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As the demand for advanced wireless services continues to grow, system design-

ers must employ innovative signal processing techniques to increase data through-

put and maintain reliablity under adverse channel conditions. Multi-antenna tech-

niques, such as space-time coding and beamforming, have shown promise in realiz-

ing these goals. As these and other techniques are introduced, understanding their

performance in realistic scattering environments is of paramount importance.

This thesis contributes to the field of wireless communications by determining

the performance of multi-antenna techniques for spatially and temporally corre-

lated wireless channels. First, we propose a general space-time covariance model

that is applicable to arbitrary scatterer geometry, arbitrary array geometry at the



base station and the mobile, and includes Doppler effects due to mobile motion. We

then apply this model, in conjunction with a two-dimensional Gaussian scatterer

model based on recent field measurements, to evaluate the exact pairwise error

probability for arbitrary space-time block codes and determine an upper bound

on the probability of a block error. In addition, we derive exact closed-form ex-

pressions for the symbol error probability for orthogonal space-time block coding,

maximum ratio transmission, and beamsteering for spatially correlated quasi-static

wireless channels. Finally, we present extensive numerical results that illustrate

the performance of these techniques for varying degrees of spatial and temporal

correlation. We also provide a comparative performance assessment of beamform-

ing and orthogonal space-time block coding and determine the channel conditions

for which one technique is favored over the other.
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Chapter 1

Introduction

1.1 Motivation

Designers of modern wireless communication systems are faced with the challenge

of achieving reliable communication at high data rates over a wide range of channel

conditions. In addition, this must be accomplished with limited bandwidth allo-

cation. As the demand for advanced wireless services and the number of wireless

users grows, system designers must employ innovative strategies to achieve these

goals.

The primary impediment to achieving reliable communication over wireless

channels is multipath fading. Fading results when replicas of the transmitted sig-

nal experience slightly different propagation delays and interfere constructively

or destructively at the receiver. Motion of the mobile causes fading to be time-

varying, resulting in large variations in the received signal power. In order to

combat the effects of multipath fading, various diversity techniques have been de-

vised. The basic concept is to introduce redundancy in the transmitted signal and

in so doing increase the probability that the signal level at the receiver, on average,

is sufficient to reliably recover the transmitted data. One such diversity technique,
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which has been employed at the base station of wireless systems for many years,

uses multiple antennas at the receiver to capture statistically independent copies

of the transmitted signal. By using a technique known as maximum ratio com-

bining, these signal copies are combined in an appropriate fashion at the receiver

to achieve diversity gain. The receive antennas must be sufficiently separated in

space to ensure that the fading at each antenna is independent, otherwise, losses

in diversity performance result. In addition to the spatial diversity technique just

described, other approaches such as frequency, polarization or delay diversity have

been considered [2]. Historically, receive diversity techniques have been imple-

mented at the base station of a wireless system. Multiple antennas at the mobile

have not found practical application, due largely to the substantial cost associated

with multiple RF chains and the potential for antenna coupling.

Recently, there has been interest in the use of transmit diversity techniques

at the base station. A simple delay diversity technique was proposed by Seshadri

and Winters [3],[4]. This technique consists of transmitting delayed versions of the

signal from multiple antennas at the base station. The delay value must be chosen

such that the signals transmitted at each antenna are uncorrelated. The approach

is tantamount to repetition coding and while it is capable of achieving diversity

gain, the coding rate is low, since only one information symbol is transmitted

over a number of time slots equal to the number of transmit antennas. A simple

transmit diversity technique using two antennas, two time slots, and achieving a

code rate of 1 was proposed by Alamouti [32]. This work motivated research on

coding schemes for more than two transmit antennas and resulted in the seminal

work of Tarokh et al. on space-time coding. [33],[34].
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1.2 Space-Time Block Coding

Space-time block coding is a technique for achieving transmit diversity by coding

the information symbols redundantly in space and in time. Tarokh et al. proposed

space-time block code designs for PSK and QAM signal constellations for an arbi-

trary number of transmit antennas. These designs are based upon the mathematics

of number theory, in particular, the theory of orthogonal designs. The proposed

space-time block codes achieve a code rate of 1/2 for more than 4 transmit anten-

nas and a code rate of 3/4 for designs employing 3 and 4 transmit antennas. The

code design criteria is based on the pairwise error probability and the key concepts

of coding gain and diversity gain. Diversity gain describes the slope of the pairwise

error probability curve versus signal to noise ratio expressed in decibels. Coding

gain is measured as the reduction in the signal to noise ratio required to achieve

the same error probability as an uncoded system operating with the same diversity

gain. A key feature of orthogonal space-time block codes is that the receiver imple-

mentation of maximum likelihood decoding can be accomplished by decoding the

transmitted symbols individually and not jointly. However, it is assumed that the

channel remains invariant over the space-time code block and that the receiver has

complete knowledge of the complex path gains between each transmit and receive

antenna pair.

Since this initial work, there has been a tremendous amount of research on

the design of space-time block codes. Some of this research has focused on im-

proving the achievable code rate for designs with more than 4 transmit antennas.

See [35],[39],[40] and the references therein, for examples. Other research has ad-

dressed eliminating the requirement of channel state information at the receiver by

differential code design at the transmitter. See [36],[37],[38] for additional details.
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A common characteristic of all space-time code designs discussed so far is that

channel information is not used at the transmitter of the wireless system.

1.3 Beamforming

Beamforming, as described herein, refers to techniques that employ channel state

information at the transmitter in some fashion. Typically, reciprocity of the chan-

nel is assumed, and estimates of the channel state, as determined by the receiver,

are fed back and applied at the transmitter. The channel state information can

take many forms. For example, the complex path gains between each transmit

and receive antenna pair may be estimated by the use of training sequences. Since

the wireless channel is in general time-varying, these estimates must be updated

periodically. If the channel varies quickly it may be infeasible to estimate the in-

stantaneous complex path gains. In such cases the average channel response may

be estimated, or the second-order channel statistics may be estimated. In general,

both approaches have inferior performance compared to the ideal case of perfect

knowledge of the instantaneous path gains of the channel. Additional information

on various beamforming approaches and techniques that combine space-time cod-

ing and beamforming can be found in [27],[28],[29],[30], [31]. Since the main topic

of this dissertation is the performance evaluation of transmit diversity techniques,

including space-time coding and beamforming, the reader can find additional dis-

cussion on previous and related work in Chapters 2 and 3.
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1.4 Overview and Contributions

The goal of this thesis is to provide a realistic evaluation of the performance of

multi-antenna techniques for wireless communication systems with emphasis on

the effects of spatial and temporal correlation. To achieve this goal we propose a

general space-time covariance model and use it to evaluate the performance of sev-

eral space-time block coding and beamforming techniques. This thesis consolidates

the work presented in [65]-[68].

In Chapter 2, we present the details of the proposed space-time covariance

model. The model is applicable to arbitrary array geometry at the mobil and base

station, arbitrary scatterer geometry, and includes temporal effects due to mobile

motion. We consider approximations to the general covariance model that are ap-

plicable when the signal from the mobile is not significantly spread in angle due to

multipath. We consider applications of the proposed space-time covariance model

based on several geometry-based scatterer models. The well-known ’circular ring’

scatterer geometry is considered as well as a two-dimensional Gaussian scatterer

model that is based on recent field measurements. Special cases of the proposed

space-time covariance model are also considered, including the spatial-only case in

which the temporal aspects of the model are ignored.

In Chapters 3 and 4, we evaluate the performance of several transmit diversity

techniques with the aid of the proposed space-time covariance model. We con-

sider the union bound on the block error probability for arbitrary space-time block

codes based upon the exact pairwise error probability. We develop closed-form

expressions for the symbol error probability for orthogonal space-time block cod-

ing, maximum ratio transmission and beamsteering for quasi-static channels with

arbitrary spatial correlation. We present extensive numerical results that illustrate
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the error performance of the transmit diversity techniques for the two-dimensional

Gaussian scatterer model and varying degrees of temporal and spatial correla-

tion. We consider the comparative error performance of orthogonal space-time

block coding and beamforming and determine the channel conditions for which

one technique is favored over the other.

In Chapter 5, we consider spatial-only processing techniques with emphasis on

the reduction of co-channel interference on the uplink of a wireless communication

system. With the aid of the spatial covariance model developed in Chapter 2, we

evaluate the array gain of several spatial processing techniques with emphasis on

the effects of multipath angular spread.

In Chapter 6, we summarize the results of this research and present some ideas

for future research.
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Chapter 2

Space-Time Covariance Model for Wireless

Channels

2.1 Introduction

As new coding and modulation schemes are introduced to satisfy the demand

for reliable communication at high data rates, understanding the performance of

such techniques in realistic scattering environments is of paramount importance.

In general, for diversity-based coding schemes, the best-case wireless channel is

uncorrelated in space and time. These ideal conditions may be difficult to achieve in

practice due to space restrictions on the placement of antennas, for example. Thus,

it is important to understand the effects of non-ideal scattering environments, in

particular the effects of spatial and temporal correlation, on the performance of

proposed techniques.

Early research that characterized the spatial and temporal characteristics of

the mobile radio channel was performed by Jakes [2] and Clarke [5]. In these

works a geometric scattering model was employed that places scatterers uniformly

on a circular ring a fixed distance from the mobile. More recently, Chen et al. [6]
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extended this ’circular ring’ scatterer model to include multiple antennas at the

base station, a single antenna at the mobile and Doppler effects due to motion of

the mobile. An example illustrating the effects of spatial and temporal correla-

tion on antenna spacing and interleaving depth was given for a simple space-time

repetition code. Shiu et al. [7] investigated the effects of fading correlation on

the capacity of multiple-antenna wireless systems by employing the Jakes model

to multiple antennas at the base station as well as the mobile. However, Doppler

effects due to mobile motion were not considered. Abdi [8] developed at space-time

correlation model for multiple antenna wireless systems by employing the ’circular

ring’ scattering geometry but allowing a non-uniform distribution of scatterers.

Specifically, the von Mises density was used to describe the angle of arrival of the

multipath with respect to the mobile. Doppler effects are included in this model.

Independently, Safar [9] derived a special case of this model in which the angle of

arrival was uniformly distributed.

A recent measurement campaign conducted by Pedersen et al. [10],[11],[12] has

characterized the temporal and azimuth dispersion of multipath in urban wireless

environments. The study found that the power azimuth spectrum was accurately

modeled using a truncated Laplacian function and the power delay spectrum was

well-approximated by a negative-exponential function. Recent work by Janaswamy

[13] concluded that the measurements reported by Pedersen et al. were consistent

with a two-dimensional Gaussian model for the scatterer locations surrounding the

mobile receiver.

In this chapter we introduce a general space-time covariance model based upon

scatterer geometry, transmit and receive antenna geometry and a linear motion

model for the mobile. The model is applicable to arbitrary scatterer geometry
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and includes Doppler effects due to mobile motion. The space-time covariance

model is evaluated for the Jakes ’circular ring’ scatterer geometry and the two-

dimensional Gaussian scatterer geometry based on the measurements of Pedersen

et al. [10],[11],[12].

This chapter is organized as follows. In Section 2.2 the development of the

space-time covariance model is presented including approximations that apply for

the case of small angular spread. Section 2.3 presents some applications of the

proposed space-time covariance model for specific scattering geometries. Addi-

tionally, applications are presented for the spatial-only case including the uniform,

Gaussian, and Laplacian angle of arrival probability density functions.

2.2 Development

The complex path gain between the pth antenna at the base and the qth antenna

at the mobile is denoted by hp,q(t). It consists of contributions from K discrete

scatterers with the mth scatterer characterized by its amplitude Am, phase ψm and

spatial location ~xm. All scatterers are assumed to be coplanar with the mobile and

base station. The spatial locations of the array phase centers for the mobile and

base are ~xmobile and ~xbase, respectively. The spatial location of the pth antenna at

base is denoted by ~xp
base and the spatial location of the qth antenna at the mobile

is denoted by ~xq
mobile. Figure 2.1 illustrates the geometry for the scattering model.

Assuming a plane wave with frequency fc is transmitted by the base, the expression
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αm

γ θm

φm

Base

Mobile

mth scatterer×

~v

~xp
base ~xq

mobile

Figure 2.1: Scattering Model Geometry

for the complex path gain hp,q(t) is:

hp,q(t) =
K−1∑
m=0

Am exp (jψm) exp [−j2πfcτm(t)] (2.1)

× exp
[
+j~km

base · ~xp
base + j~km

mobile · ~xq
mobile

]

In the previous expression τm(t) denotes the path delay associated with the mth

scatterer and

~km
mobile =

2π

λ
(cos θm, sin θm, 0) (2.2)

~km
base =

2π

λ
(cos φm, sin φm, 0) (2.3)

with λ denoting the transmitted wavelength. The angle θm corresponds to the

angle of arrival at the mobile associated with the signal re-radiated from the mth

scatterer. The angle φm corresponds to the angle of departure from the base

associated with the mth scatterer. The expression for the correlation between

the transmission paths associated with the signal received at the qth element of

the mobile array and transmitted from the pth element of the base array and the

signal received by the sth element of the mobile array and transmitted from the
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rth element of the base array at time lag ∆t is

E
{

hp,q(t)h
∗
r,s(t + ∆t)

}
= E

{K−1∑
m=0

K−1∑
n=0

AmAn exp (jψm − jψn) (2.4)

× exp [j2πfc (−τm(t) + τn(t + ∆t))]

× exp
[
+j~km

base · ~xp
base + j~km

mobile · ~xq
mobile

]

× exp
[
−j~kn

base · ~xr
base − j~kn

mobile · ~xs
mobile

]}

Assuming the phases associated with the mth and nth scatterers, ψm and ψn, are

independent and uniformly distributed on (−π, π) and independent of all other

random quantities, we have

E
{

hp,q(t)h
∗
r,s(t + ∆t)

}
= E

{K−1∑
m=0

A2
m exp [j2πfc (−τm(t) + τm(t + ∆t))] (2.5)

× exp
[
+j~km

base · (~xp
base − ~xr

base)
]

× exp
[
+j~km

mobile · (~xq
mobile − ~xs

mobile)
]}

In order to specify the path delay associated with the mth scatterer, τm(t),

some assumptions about the motion of the mobile must be made. In what follows

we assume a linear motion model. Specifically, the spatial location of the mobile

as a function of time is given by

~xmobile(t) = ~x0
mobile + ~vt (2.6)

with ~x0
mobile denoting the initial location of the mobile and ~v = |~v| cos (γ) denoting

the velocity vector. The quantity |~v| is the magnitude of velocity vector and γ is

the angle the vector makes with the x-axis of the coordinate system. Using this

model, the expression for the path delay is

τm(t) =
|~xbase − ~xm|+ |~xm − ~xmobile|

c
(2.7)

=
|~xbase − ~xm|+ |~xm − (~x0

mobile + ~vt) |
c
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In this expression c denotes the speed of light and |~x| denotes the norm of the

vector ~x. If |~x0
mobile − ~xm| À |~vt|, the path delay can be approximated by

τm(t) ≈ τ 0
m +

|~v|t
c

cos αm (2.8)

where τ 0
m corresponds to the static (time-invariant) portion of the path delay and

αm is the angle between the mobile velocity vector ~v and the line joining the

initial mobile location and the location of the mth scatterer. In other words, the

approximation to the path delay is appropriate if the distance traveled by the

mobile at time t is much less than the distance between the initial mobile location

and the location of the mth scatterer.

Returning to the evaluation of the space-time correlation function (2.5) and

employing the linear motion model for the mobile and the approximation developed

for the path delay, we have

E
{

hp,q(t)h
∗
r,s(t + ∆t)

}
= exp (−j2πfc∆t) (2.9)

E
{K−1∑

m=0

A2
m exp

[
j2πfc

( |~v|∆t

c
cos αm

)]

× exp
[
+j~km

base · (~xp
base − ~xr

base)
]

× exp
[
+j~km

mobile · (~xq
mobile − ~xs

mobile)
]}

Define

~xp
base − ~xr

base = dpr
base (cos ξpr

base, sin ξpr
base, 0) (2.10)

and

~xq
mobile − ~xs

mobile = dqs
mobile (cos ξqs

mobile, sin ξqs
mobile, 0) (2.11)

The term dpr
base corresponds to the distance between the pth and rth array elements

at the base and ξpr
base corresponds to the angle between the line joining the array
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elements and the x-axis. Similarly, dqs
mobile corresponds to the distance between

the qth and sth array elements at the mobile and ξqs
mobile corresponds to the angle

between the line joining the array elements and the x-axis.

Utilizing (2.2) and (2.3) and cos αm = − cos (γ − θm), (2.9) becomes

E
{

hp,q(t)h
∗
r,s(t + ∆t)

}
= exp (−j2πfc∆t) (2.12)

E
{K−1∑

m=0

A2
m exp [−j2πfd∆t cos (θm − γ)]

× exp

[
+j2π

dpr
base

λ
cos (φm − ξpr

base)

]

× exp

[
+j2π

dpr
base

λ
cos (θm − ξqs

mobile)

]}

where fd = fc
|~v|
c

corresponds to the maximum Doppler shift associated with the

mobile. Given the array geometry at the mobile and the base station, the velocity

vector associated with the mobile, and the joint probability density for Am, φm,

and θm, (2.12) can be used to compute the desired space-time correlation.

2.2.1 Small Angular Spread Approximation

A special case of the previous result is of interest. Consider the case for which most

of the scatterers are in the vicinity of the mobile. From the perspective of the base

station, the angular spread of the multipath is small. Define d = |~x0
mobile − ~xbase|

and Rm = |~x0
mobile−~xm|. d is the distance between the mobile and the base and Rm

corresponds to the scattering radius associated with the mth scatterer. If d À Rm,

then the angle φm can be approximated by

φm ≈ Rm

d
sin θm (2.13)
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and

cos φm ≈ 1 (2.14)

sin φm ≈ Rm

d
sin θm

Evaluating (2.12) for the special case of small angular spread yields

E
{

hp,q(t)h
∗
r,s(t + ∆t)

}
= exp (−j2πfc∆t) exp

[
j2π

(
dpr

base

λ
cos ξpr

base

)]
(2.15)

E

{
K−1∑
m=0

A2
m exp

[
j2π

(
dqs

mobile

λ
cos ξqs

mobile − fd∆t cos γ

)
cos θm

]

× exp

[
j2π

(
dpr

base

λ

Rm

d
sin ξpr

base

)
sin θm

]

× exp

[
j2π

(
dqs

mobile

λ
sin ξqs

mobile − fd∆t sin γ

)
sin θm

]}

In this result the scattering geometry is specified by the joint probability distribu-

tion of the scattering radius about the mobile, Rm, and the angle θm associated

with the mth scatterer. The equation is applicable to arbitrary scattering geometry

subject to the small angular spread approximation, d À max{Rm}K−1
m=0.

Equation (2.15) describes the correlation between the transmission path from

the pth transmit antenna to the qth receive antenna and the transmission path

from the rth transmit antenna to the sth receive antenna with time separation

∆t. In order to apply this result the mobile velocity vector and initial distance

from the base must be specified as well as the array geometry at the base and the

mobile. Additionally, the joint probability distribution of the scatterer amplitude

Am, radius Rm and angle θm with respect to the mobile must be given. In most

cases of practical interest (2.15) must be numerically integrated to yield a result.

We consider now simplifications that result by ignoring the temporal aspects of

the path correlation and considering single antennas at either the base or mobile.
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2.2.2 Spatial-Only Case, Single Mobile Antenna

Evaluating (2.12) for the case of zero time lag, i.e. ∆t = 0, and a single antenna

at the mobile we have

E
{

hp,1(t)h
∗
r,1(t)

}
= E

{
K−1∑
m=0

A2
m exp

[
j2π

dpr
base

λ
cos (φm − ξpr

base)

]}
(2.16)

Employing the generating function for the nth order Bessel function of the first

kind [1]

exp (jz cos φ) =
∞∑

n=−∞
exp

[
jn

(
φ +

π

2

)]
Jn(z) (2.17)

on (2.16), we have

E
{

hp,1(t)h
∗
r,1(t)

}
= E

{
K−1∑
m=0

A2
m

∞∑
n=−∞

exp
[
jn

(
φm − ξpr

base +
π

2

)]
Jn

(
2π

dpr
base

λ

) }

(2.18)

=
∞∑

n=−∞
exp

[
jn

(
−ξpr

base +
π

2

)]
Jn

(
2π

dpr
base

λ

)
E

{
K−1∑
m=0

A2
m exp (jnφm)

}

If the mth scatterer amplitude Am and angle of arrival φm are assumed to be

independent of each other and identically distributed, with E(A2
m) = A2

K
and φm =

φ

E
{

hp,1(t)h
∗
r,1(t)

}
= A2

∞∑
n=−∞

exp
[
jn

(
−ξpr

base +
π

2

)]
Jn

(
2π

dpr
base

λ

)
E

{
exp (jnφ)

}

(2.19)

Equation (2.19) depends on the array geometry at the base station and the char-

acteristic function of the angle φ. In practice, the infinite sum appearing in (2.19)

is truncated to obtain a finite-term approximation suitable for computation. The

number of terms retained in the approximation depend on the rate of decay of

the Bessel function and the characteristic function of the angle of arrival φ with
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increasing n. An upper bound for the nth order Bessel function of the first kind is

given by [1]

|Jn (u) | ≤ |u/2|n
n!

(2.20)

2.2.3 Spatial-Only Case, Single Base Antenna

Evaluating (2.12) for the case of zero time lag, i.e. ∆t = 0, and a single antenna

at the base we have

E
{

h1,q(t)h
∗
1,s(t)

}
= E

{
K−1∑
m=0

A2
m exp

[
j2π

dqs
mobile

λ
cos (θm − ξqs

mobile)

]}
(2.21)

Pursuing a development similar to that presented in the previous section with

E(A2
m) = A2

K
and θm = θ, we have

E
{

h1,q(t)h
∗
1,s(t)

}
= A2

∞∑
n=−∞

exp
[
jn

(
−ξqs

mobile +
π

2

)]
Jn

(
2π

dqs
mobile

λ

)
E

{
exp (jnθ)

}

(2.22)

2.3 Applications

In this section we present some applications of the proposed space-time covariance

model. We provide numerical results based on the ’circular ring’ scatterer geometry

due to Jakes [2] and the two-dimensional Gaussian scatterer geometry motivated

by the measurements of Pedersen et al. [10],[11],[12]. In addition, we present

numerical results for the spatial-only case for the uniform, Gaussian and Laplacian

angle of arrival probability density functions.
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2.3.1 Jakes ’circular ring’ scatterer model

For the case of the ’circular ring’ scattering model attributed to Jakes [2] a closed-

form expression for the complex path correlation can be obtained. This result

is useful for validating the proposed space-time covariance model since it can be

compared with previously published results. For the Jakes model the radius of

each scatterer is fixed, i.e. Rm = R, and the angle of arrival θm is independent for

each scatterer and uniformly distributed on (−π, π). It is further assumed that

the scatterer amplitude Am is independent of the angle θm and E(A2
m) = A2

K
for

all m. With these assumptions, evaluating the expectation in (2.15) yields

E
{

hp,q(t)h
∗
r,s(t + ∆t)

}
= A2 exp (−j2πfc∆t) exp

[
j2π

(
dpr

base

λ
cos ξpr

base

)]
(2.23)

× J0

(
2π

[(
dpr

base

λ

R

d
sin ξpr

base +
dqs

mobile

λ
sin ξqs

mobile − fd∆t sin γ

)2

+

(
dqs

mobile

λ
cos ξqs

mobile − fd∆t cos γ

)2
]1/2)

where J0(·) denotes the zeroth-order Bessel function. This result is in agreement

with that derived earlier in [8] for the special case of isotropic scattering and in

[9].

To gain insight into the characteristics of the complex path correlation due to

spatial and temporal effects for the Jakes model, consider the following special

cases:

Case1 dpr
base = 0 = dqs

mobile. This case corresponds to single transmit and re-

ceive antennas and considers only temporal correlation. The magnitude of

the complex path correlation for this case is proportional to |J0 (2πfd∆t) |.
Uncorrelated space-time symbols result for normalized Doppler frequency

fd∆t = 0.383.
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Case2 dqs
mobile = 0 and ∆t = 0. This case corresponds to a single receive antenna

and considers spatial correlation due to the spacing of the transmit anten-

nas. Temporal effects are not considered. For this case the magnitude of the

complex path correlation is proportional to |J0

(
2π

dpr
base

λ
R
d

)
|. Note that the

transmit antenna spacing required to achieve uncorrelated paths depends on

the ratio of the scattering radius to the distance between the transmitter

and receiver, R/d. For the (unrealistic) case of R/d = 1, uncorrelated paths

result for dpr
base = 0.383λ. If R/d = 0.01 then a transmit antenna spacing of

38.3λ is required to achieve uncorrelated paths.

Case3 dpr
base = 0 and ∆t = 0. This case corresponds to a single transmit antenna

and considers spatial correlation due to the spacing of the receive antennas.

Temporal effects are not considered. For this case the magnitude of the

complex path correlation is proportional to |J0

(
2π

dqs
mobile

λ

)
|. The receive

antenna spacing required to achieve uncorrelated paths is dqs
mobile = 0.383λ

and does not depend on the scattering radius.

These special cases are in agreement with previous results due to Jakes and Clarke

[2],[5].

In order to give additional insight into the space-time correlation for the Jakes

scattering model, we present some numerical results. We consider a pair of an-

tennas at the base station oriented such that the mobile is located at an angle φ0

relative to the perpendicular of the line joining the antennas. The mobile speed

was fixed at 100km/hr and the carrier frequency was fc = 850MHz resulting in a
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maximum Doppler frequency of fd = 78Hz. The mobile direction was along the

perpendicular of the line joining the pair of antennas. Three values were consid-

ered for the scatterer radius, R = 10, 50, 200m, and the distance between the base

antenna array (phase center) and the initial mobile location was fixed at d=1000m.

The smallest value for the scattering radius yields a ratio R/d = 0.01 and corre-

sponds to an angular spread of approximately 1◦ from the perspective of the base

station. The largest value for the scattering radius yields a ratio R/d = 0.2 and

corresponds to an angular spread of approximately 20◦. Figures 2.2-2.4 show the

magnitude of the path correlation for R/d = 0.01, 0.05, 0.2, respectively, and for

φ0 = 0◦. In addition, each figure shows the path correlation for four values of

normalized Doppler frequency: fd∆t = 0.0, 0.1, 0.2, 0.3. With reference to Figure

2.2 it is seen that the element spacing required for zero path correlation is approx-

imately 38λ for R/d = 0.01 and fd∆t = 0.0. Figures 2.3 and 2.4 illustrate that

the element spacing required for zero path correlation decreases as the scattering

radius, or equivalently, the angular spread is increased. With reference to these

figures note the general oscillatory nature of the path correlation for the Jakes

model for large element separation (> 5λ). This is associated with the behavior

of the Bessel function J0(z) and is due to the (unrealistic) assumption that all

multipath scatterers lie on a circular ring of radius R around the mobile. Figures

2.2- 2.4 also illustrate that the most significant temporal effects occur for small

scattering radius and small antenna spacing.

Figures 2.5-2.7 show the magnitude of the path correlation for R/d = 0.01, 0.05, 0.2,

respectively, and for φ0 = 45◦. For this case the mobile is 45◦ off of broadside of the

two-element array. Comparing Figures 2.2 and 2.5 it can be observed that the ele-

ment spacing required for zero path correlation is increased for φ0 = 45◦ compared
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Figure 2.2: Magnitude of the path correlation for the Jakes ’circular ring’ model,

R/d = 0.01, φ0 = 0◦

to the broadside case, φ0 = 0◦. These observations highlight the influence of array

geometry on the behavior of the path correlation. For linear array geometry the

angle between a pair of array elements and the mean angle of arrival is constant

for all element pairs. For a circular array, however, this angle varies with each

element pair resulting in a combination of effects due to element separation and

orientation with respect to the mean angle of arrival.

2.3.2 2D Gaussian scatterer model

The motivation for the two-dimensional Gaussian scattering model is due to a re-

cent measurement campaign conducted by Pedersen et al. [10],[11],[12] in which the

temporal and azimuth dispersion of multipath in urban wireless environments was

characterized. The study found that the power azimuth spectrum was accurately

modeled using a truncated Laplacian function and the power delay spectrum was
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Figure 2.3: Magnitude of the path correlation for the Jakes ’circular ring’ model,

R/d = 0.05, φ0 = 0◦
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Figure 2.4: Magnitude of the path correlation for the Jakes ’circular ring’ model,

R/d = 0.2, φ0 = 0◦
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Figure 2.5: Magnitude of the path correlation for the Jakes ’circular ring’ model,

R/d = 0.01, φ0 = 45◦
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Figure 2.6: Magnitude of the path correlation for the Jakes ’circular ring’ model,

R/d = 0.05, φ0 = 45◦

22



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element Separation (wavelengths)

C
or

re
la

tio
n 

M
ag

ni
tu

de

f
d
∆t=0.0

f
d
∆t=0.1

f
d
∆t=0.2

f
d
∆t=0.3

Figure 2.7: Magnitude of the path correlation for the Jakes ’circular ring’ model,

R/d = 0.2, φ0 = 45◦

well-approximated by a negative-exponential function. Recent work by Janaswamy

[13] concluded that the measurements reported by Pedersen et al. were consistent

with a two-dimensional Gaussian model for the scatterer locations surrounding the

mobile receiver.

For the two-dimensional Gaussian model the expression for the path correlation,

(2.15) for the case of small angular spread, must be numerically integrated to

yield a result. The scatterer radius Rm associated with the mth scatterer has a

Rayleigh density and the scatterer angle θm is uniformly distributed on (−π, π). It

is assumed that (Rm, θm) are independent and identically distributed for each m. It

is further assumed that the scatterer amplitude Am is independent of the scatterer

radius Rm and angle θm and that E(A2
m) = A2

K
for all m. The two-dimensional

Gaussian model is parameterized by σR which specifies the radius about the mobile

for which approximately 68 percent of the scatterers are contained.
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We present some numerical results for the path correlation associated with the

two-dimensional Gaussian scatterer model. The setup is the same as that for the

Jakes ’circular ring’ scatterer model and is repeated here for the convenience of the

reader. We consider a pair of antennas at the base station oriented such that the

mobile is located at an angle φ0 relative to the perpendicular of the line joining

the antennas. The mobile speed was fixed at 100km/hr and the carrier frequency

was fc = 850MHz resulting in a maximum Doppler frequency of fd = 78Hz.

The mobile direction was along the perpendicular of the line joining the pair of

antennas. Three values were considered for the scatterer radius standard deviation,

σR = 10, 50, 200m, and the distance between the base antenna array (phase center)

and the initial mobile location was fixed at d=1000m. The smallest value for the

scattering radius standard deviation yields a ratio σR/d = 0.01 and corresponds to

an angular spread of approximately 1◦ from the perspective of the base station. The

largest value for the scattering radius standard deviation yields a ratio σR/d = 0.2

and corresponds to an angular spread of approximately 20◦.

Figures 2.8-2.10 illustrate the magnitude of the path correlation for σR/d =

0.01, 0.05, 0.2, respectively, and for φ0 = 0◦. In addition, each figure shows the path

correlation for four values of normalized Doppler frequency: fd∆t = 0.0, 0.1, 0.2, 0.3.

Figures 2.11-2.13 show the magnitude of the path correlation for σR/d =

0.01, 0.05, 0.2, respectively, and for φ0 = 45◦. In addition, each figure shows

the path correlation for four values of normalized Doppler frequency: fd∆t =

0.0, 0.1, 0.2, 0.3.
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Figure 2.8: Magnitude of the path correlation for the two-dimensional Gaussian

model, σR/d = 0.01, φ0 = 0◦
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Figure 2.9: Magnitude of the path correlation for the two-dimensional Gaussian

model, σR/d = 0.05, φ0 = 0◦
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Figure 2.10: Magnitude of the path correlation for the two-dimensional Gaussian

model, σR/d = 0.2, φ0 = 0◦
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Figure 2.11: Magnitude of the path correlation for the two-dimensional Gaussian

model, σR/d = 0.01, φ0 = 45◦
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Figure 2.12: Magnitude of the path correlation for the two-dimensional Gaussian

model, σR/d = 0.05, φ0 = 45◦
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Figure 2.13: Magnitude of the path correlation for the two-dimensional Gaussian

model, σR/d = 0.2, φ0 = 45◦
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2.3.3 Spatial-Only Case

We now consider applications for the spatial-only case for the uniform, Gaussian

and Laplacian angle of arrival (AOA) probability density functions. Without loss

of generality we consider only the case of multiple antennas at the base station

and a single antenna at the mobile. With reference to the development presented

in section 2.2.2, we define hp(t) = hp,1(t) and hq(t) = hq,1(t).

Uniform AOA

Several researchers have employed the uniform angle of arrival model in evaluat-

ing array processing techniques for wireless systems [14],[16],[17],[18]. Consider

the evaluation of the path correlation for uniform angle of arrival on the interval

(φ0 −∆, φ0 + ∆). The expectation term in (2.19) is easily determined

E
{
exp (jnφ)

}
= exp (jnφ0)

sin (n∆)

n∆
(2.24)

and the correlation between the signals received at the pth and qth base antennas

is

E
{

hp(t)h
∗
q(t)

}
=

∞∑
n=−∞

exp (jnφ0)
sin (n∆)

n∆
(2.25)

× exp
[
jn

(
−ξpq

base +
π

2

)]
Jn (kdpq

base)

where k = 2π/λ. For the special case of a linear array on the y-axis with uniform

element spacing d

E
{

hp(t)h
∗
q(t)

}
=

∞∑
n=−∞

exp (jnφ0)
sin (n∆)

n∆
(−1)n Jn (kd (p− q)) (2.26)

This result agrees with that published by Salz and Winters [18]. The general

expression derived here, 2.25, is not restricted to a linear array, however. Note
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also the special case of ∆ = π for which

E
{
exp (jnφ)

}
=





1, n = 0

0, n 6= 0

(2.27)

and

E
{

hp(t)h
∗
q(t)

}
= J0 (kdpq

base) (2.28)

This well-known result corresponds to the spatial correlation function for cylindri-

cally isotropic noise [19],[20].

Figures 2.14 and 2.15 illustrate the path correlation versus antenna spacing for

the uniform AOA model and φ0 = 0, 45◦, respectively.

Gaussian AOA

Trump [24] employed a Gaussian density for the angle of arrival when investigating

approaches for estimating the direction of arrival and angular spread for wireless

systems. If the angle of arrival is Gaussian distributed with mean φ0 and standard

deviation σφ

E
{
exp (jnφ)

}
= exp

(
jnφ0 −

n2σ2
φ

2

)
(2.29)

The correlation between the signals received at the pth and qth base antennas is

E
{

hp(t)h
∗
q(t)

}
=

∞∑
n=−∞

exp

(
jnφ0 −

n2σ2
φ

2

)
(2.30)

× exp
[
jn

(
−ξpq

base +
π

2

)]
Jn (kdpq

base)

and for the special case of a linear array on the y-axis with uniform element spacing

d

E
{

hp(t)h
∗
r(t)

}
=

∞∑
n=−∞

exp

(
jnφ0 −

n2σ2
φ

2

)
(−1)n Jn (kd (p− q)) (2.31)
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Figure 2.14: Magnitude of the path correlation for uniform angle of arrival, ∆ =

1, 5, 20◦, φ0 = 0◦
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Figure 2.15: Magnitude of the path correlation for uniform angle of arrival, ∆ =

1, 5, 20◦, φ0 = 45◦
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Figure 2.16: Magnitude of the path correlation for Gaussian angle of arrival, σφ =

1, 5, 20◦, φ0 = 0◦

The approach presented here assumes (−∞ < φ < ∞), that is, the angular

nature of the angle of arrival is not accounted for. Fuhl et al. [16] proposed

a truncated normal distribution which results in a modified expression for the

path correlation. The von Mises distribution was proposed by Fleury [21] as an

alternative to the truncated Gaussian function. This distribution has found wide

application in the analysis of directional data.

Figures 2.16 and 2.17 illustrate the path correlation versus antenna spacing for

the Gaussian AOA model and φ0 = 0, 45◦, respectively.

Laplacian AOA

The use of the truncated Laplacian probability density function for the angle of

arrival is considered next. This model is motivated by the field measurements of

Pedersen et al. [10],[11],[12] who determined that the power azimuth spectrum for
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Figure 2.17: Magnitude of the path correlation for Gaussian angle of arrival, σφ =

1, 5, 20◦, φ0 = 45◦

an urban wireless environment was accurately modeled using a truncated Laplacian

function.

The Laplacian probability density is

f (φ) =
exp

(
−
√

2|φ−φ0|
σA

)

σA

√
2
[
1− exp

(
−
√

2π
σA

)] φ0 − π ≤ φ ≤ φ0 + π (2.32)

with mean angle of arrival φ0 and angular spread parameter σA. The expectation

appearing in (2.19) is

E
{
exp (jnφ)

}
= exp (jnφ0)

2

n2σ2
A + 2


1− (−1)n exp

(
−
√

2π
σA

)

1− exp
(
−
√

2π
σA

)

 (2.33)

The correlation between the signals received at the pth and qth base antennas is

E
{

hp(t)h
∗
q(t)

}
=

∞∑
n=−∞

exp (jnφ0)
2

n2σ2
A + 2


1− (−1)n exp

(
−
√

2π
σA

)

1− exp
(
−
√

2π
σA

)

 (2.34)

× exp
[
jn

(
−ξpq

base +
π

2

)]
Jn (kdpq

base)
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Figure 2.18: Magnitude of the path correlation for Laplacian angle of arrival,

σφ = 1, 5, 20◦, φ0 = 0◦

For the special case of a linear array on the y-axis with uniform element spacing d

and mean angle of arrival φ0 = 0, we have

E
{

hp(t)h
∗
q(t)

}
= J0 (kd (p− q)) (2.35)

+
∞∑

m=1

2

2m2σ2
A + 1

J2m (kd (p− q))

This result differs slightly from that published by Fleury et al. [23]. The general

expression derived here applies for arbitrary array geometery and arbitrary mean

angle of arrival φ0.

Figures 2.18 and 2.19 illustrate the path correlation versus antenna spacing for

the Laplacian AOA model and φ0 = 0, 45◦, respectively.
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Figure 2.19: Magnitude of the path correlation for Laplacian angle of arrival,

σφ = 1, 5, 20◦, φ0 = 45◦

Approximations for Small Angular Spread

If the angular spread due to multipath is small, simple approximations for the path

correlation may be developed. Aside from reduced computation, these approxima-

tions have the advantage of separating the correlation between a pair of array

elements into two distinct factors. One factor is due to the mean angle of arrival

and the remaining factor is due to angular spread. This, in turn, allows the array

covariance matrix to be written as a Hadamard (element-by-element) product of

two matrices, one depending only on the angle of arrival and the second depending

only on the angular spread. Besson and Stoica have exploited this decoupling in

developing estimators for the angle of arrival and angular spread for a linear array

using the extended invariance principle [25].

Consider φ = φ0 + δ with φ0 corresponding to the angle of arrival of the

direct path and δ small. Using small angle approximations for the sine and cosine
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functions

cos (φ− ξpq) ≈ cos (φ0 − ξpq)− δ sin (φ0 − ξpq) (2.36)

and

E
{

hp(t)h
∗
q(t)

}
≈ exp

[
jkdpq cos (φ0 − ξpq)

]
(2.37)

× E
{

exp
[−jkdpqδ sin (φ0 − ξpq)

]}

Uniform AOA

For δ uniformly distributed on (−∆, ∆) and ∆ ¿ π

E
{

hp(t)h
∗
q(t)

}
≈ exp

[
jkdpq cos (φ0 − ξpq)

]
(2.38)

× sin (kdpq∆ sin (φ0 − ξpq))

kdpq∆ sin (φ0 − ξpq)

Figure 2.20 compares the approximation to the exact correlation for a 2-element

linear array with uniform AOA and mean angle of arrival φ0 = 45◦.

Gaussian AOA

For δ zero-mean Gaussian with standard deviation σφ ¿ π

E
{

hp(t)h
∗
q(t)

}
≈ exp

[
jkdpq cos (φ0 − ξpq)

]
(2.39)

× exp
[− (kdpqσφ sin (φ0 − ξpq))2 /2

]

Figure 2.21 compares the approximation to the exact correlation for a 2-element

linear array with Gaussian AOA and mean angle of arrival φ0 = 45◦.
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Figure 2.20: Comparison of exact and approximate correlation for Uniform AOA,

φ0 = 45◦
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Figure 2.21: Comparison of exact and approximate correlation for Gaussian AOA,

φ0 = 45◦
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Figure 2.22: Comparison of exact and approximate correlation for Laplacian AOA,

φ0 = 45◦

Lapacian AOA

For δ zero-mean Laplacian with parameter σA ¿ π

E
{

hp(t)h
∗
q(t)

}
≈ exp

[
jkdpq cos (φ0 − ξpq)

]
(2.40)

× 2

[kdpqσA sin (φ0 − ξpq)]2 + 2

Figure 2.22 compares the approximation to the exact correlation for a 2-element

linear array with Lapacian AOA and mean angle of arrival φ0 = 45◦.

2.4 Chapter Summary

In this chapter we have introduced a general space-time covariance model that is

applicable to arbitrary scatterer geometry, arbitrary array geometry at the base

and mobile, and includes Doppler effects due to mobile motion. We have presented
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applications of the proposed model based upon the ’circular ring’ scatterer geom-

etry due to Jakes [2] and the two-dimensional Gaussian scatterer geometry based

upon the field measurements of Pedersen et al. [10],[11],[12]. A number of numer-

ical examples were presented to illustrate the influence of antenna separation and

effective scattering radius on the path correlation. In addition, variations in the

normalized Doppler frequency were considered to illustrate the temporal aspects

of the model.
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Chapter 3

Evaluation of Space-Time Coding Performance

with Spatial and Temporal Correlation

3.1 Introduction

In this chapter and the following chapter we evaluate the performance of several

transmit diversity techniques for spatially and temporally correlated wireless chan-

nels. Diversity techniques can be broadly categorized according to whether or not

channel knowledge is employed at the transmitter of the communication system.

Beamforming approaches, such as maximum ratio transmission [27], rely on feed-

back of the channel response to the transmitter to achieve signal reinforcement and

hence diversity gain. The temporal characteristics of the wireless channel deter-

mine the effectiveness of such techniques due to the senescence of the channel state

information. Space-time block coding, on the other hand, encodes the information

symbols redundantly in space and in time to achieve diversity gain. No channel

state information is employed by the transmitter for this technique. As will be

demonstrated, the error performance of both beamforming and space-time coding

is significantly affected by the temporal and spatial correlation characteristics of
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the wireless channel. In this chapter we analyze the performance of space-time

block coding techniques and in the following chapter we analyze the performance

of beamforming techniques.

The computation of the symbol error probability for arbitrary space-time block

codes is, in general, analytically intractable. So, we approach the problem of

analyzing the error performance through the use of the union bound and the exact

pairwise error probability. It should be noted that in all cases we assume the

receiver of the wireless system has perfect knowledge of the channel response.

That is, we do not address the problem of channel estimation. With the aid of

the space-time covariance model developed in the previous chapter, we present

extensive numerical results that illustrate the error performance of several space-

time block codes. We consider variations in the spatial and temporal correlation

of the wireless channel and the resultant effects on the error performance of these

techniques.

The chapter is organized as follows. In Section 3.2 we briefly describe the

space-time block coding techniques that are investigated and related work. Section

3.3 describes the basic system model and Section 3.4 details the development of

the exact pairwise error probability for arbitrary space-time block codes. Finally,

numerical results are presented in Section 3.5.

3.2 Space-Time Block Coding

Wireless systems employing multiple transmit and receive antennas have the poten-

tial for tremendous gains in channel capacity through exploitation of independent

transmission paths due to scattering. Transmit diversity, achieved through the use

of space-time coding techniques at the base station is a recent innovation motivated
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by the need for higher throughput in the wireless channel. A simple two-branch

transmit diversity scheme was proposed by Alamouti [32]. It was demonstrated

that this scheme provides the same diversity order as a wireless system employing

a single transmit antenna and two receive antennas and utilizing maximal-ratio

combining (i.e. classical receive diversity). The bit-error-rate (BER) performance

of the proposed scheme was evaluated assuming that the path from each trans-

mit antenna to each receive antenna experiences mutually uncorrelated Rayleigh

amplitude fading. Abundant space-time codes to achieve transmit diversity have

been proposed, for example see [33], [34], [35], [36], and the references therein. In

these works a Rayleigh channel model was used to evaluate the performance of the

proposed codes and the transmit antennas were assumed to be sufficiently spaced

such that the transmission paths are independent.

The majority of the research to date on space-time coding techniques has em-

ployed the assumption of uncorrelated transmission paths without regard for the

conditions under which this assumption is justified. The degree of correlation be-

tween channel transmission paths from a transmit antenna to a receive antenna

depends significantly on the scattering environment and on the antenna separa-

tion at the transmitter and receiver. For example, if the majority of the channel

scatterers are located in close proximity to the mobile then the transmission paths

will be highly correlated unless the transmit antennas are sufficiently separated in

space.

In recently published work Wang et al. [26] derive the exact pairwise error

probability for space-time coding over quasi-static or fast-fading Rayleigh channels

in the presence of spatial fading correlation. For analytical tractability, the authors

assume the channel matrix can be decomposed as a product of the square roots of
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the transmit and receive correlation matrices, respectively. The effects of spatial

correlation on space-time coding performance are investigated for several scenarios

but it is unclear how the parameters chosen relate to physical scattering parameters

such as effective scattering radius, etc.

3.3 System Model

Consider a wireless system employing NT transmit antennas and NR receive an-

tennas. The signal received at the qth antenna at time t is

yq(t) =

NT∑
p=1

hp,q(t)cp(t) + zq(t) (3.1)

where hp,q(t) is the complex channel response between the pth transmit antenna

and the qth receive antenna at time t and is modeled as complex Gaussian with

zero mean and unit variance. cp(t) denotes the space-time signal transmitted by

the pth antenna at time t and zq(t) is independent complex Gaussian noise with

zero mean and variance N0.

Each space-time signal is described by a T × NT matrix C with the columns

corresponding to the space dimension and the rows corresponding to the time

dimension

C =




c1(1) c2(1) · · · cNT
(1)

c1(2) c2(2) · · · cNT
(2)

...
...

. . .
...

c1(T ) c2(T ) · · · cNT
(T )




. (3.2)

The space-time signal cp(t) is chosen as the entry in the code matrix corresponding

to the pth column and tth row. The space-time signal is transmitted over T time

42



slots and employs NT transmit antennas. The average signal energy is defined as

Es = E

[
1

T

T∑
t=1

NT∑
p=1

|cp(t)|2
]

(3.3)

and the signal to noise ratio is ρ = Es

N0
.

Equation (3.1) can be re-written in vector form as [40]

y = Dh + z (3.4)

where the NRT × NT NRT matrix D is constructed from the space-time signal

matrix C as follows

D =




D1 D2 · · · DNT
· · · 0 0 · · · 0

0 0 · · · 0 · · · 0 0 · · · 0

...
. . .

...

0 0 · · · 0 · · · D1 D2 · · · DNT




(3.5)

with

Di = diag (ci(1), ci(2), · · · , ci(T )) , i = 1, 2, · · · , NT . (3.6)

The elements of the diagonal matrix Di correspond to the ith column of the code

matrix C. The NT NRT × 1 channel vector h is defined by

h =
(
h
′
1,1, · · · ,h

′
NT ,1, · · · ,h

′
1,NR

, · · · ,h
′
NT ,NR

,
)′

(3.7)

with

hi,j = (hi,j(1), hi,j(2), · · · , hi,j(T ))
′

(3.8)

and ′ denoting the matrix transpose operation. The NRT ×1 received signal vector

y is defined by

y = (y1(1), · · · , y1(T ), · · · , yNR
(1), · · · , yNR

(T ))
′

(3.9)

and the NRT × 1 noise vector z is given by

z = (z1(1), · · · , z1(T ), · · · , zNR
(1), · · · , zNR

(T ))
′

(3.10)
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3.4 Pairwise Error Probability

In this section an expression for the exact pairwise error probability is developed

for spatially and temporally correlated wireless channels. The pairwise error prob-

ability is used in conjunction with the union bound to determine an upper bound

for the probability of a block error for arbitrary space-time codes.

Suppose Dα and Dβ correspond to two distinct space-time signals Cα and Cβ,

respectively. Assuming the channel vector h is known, the hypothesis test for

choosing between Cα and Cβ is
(
y −Dαh + z

)†(
y −Dαh + z

)
(3.11)

Cβ

>

<

Cα

(
y −Dβh + z

)†(
y −Dβh + z

)

where the symbol † denotes the matrix conjugate transpose operation. This test

corresponds to choosing between two (complex) Gaussian vectors with equal co-

variance matrices and unequal mean vectors. The pairwise error probability given

the channel vector h is [41]

Pr (Cα → Cβ | h) = Q
(√

ρ

2NT

∥∥(Dα −Dβ)h
∥∥2

)
(3.12)

where ‖x‖ denotes the norm of the vector x, i.e. ‖x‖2 = x†x and Q(x) denotes

the Gaussian Q function. An alternative form of the Gaussian Q function due to

Craig [42] is employed in the sequel. It is defined as

Q(x) =
1√
2π

∫ ∞

x

exp
(−t2/2

)
dt (3.13)

=
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ
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Considering now the expectation over the channel vector h, we have

Pr (Cα → Cβ) = E
{

Q
(√

ρ

2NT

∥∥(Dα −Dβ)h
∥∥2

)}
(3.14)

=
1

π

∫ π/2

0

E

{
exp

(
− ρ

NT

∥∥(Dα −Dβ)h
∥∥2

4 sin2 θ

)}
dθ

Assuming that the channel vector h is complex Gaussian with zero mean vector

and space-time covariance matrix R, a result due to Turin [43],[44] regarding the

characteristic function of a quadratic form of a complex Gaussian vector may be

used to evaluate the expectation appearing in (3.14)

E

{
exp

(
− ρ

NT

∥∥(
Dα −Dβ

)
h
∥∥2

4 sin2 θ

)}
=

1

det

(
I + ρ

NT

(Dα−Dβ)R(Dα−Dβ)
†

4 sin2 θ

) (3.15)

=
K∏

i=1

(
1 +

ρ

NT

λi

4 sin2 θ

)−1

with K corresponding to the rank of the matrix

(Dα −Dβ)R (Dα −Dβ)† (3.16)

and {λi}K
i=1 its non-zero eigenvalues. For completeness, a proof of this result is

presented in Appendix A. The final expression for the pairwise error probability

between Cα and Cβ is now given by

Pr (Cα → Cβ) =
1

π

∫ π
2

0

K∏
i=1

(
1 +

ρ

NT

λi

4 sin2 θ

)−1

dθ (3.17)

Given space-time codes Cα and Cβ and the channel space-time covariance matrix

R = E
{
hh†

}
, the pairwise error probability can be calculated from (3.17). Note

that in most cases of practical interest (3.17) must be numerically integrated to

determine the exact pairwise error probability.

An upper bound on the pairwise error probability can be easily deduced from

the Q function definition in (3.13). Specifically, Q(x) ≤ 1
2
exp

(
−x2

2

)
since the
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integrand in (3.13) attains its maximum value for θ = π/2. We have

Pr (Cα → Cβ) ≤
K∏

i=1

(
1 +

ρ

NT

λi

4

)−1

(3.18)

≤

(
ρ

4NT

)K

∏K
i=1 λi

Tighter upper bounds on the pairwise error probability have been found, see [44],

for example.

An upper bound on the probability of incorrectly decoding a space-time block

code may be obtained by employing the union bound. Specifically, let Pblock denote

the probability that the space-time block code is erroneously decoded. Then,

Pblock ≤
∑

α

Pr (Cα)
∑

α 6=β

Pr (Cα → Cβ) (3.19)

In the sequel, the expression for the upper bound on the block error probability

(3.19) is evaluated to assess space-time code performance. Define the diversity

order δ as

δ = lim
ρ→∞

log Pblock

log ρ
(3.20)

The parameter δ describes the asymptotic slope of the block error probability

versus signal to noise ratio. For example, a diversity order of 2 implies a reduction

of 10−2 in the block error probability for each 10dB increase in signal to noise ratio.

In the sequel, the achieved diversity order is also used to assess space-time code

performance.

3.5 Numerical Results

In this section we evaluate the union bound on the block error probability (3.19)

using a two-dimensional Gaussian scattering model for several space-time codes
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employing two and four transmit antennas and up to three receive antennas. Linear

array geometry was employed at the base and mobile for all results. Variations in

both spatial and temporal correlation are considered and the results are compared

to the case of an uncorrelated (space and time) channel.

The motivation for the use of the two-dimensional Gaussian scattering model is

due to a recent measurement campaign conducted by Pedersen et al. [10],[11],[12]

in which the temporal and azimuth dispersion of multipath in urban wireless en-

vironments was characterized. The study found that the power azimuth spectrum

was accurately modeled using a truncated Laplacian function and the power delay

spectrum was well-approximated by a negative-exponential function. Recent work

by Janaswamy [13] concluded that the measurements reported by Pedersen et al.

were consistent with a two-dimensional Gaussian model for the scatterer locations

surrounding the mobile receiver.

The standard deviation of the scattering radius for the two-dimensional Gaus-

sian model was varied from σR = 10, 50, 200m and the distance between the mo-

bile and base (array phase centers) was fixed at d = 1000m. The parameter σR

specifies the radius about the mobile for which approximately 68 percent of the

scatterers are contained. The smallest value for σR yields the ratio σR/d = 0.01

and corresponds to angular spread due to multipath of approximately 1◦ from the

perspective of the base station. The mobile location was broadside to the base an-

tenna array and its velocity was chosen such that the maximum Doppler frequency

was approximately fd = 78Hz corresponding to a carrier frequency of 850MHz and

a maximum speed of 100km/hr. Variations in the space-time symbol period Ts

were considered to assess the effects due to temporal correlation. Specifically, val-

ues used for the normalized Doppler frequency were fdTs = 0.0033, 0.01, 0.05, 0.1.

47



The smallest value corresponds to a slow fading channel with a symbol to fading

ratio of approximately 300:1. In other words, space-time symbols separated by 300

symbol periods are approximately uncorrelated. The largest value corresponds to

a channel with a symbol to fading ratio of 10:1 and is denoted as fast fading.

The space-time block codes investigated include the orthogonal code [32],[33],[34],

the orthogonal code with sphere packing [40], the diagonal algebraic code [35], and

the cyclic code [36]. These codes were chosen because they respresent a wide

spectrum of available space-time codes and yield reasonable performance.

For the presentation that follows, results for spatial correlation are presented

first followed by the results for temporal correlation.

3.5.1 Spatial Correlation

This section presents results for the slow fading (fdTs = 0.0033) and uncorrelated

wireless channels with variations in spatial correlation due to transmit antenna

spacing, receive antenna spacing and scattering radius standard deviation σR for

the two-dimensional Gaussian scattering model. Results for two transmit antennas

are presented first followed by results for four transmit antennas. All results for two

transmit antennas were evaluated at 10−2 block error probability and all results

for four transmit antennas were evaluated at 10−4 block error probability.

2 Transmit Antennas

For 2 transmit antennas the orthogonal code due to Alamouti [32] was used with

a 16-QAM symbol constellation. For the diagonal algebraic code we also chose
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16-QAM symbols and the unitary rotation matrix was chosen to be

1√
2




1 ejπ/4

1 −ejπ/4


 (3.21)

For all space-time codes the spectral efficiency was 4 bits/s/Hz.

Figure 3.1 shows the block error probability (union bound) versus signal to

noise ratio and scattering radius standard deviation for 2 transmit antennas (λ/2

spacing) and 1 receive antenna. The normalized Doppler frequency for this case

was fdTs = 0.0033, representing slow fading. To achieve a block error probablity

of 10−2 for the uncorrelated channel approximately 26.4dB signal to noise ratio

is required for the diagonal algebraic code. The orthogonal code and orthogonal

code with sphere packing realize performance improvements of 1.4dB and 1.7dB,

respectively, over the diagonal algebraic code for the uncorrelated channel. For a

scattering radius standard deviation of σR = 10m, approximately 37.8dB signal to

noise ratio is required to achieve a block error probability of 10−2 for the diagonal

algebraic code. The orthogonal code and orthogonal code with sphere packing yield

improvements of 0.4dB and 0.7dB, respectively, for this case. Thus, the channel

with scattering radius standard deviation of σR = 10m requires an increase in sig-

nal to noise ratio of 11.4dB, relative to that required for the uncorrelated channel,

to achieve a block error probability of 10−2 for the diagonal algebraic code. The

required increase in signal-to-noise ratio for the orthogonal code and the orthog-

onal code with sphere packing is 12.3dB and 12.4dB, respectively. These results

highlight the dependence of space-time coding performance on spatial correlation

for the slow fading channel. Fractional wavelength antenna spacing at the trans-

mitter combined with small scattering radius yield transmission paths that are

highly correlated and result in degraded performance relative to the uncorrelated
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channel. Increasing the spacing of the transmit antennas mitigates this effect to

a certain extent as will be demonstrated next. Figure 3.1 also illustrates that a

diversity order of 2 is achieved for all space-time codes investigated for both the

uncorrelated channel and the two-dimensional Gaussian scatterer model for values

of σR = 10, 50, 200m. For example, the block error probability for the orthogonal

space-time code and uncorrelated channel is reduced from 10−3 at a signal to noise

ratio of 30dB to 10−5 at a signal to noise ratio of 40dB.

Figure 3.2 shows the block error probability (union bound) versus signal to noise

ratio and transmit antenna spacing for a single receive antenna and normalized

Doppler frequency of fdTs = 0.0033 and scattering radius standard deviation of

σR = 10m. From these results it was determined that an antenna spacing of 30λ

is required to achieve performance within 0.5dB of the uncorrelated channel for

10−2 block error probability. For a carrier frequency of 850MHz the transmitted

wavelength is λ = 0.35m and 30λ = 10.5m. From Figure 3.2 it is seen that

increasing the spacing of the transmit antennas from λ/2 to 5λ decreases the

signal to noise ratio required to achieve a block error probability of 10−2 by 6.7dB

for the diagonal algebraic code, 7.4dB and 7.5dB, respectively, for the orthogonal

code and orthogonal code with sphere packing for a scattering radius standard

deviation of σR = 10m.

Figure 3.3 shows the results for 2 transmit antennas (5λ spacing) and 2 receive

antennas (λ/2 spacing) and fdTs = 0.0033. A signal to noise ratio of 17.3dB is

required to achieve a block error probability of 10−2 for the diagonal algebraic code

and an uncorrelated channel. The orthogonal code and orthogonal code with sphere

packing achieve gains of 0.6dB and 1.1dB, respectively, over the diagonal algebraic

code for the uncorrelated channel. For the channel with scattering radius standard
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deviation σR = 10m the required signal to noise ratios to achieve 10−2 block error

probability are 22.2, 22.1 and 22.0dB, respectively, for the diagonal algebraic code,

orthogonal code, and orthogonal code with sphere packing. Comparing Figures 3.2

and 3.3 it is seen that the addition of 1 receive antenna (λ/2 spacing) reduces the

signal to noise ratio required to achieve a block error probability of 10−2 by 9.1dB

for the diagonal algebraic code, 8.3dB and 8.5dB, respectively, for the orthogonal

code and orthogonal code with sphere packing for the uncorrelated channel. Figure

3.3 also illustrates that a diversity order of 4 is achieved for the uncorrelated

channel and for all space-time codes investigated. For example, the block error

probability for the orthogonal space-time code is reduced from 10−7 at a signal

to noise ratio of 30dB to 10−11 at a signal to noise ratio of 40dB. Although not

evident from the figure, it was verified that the asymptotic slope of the block error

probability for the two-dimensional Gaussian scatterer model with σR = 10, 50m

was the same as that for the uncorrelated channel and thus these cases also yield

a diversity order of 4.

4 Transmit Antennas

For the case of 4 transmit antennas we investigated three space-time codes having

a spectral efficiency of 2 bits/s/Hz. These codes are: the orthogonal code with

sphere packing [39],[40] the cyclic code [36], and the diagonal algebraic code with

unitary rotation matrix

1

2




1 ejπ/8 ej2π/8 ej3π/8

1 −ejπ/8 ej2π/8 −ej3π/8

1 jejπ/8 −ej2π/8 −jej3π/8

1 −jejπ/8 −ej2π/8 jej3π/8




(3.22)
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Figure 3.1: Orthogonal code with 16-QAM symbols (solid curve), orthogonal code

with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block

error probability (union bound) versus signal to noise ratio and scattering radius

standard deviation, 2 transmit antennas (λ/2 spacing), 1 receive antenna, fdTs =

0.0033.
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Figure 3.2: Orthogonal code with 16-QAM symbols (solid curve), orthogonal code

with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block

error probability (union bound) versus signal to noise ratio and transmit antenna

separation, 2 transmit antennas, 1 receive antenna, fdTs = 0.0033, σR = 10m.
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Figure 3.3: Orthogonal code with 16-QAM symbols (solid curve), orthogonal code

with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block

error probability (union bound) versus signal to noise ratio and scattering radius

standard deviation, 2 transmit antennas (5λ spacing), 2 receive antennas (λ/2

spacing), fdTs = 0.0033.
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and QPSK signal constellation. Figure 3.4 shows the block error probability (union

bound) versus signal to noise ratio and scattering radius standard deviation for 4

transmit antennas (λ/2 spacing) and 1 receive antenna. The normalized Doppler

frequency for this case was fdTs = 0.0033, representing slow fading. To achieve a

block error probablity of 10−4 for the uncorrelated channel a signal to noise ratio

of approximately 22.6dB is required for the cyclic code. The diagonal algebraic

and the orthogonal code with sphere packing realize performance improvements of

2.2dB and 3.0dB, respectively, over the cyclic code for the uncorrelated channel.

For a scattering radius standard deviation of σR = 10m, approximately 41.7dB

signal to noise ratio is required to achieve a block error probability of 10−4 for the

cyclic code. The diagonal algebraic and the orthogonal code with sphere packing

yield improvements of 0.4dB and 2.0dB, respectively, for this case. With refer-

ence to Figure 3.4 note that 19.1dB additional signal to noise ratio is required to

maintain a block error probability of 10−4 for a scattering radius standard devi-

ation of σR = 10m compared with the uncorrelated channel for the cyclic code.

The diagonal algebraic code and orthogonal code with sphere packing require an

additional signal to noise ratio of 20.9dB and 20.1dB, respectively, for the same

conditions. Figure 3.4 also illustrates that a diversity order of 4 is achieved for

the uncorrelated channel and for all space-time codes investigated. For example,

the block error probability for the orthogonal space-time code with sphere packing

is reduced from 10−8 at a signal to noise ratio of 30dB to 10−12 at a signal to

noise ratio of 40dB. Although not evident from the figure, it was verified that the

asymptotic slope of the block error probability for the two-dimensional Gaussian

scatterer model with σR = 10, 50, 200m was the same as that for the uncorrelated

channel and thus these cases also yield a diversity order of 4.
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Figure 3.5 shows the block error probability (union bound) versus signal to

noise ratio and transmit antenna spacing for scattering radius standard deviation

σR = 10m and normalized Doppler frequency fdTs = 0.0033. It was found that a

transmit antenna spacing of 40λ (14.0m) is required to achieve performance within

0.5dB of that for the uncorrelated channel at a block error probability of 10−4.

From Figure 3.5 it is seen that increasing the spacing of the transmit antennas

from λ/2 to 5λ decreases the signal to noise ratio required to achieve a block error

probability of 10−4 by 11.3dB for the cyclic code, 11.9dB and 10.9dB, respectively,

for the diagonal algebraic code and orthogonal code with sphere packing for a

scattering radius standard deviation of σR = 10m.

Figures 3.6 and 3.7 show the results for 2 and 3 receive antennas (λ/2 spacing),

respectively, and 4 transmit antennas (5λ spacing) for fdTs = 0.0033 and scatter-

ing radius standard deviation σR = 10m and the uncorrelated channel. For the

case of 2 receive antennas the cyclic code achieves a block error probability of 10−4

at a signal to noise ratio of 14.4dB for the uncorrelated channel. A performance

improvement of 1.8dB and 2.0dB, respectively, is observed for the diagonal alge-

braic code and orthogonal code with sphere packing for the uncorrelated channel.

For the case of 3 receive antennas the cyclic code achieves a block error proba-

bility of 10−4 at a signal to noise ratio of 10.9dB for the uncorrelated channel.

A performance improvement of 1.3dB and 1.4dB, respectively, is observed for the

diagonal algebraic code and orthogonal code with sphere packing for the uncorre-

lated channel. Comparing Figures 3.5, 3.6 and 3.7 it is seen that a system with 2

receive antennas requires 8.2dB less signal to noise ratio to achieve a block error

probability of 10−4 than a system with 1 receive antenna for the cyclic code and

uncorrelated channel. It was found that a system with 3 receive antennas further
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Figure 3.4: Orthogonal code with sphere packing (dashed curve), diagonal alge-

braic code (dotted curve), cyclic code (dash-dotted curve). Block error probability

(union bound) versus signal to noise ratio and scattering radius standard deviation,

4 transmit antennas (λ/2 spacing), 1 receive antenna, fdTs = 0.0033.

reduces the required signal to noise ratio by 3.5dB compared with the case of 2

receive antennas for the same conditions. Also, results for 4 receive antennas (not

shown) demonstrate a further reduction of 2.1dB compared with the case of 3

receive antennas. Although these comparisons were made for the cyclic code, com-

parable results were obtained for the diagonal algebraic code and orthogonal code

with sphere packing. From these results it appears that the benefit realized by

adding multiple receive antennas diminishes with increasing numbers of antennas.

3.5.2 Temporal Correlation

This section investigates the space-time block code error performance due to vari-

ations in temporal correlation. Four cases for the normalized Doppler frequency
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Figure 3.5: Orthogonal code with sphere packing (dashed curve), diagonal alge-

braic code (dotted curve), cyclic code (dash-dotted curve). Block error probability

(union bound) versus signal to noise ratio and transmit antenna spacing, 4 transmit

antennas (λ/2 spacing), 1 receive antenna, fdTs = 0.0033, σR = 10m.
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Figure 3.6: Orthogonal code with sphere packing (dashed curve), diagonal alge-

braic code (dotted curve), cyclic code (dash-dotted curve). Block error probability

(union bound) versus signal to noise ratio and scattering radius standard deviation,

4 transmit antennas (5λ spacing), 2 receive antennas (λ/2 spacing), fdTs = 0.0033.
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Figure 3.7: Orthogonal code with sphere packing (dashed curve), diagonal alge-

braic code (dotted curve), cyclic code (dash-dotted curve). Block error probability

(union bound) versus signal to noise ratio and scattering radius standard deviation,

4 transmit antennas (5λ spacing), 3 receive antennas (λ/2 spacing), fdTs = 0.0033.
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were considered, fdTs = 0.0033, 0.01, 0.05, 0.1. The smallest value corresponds to

a slow fading wireless channel and the largest value corresponds to the case of fast

fading. The symbol to fading ratios for the slow fading and fast fading cases are

300:1 and 10:1, respectively. All results for two transmit antennas were evaluated

at 10−2 block error probability and all results for four transmit antennas were

evaluated at 10−4 block error probability.

2 Transmit Antennas

Figure 3.8 shows the block error probability (union bound) versus signal to noise

ratio and normalized Doppler frequency for 2 transmit antennas (λ/2 spacing),

1 receive antenna and scattering radius standard deviation σR = 10m. For the

fast fading channel (fdTs = 0.1) the orthogonal code with sphere packing requires

31.9dB signal to noise ratio to achieve a block error probability of 10−2. The or-

thogonal code and diagonal algebraic code yield improvements of 1.0dB and 2.1dB,

respectively, over the orthogonal code with sphere packing for the fast fading chan-

nel. This case corresponds to space-time symbols with low temporal correlation

but high spatial correlation due to the fractional wavelength spacing at the trans-

mitter and small scattering radius. For the slow fading channel (fdTs = 0.0033) the

diagonal algebraic code requires 37.8dB signal to noise ratio to achieve a block er-

ror probability of 10−2. The orthogonal code and the orthogonal code with sphere

packing yield improvements of 0.5dB and 0.7dB, respectively, over the diagonal

algebraic code for this case. With reference to Figure 3.8 and considering a block

error probability of 10−2, the best performing space-time code for the fast fad-

ing channel is the diagonal algebraic code. However, this code yields the worst

performance among all codes investigated for the slow fading channel and the un-
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correlated (space and time) channel. Also from Figure 3.8 it can be seen that

the space-time code yielding the best performance for a fixed value of normalized

Doppler frequency depends on the signal to noise ratio. For the fast fading chan-

nel, for example, the best code for signal to noise ratios less than 19.7dB is the

orthogonal code with sphere packing while the best code for signal to noise ratios

greater than 19.7dB is the diagonal algebraic code. Similar effects can be observed

for the channel with normalized Doppler frequency of fdTs = 0.05. It was verified

that all space-time codes exhibit the same asymptotic slope of block error prob-

ability versus signal to noise ratio for all values of normalized Doppler frequency

investigated and thus have the same diversity order. Evidently, the differences in

performance are due to differences in coding gain among the various space-time

codes.

Figure 3.9 shows the block error probability (union bound) versus signal to

noise ratio and normalized Doppler frequency for 2 transmit antennas (5λ spac-

ing), 1 receive antenna, scattering radius standard deviation σR = 200m and the

uncorrelated channel. From Figure 3.9 it is seen that increasing the spacing of

the transmit antennas from λ/2 to 5λ combined with an increase in scattering

radius standard deviation from σR = 10m to σR = 200m produces a channel with

low spatial correlation and results in error performance indistinguishable from the

uncorrelated (space and time) channel for all variations of normalized Doppler fre-

quency that were investigated. With reference to Figure 3.9, the diagonal algebraic

code requires 26.4dB signal to noise ratio to achieve a block error probability of

10−2 and the orthogonal code and orthogonal code with sphere packing provide

improvements of 1.4dB and 1.7dB, respectively, over the diagonal algebraic code.
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Figure 3.8: Orthogonal code with 16-QAM symbols (solid curve), orthogonal code

with sphere packing (dashed curve), diagonal algebraic code (dotted curve). Block

error probability (union bound) versus signal to noise ratio and normalized Doppler

frequency, 2 transmit antennas (λ/2 spacing), 1 receive antenna, σR = 10m.
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error probability (union bound) versus signal to noise ratio and normalized Doppler

frequency, 2 transmit antennas (5λ spacing), 1 receive antenna, σR = 200m.
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4 Transmit Antennas

Figure 3.10 shows the block error probability (union bound) versus signal to noise

ratio and normalized Doppler frequency for 4 transmit antennas (λ/2 spacing), 1

receive antenna, scattering radius standard deviation σR = 10m and the uncorre-

lated channel. For the fast fading channel (fdTs = 0.1) the cyclic code requires

29.3dB signal to noise ratio to achieve a block error probability of 10−4. The orthog-

onal code with sphere packing and the diagonal algebraic code yield improvements

of 0.7dB and 1.0dB, respectively, over the cyclic code for the fast fading channel.

This case corresponds to space-time symbols with low temporal correlation but

high spatial correlation due to the fractional wavelength spacing at the transmit-

ter and small scattering radius. For the slow fading channel (fdTs = 0.0033) the

cyclic code requires 41.7dB signal to noise ratio to achieve a block error probability

of 10−4. The diagonal algebraic code and the orthogonal code with sphere pack-

ing yield improvements of 0.4dB and 2.0dB, respectively, over the cyclic code for

this case. With reference to Figure 3.10, it can be seen that the space-time code

yielding the best performance for a fixed value of normalized Doppler frequency

depends on the signal to noise ratio. For the fast fading channel, for example, the

best code for signal to noise ratios less than 34.8dB is the diagonal algebraic code

while the best code for signal to noise ratios greater than 34.8dB is the orthogonal

code with sphere packing. Similar effects can be observed for the channel with

normalized Doppler frequency of fdTs = 0.05. It was verified that all space-time

codes exhibit the same asymptotic slope of block error probability versus signal

to noise ratio for all values of normalized Doppler frequency investigated and thus

have the same diversity order.

Figure 3.11 shows the block error probability (union bound) versus signal to
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Figure 3.10: Orthogonal code with sphere packing (dashed curve), diagonal alge-

braic code (dotted curve), cyclic code (dash-dotted curve). Block error probability

(union bound) versus signal to noise ratio and normalized Doppler frequency, 4

transmit antennas (λ/2 spacing), 1 receive antenna, σR = 10m.

noise ratio and normalized Doppler frequency for 4 transmit antennas (5λ spacing),

1 receive antenna, scattering radius standard deviation σR = 200m and the uncor-

related channel. Comparing Figures 3.10 and 3.11 it can be seen that increasing

the transmit antenna separation and increasing the scattering radius standard de-

viation produces a channel with low spatial correlation and results in performance

virtually indistinguishable from the uncorrelated (space and time) channel despite

variations in the normalized Doppler frequency. With reference to Figure 3.11 the

cyclic code requires 22.7dB signal to noise ratio to achieve a block error probabil-

ity of 10−4, the diagonal algebraic code and orthogonal code with sphere packing

provide improvements of 2.1dB and 2.9dB, respectively, over the cyclic code.
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Figure 3.11: Orthogonal code with sphere packing (dashed curve), diagonal alge-

braic code (dotted curve), cyclic code (dash-dotted curve). Block error probability

(union bound) versus signal to noise ratio and normalized Doppler frequency, 4

transmit antennas (5λ spacing), 1 receive antenna, σR = 200m.
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3.6 Chapter Summary

In this chapter we analyzed the performance of several space-time block coding

techniques for spatially and temporally correlated wireless channels. An upper

bound on the probability of a block error was found using the exact pairwise error

probability for arbitrary space-time block codes. Using the general space-time co-

variance model derived in the previous chapter, we presented extensive numerical

results that illustrate the performance of the proposed transmit diversity tech-

niques for the two-dimensional Gaussian scatterer model. The numerical results

are summarized in the following.

For the slow fading wireless channel (fdTs = 0.0033), spatial correlation caused

by fractional wavelength spacing at the transmitter or scatterers located in close

proximity to the mobile, resulted in significant performance degradation relative

to the uncorrelated (space and time) channel. For example, for the case of 2 trans-

mit antennas there was roughly a 12dB difference in signal to noise ratio required

(averaged over all space-time codes) to achieve 10−2 block error probability for

the uncorrelated channel compared to the channel with scattering radius standard

deviation σR = 10m for λ/2 transmit antenna spacing. It was found that increas-

ing the spacing of transmit antennas to 30λ (10.5m) yielded performance within

0.5dB of that for the uncorrelated channel for all space-time codes. For the case

of 4 transmit antennas there was roughly a 20dB difference in signal to noise ratio

required (averaged over all space-time codes) to achieve 10−4 block error proba-

bility for the uncorrelated channel compared to the channel with scattering radius

standard deviation σR = 10m for λ/2 transmit antenna spacing. For this case it

was found that increasing the spacing of transmit antennas to 40λ (14.0m) yielded

performance within 0.5dB of that for the uncorrelated channel for all space-time
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codes. In some scenarios it may impractical, due to physical constraints, for exam-

ple, to achieve the transmit antenna spacing required for performance comparable

to the uncorrelated channel. In such cases some performance loss is inevitable and

the results presented allow the performance degradation to be quantified.

Effects due to temporal correlation between adjacent space-time symbols re-

sulting from mobile motion were also investigated. If the transmission paths are

spatially correlated a significant performance degradation is observed for slow fad-

ing (fdTs = 0.0033) compared to fast fading (fdTs = 0.1). For the case of 2 transmit

antennas there was roughly a 6.5dB difference (averaged over all space-time codes)

in the signal to noise ratio required to achieve 10−2 block error probability for the

fast fading channel compared to slow fading for scattering radius standard devi-

ation σR = 10m and λ/2 transmit antenna spacing. For the case of 4 transmit

antennas there was roughly a 12dB difference in the signal to noise ratio required

(averaged over all space-time codes) to achieve 10−4 block error probability for the

fast fading channel compared to the slow fading channel for scattering radius stan-

dard deviation σR = 10m and λ/2 transmit antenna spacing. If the transmission

paths are spatially uncorrelated, however, there is virtually no performance differ-

ence between the slow fading and fast fading channels. In fact, all variations in the

normalized Doppler frequency that were investigated yield performance virtually

indistinguishable to that observed for the uncorrelated (space and time) channel

for this case.

The numerical results presented indicate that there exists a tradeoff between

spatial correlation and temporal correlation effects in determining the performance

of systems employing space-time block codes. The best-case wireless channel was

found to be uncorrelated in both space and time. However, it was also determined
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that the effects of high spatial correlation may be compensated to a certain extent

by low temporal correlation and vice versa to achieve performance comparable to

the uncorrelated channel.
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Chapter 4

Comparison of Space-Time Coding and

Beamforming Techniques

4.1 Introduction

In this chapter we evaluate the performance of orthogonal space-time block cod-

ing and beamforming techniques for spatially and temporally correlated wireless

channels.

For the special case of orthogonal space-time block codes, closed-form expres-

sions for the symbol error probability have been developed for spatially uncorre-

lated wireless channels [45]. We extend these results to include spatially correlated

channels and in addition develop closed-form expressions for the symbol error prob-

ability for maximum ratio transmission [27] and beamsteering. It should be noted

that in all cases we assume the receiver of the wireless system has perfect knowl-

edge of the channel response. That is, we do not address the problem of channel

estimation.

With the aid of the space-time covariance model developed in the previous

chapter, we present extensive numerical results that illustrate the error perfor-
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mance of these techniques for varying degrees of spatial and temporal correlation

of the wireless channel. Since beamforming and space-time coding are compet-

ing transmit diversity techniques, we present numerical results that illustrate the

tradeoff in performance between these approaches.

The chapter is organized as follows. In Section 4.2 we briefly describe the beam-

forming techniques that are investigated and related work. Section 4.3 describes

the basic system model. The derivation of the exact symbol error probability for

orthogonal space-time block coding, maximum ratio transmission, and beamsteer-

ing is presented in Section 4.4. Finally, numerical results are presented in Section

4.5.

4.2 Beamforming

Beamforming refers generically to techniques that employ channel state informa-

tion at the transmitter in some fashion. For example, the receiver may estimate

and feed back to the transmitter the mean channel response between each transmit

and receive antenna. This approach is referred to as mean-feedback beamforming.

A special case of mean-feedback beamforming occurs when the averaging time is

zero and the instantaneous channel response is fed back to the transmitter. If

the channel response varies rapidly it may be difficult to estimate the mean and

consequently the channel covariance is estimated by the receiver and fed back to

the transmitter. This approach is referred to as covariance-feedback beamform-

ing. Another approach, which requires only the direction of the mobile relative

to the base station may also be considered. We refer to this approach as beam-

steering since the transmitter employs directional information to create a spatially

selective array response which ’steers’ transmitted energy in the direction of the
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mobile. Beamsteering does not provide diversity gain but can provide power gain

due to the directional nature of the transmitted energy. Additionally, co-channel

interference may be reduced since energy is transmitted primarily in the direction

of the desired mobile thus minimizing interference. The approach is simple to im-

plement since only the direction of the mobile relative to the base is required. This

information can be obtained from positioning devices such as Global Positioning

System (GPS) receivers, for example.

In [27] the concept of maximum ratio transmission (MRT) was introduced.

With MRT the instantaneous channel response is employed by the transmitter

to create array weights that produce signal reinforcement, i.e. diversity gain, at

the receiver. This approach can be considered as a special case of mean-feedback

beamforming in which the averaging time is reduced to zero and is analogous

to the well-known technique of maximum ratio combining (MRC) at the base

station [2]. Cavers [28] investigated the performance of MRT where decorrelation

of the channel response between the uplink and downlink was considered. Channel

decorrelation is due to the time delay and/or frequency offset between the uplink

and downlink channels. The bit error rate performance of MRT was determined

analytically for binary modulation and a spatially uncorrelated wireless channel.

Jongren et al. [29] investigated combining beamforming and orthogonal space-

time coding to exploit channel state information. A pre-determined orthogonal

space-time code was linearly transformed to create a new space-time codeword. In

order to find the optimal linear transformation the solution of a complicated op-

timization problem is required. A simplified scenario was considered in which the

channel coefficients were assumed to be independent, identically distributed com-

plex Gaussian random variables. Simulation results illustrating the performance
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of the proposed scheme were presented for this simplified scenario. Related work

on mean-feedback beamforming and covariance-feedback beamforming appears in

[30], [31].

4.3 System Model

We employ the system model presented in Section 3.3 except that the channel

response is assumed to be constant over the transmission of the space-time code

block. The channel response may vary from block to block. Specifically, hp,q(1) =

hp,q(2) = . . . = hp,q(T ) ≡ hp,q.

Define the NT ×NR channel response matrix H as

H =




h1,1 h1,2 · · · h1,NR

h2,1 h2,2 · · · h2,NR

...
...

. . .
...

hNT ,1 hNT ,2 · · · hNT ,NR




. (4.1)

The NT ×1 vector hq is defined as the qth column of H. This vector represents the

channel response between all NT transmit antennas and the qth receive antenna.

Also, define the NT NR×1 vector h obtained by stacking the columns of the channel

response matrix H

h = vec (H) (4.2)

=

(
h
′
1 h

′
2 . . . h

′
NR

)′

where the symbol ′ denotes the vector transpose operation.
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4.4 Exact Symbol Error Probability

In this section closed-form expressions for the probability of a symbol error are

developed for orthogonal space-time block coding, maximum ratio transmission

and beamsteering for spatially correlated channels.

4.4.1 Orthogonal Space-Time Block Coding

Li et al. [47] demonstrated that a multiple-input multiple-output (MIMO) system

employing orthogonal space-time block coding is equivalent to a single-input single-

output (SISO) system assuming the channel response is constant over the space-

time code block. Shin and Lee [45],[46] utilized this result to derive the exact

symbol error probability for orthogonal space-time block codes with M-ary PSK

or QAM symbols and transmitted over spatially uncorrelated channels. In this

subsection, we extend this result to include spatially correlated channels.

The instantaneous signal to noise ratio (per symbol) at the output of the max-

imum likelihood decoder of the equivalent SISO system is given by

γ =

NT∑
p=1

NR∑
q=1

|hp,q|2 Es

NT RN0

= ‖H‖2γ̄s (4.3)

where γ̄s = Es

NT RN0
, R is the code rate and

‖H‖2 =

NT∑
p=1

NR∑
q=1

|hp,q|2 = h†h . (4.4)

The symbol † denotes the conjugate transpose operation. Due to the random

nature of the channel response matrix H, γ is a random variable.

For M-ary PSK symbols, the exact symbol error probability for orthogonal

space-time block coding is given by [45]

P PSK
symbol =

1

π

∫ (M−1) π
M

0

φγ

(
−gPSK

sin2 θ

)
dθ (4.5)
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with gPSK = sin2
(

π
M

)
and where

φγ(s) = E [exp(sγ)] (4.6)

is the characteristic function of the random variable γ. For the case of hp,q inde-

pendent and identically distributed complex Gaussian random variables, γ has a

χ2 distribution with 2NT NR degrees of freedom and

φγ(s) =
1

(1− sγ̄s)
NT NR

. (4.7)

Consider now the case of hp,q complex Gaussian and correlated and let

R = E
[
hh†

]
(4.8)

represent the spatial covariance matrix of the channel. We have

φγ(s) = E [exp(sγ)] (4.9)

= E
[
exp(sh†hγ̄s)

]
.

It can be shown that

φγ(s) =
1

det (I− sRγ̄s)
(4.10)

=
1∏NT NR

n=1 (1− sλnγ̄s)

where λn is the nth eigenvalue of the matrix R. For completeness, a proof of this

result is presented in Appendix A. Let N denote the number of distinct eigenvalues

and let δn denote the multiplicity of the nth eigenvalue. A partial fraction expansion

may be performed on (4.10) to yield [48]

φγ(s) =
N∑

n=1

δn∑
m=1

αn,m

(1− sλnγ̄s)
m . (4.11)
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Substituting this result into (4.5), a closed-form expression for the exact symbol

error probability may be obtained by expanding the integral in terms of hyperge-

ometric functions. Specifically,

P PSK
symbol =

1

π

∫ (M−1) π
M

0

N∑
n=1

δn∑
m=1

αn,m(
1 + gPSK

sin2 θ
λnγ̄s

)m dθ (4.12)

=
N∑

n=1

δn∑
m=1

αn,mΨPSK (m; λnγ̄s)

where

ΨPSK (m; γs) =
1

π

∫ (M−1) π
M

0

1(
1 + gPSK

sin2 θ
γs

)m dθ . (4.13)

According to calculations in [45], ΨPSK (m; γs) can be specified as

ΨPSK (m; γs) =
1

2
√

π

1

(1 + γsgPSK)m

Γ
(
m + 1

2

)

Γ (m + 1)
2F1

(
m,

1

2
; m + 1;

1

1 + γsgPSK

)

(4.14)

+
1

π

1

(1 + γsgPSK)m

√
1− gPSK F1

(
1

2
; m;

1

2
−m;

3

2
;

1− gPSK

1 + γsgPSK

; 1− gPSK

)

where 2F1 (a, b; c; z) and F1 (a, b1; b2; c; z1, z2) are the Gauss and Appell hypergeo-

metric functions, respectively, and Γ(z) denotes the Gamma function [1].

A similar development may be followed for the case of M-ary QAM baseband

symbols. The details are not presented here but are summarized as follows. The

probability of a symbol error for orthogonal space-time block coding with M-ary

QAM baseband symbols and hp,q complex Gaussian and correlated can be written

as

PQAM
symbol =

N∑
n=1

δn∑
m=1

αn,mΨQAM (m; λnγ̄s) (4.15)
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where

ΨQAM (m; γs) =
2q√
π

1

(1 + γsgQAM)m

Γ
(
m + 1

2

)

Γ (m + 1)
2F1

(
m,

1

2
; m + 1;

1

1 + γsgQAM

)

(4.16)

− 2q2

π

1

2m + 1

1

(1 + 2γsgQAM)m F1

(
1; m; 1; m +

3

2
;

1 + γsgQAM

1 + 2γsgQAM

;
1

2

)

with q = 1− 1√
M

and gQAM = 3
2(M−1)

[46].

We have derived exact expressions for the symbol error probability for orthog-

onal space-time block coding for spatially correlated channels. Note that for the

special case of a spatially uncorrelated channel, i.e. R = I and λn = 1, n =

1, . . . , NT NR, (4.12) and (4.15) reduce to the results presented in [45]. If the

eigenvalues of the spatial covariance matrix R are distinct, the expressions for the

symbol error probability simplify to

P PSK
symbol =

NT NR∑
n=1

αn,1Ψ
PSK (1; λnγ̄s) (4.17)

and

PQAM
symbol =

NT NR∑
n=1

αn,1Ψ
QAM (1; λnγ̄s) (4.18)

for M-ary PSK and M-ary QAM symbols, respectively.

4.4.2 Maximum Ratio Transmission

For maximum ratio transmission the array weight applied to the pth transmit

antenna is

wp =
h̃∗p,1√∑NT

p=1 |h̃p,1|2
(4.19)

where h̃p,1 is the estimated channel response between the pth transmit antenna and

the single receive antenna. The signal cp(t) in (3.1) is given by

cp(t) = wp s(t) (4.20)
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where wp is the array weight applied to the pth transmit antenna and s(t) represents

the M-PSK or M-QAM baseband symbol transmitted at time t. The array weights

are normalized such that
NT∑
p=1

|wp|2 = 1 . (4.21)

In our work it is assumed that the receiver estimates the channel response

perfectly but there is a delay in the application of the estimated channel response

by the transmitter. That is,

h̃p,1(t) = hp,1(t−∆t) (4.22)

where ∆t represents the feedback time delay. Define ρ as the correlation between

the estimated and actual channel response, i.e.,

ρ =
E

[
hp,1(t)h̃

∗
p,1(t)

]

σ2
h

(4.23)

=
E

[
hp,1(t)h

∗
p,1(t−∆t)

]

σ2
h

where

σ2
h = E

[|hp,1(t)|2
]

. (4.24)

ρ depends on the temporal correlation characteristics of the wireless channel. This

parameter can be computed from the space-time covariance model developed in

the previous chapter. For zero time delay, i.e. ∆t = 0, corresponding to the case

of perfect feedback (ρ = 1), the instantaneous signal to noise ratio at the receive

antenna is

γ =

NT∑
p=1

|hp,1|2 Es

N0

(4.25)

Noting the similarity between (4.25) and (4.3) for NR = 1 and upon redefining

γ̄s = Es

N0
, the results of the previous section may be applied to determine the
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symbol error probability for this case. Specifically,

P PSK
symbol =

N∑
n=1

δn∑
m=1

αn,mΨPSK (m; λnγ̄s) (4.26)

for M-ary PSK and

PQAM
symbol =

N∑
n=1

δn∑
m=1

αn,mΨQAM (m; λnγ̄s) (4.27)

for M-ary QAM with λn corresponding to the nth eigenvalue of the spatial co-

variance matrix R, δn its multiplicity, N the number of distinct eigenvalues, and

γ̄s = Es

N0
.

For the case of non-zero time delay, corresponding to imperfect feedback (ρ 6=
1), an analytical approach for determining the symbol error probability does not

appear to be tractable. In the sequel Monte Carlo simulations are used to deter-

mine the error probability for this case.

4.4.3 Beamsteering

For the case of beamsteering the array weights are given by

wp =
exp(jφp)√

NT

(4.28)

where the angle φp is determined by the array geometry and the direction in which

the beam is steered. The signal cp(t) in (3.1) is given by

cp(t) = wp s(t) (4.29)

where wp is the array weight applied to the pth transmit antenna and s(t) represents

the M-PSK or M-QAM baseband symbol transmitted at time t. The array weights

are normalized such that
NT∑
p=1

|wp|2 = 1 . (4.30)
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For simplicity we assume that the mobile is broadside to a linear antenna array

with NT elements at the base station. The instantaneous signal to noise ratio at

the receive antenna is

γ =

∣∣∣∣
NT∑
p=1

hp,1

∣∣∣∣
2

Es

NT N0

. (4.31)

The quantity
∣∣∑NT

p=1 hp,1

∣∣2 is χ2 distributed with 2 degrees of freedom. Upon re-

defining

γ̄s = E

[∣∣∣∣
NT∑
p=1

hp,1

∣∣∣∣
2
]

Es

NT N0

(4.32)

=

NT∑
r=1

NT∑
s=1

E
[
hr,1h

∗
s,1

] Es

NT N0

(4.33)

the results of the previous section may also be used to determine the symbol error

probability for this case. Specifically,

P PSK
symbol = ΨPSK (1; γ̄s) (4.34)

for M-ary PSK and

PQAM
symbol = ΨQAM (1; γ̄s) (4.35)

for M-ary QAM baseband symbols.

4.4.4 Comparison of Exact Symbol Error Probability with

Monte Carlo Simulations

We have verified the expressions developed for the exact symbol probability with

Monte Carlo simulations. The results of these comparisons are presented in this

section.

The simulations used a two-dimensional Gaussian model for the scatterer ge-

ometry and the standard deviation of the scattering radius was varied from σR =
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10, 50, 200m. The distance between the mobile and base (array phase center) was

fixed at d = 1000m and the mobile location was broadside to the base antenna

array.

Figures 4.1 and 4.2 show the comparison of the Monte Carlo simulations with

the exact symbol error probability for orthogonal space-time block coding for 2

and 4 transmit antennas, respectively. The space-time block codes used were the

G2 and H4 codes due to Tarokh [33],[34].

Figures 4.3 and 4.4 show the comparison of the Monte Carlo simulations with

the exact symbol error probability for maximum ratio transmission for 2 and 4

transmit antennas, respectively, and perfect feedback correlation, i.e. ρ = 1.

Figures 4.5 and 4.6 show the comparison of the Monte Carlo simulations with

the exact symbol error probability for beamsteering for 2 and 4 transmit antennas,

respectively.

In all cases, excellent agreement between the Monte Carlo simulations and the

exact calculation of the symbol error probability is observed.

4.5 Numerical Results

In this section we compare the error performance of orthogonal space-time block

coding, maximum ratio transmission and beamsteering using a two-dimensional

Gaussian scattering model. Linear array geometry was employed at the base sta-

tion for all results.

The standard deviation of the scattering radius for the two-dimensional Gaus-

sian model was varied from σR = 10, 50, 200m and the distance between the mo-

bile and base (array phase center) was fixed at d = 1000m. The parameter σR

specifies the radius about the mobile for which approximately 68 percent of the
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Figure 4.1: Comparison of exact symbol error probability with Monte Carlo simu-

lations for orthogonal space-time block coding. 2 transmit antennas (λ/2 spacing),

1 receive antenna, 3 bits/s/Hz spectral efficiency and σR=10,50,200m.
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Figure 4.2: Comparison of exact symbol error probability with Monte Carlo simu-

lations for orthogonal space-time block coding. 4 transmit antennas (λ/2 spacing),

1 receive antenna, 3 bits/s/Hz spectral efficiency and σR=10,50,200m.
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Figure 4.3: Comparison of exact symbol error probability with Monte Carlo simu-

lations for maximum ratio transmission, ρ = 1. 2 transmit antennas (λ/2 spacing),

1 receive antenna, 3 bits/s/Hz spectral efficiency and σR=10,50,200m.
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Figure 4.4: Comparison of exact symbol error probability with Monte Carlo simu-

lations for maximum ratio transmission, ρ = 1. 4 transmit antennas (λ/2 spacing),

1 receive antenna, 3 bits/s/Hz spectral efficiency and σR=10,50,200m.
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Figure 4.5: Comparison of exact symbol error probability with Monte Carlo simu-

lations for beamsteering. 2 transmit antennas (λ/2 spacing), 1 receive antenna, 3

bits/s/Hz spectral efficiency and σR=10,50,200m.
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Figure 4.6: Comparison of exact symbol error probability with Monte Carlo simu-

lations for beamsteering. 4 transmit antennas (λ/2 spacing), 1 receive antenna, 3

bits/s/Hz spectral efficiency and σR=10,50,200m.
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scatterers are contained. The smallest value for σR yields the ratio σR/d = 0.01

and corresponds to angular spread due to multipath of approximately 1◦ from

the perspective of the base station. The largest value for σR corresponds to an

angular spread of approximately 20◦. The mobile location was broadside to the

base antenna array and its velocity was chosen such that the maximum Doppler

frequency was approximately fd = 78Hz corresponding to a carrier frequency of

850MHz and a maximum speed of 100km/hr. The normalized Doppler frequency

was fdTs = 0.0033 and corresponds to a slow fading channel with a symbol to fad-

ing ratio of approximately 300:1. In other words, space-time symbols separated by

300 symbol periods are approximately uncorrelated. Four values for the feedback

correlation parameter were considered: ρ = 1.0, 0.99, 0.95, 0.9. For a normalized

Doppler frequency of fdTs = 0.0033, these values correspond to feedback time

delays of ∆t = 0, 0.4, 0.9, 1.3 milliseconds, respectively.

The orthogonal space-time block codes employed in this work are due to Alam-

outi and Tarokh [32],[33],[34]. We consider code designs for 2 and 4 transmit

antennas. For 2 transmit antennas, the space-time code G2 with code rate 1 was

used.

G2 (x1, x2) =




x1 x2

−x∗2 x∗1


 (4.36)

For this case we employed a 8PSK signal constellation yielding a spectral efficiency

of 3 bits/s/Hz. For 4 transmit antennas the space-time code H4 with code rate
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3/4 was used.

H4 (x1, x2, x3) = (4.37)



x1 x2
x3√

2
x3√

2

−x∗2 x∗1
x3√

2
− x3√

2

x∗3√
2

x∗3√
2

(−x1−x∗1+x2−x∗2)
2

(−x2−x∗2+x1−x∗1)
2

x∗3√
2

− x∗3√
2

(x2+x∗2+x1−x∗1)
2

−(x1+x∗1+x2−x∗2)
2




For this case a 16QAM signal constellation was used and resulted in a spectral

efficiency of 3 bits/s/Hz.

The symbol error probability was computed using (4.12) for M-ary PSK sym-

bols or (4.15) for M-ary QAM symbols for orthogonal space-time block coding,

(4.34) or (4.35) for beamsteering and (4.26) or (4.27) for maximum ratio transmis-

sion with ρ = 1.0. For maximum ratio transmission with ρ = 0.99, 0.95, 0.9 the

symbol error probability was determined from Monte Carlo simulations. 8PSK

signal constellations were used for both beamsteering and maximum ratio trans-

mission resulting in a spectral efficiency of 3 bits/s/Hz. In the following perfor-

mance results for 2 transmit antennas are presented first followed by results for 4

transmit antennas.

Figure 4.7 shows the symbol error probability versus signal to noise ratio for 2

transmit antennas (λ/2 spacing), 1 receive antenna and scattering radius standard

deviation σR = 200m. With reference to Figure 4.7 we observe that maximum ratio

transmission (MRT) uniformly outperforms orthogonal space-time block coding

(OSTBC) by 3dB for perfect feedback correlation, i.e. ρ = 1.0. However, the

results for ρ = 0.99, 0.95, 0.9 demonstrate that the performance of MRT degrades

rapidly for a slight reduction in the feedback correlation parameter. The primary

effects observed are an apparent loss of diversity order and reduced coding gain
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compared with the case of perfect feedback correlation. Furthermore, for the case

of imperfect feedback (ρ 6= 1) it can be seen that OSTBC outperforms MRT

above a certain threshold value of signal to noise ratio. As will be demonstrated,

the threshold value of signal to noise ratio depends on the feedback correlation

parameter as well as the scattering radius and will be quantified later in this

section.

Figures 4.8 and 4.9 show the results for scattering radius standard deviation

σR = 50, 10m, respectively. Several observations may be made from these fig-

ures. First, the performance of both OSTBC and MRT degrade significantly as

the scattering radius is reduced. Decreasing the scattering radius increases the

correlation between the signals transmitted from each antenna and reduces perfor-

mance. In contrast, the performance of beamsteering is not significantly affected

by decreasing the scattering radius. Since the distance between the mobile and

base station is fixed, decreasing the scattering radius corresponds to decreasing the

angular spread of the multipath from the perspective of the base station. Second,

it can be seen by comparing Figures 4.7,4.8 and 4.9 that the performance of MRT

approaches that of beamsteering as the scattering radius is reduced. Also, in some

cases beamsteering outperforms OSTBC below a certain threshold value of signal

to noise ratio. The performance tradeoff between beamsteering and OSTBC is

quantified later in this section.

Figure 4.10 shows the symbol error probability versus signal to noise ratio

for 4 transmit antennas (λ/2 spacing), 1 receive antenna and scattering radius

standard deviation σR = 200m. With reference to Figure 4.10 we observe that

maximum ratio transmission (MRT) uniformly outperforms orthogonal space-time

block coding (OSTBC) by about 7dB for perfect feedback correlation, i.e. ρ = 1.0.

88



It is also apparent from the figure that MRT provides the same diversity order as

beamsteering for ρ = 0.95, 0.9, i.e. diversity order 1. Figures 4.11 and 4.12 show

the results for scattering radius standard deviation σR = 50, 10m, respectively.

Comparing Figures 4.10,4.11 and 4.12 it is seen that the performance of MRT

approaches that of beamsteering as the scattering radius is reduced. For σR =

10m, both MRT and beamsteering outperform OSTBC over the range of signal

to noise ratio from 5-40dB. The performance tradeoff between MRT, OSTBC and

beamsteering is quantified next.

The results presented illustrate that the relative performance of MRT, OSTBC

and beamsteering depends on the value of the feedback correlation parameter ρ,

as well as the scattering radius standard deviation σR. For example, in comparing

beamsteering and OSTBC it was determined that the performance of OSTBC

exceeds that of beamsteering above a certain threshold value of signal to noise ratio.

This value of signal to noise ratio may be determined analytically by equating

the expressions for the symbol error probability for beamsteering and OSTBC

as developed in a previous section. Numerical search techniques may be used

to quickly find the value of signal to noise ratio that yields equal symbol error

probabilities. Figure 4.13 illustrates the results for beamsteering and 3 orthogonal

space-time codes: the G2 code for 2 transmit antennas, the H3 code for 3 transmit

antennas and the H4 code for 4 transmit antennas [33],[34]. The horizontal axis of

this figure shows the threshold value of signal to noise ratio and the vertical axis

shows the scattering radius standard deviation. With reference to Figure 4.13 it is

observed that the threshold value of signal to noise ratio increases as the scattering

radius is reduced. Thus, beamsteering is favored over OSTBC over a large range

of signal to noise ratios at small values of scattering radius.
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Since no analytical formulas are available for the symbol error probability of

MRT for ρ 6= 1, the threshold values of signal to noise ratio were determined

empirically from the results of Monte Carlo simulations. Figures 4.14 and 4.15

illustrate the results for 2 transmit antennas (λ/2 spacing) and 4 transmit (λ/2

spacing) antennas, respectively. From these figures it is observed that for a fixed

value of ρ the threshold value of signal to noise ratio increases as the scattering

radius is decreased. As a result, MRT is favored over OSTBC for a large range of

signal to noise ratios at small values of scattering radius. Considering variations

in the feedback correlation ρ for a fixed value of scattering radius, it is observed

that the threshold value of signal to noise ratio increases as ρ → 1. Thus, as the

quality of the feedback improves MRT provides superior performance to OSTBC

over a broader range of signal to noise ratios.

The results presented in this section apply primarily for vehicular applications.

For the case of pedestrian users the requirements for timely feedback of channel

state information to the transmitter are considerably relaxed. For example, if

the maximum speed is assumed to be 1km/hr then the time delays corresponding

to feedback correlation values of ρ = 1.0, 0.99, 0.95, 0.9 are ∆t = 0, 40, 90, 130

milliseconds, respectively.

4.6 Chapter Summary

In this chapter we analyzed the performance of orthogonal space-time block coding

and beamforming techniques for spatially and temporally correlated wireless chan-

nels. For the case of orthogonal space-time block codes and quasi-static channel

response, a closed-form expression was derived for the symbol error probability

for spatially correlated channels, extending previously known results for uncor-
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Figure 4.7: Symbol error probability versus signal to noise ratio for orthogonal

space-time block coding, beamsteering and maximum ratio transmission. 2 trans-

mit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency and

σR=200m.
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Figure 4.8: Symbol error probability versus signal to noise ratio for orthogonal

space-time block coding, beamsteering and maximum ratio transmission. 2 trans-

mit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency and

σR=50m.
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Figure 4.9: Symbol error probability versus signal to noise ratio for orthogonal

space-time block coding, beamsteering and maximum ratio transmission. 2 trans-

mit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency and

σR=10m.
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Figure 4.10: Symbol error probability versus signal to noise ratio for orthogonal

space-time block coding, beamsteering and maximum ratio transmission. 4 trans-

mit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency and

σR=200m.
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Figure 4.11: Symbol error probability versus signal to noise ratio for orthogonal

space-time block coding, beamsteering and maximum ratio transmission. 4 trans-

mit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency and

σR=50m.
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Figure 4.12: Symbol error probability versus signal to noise ratio for orthogonal

space-time block coding, beamsteering and maximum ratio transmission. 4 trans-

mit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency and

σR=10m.
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Figure 4.13: Signal to noise ratio threshold for switching between orthogonal space-

time block coding and beamsteering versus scattering radius standard deviation.

2,3 and 4 transmit antennas (λ/2 spacing), 1 receive antenna, 3 bits/s/Hz spectral

efficiency.
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Figure 4.14: Signal to noise ratio threshold for switching between orthogonal space-

time block coding and maximum ratio transmission versus scattering radius stan-

dard deviation and feedback correlation parameter. 2 transmit antennas (λ/2

spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency.
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Figure 4.15: Signal to noise ratio threshold for switching between orthogonal space-

time block coding and maximum ratio transmission versus scattering radius stan-

dard deviation and feedback correlation parameter. 4 transmit antennas (λ/2

spacing), 1 receive antenna, 3 bits/s/Hz spectral efficiency.

99



related channels. Closed-form expressions for the symbol error probability were

also derived for maximum ratio transmission and beamsteering. Using the gen-

eral space-time covariance model derived in the previous chapter, we presented

extensive numerical results that illustrate the performance of the proposed trans-

mit diversity techniques for the two-dimensional Gaussian scatterer model. The

numerical results are summarized in the following.

In the case of perfect channel feedback maximum ratio transmission was shown

to yield superior performance over orthogonal space-time block coding and beam-

steering. However, it was demonstrated that the performance degrades rapidly

with imperfect channel feedback. The primary effects observed were loss of diver-

sity gain and loss of coding gain. The performance of maximum ratio transmission

also depends on the angular spread of the channel and it was shown that the tech-

nique yields performance comparable to beamsteering when the angular spread

due to multipath is small. It was demonstrated that simple beamsteering can pro-

vide performance superior to orthogonal space-time block coding in some cases.

The performance tradeoff between beamsteering and orthogonal space-time block

coding was quantified in terms of signal to noise ratio and scattering radius or

equivalently angular spread. In addition, the performance tradeoff between maxi-

mum ratio transmission and orthogonal space-time block coding was quantified in

terms of signal to noise ratio, scattering radius and feedback correlation.
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Chapter 5

Spatial Processing Techniques for Wireless

Systems

5.1 Introduction

In this chapter we investigate spatial processing techniques employing multiple re-

ceive antennas on the uplink of a wireless communications system. The emphasis

here is on the reduction of co-channel interference through the use of such tech-

niques and the effects of multipath angular spread. With the aid of the spatial

covariance models developed in a previous chapter we determine the array gain for

several common spatial processing techniques. The array gain for the signal, in-

terference and signal+interference are each evaluated so the effects of interference

reduction and possible signal degradation may be determined.

The chapter is organized as follows. The spatial processing techniques investi-

gated are described in Section 5.2 and numerical results are presented in Section

5.3.
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5.2 Spatial Processing Techniques

5.2.1 Beamsteering

Beamsteering shapes the array response to enhance signals arriving from a particu-

lar direction. No other constraints are imposed. For example, to create a response

that enhances signals arriving from the direction (θ, φ), the components of the

array weight vector w are given by

wp = exp
(
j~k (θ, φ) · ~xp

)
p = 0, . . . , P − 1 (5.1)

with the wavenumber vector

~k (θ, φ) = k (sin θ cos φ, sin θ sin φ, cos θ) (5.2)

~xp is the spatial location of the pth array element and k = 2π/λ with λ the trans-

mitted wavelength. Interference reduction for beamsteering is achieved by reduced

sidelobe levels and nulls in the array response since only the desired steering di-

rection is required to determine the array weights.

5.2.2 Linearly-Constrained Minimum Variance

The linearly-constrained minimum variance (LCMV) approach minimizes the out-

put power of the array subject to fixed gain in the desired pointing direction [52].

The optimization problem that underlies the LCMV approach can be stated as

finding the array weight vector w that minimizes the quantity w†Rw subject to

the linear constraint e†w = 1. The vector e = e (θ, φ) determines the pointing

direction and its components are given by

ep = exp
(
j~k (θ, φ) · ~xp

)
p = 0, . . . , P − 1 (5.3)
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with the wavenumber vector

~k (θ, φ) = k (sin θ cos φ, sin θ sin φ, cos θ) (5.4)

and ~xp the spatial location of the pth array element. R is the estimated spatial

covariance matrix (signal, noise and interference combined). The solution to this

problem is well-known and the optimum array weight vector is given by

w =
R−1e

e†R−1e
(5.5)

The power output of the array using the LCMV algorithm is given by

PLCMV (θ, φ) =
1

e†R−1e
(5.6)

Note that the optimum weight vector and the output power of the array both

depend on the pointing direction (θ, φ) through the vector e.

5.2.3 Maximizing the Signal-to-Interference plus Noise Ra-

tio

This approach determines the array weight vector that maximizes the ratio

w†RSw

w†RN+Iw
(5.7)

The numerator of this expression represents the array output power due to the

desired signal with spatial covariance matrix RS. The denominator represents

the output power for the noise and interference combined with covariance matrix

RN+I . Depending on the application RS and RN+I may be separately estimated

from the array data itself, an approach which requires signal training, or may be

created based upon models for the signal and interference.
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The solution to maximizing the ratio of quadratic forms is given by Rayleigh’s

theorem [50]. Let the generalized eigenvalues and eigenvectors of the matrix pair

[RS,RN+I ] be given by (λi,vi) i = 0, . . . , P − 1 sorted such that λi ≤ λj for

i > j. The array weight vector that maximizes the signal-to-interference ratio is

equal to the eigenvector corresponding to the largest eigenvalue, i.e. w = v1. The

eigenvalue is the maximizing SINR.

5.2.4 Nulling of Interference Sources

This approach creates an array response with nulls (i.e. zero response) in the

directions corresponding to sources of interference while minimizing the deviation

of the achieved array response from a nominal response. The nominal response

is often taken to be the beamsteering response when the array is steered in the

direction of the desired signal. Two cases are considered: 0th order nulling in which

the array response only is constrained to be zero and 1st order nulling in which

both the array response at its derivative are constrained to be zero at the angles

where nulls are to be placed.

Define the array response for weight vector w = (w0, w1, . . . , wP−1) to be

A (θ, φ) =
P−1∑
p=0

wp exp
(
j~k (θ, φ) · ~xp

)
(5.8)

The mean-square deviation between the nominal response A0(θ, φ) and the achieved

response A(θ, φ) is given by

ε =
1

2π2

∫ π

−π

∫ π

0

|A0 (θ, φ)− A (θ, φ)|2 dθ dφ (5.9)

and the nulling constraints are

A (θq, φq) = 0 q = 1, . . . , Q (5.10)
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The solution to the problem of nulling interferers while minimizing the error of

the array response from a nominal response was solved by Steyskal [51] for a linear

array. The present work extends this result to the case of circular array geometry.

Consider the array response for a circular array with elements located at

(xp, yp) =

(
a cos

(
2πp

P

)
, a sin

(
2πp

P

))
, p = 0, . . . , P − 1 (5.11)

and evaluated for (θ = π/2, φ)

A (φ) =
P−1∑
p=0

wp exp

(
jka cos

(
φ− 2πp

P

))
(5.12)

With w0 = (w00, w01, . . . , w0P−1) corresponding to the nominal array weights, the

mean-square error for arbitrary array weight vector w is

ε =
1

2π

∫ π

−π

P−1∑
n=0

P−1∑
m=0

(w0n − wn) (w∗
0m − w∗

m) (5.13)

× exp

[
j2ka sin

(
φ− π(n + m)

P

)
sin

(
π(n−m)

P

)]
dφ

Using the Bessel function relation [1]

ejz sin ψ =
∞∑

r=−∞
Jr(z) ejrψ (5.14)

we have

exp

[
j2ka sin

(
φ− π(n + m)

P

)
sin

(
π(n−m)

P

)]
= (5.15)

∞∑
r=−∞

Jr

(
2ka sin

(
π(n−m)

P

))
exp

[
jr

(
φ− π(n + m)

P

)]

and

1

2π

∫ π

−π

exp

[
jr

(
φ− π(n + m)

P

)]
dφ =





1, r = 0

0, r 6= 0

(5.16)
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Using these results, the mean-square error is found to be

ε =
P−1∑
n=0

P−1∑
m=0

(w0n − wn) (w∗
0m − w∗

m) J0

(
2ka sin

(
π(n−m)

P

))
(5.17)

or, written in matrix form

ε = (w0 −w)†Q (w0 −w) (5.18)

with the mnth element of the matrix Q

qmn = J0

(
2ka sin

(
π|n−m|

P

))
(5.19)

The 0th order nulling constraints for the circular array are

A (φq) =
P−1∑
p=0

wp exp

(
jka cos

(
φq − 2πp

P

))
(5.20)

= 0 q = 1, . . . , Q

Defining the vector inner product (x,y) = y†x, the qth constraint can be written

as
(
w,yq

)
= 0 with

yq =




exp (−jka cos φq)

exp
(−jka cos

(
φq − 2π

P

))

...

exp
(
−jka cos

(
φq − 2π(P−1)

P

))




(5.21)

for q = 1, . . . , Q. Define the vector x = w0 −w. The mean-square error is now

ε = x†Qx (5.22)

and the qth constraint is given by
(
x,yq

)
=

(
w0,yq

)
. Collecting the Q constraints

together in matrix form as Ax = b with

A =




y†1

y†2
...

y†Q




(5.23)
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and

b =




y†1w0

y†2w0

...

y†Qw0




(5.24)

The array nulling problem has been converted to the following vector optimization

problem: minimize the quadratic form x†Qx subject to the linear constraint Ax =

b. This problem has a well-known solution given by [60]

x = Q−1A† (AQ−1A†)−1
b (5.25)

and the array weight vector is w = w0 − x.

For 1st order nulling Q additional constraints are imposed on the derivative

of the array response. The approach follows that outlined for 0th order nulling

except that the matrix A and the vector b are augmented by additional constraint

vectors. The derivative constraints are

∂A (φq)

∂φ
= −jka

P−1∑
p=0

wp sin

(
φq − 2πp

P

)
exp

(
jka cos

(
φq − 2πp

P

))
(5.26)

= 0 q = 1, . . . , Q

Define the augmented constraint vector yq as

yq =




−jka sin(φq) exp (−jka cos φq)

−jka sin
(
φq − 2π

P

)
exp

(−jka cos
(
φq − 2π

P

))

...

−jka sin
(
φq − 2π(P−1)

P

)
exp

(
−jka cos

(
φq − 2π(P−1)

P

))




(5.27)
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for , q = Q + 1, . . . , 2Q and

A =




y†1
...

y†Q

y†Q+1

...

y†2Q




(5.28)

and

b =




y†1w0

...

y†Qw0

y†Q+1w0

...

y†2Qw0




(5.29)

The optimal array weight vector for 1st order nulling is given as before using the

newly defined matrix A and the vector b. Higher order derivative constraints may

be handled in a similar fashion.

The placement of a null in the array response requires one degree of freedom

for 0th order nulling and two degrees of freedom for 1st order nulling. In general,

an array with P elements has P degrees of freedom available for both nulling and

minimizing the mean-square error of the achieved array response. Thus P ≥ Q

for 0th order nulling and P
2
≥ Q for 1st order nulling. A practical restriction of

the technique is that nulls cannot be placed within the main beam of the array

response due to the severe distortion that results. Interferers with angles of arrival

in the main beam of the nominal response must be eliminated prior to forming the

nulling constraints. Of course, these interference sources will not be mitigated by
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the technique.

5.2.5 Equivalence of Spatial Processing Techniques Under

Certain Conditions

If the desired signal consists of a point source (zero angular spread) and the inter-

ference consists of point or angularly spread sources, the array weight vectors for

the LCMV and maximum SINR methods agree to within a scale factor.

The following model is assumed for the array input vector

y(t) = s(t)e + n(t) (5.30)

s(t) is the signal and n(t) is combined noise and interference. n(t) is assumed to

be zero mean and uncorrelated with s(t). Without loss of generality it is assumed

that E {|s(t)|2} = 1. The vector e = e(θ, φ) describes the direction of arrival of

the desired signal and is given by Equations 5.3 and 5.4.

Under the assumption of a point source for the desired signal, the spatial co-

variance matrix (signal, noise and interference) is

R = RS + RN+I (5.31)

with

RS = ee† (5.32)

RN+I represents the covariance matrix for interference and noise combined and

is assumed to be positive definite. Using the matrix inversion lemma

R−1 = R−1
N+I −

R−1
N+Iee

†R−1
N+I

1 + e†R−1
N+Ie

(5.33)

and

R−1e =
R−1

N+Ie

1 + e†R−1
N+Ie

(5.34)
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Consider now the LCMV method with a unity gain constraint in the direction

(θ, φ). Using Equations 5.5 and 5.34, the array weight vector for the LCMV method

assuming a point source for the desired signal is

wLCMV ∝ R−1
N+Ie (5.35)

Consider the maximum SINR method under the assumption of a point source

for the desired signal. The optimum array weight vector is found by solving the

generalized eigenvalue problem

RSv = λRN+Iv (5.36)

and choosing the eigenvector corresponding the largest eigenvalue. This eigen-

value corresponds to the maximum SINR. Using the optimum weight vector w

and corresponding maximizing SINR in the previous expression,

RSw =

(
w†RSw

w†RN+Iw

)
RN+Iw (5.37)

For RS = ee†

(
ee†

)
w =

(
w† (ee†)w

w†RN+Iw

)
RN+Iw (5.38)

and

wmaxSINR ∝ R−1
N+Ie (5.39)

Thus, under the assumption of a point source for the desired signal and point

or angularly spread sources for the interference, the array weight vectors for the

LCMV and maximum SINR methods agree to within a constant factor. It is

important to note that the equivalence between these methods applies only to the

case of a point source for the desired signal and not the general case of an angularly

spread source. The next section details the performance of these methods for the

general case of angularly spread signal and interference.
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An extension of the results derived here applies to the case of a point source for

the desired signal and interference that is both spatially uncorrelated and station-

ary. For this case, RN+I = I, and it is easily demonstrated that the beamsteering,

LCMV, and maximum SINR methods all produce equivalent array weight vectors.

5.3 Numerical Results

In this section the spatial covariance models developed in the previous chapter are

applied to analyze the performance of spatial processing techniques for wireless

systems. Three performance measures are used: the gain in the array interference

to noise ratio (INR), the gain in the array signal to noise ratio (SNR) and the

gain in the array signal to interference plus noise ratio (SINR). These measures

permit analysis of how the desired signal and interference separately are affected

by a candidate spatial processing algorithm. The signal from the desired mobile

and a single interferer are considered and the gain in the array INR, SNR, and

SINR is determined as a function of the angular separation of the desired mobile

and interferer.

The spatial covariance models associated with the Jakes ’circular ring’ scatterer

model (spatial-only case) and the Laplacian angle of arrival (AOA) model were

used. These models are described in Sections 2.3.1 and 2.3.3, respectively. The

Jakes covariance model is parameterized by the angle of arrival of the direct path

φ, the scattering radius R, and the distance between the base receiver and mobile

transmitter d. For the results presented here the scattering radius was varied from

R = 0, 50, 100, 200m and the separation between the mobile and base fixed at

d = 1000m. For the scattering radius of R = 200m the maximum deviation of the

angle of arrival from the direct path is approximately ±12.6◦ for the Jakes model.
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The Laplacian AOA probability density is parameterized by the angle of arrival

of the direct path to the source (desired or interference) φ and the angular spread

σA. Values considered for the angular spread parameter were: σA = 0, 5, 10, 20◦.

The angle of arrival of the signal from the desired mobile was fixed at φS = 0◦

and the angle of arrival for the interferer was varied between 0◦ ≤ φI ≤ 180◦. For

each covariance model investigated, the signal from the desired mobile and the

interferer were assumed to have identical angular spread. For the Jakes model this

means that the scattering radius R was identical for both the desired mobile and

the interferer; for the Laplacian AOA model the angular spread parameter σA was

identical for both sources.

Circular array geometry with λ/2 element spacing was used with the spacing

measured along the circumference of the array. The number of array elements was

either P = 8 or P = 16.

The array input SINR is defined as

SINRin =
tr(RS)

tr(RI) + tr(RN)
(5.40)

with RS,RI ,RN denoting the spatial covariance matrices for the desired signal,

interference and noise, respectively, and tr() the matrix trace operation. The noise

was spatially uncorrelated and the input SINR was fixed at 10dB for all cases. For

an arbitrary array weight vector w the output SINR is defined as

SINRout =
w†RSw

w† (RI + RN)w
(5.41)

The array gain is defined as the ratio of the array output SINR to the array element

input SINR, or

GainSINR =
SINRout

SINRin

(5.42)

Similar expressions were used to compute the gain in the array SNR and INR.
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The beamsteering, LCMV, maximum SINR, and 0th and 1st order nulling tech-

niques were investigated using the spatial covariance matrices for the Jakes ’circular

ring’ geometry and the Laplacian AOA models. The results for the Jakes model

are presented first, followed by the results for the Laplacian AOA model.

Figure 5.1 shows the results for the Jakes spatial covariance model, beamsteer-

ing method and a P = 8 element circular array. Since this method is non-adaptive

with respect to the interference, the INR reduction is determined by the sidelobe

level of the array response, the proximity of the angle of arrival of the interferer

with respect to nulls in the array response and the angular spread of the interfer-

ence. From the figure it is seen that for R = 0m there is significant reduction in the

INR when the angle of arrival of the interference corresponds to a null in the array

response. However, the INR reduction is significantly degraded as the scattering

radius is increased. The gain in the array SNR is observed to be independent of

the angular separation of the desired mobile and interferer, as expected, since this

method is non- adaptive with respect to the interference. Note that there is a slight

degradation of the SNR gain as the scattering radius is increased. This effect is

caused by loss of signal energy for angles of arrival outside the main lobe of the

array response. The beamsteering method produces the largest SNR gain of any

of the methods investigated.

Figure 5.2 shows the results for the Jakes spatial covariance model, LCMV

method, P = 8 element circular array and input SINR=10dB. Note the significant

degradation in the SNR gain as the scattering radius is increased. The LCMV

method attempts to minimize the total output power of the array subject to a gain

constraint at a fixed angle of arrival. Energy arriving from other angles is treated

as interference and reduced by the algorithm. In the present case, angular spread
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Figure 5.1: Jakes model, circular array, 8 elements with λ/2 spacing, array input

SINR=10dB, beamsteering method. Gain in array SINR, SNR, INR versus angular

separation of desired mobile and interferer.

of the signal from the desired mobile results in an effective signal suppression and

hence a reduction in the SNR gain. The effect is more pronounced as the scattering

radius R is increased. Figure 5.3 illustrates this effect. The array response for the

LCMV method is shown for an angle of arrival of the desired mobile of 0◦ and 60◦

for the interferer. Note that while the gain constraint of unity is maintained at an

angle of arrival of 0◦ for all cases, the increased sidelobe level of the array response

as the scattering radius is increased results in suppression of the desired signal.

The width of the mainlobe of the array response is also observed to decrease as the

scattering radius is increased. The signal suppression effect depends significantly

on the input SINR. Figure 5.4 shows the results for the Jakes model, LCMV

method, P = 8 element circular array, but with input SINR=0dB. For this case

the signal suppression effect is considerably reduced.
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Figure 5.2: Jakes model, circular array, 8 elements with λ/2 spacing, array input

SINR=10dB, LCMV method. Gain in array SINR, SNR, INR versus angular

separation of desired mobile and interferer.

Signal cancellation effects due to array calibration errors and errors in the

estimate of the direction of arrival of the desired source have been reported for the

LCMV method. See [61],[62],[63],[49] for further details. It is worthwhile to note

that the results presented here indicate that even with perfect knowledge of the

spatial covariance matrix and the pointing direction, the signal suppression effect

can be observed due to angular spread of the desired signal.

Figure 5.5 shows the results for the Jakes spatial covariance model, maximum

SINR method and a P = 8 element circular array. For this case the SINR gain

shows a slight reduction as the scattering radius is increased. Note that for zero

scattering radius the SINR gain produced by the LCMV and maximum SINR

methods is equivalent. The maximum SINR method produces the largest SINR

gain of any of the methods investigated.
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Figure 5.3: Jakes model, circular array, 8 elements with λ/2 spacing, array input

SINR=10dB, LCMV method. Array response versus angle of arrival. Desired

mobile at 0◦ and interferer at 60◦.
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Figure 5.4: Jakes model, circular array, 8 elements with λ/2 spacing, array in-

put SINR=0dB, LCMV method. Gain in array SINR, SNR, INR versus angular

separation of desired mobile and interferer.
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Figure 5.5: Jakes model, circular array, 8 elements with λ/2 spacing, array input

SINR=10dB, maximum SINR method. Gain in array SINR, SNR, INR versus

angular separation of desired mobile and interferer.

Figure 5.6 shows the results for the Jakes spatial covariance model, 0th order

nulling method and a P = 8 element circular array. From the plot showing the INR

gain it is clear that this method is capable of effectively eliminating interference for

zero scattering radius regardless of the angle of arrival, subject to the numerical

precision of MATLAB. The method is considerably less successful at reducing

interference which is spread in angle, however. The plot showing the SNR gain

illustrates that there is substantial variation in the gain as a function of the angular

separation of the desired mobile and the interferer. This effect is discussed in more

detail following the presentation of the results for 1st order nulling.

Figure 5.7 shows the results for the Jakes spatial covariance model, 1st order

nulling method and a P = 8 element circular array. This method is also capable

of effectively eliminating interference for zero scattering radius regardless of the
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Figure 5.6: Jakes model, circular array, 8 elements with λ/2 spacing, array input

SINR=10dB, 0th order nulling method. Gain in array SINR, SNR, INR versus

angular separation of desired mobile and interferer.

angle of arrival, and is more capable of reducing interference that is spread in

angle compared to 0th order nulling. However, there is also significant variation in

the SNR gain as a function of the angular separation of the desired mobile and the

interferer for this case. The effect is caused by perturbation of the array response

due to the addition of a null at the angle of the interferer. Recall that the nulling

algorithms minimize the mean-square error of the achieved array response with

respect to the beamsteering response while simultaneously constraining the array

response to be zero in the direction of interference sources. For the 1st order nulling

algorithm the derivative of the array response is also constrained to be zero in the

direction of interferers. Thus, the achieved mean-square error is a measure of the

deviation between the nulling response and the beamsteering response. Figure 5.8

shows the mean-square error of the array response for 0th and 1st order nulling as
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a function of the angular separation of the desired mobile and the interferer for a

circular array with P = 8 elements. The array response for beamsteering is also

shown for reference. Note that mean-square error for 1st order nulling exceeds that

for 0th order nulling for all values of angular separation between the desired mobile

and the interferer. Also apparent is the dominance of the nulling constraint for

values of angular separation that place the interferer in the main lobe response of

the array. This effect is more pronounced for 1st nulling and highlights the fact

that interference sources close to the angle of arrival of the desired mobile cannot

be effectively nulled without also nulling the signal. From Figure 5.8, the local

minima of the mean-square error occur at the nulls of the beamsteering response

for 0th order nulling. For this case the array weights for nulling and beamsteering

are identical, as expected, since the beamsteering response exhibits a null at the

angle of the interferer. With reference to Figure 5.6, local maxima of the SNR gain

correspond to local minima of the mean-square error. Also, the local minima of

the SNR gain correspond roughly to the local maxima of the mean-square error.

For all cases the achievable gain in SNR for both 0th and 1st order nulling is upper

bounded by the SNR gain for beamsteering.

In order to mitigate the perturbation of the array response due to the placement

of nulls, alternative optimization criteria may be considered. For example, rather

than require the array response to be identically zero in the direction of interferers,

the response may be constrained to be no larger than a prescribed threshold. The

array weight vector that satisifes this optimization criteria must be found using

numerical techniques since a closed-form solution is not available. This topic is

currently being investigated.

Figures 5.9 through 5.13 show the results for the Jakes spatial covariance model
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Figure 5.7: Jakes model, circular array, 8 elements with λ/2 spacing, array input

SINR=10dB, 1st order nulling method. Gain in array SINR, SNR, INR versus

angular separation of desired mobile and interferer.
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Figure 5.8: Circular array, 8 elements with λ/2 spacing. Mean-square error of the

array response for 0th and 1st order nulling versus angular separation of desired

mobile and interferer. Also shown is the array response for beamsteering.
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Figure 5.9: Jakes model, circular array, 16 elements with λ/2 spacing, array input

SINR=10dB, beamsteering method. Gain in array SINR, SNR, INR versus angular

separation of desired mobile and interferer.

and a P = 16 element circular array. With reference to Figure 5.9, the maximum

achievable SNR gain, expressed in decibels, is bounded above by 10log10P . The

maximum SNR gain is achievable with beamsteering for a point source for the

desired mobile, but not generally for an angularly spread source. From Figure 5.10

the signal suppression effect associated with the LCMV method is exacerbated for

P = 16 array elements as compared to P = 8 array elements. With fixed element

spacing, a larger number of array elements produces a narrower main lobe width

thus causing the algorithm to reject the signal from the desired mobile for relatively

small values of scattering radius.

Figures 5.14 through 5.18 show the results for the Laplacian AOA covariance

model and a P = 8 element circular array and Figures 5.19 through 5.23 show the

results for a P = 16 element circular array.
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Figure 5.10: Jakes model, circular array, 16 elements with λ/2 spacing, array

input SINR=10dB, LCMV method. Gain in array SINR, SNR, INR versus angular

separation of desired mobile and interferer.
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Figure 5.11: Jakes model, circular array, 16 elements with λ/2 spacing, array input

SINR=10dB, maximum SINR method. Gain in array SINR, SNR, INR versus

angular separation of desired mobile and interferer.
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Figure 5.12: Jakes model, circular array, 16 elements with λ/2 spacing, array

input SINR=10dB, 0th order nulling method. Gain in array SINR, SNR, INR

versus angular separation of desired mobile and interferer.
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Figure 5.13: Jakes model, circular array, 16 elements with λ/2 spacing, array

input SINR=10dB, 1st order nulling method. Gain in array SINR, SNR, INR

versus angular separation of desired mobile and interferer.
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Figure 5.14: Laplacian AOA model, circular array, 8 elements with λ/2 spacing,

array input SINR=10dB, beamsteering method. Gain in array SINR, SNR, INR

versus angular separation of desired mobile and interferer.
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Figure 5.15: Laplacian AOA model, circular array, 8 elements with λ/2 spacing,

array input SINR=10dB, LCMV method. Gain in array SINR, SNR, INR versus

angular separation of desired mobile and interferer.
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Figure 5.16: Laplacian AOA model, circular array, 8 elements with λ/2 spacing,

array input SINR=10dB, maximum SINR method. Gain in array SINR, SNR,

INR versus angular separation of desired mobile and interferer.
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Figure 5.17: Laplacian AOA model, circular array, 8 elements with λ/2 spacing,

array input SINR=10dB, 0th order nulling method. Gain in array SINR, SNR,

INR versus angular separation of desired mobile and interferer.

125



0 20 40 60 80 100 120 140 160 180
0

5

10

15

Angular Separation (degrees)

S
IN

R
 G

ai
n 

(d
B

) σ
A
=0°

σ
A
=5°

σ
A
=10°

σ
A
=20°

0 20 40 60 80 100 120 140 160 180
0

5

10

15

Angular Separation (degrees)
S

N
R

 G
ai

n 
(d

B
) σ

A
=0°

σ
A
=5°

σ
A
=10°

σ
A
=20°

0 20 40 60 80 100 120 140 160 180
-200

-150

-100

-50

0

Angular Separation (degrees)

IN
R

 G
ai

n 
(d

B
) σ

A
=0°

σ
A
=5°

σ
A
=10°

σ
A
=20°

Figure 5.18: Laplacian AOA model, circular array, 8 elements with λ/2 spacing,

array input SINR=10dB, 1st order nulling method. Gain in array SINR, SNR,

INR versus angular separation of desired mobile and interferer.
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Figure 5.19: Laplacian AOA model, circular array, 16 elements with λ/2 spacing,

array input SINR=10dB, beamsteering method. Gain in array SINR, SNR, INR

versus angular separation of desired mobile and interferer.
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Figure 5.20: Laplacian AOA model, circular array, 16 elements with λ/2 spacing,

array input SINR=10dB, LCMV method. Gain in array SINR, SNR, INR versus

angular separation of desired mobile and interferer.
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Figure 5.21: Laplacian AOA model, circular array, 16 elements with λ/2 spacing,

array input SINR=10dB, maximum SINR method. Gain in array SINR, SNR,

INR versus angular separation of desired mobile and interferer.
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Figure 5.22: Laplacian AOA model, circular array, 16 elements with λ/2 spacing,

array input SINR=10dB, 0th order nulling method. Gain in array SINR, SNR,

INR versus angular separation of desired mobile and interferer.
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Figure 5.23: Laplacian AOA model, circular array, 16 elements with λ/2 spacing,

array input SINR=10dB, 1st order nulling method. Gain in array SINR, SNR,

INR versus angular separation of desired mobile and interferer.
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5.4 Chapter Summary

In this chapter we have examined several spatial processing techniques for use on

the uplink of a wireless communications systems. We have quantified the effec-

tiveness of such techniques for reducing co-channel interference when the signals

from the desired source and interferer experience angular spread due to multipath.

Numerical results were presented for the Jakes ’circular ring’ scatterer model and

the Laplacian angle of arrival model.
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Chapter 6

Conclusions and Future Research

In this thesis we have proposed a general space-time covariance model and used it to

evaluate the performance of space-time block coding and beamforming techniques

for spatially and temporally correlated wireless channels.

The space-time covariance model is applicable to arbitrary scatterer geome-

try, arbitrary transmit and receive array geometry and includes temporal effects

resulting from mobile motion. We applied the covariance model to the ’circular

ring’ scattering geometry and the two-dimensional Gaussian scattering geometry

that is based on recent field measurements. We developed simplified results for the

spatial-only case for several commonly-used angle of arrival probability densities

and approximations for small angular spread.

In order to evaluate the performance of the proposed transmit diversity tech-

niques, we determined the union bound on the block error probability for arbitrary

space-time block codes based on the exact pairwise probability. In addition, we

determined the exact symbol error probability for orthogonal space-time block

codes and the quasi-static channel. We also determined the exact symbol error

probability for maximum ratio transmission with perfect feedback and beamsteer-

ing. Using these results and the space-time covariance model that we developed,
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we presented extensive numerical results to illustrate the performance of several

transmit diversity techniques for the two-dimensional Gaussian scatterer model.

Some conclusions from these numerical results are as follows.

The error performance of space-time block coding was found to be significantly

dependent on the spatial and temporal characteristics of the wireless channel. To

achieve performance comparable to the ideal channel (uncorrelated in space and

time) under worst-case scattering geometry, the transmit antennas must be widely

separated in space, typically tens of wavelengths. In an actual implementation this

may be difficult to achieve due to practical restrictions on antenna placement, for

example. In any case, the results presented in this thesis have quantified the error

performance of several space-time codes for a realistic channel model and varying

degrees of spatial and temporal correlation.

When considering the effects of feedback of the channel state information to

the transmitter, our results indicate that a substantial improvement in perfor-

mance can be realized for perfect feedback. However, for imperfect feedback we

determined that slight decorrelation of the feedback channel response resulted in

significant performance degradation. Most notable was a reduction in the achieved

diversity order. The requirements for timely feedback of the channel state informa-

tion were found to be considerably relaxed for pedestrian applications as compared

to vehicular applications.

Based on the results of this dissertation, there are several potential areas of

future research. First, we have assumed that the receiver has perfect knowledge of

the channel response and ignored issues associated with channel estimation. Open

issues are the design of optimal training sequences and the evaluation of estimator

performance considering the spatial and temporal characteristics of the channel.
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The estimation scheme must balance statistical confidence in the channel estimates

with adaptability to time-varying channel conditions. The numerical results pre-

sented here indicate that the best-case wireless channel for space-time block coding

is uncorrelated in space and time. However, from a channel estimation viewpoint,

it is difficult to estimate the channel response if the channel itself is changing

rapidly with time. Such issues must be considered in an objective assessment of

the overall performance of transmit diversity techniques.

Second, traditional space-time code design is based upon maximizing the di-

versity gain and coding gain assuming a spatially uncorrelated channel. As the

numerical results presented in this thesis have demonstrated, there is a substan-

tial degradation in code performance for spatially correlated wireless channels. In

many cases it may be practically infeasible to achieve the antenna spacing required

to spatially decorrelate the channel response. It is therefore useful to consider how

the design of space-time block codes could be improved based upon knowledge of

the spatial and temporal characteristics of the channel. One possible approach is

to employ a parameterized space-time covariance model of the channel response,

such as that developed in this thesis, in the code design process. Parameters of

the model could be estimated by the receiver and fed back to the transmitter to

determine the appropriate space-time code to use. Of course, issues such as ro-

bustness and adaptability to varying channel conditions must be addressed in such

approaches.

Third, significant research effort has been expended on the design of transmit

diversity techniques to improve system performance in fading channels. Issues

such as the reduction of co-channel interference, both at the transmitter and the

receiver, have not received as much attention. In conventional space-time block
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coding, for example, the base station transmitter radiates energy omnidirection-

ally without regard for the actual location of the mobile receiver. This creates

co-channel interference for unintended users and has the potential to limit achiev-

able performance. There is a significant volume of research on spatial processing

techniques for reducing interference that has not been applied to wireless commu-

nication systems. Ideally, such techniques should address both goals of achieving

diversity gain and minimizing co-channel inteference.
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Appendix A

Characteristic Function of the Norm of a

Complex Gaussian Random Vector

We determine the characteristic function of the Frobenius norm of a complex Gaus-

sian random vector. Specifically, we prove

φ(s) = E
[
exp

(
s‖y‖2

)]
(A.1)

=
1

det (I− sR)

where the vector y is complex Gaussian with zero mean vector and covariance

matrix R and ‖y‖2 = y†y. A related result appears in [44]. For completeness, we

provide a proof of this property here.

If the matrix R is positive definite then there exists a non-singular matrix

Q such that Q†RQ = Λ and Q†Q = I, where Λ is diagonal with entries λn

corresponding to the eigenvalues of R [64].
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Let y = QΛ1/2ȳ where the matrix Λ1/2 is diagonal with entries
√

λn. We have

y†y =
(
QΛ1/2ȳ

)† (
QΛ1/2ȳ

)
(A.2)

= ȳ†Λ1/2
(
Q†Q

)
Λ1/2ȳ

= ȳ†Λȳ

=
N∑

n=1

λn|ȳn|2

where

ȳ =

(
ȳ1 ȳ2 . . . ȳN

)′

. (A.3)

Also,

E
[
ȳȳ†

]
= E

[(
Λ−1/2Q†y

) (
Λ−1/2Q†y

)†]
(A.4)

= Λ−1/2
(
Q†RQ

)
Λ−1/2

= I .

So, ȳn are i.i.d. complex Gaussian random variables with zero mean and unit

variance. Therefore,

E
[
exp

(
sy†y

)]
= E

[
exp

(
s

N∑
n=1

λn|ȳn|2
)]

(A.5)

=
N∏

n=1

E
[
exp

(
sλn|ȳn|2

)]

=
N∏

n=1

1

1− sλn

since |ȳn|2 are i.i.d. χ2 random variables with 2 degrees of freedom. Because
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det(Q†)det(Q) = 1, we have

N∏
n=1

(1− sλn) = det (I− sΛ) (A.6)

= det
(
Q†Q− sQ†RQ

)

= det
(
Q†) det (I− sR) det (Q)

= det (I− sR) .

Finally,

φ(s) = E
[
exp

(
sy†y

)]
(A.7)

=
N∏

n=1

1

1− sλn

=
1

det (I− sR)
.
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