemented and integrated the multithreaded simulation scheduler

(MSS) in the Advanced Design System (ADS) from Agilent Technologies [67]. How-

ever, the design of MSS is not specific to ADS, and the techniques presented in

this thesis can be generally implemented in any simulation tool that incorporates

SDF semantics and works in multithreaded environments. Indeed, the definitions,

theoretical results, and algorithms have been carefully presented in this thesis in a

manner that is not specific to ADS.

Our experimental platform is an Intel dual-core hyper-threading (4 processing

units) 3.46 GHz processor with 1GB memory running the Windows XP operating

system. We use the NSPR API [57] as the multithread library. In the experiments,

we use the following three schedulers: 1) our multithreaded simulation scheduler

(MSS), 2) the thread cluster scheduler (TCS) [43] in ADS, and 3) our simulation-

oriented scheduler (SOS) [38] (see Chapter 7). As discussed in Chapter 3, TCS was

developed previously in ADS for simulation runtime speed-up using multithreaded
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execution, and it is the only prior work that we are aware of for multithreaded SDF

simulation. Also, as presented in Chapter 7, SOS was developed for joint mini-

mization of time and memory requirements when simulating large-scale and highly

multirate SDF graphs in single-processor environments (single-thread execution se-

mantics). We use SOS as the single-thread benchmark scheduler for comparing TCS

and MSS to state-of-the-art, single-thread SDF execution methods.

In our experiment with MSS, the parameter M for the SRTP threshold (Equa-

tion (8.14)) is set to 32, and the buffer upper bound is set to 4,500,000 tokens. For

runtime scheduling in MSS, we use the self-scheduled multithreaded execution model

due to its efficiency (see Section 8.5.2).

In the experiments, we include 12 wireless communication designs from Agilent

Technologies based on the following standards: WCDMA3G (3GPP), CDMA 2000,

WLAN (802.11a and 802.11g), WiMax (WMAN, 802.16e), Digital TV, and EDGE.

We collect both execution time and total simulation time results: here, execution

time refers to the time spent in executing the graph, and this is the component that

can be speed-up by multithreaded execution; total simulation time refers to the time

spent in overall simulation, including actor profiling, scheduling, buffer allocation,

and execution. Table 8.1 presents the average execution time and the average total

simulation time of the 12 designs under SOS, TCS, and MSS for three runs. Table

8.1 also presents execution time and total simulation time speed-up for TCS over

SOS (SOS/TCS) and for MSS over SOS (SOS/MSS). We plot the speed-up in Figure

8.19 for easy comparison.

As shown in Figure 8.19, MSS outperforms TCS in all designs. MSS can
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achieve around 3.5 times execution time speed-up on designs 4, 5, 9, 12, and around

2 to 3 times execution time speed-up on designs 2, 3, 6, 7, 8, 11. Note that the

speed-up from MSS is provided by not only the multi-core capability but also the

novel clustering and actor vectorization techniques. TCS performs worse than single-

thread SOS in designs 1, 6, 7, and 10 due to its un-balanced partitioning, which

takes numbers of firings into account rather than SRTP values. Furthermore, TCS

encounters out-of-memory problems in design 12 due to its heavy dependence on the

cluster loop scheduler, which cannot reliably handle highly multirate SDF graphs

(see Chapter 7).

Regarding the total simulation time values in Table 8.1, MSS spends around

2 to 10 seconds more compared to execution time due to overheads in environment

setup, actor profiling, scheduling, buffer allocation, and multithreading initializa-

tion and termination. In contrast, SOS only requires around 1 to 3 seconds more.

Based on our experiments, scheduling time for MSS is similar or even faster than

SOS. The overheads from MSS are mostly due to actor profiling, multithreading ini-

tialization/termination, and longer buffer allocation (because MSS trades off buffer

requirements for synchronization reduction). However, the additional overhead from

MSS is insignificant compared to the large simulation times that are observed. For

long-term simulations, our results have shown that MSS is a very effective approach

to speeding up overall simulation for SDF-based designs.

The speed-ups from MSS for design 1 and 10 are not as significant as for other

designs. Based on our investigation into this, the limitations of MSS here may in

general come from a number of relevant properties in these designs. First, these de-
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signs may contain actors whose SRTP values are larger than the SRTP threshold. In

other words, a heavily-computational actor with large repetition count may become

a bottleneck in multithreaded execution. Second, these designs may involve actors

that require slow or non-parallelizable external resources. For example, slow hard

drive reading or writing operations may become bottlenecks. In addition, file read-

ers and writers from parallel threads may compete for hard drive channels. Third,

these designs may involve strongly connected components (SCCs) whose SRTP val-

ues are larger than the SRTP threshold. This limitation results from SCC clustering

in MSS. However, decompositions of SCC clusters may not help in some cases. For

example, in a large homogeneous cycle (i.e., a cycle in which production and con-

sumption rates are identically equal to 1) with only a single initial delay, actors can

only be executed sequentially. In these cases, clustering SCCs and computing static

schedules is in general a more efficient approach.

Investigating techniques to address these limitations and further extend the

power of MSS is a useful direction for further work.

8.7 Conclusion

Motivated by the increasing popularity of multi-core processors that provide

on-chip, thread-level parallelism, we have proposed multithreaded simulation of syn-

chronous dataflow (SDF) graphs to achieve simulation runtime speed-up. We have

illustrated the challenges in scheduling large-scale, highly multirate SDF graphs for

multithreaded execution. We have introduced Ω-scheduling and associated through-
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Table 8.1: Simulation results.

Design Description Execution / Time (seconds) Speed-up (X)
# Simulation SOS TCS MSS SOS

TCS
SOS
MSS

1 3GPPFDD UE execution 216.34 228.26 148.42 0.95 1.46
Rx Performance simulation 217.55 230.70 152.46 0.94 1.43

2 WCDMA3G BS execution 554.19 387.92 184.90 1.43 3.00
Rx Intermod simulation 556.11 388.97 195.26 1.43 2.85

3 WCDMA3G BS execution 419.04 261.70 139.34 1.60 3.01
Rx Blocking simulation 420.09 262.64 148.18 1.60 2.83

4 WCDMA3G UE Rx execution 267.60 145.98 74.05 1.83 3.61
In Bank Blocking simulation 269.54 146.91 81.41 1.83 3.31

5 CDMA2K Fwd execution 760.80 758.82 215.39 1.00 3.53
RC3AWGN simulation 761.45 759.57 219.16 1.00 3.47

6 CDMA2K Rev execution 639.94 688.16 266.78 0.93 2.40
RC3AWGN simulation 640.64 688.84 270.12 0.93 2.37

7 WLAN 80211a 24Mbps execution 201.97 308.35 72.16 0.66 2.80
PN System simulation 202.50 308.86 74.25 0.66 2.73

8 WLAN 80211g CCK execution 94.61 54.44 41.08 1.74 2.30
11Mbps AWGN System simulation 95.14 54.97 42.87 1.73 2.22

9 WMAN OFDMA execution 354.22 264.05 97.22 1.34 3.64
DL TxWaveform simulation 356.95 266.68 103.33 1.34 3.45

10 WMAN OFDMA execution 198.75 275.13 102.43 0.72 1.94
UL AWGN BER simulation 201.13 277.42 108.58 0.73 1.85

11 Digital TV execution 190.79 183.46 75.64 1.04 2.52
simulation 193.36 188.55 80.07 1.03 2.41

12 Edge Signal Source execution 323.98 N/A 90.64 N/A 3.57
simulation 324.68 N/A 92.52 N/A 3.51
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Figure 8.19: Speed-up: execution time and total simulation time.
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put analysis as theoretical foundations in our developments. We have then presented

the novel multithreaded simulation scheduler (MSS). The compile-time scheduling

approach in MSS strategically integrates graph clustering, actor vectorization, intra-

cluster scheduling, and inter-cluster buffering techniques to construct inter-thread

communication (ITC) SDF graphs for multithreaded execution. Then the runtime

scheduling approach in MSS provides self-timed and self-scheduled multithreaded

execution models for efficient execution of ITC graphs in multithreaded environ-

ments. Finally, on multithreaded platform equipped with 4 processing units, we

have demonstrated up to 3.5 times speed-up in simulating modern wireless commu-

nication systems with MSS.
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Chapter 9

Conclusion, Current Status, and Future Work

9.1 Conclusion

In this thesis, we have presented the dataflow interchange format (DIF) for

integrating dataflow models, techniques, EDA tools, DSP libraries, and embedded

processing platforms for DSP system design. In Chapter 4, we propose the dataflow

interchange format as a standard language for specifying DSP-oriented dataflow

graphs. We have also developed and are continuing to augment the DIF package for

experimenting with dataflow models and techniques, and working with DSP appli-

cations across the growing family of relevant design tools, libraries, and embedded

processing platforms.

In Chapter 5, we have proposed the DIF-based porting methodology as a sys-

tematic approach for porting DSP designs across design tools and libraries. With

this porting methodology and the porting infrastructure provided in the DIF pack-

age, migrating or developing DSP designs across tools and libraries can be achieved

efficiently, and this achievement is equivalent to porting DSP designs across the

underlying embedded processing platforms that are supported by the tools and li-

braries.

In Chapter 6, we have presented the DIF-to-C software synthesis framework

for automatically generating C-code implementations from high-level dataflow spec-
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ifications of DSP systems. Our DIF-to-C framework integrates a significant amount

of scheduling, buffering, and code generation techniques, and allows designers to

associate dataflow actors with their desired C functions. In other words, our DIF-

to-C framework offers a useful link between coarse grain dataflow optimizations and

hand-optimized libraries, and provides an efficient way to explore the complex range

of trade-offs in DSP software implementation.

In the dataflow simulation context, we have presented the simulation-oriented

scheduler (SOS) in Chapter 7 to solve major problems encountered in simulating

highly-multirate systems. Our SOS scheduler emphasizes effective, joint minimiza-

tion of time and memory requirements for simulating critical SDF graphs. We have

implemented SOS in Agilent ADS and demonstrated large improvements in terms

of scheduling time and memory requirements in simulating real-world, large-scale,

and highly-multirate wireless communication systems.

To exploit the trend towards multi-core processors in desktop simulation plat-

forms, we have also presented a multithreaded simulation scheduler (MSS) in Chap-

ter 8 to pursue simulation runtime speed-up through multithreaded execution of

SDF graphs on multi-core processors. On an Intel dual-core hyper-threading (4 pro-

cessing units) processor, our results from MSS implementation in ADS demonstrate

up to 3.5 times speed-up in simulating modern wireless communication systems

(e.g., WCDMA3G, CDMA 2000, WiMax, EDGE, and DTV).
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9.2 Future Work

9.2.1 Dataflow Interchange Format Framework

Building hardware synthesis capability is an interesting future direction. We

envision this capability can extend the coverage of the DIF framework to various

hardware module libraries and hardware platforms, e.g. FPGAs. We are also inves-

tigating the incorporation of new dataflow models and techniques, and are working

with several industry and research partners to provide more features in DIF.

9.2.2 Intermediate Actor Library

One limitation of our porting approach arises however when working with a

large number of tools: when many tools are involved in the porting space, we need

to specify the mapping information for each pair of tools. This requires effort and

additional code that grows quadratically with the number of tools that are involved.

The vector, signal, and image processing library (VSIPL) [39] is an open source,

C-based API that provides various commonly used functions in many areas of signal

processing. Motivated by the increasing popularity of VSIPL, we propose an en-

hanced DIF-based porting approach [32] where VSIPL is abstracted and integrated

as an intermediate actor library, and the actor mapping mechanism operates by

mapping “to” and “from” the abstract version of VSIPL. In particular, the abstract

VSIPL specifies only functional interfaces (i.e., computations and their associated

arguments) without limiting any implementation issue. With this new configura-

tion, as illustrated in the right part of Figure 9.1, we reduce the requirement of AIF
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Figure 9.1: Original porting approach and the integration of abstract VSIPL.

specifications from N(N − 1)/2 to N .

9.2.3 Bounded SDF Scheduling

The conventional model for executing SDF graphs assumes that an applica-

tion graph will execute infinitely (i.e., it will execute iteratively on one or more

input data streams that are on indefinite or unbounded length). This assumption is

suitable for hardware and software synthesis of DSP applications, and the schedul-

ing problem under this assumption can be formulated as a problem of computing

a cost-efficient periodic schedule for repeated execution. In the simulation context,

minimal periodic SDF schedules (see Section 2.1.1) are also favorable for long-term

simulations or for simulations with specified numbers of iterations. In fact, the SOS

approach employs this concept.

However, simulation tools are adaptable to various termination scenarios. For

example, Agilent ADS [67] can terminate a simulation when certain user-specified

actors have produced or consumed certain numbers of data tokens. This feature is

especially beneficial when simulating critical SDF graphs because minimal periodic

schedules are often too long compared to the simulation requirements in initial

development stage (in contrast to the longer-range simulations that are employed
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in the later stages of development).

Motivated by this new concept of simulation termination, bounded SDF schedul-

ing can be explored in the future to explicitly take information about simulation

termination into account during scheduling and during execution for more efficient

SDF simulation.

9.3 Current Status

DIF is being developed in the University of Maryland DSP-CAD Research

Group. Currently, DIF is being evaluated and used by a number of research partners,

including MCCI, which has developed DIF exporting and importing capabilities in

its Autocoding Toolset.

The Advanced Design System (ADS) from Agilent Technologies is a com-

mercial EDA tool used by many research groups and companies. Our simulation-

oriented scheduler has been integrated into ADS and provided as an optional sched-

uler in the ADS 2006 release. Our multithreaded simulation scheduler is being

planned for incorporation into the next ADS release.
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