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In this thesis, the research focuses on the development and implementation of

two hybrid models for pricing variance swaps and variance options. Some variance

derivatives (i.e., variance swap) are priced using portfolios of put and call options.

However, longer-term options price not only stock variance, but also interest rate

variance. By ignoring stochastic interest rates, variance derivatives utilizing this

approach are overpriced. In recent months, the Federal Reserve lowered the funds

rate as the equity markets fell. This created correlation between equities and interest

rates. Furthermore, interest rate volatility increased. Thus, it is presently crucial

to understand how stochastic interest rates and correlation impact the pricing of

variance derivatives.

The first model (SR-LV) is driven by two processes: the stock return follows a

diffusion and the stochastic interest rate is driven by the Hull-White [16] short rate

dynamics. Local volatility is constructed with the help of Gyöngy’s [14] result on

recovering a Markov process from a general n-dimensional Itô process with the same



marginals. In the solution for the local volatility, the joint forward density of the

stock price and interest rate is derived by solving an appropriate partial differential

equation. Realized variance can then be computed by Monte Carlo simulation under

the forward measure where local variances are collected over each realized path and

averaged. Results are presented for different levels of assumed correlation between

the stock price and interest rates. Prices obtained are lower than those produced

with an options portfolio and this price difference strongly depends on the volatility

of the short rate.

The second model (SR-SLV) adds one more dimension to the first model. In

practice, volatility of a stock may change without the stock price moving. This effect

is not captured in SR-LV model, but stochastic local volatility exhibits this trait.

In this setting, a leverage function must be calibrated utilizing the joint density of

the stock price, interest rate, and a stochastic term governed by a mean reverting

lognormal model. By design, the price of variance swaps is the same as under SR-

LV dynamics. However, variance option prices differ from SR-LV model and are

presented for different levels parameters of the new stochastic component.

Although this work focuses on pricing variance derivatives, the developed

methodology is extended to pricing volatility swaps and options.
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Chapter 1

Introduction

Variance and volatility financial derivatives have recently gained popularity because

they provide investors with pure exposure to the variance or volatility of some under-

lying asset. Historically traded over-the-counter (i.e., privately between companies),

some volatility products are now traded in the market, such as the VIX options.

Thus, there is a need to understand the fundamentals of how to price such derivatives

correctly and efficiently.

This research is extremely relevant at present time. Currently, the economy is

on the brink of a recession fueled by the credit crisis. Over the last several months,

the Federal Reserve lowered the funds rate with the falling equity markets. This

action created correlation between equities and the interest rates. Furthermore, the

volatility of the interest rates increased. Therefore, it is crucial to account for cor-

relation and stochasticity of the interest rates in the pricing of variance derivatives.

A variance swap is traditionally priced using an appropriately weighted port-

folio of put and call options which mimics the terminal payoff of the swap. However,

longer-term options price not only stock variance, but also interest rate variance.

Thus, by ignoring stochastic interest rates, variance swaps are overpriced. The

primary contribution of this research to mathematical finance is the development

of two models for pricing variance derivatives correctly accounting for the interest
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rate variance. The first model includes stochastic interest rates and local volatility

(SR-LV), while the second has a stochastic local volatility component (SR-SLV). In

addition to more realistic volatility dynamics, the SR-SLV model prices options on

realized variance.

Results presented are prices of variance swaps for different levels of assumed

correlation between the stock price and interest rate for different maturities. Options

on variance are priced at several correlation levels to examine the role of correlation

with other factors, such as time and short rate volatility. The methodology is easily

extended to price volatility derivatives, so a section in this dissertation is devoted

to volatility swaps and options.

1.1 Variance swaps/options

In a variance swap contract, realized variance is defined over business days 0 < t1 <

... < tn = T for some stock, S, as

RV (0, T ) =
252

n

n∑

i=1

(
ln

Sti

Sti−1

)2

. (1.1)

The variance swap contract then has a payoff at maturity given by

Notional ∗ (RV (0, T ) −K),

where K is the agreed upon strike variance at initiation of the contract and the

notional is the dollar amount on which the contract is written (e.g., $100 million).

The value of the variance swap at time 0:

Notional ∗ E
[
e−
∫ t

0
rsds(RV (0, T ) −K)

]
.
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The expectation is taken with respect to the risk-neutral probability measure where

the money market account is the numeraire. Because this expectation is awkward

to evaluate, it is easier to change measure to the T -forward measure, where the

numeraire is a discount bond. Thus, the value of the variance swap is now given by

Notional ∗ P (0, T ) ∗ EQT

[
(RV (0, T ) −K)

]
,

where P (0, T ) is the price of the zero coupon bond maturing at time T and the

expectation is taken with respect to the T -forward measure (i.e., notation EQT ).

The value of the variance swap must be zero at its initiation. Setting the above

expression to zero gives the price (agreed upon fair variance), Kvs, of swap to

Kvs = EQT

[
RV (0, T )

]
. (1.2)

Therefore, the problem of pricing variance swaps reduces to evaluating this expec-

tation.

Time 0 value of options on realized variance is given by:

Notional ∗ P (0, T ) ∗ EQT

[
(RV (0, T ) −K)+

]
for a call option and

Notional ∗ P (0, T ) ∗ EQT

[
(K −RV (0, T ))+

]
for a put option.

1.2 Models

The SR-LV model is given by the following system of SDEs:

dSt

St
= (rt − q)dt+ σs(S, t)dW s

t ,

drt = (θt − krt)dt+ σrdW r
t ,

dW s
t dW

r
t = ρdt.

3



The stock price return process is driven by a single Brownian motion, rt is the

stochastic interest rate, q is the dividend yield, and σs(S, t) is the local volatility

dependent on stock price and time. The interest rate process (Hull-White [16]) is

driven by another Brownian motion with a long-term mean θt, a speed of mean

reversion k, and a rate volatility σr. Correlation between the Brownian motions is

set to a predetermined ρ. Realized variance in this setting can be calculated as

RV (0, T ) =
1

T

∫ T

0
σs2(S, t)dt.

Using Monte Carlo simulations, for a given path, the above integral can be approx-

imated by a sum.

The SR-SLV model is given by the following system of SDEs:

dSt

St
= (rt − q)dt+ σs

∗ZtdW
s
t ,

drt = (θt − krt)dt+ σrdW r
t ,

d lnZt = ν(ζt − lnZt)dt+ λdW z
t ,

dW s
t dW

r
t = ρdt,

where dW z
t is uncorrelated with dW s

t and dW r
t . The relationship between local

volatility and the leverage function, σs
∗, is σs2(S, t) = σs2

∗ E[Z2
t |St = S] (given by

Gyöngy [14]). Realized variance in this case is given by:

1

T

∫ T

0
σs2
∗ Z

2
t dt.
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1.3 Local volatility

One of the main challenges in this work is recovering the local volatility function.

Local volatility under deterministic interest rates is a well understood concept which

was originally developed by Bruno Dupire [11]. In this setting, local volatility is

given by the following deterministic function of strike and time:

σ2(K,T ) =
∂C
∂T

+ qC + (rT − q)K ∂C
∂K

K2

2
∂2C
∂K2

,

where C is the price of a call option with strike K and maturity T . Thus, given an

options surface, the local volatility surface can easily be recovered.

Gyöngy [14] has shown how to construct a Markov process with the same

marginals from some multi-dimensional Itô process. Local volatility under stochastic

interest rates has recently been addressed by Atlan [1] and Ren et al. [19] who

applied Gyöngy’s [14] result to arrive at the new form for local volatility:

σ2(K,T ) =

∂C
∂T

+ q(C −KCK) +KE
[
exp(−

∫ T
0 rtdt)rT1ST >K

]

K2

2
∂2C
∂K2

. (1.3)

The expectation in this expression is given under the risk-neutral measure. Again,

changing to T -forward measure simplifies the work, where

E
[
exp(−

∫ T

0
rtdt)rT1ST >K

]
= P (0, T )EQT

[
rT1ST >K

]
. (1.4)

To evaluate the expectation on the right-hand side, the joint forward density must

be know. That is, for SR-LV model, this is a two dimensional density in stock and

interest rate. Therefore, solving for local volatilities for all times is a consequence
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of knowing the joint densities at all times. This problem is tackled by solving

an appropriate partial differential equation (PDE) forward one step at a time and

recovering local volatilities.

For the SR-SLV model, local volatility is an input from SR-LV model. Keeping

terminology consistent with Ren et al. [19], the leverage function, σs
∗, must be

calibrated using local volatilities and E[Z2
t |St = K]. Thus, the joint distribution of

stock, interest rate, and Z must be known at each time. In this setting, stepping

through the solution of a PDE in three variable is required to iteratively recover the

leverage function.

In both models, the PDEs contain cross derivative terms and traditional finite

difference schemes do not perform well. An ADI scheme by Craig and Sneyd [6] is

implemented for the two PDE solvers to address this problem.

1.4 Data

Results are provided for data obtained for S&P 500 index options, yield curve,

interest rate swaptions, and caps for June 19, 2002. The Hull-White short rate

model must be calibrated to the yield curve, swaptions, and caps simultaneously.

The short rate process is a Gaussian process, so there exists a closed form for the

price of a discount bond which may be utilized in the calibration. Since swaptions

and caps are easily priced on trees, Hull’s [17] calibration methods is chosen and

the details are provided in the Appendix. From this time forward, assume that the

calibrated parameters for the Hull-White short rate model are k = 0.025091 and

6



σr = 0.011591.

On the equity side, an options surface is needed for any strike and maturity

up to three years to study the impact of stochastic rates on variance derivatives.

Market data is available for only certain strikes and maturities, thus a model needs

to be fit to the data. In general, one cannot fit a single set of parameters in a

model and calibrate across time. Recently, Carr et al. [4], developed the theory for

self-decomposable laws and associated processes. This result can be applied to the

Variance Gamma process for the evolution of the stock price developed by Madan

and Seneta [20]. The resulting VGSSD framework allows calibration to the market

options surface of a single set of parameters. Then, an arbitrarily fine grid of op-

tions prices can be generated. The Variance Gamma process was chosen because the

corresponding distribution fits market data well; that is, its parameters control ad-

ditional aspects of skewness and kurtosis. Furthermore, Fast Fourier Transform can

be employed in generating option prices which significantly speeds up calibration.

One problem to consider is that the options data available for S&P 500 is of

maturities up to 2 years and if considering volume of options traded at the later

maturities, then only maturities of up to 1.5 years are available for calibration. One

solution applied here is the creation of a stylized options surface where VGSSD

parameters are calibrated from existing options, but the time scaling parameter (γ)

is increased to compensate for lack of longer dated options. In practice, financial

institutions have this options surface for all strikes and maturities, so this adjustment

is a remedy for the lack of data. Details of implementation of VGSSD are in the

Appendix. From this moment, assume that the options surface can be generated via
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VGSSD with for parameters: θ = −0.16782, ν = 0.65289, σ = 0.19732, and γ = 0.6.

1.5 Monte Carlo simulation

For both models, variance swap and option prices are determined by Monte Carlo

simulation. Gyöngy’s [14] result is utilized in SR-LV model by simulating a single

stock price process in the forward measure using the densities derived. The same

approach can be taken with the SR-SLV when pricing variance swaps. But, by

construction, both models give the same price for variance swaps.

All three processes need to be simulated for options on realized variance in

the forward measure. In SR-SLV model, local volatility is recovered and then the

leverage function is calibrated. This involves two PDE solvers, so computational

time needs to be considered. Taking larger time steps requires more simulations

for accuracy. So, for this model a second order accurate scheme is considered for

simulation, illustrated in Glasserman [13]. However, this procedure involves first

and second partials of the leverage function with respect to the stock. For stability,

these partials need to be bounded artificially. Ultimately, a simpler discretization is

chosen since increasing the number of simulations minimally impacted computation

time.

The two models confirmed the hypothesis that pricing by a replicating portfolio

of options overprices variance swaps (with a few later-discussed exceptions). Option

prices, generated by the SR-SLV model, increase as a function of vol of vol and

decrease as a function of speed of mean reversion of Z as expected. Further analysis
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of swaps and options is conducted across different correlations and maturities. These

results are summarized in Chapter 4.
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Chapter 2

Traditional Pricing of Variance Swaps

Log-contract hedge is one common way to price variance swaps. This approach

involves a replicating portfolio of out-of-the-money call and put options on the

underlying stock. In theory, the continuum of strikes is needed for a given time,

but an approximation can be obtained with finite number of strikes. This approach

is outlined in Derman el al. [7] and Bossu and Strasser [?].

Since the option surface in this project is generated using a VGSSD model,

it is much easier to price a variance swap because for this model, the characteristic

function for lnST is known in closed form exactly. This approach is described by

Schoutens [27]. In this chapter, both methods are reviewed and produce the same

price under the assumption of constant interest rates. Prices generated for variance

swaps in this chapter will be used as a baseline for comparison when the interest

rate becomes stochastic. Schoutens [27] scheme is preferred since options surface is

generated by a VGSSD model.

2.1 Pricing by log-contract hedge

In the first chapter, it was shown that the realized variance of stock St from time 0

to T is given by

RV (0, T ) =
252

n

n∑

i=1

(
ln

Sti

Sti−1

)2

. (2.1)
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From the Taylor approximation we get the following:

n∑

i=1

(
ln

Sti

Sti−1

)2

≈
n∑

i=1

(
Sti − Sti−1

Sti−1

)2

≈ 2

[
n∑

i=1

(
Sti − Sti−1

Sti−1

)
− ln

ST

S0

]
. (2.2)

Continuously-sampled realized variance can then be written as

RV (0, T ) =
2

T

[∫ T

0

dSt

St
− ln

ST

S0

]
. (2.3)

From the above expression, buying realized variance is equivalent to a long dynamic

position in the stock and a short static position in the log contract. Taking the

risk-neutral expectation yield the price of the variance swap:

Kvs =
2

T
E

[∫ T

0

dSt

St
− ln

ST

S0

]
=

2

T

[
(r − q)T −E ln

ST

S0

]
, (2.4)

where r is the risk-free interest rate for time T, q is the continuous dividend yield,

and (r − q) is the expected growth rate of this dividend paying stock.

Derman et al. [7] shows how to replicate the payoff of the log contract over

some reference stock price S∗ (e.g., S0 or forward strike), with out-of-the-money

calls and puts. First, the log payoff can be written as

ln
ST

S0
= ln

ST

S∗
+ ln

S∗

S0
, (2.5)

where ln ST
S∗

can be further decomposed into a long position in (1/S∗) forward con-

tracts with strike S∗, short position in (1/K2) put options with strike K for all

strikes from 0 to S∗, and short position in (1/K2) call options with strike K for all

strikes:

ln
ST

S∗
=
ST − S∗

S∗
−
∫ S∗

0

1

K2
(K − ST )+dK −

∫ S∗

0

1

K2
(ST −K)+dK. (2.6)
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Substitution Equations 2.5 and 2.6 into 2.4 and taking expectations gives

Kvs =
2

T

[
(r − q)T −

(
S0

S∗
e(r−q)T

)
− ln

S∗

S0

]
+ erTΠCP , (2.7)

where ΠCP is the present value of the portfolio of options with payoff at expiry given

by

f(ST ) =
2

T

[
ST − S∗

S∗
− ln

ST

S∗

]
. (2.8)

In reality, only a finite number of options are available for certain strikes.

Given this limitation, f(ST ) can be approximated, for example, by a piece-wise lin-

ear function. In practice, this linear approximation will overestimate the value of

this payoff. However, in this dissertation, options surface is generated via model

(VGSSD) and option values can be generated for any strike desired. Thus, an opti-

mal number of strikes can be chosen for desired accuracy of pricing. Computational

time is not a concern, since in a VG setting fast Fourier transform (FFT) [5] is

utilized in options pricing that greatly reduces computational time.

Derman et al [7] proposed a lined approximation and his notation is followed.

Assume that the following strikes are trading for calls and puts in the market:

...K3p < K2p < K1p < K0 = S∗ < K1c < K2c < K3c...

Then, ΠCP can be calculated by the following:

ΠCP =
∑

i

wp(Kip)P (S,Kip) +
∑

i

wc(Kic)C(S,Kic),

where

wc(Kn,c) =
f(Kn+1,c) − f(Kn,c)

Kn+1,c −Kn,c
−

n−1∑

i=0

wc(Ki,c),

12



wp(Kn,p) =
f(Kn,p) − f(Kn+1,p)

Kn,p −Kn+1,p
−

n−1∑

i=0

wp(Ki,p).

Functions P (S,K) and C(S,K) represent the prices of put and call options

respectively. The weights, w(K), are the number of options needed to be held at

strike K.

2.1.1 Example

In this example, a one year variance swap on the S&P 500 index for June 19, 2002

will be priced using the above methodology. On this day, the S&P 500 index closed

at 1020, the one year risk-free rate is 0.02359, and the dividend yield is .0118.

Consider the range of strikes for this exercise to be from 20% to 200% of the close of

the index at increments of 100. The reference stock price, S∗ = 1002, the one closest

to the one-year forward. Calibrated VGSSD parameters for the options surface are

θ = −0.16782, ν = 0.65289, σ = 0.19732, and γ = 0.6. The replicating portfolio is

given in Table 2.1.

From notation in this section, ΠCP is 539.476. With these options the fair

strike (price) for the variance swap is give by Equation 2.7 and is equal to (23.502)2.

It is common to quote variance swap price in terms of volatility, and it is understood

that the actual price is volatility squared. Thus, from this moment, prices will be

quoted in volatility (e.g., from above - 23.502).

Since a piece-wise linear approximation is used for convex payoff f(ST ), the

calculated fair variance is too high. But if more options are used at closer strikes,

then in the limit we obtain the correct variance swap price. If the strikes in this
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Put/Call Strike Option Price Weight Contribution

P 202 0.004 56.227 0.230
P 302 0.051 23.227 1.189
P 402 0.303 12.775 3.876
P 502 1.193 8.098 9.658
P 602 3.607 5.596 20.186
P 702 9.088 4.100 37.264
P 802 19.992 3.134 62.652
P 902 39.541 2.473 97.802
P 1002 71.673 1.068 76.523
C 1002 101.070 0.934 94.432
C 1102 52.192 1.654 86.310
C 1202 22.685 1.389 31.512
C 1302 9.391 1.183 11.112
C 1402 3.988 1.020 4.068
C 1502 1.761 0.888 1.564
C 1602 0.809 0.781 0.632
C 1702 0.387 0.692 0.268
C 1802 0.192 0.617 0.118
C 1902 0.098 0.554 0.054
C 2002 0.052 0.500 0.026

TOTAL 539.476

Table 2.1: Options portfolio for S&P 500 options on June 19, 2002 which replicate
payoff given by f(ST ).

example are $50 apart, the price becomes 23.082 and if $10 apart - 22.903. Since

options prices are generated by a model where the characteristic function for ln(ST )

is known, the next section will show the limit price to be 22.9.

2.2 Pricing by characteristic function

Schoutens [27] proposes a simpler approach for pricing the log contract. When the

characteristic function for lnST is known in closed from, it is straightforward to
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evaluate E[lnST ]. Suppose the risk-neutral characteristic function of lnST is

φ(u, t) = E
[
exp(iu ln(ST ))

]
.

Then

−i∂φ(u, t)

∂u

∣∣∣∣∣
u=0

= E
[
ln(ST )

]
.

The price of variance swap, Kvs, from Equation 2.4 becomes

Kvs =
2

T

[
(r − q)T − E ln

ST

S0

]
=

2

T

[
(r − q)T + i

∂φ(0, t)

∂u
+ lnS0

]
. (2.9)

For VGSSD the characteristic function for lnST is given in Carr et al. [4] as

E
[
exp(iu ln(ST ))

]
= exp

[
iu(ln(S0) + (r − q)t− lnψ(−i))

]
lnψ(u),

where

ψ(u, t) =

(
1

1 − iuθνtγ + σ2ν
2
u2t2γ

)1/ν

More details on VGSSD can be found in the Appendix.

Using model inputs from the previous example, variance swaps can now be

priced for any given time. Table 2.2 shows the term structure for variance swap

prices (in volatility). Note that the one year variance swap price is 22.9, which is

the limit of Example 2.1.1 when the number of options increased and the distance

between strikes decreased.

The shape in time for the prices in Table 2.2 is consistent with observed vari-

ance swap curves in literature (i.e.,increasing in time, but at a decreasing rate).

These prices will serve as a basis of comparison for the later developed models. The

hypothesis in this work is that the prices in Table 2.2 are too high because they do
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not account for the stochasticity of interest rates.

Expiry (yrs) 1 1.5 2 2.5 3 3.5 4
Kvs in vol 22.900 23.589 24.059 24.410 24.686 24.913 25.103

Table 2.2: Term structure of variance swaps for Example 2.1.1 using VGSSD char-
acteristic function for lnST

It is worth noting that the characteristic function for lnST in practice is often

unknown. Pricing via characteristic function in this research is the benefit of working

with a stylistic options surface generated by VGSSD. For the models developed later,

there is no closed form solution for the characteristic function and thus simulation

is used for pricing.
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Chapter 3

Local volatility and Stochastic Local Volatility via PDEs

This chapter provides details for generating the local volatility surface and the lever-

age function for the two models: Stochastic Rates - Local Volatility (SR-LV) and

Stochastic Rate - Stochastic Local Volatility (SR-SLV), respectively. The derived

expression for local volatility is a function of an expectation under the T -forward

measure. For the SR-LV model, the solution to the PDE for the joint density of

interest rate and stock is utilized in evaluating this expectation for any strike and

time. Then, a leverage function must be calibrated to the local volatility surface for

the SR-SLV model, where another PDE is solved in three dimensions to recover this

function.

3.1 Gyöngy’s result

In the section, Gyöngy’s [14] result is summarized and applications discussed. Let

ξ(t) be a stochastic process (one or multi-dimensional) starting from 0 with Itô

differential

dξ(t) = β(t, ω)dt+ δ(t, ω)dW (t),

where W (t) is a Wiener process, δ and β are bounded. For every time t, this process

has marginal distributions for the random variable(s) ξ(t). Suppose we want to

construct a Markov process x(t) that has the same marginals as ξ(t). Gyöngy not
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only proved the existence but provided the machinery on how to construct such a

process. So, let x(t) be given by

dx(t) = b(t, x(t))dt+ σ(t, x(t))dW (t),

then Gyöngy tells us that

b(t, x(t)) = E
[
β(t, ω)|ξ(t) = x

]
,

σ2(t, x(t)) = E
[
δ(t, ω)δT(t, ω)|ξ(t) = x

]
.

This result will be utilized in construction of the leverage function for the SR-SLV

model and in simulating the models.

3.2 Local volatility under stochastic interest rates

The following derivation is found in Madan et al. [19], but the same expression for

local volatility is also derived in Atlan [1]. Assume the following dynamics for the

stock involving stochastic interest rates:

dSt

St
= (rt − q)dt+ σ(St, t)dW

S
t .

The call option price can be written as

C(K,T ) = E

[
e−
∫ T

0
rudu(ST −K)+

]

and

CK(K,T ) = E

[
e−
∫ T

0
rudu1ST >K

]
,

CKK(K,T ) = E

[
e−
∫ T

0
ruduδSu=K

]
,

C(K,T )−KCK(K,T ) = E

[
e−
∫ T

0
ruduST1ST >K

]
.
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Using Itô, the final discounted payoff has the following form:

e−
∫ T

0
rudu(ST −K)+ = (S0 −K)+ −

∫ T

0
du rue

−
∫ u

0
rvdv(Su −K)+−

∫ T

0
du e−

∫ u

0
rvdv1Su>KdSu +

1

2

∫ T

0
du e−

∫ u

0
rvdvδSu=K σ2(Su, u)S

2
udu.

The call price is then obtained by taking expectations:

C(K,T ) = (S0 −K)+ − E

[ ∫ T

0
du rue

−
∫ u

0
rvdv(Su −K)+

]
−

∫ T

0
du E

[
e−
∫ u

0
rvdv1Su>K(ru − q)Su

]
+

1

2

∫ T

0
du σ2(K,u)K2E

[
e−
∫ u

0
rvdvδSu=K

]
.

Differentiating both sides with respect to T, we get

CT (K,T ) = −E
[
rTe

−
∫ T

0
rvdv(ST −K)+

]
−

E

[
e−
∫ T

0
rvdv1ST >K(rT − q)ST

]
+

1

2
σ2(K,T )K2E

[
e−
∫ T

0
rvdvδST =K

]
.

Using the above established identities, this simplifies to

CT (K,T ) = −E
[
rTe

−
∫ T

0
rvdv(ST −K)1ST >K

]
− E

[
rTe

−
∫ T

0
rvdv1ST >KST

]
−

q(C(K,T )−KCK(K,T )) +
1

2
σ2(K,T )K2CKK(K,T ).

Simplifying yields

CT (K,T ) = KE

[
rTe

−
∫ T

0
rvdv1ST >K

]
− q(C(K,T )−KCK(K,T ))+

1

2
σ2(K,T )K2CKK(K,T ).

Finally, solving for local variance,

σ2(K,T ) = 2

CT + q(C −KCK) −KE

[
e−
∫ T

0
rvdvrT1ST >K

]

K2CKK
. (3.1)
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In practice, the expectation in equation 3.1 is difficult to evaluate. So, one approach

is to work under a different measure. Under the risk-neutral measure, the numeraire

is the money market account. While, under the T -forward measure, the numeraire is

the discount bond, P (0, T ). The Radon-Nikodym derivative for the measure change

is just the ratio of the two numeraires. Thus, the expectation in equation 3.1 can

be written under the T -forward measure as

E

[
e−
∫ T

0
rvdvrT1ST >K

]
= P (0, T )EQT

[
rT1ST >K

]
(3.2)

Now, one can consider rT1ST >K as a terminal payoff for some derivative and

evaluate the expectation by solving an appropriate PDE. But, suppose that the local

volatility surface lives on a range of 50 strikes. This means that, for each time t,

there is a need to solve 50 PDEs. Although solving one is quick, this is not practical.

A better approach is to solve one PDE for the joint density of interest rates

and stock. Then, this density can be used to numerically evaluate the expectation

in equation 3.2 for all K. This is the motivation for building and solving a PDE for

the joint density in this chapter.

3.3 Forward PDE for the joint density in a multi-factor setting

Overhaus et al. [23], Chapter 8, provides an elegant derivation of the forward PDE

for the t-forward density from risk-neutral processes. Suppose that for 1 ≤ i ≤ n,

there are some general risk-neutral processes:

dxi = µi(xt, t)dt+ σi(xt, t)dW
i
t ,
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d〈W i
t ,W

j
t 〉 = ρijdt.

Let V (x, t) represent the price of a derivative and the money market account

is Bt = e
∫ t

0
rsds. In the risk-neutral setting, V/B is a martingale. Using Itô’s lemma,

one can write a PDE for V/B and by setting the drift equal to zero to arrive at

∂V

∂t
− rtV +

∑

i

µi
∂V

∂xi
+

1

2

∑

ij

ρijσiσj
∂2V

∂xi∂xj
= 0. (3.3)

Arrow-Debreu prices and the t-forward measure are related in the following

identity:

ψ(x, t) = P (0, t)φ(x, t), (3.4)

where ψ(x, t) is the Arrow-Debreu price representing the value of a derivative with

a $1 payoff in state xt, φ(x, t) is the t-forward density, and P (0, t) is the discount

bond price expiring at time t.

The relationship in Equation 3.4 comes from the change of numeraire between

the risk-neutral and t-forward measures. The numeraire under the risk-neutral mea-

sure is the money market account, while under the t-forward measure it is P (0, t).

That is,

V (x0, t) =
∫
V (x, t)ψ(x, t)dx = P (0, t)

∫
V (x, t)φ(x, t)dx. (3.5)

Differentiating both sides with respect to t, we get

0 =
∫
V
∂ψ

∂t
+ ψ

∂V

∂t
dx.

Substituting Equation 3.3 results in

0 =
∫
V
∂ψ

∂t
+ ψ

(
rtV −

∑

i

µi
∂V

∂xi
− 1

2

∑

ij

ρijσiσj
∂2V

∂xi∂xj

)
dx.
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Using integration by parts,

0 =
∫
V

(
∂ψ

∂t
+ ψrt +

∑

i

∂µiψ

∂xi
− 1

2

∑

ij

∂2(ρijσiσjψ)

∂xi∂xj

)
dx + boundary terms.

Those boundary terms are well behaved functions of µi and σi, so they can be

ignored. In order for the above equation to hold for any payoff V (x, t), it must be

true that

0 =
∂ψ

∂t
+ ψrt +

∑

i

∂µiψ

∂xi
− 1

2

∑

ij

∂2(ρijσiσjψ)

∂xi∂xj
.

This is the PDE for the density of the Arrow-Debreu price. The PDE for the t-

forward density can be obtained using Equation 3.4 remembering the relationship

between forward rate and bond prices

f(t, T ) = −∂ lnP (t, T )

∂T
,

where f(t, T ) is the rate determined at t for instantaneous borrowing at time T and

P (t, T ) is the price of a discount bond at time t, maturing at T . The PDE for the

t-forward is

0 =
∂φ

∂t
+ (rt − f(0, t))φ+

∑

i

∂µiφ

∂xi

− 1

2

∑

ij

∂2(ρijσiσjφ)

∂xi∂xj

. (3.6)

It should be noted that for Hull-White/Vasicek interest rate model, (rt − f(0, t)) is

continuous. That is why at a later time we will work with this function.

In practice, the PDE given in Equation 3.6 is difficult to solve for two rea-

sons. First, the initial condition is a delta function. Second, the PDE includes

mixed derivative terms which are not easily handled by conventional finite differ-

ence methods. The particular PDE solver is the topic of the next section.
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To solve the first problem, Overhaus et al. [23] suggests a change of variables.

In this dissertation, there will be three dimensions at most, so consider Equation

3.6 in only three variables (x,y,z). Then, let

x = x′at,

y = y′bt,

z = z′ct,

where at, bt, and ct scale as
√
t as t → 0. This scaling is chosen because the

distribution spreads out as
√
t. Then, the new variables - x′,y′, and z′ - have the

interpretation as the number of standard deviations away from the mean if at, bt,

and ct are chosen to be the standard deviations for the marginal distributions for

the respective processes. The density is also rescaled as

φ(x, y, z) =
φ′(x′, y′, z′)

atbtct
,

and the following will hold:

∫
φ(x, y, z)dxdydz =

∫
φ′(x′, y′, z′)dx′dy′dz′.

This change of variables allows for the initial distribution for φ′ to be approximately

normal, but very high peaked of course. The grid for the PDE must be defined far

enough (e.g., in practice 4 or 5 standard deviations) for the boundary conditions to

be zero everywhere. There is difficulty with discontinuities at t = 0, so the PDE

starts at very small time away from zero (e.g., 10−6). The details for the new PDEs

for each of the two models are described in later sections of this chapter.
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3.4 PDE solver

Finite difference methods are chosen for solving the PDEs for the two models. How-

ever, it is well known that standard finite difference methods do not handle well the

mixed derivative terms implicitly [10]. Splitting or fractional steps approaches have

been developed for tackling the mixed derivative problem (e.g., Yanenko [31], Craig

and Sneyd [6], McKee and Mitchell [22]). That is, the N-dimensional problem is

reduced to solving N tridiagonal systems.

Here is a simple example of splitting from Duffy [10]. Consider the two-

dimensional heat equation:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
.

Then the simple splitting procedure can be defined using explicit Euler

Ũij − Un
ij

∆t
= ∆2

xU
n
ij ,

Ũn+1
ij − Ũij

∆t
= ∆2

yŨij,

where ∆2
x and ∆2

y are approximations of the second derivative using the central

differences. A similar scheme can be defined implicitly,

Ũij − Un
ij

∆t
= ∆2

xŨij ,

Ũn+1
ij − Ũij

∆t
= ∆2

yU
n+1
ij .

Assuming that the mesh size in both space directions is equal to h Duffy [10] shows

that the explicit scheme is stable if ∆t/h2 ≤ .5. The implicit scheme is uncondi-

tionally stable. ADI schemes do not exhibit unconditional stability.
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In the previous example, there is no mixed derivative term. Craig and Sneyd

[6] developed an ADI method and established stability conditions for problems with

mixed derivatives. Suppose we have an initial value problem:

∂u

∂t
= Lu, (3.7)

where L is an elliptic partial differential operator

L =
N∑

i=1

N∑

j=1

qij∂i∂j ∂i =
∂

∂xi
, (3.8)

and whose coefficient may be functions of the xi and t. The PDE is parabolic if the

symmetric matrix Q = (qij) is positive definite.

Let un
j1
, ..., un

jN
denote the finite difference solution at nodes j1∆x1, ..., jN∆xN , n∆t.

Let ∆xi = ∆, defining a uniform mesh. Also, define the following operations using

central differences (example in two dimensions):

δ2
xuij = ui+1,j − 2uij + ui−1,j,

and

δxyuij = ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1.

On this uniform mesh, define r = ∆t/∆2.

The Craig and Sneyd [6] ”unsplit” scheme can be written in the following

form:

Aun+1 = (A+B)un,

where

A =
N∏

i=1

(1 − θrqiiδ
2
xi

)
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and

B = r
N∑

i=1

qiiδ
2
xi

+
1

2
r

N∑

i=2

i−1∑

j=1

qijδxixj .

Parameter θ determines the implicitness of the method and stability. That is, θ = 0

corresponds to the fully explicit scheme and θ = 1 corresponds to a fully implicit

scheme, and stability will be addressed shortly. In implementation, this scheme is

split into N tridiagonal matrix operations:

(1 − θq11rδ
2
x1

)un+1(1) =

[
1 + r(1 − θ)q11δ

2
xi

+ r
N∑

i=1

qiiδ
2
xi

+
1

2
r

N∑

i=2

i−1∑

j=1

qijδxixj

]
un,

(1 − θq22rδ
2
x2

)un+1(2) = un+1(1) − θq22rδ
2
x2
un,

·

·

(1 − θqNNrδ
2
xN

)un+1(N) = un+1(N−1) − θqNNrδ
2
xN
un,

where un+1(i) is the approximation of un+1 at split level (i). This setup includes

other schemes as special cases. For example, when θ = 1 and mixed derivative

terms are absent, this is an unconditionally stable Douglas-Rachford [9] method for

N = 3. Craig and Sneyd method is also a special case of McKee and Mitchell [22]

with mixed derivatives.

Stability of the Craig and Sneyd scheme is only discussed in the constant co-

efficient (qij) case. Necessary and sufficient condition for stability in two dimensions

is determined to be θ > 1/2 and for three dimensions is θ > 2/3. However, McKee

and Mitchell [22] remark that the above conditions are necessary conditions for un-

conditional stability, but not sufficient since values above the indicated levels of θ

have been found such that the scheme breaks down.
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The problem in this dissertation work is that coefficients, qij, are not constant.

Furthermore, these coefficients are unknown ahead of time for all t at the beginning

of solving the PDE. The coefficients are recovered one step at a time walking through

the PDE. To ensure stability in this work, a conservative approach was taken where

above conditions on θ were satisfied and ∆t/∆2 ≤ .5 was met. Stability was observed

by ensuring that the probability density solution integrated to 100% (with error no

more that 1% for any give time t) and the probabilities must be positive.

The discussion so far has been centered around the problem defined in Equa-

tions 3.7 and 3.8. In this dissertation work, the problem at hand has the following

form:

∂u

∂t
=

(
L+

N∑

i

qi∂i + q

)
u, (3.9)

where L is again an elliptic partial differential operator

L =
N∑

i=1

N∑

j=1

qij∂i∂j ∂i =
∂

∂xi
. (3.10)

However, the methodology described in this section is extended easily to this case

and stability conditions remain unchanged for small values of ∆t.

3.5 SR-LV model

This section discusses the recovery of the local volatility surface utilizing the joint

density solution from an appropriate PDE. In the stochastic interest rates and local

volatility framework, the SR-LV model is given by the following set of stochastic
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differential equations:

dSt

St

= (rt − q)dt+ σs(S, t)dW s
t , (3.11)

drt = (θt − krt)dt+ σrdW r
t , (3.12)

dW s
t dW

r
t = ρdt. (3.13)

The stock price return process is driven by a single Brownian motion, rt is the

stochastic interest rate, q is the dividend yield, and σs(S, t) (or just σs) is the local

volatility dependent on stock price and time. The interest rate process (Hull-White

[16]) is driven by another Brownian motion with a long-term mean θt, a speed

of mean reversion k, and a rate volatility σr. Correlation between the Brownian

motions is set to a predetermined ρ.

3.5.1 Hull-White as an O-U process

The Hull-White short rate process in Equation 3.12 can be rewritten as an Ornstein-

Uhlenbeck process as shown in Overhaus et al. [23]:

dyt = −kytdt+ σrdW r
t , (3.14)

where now

rt = yt + ȳt

and

dȳt = (θt − kȳt)dt.

The section in the Appendix on calibrating the Hull-White model only gives

the values for the two parameters k and σr. Overhaus et al. [23] briefly shows why
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θt does not come into the pricing of bonds and other derivatives in this setting and

we can just work with the O-U process.

First, keeping the notation from Overhaus et al. define

Λs
t =

∫ s

t
kdu = k(s− t), B̂(t, T ) =

∫ T

t
exp(−Λs

t)ds =
1 − e−k(T−t)

k
.

Here is how x̄t relates to the yield curve through discount bond price P (t, T ):

P (t, T ) = E

[
exp

(
−
∫ T

t
rsds

)
|Ft

]
= exp

(
−
∫ T

t
ȳsds

)
E

[
exp

(
−
∫ T

t
ysds

)
|Ft

]

Using the solution to Equation 3.14 from the Appendix,

P (t, T ) = exp

(
−
∫ T

t
ȳsds− ytB̂(t, T )

)
E

[
exp

(
− σr

∫ T

t
B̂(s, T )dWs

)
|Ft

]
.

Simplifying results in

P (t, T ) = exp

(
−
∫ T

t
ȳsds− ytB̂(t, T ) +

1

2
σr2

∫ T

t
B̂(s, T )2ds

)
. (3.15)

Letting t = 0, talking log of both sides of Equation 3.15 and differentiating with

respect to T yields

f(0, T ) = ȳT − σr2
∫ T

0
B̂(s, T ) exp(−ΛsT )ds, (3.16)

where f(0, T ) is the forward rate at time 0 for borrowing at time T for infinitesimally

small amount of time defined as

f(0, T ) = −∂P (0, T )

∂T
.

Thus, remembering that rt = yt + ȳt, using Equation 3.16 it can be seen that

rt = f(0, t) + xt + σr2
∫ t

0
B̂(s, t) exp(−Λst)ds. (3.17)
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Therefore, rt is a function of xt, f(0, t), k, and σr only. The forward rate is extracted

from the yield curve and parameters k and σr are obtained from calibration in the

Appendix. Thus, we do not need x̄t or θt for the remainder of the work.

3.5.2 Joint density PDE

Local volatility in the SR-LV model setting is given in Equation 3.1. To evaluate

this for all K and t, we need to numerically evaluate this expectation using the joint

density of interest rate and stock:

EQT

[
rT1ST >K

]
.

Consider the following system of SDEs where xt = ln(St/Ft), thus removing

dividends from the problem:

dxt =
(
gt(yt) −

1

2
σs2
)
dt+ σsdW s

t ,

dyt = −kytdt + σrdW r
t ,

where gt(yt) = rt − f(0, t) (see Equation 3.16), correlation between the Brownian

increments is ρ.

In Section 3.3, the PDE for the joint density was derived in a multi-dimensional

setting. Because the initial condition for the density is a delta function, it is prefer-

able to work under a transformation of variables and build a PDE for φ′(x′, y′, t)

where the initial density will be approximately normal.

For the O-U process on the short rate side, the distribution is Gaussian for all
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t and using results on Hull-White from the Appendix, the variance of yt is given by

V [yt] = σr21 − e−2kt

2k
.

So, let

bt = σr

√
1 − e−2kt

2k
.

On the equity side, the variance at t is unknown exactly since the marginal distri-

bution will have a skew because of the local volatilities. Thus, following Overhaus

et al. [23], let

at = σs
atm(t)

√
t.

where σs
atm(t) is the at-the-money implied volatility at time t. A consequence of

using this approximation is that the PDE grid needs to be wider in terms of x′t to

account for the fact that using at as a standard deviation alone will not pick up the

skew.

The PDE for φ′(x′, y′, t) using Equation 3.6 can now be written as (omitting

some subscripts):

0 =
∂φ′

∂t
+ gt(by

′)φ′ +
gt(by

′)

a

∂φ′

∂x′
− 1

2a

∂(σs2φ′)

∂x′
− ȧ

a

∂(x′φ′)

∂x′
−

σr2

2b

∂(y′φ′)

∂y′
− 1

2a2

∂2(σs2φ′)

∂x′2
− σr2

2b2
∂2φ′

∂y′2
− ρσr

ab

∂2(σsφ′)

∂x′∂y′
.

Expanding the partial derivatives by product rule and collecting terms we get

0 =
∂φ′

∂t
+ qφ′ + q1

∂φ′

∂x′
+ q2

∂φ′

∂y′
+ q11

∂2φ′

∂x′2
+ q22

∂2φ′

∂y′2
+ q12

∂2φ′

∂x′∂y′
, (3.18)

where

q = gt(by
′) − 1

2a

∂σs2

x′
− ȧ

a
− σr2

2b2
− 1

2a2

∂2σs2

∂x′2
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q1 =
gt(by

′)

a
− σs2

2a
− ȧx′

a
− 1

a2

∂σs2

∂x′
,

q2 = −σ
r2y′

2b2
− ρσr

ab

∂σs

∂x
,

q11 = −σ
s2

2a2
,

q22 = −σ
r2

2b2
,

q12 = −ρσ
sσr

ab
.

Now, the boundary conditions and the initial conditions need to be addressed.

As for any probability distribution, the probability is nearly zero if looked far enough

away from the mean. If x′ and y′ have the interpretation of standard deviations of

x and y, then one can assume that there is no significant probability outside of 4

or 5 standard deviations (i.e., the range of x′ and y′ can be set from −4 to 4 or −5

to 5). One must keep in mind that for the stock price, the variance is not know at

each time t explicitely, so it is safer to define a wider grid. As time increases, the

tail (skew) in the marginal distribution lengthens, so the range of x′ and y′ is taken

to be −5 to 5. The PDE is solved on the uniform grid and the boundary value of

φ′(x′, y′, t) is set to zero.

In a sense, φ(x, y) has been standardized through the change of variables as

in Overhaus et al. [23] and therefore, the initial joint density is Gaussian given by:

φ′(x′, y′, t) ≈ ab

2π
√

1 − ρ2σsσrt
exp

(
− 1

2(1 − ρ2)

(
x′2a2

σs2t
+
y′2b2

σr2t
− 2ρx′y′ab

σsσrt

))

=
ab

2π
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)

(
x′2 + y′2 − 2ρx′y′

))

One issue to consider is the time 0. When t = 0, some coefficients are undefined,

therefore, the PDE solver forward starts at a short time after zero (e.g., 10−6) to
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avoid this issue and then all coefficient can be evaluated at present time.

Local volatility can be recovered iteratively using:

σ2(K,T ) = 2

CT + q(C −KCK) −KP (0, T )EQT

[
rT1ST >K

]

K2CKK
. (3.19)

At time zero, the expectation in Equation 3.19 is known. In implementation, the

PDE starts an increment away from zero, but the initial distribution is approxi-

mately Gaussian. Thus, local volatility is know at the beginning. Then, all the

coefficients are defined and the solver can take a step, recovering the density at the

second time period. Local volatility for the second period is then calculated and

the solver steps through to find the density at step three. Through such iterative

method, we simultaneously recover the joint density and local volatility surface at

all times t.

3.5.3 Numerical Results

As an example, consider the T -forward joint density generated for three years

in Figure 3.1 in terms of original variables x and y for S&P 500 on June 19, 2002.

Effect of positive and negative correlation can be seen in Figures 3.2 and 3.3 respec-

tively.

Rotating this figure, observe that in the interest rate marginals are Gaussian in

distribution (Figure 3.5). Stock price marginals have a skew because of the leverage

effect in local volatility structure as seen in Figure 3.4. The skew becomes more

prominent with time.

This last figure illustrates the local volatility surface extracted by simultane-
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Figure 3.1: SR-LV model: 3-year joint density of x and y for S&P 500 on June 19,
2002 with zero correlation assumption.

ously solving the PDE for the joint density and local volatility. The shape of the

surface is consistent with those observed in literature (e.g., Derman [8]).
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Figure 3.2: SR-LV model: 3-year joint density of x and y for S&P 500 on June 19,
2002 with -.5 correlation assumption.
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Figure 3.3: SR-LV model: 3-year joint density of x and y for S&P 500 on June 19,
2002 with .5 correlation assumption.
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Figure 3.4: SR-LV model: View of marginal densities of x S&P 500 on June 19,
2002 with zero correlation assumption.
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Figure 3.5: SR-LV model: View of marginal densities of y S&P 500 on June 19,
2002 with zero correlation assumption.
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Figure 3.6: SR-LV model: local volatility surface generated in presence of stochastic
interest rates for up to 3 years. Zero correlation between stock and interest rate is
assumed.

3.6 SR-SLV model

Sometimes it is observed in the market that volatility for some stock changes and

the stock price remains unchanged. This effect is not captured in SR-SLV model.

One remedy is the introduction of stochastic volatility. But there are two difficulties.

First, stochastic volatility models do not capture the implied volatility surface as

well and the local volatility model. Second, introducing stochastic volatility means

introducing another factor that is correlated with the stock price movements. The

consequence for the PDE construction is inclusion of quite a few new terms in three

dimensions because of non-zero correlation.

A practical solution to the described phenomenon is the inclusion of another

random factor which is uncorrelated with the stock price and interest rates. This

random variable follows a log-normal process reverting to some mean, since we do
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not wish this random shock to be negative. Thus, the SR-SLV model is given by

the following system of SDEs:

dSt

St
= (rt − q)dt+ σs

∗(S, t)ZtdW
s
t , (3.20)

drt = (θt − krt)dt+ σrdW r
t , (3.21)

d lnZt = ν(ζt − lnZt)dt+ λdW z
t , (3.22)

dW s
t dW

r
t = ρdt, (3.23)

where dW z
t is uncorrelated with dW s

t and dW r
t . Z0 is assumed to be 1 and σs

∗(S, t) =

σs
∗ is the leverage function whose calibration will be discussed later.

3.6.1 Applying Gyöngy

At this time, Gyöngy’s [14] result becomes very useful in defining the SR-SLV model

dynamics. It is desired to have the same marginal distributions for the stock price

for process in Equation 3.20 as those given by the system for the SR-LV model

(Equations 3.11, 3.12, and 3.13). Gyöngy gives the tools for such a construction.

That is, applying Gyöngy to Equation 3.20 we must have

dS

S
= (E[rt|St = S] − q)dt+

√
σs2
∗ E[Z2

t |St = S]dW s
t . (3.24)

Or, the leverage function must be calibrated so that for all t

σs2(K, t) = σs2
∗ (K, t)E[Z2

t |St = K]. (3.25)

Similar to Madan [19], if σs2
∗ (K, t) has the interpretation of being the average

local volatility at time t, then we must force E[Z2
t ] = 1 for all t. This will also

uncover the value for parameter ζt.
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Now, Zt follows a log-normal mean-reverting model. This is just a slightly

different form of Hull-White process and Zt is said to follow the Black-Karasinski

model [2]. In this setting, Zt can only take on positive values. Then, lnZt is normally

distributed with

µlnZt = E[lnZt] = lnZ0e
−νt +

∫ t

0
νζte

ν(u−t)du

(σlnZt)2 = V [lnZt] = λ2

(
1 − e−2νt

2ν

)
.

This implies that Zt is distributed log-normally with

µZt = E[Zt] = eµ+(σln Zt)2/2

(σZt)2 = V [Zt] =
(
e(σln Zt)2 − 1

)
e2µ+(σln Zt)2,

and E[Z2
t ] = V [Zt] + E[Zt]

2. To have V [Zt] + E[Zt]
2 = 1 becomes a problem of

µln Zt = −(σlnZt)2 or

∫ t

0
νζte

ν(u−t)du = −λ
2

2ν

(
1 − e−2νt

)
, (3.26)

where an Z0 is assumed to be 1. Multiplying both sides of Equation 3.26 by eνt/ν

we obtain
∫ t

0
ζte

νudu = − λ2

2ν2

(
eνt − e−νt

)
. (3.27)

The choice for ζt which satisfies Equation 3.27 is

ζt = −λ
2

2ν

(
1 + e−2νt

)
.

A similar approach for finding ζt was done in Madan [19].
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3.6.2 Joint density PDE

In the SR-SLV setting, local volatility is an input that was computed in the SR-LV

model. Then, for a given set of parameters ν and λ in process (3.20), the leverage

function, σs
∗, must be calibrated to the local volatility surface. Because of stochastic

interest rates, simulation is done under the T -forward measure, thus using Gyöngy,

calibration will be done using this measure in:

EQT [Z2
t |St = K].

This is true, because under a measure change, volatility remains uneffected (via

Girsanov’s theorem). To evaluate this expectation, we again need to know the joint

density, but this time in three variables: stock price, interest rate, and Z.

Consider the following system of SDEs where xt = ln(St/Ft) and zt = lnZt:

dxt =
(
gt(yt) −

1

2
(σs

∗Zt)
2
)
dt+ σs

∗ZtdW
s
t ,

dyt = −kytdt+ σrdW r
t ,

dzt = ν(ζt − zt)dt+ λdW z
t ,

where gt(yt) = rt−f(0, t) and the right hand side of gt(yt) can be seen from equation

(3.17). Correlation between dW s and dW r is ρ and dW z is uncorrelated with the

other two Brownian motions.

As in section (3.3), we work under a transformation of variables and build a

PDE for φ′(x′, y′, z′, t) where the initial condition will be approximately normal. For

the zt process, the distribution is Gaussian for all t and using results on Hull-White

40



from the Appendix, the variance of zt is given by

V [zt] = λ2 1 − e−2νt

2ν
.

So, let

ct = λ

√
1 − e−2νt

2ν
.

For the processes xt and yt, define at and bt in the same manner as in the

SR-LV setting:

at = σs
atm(t)

√
t,

bt = σr

√
1 − e−2kt

2k
,

where σs
atm(t) is the at-the-money implied volatility at time t. Using this simplifi-

cation is amplified in the presence of Zt, since more skewness is present for higher

levels of zt.

The PDE for φ′(x′, y′, z′, t) using equation (3.6) can now be written as (omit-

ting some subscripts):

0 =
∂φ′

∂t
+ (gt(by

′) − ν)φ′ +
gt(by

′)

a

∂φ′

∂x′
− 1

2a

∂(σs2
∗ Z

2φ′)

∂x′
− ȧ

a

∂(x′φ′)

∂x′
− σr2

2b

∂(y′φ′)

∂y′

(
νζ

c
− kz′

)
∂φ′

∂z′
− 1

2a2

∂2(σs2
∗ Z

2φ′)

∂x′2
− σr2

2b2
∂2φ′

∂y′2
− λ2

2c2
∂2φ′

∂z′2
− ρσr

ab

∂2(σs
∗Zφ

′)

∂x′∂y′
.

Expanding the partial derivatives by product rule and collecting terms we get

0 =
∂φ′

∂t
+ qφ′+ q1

∂φ′

∂x′
+ q2

∂φ′

∂y′
+ q3

∂φ′

∂z′
+ q11

∂2φ′

∂x′2
+ q22

∂2φ′

∂y′2
+ q33

∂2φ′

∂z′2
+ q12

∂2φ′

∂x′∂y′
,

(3.28)

where

q = gt(by
′) − e2z′c

2a

∂σs2

x′
− ȧ

a
− σr2

2b2
− e2z′c

2a2

∂2σs2

∂x′2
− kz′,
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q1 =
gt(by

′)

a
− e2z′cσs2

2a
− ȧx′

a
− e2z′c

a2

∂σs2

x′
,

q2 = −σ
r2y′

2b2
− ρσrez′c

ab

∂σs

∂x
,

q3 =
νζ

c
− kz′,

q11 = −e
2z′cσs2

2a2
,

q22 = −σ
r2

2b2
,

q33 = − λ2

2c2
,

q12 = −ρe
z′cσsσr

ab
.

The boundary conditions and the initial conditions addressed similarly as in the

SR-LV setting. However, the presence of Z admits larger skew in the marginal

distribution of the stock. Therefore, if x′, y′, and z′ intuitively represent the standard

deviations away from the mean for the respective distributions, then it was observed

that the range can be set at -4 to 4 (or -5 to 5 for longer maturities) for each variable

to pick up all significant probabilities. The PDE is solved on the uniform grid and

the boundary value of φ′(x′, y′, z′, t) is set to zero. Note, that it is not a necessity to

work on a uniform grid, since the defined range is too big for y′ and z′. The large

range is due to the skew in the stock and no great efficiency is lost by working on a

uniform grid.

Following the same logic as for SR-LV model the initial joint density is Gaus-

sian for small t given by:

φ′(x′, y′, z′, t) ≈ ab

(2π)
3
2

√
1 − ρ2σsσrλt

exp

(
− 1

2(1 − ρ2)

(
x′2a2

σs2t
+
y′2b2

σr2t
− 2ρx′y′ab

σsσrt

)
−

1

2

z′2c2

λ2t

)
=

ab

(2π)
3
2

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

(
x′2 + y′2 − 2ρx′y′

)
− z′2

2

)
.
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Again, for t = 0, some coefficients are undefined. Therefore, the PDE solver starts

at a short time after zero (e.g., 10−6) to avoid discontinuities and then all coefficient

can be evaluated at present time.

Using local volatility from SR-LV model, the leverage function σ2
∗ can be it-

eratively recovered by stepping through the solver and evaluating the expectation

EQT [Z2
t |St = K]. For example, at time 0 (or 10−6) the expectation is known via

initial distribution and the leverage function is recovered. Then using parameter

values at time, the solver obtains the solution at the second step, where the leverage

function can again be recovered.

3.6.3 Numerical Results

It is a bit difficult to visualize the density in three variables, so Figure 3.7 just

illustrates the 3-year conditional joint density of x and y for z=0. Parameters for

the zt process are ν = .5 and λ = .5. Figures 3.8 and 3.9 show the conditional joint

density of x and y for large (2 standard deviation to the right of the mean) and

small (2 standard deviation to the left of the mean) z respectively.

First, the marginal distributions in y and z are Gaussian. This feature is

dictated by their respective processes with constant volatility. Second, there is still

a skew to the left in the marginal distributions of x.

However, the presence of the random factor of volatility z gives rise to another

interesting characteristic. When z is large, the conditional marginal distributions of

x begin to take a bimodal shape. The bimodal nature is not uncommon and is well
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documented in literature (e.g., Derman [8], Jackwerth [24]). Li and Pearson [18]

remark that the bimodal feature of the density is a necessary stylistic characteristic

for models involving stochastic volatility. For small z, the conditional marginal

distributions of x and y are very thin reflecting the low level of volatility.

In the SR-SLV model, the calibrated leverage function picks up the leverage

effect (i.e., inverse relationship between volatility and stock price movements). The

random component, z, is a random shock to volatility that is uncorrelated with the

movement in the stock price. In the context of the S&P 500, large z reflects an

upward spike in volatility. With an upward spike in volatility, the stock price will

move and the leverage effect dictates a likely downward move. But, with a large

sudden move in volatility, the market is likely to stabilize at some supported lower

level. Thus, the bimodal feature of the distribution of the index can intuitively

be explained by this market behavior. Some market participants believe that the

distribution of the S&P 500 may even be trimodal.

While it is comforting that some market behavior is reflected in the SR-SLV

model, the bimodal feature really arises from the nature of model. When z is large,

the variance is big. Variance itself involves a square of the price change and when

this number is big there could be either a large positive or negative move in the

price.

As expected, when the volatility of volatility, λ is decreased, the bimodal

feature disappears. This happens because the SR-SLV model loses it’s stochastic

nature and converges to the SR-LV model as λ→ 0. That is, the calibrated leverage

function converges to the local volatility surface from SR-LV model.
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Figure 3.7: SR-SLV model: View of marginal density of x and y when z=0. Note
that these is still the skew present but through time, the density is developing a
second mode. Zero correlation between stock and interest rate is assumed.

The plots of the conditional marginal densities are for the calibrated param-

eters of the short rate. However, as the short rate volatility increases, the bimodal

feature become more pronounced and can be seen for earlier maturities. This analy-

sis is postponed until the discussion of realized variance options across various short

rate volatilities in Chapter 4.
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Figure 3.8: SR-SLV model: View of marginal density of x and y when z is large.
For larger shocks in z, the distribution is more bimodal. Zero correlation between
stock and interest rate is assumed.
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Figure 3.9: SR-SLV model: View of marginal density of x and y when z is small. For
small shocks in z, the distribution is thiner when volatility is small. Zero correlation
between stock and interest rate is assumed.

46



Chapter 4

Pricing Variance/Volatility Derivatives

4.1 Risk-neutral to T -forward measure change

The pricing of variance derivatives is done under the T -forward measure so that we

could utilize the discount bond as a numeraire and avoid the cumbersome calcula-

tions involving the money market account. This section will invoke the Girsanov’s

theorem, where the goal will be to identify the form of the Radon-Nikodym deriva-

tive involving the previsible process necessary for the measure change.

First, let us address the measure change for the Hull-White interest rate pro-

cess, which can be written as an O-U process as in Chapter 3:

dyt = −kytdt+ σrdW r
t , (4.1)

where now

rt = yt + ȳt,

and

dȳt = (θt − kȳt)dt.

The Radon-Nikodym derivative for changing from risk-neutral to T -forward mea-

sure is just the ratio of the numeraires, money market account and discount bond,

respectively. Overhaus et al. shows how to derive the Radon-Nikodym derivative

in this setting using result from the Hull-White section in Chapter 3. Starting with
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the money market account:

BT = exp
( ∫ T

0
rtdt

)

= exp
( ∫ T

0
(yt + ȳt)dt

)
=

1

P (0, T )
exp

( ∫ T

0
ytdt+

1

2

∫ T

0
σr2B̂(t, T )2dt

)

=
1

P (0, T )
exp

( ∫ T

0

∫ t

0
σr exp(−Λus)dWudt+

1

2

∫ T

0
σr2B̂(t, T )2dt

)

=
1

P (0, T )
exp

( ∫ T

0
σrB̂(t, T )dWt +

1

2

∫ T

0
σr2B̂(t, T )2dt

)

where Λts = k(s− t) and B̂(t, T ) = 1−ek(t−T )

k
. Substitutions in the above derivation

are made from the work in Section 3.5.1 deriving the expression for the discount

bond price.

The Radon-Nikodym derivative is

dQT

dQ
=

1

BTP (0, T )
= exp

(
−
∫ T

0
σtB̂(t, T )dWt −

1

2

∫ T

0
σ2

t B̂(t, T )2dt
)
.

The previsible process for the measure change is then γr
t = σr

t B̂(t, T ). Thus, under

the T -forward measure

W rQT
t = W r

t +
∫ T

0
γr

t dt.

Under the T -forward measure, equation (4.1) becomes

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ σrdW rQT

t . (4.2)

Now, consider the setting with the equity process and stochastic interest rates:

dSt

St
= (rt − q)dt+ σsdW s

t ,

dyt = −kytdt+ σrdW r
t ,

dW s
t dW

r
t = ρdt.
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To simplify this to a problem without dividends, let Xt = St e
qt. Then our system

has the following dynamics:

dXt

Xt

= rtdt+ σs
tdW

s
t ,

dP (t, T )

P (t, T )
= rtdt− σrB̂(t, T )dW r

t ,

dW s
t dW

r
t = ρdt,

where P (t, T ) is the price of a discount bond at time t, maturing at T .

At this time, Itô’s quotient rule can be utilized to determine the change in

the drift under the change in measure. Under T -forward measure, the forward price

Xt/P (t, T ) will be a martingale and we can use Ito’s quotient rule to get γs
t for the

equity measure change. Itô’s quotient rule is given by:

d(Xt/P (t, T ))

Xt/P (t, T )
=
dXt

Xt
− dP (t, T )

P (t, T )
+
dP (t, T )dP (t, T )

P (t, T )2
− dXtdP (t, T )

XtP (t, T )

= (µx − µp + σ2
p − ρσxσp)dt+ σxdW

r
t − σpdW

S
t .

In this particular setting:

d(Xt/P (t, T ))

Xt/P (t, T )
=
(
rt−rt +σ

r2
t B̂(t, T )2−ρσr

tσ
s
t B̂(t, T )

)
dt+σs

tdW
s
t +σr

t B̂(t, T )dW r
t .

We need to have zero drift and we know from earlier that γr
t = σr

t B̂(t, T ). It follows

that γs
t = −ρσr

t B̂(t, T ). The resulting processes undet T -forward measure are:

dXt

Xt
= (rt + ρσrσs

t B̂(t, T ))dt+ σs
tdW

sQT
t ,

dP (t, T )

P (t, T )
= (rt + σr2B̂(t, T )2)dt− σrB̂(t, T )dW rQT

t .

In the SR-SLV model, there is one more factor Zt, the random component of

stochastic local volatility. Zt = exp(zt), where

dzt = ν(ζt − zt)dt+ λdW z
t .
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But, zt is not a function of rt and it is uncorrelated with the other processes. There-

fore, from the Itô’s quotient it can be seen that under the T -forward measure we

have

dzt = ν(ζt − zt)dt+ λdW zQT
t .

In summary, for the SR-LV, the processes under the T -forward measure have

the form:

dxt =

(
gt(yt) −

1

2
σs2

t + ρσrσs
t B̂(t, T )

)
dt+ σs

tdW
sQT
t ,

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ σrdW rQT

t ,

dW sQT
t dW rQT

t = ρdt,

where σs
t represent the local volatility and gt(yt) = rt − f(0, t). Similarly, for the

SR-SLV model, changing measure yields:

dxt =

(
gt(yt) −

1

2
σs2
∗t e

2zt + ρσrσs
∗te

ztB̂(t, T )

)
dt+ σs

∗te
ztdW sQT

t ,

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ σrdW rQT

t ,

dzt = ν(ζt − zt)dt+ λdW zQT
t ,

dW sQT
t dW rQT

t = ρdt,

where dW zQT is uncorrelated with the other Brownian motions.

4.2 Intuition behind variance swaps and correlation

The two models considered in this dissertation will actually give the same price for

variance swaps (shown in Section 4.4). Thus, if is sufficient to just analyze the SR-

LV model for the moment. This section will examine the price for variance swaps for
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different levels of correlation and across time with varying volatility of the stochastic

interest rate.

Consider the processes in SR-LV model under the T -forward measure:

dSt

St
=
(
rt − q + ρσs

LV σ
rB̂(t, T )

)
dt+ σs

tdW
sQT
t , (4.3)

dyt = −kytdt− σr2B̂(t, T )dt+ σrdW rQT
t , (4.4)

where

rt = yt + f(0, t) +
∫ t

0
σr2B̂(s, t) exp(−Λst)ds, (4.5)

dW sQT
t dW rQT

t = ρdt,

and B̂(s, t), Λst are defined the same as in the previous section and σs
t is the local

volatility. Applying Gyöngy [14] to the process in 4.3 results in

dSt

St
=
(
E[rt|St] − q + ρσs

tσ
rB̂(t, T )

)
dt+ σs

tdW
sQT
t . (4.6)

Proposition: Under the T -forward measure, the expected short rate, rt, is equal

to the forward rate, f(0, t).

Proof: To see this take expectation of both sides of equation 4.5 and we get:

E[rt] = E[yt] + f(0, t) +
∫ t

0
σr2B̂(s, t) exp(−Λst)ds.

Now, the solution to equation (4.4), with y0 = 0, is given by the following (details

of distribution under Hull-White assumptions are given in the Appendix):

yt = −
∫ t

0
σr2B̂(s, t) exp(−Λst)ds+

∫ t

0
σr exp(−Λst)dW

rQT
s .

Thus,

E[yt] =
∫ t

0
σr2B̂(s, t) exp(−Λst)ds,
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and E[rt] = f(0, t).

For simplicity, consider the case of ρ = 0. The stock price and the short rate

are uncorrelated, but not independent since the return distribution of the stock is

non-Gaussian. Thus we cannot conclude that E[rt|St] = E[rt] = f(0, t). If this

were true, we would expect the variance swap price to be the same as under pricing

using the log-contract hedge. However, if in the the Hull-White process, the speed

of mean reversion (k) is high and the variance (σr) is low, then the variance swap

price should approach the price using the log-contract hedge from below. If in

the Hull-White process we increase the volatility and/or lower the speed of mean

reversion, we would expect the difference between SR-LV model price and price via

the log-contract hedge for variance swap to grow. Thus, the first observation is that

the difference in pricing a variance swap via SR-LV model and log contract depends

on ”stochasticity” of the short rate process.

Suppose that ρ 6= 0. If ρ > 0, then the stock return process now has a

positive contribution to the drift in ρσs
tσ

rB̂(t, T ). Furthermore, as the stock price

increases, the short rate will tend to increase, again positively contributing to the

drift. Therefore, under positive correlation the stock will drift higher attaining lower

variances. And, when the variances are averaged, we will obtain a lower realized

variance that under the ρ = 0 assumptions.

The case of ρ < 0 is the opposite of the above explanation. In this scenario,

there is now a negative contribution to the drift, ρσs
tσ

rB̂(t, T ), and as the stock

price rises, the short rate will tend to fall, not adding as much to the drift. Lower

stock prices attained should lead to a higher price for the variance swap due to the
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leverage effect. That is, volatility increases as the stock price falls.

An argument could be made that when the the stock price falls, the short

rate will tend to fall when ρ > 0 and rise when ρ < 0, thus partially nullifying the

above argument. However, when the stock price falls, the main driver of the process

in Equation 4.3 becomes the volatility due to the leverage effect. In summary,

there is an inverse relationship between the variance swap price and correlation: as

correlation moves in the positive direction, variance swap price will decrease.

Intuitively, the term structure of variance swaps will deviate from the prices

given by the log-contract hedge depending on the ”stochasticity” of the short rate.

That is, as k increases and σr decreases the SR-LV model reduces to deterministic

short rates, where under zero correlation assumption, the short rate is equal to the

forward rate. So, variance swaps price in this setting should be close to the price

via the log-contract hedge. As the short rate model becomes more ”stochastic”

(e.g., volatility increasing), SR-LV model’s price deviations will increase from the

replicating price using the log contract.

4.3 Simulation for SR-LV model

Simulation is needed to price variance swaps and variance options. The idea is to

simulate paths and collect the local variance at each point of a given path. The

average of realized variances over many paths is a good approximation for realized

variance. Since expectations are taken under the T -forward measure for pricing

(see Chapter 1), the paths must be simulated under the T -forward measure. Two
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simulation approaches are discussed in this section - simple Euler and Milstein. The

Euler method is preferred since the Milstein scheme does not significantly improve

accuracy and it involves the additional aspect of bounding the derivative of local

volatility.

Thus, we could simulate individual processes:

dxt =

(
gt(yt) −

1

2
σs2

t + ρσrσs
t B̂(t, T )

)
dt+ σs

tdW
sQT
t , (4.7)

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ σrdW rQT

t , (4.8)

dW sQT
t dW rQT

t = ρdt, (4.9)

where σs
t represents the local volatility and gt(yt) = rt − f(0, t).

However, there is a better way to tackle this problem where only one process

needs to be simulated. Gyöngy’s work can be utilized along with the T -forward

density that was recovered from Chapter 3. The goal is to write down an equity

process that has the same marginals as Equations 4.7-4.9. If Gyöngy’s result is

applied to just equity then we get:

dxt =

(
EQT [gt(yt)|xt]−

1

2
σs2

t + ρσrσs
t B̂(t, T )

)
dt+ σs

tdW
sQT
t , (4.10)

or substituting for gt(yt)

dxt =

(
EQT [rt|xt]− f(0, t) − 1

2
σs2

t + ρσrσs
t B̂(t, T )

)
dt+ σs

tdW
sQT
t . (4.11)

At this stage Equation 4.11 can be discretized using the Euler or the Milstein

schemes. The Euler discretization for 0 = t0 < t1 < .... < tm with h = (ti+1 − ti) is

given by
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x(ti+1) = x(ti)+

(
EQT [r(ti)|x(ti)]−f(0, ti)−

1

2
σ2(S(ti), ti)+ρσ

rσ(S(ti), ti)B̂(ti, T )

)
h

+σ(S(ti), ti)
√
hNi+1, (4.12)

where N1, N2... are independent standard normal random variables at times t1, t2

and so on (Z is typically used for a standard normal random variance, but it will

be confusing with the random factor Z later). Under the Milstein scheme, we add

one more term

x(ti+1) = x(ti)+

(
EQT [r(ti)|x(ti)]−f(0, ti)−

1

2
σ2(S(ti), ti)+ρσ

rσ(S(ti), ti)B̂(ti, T )

)
h

+σ(S(ti), ti)
√
hNi+1 +

1

2

∂σs
t

∂x
σ(S(ti), ti)h(N

2
i+1 − 1).

The stock price can then be recovered by:

S(ti+1) = S(0)
exp(x(ti+1) − d(ti+1))

P (0, ti+1)
.

Both are implemented, however as confirmed in Glasserman [13], the Milstein scheme

does not add much more accuracy. The Euler scheme is weak order 1 where the

diffusion term is only expanded to O(
√
h). The Milstein sheme expands the diffusion

term to O(h) through the extra term and is considered strong order 1 convergent.

Glasserman [13] explains that the weak order of convergence for both schemes is 1,

thus the Milstein method does not greatly improve accuracy.

Simulations are not expensive in terms of computational time. For example,

100,000 simulations for a 1-year swap takes about 7 seconds on a home PC. Thus, to

reduce variance, the number of simulations can be increased without great increase

in computing time.
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There is one practical consideration in implementing the simulations. The

local volatility surface is defined over a wide range of strikes coming from the PDE

solver. For example, the surface is defined in SR-LV setting for strikes within 4

standard deviations of the mean for the one year time horizon. Furthermore, local

volatility surface is about twice as steep as implied volatility surface as a function

of strike. When the Monte Carlo simulates a path, a cubic spline is used to obtain

values of local volatility from the surface.

Some paths of the simulation may take the stock price outside of the range

where the local volatility is defined. Because of the steepness of the local volatility

curve for decreasing strikes, it is not advisable to use the cubic spline to extrapolate

local volatility outside the surface. Moreover, even on the local volatility surface,

very large volatilities exist very far away from the mean. These are highly unlikely

to ever be observed in the market for S&P 500 (e.g., 1,000% volatility). While

these high values are necessary for defining the density in the PDE solver, they

are unrealistic for the simulations and can direct the simulation of the stock into

extremely large territory (also unrealistic).

There are two remedies to the above problem. One is to bound the local

volatility explicitly by some number (e.g., 200%). However, this number is a bit

arbitrary. It may not be appropriate to use one number as a bound for all times.

The approach taken in this work is the following: if at any time t, the stock price in

a simulation ventures beyond 2.5 time-t standard deviations from the mean, then

chose the local volatility of 2.5 time-t standard deviations boundary. At any given

time, the standard deviation for the stock is approximated as σimp

√
t since a closed
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form is not know because of the skew. There is nothing special about 2.5 standard

deviations chosen, 3 works just as well. Since σimp

√
t is an approximation, one

should err on the side of caution and use a larger number of deviations.

The practical problem discussed is extended in the Milstein method, where

there now exists a partial derivative of local volatility with respect to x. This quan-

tity must also be bounded because of the steepness of the local volatility curve. If

the stock price ventures outside the area specified above, then the partial deriva-

tive is taken to be the one calculated on the boundary. While bounding the local

volatility can intuitively and mathematically be justified, it is difficult to come up

with a number to bound the first derivative of local volatility. This is an additional

reason for using the simple Euler scheme, since no great improvement in accuracy

was observed.

4.4 Simulation for SR-SLV model

In SR-SLV model, computation time is an issue. That is, first the SR-LV model is

run to extract the local volatility surface and then the leverage function is calibrated

to fit this surface. Thus, two PDE solvers must be run. To save computation time,

larger steps can be taken in the simulation, but this comes at the expense of increased

variance in the simulation results. From the previous subsection, Milstein method

does not provide great improvement in terms of accuracy. Glasserman [13] describes

a second order method. However, same computational difficulties persist with first

and second partial derivatives of the leverage function as did with the derivatives of
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local volatility in SR-LV setting. Therefore, again Euler method is preferred with

increased number of simulations to improve accuracy. For completeness, the second

order method is presented.

For the SR-SLV model, there are three processes that need to be simulated:

dxt =

(
gt(yt) −

1

2
σs2
∗t e

2zt + ρσrσs
∗te

ztB̂(t, T )

)
dt+ σs

∗te
ztdW sQT

t , (4.13)

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ σrdW rQT

t , (4.14)

dzt = ν(ζt − zt)dt+ λdW zQT
t , (4.15)

dW sQT
t dW rQT

t = ρdt, (4.16)

where dW zQT is uncorrelated with the other Brownian motion increments.

Similar to the SR-SLV, Gyöngy’s result can be applied to price variance swaps.

In this framework, the single process for xt that has the same marginals as equations

(4.16)-(4.18) and let Zt = ezt

dxt =

(
EQT

[
gt(yt)−

1

2
σs2
∗tZ

2
t +ρσrσs

∗tZtB̂(t, T )|xt

])
dt+σs

∗t

√
E[Z2

t |xt]dW
sQT
t , (4.17)

or substituting for gt(yt)

dxt =

(
EQT [rt|xt]− f(0, t) − 1

2
σs2
∗tE

QT [Z2
t |xt] + ρσrσs

∗t

√
EQT [Z2

t |xt]B̂(t, T )

)
dt

(4.18)

+σs
∗t

√
EQT [Z2

t |xt]dW
sQT
t .

Now, expected realized variance in the SR-LV model is given by:

KSR−LV
vs =

1

T
EQT

[ ∫ T

0
σs2

u du

]
,
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and in the SR-LV model

KSR−SLV
vs =

1

T
EQT

[ ∫ T

0
σs2
∗uE

QT [Z2
u|xu]du

]
.

However, it is clear that KSR−LV
vs = KSR−SLV

vs , by interchanging integration and

expectation, and using law of total expectations, and remembering that ζt was fixed

so that E[Z2
t ] = 1 for all t. Therefore, for pricing variance swaps, the two models

will produce the same price. The two models will produce different variance option

prices. However, for SR-SLV model, Equation 4.18 cannot be used for simulation

for options because its volatility component now lacks vol of vol in this form. Thus,

all three processes in Equations 4.13-4.15 need to be simulated.

First, the processes for yt and and zt are Gaussian and can be simulated

exactly. Then consider the simple Euler scheme for xt. The three processes can

then be discretized in the following manner with Z(ti) = exp(z(ti)):

x(ti+1) ≈ x(ti) +

[
y(ti) +

σr2

k2

(
1

2
(e−2kti + 1) − e−kti

)
− 1

2
σ2
∗(S(ti), ti)Z

2(ti) (4.19)

+ρσrσ∗(S(ti), ti)Z(ti)B̂(t, T )

]
h+ σ∗(S(ti), ti)Zt

√
hN s

i+1,

y(ti+1) = y(ti)e
−kh + µr(ti) +

√
1 − e−2kdt

2k
(σ1N

s
i+1 + σ2N

r
i+1), (4.20)

z(ti+1) = z(ti)e
−νh + µz(ti) +

√
1 − e−2νdt

2ν
λN z

i+1, (4.21)

where N s,N r,N z are uncorrelated standard normal random variables, σr = σ2
1 +σ2

2,

and σ1 = ρσr. Also,

µr(ti) = −σ
r2

k2

(
1

2
(e−2kdt + 1) − e−kdt

)
,

µz(ti) = −λ
2

2ν

(
e−2νti + e−νh − e−ν(ti+ti+1) − 1

)
,
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and h = (ti+1 − ti). Here, we have used the fact that

gt(yt) = rt − f(0, t) = yt + σr
∫ t

0
B̂(s, t)e−Λy

stds,

and using the results from the Appendix on Hull-White model, the solution to

Equations 4.14 and 4.15 are

yt = yse
−Λy

st − σr2
∫ t

s
B̂(u, t)e−Λy

utdu+ σr
∫ t

s
e−Λy

utdW rQt
u ,

zt = zse
−Λz

st + ν
∫ t

s
ζue

−Λz
utdu+ λ

∫ t

s
e−Λz

utdW zQt
u ,

where

Λy
st = k(t− s), Λz

st = ν(t− s).

The stock price can then be recovered by:

S(ti+1) = S(0)
exp(x(ti+1) − d(ti+1))

P (0, ti+1)
.

For completeness, a second-order accurate method is now described as seen in

Glasserman [13] which was implemented to reduce variance with larger steps taken

in the PDE solver and simulation. Define a set of d stochastic processes where

process xn is given by

dxn(t) = an(x(t))dt+
m∑

k=1

bnk(x(t))∆W
k(t),

with some correlation structure. Then the discretization for process xn, with h =

(ti+1 − ti), is defined to be:

xn(ti+1) = xn(ti)+anh+
m∑

k=1

bnk∆W
k(ti+1)+

1

2
L0anh

2+
1

2

m∑

k=1

(Lkan+L0bnk)∆W
k(ti+1)

1

2

m∑

k=1

m∑

j=1

Ljbnk(∆W
j(ti+1)∆W

k(ti+1) − Vjk),
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where the differential operators are defined as

L0 =
∂

∂t
+

d∑

n=1

an
∂

∂xn
+

1

2

d∑

n,l=1

m∑

k=1

bnkblk
∂2

∂xn∂xl
,

and

Lk =
d∑

n=1

bnk
∂

∂xn
,

for k = 1, ....m. Also, Vjk = Vkj and is defined as a random variable taking values

of −h and h with probability of 1/2 each; define Vjj = h.

Now this second-order scheme is only implemented for the stock return process,

since marginal distributions for the interest rate and the random factor z are known

exactly. So, consider the system of SDEs in Equations 4.14-4-16 in a slightly different

form:

dxt =

(
gt(yt) −

1

2
σs2
∗t e

2zt + ρσrσs
∗te

ztB̂(t, T )

)
dt+ σs

∗te
ztdW sQT

t , (4.22)

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ (σ1dW

rQT
t + σ2dW

rQT
t ), (4.23)

dzt = ν(ζt − zt)dt+ λdW zQT
t , (4.24)

where the Brownian motions are pairwise independent, σr2 = σ2
1 +σ2

2, and σ1 = σrρ

(with ρ being the original correlation between stock and interest rate).

In the context of the SR-SLV model for this method we have:

a1 = gt(yt) −
1

2
σs2
∗t e

2zt + ρσrσs
∗te

ztB̂(t, T ),

a2 = −kyt − σr2B̂(t, T ),

a3 = ν(ζt − zt),

b11 = σs
∗te

zt, b12 = 0, b13 = 0,
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b21 = σ1, b22 = σ2, b23 = 0,

b31 = 0, b23 = 0, b33 = λ.

Then the second-order discretization for xt or x1 = x becomes:

x(ti+1) = x(ti) + a1h + b11∆W
s(ti+1) +

1

2
L0a1h

2 +
1

2

3∑

k=1

Lkan + L0b11∆W
s(ti+1)

1

2

3∑

j=1

Ljb11(∆W
j(ti+1)∆W

s(ti+1) − Vj1),

where W 1 = W s, W 2 = W r, and W 3 = W z. After some work (see Appendix) the

scheme simplifies to:

x(ti+1) = x(ti) +A∆W1 +B∆W2 + C∆W3 +D

+
b11

2

[
ez ∂σ

s
∗

∂x
(∆W 2

1 − h) + b33(∆W3∆W1 + ξ)

]
,

where

A =
h

2

[
b11

(
− e2z

2

∂σs2
∗

∂x
+ ρσr ∂σ

s
∗

∂x
ezB̂

)

+
[
a1e

z ∂σ
s
∗

∂x
+ a3σ

s
∗e

z +
1

2

(
b211e

z ∂
2σs

∗
∂x2

+ λ2σs
∗e

z
)]]

+ b11 +
h

2
b21,

B = b22,

C = λ
(
− b211 + ρσrσs

∗e
zB̂
)
,

D = a1h+
h2

2

[
a1

(
− e2z

2

∂σs2
∗

∂x
+ ρσr∂σ

s
∗

∂x
ezB̂

)
+ a2 + a3

(
− b211 + ρσrσs

∗e
zB̂
)

−ρσrσs
∗e

−kh +
1

2

(
b211

(
− e2z

2

∂2σs2
∗

∂x2
+ ρσr ∂

2σs
∗

∂x2
ezB̂

)

+λ2
(
− 2b211 + ρσrσs

∗e
zB̂
)]
,

where ξ is a random variable independent of the Brownian motions taking values of

−h and h with probability of .5 each. And, to simplify things, we can let

∂σs2
∗

∂x
= 2σs

∗
∂σs

∗
∂x

,
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and

∂2σs2
∗

∂x2
= 2

(
∂σs

∗
∂x

+ σs
∗
∂2σs

∗
∂x2

)
.

The above method was first introduced by Milstein [13] and it is weak order 2

convergent. Conditions for this include uniformly bounded derivatives of coefficients

ai and bij. Here, local volatility increases very quickly as the stock price falls to zero.

Thus, similarly as in the SR-LV case, it is necessary to bound not only local volatility,

but its first two derivatives for convergence and realism.

4.5 Pricing results

This section discusses the numerical results for the pricing of variance/volatility

derivatives. As a general guideline, several measures are taken to ensure stability of

the PDE solver and low variance of the simulation results.

As discussed in chapter 3, in both SR-LV and SR-SLV models, θ in the Graig-

Sneyd scheme governs stability. To insure stability, θ in both models is set to 1.

Furthermore, dt/∆2 is kept to less than 1/2, where ∆ is the space increment size

for the uniform mesh. This is an extra precaution, since the θ restiction is only

discussed in the constant coefficient case and in our models, coefficients are time

and space dependent. Furthermore, the coefficients are unknown and only revealed

one step at a time.

Time step of .025 years is used for the simulations with maturities up to 3

years. Variance is reduced by running 100,000 simulations per price. Simulation

is relatively inexpensive in computation time (e.g., 1 year variance swap price in
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about 7 seconds on a home PC) and this number of simulations ensures 4 significant

digits of accuracy. Time step can be increased to .05 years for longer maturities, but

appropriate adjustment need to be made to the mesh and number of simulations to

ensure stability of the PDEs and low variance.

In the simulations, a cubic spline is utilized on the local volatility surface to

pick up appropriate volatilities for the simulated stock prices. The coefficients in

the simulation must be uniformally bounded and this is a good way to provide

a bound at each time. At each time step, if the stock price ventures outside of

±2.5 standard deviations (approximately) from the mean of the stock price level at

that time, then the volatility is taken to be that on this boundary. This prevents

extrapolation beyond the local volatility surface (which is about twice as steep as the

implied volatility surface) and ensures realistic values for volatility. The restriction

on variance is extended in the SR-SLV model where the local volatility bounds are

applied to the calibrated leverage function.

The options surface for S&P 500 is used, giving option prices for any maturity

and strike by the VGSSD calibrated/stylized model with parameters: θ = −0.16782,

ν = 0.65289, σ = 0.19732, and γ = 0.6.

All variance swap prices are quoted in volatility.

4.5.1 Verification of modeling via options

Before proceeding to pricing variance swaps, it would be prudent to test the modeling

environment. The SR-LV model extracts the local volatility surface in the stochastic
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interest rate environment. Then the SR-SLV model calibrates the leverage function

to this surface. However, can the SR-LV model replicate the option prices given by

the VGSSD model? To test the validity of the local volatility surface, 5 option prices

were generated at 3 different maturities using the SR-LV model and the results are

compared to the prices given by the VGSSD model.

The following table presents prices generated for June 19, 2002 by 100,000

simulations using the calibrated parameters of the VGSSD and Hull-White models.

Since the forward density is known at all times, the options can be priced by inte-

grating over the density at the appropriate time. However, pricing via simulation

adds another check of consistency. Assumed correlation between S&P 500 and the

short rate for this table is zero. The prices are given for the SR-LV model with the

VGSSD price in parenthesis. The spot price is taken to be $1000 and the strikes

are $800, $900, $1000, $1100, and $1200. Put prices are given for the first three

strikes and call prices are given for the latter two strikes, so that we observe the

out-of-the-money pricing performance.

T K=$800 K=$900 K=$1000 K=$1100 K=$1200
1yr 20.14 (21.691) 41.47 (42.87) 77.23 (77.56) 43.95 (43.83) 19.05 (18.31)
2yr 39.17 (41.53) 65.33 (67.34) 102.10 (102.90) 93.13 (92.89) 59.32 (57.76)
3yr 51.51 (53.96) 78.61 (80.68) 114.13 (114.97) 137.11 (138.08) 100.78 (99.77)

Table 4.1: Out-of-the-money options with spot price of $1000 and strikes $800, $900,
$1000, $1100, and $1200 (put taken at strike $1000) are priced using VGSSD and
SR-LV model on June 19, 2002.

The average absolute error for the 15 options is 2.5%. Deep out-of-the-money

puts produce most inaccuracy. This is a consequence of bounding the local volatility
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during simulation. When the bounds are increased, the put prices generated by

the SR-LV model approach to the corresponding VGSSD prices. Thus, the local

volatility surface in SR-LV setting is consistent with the VGSSD option surface.

4.5.2 Variance swaps

SR-LV and SR-SLV models will give the same price for the variance swap. Thus,

only the SR-LV model is simulated where the realized variance is computed along

each path and averaged over the 100,000 simulations. Two effects are discussed in

this section and compared to the pricing of the variance swaps via options replication

of the log contract. First, the correlation structure is examined for 1, 2, and 3 year

swaps. Then, the term structure of variance swaps is discussed for several levels of

volatility of the short rate. In general, intuition developed in section 4.1 holds with

the observed results.

Table 4.2 represents variance swap prices for various levels of correlation (be-

tween ±.5). There is little evidence in the literature that the stock price and short

rates are strongly correlated. Many studies find weak correlation at best. Average

computation time on a home PC (includes PDE solver and simulations) for 1-year

price is 26 seconds, 2-year - 53 seconds, and 3-year - 79 seconds. The default cali-

brated parameters for the short rate model are k = 0.025091 and σr = 0.011591.

As expected, when correlation increases (in the positive direction), variance

swap price falls. This relation is almost linear in correlation. For a negative enough
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ρ -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5
1yr Kvs 22.46 22.41 22.36 22.27 22.21 22.13 22.07 22.00 21.93 21.86 21.79
2yr Kvs 24.02 23.87 23.73 23.59 23.45 23.30 23.16 23.04 22.90 22.74 22.62
3yr Kvs 25.18 24.99 24.75 24.56 24.39 24.15 23.96 23.77 23.56 23.37 23.19

Table 4.2: Variance swap prices for 1, 2, and 3 years for different levels of correlation.
The variance swap prices via replication of the log contract is 22.9 for 1 yrear, 24.06
for 2 years, and 24.69 for 3 years.

level of correlation, variance swap price may even exceed the price given by the

log-contract hedge. Also, one would expect stochastic interest rates to play a more

important role as the maturity of the variance swap contract increases. That is, the

difference from the log-contract hedge price should increase in time. This does not

seem to be the case here. As maturity increases, the SR-LV model price approaches

the log-contract hedge price.

Observe that the calibrated volatility of the short rate is fairly low - 0.011591.

Thus, the short rate does not vary much and the results therefore resemble the

pattern set by the log-contract hedge price. Table 4.3 shows the term structure of

variance swaps for varying levels for the short rate volatility when the correlation

between the stock and short rate is zero. When the short rate volatility is .04,

we begin to see the expected pattern in the difference from the log-contract hedge

price: the difference between SR-LV model and log-contract hedge price increases

with maturity. More interestingly, the increasing pattern of variance swap prices

via option replication of the log contract is broken in the SR-LV setting when the

short rate volatility is .07. Thus, stochastic interest rate play a more important role

in the pricing of variance swaps as the short rate volatility increases.

Recent economic events suggest that the pattern of little correlation between
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T ime 1 1.5 2 2.5 3
Klc 22.90 23.59 24.06 24.41 24.69
Kvs σ

r = .0116 22.13 22.78 23.30 23.71 24.15
Kvs σ

r = .04 22.06 22.53 22.87 22.92 23.14
Kvs σ

r = .07 21.81 21.99 21.82 21.28 20.85

Table 4.3: Variance swap prices for 1-3 years for varying short rate volatility levels
- .0116 (calibrated), .04,.07, and ρ = 0.

equities and interest rates may be changing. That is, the Federal Reserve seems

to be lowering the funds rate whenever the equity markets fall creating correlation

between equities and the interest rates. Thus, there is a need to examine pricing

under higher correlations. For completeness, Table 4.4 shows 1-year variance swap

prices for complete range of correlation. Correlation of ±1 is omitted because there

is a discontinuity in the initial distribution at those values.

ρ -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0
1yr Kvs 22.73 22.67 22.61 22.55 22.46 22.41 22.36 22.27 22.21 22.13
ρ .1 .2 .3 .4 .5 .6 .7 .8 .9
1yr Kvs 22.07 22.00 21.93 21.86 21.79 21.74 21.68 21.57 21.54

Table 4.4: Variance swap prices for 1 year for expanded levels of correlation. The
variance swap price via replication of the log contract is 22.9 for 1 yrear.

4.5.3 Variance options

Variance options can be priced using the SR-SLV model which introduces the volatil-

ity of volatility (vol of vol) component - λ. The SR-LV model only produces one

price for a given option because it lacks vol of vol. Madan et al. [19] comments

that vol of vol is poorly calibrated from the options surface and this dissertation
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will focus on analyzing option prices for various levels of vol of vol and on mean

reversion rate of the stochastic component of volatility.

In this sections, staddles will be priced. A straddle is a position in a put and a

call together bought at the same strike. Trading a straddle is equivalent to trading

volatility. If an investor buys a straddle, he/she is hoping for volatility as payoffs

occur when the underlying asset moves away from strike in either direction. Selling a

straddle is the opposite case - betting that the underlying asset will not move much

to maturity. In the context of this dissertation, the value of straddles on realized

variance depends on the movement of realized variances for some maturity.

Tables 4.4 to 4.6 represent straddle prices for the S&P 500 on 1-year realized

variance using calibrated paremeters for the short rate model: k = 0.025091 and

σr = 0.011591 with a strike variance of .04. Average computational time for one

straddle price was 54 seconds. This time includes one PDE solver recovering the local

volatility surface, one PDE solver calibrating the leverage function, and simulations.

The three tables differ by the correlation level between the short rate and stock. The

LV column corresponds to the straddle price in the SR-LV framework, or when the

λ→ 0 in the SR-SLV model.

Note that the straddle prices increase with vol of vol (λ) and decrease with

the mean reversion rate (ν). It seems that the level of correlation does not play

a big role in straddle prices on 1-year realized variance. However, this may be a

consequence of the relatively low level of the calibrated short rate volatility and a

maturity of just a year.

To examine how straddle prices depend on volatility of the short rate and cor-
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ρ = 0 λ
ν LV 25% 50% 75%
.5 1.42 1.69 2.28 2.97
1 1.42 1.62 2.09 2.67
2 1.42 1.54 1.84 2.21
4 1.42 1.47 1.61 1.79

Table 4.5: 1-year variance option prices for different levels of mean reversion rate
(ν) and vol of vol (λ) for zero correlation between stock and interest rate.

ρ = .5 λ
ν LV 25% 50% 75%
.5 1.36 1.62 2.21 2.90
1 1.36 1.56 2.01 2.55
2 1.36 1.47 1.76 2.14
4 1.36 1.40 1.53 1.72

Table 4.6: 1-year variance option prices for different levels of mean reversion rate
(ν) and vol of vol (λ) for .5 correlation between stock and interest rate.

relation when maturity is increased to three years, straddle prices were generated

and results are summarized in Table 4.7. For a given volatility of the short rate,

straddle price decreases with an increase in correlation (in the positive direction).

When the stock price is positively correlated with the short rate, then the straddle

price falls as volatility of the short rate increases. Under negative correlation, this

phenomenon is reversed. This is an indication that with an increase in volatility of

the short rate, the slope between straddle price and correlation becomes more neg-

ative. Thus, the magnitude of the impact of correlation on straddle prices depends

on time to maturity and volatility of the short rate.

Chapter 3 discussed a stylistic feature of models with stochastic volatility. For

completeness, plots of the 1-year marginal distribution in stock (x) and short rate

(y) for large z and different inputs of ν and λ. When ν is large and λ is small (Figure
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ρ = −.5 λ
ν LV 25% 50% 75%
.5 1.49 1.77 2.38 3.07
1 1.49 1.70 2.17 2.70
2 1.49 1.62 1.92 2.26
4 1.49 1.54 1.69 1.87

Table 4.7: 1-year variance option prices for different levels of mean reversion rate
(ν) and vol of vol (λ) for −.5 correlation between stock and interest rate.

ρ
σr -.5 -.25 0 .25 .5

.0116 3.47 3.31 3.16 2.98 2.80
.04 4.16 3.41 2.85 2.45 2.21

Table 4.8: 3-year variance straddle prices across correlations and short rate vol for
λ = .5 and ν = .5

4.3), the SR-SLV model behaves more like the SR-LV model and the distribution is

unimodal. As λ increases, the distribution becomes more bimodal. Since the factor

z represents a random shock to volatility, the market will likely find another support

level signified by the second mode. Mathematically, large z results in large variance

which involves a squared of the price change. The two modes reflect that the large

square of the price change could have come from a big upward or downward jump

in the price. The bimodal feature is most evident when λ is high and ν is low for

large shock in z.
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Figure 4.1: SR-SLV model: View of 1-year marginal density of x and y when z is
large and ν = .5 and λ = .05.
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Figure 4.2: SR-SLV model: View of 1-year marginal density of x and y when z is
large and ν = .5 and λ = .75. Zero correlation between stock and interest rate is
assumed.
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Figure 4.3: SR-SLV model: View of 1-year marginal density of x and y when z is
large and ν = 4 and λ = .05. Zero correlation between stock and interest rate is
assumed.

−2
−1

0
1

2

−0.1

−0.05

0

0.05

0.1
0

1

2

3

4

5

6

x

SR−SLV model: 1−year joint density for high mean reversion, high vol of vol, and high z

y

P
ro

ba
bi

lit
y

Figure 4.4: SR-SLV model: View of 1-year marginal density of x and y when z is
large and ν = 4 and λ = .75. Zero correlation between stock and interest rate is
assumed.
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4.5.4 Volatility swaps/options

Simulation also works well and is a very natural methodology for pricing volatility

swaps. The volatility swap has a similar payout as the variance swap contract, only

it is on volatility - square root of variance. We can just talk about the pricing of

this contract in the SR-LV model. That value of the volatility swap at inception is

zero, setting the strike in the contract to:

Kvol = EQT

[ ∫ T

0
σsdt

]
,

where σs = σs(St, t). For reference, the fair strike for the variance swap is

Kvar = EQT

[ ∫ T

0
σs2dt

]
.

Table 4.8 shows volatility swap prices with 3-year maturity across different

correlation for S&P 500. The calibrated short rate parametes are used in the sim-

ulations. Same as in the previous section, 100,000 simulations are run per price to

ensure low variance. Variance swap prices are quoted in volatility.

Observe that the volatility swap price is lower than the variance swap (in

vol). For variance swaps, variances across paths are summed, averaged, and the

result is square rooted. For volatility swaps, volatility across paths are summed and

averaged. The validity of the lower volatility swap price can easily be checked using

the identity - (a2 + b2 − 2ab) ≥ 0.

Table 4.9 gives 1-year volatility straddle prices for zero correlation between

stock price and short rate. Same conclusions hold across different levels of speed of

mean reversion and vol of vol as did for variance swaps. An interesting observation
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ρ -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5
Kvol 24.29 24.06 23.90 23.74 23.52 23.34 23.16 22.98 22.79 22.62 22.39
Kvar 25.18 24.99 24.75 24.56 24.39 24.15 23.96 23.77 23.56 23.37 23.19

Table 4.9: 3-year volatility swap prices and variance swap prices for different levels
of correlation.

is that volatility straddles are a bit more than twice the price of the variance swaps

for the same strike (in vol). This is a consequence of the payout being about twice

as large for the volatility straddle. The following proposition outlines the details.

ρ = 0 λ
ν LV 25% 50% 75%
.5 2.97 3.56 4.83 6.20
1 2.97 3.41 4.41 5.61
2 2.97 3.26 3.86 4.69
4 2.97 3.10 3.36 3.78

Table 4.10: 1-year volatility option prices for different levels of mean reversion rate
(ν) and vol of vol (λ) for zero correlation between stock and interest rate.

Proposition The price of a volatility straddle is about twice the price of a variance

straddle with the same strike (in terms of vol).

Proof: A straddle has the same payoff as a put and a call options together. That

is, suppose some asset has a price Xt and strike level KX , then the payoff at time

T of a straddle is given by S(X) = (XT − KX)+ + (KX − XT )+. Now, consider

expansions of variance and volatility straddles around the strike to the first order:

S(σ) = S(Kσ) +
∂S

∂σ
(σ −Kσ)

S(σ2) = S(Kσ2) +
∂S

∂σ2
(σ2 −Kσ2)
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But,

∂S

∂σ
=

∂S

∂σ2

∂σ2

∂σ
=

∂S

∂σ2
2σ.

Thus, the two payoffs become:

S(σ) = S(Kσ) +
∂S

∂σ2
2σ(σ −Kσ) (4.25)

S(σ2) = S(Kσ2) +
∂S

∂σ2
(σ2 −Kσ2). (4.26)

S(Kσ) and S(Kσ2) are payoffs at strike and for the straddles this is zero. In the

context of earlier discussion, Kσ = Kvol and Kσ2 = Kvar. Dividing 4.25 by 2 and

subtractinig 4.26 from 4.25 results in:

S(σ)

2
− S(σ2) =

∂S

∂σ2
(Kσ2 − σKσ).

Let Kσ2 = K2
σ, so that the straddles are considered for the same volatility strike.

Then we have

S(σ) = 2S(σ2) + 2
∂S

∂σ2
(K2

σ − σKσ).

Therefore, for the same strike level (in terms of vol) the payoff of the volatility

straddle is twice the payoff of the variance straddle plus some convexity adjustment.

Thus, the price of the volatility straddle should be at least twice the price of a

variance straddle with the same strike (in vol).
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4.6 Replication of variance swaps under stochastic interest rates

Realized variance from time 0 to T is given by

RV (0, T ) =
2

T

[ ∫ T

0

dSu

Su
− ln

ST

S0

]
. (4.27)

The replication of the log contract by a portfolio of options is the subject of Chapter

2 and this section focuses on the dynamic component of realized variance, ΠT =

∫ T
0

dSu

Su
. An approximate replicating strategy is developed for ΠT independent of

model assumptions and the error is explored in the SR-LV model setting.

Suppose the interest rate is deterministic. The instantaneous return, dSt

St
, is

realized at time t when holding 1
St

shares, but it must be paid at maturity, T . This

return can be deposited in a bank where it will earn the risk-free rate of interest

from time t to T . Thus, if dSt

St
is desired at maturity, then the appropriate number

of shares that need to be held at t is exp(−
∫ T
t rsds)/St. Therefore, there exists

a replicating strategy for ΠT involving positions in the stock and money-market

account when the interest rate is deterministic.

When the interest rate is stochastic, the amount of cash deposited in the bank

is exp(−
∫ T
t rsds)

dSt

St
is a function of two random variables, St and rt. Furthermore,

the amount of interest earned from t to T is also a random quantity. With the money-

market account, the positions in the above replication are no longer predictable.

Instead, invest the return at time t in a zero-coupon bond expiring at time T ,

P (t, T ). For ease of notation, let S̃t = St/P (t, T ) and Π∗
T =

∫ T
0

dS̃
S̃

. Consider the

following strategy that replicates Π∗
T :

77



V ∗
0 = 0,

α∗
t =

1

S̃t

,

β∗
t =

∫ t

0

1

S̃u

dS̃u − 1,

V ∗
t = V ∗

0 + α∗
tSt + β∗

tP (t, T ),

where α∗
t and β∗

t are predictable positions in the stock and bond respectively. At

maturity, V ∗
T = Π∗

T :

VT = V0 + α∗
TST + β∗

TP (T, T ) =
1

S̃T

ST +

(∫ T

0

1

S̃u

dS̃u − 1

)
P (T, T ) =

∫ T

0

1

S̃u

dS̃u.

However, for t < T we have V ∗
t < Π∗

t :

Vt = V0+α
∗
tSt+β

∗
tP (t, T ) =

1

S̃t

St+

(∫ t

0

1

S̃u

dS̃u−1

)
P (t, T ) = P (t, T )

∫ t

0

1

S̃u

dS̃u < Π∗
T .

This replicating strategy is also self-financing. Observe the P&L (let t1 < t2,

t2 − t1 small) for the stock and bond position respectively:

(
1

S̃t2

− 1

S̃t1

)
St2 = P (t2, T )− P (t1, T )

St2

St1

,

(
S̃t2

S̃t1

− 1

)
P (t2, T ) = P (t1, T )

St2

St1

− P (t2, T ).

Dynamically trading the above portfolio only guarantees Π∗
T at time T , but

Π∗
T 6= ΠT . To examine the error, assume SR-LV model setting under the risk-neutral

measure. Using Itô’s quotient rule we get

Π∗
T =

∫ T

0

dS̃

S̃
=
∫ T

0

[
(−q+σr2B̂2(t, T )−ρσrσsB̂(t, T ))dt+σrB̂(t, T )dW r +σsdW s

]
,

(4.28)
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where

dP (t, T )

P (t, T )
= rtdt− σrB̂(t, T )dW r,

and B̂(t, T ) = (1−e−k(T−t))/k as before. Substituting for σrB̂(t, T )dW r in Equation

4.28 using the bond SDE results in

Π∗
T =

∫ T

0

[
(rt − q + σr2B̂2(t, T )− ρσrσsB̂(t, T ))dt+ σsdW s − dP (t, T )

P (t, T )

]
. (4.29)

Now, the aim is to replicate ΠT which is given by:

ΠT =
∫ T

0
(rt − q)dt+ σsdW s. (4.30)

Subtracting Equation 4.30 from 4.29 gives the error, E:

E = Π∗
T − ΠT =

∫ T

0
(σr2B̂2(t, T )− ρσrσsB̂(t, T ))dt−

∫ T

0

dP (t, T )

P (t, T )
.

The first observation is that the error contains a stochastic component (last term),

which means that this is not a hedge, but an approximate replication for ΠT . Sec-

ondly, when σr is relatively small, the error is expected to be small as well. Finally,

the replicating portfolio for Π∗
T is composed of stock and bond positions, so if the

stock and the interest rate are correlated, the portfolio is expected to reflect this

relationship. However, from the error it can be seen that some correlation is still

missing. Therefore, for this replication to perform well for ΠT , the volatility of the

short rate cannot be too large.

Equation 4.27 with the approximate replication was implemented in the SR-

LV model context for 1-year variance swaps using simulation under the T -forward

measure. In the Hull-White model, P (t, T ) is known in a closed form (Overhaus et
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al. [23]):

P (t, T ) =
P (0, T )

P (0, t)
exp

(
− (rt − f(0, t))B̂(t, T )− 1

2
B̂(t, T )2σr2

∫ t

0
e−2k(t−s)ds

)
,

where rt − f(0, t) = σr
∫ t
0 e

−k(t−s)dWQt
s .

Pricing variance swaps via replication is extremely accurate when compared to

the SR-LV model prices for varying levels of model parameters. However, deviations

are observed on individual simulated paths. Consider the calibrated Hull-White pa-

rameters for the SR-LV model on June 19, 2002: k = 0.025 and σr = 0.012. Errors

are reported for 100,000 simulations of 1-year SR-LV model, where the absolute dif-

ference is taken between the variance given by the replication and variance computed

by the sum of squared log differences on each simulated path.

For ρ = 0, the average absolute error of the replicating strategy from actual

realized variance was .00049. For ρ = .8, the error was .00045. This means, if the

realized variance on some path was (20%)2 then the replication may give (20.11%)2.

Thus, changing correlation level does not seem to impact the accuracy of the repli-

cation.

The rate volatility, σr, was increased to .04 and k stayed at .025. The absolute

error increased to .00113 and remained near this level as correlation was increased

from 0 to .8. As expected from the error analysis, the error increases with a rise in

short rate volatility. Better replicating strategies is a direction for future research.
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Chapter 5

Conclusions

5.1 General results

Some conventional methods exist for pricing variance derivatives (e.g., variance

swaps) using portfolios of options traded in the market. This approach overprices

variance derivatives since an option prices in the variance of the interest rates as

well. The work in this dissertation focuses on pricing variance derivatives by cor-

rectly accounting for the stochasticity of the interest rates. This is accomplished

by two models: SR-LV and SR-SLV. Both models utilize György’s [14] result on

deriving a Markov process from some n-dimensional Itô process.

In the SR-LV model, stock return follows a diffusion, local volatility is a de-

terministic function of stock price and time. The short rate is stochastic and driven

by the Hull-White process. A closed form expression for local volatility in this

framework is available and can be evaluated under the T -forward measure using the

joint density of stock and short rate. The local volatility surface is derived while

simultaneously solving the appropriate PDE for the joint density.

In the SR-SLV model, stock return also follows a diffusion, the short rate is

stochastic, volatility is governed by a leverage function and another random factor

uncorrelated with the return of the stock and the short rate. At times, volatility in

the market jumps without the stock price moving. This feature is captured in the
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SR-SLV model, but not in the SR-LV model. The leverage function is calibrated

to the local volatility surface while simultaneously solving the PDE for the joint

density of the stock, short rate, and the random component of volatility. The

marginal distribution of the stock price was observed to be bimodal for large levels

of the random component of volatility. This is a stylistic feature that should be

present in models involving stochastic volatility. Intuitively, the effect shows that

with a large random jump in volatility, the market finds another support level at

the second mode.

Simulation is a natural approach to value variance derivatives utilizing the

cubic spline on the local volatility surface. In this dissertation variance swaps are

priced for different maturities and across different levels of correlation between the

stock and the short rate. The SR-LV model produces prices which are lower than

the conventional method of pricing by replicating the log contract with options.

Furthermore, it is shown that the difference from the conventional method increases

as the volatility of the short rate increases. Straddles on realized variance are priced

using the SR-SLV model for different maturities and levels of the speed of mean

reversion and volatility of the random component of stock volatility. As expected,

staddle prices increase with volatility of volatility and decrease with the speed of

mean reversion. The slope between the straddle prices and correlation also becomes

more negative with an increase in volatility of the short rate.

The work in this dissertation is extended to volatility derivatives. For exposi-

tion, 3-year volatility swap prices were generated across different levels of correlation.

Volatility swap prices are lower than the corresponding prices of the variance swap
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prices (in volatility). Straddle prices on realized volatility are calculated and it was

observed that those were about twice the price of the straddle prices on realized

variance with the same strike (in volatility). It is shown that this is the consequence

of the payoff of the straddle on volatility being twice as big as the payoff for the

corresponding variance straddle.

5.2 Future work

This dissertation answered questions regarding correct pricing of variance derivatives

in the presence of stochastic interest rates. However, in addition to knowing the

hedge, a trader may want to know the risk (P&L (Profit and Loss) sensitivity to

factors such as stock price movements, short rate volatility changes, correlation, etc)

associated with the position.

Focusing on variance swaps in the risk-neutral setting, the fair variance strike

under deterministic rates is given by

K =
2

T
E

[ ∫ T

0

dS

S
− ln

ST

S0

]
=

2

T

[ ∫ T

0
rtdt− qT − E

(
ln
ST

S0

)]
. (5.1)

Equation 5.1 reveals that the expected realized variance can be decomposed into

a long dynamic position in the stock and a short static position in the log con-

tract replicated by the portfolio of out-of-the-money options. The cost of dynamic

rebalancing is therefore

PD =
∫ T

0
rtdt− qT.

Under stochastic interest rates and the risk-neutral setting, the fair strike is
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given by

K =
E
[
e−
∫ T

0
rtdtRV (0, T )

]

E
[
e−
∫ T

0
rtdt
] , (5.2)

where

RV (0, T ) =
2

T

[ ∫ T

0

dS

S
− ln

ST

S0

]
.

But, Equation 5.2 is not pleasant for evaluating risk. If an assumption is made

that the correlation between the stock price and short rate is zero, then, while not

independent, we have

K ≈ 2

T
E

[ ∫ T

0

dS

S
− ln

ST

S0

]
. (5.3)

In SR-LV context of this thesis we have:

dSt

St
= (rt − q)dt+ σs(S, t)dW s

t ,

drt = (θt − krt)dt+ σrdW r
t ,

dW s
t dW

r
t = ρdt.

Letting xt = ln(St/Ft) and writing rt as an O-U process gives:

dxt =
(
gt(yt) −

1

2
σs2
)
dt+ σsdW s

t ,

dyt = −kytdt + σrdW r
t ,

dW s
t dW

r
t = ρdt.

where gt(yt) = rt − f(0, t) = xt +
∫ t
0 σ

r2 (1−e−k(t−s))
k

e−k(t−s)ds and it was shown how

to recover σs(S, t).

Now everything is finite in Equation 5.3 for interchanging integration and

expectation and ρ = 0 gives

K ≈ 2

T
E

[ ∫ T

0

dS

S
− ln

ST

S0

]
=

2

T

[ ∫ T

0
E[rt − q]dt− E

(
ln
ST

S0

)]
=
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2

T

[ ∫ T

0

(
E[xt] +

∫ t

0
σr2 (1 − e−k(t−s))

k
e−k(t−s)ds+ f(0, t)

)
dt− qT − E

(
ln
ST

S0

)]
.

Remembering that f(t, T ) = −∂ lnP (t,T )
∂T

and E[xt] = 0 (using solution to the xt

process and x0 = 0) we get

K ≈ 2

T

[
− lnP (0, T )− qT +

σr2

k

∫ T

0

∫ t

0
(1 − e−k(t−s))e−k(t−s)ds dt−E

(
ln
ST

S0

)]

This simplifies to

E[RV (0, T )] =
2

T

[
− lnP (0, T )− qT +

σr2

4k3

[
2kT − e−2kT +4e−kT − 3

]
−E

(
ln
ST

S0

)]

(5.4)

It can be seen that the cost of rebalancing the dynamic position in stock is now:

PS = E

[ ∫ T

0

dS

S

]
= − lnP (0, T )− qT +

σr2

4k3

[
2kT − e−2kT + 4e−kT − 3

]
. (5.5)

Now consider partials (risk) of the Equation 5.5 with respect to σr2 and k to deter-

mine the impact of stochastic interest rates on the rebalancing price:

∂PS

∂σr2
=

1

4k3

[
2kT − e−2kT + 4e−kT − 3

]
≥ 0, (5.6)

∂PS

∂k
= −σ

r2

4k4

[
4kTe−kT − 2kTe−2kT + 2kT − 9 + 12e−kT − 3e−2kT

]
≤ 0.(5.7)

The inequalities are true since kT ≥ 0 ensures the quantities in the brackets of

Equations 5.6 and 5.7 to be greater than zero. So there are now several observations

regarding risk of volatility of the short rate and speed of mean reversion moving:

1) As σr → 0 (and/or k → ∞), the price of rebalancing converges to the price under

deterministic rates since under the deterministic rates, the short rate is the forward

rate.
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2) As the variance of the short rate increases, the price of rebalancing increases (risk

given by Equation 5.6).

3) As the speed of mean reversion of the short rate increases, the price of rebalancing

decreases (risk given by Equation 5.7).

4) The price of rebalancing increases in time for the short rate component as well.

5) We started with K ≈ E[RV (0, T )] under ρ = 0 assumption. When ρ 6= 0, the

picture is more complicated, but we can take a look at the price of variance swaps

under the T -forward measure.

In the T -forward setting, the SR-LV model is given by:

dSt

St
=
(
rt − q + ρσrσs(S, t)

(1 − e−k(T−t))

k

)
dt+ σs(S, t)dW sQT

t ,

drt =
(
θt − krt − σr2 (1 − e−k(T−t))

k

)
dt+ σrdW r

t ,

dW sQT
t dW rQT

t = ρdt.

Letting xt = ln(St/Ft) and writing rt as an O-U process gives:

dxt =
(
gt(yt) −

1

2
σs2 + ρσrσs(S, t)

(1 − e−k(T−t))

k

)
dt + σsdW sQT

t ,

dyt = −
(
kyt + σr2 (1 − e−k(T−t))

k

)
dt+ σrdW rQT

t ,

dW sQT
t dW rQT

t = ρdt.

where again gt(yt) = rt − f(0, t) = xt +
∫ t
0 σ

r2 (1−e−k(t−s))
k

e−k(t−s)ds and

σs2(K,T ) =

∂C
∂T

+ q(C −KCK) +KP (0, T )EQT [rT1ST >K

]

K2

2
∂2C
∂K2

.

Changing to T -forward measure the price of the variance swap

K =
2

T
EQT

[ ∫ T

0

dS

S
− ln

ST

S0

]
=

2

T

[
EQT

(∫ T

0
rtdt

)
− qT − EQT

(
ln
ST

S0

)]
. (5.8)
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Under the T -forward measureEQT [rt] = f(0, T ) and again using f(t, T ) = −∂ lnP (t,T )
∂T

we get

KQT
=

2

T

[
− lnP (0, T ) − qT + ρσr

∫ T

0
σs(S, t)

(1 − e−k(T−t))

k
dt−EQT

(
ln
ST

S0

)]
.

(5.9)

Using Taylor series to first order (1−e−k(T−t))
k

≈ T − t and

KQT
=

2

T

[
− lnP (0, T ) − qT + ρσr

∫ T

0
σs(S, t)(T − t)dt− EQT

(
ln
ST

S0

)]
. (5.10)

This expression is awkward since the realized variance is written in terms of ”time-

weighed” realized volatility. The price of rebalancing here is

PS = EQT

[ ∫ T

0

dS

S

]
= − lnP (0, T ) − qT + ρσr

∫ T

0
σs(S, t)(T − t)dt. (5.11)

So, from here, an increase in correlation and volatility of the short rate increases

the price of rebalancing.

This is the beginning of the work of looking at variance swaps from the side

of hedging and risk. Current hedges under deterministic interest rates have not

performed well because the Federal Reserve has been cutting the funds with the

falling equity market. This has created correlation between equities and the short

rate. The frequent cuts have made the short rate more volatile. Risk must be well

understood especially in such a volatile market.
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Appendix A

Preliminaries

A.1 VGSSD: theory and implementation

In this dissertation work, reliable data for options is available up to a year and a

half on a given day. However, there is a need to have option prices for any strike and

maturity of up to three years. Perhaps a cubic spline can be used to find intermediate

option values, but it is not advisable to extrapolate with a spline outside of available

data. More importantly, interpolation may introduce arbitrage. Thus a calibrated

arbitrage-free model that would generate option prices for any desired strike and

maturity is a natural choice.

In general, one cannot fit a model with a single set of parameters across time.

Recently Carr el al. [4] developed the theory for several four parameter self-similar

processes of independent increments with self-decomposable law for the unit time

distribution which adequately synthesizes European option prices across time and

strikes. This section will give a review for one of these - VGSSD, which is the cel-

ebrated Variance Gamma adapted in time. Fast Fourier transform (FFT) can be

utilized to quickly obtain option prices [5].

General Theory

Definition. The distribution of a random variableX is said to be self-decomposable
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if for any constant c, 0 < c < 1, there exists an independent random variable X(c)

such that X
law
= cX +X(c).

The characteristic function of these laws has the form:

E[eiuX ] = exp

[
ibu− 1

2
Au2 +

∫ ∞

−∞
(eiux − 1 − iux1|x|<1)

h(x)

|x| dx
]
,

where A ≥ 0, b is a real constant, h(x) ≥ 0,
∫∞
−∞ (|x|2 ∧ 1)h(x)

|x| dx < ∞, and h(x) is

increasing for negative x and decreasing for positive x.

A self-similar process is defined as a stochastic process (Y (t), t ≥ 0) with the

property that for any λ > 0 and all t,

Y (λt)
law
= a(λ)Y (t).

Now, since

Y (λµt)
law
= a(λµ)Y (t)

law
= a(λ)Y (µt)

law
= a(λ)a(µ)Y (t),

then a(t) = tγ for some γ and Y (t) is γ-self-similar.

A law is self-decomposable iff it is the law at unit time of an additive process,

that is also a self-similar process. This result was established by Sato [25]. Now let

Y (t) be the value at time t of a self-similar additive process with paths of bounded

variation. Then for some time-dependent Lévy system g(y, t), the characteristic

function for Y (t) may be written as

E[ eiuY (t)] = exp

[ ∫ t

0

∫ ∞

−∞
(eiuy − 1)g(y, s)dyds

]
. (A.1)

Let X be a self-decomposable random variable at unit time of some pure jump Lévy

process with bounded variation, satisfying Y (1)
law
= X and

E[ eiuX ] = exp

[ ∫ ∞

−∞
(eiux − 1)

h(x)

|x| dx
]
. (A.2)
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Theorem. Given a self-decomposable law for the time one distribution with a char-

acteristic function satisfying Equation A.1, then there exists a self-similar process

Y (t) defined with respect to the increasing scaling function tγ and which satisfies

Equation A.2 when g(y, t) is equal to

−
h′( y

tγ
)γ

t1+γ
, y > 0 and

h′( y
tγ

)γ

t1+γ
, y < 0.

VGSSD

Define the risk-neutral process S(t) in terms of Y (t) as

S(t) = S(0)ert eY (t)

E[eY (t)]
.

If φY (t)(u) = E[eiuY (t)], then the characteristic fuction of lnS(t) is

E[eiu ln S(t)] = e[iu( lnS(0))+rt−ln(φY (t)(−i))]φY (t)(u).

Now, the VG process is defined as XV G(t;σ, ν, θ) = θG(t; ν) + σW (G(t; ν)) with

Lévy density of the form

kV G(x) =





C exp(Gx)
|x| , if x < 0

C exp(−Mx)
x

, if x > 0,

where

C =
1

ν
,

G =

(√
θ2ν2

4
+
σ2ν

2
− θν

2

)−1

,

M =

(√
θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

,

and G(t; ν) is a gamma process. In this case

hV G(x) =





Cexp(Gx), if x < 0

Cexp(−Mx), if x > 0.
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Thus unit time VG is a self-decomposable law.

The characteristic function of X(1) is given by

E[eiuX(1)] =

(
1

1 − iuθν + σ2ν
2
u2

) 1
ν

.

We want the law of Y (t) = tγX(1) so the characteristic function for Y (t) must be

φV GSSD(u, t) =

(
1

1 − iuθνtγ + σ2ν
2
u2t2γ

) 1
ν

.

Given the log characteristic function for the stock at an arbitrary maturity, FFT

can be employed to price options.

Calibration

Data for the calibration is taken on June 19, 2002 for S&P 500 index. Exclusions

from data are the same as those provided in Carr et al. [4]. That is, out-of-the-

money options were taken expiring between 30 days and 15 months. Options with

strikes within 35% of the current index level, 1020, and whose price was greater

than .00075 times the spot were used. On this day, after all the exclusions, there

were 129 options left for calibration.

A minimization routing is run in Matlab to minimize, by changing parameters,

the average absolute error between market and model prices. The calibrated param-

eters are θ = −0.16782, ν = 0.65289, σ = 0.19732, and γ = 0.47708. The average

absolute error is 4.3% and larger error occurs for deeper out-of-the-money options.

Calibration time was under one minute. The parameter values are consistent with

those for S&P 500 provided in Carr et al. [4].

The VGSSD model was calibrated on the data with maturities up to 15 months.

In this dissertation, the goal is to study mispricing of variance swap for longer
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maturities (e.g., 1, 2, 3 years). Because of the lack of data for those times, we must

stylistically create it. Recall that the law of Y (t) is the same as that of tγX(1),

where X(1) is unit time VG random variable. Thus, to create the options surface

that reflects longer term data, γ must be increased. In this work, γ was increased

to 0.6.

VGSSD with θ = −0.16782, ν = 0.65289, σ = 0.19732, and γ = 0.6 will serve

as a model that will create a realistic options surface. In reality, banks have this

options surface available. But, due to the lack of data, there is a need to work with

a stylistic, but realistic surface.

A.2 Hull-White model: general results

In the two models discussed in this work, Hull-White dynamics appear in the short

rate and slightly different form in the random factor z of SR-SLV model. Some

results are used in this dissertation about the solution to the Hull-White SDE and

about mean and variance. These are clarified in this section.

Assume the following dynamics for Hull-White SDE:

drt = (θt − krt)dt+ σrdW r
t . (A.3)

By Itô’s formula, the solution to equation (A.3) is

rt = r0e
−kt +

∫ t

0
θek(u−t)du+ σr

∫ t

0
ek(u−t)dW r

u (A.4)

Because ek(u−t) is a deterministic function of t then
∫ t
0 e

k(u−t)dW r
u is Gaussian [21].
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Thus rt is distributed Gaussian. The mean of rt is given by

E[rt] = r0e
−kt +

∫ t

0
θek(u−t)du,

and variance is

V [rt] = E

[(
σre−kt

∫ t

0
ekudW r

u

)2
]

= σr2e−2ktE

[ ∫ t

0
e2kudu

]
= σr2

(
1 − e−2kt

2k

)
,

where the second equality is given by the Itô isometry.

A.3 Calibration of the Hull-White model

This section outlines the calibration procedure for the Hull-White model as pre-

sented in Hull and White [17]. Note that since closed form for the discount bond

price is available, a different approach to calibration can be taken. However, the

proposed calibration in their paper is intuitive and easy to implement for swaptions

and caps. Closed forms for a discount bond and swaption are derived in Overhaus

et al. [23].

The Hull-White model in the dissertations is given by Equation A.3. The

function θt is calibrated to the initial yield curve and parameters k and σr are used

to fit the traded interest rate options. Overhaus et al. [23] shows that the Hull-

White process can be rewritten as an Ornstein-Uhkenbeck model in the following

way:

dxt = −kxtdt+ σr
tdW

r
t (A.5)
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where

rt = xt + x̄t, dx̄t = (θt − kx̄t)dt.

If x̄0 = f(0, 0), then x0 = 0 and E[xt|F0] = 0. Here, f(t, T ) is the forward rate

defined to be the rate, fixed at time t, for instanteneous borrowing at time T. Using

variation of parameters or using the results from the previous section we get:

xs = xt e
k(t−s) +

∫ s

t
ek(u−s)σrdW r

u .

The tree is built for xt and then x̄t is used to fit the tree to the initial yield

curve. Time spacing, not necessarily equal, should coincide with yield data and

derivative’s cashflows. Let node spacing be ∆xi = σr
√

3(ti − ti−1). If we are at time

i and node j∆xi, the tree branches to (k − 1)∆xi+1, k∆xi+1, or (k + 1)∆xi+1 at

time i + 1. To ensure that branching probabilities are positive, k is chosen to be

(j∆xi + E[dx])/∆xi+1, where

E[dx] ≈ −j∆xi(ti+1 − ti)a.

Expression for transition probabilities are available in Hull and White [17].

Let rij be the interest rate at (i, j), Qij be the root Arrow-Debreu price, and Vij be

the value of a discount bond paying $1 at time i+ 1 at node (i, j). The root price

of this bond can then be written as

Pi+1 =
∑

j

QijVij.

where

Qij =
∑

k

p(i, j|i− 1, k) exp ( − ri−1,k(ti − ti−1)) Qi−1,k ,

Vij = exp ( − ri,j(ti+1 − ti)), ri,j = xi,j + x̄i .
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Table A.2 presents a replicated numerical example of a recombining tree from Hull

and White [17] using data in Table A.1.

Time to Maturity Yield Bond Price
1.5 5.00% 0.9277
1.6 5.10% 0.9216
2.0 5.25% 0.9003
2.5 5.30% 0.8759

Table A.1: Yield data for sample tree

rij(%) Qij

10.664 0.0806
9.048 0.0658
7.677 10.238 0.0064 0.0302

11.663 6.514 7.370 0.1546 0.1024 0.2023
5.000 6.172 5.527 5.306 1.0000 0.6185 0.4098 0.4306

3.266 4.689 3.820 0.1546 0.1024 0.2059
3.979 2.750 0.0064 0.0313
3.376 0.0664
2.864 0.0813

x̄0 x̄1 x̄2 x̄3 Vij

-2.9957 -2.7851 -2.8956 -2.9364 0.9582
0.9645
0.9698 0.9501

0.9884 0.9743 0.9638
0.9277 0.9938 0.9781 0.9738

0.9967 0.9814 0.9811
0.9842 0.9863
0.9866
0.9886

Table A.2: Hull-White recombining tree for the data given in table A.1.

In practice, it is not necessary to know θt or x̄t after calibration and expressions

for bond, caps and swaptions prices are available using A.5 as the underlying process.

Please see Chapter 3 of Overhaus et al. for detailed discussion.

A cap is an interest rate derivative that provides insurance against the rate
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of interest on a floating-rate note rising above a certain level - cap rate. When the

interest rate on the floating-rate note at some reset date exceeds the cap rate, the

cap provides a payoff compensating for the difference. Thus, a cap can be viewed

as a portfolio of interest rate call options at each reset date. Each option is known

as a caplet.

A swaption is an option on an interest rate swap. The holder of the swaption

has the right to enter into the interest rate swap at a certaing time in the future.

Examples of swaptions and caps can be found in Hull [15], Chapter 26. But,

the valuation of these derivatives is done easily on a tree. For the pricing of swap-

tions and caps, we need P (t, T ) to value future swap and caplet prices. In Hull-

White/Vasicek, this is given by

P (t, T ) = A(t, T )e−B(t,T )R

where

lnA(t, T ) = ln
P (0, T )

P (0, t)
− B̂(t, T )

B̂(t, t+ ∆t)
ln
P (0, t+ ∆t)

P (0, t)

−σ
2

4k
(1 − e−2kt)B̂(t, T )[B̂(t, T )− B̂(t, t+ ∆t)]

and

B(t, T ) =
B̂(t, T )

B̂(t, t+ ∆t)
∆t, B̂(t, T ) =

(1 − ek(T−t))

k
.

Pricing swaps and caplets at the root of the tree reduces to simply valuating pay-

offs at appropriate times on the tree via Arrow-Debreu prices, remembering that

payments are made in arrears.

Market prices for these derivatives are quoted in Black volatility or price in

terms of some notional amount. Data was taken for June 19, 2002 and on this day
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a 30-year yield curve is available (at .25 year increments), 7 caps and 12 swaptions.

Calibration routine is run in Matlab to minimize the mean squared error (MSE)

between model and market prices. The calibrated parameters are k = 0.025091

and σr = 0.011591. The magnitude of parameters is in line with other observed

parameters in other research (e.g., Hull [17]). Calibration time was 45 seconds with

MSE of 2.5%. Parameters θt and x̄t will not be discussed in the remainder of the

dissertation since the work will utilize the O-U model derived from the Hull-White

model and the short rate, rt, will not be a direct function of those parameters.

A.4 SR-SLV model: Details of PDE derivation

In chapter 3, the PDEs for the joint densities are derived for SR-LV and SR-SLV

models. In the provided coefficients for those PDEs, terms such as ȧ/a appear. This

section will provide more detail as to the derivation of those coefficients. Similar

transformation of variables was done in Overhauset al. [23] and clarification in

that case was provided by Christopher Jordinson of Deutsche Bank Quantitative

Products team. Coefficients for the SR-SLV model will be discussed, since SR-LV

model is just a special case of SR-SLV model with Z = 1.

In Chapter 3, the joint density, φ(x, y, z, t), in SR-SLV model is built from the

risk-neutral processes given by:

dxt =

(
gt(yt) −

1

2
σs2
∗te

2zt

)
dt+ σs

∗te
ztdW s

t , (A.6)

dyt = −kytdt+ σrdW r
t , (A.7)

dzt = ν(ζt − zt)dt+ λdW z
t , (A.8)

97



where the correlation between the stock price and short rate Brownian increments is

set to ρ. The PDE for φ(x, y, z, t) has a delta function for the initial distribution, thus

the following transformation were proposed: φ(x, y, z, t) = φ′(x′, y′, z′, t)/(atbtct),

x′ = x/at, y
′ = y/bt, and z′ = z/ct. The variables at, bt, and ct represent standard

deviations for processes x, y and z (approximate for x). Then we have (omitting

subscripts):

∂φ

∂t
=

1

abc

[
∂φ′

∂t
− ȧ

a
φ′ − ḃ

b
φ′ − ċ

c
φ′
]
,

where ∂φ′

∂t
is in terms of x and y. Expanding the derivative in t results in,

∂φ

∂t
=

1

abc

[
∂φ′

∂t
+
∂φ′

∂x′
∂x′

∂t
+
∂φ′

∂y′
∂y′

∂t
+
∂φ′

∂z′
∂z′

∂t
− ȧ

a
φ′ − ḃ

b
φ′ − ċ

c
φ′
]
,

where ∂φ′

∂t
is now in terms of x′ and y′. Further simplification can be made using the

fact that

∂x′

∂t
= − ȧ

a
x′,

∂y′

∂t
= − ḃ

b
y′,

∂z′

∂t
= − ċ

c
z′,

giving

∂φ

∂t
=

1

abc

[
∂φ′

∂t
− ȧ

a

(
φ′ + x′

∂φ′

∂x′

)
− ḃ

b

(
φ′ + y′

∂φ′

∂y′

)
− ċ

c

(
φ′ + z′

∂φ′

∂z′

)]
.

Noting that,

∂(x′φ′)

∂x′
= φ′ + x′

∂φ′

∂x′

and applying this to terms partial involing y and z we get:

∂φ

∂t
=

1

abc

[
∂φ′

∂t
− ȧ

a

∂(x′φ′)

∂x′
− ḃ

b

∂(y′φ′)

∂y′
− ċ

c

∂(z′φ′)

∂z′

]
.

Building up the PDE, now add the first partial derivative terms to both sides:

98



∂φ

∂t
+

∂

∂x

[(
gt(y)−

1

2
σs2
∗ e

2z
)
φ
]
− ∂

∂y

[
kyφ

]
+

∂

∂z

[
ν(ζt − z)φ

]
=

1

abc

[
∂φ′

∂t
− ȧ

a

∂(x′φ′)

∂x′

+
1

a

∂

∂x′

[(
gt(by

′)−1

2
σs2
∗ e

2cz′
)
φ′
]
− ḃ
b

∂(y′φ′)

∂y′
− ∂

∂y′

[
ky′φ′

]
− ċ
c

∂(z′φ′)

∂z′
+
νζt
c

∂φ′

∂z′
− ∂

∂z′

[
z′φ′

]]
.

By definitions of bt and ct given in chapter 3, it can be seen that

ḃ

b
=
σr2

2b2
− k

ċ

c
=

λ2

2c2
− ν.

Substituting these, the PDEs simplifies to

∂φ

∂t
+

∂

∂x

[(
gt(y)−

1

2
σs2
∗ e

2z
)
φ
]
− ∂

∂y

[
kyφ

]
+

∂

∂z

[
ν(ζt − z)φ

]
=

1

abc

[
∂φ′

∂t
− ȧ

a

∂(x′φ′)

∂x′

+
1

a

∂

∂x′

[(
gt(by

′) − 1

2
σs2
∗ e

2cz′
)
φ′
]
− σr2

2b2
∂(y′φ′)

∂y′
− λ2

2c2
∂(z′φ′)

∂z′
+
νζt
c

∂φ′

∂z′

]
.

Remaining work to be done involves adding gt(y)φ and second order terms to both

sides. Once that is done both sides of the above equation are set to zero giving us

the transformed PDE for φ′:

0 =
∂φ′

∂t
+gt(by

′)φ− ȧ
a

∂(x′φ′)

∂x′
+

1

a

∂

∂x′

[(
gt(by

′)−1

2
σs2
∗ e

2cz′
)
φ′
]
−σ

r2

2b2
∂(y′φ′)

∂y′
− λ2

2c2
∂(z′φ′)

∂z′

+
νζt
c

∂φ′

∂z′
− 1

2a2

∂2(σs2
∗ e

2cz′φ′)

∂x′2
− σr2

2b2
∂2φ′

∂y′2
− λ2

2c2
∂2φ′

∂z′2
− ρσr

ab

∂2(σs
∗e

cz′φ′)

∂x′∂y′
.

Note that a = σatm

√
t. Since a closed form of the derivative of a does not exist here,

it is approximated by a backward difference. At this stage, a little more calculus is

needed to expand the derivative and isolate the partials of the densities alone. The

resulting work gives rise to the form of the PDE for φ′(x′, y′, z′, t) seen in Chapter

3:

0 =
∂φ′

∂t
+ qφ′+ q1

∂φ′

∂x′
+ q2

∂φ′

∂y′
+ q3

∂φ′

∂z′
+ q11

∂2φ′

∂x′2
+ q22

∂2φ′

∂y′2
+ q33

∂2φ′

∂z′2
+ q12

∂2φ′

∂x′∂y′
,
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where

q = gt(by
′) − e2z′c

2a

∂σs2

x′
− ȧ

a
− σr2

2b2
− e2z′c

2a2

∂2σs2

∂x′2
− kz′,

q1 =
gt(by

′)

a
− e2z′cσs2

2a
− ȧx′

a
− e2z′c

a2

∂σs2

x′
,

q2 = −σ
r2y′

2b2
− ρσrez′c

ab

∂σs

∂x
,

q3 =
νζ

c
− kz′,

q11 = −e
2z′cσs2

2a2
,

q22 = −σ
r2

2b2
,

q33 = − λ2

2c2
,

q12 = −ρe
z′cσsσr

ab
.

The work is simpler for the SR-LV model, since it does not involve the third

factor, z.

A.5 SR-SLV model: Details of second-order simulation

This section contains the calculations for the second-order method implemented for

the SR-SLV model in order to reduce variance. As in Chapter 4 the setting is:

dxt =

(
gt(yt) −

1

2
σs2
∗t e

2zt + ρσrσs
∗te

ztB̂(t, T )

)
dt+ σs

∗te
ztdW sQT

t ,

dyt = −
(
kyt + σr2B̂(t, T )

)
dt+ (σ1dW

rQT
t + σ2dW

rQT
t ),

dzt = ν(ζt − zt)dt+ λdW zQT
t ,

where the Brownian motions are pairwise independent, σr2 = σ2
1 +σ2

2, and σ1 = σrρ

(with ρ being the original correlation between stock and interest rate).
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The second-order method from Glasserman [13] for process xn, with h = (ti+1−

ti) is given as:

xn(ti+1) = xn(ti)+anh+
m∑

k=1

bnk∆W
k(ti+1)+

1

2
L0anh

2+
1

2

m∑

k=1

(Lkan+L0bnk)∆W
k(ti+1)

1

2

m∑

k=1

m∑

j=1

Ljbnk(∆W
j(ti+1)∆W

k(ti+1) − Vjk), (A.9)

where the differential operators are defined as

L0 =
∂

∂t
+

d∑

n=1

an
∂

∂xn
+

1

2

d∑

n,l=1

m∑

k=1

bnkblk
∂2

∂xn∂xl

and

Lk =
d∑

n=1

bnk
∂

∂xn
,

for k = 1, ....m. Also, Vjk = Vkj and is defined as a random variable taking values

of −h and h with probability of 1/2 each; define Vjj = h.

Then the second-order discretization for xt or x1 = x in SR-SLV setting be-

comes:

x(ti+1) = x(ti) + a1h + b11∆W
s(ti+1) +

1

2
L0a1h

2 +
1

2

3∑

k=1

Lkan + L0b11∆W
s(ti+1)

1

2

3∑

j=1

Ljb11(∆W
j(ti+1)∆W

s(ti+1) − Vj1),

where W 1 = W s, W 2 = W r, and W 3 = W z.

In the SR-SLV model coefficients for this method are:

a1 = gt(yt) −
1

2
σs2
∗t e

2zt + ρσrσs
∗te

ztB̂(t, T ),

a2 = −kyt − σr2B̂(t, T ),

a3 = ν(ζt − zt),
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b11 = σs
∗te

zt, b12 = 0, b13 = 0,

b21 = σ1, b22 = σ2, b23 = 0,

b31 = 0, b23 = 0, b33 = λ.

Then the operators in this setting have the simplified form (dropping time sub-

scripts):

L0 =
∂

∂t
+ a1

∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z
+

1

2

[
b211

∂2

∂x2
+ (b222 + b233)

∂2

∂y2
+ b233

∂2

∂z2

]
,

L1 = b11
∂

∂x
+ b21

∂

∂y
,

L2 = b22
∂

∂y

L3 = b33
∂

∂z
.

Let B̂(t, T ) = (1 − exp(−kh))/k = B̂, gt(yt) = g, and σs
∗t = σs

∗. All quantities

on the right hand side will be evaluated at time ti and S(ti) where appropriate.

Thus, for simplicity, time and space subscripts will be dropped. Substituting these

into equation (A.10) for the process xt (A.7) yields:

x(ti+1) = x(ti)+a1h+b11∆W1+
h2

2

[
−ρσrσs

∗e
−k(T−ti)+a1

(
− 1

2
e2z ∂σ

s2
∗

∂x
+ρσr ∂σ

s
∗

∂x
ezB̂

)

+a2
∂g

∂y
+a3

(
ρσrσs

∗e
zB̂−(σs

∗e
z)2
)
+

1

2

(
b211

(
−1

2
e2z ∂

2σs2
∗

∂x2
+ρσr∂

2σs
∗

∂x2
ezB̂

)
+(σ1+σ2)

∂2g

∂y2

)

+λ2
(
−2(σs

∗e
z)2 +ρσrσs

∗e
zB̂
)]

+
h

2

[
b11

(
− 1

2
e2z ∂σ

s2
∗

∂x
+ρσr∂σ

s
∗

∂x
ezB̂

)
∆W1 +σ1

∂g

∂y
∆W1

+σ2
∂g

∂y
∆W2 + λ

(
− (σs

∗e
z)2 + ρσrσs

∗e
zB̂
)
∆W3 +

[
a1e

z ∂σ
s
∗

∂x
+ a3σ

s
∗e

z +
1

2

(
b211e

z ∂
2σs

∗
∂x2

+λ2σs
∗e

z
)]

∆W1

]
+

1

2

[
σs
∗e

2z ∂σ
s
∗

∂x
(∆W 2

1 − h) + λσs
∗e

z(∆W1∆W3 + ξ)

]
,
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where ξ is a random variable taking values of −h and h with probability .5 and

independent of the Brownian motions. And, the Brownian motions are independent

from each other.

Remembering that from y0 = 0 we have

gt(yt) = rt − f(0, t) = yt + σr
∫ t

0
B̂(s, t) exp(−Λst)ds.

Then it is true that:

∂g

∂y
= 1,

∂2g

∂y2
= 0,

∂g

∂t
= 0.

After much simplifying, the discretization can be written as

x(ti+1) = x(ti) +A∆W1 +B∆W2 + C∆W3 +D

+
b11

2

[
ez ∂σ

s
∗

∂x
(∆W 2

1 − h) + b33(∆W3∆W1 + ξ)

]
,

where

A =
h

2

[
b11

(
− e2z

2

∂σs2
∗

∂x
+ ρσr ∂σ

s
∗

∂x
ezB̂

)

+
[
a1e

z ∂σ
s
∗

∂x
+ a3σ

s
∗e

z +
1

2

(
b211e

z ∂
2σs

∗
∂x2

+ λ2σs
∗e

z
)]]

+ b11 +
h

2
b21,

B = b22,

C = λ
(
− b211 + ρσrσs

∗e
zB̂
)
,

D = a1h+
h2

2

[
a1

(
− e2z

2

∂σs2
∗

∂x
+ ρσr∂σ

s
∗

∂x
ezB̂

)
+ a2 + a3

(
− b211 + ρσrσs

∗e
zB̂
)

−ρσrσs
∗e

−kh +
1

2

(
b211

(
− e2z

2

∂2σs2
∗

∂x2
+ ρσr ∂

2σs
∗

∂x2
ezB̂

)

+λ2
(
− 2b211 + ρσrσs

∗e
zB̂
)]
.

To simplify things, we can let

∂σs2
∗

∂x
= 2σs

∗
∂σs

∗
∂x

,
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and

∂2σs2
∗

∂x2
= 2

(
∂σs

∗
∂x

+ σs
∗
∂2σs

∗
∂x2

)
.

Here ξ is a random variable independent of the Brownian motions taking values of

−h and h with probability of .5 each.

This method required the knowledge of the first two derivatives of local volatil-

ity with respect to x. Central differences can be used to approximate these after

fitting a spline over the local volatility curve at any given time. Care must be taken

on and outside of the boundaries where local volatility is defined. Local volatility

is about twice as steep as implied volatility and using a spline to extrapolate local

volatility outside of the defined region is not desirable. Very large and unrealis-

tic values of volatility can be obtained this way. Thus, derivatives and values of

volatility outside of the boundaries are defined as values on the boundary.

104



BIBLIOGRAPHY

[1] Atlan, M. Localizing Volatilities. Working Paper, Laboratorie de Probabilitiés,
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