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A continuous mission in the sciences is the never-ending search for more energy

and fuel. As time brings the reality of how limited natural resources are, we seek to

expand to more synthetic methods of preserving and converting energy. Prevalent

applications of renewable energy include solar energy, wind power, tidal power, and

hydropower to list a few. It is no surprise that several of these applications stem from

the involvement of fluid flow and the fluid pressure. This thesis explores a specific

method of energy conversion in charged nanochannel flows of electrolytic solution, a

subject that has gained great attention in recent years.

This particular method of nanofluidic energy conversion inside a charged nanochan-

nel is an example of Electrokinetic Energy generation in pressure-driven liquid trans-



port. A charged nanochannel in contact with an electrolyte solution develops an

Electric Double Layer (EDL) of charge where the number of counterions (ions of

charge opposite in sign to that of the nanochannel wall) is much larger than the num-

ber of coions (ions of charge identical in sign to that of the nanochannel wall) in order

to screen the wall charge. In presence of a pressure-driven flow, the ions within the

EDL are advected downstream. The counterions number density being much larger

than the coions, such a downstream migration would imply the accumulation of a net

charge in the downstream direction, thereby triggering an axial electric field. This

electric field when multiplied with the current generated due to the streaming of the

ions would lead to an energy generation – this energy generation is effectively an

example of Electrochemomechanical Energy conversion, where the mechanical energy

of the pressure-driven flow and the chemical energy of the EDL gets converted into

an electrical energy.

The purpose of this thesis is to explore the such Electrokinetic Energy Con-

version in nanochannels grafted with pH-responsive charged polyelectrolyte (PE)

brushes.

Grafting of nanochannels with polyelectrolyte (PE) brushes, invariably attribute

a “smartness” to the nanochannels that have been used for a plethorsa of applications

ranging for ion and biosensing, gating of ion transport, current rectification, fabri-

cation of nanofluidic diodes and nano-actuators, etc. All these applications strictly

depend on the modification of the ionic current by the presence of the PE brushes. On

the contrary, the energy generation/conversion that we study here is a rare example

where we utilize the Electrohydrodynamic (EHD) transport in brush-functionalized



nanochannels.

In this thesis, we experiment with parameters that would provide significant

electrochemomechanical energy conversion in the presence of a pressure-driven back-

ground transport. We’ve gathered the optimal parameters to result in a 4-5% energy

conversion efficiency. This is possible when the PE brushes exhibit a pH-dependent

charge density.

Further, we extend our research by determining the possible electrochemome-

chanical energy conversion in a nanochannel grafted with polyzwitterionic (PZI)

brushes. PZI brushes are capable of inducing a significantly high charge on both

acidic and basic solutions.This allows electrokinetic induced power to be accessible

over a wide range of pH values, as opposed to being confined to a narrow pH range

compared to other EDL channels.

This thesis therefore sheds light on the smartness of nanochannels and their

capabilities to generate power. We anticipate that our results will be able to provide

a way for energy to be induced and produced in nanochannel-related applications,

and maybe even find means to be a measure for developing more sustainable energy

in larger scale applications.
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Chapter 1: Introduction

This chapter serves as a gateway about polymer chains and their relation to poly-

electrolyte (PE) brushes. We briefly discuss the interactions that the polymer/polyelectrolyte

chains exhibit to attain the brush-like configuration. This is followed by detailing the

interaction of a PE brush with the electric double layer (EDL) within a nanochan-

nel, which in turn serves as a key interaction to various applications in nanochannels

grafted with the PE brushes. We further elaborate a certain kind of application of

PE-grafted brushes in nanochannels: electrochemomechanical energy conversion in

the presence of a pressure-driven flow. Finally, we address the main agenda and the

organization of this.

1.1 Basics and applications of Polymer and Polyelectrolyte Brushes

Polymer chains exhibit unique behaviors dependent on their surrounding en-

vironment. When engulfed in a “good” solvent, these chains are attracted to the

environment rather than each other. The repulsion of polymers from each other

forces them to attain coil-like configuration in bulk solution [1]. Things change when

the same polymer chains are grafted on a solid-liquid interface so close to one another

that they cannot adopt their coil-like configuration without touching each other. Un-

1



der such circumstances, excluded volume effect sets in and enforces an avoidance of

the adjacent polymer molecules by making it stretch in a direction perpendicular to

the grafting surface and hence adopting a “brush”-like configuration [2–12]. Under

such circumstances the brush configuration can be obtained by balancing the elastic

and excluded volume energies. For the PE brushes, there is also the electrostatic

repulsion energy between the polymer segments and the energy associated with the

induced EDL. The overall configuration is dictated by a balance of these effects.

Understanding the free energy of a polyelectrolyte brush gives us the ability to

decouple its elastic and excluded volume effects from the electrostatic effects [13–20].

Decoupling ensures that the brush height is independent of electrostatic effects. This

allows us to focus on the electrostatic effects induced from the interaction of the

polyelectrolyte brush with an electric double layer (EDL). The electrostatics from

an EDL charges a PE brush and allows the brush to respond differently based on

the surrounding pH, pKa, pKb, salt concentration, monomer distribution, and so

on. By fine-tuning these parameters in an EDL, polyelectrolyte brushes can be used

for different applications, including flow-valving action, flow control, drug delivery

system, ion sensing and manipulation, biosensing, current rectification, fabrication of

nanofluidic diodes, and several others (provide references for each applications; follow

some of my papers).
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1.2 Energy conversion in nanochannels grafted with polyelectrolyte

brushes

It is clear that the PE brush grafting can render incredible “smartness to

nanochannels. The nature of the grafted PE brushes and alteration of their con-

figuration as a response to system parameters renders incredible flexibility in their

application. While such widespread application of PE-brush-grafted nanochannels in-

volving ion transport is known, relatively less is known about applications involving

fluid transport. Recently, PE-grafted nanochannels have been shown to be an ex-

cellent electrochemomechanical energy converter [1, 13]-such conversion refers to the

generation of an electrical energy caused by the triggering of the streaming electric

field (or streaming potential) in the presence of a background nanofluidic pressure-

driven transport [21, 22] migrating the charge density of the induced electric double

layer (or EDL). It is worthwhile to note that while there have been many studies on

streaming potential calculations in PE-grafted channels [23–32], we highlighted the

manner in which such streaming potential generation will lead to highly efficient en-

ergy conversion in nanochannels with PE grafting. Our approach takes the free energy

of the PEL, and then we decouple the electrostatic effects from the excluded volume

and entropic effects in the nanochannel to quantify the energy conversion efficiency

in polyelectrolyte brushes. Such a step is essential to describe the electrokinetics

of the PE-brush-grafted nanochannels assuming a constant PE brush height that is

independent of the pH and the salt concentration. Finally, we extend this analysis

3



in nanochannels grafted with polyzwitterionic brushes to ensure an enhanced energy

generating capability of the nanochannels over a larger range of the pH values.

1.3 Main agenda of the present thesis

Our work focuses on establishing that such “soft” nanochannels can be employed

for highly efficient, streaming-current-induced electrochemomechanical energy conver-

sion in the presence of a background pressure-driven transport. In this thesis, we first

decouple the electrostatic effects from the excluded volume and entropic effects in

the free energy of a nanoconfined PE brush layer. We extend our calculation for the

practically realizable situation when the PE brush layer, grafted on the inner walls of

the nanochannel, demonstrates a pH-dependent charge density. Consideration of such

pH dependence necessitates consideration of hydrogen and hydroxyl ions in the elec-

tric double layer charge distribution, cubic distribution of the monomer profile, and a

PE layer-induced drag force that accounts for this given distribution of the monomer

profile. Subsequently, we extend our analysis to polyzwitterion-grafted nanochannels.

Our results express a hitherto unknown dependence of the streaming electric field (or

the streaming potential) and the efficiency of the resultant energy conversion on pa-

rameters such as the pH of the surrounding electrolyte and the pKa and the pKb

of the ionizable group that ionizes to produce the PE charge—we demonstrate using

an integro-differential equation that the energy conversion efficiency substantially in-

creases with an increase in the pH and the PE layer thickness. Similarly, this energy

conversion is also concurrent during a decrease in the pKa and ion concentration of

4



the nanochannel fluid. We anticipate that our calculations will provide the design

basis for a new form of nanochannel based electrical energy generator by utilizing the

mechanical energy of the fluid flow and the chemical energy of the electric double

layer.

1.4 Organization of the thesis

Chapter 2 focuses of energy conversion in nanochannels grafted with polyelec-

trolyte brushes. First we bridge the relation between this research and previous stud-

ies. We go into detail about the layout of a nanochannel grafted with PE brushes,

including the ions in the electrolyte solution as well as the drag produced inside the

channel. This helps break down the difference free energies of the system coming

from the free energy of the PE brush and the free energy of the EDL. By using a

decoupling method, the free energy of the electrostatics can be separated from the

excluded volume and entropic effects, giving way to simplify the derivations for the

governing equations of electrostatic potential in the system. We then focus on the

calculation of the velocity field by assuming a steady, uni-directional, and hydrody-

namically fully developed flow. This provides us with the dimensionless governing

equations and the boundary conditions of the velocity field, but the calculation of

the streaming electric field is required to solve this equation. We obtain the net ionic

current first and then solve for the streaming electric field. We use the method of

solving an integro-differential equation to solve for both the streaming potential and

the velocity field. Lastly, we solve for the energy conversion efficiency and provide

5



the corresponding plots to demonstrate how much electrochemomechanical energy is

converted. Chapter 3 demonstrates a very similar method to solve for this conversion

efficiency, but as we are dealing with polyzwitterionic (PZI) brushes, we must account

for both the negative and positive charges on the brushes. This reactivity requires

us to address the charge interactions and resulting streaming potential, velocity field,

and streaming electric field in both acidic and basic solutions. After providing the

resulting plots, both chapters further discuss applications of the findings, and dive

into possible future works.
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Chapter 2: Efficient electrochemomechanical energy conver-

sion in nanochannels grafted with polyelectrolyte

layers with pH-dependent charge density

Nanochannels, functionalized by grafting with a layer of charged polyelectrolyte

(PE), have been employed for a large number of applications such as flow control,

ion sensing, ion manipulation, current rectification, nanoionic diode fabrication, and

many more. Recently, we established that such PE-grafted nanochannels, often de-

noted as a “soft” nanochannels, can be employed for highly efficient, streaming-

current-induced electrochemomechanical energy conversion in presence of a background

pressure-driven transport. In this chapter,1 we extend our calculation for the prac-

tically realizable situation when the PE layer demonstrates a pH-dependent charge

density. Consideration of such pH-dependence necessitates consideration of hydrogen

and hydroxyl ions in the electric double layer charge distribution, cubic distribution of

the monomer profile, and a PE-layer-induced drag force that accounts for this given

distribution of the monomer profile. Our results express a hitherto unknown depen-

1Contents of this chapter have been published as: J. Patwary, G. Chen and S. Das, Efficient

electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with

pH?dependent charge density. Microfluid. Nanofluid., Vol. 20, pp. 37 (2016).
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dence of the streaming electric field (or the streaming potential) and the efficiency of

the resultant energy conversion on parameters such as the pH of the surrounding elec-

trolyte and the pKa of the ionizable group that ionizes to produce the PE charge – we

demonstrate that increase in the pH and the PE layer thickness and decrease in the

pKa and the ion concentration substantially enhance the energy conversion efficiency.

2.1 Introduction

Our previous study considered a most simplified situation where the PE molecules

were assumed to have a constant charge density and the drag coefficient was assumed

to be independent of the monomer distribution [13, 19]. In the proposed study, we

provide a much more realistic treatment of this problem by assuming that the PE

molecule exhibits pH-dependent charge density. Such a consideration leads to three

distinct issues. Firstly, we need to account for the hydrogen and hydroxyl ion distri-

bution in the electric double layer (EDL) ionic distribution, with the EDLs forming on

both sides of the PE layer-electrolyte interface. Secondly, such pH dependence neces-

sitates consideration of a cubic monomeric distribution of the grafted PE molecule in

order to address the unphysical discontinuities in the hydrogen ion concentration pro-

file associated with the consideration of uniform monomer distribution [1, 16, 18, 33].

Finally, this cubic monomeric profile is considered while expressing the monomer

distribution dependence of the drag coefficient for the fluid flow [18, 33]. Our theo-

retical framework is based on first calculating the electrostatics of the PE-electrolyte

interface, with the PE being grafted as “brushes” [5, 6, 10] on the inner walls of the

8



nanochannel. We assume that the PE electrostatic contribution is decoupled from

the elastic and the excluded volume contributions of the PE molecule. This allows

us to assume a constant thickness of the PE layer (i.e. the thickness is decided solely

by the balance of the elastic and excluded volume effects) while calculating the EDL

electrostatics of the PE-electrolyte interface. In a couple of recent studies, we have

quantitively established the physical conditions (or parameter space) that allow such

decoupling for the PE layers grafted on the inner walls of a nanochannel and forming

“brushes” that have a height smaller than the nanochannel half height [1,33]. There-

fore, in the present study we work in this parameter space. This EDL electrostatics

is subsequently used to calculate the velocity field, streaming potential, and the effi-

ciency of the energy conversion. The salient issue here is that we obtain the velocity

field by solving an integro-differential equation, which stems from the fact that the

streaming electric field is not explicitly expressible in terms of the pressure-driven

and electroosmotic (due to the streaming electric field) transport. We have used such

integro-differential approach in one of our previous papers [19]; here, we provide a

more rigorous analysis that accounts for the contribution of H+ and OH− ions and at

the same time account for the monomer distribution-dependent drag force [18,33–35].

Our analyses express the hitherto unknown dependences of the streaming current and

the efficiency in a PE-grafted nanochannel on factors such as the pH and the pKa (of

the acid that dissociates to produce the negative charge of the PE layer). Our results

further demonstrate a significantly high (4-5%) efficiency of the electrochemomechan-

ical energy conversion [36,37] associated with the generation of the streaming electric

field in PE-grafted nanochannels with pH-dependent charge density. This efficiency
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number is reasonable in the light of the experimental result on the streaming-electric-

field-induced electrochemomechanical energy conversion (predicting an efficiency of

approximately 3%. [36]) and establishes the nanochannel with grafted PE layer with

pH-dependent charge density as an important device for nanofluidic electrochemome-

chanical energy conversion.

2.2 Theory

We consider a pressure-driven transport of an electrolyte solution in a soft

charged nanochannel of height 2h (see Figure 2.1) and study the streaming elec-

tric field and the efficiency of the resulting electrochemomechanical energy conver-

sion. This “softness” of the nanochannel is attributed to a layer of wall-grafted

ion-penetrable charged polyelectrolyte (PE) layer of thickness d (see Figure 2.1). The

grafting density is assumed to be large enough to ensure that the grafted PE molecules

attain a brush-like configuration. [5,6,38] The charge on the PE layer is attributed to

the pH-dependent ionization of the PE molecules; this ensures that the charge den-

sity of the PE layer is pH-dependent. This charging triggers an EDL ion distribution

at either sides of the PE-layer-electrolyte interface. We shall first briefly discuss the

EDL electrostatics of the system, which has already been discussed in details in our

previous papers; [1,16,18] this will be followed by the calculations of the velocity field,

the streaming electric field, and the energy conversion efficiency.
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Figure 2.1: Schematic of the pressure-driven transport in a nanochannel grafted with

negatively charged pH-sensitive PE layer. In this schematic, we also show the direction

of the streaming electric field or streaming potential ES.

2.2.1 Electrostatics

The total free energy change (∆F ) associated with a grafted PE molecule system

forming an EDL can be expressed as:

∆F = ∆FPE + ∆FEDL, (2.1)

where ∆FPE is the free energy change associated with a single grafted PE molecule

and ∆FEDL is the free energy change associated with the EDL formation. One can

express ∆FPE as:

∆FPE = ∆FPE,ent + ∆FPE,EV + ∆FPE,elec, (2.2)

where ∆FPE,ent, ∆FPE,EV , and ∆FPE,elec are the free energy changes associated with

the entropic (or elastic), excluded volume, and electrostatic contributions of the PE

molecule. Calculations considering eq.(2.1) and eq.(2.2) simultaneously have been

11



provided before; [39, 40] however, these calculations may be inappropriate for cases

where the PE charge density is a function of the pH. [16,18,41] This inappropriateness

stems from enforcing the H+ ion concentration to obey the Boltzmann distribution

both inside and outside the PE layer; such a consideration is incorrect and leads to

unphysical discontinuities in the value and in the gradient of the H+ ion concentration

at the PE-layer-electrolyte interface, as established by our previous study. [16] The

correct formulation that considers both eqs.(2.1,2.2) and at the same time provides a

physically consistent description of the H+ ion concentration is still unknown. In sev-

eral recent papers, we have proposed a simplified formulation where we have described

the PE-layer EDL electrostatics in a framework that decouples the PE elastic and

excluded volume effects from the PE electrostatic effects. [13–20] Such an assumption

ensures that the PE layer height is dictated entirely by the balance of the elastic and

the excluded volume effects, and is hence independent of the electrostatic and the

EDL effects. Please note there have been a plethora of studies that have modelled

the electrostatics and the electrokinetics of PE-grafted interfaces assuming a constant

thickness of the PE layer (see the review papers [42–47] and the articles cited in these

review papers). All these calculations, therefore, have implicitly assumed such decou-

pling of the PE electrostatic effects from the PE elastic and excluded volume effects.

Only very recently, we provided the physical conditions and the parameter space cor-

responding to which such de-coupling is possible. [1, 33] We refrain from discussing

this parameter space in details here; however, we do assume that the present study

is described in the same parameter space making the decoupling feasible.

Under these conditions, the free energy change associated with PE electrostatic
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effect and that associated with the resulting EDL formation must individually balance

each other. Therefore, one may write:

∆F ′ = ∆FPE,elec + ∆FEDL. (2.3)

Please note that ∆F ′ ≈ ∆F for ∆FPE,elec �
(
∆FPE,ent + ∆FPE,EV

)
, whereas ∆F ′ �

∆F for ∆FPE,elec �
(
∆FPE,ent + ∆FPE,EV

)
. In our previous studies we have derived

the equilibrium EDL electrostatics starting from eq.(2.3). [1,16] Here we briefly sum-

marize these steps for the sake of completeness. Eq.(2.3) can be re-written as:

∆F ′ =

∫
∆f
(
ψ, ψ′, n±, nH+ , nOH−

)
d3r, (2.4)

where ∆f is the density of the free energy change, expressed as (considering the

bottom half of the nanochannel):

∆f = kBT
∑
i

ni
ln

(
ni
ni,∞

)
− 1


− ε0εr

2
|∇ψ|2 + eψ

∑
i

zini − ϕnA−


(−h ≤ y ≤ −h+ d),

∆f =kBT
∑
i

ni
ln

(
ni
ni,∞

)
− 1


− ε0εr

2
|∇ψ|2 + eψ

∑
i

zini

 (−h+ d ≤ y ≤ 0).

(2.5)

In eq.(2.5) in the right hand side, the first term represents the entropic contribution

due to the mixing of of the ions, the second term represents the self energy of the EDL

electric field, and the third term represents the electrostatic energy of the PE ions

(valid only within the PE layer) electrolyte, hydrogen, and hydroxyl ions. Further

ψ is the electrostatic potential, ε0 is the permittivity of free space, εr is the relative

permittivity of the medium, kBT is the thermal energy, e is the electronic charge, zi,
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ni and ni,∞ are the valence, the number density and the bulk number density of ion

of type i (i = ±, H+, OH−). Here the electrolyte salt is assumed to be monovalent

and symmetric (hence z+ = −z− = 1). Also in eq.(2.5), nA− is the number den-

sity of the negatively charged PE ions. Further, ϕ(y) is the dimensionless monomer

distribution, which should obey a non-unique cubic distribution in y (detailed later)

in order to avoid unphysical discontinuities associated with considering a constant ϕ

for a PE layer with pH-dependent charge density [16, 18]. The number densities of

the negatively charged PE ions depend on local H+ ion concentration and can be

expressed as:

nA− =
K ′aγa

K ′a + nH+

. (2.6)

Here the anionic charge of the negatively charged PE layer is attributed to the ioniza-

tion of the acid HA (HA↔ H+ +A−; ionization constant Ka). Also in eq.(2.6), γa is

the maximum site density of the chargeable groups of the PE layer andK ′a = 103NAKa

(NA is the Avogadro number). Please note that eq.(2.5) is based on the assumption

that the EDL is described by the mean-field electrostatics. Therefore, issues such as

ion-ion correlations have not been considered. In fact, effects such as the considera-

tion of finite ion sizes and finite solvent polarizability – these effects can be modelled

within the mean-field framework – have also been neglected.

Governing equations are obtained by minimizing eq.(2.4) with respect to the variables

ψ, n±, nH+ and nOH− . This eventually allows us to write (see Chen and Das [1, 16]

for detailed derivation) the equations governing the equilibrium as:
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n̄± = exp
(
∓ψ̄
)

[for− 1 ≤ ȳ ≤ 0] (2.7)

n̄OH− =
(
n̄OH−,∞

)
exp

(
ψ̄
)

[for− 1 ≤ ȳ ≤ 0] (2.8)

ψ̄ = −
ln

(
n̄H+

n̄H+,∞

)
1 + K̄′aγ̄aϕ

(K̄′a+n̄+
H)

2

[
for− 1 ≤ ȳ ≤ −1 + d̄

]
,

ψ̄ = − ln

(
n̄H+

n̄H+,∞

) [
for− 1 + d̄ ≤ ȳ ≤ 0

]
.

(2.9)

d2ψ̄

dȳ2
=

1

2λ̄2
[− exp(−ψ̄) + (1 + n̄H+,∞) exp(ψ̄) + (n̄OH−,∞) exp(ψ̄)

−n̄H+ +
K̄ ′aγ̄aϕ

K̄ ′a + n̄H+

]
[
for− 1 ≤ ȳ ≤ −1 + d̄

]
,

d2ψ̄

dȳ2
=

1

2λ̄2
[− exp(−ψ̄) + (1 + n̄H+,∞) exp(ψ̄) + (n̄OH−,∞) exp(ψ̄)

−n̄H+,∞ exp
(
−ψ̄
)
]

[
for− 1 + d̄ ≤ ȳ ≤ 0

]
.

(2.10)

In the above equations, ȳ = y
h
, d̄ = d

h
, ψ̄ = eψ

kBT
, n̄± = n±/n∞ (we assume n+,∞ =

n−,∞ = n∞), n̄H+ =
nH+

n∞
, n̄OH− =

nOH−
n∞

, n̄H+,∞ =
nH+,∞
n∞

, n̄OH−,∞ =
nOH−,∞
n∞

,

K̄ ′a = K′a
n∞

, λ̄ = λ
h

(where λ =
√

ε0εrkBT
2n∞e2

is the EDL thickness).

Eq. (2.10) uses the Boltzmann distribution [see eqs.(2.7,2.8,2.9)] to express the dis-

tribution of n̄±, n̄OH− , and n̄H+ (outside the PE layer). On the other hand, eq.(2.9)

clearly shows that H+ ion distribution, on account of its reaction that causes the PE

charging, does not obey the Boltzmann distribution within the PE layer – this has

been the most important identification of our analysis of the EDL electrostatics of

PE-grafted interfaces. [1,16,18] The other important issue of eq.(2.10) is the manner
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in which ni,∞s are defined. We assume addition of an acid that furnishes the same

anion as the anion of the electrolyte salt. As a result, we may write: n+,∞ = n∞ and

n−,∞ = n∞ + nH+,∞. Eqs. (2.9, 2.10) need to be solved simultaneously in presence

of the following dimensionless boundary conditions:(
dψ̄

dȳ

)
ȳ=−1

= 0;

(
dψ̄

dȳ

)
ȳ=0

= 0(
ψ̄
)
ȳ=(−1+d̄)+

=
(
ψ̄
)
ȳ=(−1+d̄)−

;(
dψ̄

dȳ

)
ȳ=(−1+d̄)+

=

(
dψ̄

dȳ

)
ȳ=(−1+d̄)−

. (2.11)

Finally, the monomer density distribution ϕ(y) is so selected that along with eq.(2.9)

it ensures that eq.(2.11) leads to the following set of Boundary Conditions for n̄H+ :

(
dn̄H+

dȳ

)
ȳ=−1

= 0;

(
dn̄H+

dȳ

)
ȳ=0

= 0

(n̄H+)ȳ=(−1+d̄)+ = (n̄H+)ȳ=(−1+d̄)− ;(
dn̄H+

dȳ

)
ȳ=(−1+d̄)+

=

(
dn̄H+

dȳ

)
ȳ=(−1+d̄)−

. (2.12)

Eq.(2.9) is used in eq.(2.10) to eliminate ψ̄ and express the differential equation

entirely in terms of n̄H+ ; this equation is subsequently solved in presence of eq.(2.12)

to obtain the distribution of n̄H+ . This distribution is next used in eq.(2.9) to obtain

the corresponding distribution of ψ̄. Finally, the monomer distribution ϕ, in addition

to ensuring the attainment of eq.(2.12) from eq.(2.11), must also ensure [10,39]

1

σa3

∫ −h+d

−h
ϕ(y)dy = N, (2.13)

where σ is the grafting density (having units of 1/m2), a is the Kuhn length (hence

the volume of a monomer segment is ∼ a3), and N is the size (or the number of
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monomers) of a PE molecule. All these criteria are satisfied by a non-unique cubic

distribution of ϕ expressed as (see Chen and Das [16] for detailed derivation):

ϕ(y) =

(
Na3σ

d

)(
4

d̄3

)(
ȳ + 1− d̄

)2

(
ȳ + 1 +

d̄

2

)
. (2.14)

2.2.2 Calculation of the Velocity Field

We consider a pressure-driven background transport in this PE-grafted nanochan-

nel. The flow is assumed to be steady, uni-directional and hydrodynamically fully-

developed. Such nanochannel pressure-driven transport leads to a downstream mi-

gration of the mobile ions of the EDL, which in turn gives rise to the well-known

streaming electric field or streaming potential ES. [48–51] This electric field is in

a direction opposite to the pressure-driven transport and gives rise to an induced

electroosmotic transport that opposes the pressure-driven transport. Under these

conditions, the velocity field u can be expressed as:

η
d2u

dy2
− dp

dx
+ e(n+ − n− + nH+ − nOH−)ES − µcu = 0

[−h ≤ y ≤ −h+ d] ,

η
d2u

dy2
− dp

dx
+ e(n+ − n− + nH+ − nOH−)ES = 0

[−h+ d ≤ y ≤ 0] . (2.15)

In eq.(3.19), dp/dx is the employed pressure gradient, η is the dynamic viscosity of

the liquid, and µc = (ϕ(y)
b

)2 (b is a parameter that has a unit of length/
√
viscosity)

is the drag coefficient within the PE layer. Eq. (3.19) is expressed under several

simplifying assumptions. Firstly, we assume that the background flow field does not

17



alter the shape of the grafted PE layer under steady state. Secondly, the timescale

(τEDL) of distribution of the EDL ions (τEDL ∼ λ2/Dion ∼ 10−10−10−6 s, with EDL

thickness λ ∼ 1 − 100 nm and ion diffusivity Dion ∼ 10−8 m2/(V s)) is considered

much smaller than the time scale associated with the pressure-driven liquid transport.

This assumption allows us to consider the EDL ion distribution as quasi-steady with

respect to the flow field, thereby sufficing to express the flow field through eq.(3.19)

without requiring the coupled Poisson-Nernst-Planck and Navier-Stokes equations to

describe the flow field and ion transport. [41] Finally, in eq.(3.19) the drag coeffi-

cient (µc) is expressed assuming that µc ∼ K2, where K−1 (which varies as ϕ−1)

is the length that screens the background flow from the flow inside the grafted PE

molecules. This analysis is borrowed from the idea of flow screening between the

inside and the outside of a polymer coil where the background flow velocity is much

larger than the velocity inside the polymer coil; [52–54] the justification of applying

this analysis to the present case of grafted PE molecules is that the PE molecules

(just like the polymer coil), being grafted, will have a velocity that is much smaller

than the background velocity.

Eq.(3.19) can be expressed in dimensionless form as:

d2ū

dȳ2
+

ur
2λ̄2

ĒS[exp(−ψ̄)− (1 + n̄H+,∞) exp(ψ̄)− n̄OH−,∞ exp(ψ̄)

+n̄H+ ]− ᾱ2ϕ2ū = 1
[
−1 ≤ ȳ ≤ −1 + d̄

]
,

d2ū

dȳ2
+

ur
2λ̄2

ĒS[exp(−ψ̄)− (1 + n̄H+,∞) exp(ψ̄)− n̄OH−,∞ exp(ψ̄)

+n̄H+,∞ exp(−ψ̄)] = 1
[
−1 + d̄ ≤ ȳ ≤ 0

]
.

(2.16)
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In eq. (2.16), ū = u
up,0

(where up,0 = h2

η
dp
dx

is pressure-driven velocity scale), ur =

ue,0
up,0

(where ue,0 = kBT
ez

ε0εrE0

η
is the electroosmotic velocity scale; E0 is the scale of

the electric field), ĒS = ES

E0
, and ᾱ = h

b
√
η
. Please note that eq.(2.16) uses the

eqs.(2.7,2.8,2.9) to express the ion distributions. Solution of eq.(2.16) is sought in

presence of the following dimensionless boundary conditions:

(
dū

dȳ

)
ȳ=−1

= 0;

(
dū

dȳ

)
ȳ=0

= 0;

(ū)ȳ=(−1+d̄)+ = (ū)ȳ=(−1+d̄)− ;(
dū

dȳ

)
ȳ=(−1+d̄)+

=

(
dū

dȳ

)
ȳ=(−1+d̄)−

.

(2.17)

Of course, the solution of ū requires the value of the ĒS. Calculation of ĒS is dis-

cussed in the following subsection.

2.2.3 Calculation of the Streaming electric field ES

To obtain ES, we consider that the net ionic current (per unit width) i is equal

to zero, i.e.,

i = 2e

∫ 0

−h
(u+n+ − u−n− + uH+nH+ − uOH−nOH−) dy = 0, (2.18)

where ui (i = ±, H+, OH−) is the ion migration velocity, expressed as:

ui = u+
eziES
fi

. (2.19)
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Here fi is the ionic friction coefficient for ion i. Using eqs.(2.7,2.8,2.9,2.19) in eq.(2.18),

we finally obtain the dimensionless streaming electric field as:

ĒS =

∫ 0

−1
ū
[
− exp(−ψ̄) + (1 + n̄H+,∞) exp(ψ̄)− n̄H+ + (n̄OH−,∞) exp(ψ̄)

]
dȳ

ur
∫ 0

−1
[R+ exp(−ψ̄) +R−(1 + n̄H+,∞) exp(ψ̄) +RH+n̄H+ +ROH−(n̄OH−,∞) exp(ψ̄)]dȳ

,

(2.20)

where Ri =
e2z2i η

ε0εrkBTfi
is a dimensionless parameter, often interpreted as the inverse

of the ionic Peclet number [48]. Please note that for the case where the electrolyte

ion number density (n∞) is much larger than the number density of H+ and OH−

ions (i.e., n̄H+ =
nH+

n∞
� 1, n̄H+,∞ =

nH+,∞
n∞

� 1, and n̄OH−,∞ =
nOH−,∞
n∞

), eq.(2.20)

reduces to:

ĒS =
2

ur

∫ 0

−1
ū sinh (ψ̄)dȳ

R+

∫ 0

−1
exp (−ψ̄)dȳ +R−

∫ 0

−1
exp (ψ̄)dȳ

. (2.21)

We have obtained this exact same form of the streaming potential in our previous

paper, [19] where we did not consider the effect of the H+ and OH− ions.

Since we do not have an explicit expression for ū, eq.(2.20) will imply that in order to

obtain the velocity field ū by using eq.(2.16), one needs to solve an integro-differential

equation in ū. In other words, since ĒS appearing in eq.(2.16) is expressed by using

eq.(2.20), the result is an integro-differential equation in ū. Calculation of the stream-

ing electric field by solving such an integro-differential equation was first performed

by us in one of our recent studies; [19] in that study, [19] we computed the streaming

electric field in a PE-grafted nanochannel with large constant charge densities (large

enough to invalidate the use of Debye-Hückel linearization). In the present study,

we address a much more complete problem, where this charge density is assumed

to be pH-dependent, which in turn necessitates consideration of H+ and OH− ions
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in the EDL ion distribution and enforces a particular distribution of the chargeable

monomers of the PE molecule. It is worthwhile to note here that solution of such

integro-differential equation is necessitated by the fact that it is not possible to express

ū as an explicit combination of the pressure-gradient and the electrostatic potential

distribution ψ̄; while such explicit formulation is standard for nanochannels without

the PE grafting, [48–51] for nanochannels with PE grafting it is possible only for

the special case of PE with constant pH-independent small charge densities (which

allows the use of Debye-Hückel linearization). [13] This integro-differential equation

is solved numerically in presence of the boundary conditions expressed in eq.(3.22).

This numerical treatment requires application of a suitable iteration procedure; the

starting guess profile of the iteration is typically the ū profile obtained for the an-

alytical case in our previous study. [13] Once ū has been obtained by solving this

integro-differential equation, we can use eq.(2.20) to obtain ĒS, given the fact that

we already know the distribution of ψ̄ and n̄H+ .

2.2.4 Calculation of efficiency of the electrochemomechanical energy

conversion

Generation of the nanofluidic streaming current (iS) and the streaming electric

field (ES) is a process of nanoscale electrochemomechanical energy conversion, [36,37]

since the mechanical energy of the pressure-driven flow and the chemical energy of

the EDL are converted to the electrical energy associated with the generation of iS
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and ES. This efficiency ξ of this energy conversion can be expressed as:

ξ =
Pout
Pin

. (2.22)

Here Pin and Pout are the input and the output powers (per unit area), expressed as:

Pout =
1

4
iSES,

Pin =

∣∣∣∣−dpdx
∣∣∣∣Qin. (2.23)

Here

iS = 2e

∫ 0

−h
u (n+ − n− + nH+ − nOH−) dy, (2.24)

and Qin is the the input volume flow rate per unit width, expressed as:

Qin = 2

∫ 0

−h
updy, (2.25)

Here up is the pure pressure-driven velocity field expressed as up = − dp
dx

h2

2η

(
1− y2

h2

)
.

Using eqs.(2.7,2.8,2.9,3.28,3.29,3.31) in eq.(3.27), we can finally express ξ as:

ξ = ur ×∫ 0

−1
ū
[
exp(−ψ̄)− (1 + n̄H+,∞) exp(ψ̄) + n̄H+ − (n̄OH−,∞) exp(ψ̄)

]
dȳ

8λ̄2
∫ 0

−1
ūpdȳ

(2.26)

where ūp = up/up,0. It is worthwhile to note here that this efficiency is calculated

based on the actual input flow rate. There are examples, where the efficiency has

been calculated based on the reduced flow rate, caused by the generation of the

streaming-electric-field-induced electroosmotic transport that opposes the pressure-

driven transport. [55, 56] Such a consideration leads to an artificial increase of the
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efficiency, which is incorrect. Rather, this efficiency should always be calculated based

on the input power and the input velocity as has been done by Daiguji et al. [36] as

well as our previous study. [13]

2.3 Results

Figure 2.2 demonstrates the pH and the pKa dependences of the dimensionless

streaming electric field (ĒS) and the energy conversion efficiency ξ. Prior to discussing

these dependences, we first discuss the corresponding dependence of the transverse

variation of the dimensionless electrostatic potential (ψ̄) on these parameters. We

have provided this result on electrostatic potential in our previous studies; [1, 16]

we repeat it here in order to better explain the nature of variation of ĒS and ξ.

Enhancement of the bulk pH (or pH∞), which implies a decrease in the concentration

of the H+ ions in the bulk will favour the forward reaction of the reaction HA↔ H++

A−; consequently, there will be an enhanced ionization and hence enhanced charging

of a grafted PE molecule. This enhanced charging ensures an enhanced magnitude

of the EDL electrostatic potential; consequently, for larger pH∞, ψ̄ demonstrates a

more enhanced magnitude at a given transverse location and for a given pKa [see

Figure 2.2(a)]. On the contrary, an enhanced pKa will imply a smaller value of the

ionization constant Ka (of the acid HA), which in turn will lower the concentration

of A− and hence lower the charging of the PE layer. As a result for larger pKa,

ψ̄ shows a reduced value for a given pH∞ and for a given transverse location [see

Figure 2.2(a)]. It is worthwhile to note that there is a finite electrostatic potential
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Figure 2.2: Transverse variation of (a) dimensionless electrostatic potential ψ̄ and

(b) dimensionless velocity field ū for different values of pKa and pH∞. Variation of

(c) dimensionless streaming electric field ĒS and (d) electrochemomechanical energy

conversion efficiency ξ with pH∞ for different values of pKa. For all plots we use

h = 100nm, c∞ = 10−4M (note n∞ = 103NAc∞, where NA is the Avogadro number),

d̄ = 0.3, γa = 0−4M ,ur = 1, α = 1, Ri = 1, and Na3σ/d = 1.
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Figure 2.3: Transverse variation of (a) dimensionless electrostatic potential ψ̄ and

(b) dimensionless velocity field ū for different values of c∞ and pH∞. Variation of

(c) dimensionless streaming electric field ĒS and (d) electrochemomechanical energy

conversion efficiency ξ with pH∞ for different values of c∞. For all plots we use

h = 100nm, d̄ = 0.3, γa = 0−4M ,ur = 1, α = 1, pKa = 4, Ri = 1, and Na3σ/d = 1.
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Figure 2.4: Transverse variation of (a) dimensionless electrostatic potential ψ̄ and (b)

dimensionless velocity field ū for different values of d̄ = d/h and pH∞. Variation of

(c) dimensionless streaming electric field ĒS and (d) electrochemomechanical energy

conversion efficiency ξ with pH∞ for different values of c∞. For all plots we use

h = 100nm, c∞ = 10−4 M , γa = 0−4M , ur = 1, α = 1, pKa = 4, Ri = 1, and

Na3σ/d = 1.
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at the channel centreline for all values of for pH∞ and d/h. This stems from the

fact that the corresponding EDL thickness (λ) is ∼ 30 nm (since c∞ = 10−4); hence

λ/h ≈ 1/3, ensuring significant (though weak) value of the electrostatic potential

at the channel centreline. For weak values of electrostatic potentials (|ψ̄| < 1 or

|ψ̄| ∼ 1), increase in the electrostatic potential enhances the streaming current. This

stems from the fact that for such ranges of the electrostatic potential, increase in the

counterion concentration caused by an increase in the magnitude of the electrostatic

potential invariably increases the streaming electric field. [48,49] For larger values of

the electrostatic potentials (|ψ̄| � 1), the enhancement of counterion concentration

(on account of increase of the electrostatic potential) may lead to a more pronounced

enhancement of the conduction current, which in turn may decrease the streaming

electric field. [48,49] In the present case, |ψ̄| is substantially small; as a consequence,

increase in |ψ̄| increases ĒS. Hence we witness an increase in ĒS with an increase in

pH∞ and a decrease in pKa [see Figure 2.2(c)]. Therefore, enhancement of ĒS with

pH∞ is caused by an enhanced charging (for reasons already discussed) of the PE layer

and an equivalent enhanced magnitude of the electrostatic potential. Of course, such

pH∞-dependent enhancement in ĒS is witnessed only when the corresponding H+

ion concentration is comparable to the corresponding electrolyte ion concentration;

therefore, we find [see Figure 2.2(c)] at larger pH∞ (=6) ĒS starts to saturate and

shows relatively weak increase with pH∞. Enhanced magnitude of the streaming

electric field will lead to a larger magnitude of the electroosmotic transport opposing

the pressure-driven flow field; consequently, the magnitude of ū is smaller at a given

transverse location for a larger pH∞ and smaller pKa [see Figure 2.2(b)]. Please note
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that here ū = u/up,0 < 0 implies a positive value of u, since up,0 is negative [see below

eq.(2.16) for the definition of up,0] This is commensurate with ĒS = ES/E0 > 0, which

implies ES < 0, since E0 < 0 [see below eq.(2.16) for the definition of E0]. Finally,

in Fig. 2(d), we show the variation of the electrochemomechanical energy conversion

efficiency ξ; enhancement of ξ with an increase in pH∞ and a decrease in pKa follows

directly from the corresponding variation of the streaming current and the streaming

electric field.

Figure 2.3 provides the pH and the electrolyte concentration (c∞) dependence

of the ĒS and ξ. The pH dependence has already been discussed in details. Weaker

concentration of the electrolyte salt leads to a more enhanced value of the EDL

thickness λ, since λ ∝ 1/
√
c∞. Enhanced λ will imply a weaker screening of the

EDL electrostatic potential (on either sides of the PE-layer-EDL interface), thereby

ensuring an enhanced magnitude of ψ̄ for a smaller c∞ value [see Figure 2.3(a)]. This

also implies a much larger magnitude of the channel centreline electrostatic potential

for smaller c∞. Consequently, following the discussions provided for Figure 2.2, we

may infer that an enhanced c∞ leads to an enhanced ĒS [for a given pH∞, see Figure

2.3(c)], a weakened magnitude of ū [for a given transverse location and for a given

pH∞, see Figure 2.3(b)], and an enhanced electrochemomechanical energy conversion

efficiency [for a given pH∞, see Figure 2.3(d)].

Finally, Figure 2.4 shows the effect of the pH and the PE layer thickness on

ĒS and ξ. Enhanced d̄ = d/h (or PE layer thickness) will imply larger number of

the PE charges, which in turn will lead to a larger value of ψ̄ [see Figure 2.4(a)].

Such dependence of ψ̄ on d̄ has been previously reported by us. [13] Such enhanced
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ψ̄ ensures that increase in d̄ enhances ĒS [for a given pH∞, see Figure 2.4(c)], lowers

the magnitude of ū [for a given transverse location and for a given pH∞, see Figure

2.4(b)], and increases the electrochemomechanical energy conversion efficiency [for a

given pH∞, see Figure 2.4(d)].

Comparison of Figures 2.2-2.4 will allow selection of the appropriate parameter

space that will enable electrochemomechanical energy conversion of maximum effi-

ciency. We find that we obtain a efficiency value of around 4−5% for optimal choices

of system parameters [e.g., please see Figure 2.4(d)]. This is a significantly high num-

ber given the 3% efficiency value reported in pioneering experiments of Daiguji et

al. [36] We shall like to mention here that our results should not be compared with

the several theoretical results that report an efficiency of nearly 100%. [55, 56] The

reason is that these high efficiency values result from erroneous definition of the in-

put power, where the input velocity is considered as the velocity reduced due to the

impact of the streaming electric field.

Our theoretical calculations proposed here can be used to show that by pump-

ing a weak acid electrolyte solution (c∞ = 10−5M and pH = 6) with 5 bar pressure

continuously into PE-grafted nannochannels (with the channel height of h = 100nm)

that constitute a 1cm×1cm porous material (with the thickness of 1mm and a high

porosity ratio of 60%), a 5 watt electrical power (sufficient to light up an LED lamp)

can be generated, provided the supposed technical issues related to e.g. electrode

polarization and pressure resistance can be overcome.
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2.4 Discussions

2.4.1 Comparison with experimental results

We compare our theoretical predictions with the experimental results of Zim-

merman, Duval and co-workers. [23,57,58] These comparisons also provide a validity

of our proposed theoretical model. Comparisons are done for the variation of the

streaming current (iS) as a function of the pH and the salt concentration. While we

do not attempt a direct quantitative comparison, we do find the exact same trend in

the theoretical prediction of iS as compared to the experimental findings. For exam-

ple, our theory predicts first an increase and then a saturation in iS with an increase

in salt concentration for a given pH and given a pKa [see Figure 2.5(a)]. Exactly

similar findings are obtained from the experiments on streaming currents conducted

at the interfaces grafted with poly(ethylene oxide) or PEO brushes and a hydrogel

layer. Our theory also predicts a monotonic increase in the magnitude of the neg-

ative value of iS with pH (pH always in the acidic range and not too small) [see

Figure 2.5(b)]. Qualitatively exactly similar results are obtained from experiments

on interfaces grafted with PEO brushes.

2.4.2 Comparison with findings of existing theoretical studies

It is worthwhile to compare the findings of this study in light of the results

from the existing theoretical studies. [23,24,57–60] There are several aspects in which

this study and its results are distinct in comparison to that of the existing similar
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theoretical calculations. First and foremost, the analysis in this study is unique in the

sense it solves an integro-differential equation to obtain the nanochannel streaming

potential. Such an approach has only been used once ever before in one of our previous

studies. [19] Secondly, the calculations are provided for nanochannels; therefore PE

brushes are nanoconfined PE brushes, which are unlike the PE brushes grafted to

single interfaces [57] or surfaces of microchannels. [23, 24, 60] Thirdly, we provide

results that depict the competitive interplay between pH, pKa, ion concentration

and PE brush thickness relative to the nanoconfinement in the overall variation of

the streaming potential. Such explicit roles of pKa and relative thickness of the PE

brushes have rarely been identified in context of nanoscale streaming potential in

soft nanochannels. Finally, we provide the energy conversion efficiency in such pH-

responsive soft nanochannels; such a thing has also never been reported previously.

2.4.3 Selection of the thickness of the PE brush layer: Choice of cubic

monomer profile

One of the key issues associated with the PE or polymer brushes is the selection

of the appropriate monomer distribution. This distribution depends on the nature of

the polymer or PE chain, the nature of the solvent, the concentration of the polymer

in the solvent, etc. Nature of the polymer chain dictates whether or not one can

neglect the chain correlations. For cases where such correlations cannot be neglected,

a self-consistent-field-theory (SCFT) has been proposed for uncharged polymer chains

yielding quadratic profile for the monomer distribution for mono-disperse chains [61,
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62] and a deviation from this quadratic profile for poly-disperse chains (with the poly-

dispersity being triggered by the presence of heterogeneities in the chain lengths).

[57, 63] While this self-consistent field theory is the most appropriate representation

of the brush monomer profile, it suffers from a key limitation. This limitation is that

either of these two profiles (quadratic or the profile that is slightly deviated from it) is

based on the assumption that the correlations between the polymer chain segments is

represented as binary collisions. Therefore this simplistic profile is not an appropriate

representation of the case where the polymer contains backbone charges (i.e., it is a

PE), triggering an EDL-mediated interaction between the segments. In fact, it is

rather recently that there have been attempts to study the profiles of PE brushes

using this SCFT framework with appropriate consideration of the PE charges and

the resulting EDL ion distribution. [64–67] However, barring only one study by Witte

et al., [64] virtually none of these studies account for pH-dependent charge density

of the PE brushes. Also this study by Witte et al. does not provide the explicit

variation of the monomer density profile as a function of pH, neither does it account

for the pH-dependent charging explicitly in expressing the electrostatic contribution

of the PE charge in the overall Hamiltonian. These limitations of the SCFT can be

typically associated with the extreme complexities of the governing equations that

necessitate employing an extremely tedious numerical approach, often forbidding the

incorporation of novel physical issues associated with the nature of charging of the

PE.

A much more tractable and simplified approach involves cases where one disre-

gards the correlation effects between the segments of the PE brush. Such a situation
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is possible if one considers the PE brushes as Gaussian chain (where there are no

chain-chain correlations) or operates in a specified phase space where these correla-

tions can be neglected even for real chains. [61,68,69] For such cases, an analytically

tractable mean field approach, often known as the Strong stretching Theory or SST,

is proposed by the works of Zhulina and co-workers. [10, 39, 40] This approach pro-

poses a monomer density profile of the form
√
A+By2 + C for uncharged polymer

brushes. [10] Of course, this approach allows for a much easy incorporation of the

PE charge, effect of pH-dependence of this charge, and the resulting distribution of

the electrolyte ions forming the EDL. Typical monomer density profiles are combina-

tions of quadratic and exponential profiles. [40] A simplified version of this model by

Zhulina and co-workers is the well-known Scheutjens-Fleer model [70, 71] that sub-

stantially simplifies the description of the EDL electrostatics by resorting to replace

the Poisson-Boltzmann description by a description based on the net electroneutrality

of the system. Therefore, the expected state of the art in modelling the monomer

distribution of grafted PE brushes is either the more rigorous (and only tractable

numerically) SCFT for PE chains (that may not be suitable to unravel the impact

of pH-dependent PE charge density on the monomer profile), or the more tractable

SST that seems more apt to incorporate the specifics of pH-dependence of PE charge

density.

Given that we are interested to analyze the case of PE brushes with pH-

dependent charge density, it is more logical to focus on the SST theory of Zhulina

and co-workers, since this is the only existing mean field theory that has so far been

able to quantify the effect of pH-dependent charge density on the overall monomer
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distribution. [40] In our recent study, [16] we discovered a major issue with the SST

theory in context of modelling the electrostatics for the case of PE brushes with pH-

dependent charge density. It stemmed from the fact that the hydrogen ion distribution

was always assumed to obey Boltzmann distribution both inside and outside the PE

layer. As we demonstrated in theory section as well as in the detailed derivation in

the Appendix section, such a consideration is incorrect and provides an energetically

inconsistent picture, since the free energy is not minimized with respect to H+ ion

concentration. We did this minimization with respect to H+ ion concentration; these

new equations are the appropriate free energy representation of the problem, since

the free energy has been minimized with respect to all the governing variables. Now

the resulting equations are such that they need to be coupled with a particular kind of

monomer distribution ϕ(y) that simultaneously ensure the four conditions illustrated

in eqs.(12,13); this is possible with the non-unique cubic monomer profile.

There is a major assumption in our analysis (which yields this cubic monomeric

distribution). This assumption is that the PE thickness is independent of the elec-

trostatic effects. This is possible when ∆FPE,elec �
(
∆FPE,ent + ∆FPE,EV

)
, or

∆FPE,elec �
(
∆FPE,ent + ∆FPE,EV

)
. Under such conditions (satisfied by σ � 1/(at)

or σ � 1/(at), where σ is the grafting density, a is the PE Kuhn length, t is

the PE thickness), [1] the electrostatic energy of the PE brush and the resulting

EDL balances each other, and this in turn dictates the electrostatics of the prob-

lem. Therefore, this cubic monomer distribution is the distribution of the chargeable

sites of the PE brushes. This implies that if we have a situation where ∆FPE,elec �(
∆FPE,ent + ∆FPE,EV

)
or ∆FPE,elec �

(
∆FPE,ent + ∆FPE,EV

)
and the PE exhibits
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a pH-dependent charge density, the PE chargeable sites must demonstrate a non-

unique cubic distribution. It is evident that this is a simplified approach. A more

rigorous approach should necessitate solution of the SST considering the elastic, ex-

cluded volume, and electrostatic energy of the PE brush molecule as well as the EDL

energy with the consideration of explicit H+ ions (or in other words, the free energy

should be minimized with respect to the H+ ion number density distribution). Such a

formulation is missing in the existing literature, and we plan to take it up in a future

problem. Of course, the ultimate calculation should be the SCFT modelling (with

finite correlation effects) of the PE brush molecule with explicit consideration of the

H+ ions. Such a step will provide the final answer in context of the configuration and

the monomer distribution of a PE brush with pH-dependent charge density.

2.5 Conclusion

In this paper, we provide a theory to calculate the streaming electric field and the

efficiency of the resulting electrochemomechanical energy conversion in a nanochannel

grafted with a PE molecules with pH-dependent charge density. Our analyses, based

on appropriate free energy description of the problem as well as solution of a rigorous

integro-differential equation, provide new insights to the role of the bulk pH and the

pKa of the dissociating acid (which charges the PE layer) in the streaming electric

field and the energy conversion. We establish that the energy conversion efficiency

can be substantially high (∼ 4 − 5%) for optimum parameter choices; this finding

emboldens our previous studies, [13, 19] and establishes PE-grafted nanochannels as
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efficient nanfluidic electrochemomechanical energy converted under most practical

conditions.

.1 Appendix: Derivation of the governing equations

The free energy can be expressed as:

∆F ′ =

∫
∆f [ψ, n±, nH+ , nOH− ] d3r, (.1.1)

where ∆f is the free energy density, expressed as (written in expanded form and using

eq.(6) to express nA−):

∆f = −ε0εr
2
|∇ψ|2 + eψ(n+ − n−) + eψ(nH+ − nOH−)− e K ′aγaϕ

K ′a + nH+

ψ

+kBT [n+(ln (
n+

n+,∞
)− 1) + n−(ln (

n−
n−,∞

)− 1) + nH+(ln (
nH+

nH+,∞
)− 1)

+nOH−(ln (
nOH−

nOH−,∞
)− 1)] [for − h ≤ y ≤ −h+ d],

∆f = −ε0εr
2
|∇ψ|2 + eψ(n+ − n−) + eψ(nH+ − nOH−) + kBT [n+(ln (

n+

n+,∞
)

−1) + n−(ln (
n−
n−,∞

)− 1) + nH+(ln (
nH+

nH+,∞
)− 1) + nOH−(ln (

nOH−

nOH−,∞
)− 1)].

[for − h+ d ≤ y ≤ 0]

The equilibrium conditions will be obtained by minimizing eq.(.1.2) with respect to

ψ, n+, n−, nH+ , nOH− . Below we discuss this minimization procedure in details.
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Minimizing with respect to ψ yields:

δ(∆F ′)

δψ
= 0⇒ ∂(∆f)

∂ψ
− d

dy
(
∂(∆f)

∂ψ′
)

⇒ d2ψ

dy2
=
−e(n+ − n−) + e K′aγaϕ

K′a+nH+
− e(nH+ − nOH−)

ε0εr

[for − h ≤ y ≤ −h+ d],

δ(∆F ′)

δψ
= 0⇒ ∂(∆f)

∂ψ
− d

dy
(
∂(∆f)

∂ψ′
)

⇒ d2ψ

dy2
=
−e(n+ − n−)− e(nH+ − nOH−)

ε0εr

[for − h+ d ≤ y ≤ 0].

(.1.2)

Minimizing with respect to n± yields:

δ(∆F ′)

δn±
= 0⇒ n± =

(
n±,∞

)
exp

(
∓ eψ

kBT

)
[for y ≥ −h]. (.1.3)

Minimizing with respect to nOH− yields:

δ(∆F ′)

δnOH−
= 0⇒ nOH− =

(
nOH−,∞

)
exp

(
eψ

kBT

)
[for y ≥ −h]. (.1.4)

Minimizing with respect to nH+ yields:

δ(∆F ′)

δnH+

= 0⇒ nH+ =
(
nH+,∞

)
exp

− eψ

kBT

(
1 +

K ′aγaϕ

(K ′a + nH+)2

)
[for − h ≤ y ≤ −h+ d],

δ(∆F ′)

δnH+

= 0⇒ nH+ =
(
nH+,∞

)
exp

(
− eψ

kBT

)
[for − h+ d ≤ y ≤ 0]. (.1.5)

Eqs. (7-9) are the dimensionless forms of eqs.(.1.3,.1.4,.1.5). Eq.(.1.5) establishes that

nH+ distribution within the PE layer deviates from that predicted by the Boltzmann

partitioning. This stems from the fact that the pH-dependent charge density of the
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PE induces a particular kind of nH+-dependent term in the free energy functional.

In virtually all the previous studies on mean field modelling of the electrostatics of

grafted PE layer with pH-dependent PE charge density, while this term was included

in the free energy density, the hydrogen ion equilibrium was not obtained by min-

imizing this free energy density with respect to nH+ ; rather in a most ad hoc and

erroneous fashion it was assumed to obey the Boltzmann distribution. Please note

that we do recover the Boltzmann distribution for H+ ion concentration outside the

PE layer and for OH− ion in the entire system. Of course, we shall have OH− ions

deviating from Boltzmann distribution for cases where the PE is positively charged

and demonstrate a pOH-dependent charge density; for that case the H+ ion will obey

the Boltzmann distribution in the entire system. To summarize, therefore, this devi-

ation of H+ ion concentration from the Boltzmann distribution occurs by virtue of

the fact that the PE layer demonstrate pH-dependent charging, and the equilibrium

H+ ion concentration must be obtained (something that, most erroneously, has not

been done by other researchers) from minimization of the free energy change with

respect to nH+ .
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Chapter 3: Electrokinetics in nanochannels grafted with poly-

zwitterionic brushes

In this chapter,1 the electrokinetic transport in soft nanochannels grafted with

poly-zwitterionic (PZI) brushes. The transport is induced by an external pressure

gradient, which drives the ionic cloud (in the form of an electric double layer or EDL)

at the brush surfaces to induce an electric field that drives an induced electroosmotic

transport. We characterize the overall transport by quantifying this electric field,

overall flow velocity, and the energy conversion associated with the development of

the electric field and a streaming current. We specially focus on how the ability of

the PZI to ionize and demonstrate a significant charge at both large and small pH

can be efficiently manoeuvred to develop a liquid transport, an electric field, and an

electrokinetically induced power across a wide range of pH values.

1Contents of this chapter have been published as: G. Chen, J. Patwary, H. S. Sachar, and S.

Das, Electrokinetics in nanochannels grafted with poly-zwitterionic brushes. Microfluid. Nanofluid.

(Submitted)
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3.1 Introduction

Functionalizing nanoscale interfaces (e.g., walls of a nanochannels or the surfaces

of nanoparticles) with polymer and polyelectrolyte (PE) brushes [2–6, 33] have been

extensively used for a myriad of applications such as targeted drug delivery [72, 73],

oil recovery [74], ion and biosensing [75–79], current rectification [80], fabrication of

nanofluidic diodes [81, 82] and nanoactuators [83], and many more. The central idea

that drives most of these applications is how the brushes respond to the environ-

mental stimuli (e.g., local pH, salt concentration, temperature, etc.) and regulate

the transport of different species. Under these conditions, there have been significant

efforts in studying the ion and liquid transport in nanochannels or nanopores grafted

with PE brushes that are pH-responsive [1, 18,41,75,76,84–95].

Polyzwitterion (PZI) is a particular type of PE that contains both negative and

positive sites [96]. These sites typically ionize as a function of the local pH; however,

the extent of ionization of the positive and the negative sites are different at differ-

ent pH. Therefore, at a given pH the PZI is either negatively or positively charged.

The PZI molecules have been extensively employed in a large number of applications,

such as the fabrication of “smart” materials with environmental-stimuli-responsive

switchable properties [97], sub-surface imaging and oil recovery [98], capturing chem-

ical moieties [99], drug delivery [100], biomacromolecular separation [101], removal

of organic pollutants [102], use as heterogeneous catalysts [103], and many more. In

this paper, we study the electrohydrodynamics in a nanochannel grafted with such

PZI molecules existing in a “brush” like state. There have been significant previous
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efforts where interfaces grafted with such PZI brushes have been used for a variety of

applications such as triggering extreme lubrication [104, 105], reversible switching of

the surface wettability [106, 107], inducing repeatable adhesion [108], fabrication of

anti-fouling surfaces [109], regulating ion selectivity in nanopores [110], etc. But this

is for the first time that its effect in electrohydrodynamics and electrokinetic energy

conversion in a brush-grafted nanochannel is being probed.

Figure 3.1: Schematic showing the pressure-driven transport and induced electric field

in a PZI-brush grafted nanochannels. The PZI brush is positively charged for small

pH (pH∞ < 7) [see (a)] and negatively charged for large pH (pH∞ > 7) [see (b)],

leading to the generation of a positive streaming potential [see (a)] and a negative

streaming potential [see (b)].
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Our paper provides detailed calculations of the pH-responsive electric double

layer electrostatics and how that electrostatics regulates the flow and the overall elec-

trokinetics in presence of an externally imposed pressure-driven transport. We calcu-

late the electric field induced by this pressure-driven transport and how this electric

field and the induced streaming current couple to generate an electrokinetic power.

This power generation is an example of electrochemomechanical energy conversion

and has been touted as one of the key applications of nanochannel electrokinetic

transport [13, 19, 36, 37, 84, 111–113]. Here we establish that working with the PZI

brush allows for the generation of the large electrokinetic power across a wide range

of pH (i.e., for both large and small pH). In other words, this paper points to a

new design information in the context of electrokinetic power generation in soft or

PE-brush-grafted nanochannels – a single design allows the flexibility of generating

electrokinetic power across a wide spectrum of pH, which is not possible for brush-free

nanochannels [36, 37, 112, 113] or nanochannels grafted with the PE (and not PZI)

brushes [84].

3.2 Theory

3.2.1 Electrostatics

We consider a pressure-driven transport in a nanochannel of height 2h and

grafted with a layer of PZI brushes of constant height d (with d < h) (see Figure 3.1).

In order to obtain the overall transport, we would have to first get the electrostatics

of the EDL induced by the brushes. Considering the bottom half of a nanochannel
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(i.e., −h ≤ y ≤ 0), the free energy functional dictating the EDL electrostatics can be

expressed as:

F =

∫
f [ψ, n±, nH+ , nOH− ] d3r, (3.1)

where ψ is the electrostatic potential, ni is the number density of the ion i (i =

±, H+, OH−) and f is the free energy density expressed as:

f = kBT [n+(ln (
n+

n+,∞
)− 1) + n−(ln (

n−
n−,∞

)− 1) + nH+(ln (
nH+

nH+,∞
)− 1)

+ nOH−(ln (
nOH−

nOH−,∞
)− 1)]− ε0εr

2
|∇ψ|2 + eψ(n+ − n− + nH+ − nOH− − ϕnA− + ϕnBH+)

[for − h ≤ y ≤ −h+ d],

f = kBT [n+(ln (
n+

n+,∞
)− 1) + n−(ln (

n−
n−,∞

)− 1) + nH+(ln (
nH+

nH+,∞
)− 1)

+ nOH−(ln (
nOH−

nOH−,∞
)− 1)]− ε0εr

2
|∇ψ|2 + eψ(n+ − n− + nH+ − nOH−)

[for − h+ d ≤ y ≤ 0].

(3.2)

In eq.(3.2), kBT is the thermal energy, e is the electronic charge, ε0 is the permit-

tivity of free space, εr is the relative permittivity of the medium, e is the electronic

charge, ni,∞ is the bulk number density of the ions i (i = ±, H+, OH−) and ϕ is

the dimensionless distribution of the PZI chargeable sites (PZICS) of a given brush

molecule. The brush being a PZI brush, the PZICS will simultaneously consist of a

negative charge centre and a positive charge centre. The formation of the negative

charge centre can be attributed to the ionization of an acidic functional group HA

(HA ↔ H+ + A−; ionization constant Ka having the units of moles/liter) yielding

A− ions. On the other hand, the formation of the positive charge centre can be at-

tributed to the ionization of a basic functional group B (B + H2O ↔ BH+ + OH−;
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ionization constant Kb having the units of moles/liter) yielding BH+ ions. Under

these conditions the number densities (in units of 1/m3) of the ionic groups of the

PZI molecule (namely nA− and nBH+) can be expressed as:

nA− =
K ′aγa

K ′a + nH+

, (3.3)

nBH+ =
K ′bγb

K ′b + nOH−
, (3.4)

where γa and γb are the maximum site densities of acidic and basic functional groups

of the PZI, K ′a = 103NAKa, and K ′b = 103NAKb (NA is the Avogadro number). Of

course eqs.(3.2-3.4) show the dependence of the overall problem on the pH of the

system.

The equilibrium electrostatic potential and the concentration distribution of different

ions can be obtained by minimizing F . Minimizing F with respect to ψ, we get

(considering only the bottom half of the nanochannel):

δF
δψ

= 0⇒ ∂f
∂ψ
− d

dy

(
∂f
∂ψ′

)
⇒ d2ψ

dy2
=

e(n−−n++nOH−−nH++ϕnA−−ϕnBH+)
ε0εr

[for − h ≤ y ≤ −h+ d],

δF
δψ

= 0⇒ ∂f
∂ψ
− d

dy

(
∂f
∂ψ′

)
⇒ d2ψ

dy2
=

e(n−−n++nOH−−nH+)
ε0εr

[for − h+ d ≤ y ≤ 0]. (3.5)

Minimizing F with respect to n±, nH+ and nOH− , we get the expression of the ion
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distributions:
δF

δn±
= 0⇒ n± =

(
n±,∞

)
exp

(
∓ eψ

kBT

)
[for y ≥ −h],

(3.6)

δF
δnOH−

= 0⇒ nOH− =
(
nOH−,∞

)
exp

[
eψ
kBT

(
1 + ϕ

K′bγb

(K′b+nOH−)
2

)]
[for − h ≤ y ≤ −h+ d],

δF
δnOH−

= 0⇒ nOH− =
(
nOH−,∞

)
exp

(
eψ
kBT

)
[for − h+ d ≤ y ≤ 0]. (3.7)

and

δF
δnH+

= 0⇒ nH+ =
(
nH+,∞

)
exp

[
− eψ
kBT

(
1 + ϕ K′aγa

(K′a+nH+)
2

)]
[for − h ≤ y ≤ −h+ d],

δF
δnH+

= 0⇒ nH+ =
(
nH+,∞

)
exp

(
− eψ
kBT

)
[for − h+ d ≤ y ≤ 0]. (3.8)

Here n±,∞ are the bulk number density of the electrolyte ions, nH+,∞ = 103NA10−pH∞

is the bulk number density of hydrogen ions (pH∞ is the bulk pH), nOH−,∞ =

103NA10−pOH∞ (pOH∞ is the bulk pOH) is the bulk number density of the hy-

droxide ions and pH∞ + pOH∞ = 14. The bulk number densities are the number

densities of the ions in the microchannel reservoirs (where ψ = 0) connecting the

nanochannel [114–116]. Solution of ψ can be obtained by first using eqs.(3.6,3.7,3.8)

to replace the ion number densities appearing in eq.(3.5), and then solving the re-

sultant differential equation in ψ in presence of the boundary conditions expressed
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below:

(
dψ

dy
)y=0 = 0, (ψ)y=(−h+d)+ = (ψ)y=(−h+d)− , (

dψ

dy
)y=(−h+d)+ = (

dψ

dy
)y=(−h+d)− ,

(
dψ

dy
)y=−h = 0.

(3.9)

The critical thing to note here is that this differential equation in ψ will also contain

the unresolved expression for nH+ and nOH− ; this stems from the fact that while the

expressions for the number densities of n± are explicit in ψ [see eqs.(3.6,3.7)], nH+

and nOH− are implicit in ψ [see eq.(3.7,3.8)]. Therefore, we shall have a set of equa-

tions for ψ, nH+ , and nOH− that will be needed to be solved simultaneously. Finally,

we would like to point out that this coupled solution of ψ and nH+ as well as ψ and

nOH− will require the information on the distribution of ϕ = ϕ(y). We shall discuss

this choice of ϕ(y) later.

PZI brush layer in an acidic solution

We first consider the PZI brush layer dissociation in an acidic solution. We con-

sider that the acid furnishes the same anion as the salt. As a consequence, the bulk

number density of the salt anion will be n∞ + nH+,∞. Under this condition, we

can non-dimensionalize eqs.(3.7,3.8) as well as the equation that results from using
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eqs.(3.6,3.7,3.8) to replace the ion number densities in eq.(3.5) to yield:

d2ψ̄

dȳ2
=

1

2λ̄2
[n̄− − n̄+ + n̄OH− − n̄H+ + ϕn̄A− − ϕn̄BH+ ] [for − 1 ≤ ȳ ≤ −1 + d̄]

=
1

2λ̄2

[(
1 + n̄H+,∞

)
exp

(
ψ̄
)
− exp

(
−ψ̄
)

+ n̄OH− − n̄H+ + ϕ
K̄ ′aγ̄a

K̄ ′a + n̄H+

− ϕ K̄ ′bγ̄b

K̄ ′b + n̄OH−

]
,

d2ψ̄

dȳ2
=

1

2λ̄2
[n̄− − n̄+ + n̄OH− − n̄H+ ] [for − 1 + d̄ ≤ ȳ ≤ 0]

=
1

2λ̄2

[(
1 + n̄H+,∞

)
exp

(
ψ̄
)
− exp

(
−ψ̄
)

+
(
n̄OH−,∞

)
exp

(
ψ̄
)
−
(
n̄H+,∞

)
exp

(
−ψ̄
)]
.(3.10)

ψ̄ = −
ln

(
n̄H+

n̄H+,∞

)
1 + K̄′aγ̄aϕ(ȳ)

(K̄′a+n̄H+)
2

[for − 1 ≤ ȳ ≤ −1 + d̄],

ψ̄ = − ln

(
n̄H+

n̄H+,∞

)
[for − 1 + d̄ ≤ ȳ ≤ 0]. (3.11)

ψ̄ =

ln

(
n̄OH−
n̄OH−,∞

)
1 +

K̄′bγ̄bϕ(ȳ)

(K̄′b+n̄OH−)
2

[for − 1 ≤ ȳ ≤ −1 + d̄],

ψ̄ = ln

(
n̄OH−

n̄OH−,∞

)
[for − 1 + d̄ ≤ ȳ ≤ 0]. (3.12)

The corresponding dimensionless boundary conditions obtained by non-dimensionalizing

eq.(3.9) becomes:(
dψ̄

dȳ

)
ȳ=0

= 0, (ψ̄)ȳ=(−1+d̄)+ = (ψ̄)ȳ=(−1+d̄)− ,

(
dψ̄

dȳ

)
ȳ=(−1+d̄)+

=

(
dψ̄

dȳ

)
ȳ=(−1+d̄)−

,(
dψ̄

dȳ

)
ȳ=−1

= 0.

(3.13)

In the above equations, ȳ = y/h, λ̄ = λ/h (λ =
√

ε0εrkBT
2e2

∑
i ni,∞

is the EDL thickness),

d̄ = d/h, ψ̄ = eψ/(kBT ), n̄H+ = nH+/n∞, n̄OH− = nOH−/n∞, n̄H+,∞ = nH+,∞/n∞,

n̄OH−,∞ = nOH−,∞/n∞, K̄ ′a = K ′a/n∞, and γ̄a = γa/n∞. Here n+,∞ = n−,∞ = n∞ =
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103NAc∞(c∞ is the concentration in M , while n∞ is the number density in 1/m3).

Also as established in our previous studies [16,18], we can consider a cubic profile for

ϕ(y), i.e.,

ϕ(ȳ) = β
(
ȳ + 1− d̄

)2

(
ȳ + 1 +

d̄

2

)
, (3.14)

where β = 4/d̄3. We provide a detailed discussion later on this choice of the cubic

profile later in the Discussion section.

Furthermore, as we are considering the PZI brush layer dissociation in an acidic

solution, the concentration of the OH− ions would be very small, so that we have

K̄ ′b � n̄OH− , and consequently eq.(3.12) reduces to:

n̄OH− =
(
n̄OH−,∞

)
exp

ψ̄(1 + ϕ
γ̄b

K̄ ′b

) [for − 1 ≤ ȳ ≤ −1 + d̄],

n̄OH− =
(
n̄OH−,∞

)
exp

(
ψ̄
)

[for − 1 + d̄ ≤ y ≤ 0]. (3.15)

Therefore, eq.(3.10) can be simplified as:

d2ψ̄

dȳ2
=

1

2λ̄2
[(1 + n̄H+,∞) exp(ψ̄)− exp(−ψ̄) + (n̄OH−,∞) exp [ψ̄(1 + ϕ

γ̄b

K̄ ′b
)]−

n̄H+ + ϕ
K̄ ′aγ̄a

K̄ ′a + n̄H+

− ϕγ̄b] [for − 1 ≤ ȳ ≤ −1 + d̄],

d2ψ̄

dȳ2
=

1

2λ̄2
[(1 + n̄H+,∞) exp(ψ̄)− exp(−ψ̄) + (n̄OH−,∞) exp(ψ̄)− (n̄H+,∞) exp(−ψ̄)]

[for − 1 + d̄ ≤ ȳ ≤ 0].

(3.16)

The explicit equilibrium electrostatic potential, H+ andOH− ion concentration distri-

butions can be obtained by numerically solving the coupled equations [eqs.(3.11,3.15,3.16)]
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in presence of the boundary condition expressed in (3.13).

Polyzwitterionic brush layer in basic solution

We next consider the case where the PZI brush layer is dissociating in a basic solution.

We consider that the base furnishes the same cation as the salt. As a consequence,

the bulk number density of the salt cation will be n∞ + nOH−,∞. Furthermore, the

solution being basic, we would have K̄ ′a � n̄H+ , and consequently eq.(3.11) reduces

to:

n̄H+ =
(
n̄H+,∞

)
exp

−ψ̄(1 + ϕ
γ̄a
K̄ ′a

) [for − 1 ≤ ȳ ≤ −1 + d̄],

n̄H+ =
(
n̄H+,∞

)
exp

(
−ψ̄
)

[for − 1 + d̄ ≤ y ≤ 0]. (3.17)

Under these conditions, eq.(3.10) can be simplified as:

d2ψ̄

dȳ2
=

1

2λ̄2
[exp(ψ̄)− (1 + n̄OH−,∞) exp(−ψ̄) + n̄OH− − (n̄H+,∞) exp [−ψ̄(1 + ϕ

γ̄a
K̄ ′a

)] + ϕγ̄a

− ϕ K̄ ′bγ̄b

K̄ ′b + n̄OH−
] [for − 1 ≤ ȳ ≤ −1 + d̄],

d2ψ̄

dȳ2
=

1

2λ̄2
[exp(ψ̄)− (1 + n̄OH−,∞) exp(−ψ̄) + (n̄OH−,∞) exp(ψ̄)− (n̄H+,∞) exp(−ψ̄)]

[for − 1 + d̄ ≤ ȳ ≤ 0].

(3.18)

The explicit equilibrium electrostatic potential, H+ andOH− ion concentration distri-

butions can be obtained by numerically solving the coupled equations [eqs.(3.12,3.17,3.18)]

in presence of the boundary condition expressed in (3.13).
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3.2.2 Velocity Field

The pressure-driven transport considered here would give rise to an electric field.

This electric field will drive an electroosmotic (EOS) flow, whose direction would

always be opposite to the direction of the pressure-driven transport. Considering this

overall velocity field (which is a combination of the pressure-driven transport and

an EOS flow) to be steady, uni-directional and hydrodynamically fully-developed, we

can express it for the channel bottom half as:

η
d2u

dy2
− dp

dx
+ eES(n+ − n− + nH+ − nOH−)− η

κ
u = 0 [−h ≤ y ≤ −h+ d] ,

η
d2u

dy2
− dp

dx
+ eES(n+ − n− + nH+ − nOH−) = 0 [−h+ d ≤ y ≤ 0] . (3.19)

In eq.(3.19), −dp/dx is the employed pressure gradient, η is the dynamic viscosity

of the liquid, e is the electronic charge, ni is the number density of the ionic species

i, and κ = a2
k

(
d

σa3kNpϕ

)2

is the permeability and
σa3kNpϕ

d
is the volume fraction of

the PZI brush layer. For the present study, we consider the cubic profile for ϕ [see

eq(3.14)]. Of course, the solution of the velocity field u would be sought in presence

of the known distribution of ψ, n±, nH+ , and nOH− .

Using the calculations provided in the previous section, eq.(3.19) can be expressed in

dimensionless form as:
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In acidic solution:

0 =
d2ū

dȳ2
− 1 +

ĒS
2λ̄2

[exp(−ψ̄)− (1 + n̄H+,∞) exp(ψ̄) + n̄H+ − n̄OH−,∞ exp [ψ̄(1 + ϕ
γ̄b

K̄ ′b
)]]

− ᾱ2φ2ū [−1 ≤ ȳ ≤ −1 + d̄],

0 =
d2ū

dȳ2
− 1 +

ĒS
2λ̄2

[exp(−ψ̄)− (1 + n̄H+,∞) exp(ψ̄) + n̄H+,∞ exp(−ψ̄)− n̄OH−,∞ exp(ψ̄)]

[−1 + d̄ ≤ ȳ ≤ 0].

(3.20)

In basic solution:

0 =
d2ū

dȳ2
− 1 +

ĒS
2λ̄2

[(1 + n̄OH−,∞) exp(−ψ̄)− exp(ψ̄) + n̄H+,∞ exp [−ψ̄(1 + ϕ
γ̄a
K̄ ′a

)]− n̄OH− ]

− ᾱ2φ2ū [−1 ≤ ȳ ≤ −1 + d̄],

0 =
d2ū

dȳ2
− 1 +

ĒS
2λ̄2

[(1 + n̄OH−,∞) exp(−ψ̄)− exp(ψ̄) + n̄H+,∞ exp(−ψ̄)− n̄OH−,∞ exp(ψ̄)]

[−1 + d̄ ≤ ȳ ≤ 0].

(3.21)

In eqs. (3.20, 3.21), ū = u
up,0

(where up,0 = h2

η
dp
dx

is pressure-driven velocity scale),

ĒS = ES

E0
(where E0 = eηup,0

ε0εrkBT
= dp

dx
eh2

ε0εrkBT
is the scale of the electric field), and

ᾱ =
σa2kNp

d̄
. ur = ue,0

up,0
is taken to be unity where ue,0 = kBT

e
ε0εrE0

η
is the electroosmotic

velocity scale. Solution of eqs.(3.20, 3.21) are sought in presence of the following

dimensionless boundary conditions:

(ū)ȳ=−1 = 0;

(
dū

dȳ

)
ȳ=0

= 0; (ū)ȳ=(−1+d̄)+ = (ū)ȳ=(−1+d̄)− ;(
dū

dȳ

)
ȳ=(−1+d̄)+

=

(
dū

dȳ

)
ȳ=(−1+d̄)−

.

(3.22)
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Of course, the solution of ū requires the value of the ĒS. Calculation of ĒS is discussed

in the following subsection.

3.2.3 Streaming electric field ES

To obtain ES, we consider that the net ionic current (per unit width) i is equal

to zero, i.e.,

i = 2e

∫ 0

−h
(u+n+ − u−n− + uH+nH+ − uOH−nOH−) dy = 0, (3.23)

where ui (i = ±, H+, OH−) is the ion migration velocity, expressed as:

ui = u+
eziES
fi

. (3.24)

Here fi is the ionic friction coefficient and zi is the valence for ion i. Substituting

eq.(3.24) in eq.(3.23), we finally obtain the dimensionless streaming electric field as:

In acidic solution:

ĒS =

∫ 0

−1
ū
[
− exp(−ψ̄) + (1 + n̄H+,∞) exp(ψ̄)− n̄H+ + n̄OH−

]
dȳ∫ 0

−1
[R+ exp(−ψ̄) +R−(1 + n̄H+,∞) exp(ψ̄) +RH+n̄H+ +ROH−n̄OH−)]dȳ

.

(3.25)

In basic solution:

ĒS =

∫ 0

−1
ū
[
−(1 + n̄OH−,∞) exp(−ψ̄) + exp(ψ̄)− n̄H+ + n̄OH−

]
dȳ∫ 0

−1
[R+(1 + n̄OH−,∞) exp(−ψ̄) +R− exp(ψ̄) +RH+n̄H+ +ROH−n̄OH−)]dȳ

.

(3.26)
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where Ri =
e2z2i η

ε0εrkBTfi
is a dimensionless parameter, often interpreted as the inverse

of the ionic Peclet number. We take f = eE0

up,0
= e2η

ε0εrkBT
. Of course, we would

use eq.(3.25) in eq.(3.20) to obtain the integro-differential equation governing the

velocity field ū within the PZI-brush-grafted nanochannel in acidic condition; on

the other hand, we would use eq.(3.26) in eq.(3.21) to obtain the integro-differential

equation governing the velocity field ū within the PZI-brush-grafted nanochannel

in basic condition. The integro-differential equations for both the cases are solved

numerically in presence of the BCs expressed in eq.(3.22). We were the first group

to develop and solve such highly involved integro-differential equations for obtaining

the streaming electric field and the resulting electrokinetics in nanochannels grafted

with charged polyelectrolyte brushes [19, 84, 111] – in this study, we again use that

theoretical framework to compute the induced electrokinetics in nanochannels grafted

with the PZI brushes.

3.2.4 Efficiency of the electrochemomechanical energy conversion

Generation of the nanofluidic streaming current (iS) and the streaming electric

field (ES) is a process of nanoscale electrochemomechanical energy conversion, since

the mechanical energy of the pressure-driven flow and the chemical energy of the EDL

are converted to the electrical energy associated with the generation of iS and ES.

This efficiency ξ of this energy conversion can be expressed as:

ξ =
Pout
Pin

. (3.27)
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Here Pin and Pout are the input and the output powers (per unit area), expressed as:

Pout =
1

4
iSES, Pin =

∣∣∣∣−dpdx
∣∣∣∣Qin. (3.28)

Here the streaming current is

iS = 2e

∫ 0

−h
u (n+ − n− + nH+ − nOH−) dy, (3.29)

or in a dimensionless form:

īS =

∫ 0

−1

ū (n̄+ − n̄− + n̄H+ − n̄OH−) dȳ, (3.30)

where īS = is
2hen∞up,0

and Qin is the the input volume flow rate per unit width,

expressed as:

Qin = 2

∫ 0

−h
updy. (3.31)

Here up is the pure pressure-driven velocity field governed by the following equations:

η
d2up
dy2
− dp

dx
− η

κ
up = 0, [−h ≤ y ≤ −h+ d0] ,

η
d2up
dy2
− dp

dx
= 0, [−h+ d0 ≤ y ≤ 0] . (3.32)

For the acidic solution, we can therefore obtain [using eqs.(3.25,3.27,3.28,3.30,3.31)]:

ξ =
1

8λ̄2
∫ 0

−1
ūpdȳ

[∫ 0

−1
ū
[
− exp(−ψ̄) + (1 + n̄H+,∞) exp(ψ̄)− n̄H+ + n̄OH−

]
dȳ
]2

∫ 0

−1
[exp(−ψ̄) + (1 + n̄H+,∞) exp(ψ̄) + n̄H+ + n̄OH− ]dȳ

.

(3.33)

On the other hand, for the basic solution we can obtain [using eqs.(3.26,3.27,3.28,3.30,3.31)]:

In Basic Solution:

ξ =
1

8λ̄2
∫ 0

−1
ūpdȳ

[∫ 0

−1
ū
[
−(1 + n̄OH−,∞) exp(−ψ̄) + exp(ψ̄)− n̄H+ + n̄OH−

]
dȳ
]2

∫ 0

−1
[exp(−(1 + n̄OH−,∞)ψ̄) + exp(ψ̄) + n̄H+ + n̄OH− ]dȳ

.

(3.34)
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Of course, both eqs.(3.33,3.34) can be simplified to a unique form expressed as:

ξ =
1

8λ̄2
∫ 0

−1
ūpdȳ

ī2S
īC

=
īCĒ

2
S

8λ̄2
∫ 0

−1
ūpdȳ

. (3.35)

Figure 3.2: Transverse variation of (a) dimensionless electrostatic potential ψ̄ and

(b) dimensionless velocity profile ū for different values of bulk salt concentration c∞.

Other parameters for this figure are pH∞ = 4 (or bulk pH), pKa = 4, pKb = 4,

d̄ = 0.3, γa = 10−4M , γb = 10−4M , ᾱ = 1, ur = 1, Ri = 1, Npa3σ

d
= 1, h = 100nm,

kB = 1.38 × 10−23J/K, T = 300K, e = 1.6 × 10−19C, ε0 = 8.854 × 10−12F/m,

εr = 79.8.

3.3 Results

In Figures 3.2-3.9, we provide the transverse variation of the dimensionless elec-

trostatic potential (ψ̄) and the dimensionless velocity (ū) for different combinations

of the system parameters. An acidic solution (characterized by pH∞ < 7) implies
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Figure 3.3: Transverse variation of (a) ψ̄ and (b) ū for different values of c∞. Here

we consider pH∞ = 10 (bulk pH). All other parameters are identical to that used in

figure 3.2.

Figure 3.4: Transverse variation of (a) ψ̄ and (b) ū for different values of d̄. Here we

consider c∞ = 10−4M . All other parameters are identical to that used in figure 3.2.
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Figure 3.5: Transverse variation of (a) ψ̄ and (b) ū for different values of d̄. Here we

consider c∞ = 10−4M . All other parameters are identical to that used in figure 3.3.

Figure 3.6: Transverse variation of (a) ψ̄ and (b) ū for different values of pKa. Here

we consider c∞ = 10−4M . All other parameters are identical to that used in figure

3.2.
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Figure 3.7: Transverse variation of (a) ψ̄ and (b) ū for different values of pKa. Here

we consider c∞ = 10−4M . All other parameters are identical to that used in figure

3.3.

Figure 3.8: Transverse variation of (a) ψ̄ and (b) ū for different pH∞ (bulk pH)

values in an acidic solution. Here we consider c∞ = 10−4M . All other parameters

are identical to that used in figure 3.2.
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Figure 3.9: Transverse variation of (a) ψ̄ and (b) ū for different pH∞ (bulk pH)

values in a basic solution. Here we consider c∞ = 10−4M . All other parameters are

identical to that used in figure 3.2.

the presence of more H+ ions than OH− ions. As a consequence, the ionization that

produces the BH+ charged group (this ionization produces more OH− ions) is more

preferred than the ionization that produces the A− group (this ionization produces

more H+ ions). Therefore, for such a pH (< 7), the PZI attains a net positive charge

under identical values of pKa and pKb leading to a positive value of the corresponding

ψ̄. This is evident in Figures 3.2(a), 3.4(a), 3.6(a), and 3.8(a). On the other hand,

a basic solution (characterized by pH∞ > 7) has more OH− ions than H+ ions. Ac-

cordingly the ionization that produces H+ ions (i.e., the ionization that produces the

A− group of the PZI) is much more preferred than the ionization that produces the

OH− ions (i.e., the ionization that produces the BH+ group of the PZI). As a conse-

quence, for such a pH∞ (> 7), the PZI attains a net negative charge under identical
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Figure 3.10: Variation of (a) streaming electric field Es, (b) steaming current is,

(c) output power Pout and (d) electrochemomechanical energy conversion efficiency ξ

with pH∞ for different values of c∞. In order to calculate the power, we use dp
dx

=

−5× 108Pa/m, η = 8.9× 10−4Pa · s, and consider a nanofluidic chip that is 1mm×

10cm × 10cm in dimensions (i.e., 1 mm in length and 10 cm in both breadth and

width) with a porosity of 0.5. All other parameters are identical to that used in figure

3.2.

values of pKa and pKb leading to a negative value of the corresponding ψ̄ [see Figures

3.3(a), 3.5(a), 3.7(a), and 3.9(a)]. For both the cases of positive and negative ψ̄, a
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Figure 3.11: Variation of (a) Es, (b) is, (c) Pout and (d) ξ with pH∞ for different

values of d̄. Here we use c∞ = 10−4 M . All other parameters are identical to that

used in figure 3.10.

decrease in the salt concentration (c∞) increases the magnitude of ψ̄. Smaller c∞

leads to a larger EDL thickness (λ), which would imply a larger ψ̄ for a given charge

density (σ), attributed to the fact that dψ/dy ∼ σ/(ε0εr) ⇒ ψ ∼ σλ/(ε0εr). This is

evident In Figures 3.2(a) and 3.3(a). Furthermore, an increase in the relative brush

height (or larger d/h value) leads to a larger charge content of the system leading to

a greater magnitude (either positive or negative) of ψ̄ [see Figures 3.4(a) and 3.5(a)].
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Figure 3.12: Variation of (a) Es, (b) is, (c) Pout and (d) ξ with pH∞ for different

values of pKa. Here we use c∞ = 10−4 M . All other parameters are identical to that

used in figure 3.10.

A larger value of pKa for the case where the charging of the PZI is dominated by

the formation of the positive sites (i.e., the situation that occurs at an acidic pH

or pH∞ < 7) implies that the ionization of the PZI to produce the negative sites is

retarded and therefore leads to a large net positive charge on the PZI and a larger

positive magnitude of ψ̄. This is depicted in Figure 3.6(a). Exactly reverse occurs

for a basic solution (pH > 7) and larger pKb. For such a solution, the PZI charge is
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Figure 3.13: Variation of (a) Es, (b) is, (c) Pout and (d) ξ with pH∞ for different

values of pKb. Here we use c∞ = 10−4 M . All other parameters are identical to that

used in figure 3.10.

dominated by the formation of the negative sites and a larger pKb implies a weaker

ionization of the positive sites making the PZI more negative (and hence ψ̄ more neg-

ative). This is depicted in Figure 3.7(a). Finally in Figures 3.8 and 3.9, we show the

effect of the variation in pH∞. In the acidic range, a progressive lowering of pH∞ (or

a progressive increase in the the number of H+ ions) implies a more retarded ioniza-

tion of the negative group of the PZI (this ionization produced H+ ions) implying a
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larger manifestation of the positive charge of the PZI ensuring a larger positive value

of ψ̄. This is witnessed for pH∞ values varying from 6 to 4. However, for pH∞ = 3,

we find that the ψ̄ becomes smaller than that at pH∞ = 4. The reason is that since

we operate at c∞ = 10−4 M , at pH = 3 (or cH+,∞ = 10−3 M), the hydrogen ion

concentration dictates the EDL thickness causing a decrease in the EDL thickness as

compared to the case when pH∞ = 4. This lowering of the EDL thickness reduces

the overall ψ̄. This behavior is witnessed in Figure 3.8(a). On the other hand, in the

basic range, a progressive increase in pH∞ implying a progressive lowering of pOH∞

(or a progressive increase in the number of OH− ions), leads to a suppression of the

ionization that generates positive charge of the PZI (this ionization also produces the

OH− ion) enforcing a larger negative charge of the PZI. Therefore, one witnesses a

progressively larger negative magnitude of ψ̄ as pH∞ increases from 8 to 10. However,

at pH∞ = 11 or pOH∞ = 3, the concentration of the OH− ions dictates the EDL

thickness making the EDL thickness smaller than that for pH∞ = 10 (or pOH∞ = 4)

enforcing a reduction in ψ̄ [see Figure 3.9(a)].

The part (b) of Figs. 3.2-3.9 provide the variation of the overall velocity field

for the different combination of the system parameters. The overall velocity field

is a combination of the pressure-driven transport (caused by the employed pressure

gradient) and the induced EOS transport caused by the induced streaming electric

field [shown in Figures 3.10-3.13(a)]. Regardless of the value of pH∞ (or the corre-

sponding sign of the net charge on the PZI), the EOS transport always opposes the

pressure-driven transport and hence reduces the overall transport. Please note that

here both the pressure-driven transport and hence the overall transport are positive
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– however, the net transport appears negative as we non-dimensionalize the velocity

field by a characteristic velocity that is negative (i.e., up,0 = h2

η
dp
dx
< 0). The induced

electric field (Es) driving the EOS transport is positive for the acidic pH and negative

for the basic pH [see Figs. 3.10-3.13(a)]. Es is induced by the downstream migration

of the non-zero charge density of the EDL. For the acidic pH, the PZI is positively

charged (manifested by a positive magnitude of ψ̄); therefore the counterions will be

anions. Thus the downstream migration of the EDL charge density would imply a

net downstream migration of the negative charges, thereby leading to a larger down-

stream accumulation of the negative charges. Therefore the net potential will be more

positive on the upstream side than the downstream side, ensuring that the electric

field is positive (i.e., from left to right). This electric field interacts with the net EDL

charge density to induce the EOS transport. The per unit volume EOS body force

is fEOS = e(n+ − n−)Es. Of course, a positive Es occurs when n− > n+ (as already

discussed above) ensuring fEOS < 0 and hence uEOS < 0. For a basic pH, the net

PZI charge is negative making the counterions positive and therefore the downstream

advection of the EDL charge density leads to a downstream accumulation of the pos-

itive ions. This ensures that the net potential is more positive downstream, enforcing

Es < 0. Of course, as n+ > n− for this case, fEOS = e(n+−n−)Es < 0 and uEOS < 0

for this case as well.

A larger magnitude of ψ̄ leads to a larger difference between the counterion

and coion number density within an EDL, which in turn would enforce both a larger

magnitude of Es and an even larger magnitude of fEOS. Therefore, cases with a

larger magnitude of ψ̄ would result in a larger magnitude of uEOS and hence a larger
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reduction in the overall velocity field. Therefore, we witness a lesser velocity for a

weaker salt concentration [see Figures 3.2(b) and 3.3(b)], for a larger brush height

[see Figures 3.4(b) and 3.5(b)], for a larger pKa for acidic solution [see Fig. 3.6(b)],

for a larger pKb for basic solution [see Fig. 3.7(b)], for smaller pH∞ for acidic solution

[see Fig. 3.8(b)] (except for very small pH∞ where the hydrogen ion number density

dictates the EDL thickness), and for larger pH∞ for basic solution [see Fig. 3.9(b)]

(except for very large pH∞ where the hydroxyl ion number density dictates the EDL

thickness).

Figs. 3.10-3.13(a) provide the variation of the streaming electric field Es with

pH∞ for different system parameters. We invariably find a positive (negative) Es

for acidic (basic) pH. As we have already discussed above, such a behavior can be

attributed to the net positive (negative) charge of the PZI leading to anions (cations)

becoming the counterions at an acidic (basic) pH. Also all the factors that lead to

an enhancement in the magnitude of ψ̄ [see Figures 3.2-3.9(a)] would augment the

magnitude of Es. Such a connection directly follows from the fact that a larger

magnitude of ψ̄ would imply a larger difference in the number densities between the

counterions and coions, and hence a larger magnitude of the electrostatic potential

difference (caused by the flow-driven downstream accumulation of the counterions)

leading to a larger Es. Therefore, one witnesses a larger magnitude of Es for a weaker

salt concentration [see Figure 3.10(a)], for a larger brush height [see Figure 3.11(a)],

for a larger pKa for an acidic solution [see Figure 3.12(a)], for a larger pKb for a

basic solution [see Figure 3.13(a)], for smaller pH∞ for acidic solution [see Figures

3.10-3.13(a)] (except for very small pH∞ where the hydrogen ion number density
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dictates the EDL thickness and this ensures a maximum in the magnitude of Es at

an intermediate pH∞), and for larger pH∞ for basic solution [see Figures 3.10-3.13(a)]

(except for very large pH∞ where the hydroxyl ion number density dictates the EDL

thickness and this ensures a minimum or a negative maximum in the magnitude of Es

at an intermediate pOH∞). A critical observation from all the Es plots is a remarkable

symmetry (in magnitude) across the pH∞ spectrum. In other words, we get the same

magnitude (with different sign) for same values of pH∞ and pOH∞ (i.e., at large and

small pH∞). This obviously stems from the fact that PZI becomes charged at these

extreme pH∞ values. Therefore, this study points to this unique opportunity where

one can attain a large magnitude of Es for both large and small pH.

Figures 3.10-3.13(b) provides the variation of the streaming current is with

pH∞ for different system parameters. This streaming current when multiplied by

the streaming electric field produces the net output power [see Figures 3.10-3.13(c)],

which follows the same trend with the different parameters as the electric field Es.

Therefore, we witness an increase in power with weaker c∞ [see Figure 3.10(c)], for a

larger brush height [see Figure 3.11(c)], for a larger pKa for an acidic pH [see Figure

3.12(c)], for a larger pKb for a basic solution [see Figure 3.13(c)], for smaller pH∞

for acidic solution [see Figures 3.10-3.13(a)] (except for very small pH∞ where the

hydrogen ion number density dictates the EDL thickness and this ensures a maximum

in the magnitude of power at an intermediate pH∞), and for larger pH∞ for basic

solution [see Figures 3.10-3.13(a)] (except for very large pH∞ where the hydroxyl

ion number density dictates the EDL thickness and this ensures a minimum or a

negative maximum in the magnitude of power at an intermediate pOH∞). Very
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much like Es, here too we ensure a large P for both large and small pH∞. Finally,

in Figures 3.10-3.13(d), we show the variation in the efficiency ξ in the electrokinetic

(or electrochemomechanical) energy conversion. The trend with respect to different

parameters is exactly identical to that of the power variation. Most importantly, here

too, we ensure a significant conversion efficiency for both large and small pH.

3.4 Discussions

3.4.1 Neglecting the PE brush configurational details

In the development of our theoretical model we have neglected the configu-

rational details of the PE brush. In other words, we have assumed a constant salt-

concentration-independent height of the PE brush while developing our model. As we

have established in our previous papers [1,85], such an assumption is only valid if the

factors dictating the PE brush configuration [namely the elastic (Fel) and the excluded

volume (FEV ) energies] are decoupled from the corresponding electrostatic effects

[namely the energy associated with the PE charge (Felec) and that associated with the

induced EDL (FEDL)]. Such decoupling is possible if either Fel +FEV � Felec+FEDL

(which occurs when σ � σc) or Fel+FEV � Felec+FEDL (which occurs when σ � σc).

Here σ is the grafting density and σc ≈ a−1t−1 (where a is the Kuhn length and t

is the thickness of the polymer brush molecule) is the critical grafting density. Here

we assume that either of these conditions (σ � σc or σ � σc) has been satisfied. Of

course, in addition to the above conditions, we need additional constraint on the value

of σ. For example, we need to ensure that σ is always large enough to ensure that
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the grafted polymers may form the brushes, i.e., σ � a−2N−6/5 [1]. Furthermore, σ

needs to be small enough to ensure that the grafted brushes on opposing nanochannel

walls do not interpenetrate, i.e., σ � h3a−4N−3t−1 [1]. Therefore, in summary, our

model is valid for σ � σc or σ � σc and a−2N−6/5 � σ � h3a−4N−3t−1 [1].

It is worthwhile to note here that most of the papers studying the liquid flows

in nanochannels grafted with PE brushes have considered such salt-concentration-

independent brush height [13,18,19,41,84,92,92,117–123] (or the brush height in the

decoupled regime). Our paper [1] unravelled for the first time the physical conditions

under which such decoupling is allowed. In another paper [85], we provided exam-

ples of experimental studies [124–127] where the above condition of decoupling can

be safely employed while describing the PE brush electrostatics. In a recent couple

of papers we have considered a simplistic system (a nanochannel grafted with end-

charged brushes) and have provided for the first time the calculations for the liquid

flows in PE-brush-grafted nanochannels where the brush configuration is obtained

through a self-consistent thermodynamic analysis [111,128]. In these papers, we em-

ployed the Alexander-de-Gennes model [2–4] to describe the monomer configuration.

Such a situation was afforded by the fact that the PE charge was localized at the

non-grafted end of the brush. On the other hand, for the present case where we

consider a backbone-charged pH-responsive brush, such simplistic modeling will not

be possible and any thermodynamically self-consistent approach would necessitate

an analysis that remains missing in the literature despite the significant efforts by

previous researchers [40]. In one of our papers [16], we pinpoint that this lacuna

stems from considering a Boltzmann distribution description of the hydrogen ions
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even within the PE brush layer. Therefore, a self-consistent analysis for the present

problem would first require a self-consistent thermodynamic analysis of the pH and

pOH responsive PZI brushes, which is beyond the scope of the present study.

3.4.2 Choice of the cubic monomer density distribution

Despite considering a decoupled regime, we would still need to know the di-

mensionless distribution of the PZI chargeable sites ϕ along the height of the PE

brush. In several of our previous papers, we have described the need for considering

a non-unique cubic distribution of these chargeable sites in order to ensure a con-

tinuity in the hydrogen and hydroxyl ion concentration distribution [16, 18, 84, 85].

This continuity would have been achieved by default had we been able to obtain a

fully self-consistent thermodynamic description of the pH-responsive PE brushes. No

study has been able to achieve that yet. Under these circumstances, the considera-

tion of this cubic monomeric distribution is the best description of ϕ that one might

achieve for a pH-responsive PE brush.

3.5 Conclusions

Here for the first time, we propose a design that uses a PZI-brush-grafted-

nanochannel for the electrokinetic energy conversion. The unique ability of the PZI

to express significant (but opposite charges) at extreme ends of the pH spectrum has

been leveraged in this design to generate electrokinetic power from a pressure-driven

transport across a wide range of pH spectrum. Typically, the pH-responsiveness of
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nanochannels (with and without the PE brush grafting) enforces a narrow operating

pH window for the maximum power generation. Use of PZI brushes expands that

window and allows a large power generation across wide ranges (both large and small)

pH values.
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Chapter 4: Conclusion

We once again review the methods used in this thesis that helped provide us

with results of electrokinetics of pH-dependent brushes. We first discuss the necessary

decoupling regime that set up our governing equations for electrostatic contributions.

Following, we disclose how we solve for the coupled electrostatic potential and ion

number distribution using a constant brush height and other system parameters. We

next discuss solution of the integro-differential equation between the streaming poten-

tial and velocity field. Finally, we discuss the results of energy conversion of polyelec-

trolyte brushes as well as electrokinetics of polyzwitterionic brushes in nanochannels.

Polyelectrolyte brushes have been proven to be useful for a vast number of appli-

cations. Our research focuses on how grafted PE brushes can induce an electric

current from the fluid flow in a nanochannel. We were able to do this by simplify-

ing our calculations by assuming a constant brush height. This assumption is only

viable when decoupling the electrostatic effects of a PE brush from the excluded

volume and entropic effects. When the magnitudes of the excluded volume and en-

tropic contributions are much greater or much smaller than electrostatic effects, this
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decoupling regime is possible and we can assume a constant brush height that will

not be dynamically affected by the electrostatics of the channel. This sets up our

governing equations to be solved for two particular cases of PE brush application.

We first examine the effects of nanochannels grafted with PE brushes that exhibit

a pH-dependent charge density. After decoupling the excluded volume and entropic

effects, we can minimize a new free energy equation consisting of only the electrostatic

effects of the brush and the contributions from the electric double layer (EDL) of the

channel. Our free energy density function is itself a function of the electrostatic po-

tential of the PE brush and ion number densities. Minimizing this equation gives us

the equations for electrostatic potential and ion number densities. These distributions

are then used to solve the velocity profile and the induced streaming potential and

the electrokinetic energy conversion in presence of an applied pressure gradient. The

electrochemomechanical energy conversion in pH-dependent charged polyelectrolytes

is one example of a PE brush’s application. We observed a 3-5% energy conversion

efficiency for this particular method of induced electrokinetic energy generation. We

then expand our research by applying this same method of PE brush electrokinetics

into nanochannels grafted with polyzwitterionic brushes. Because polyzwitterionic

(PZI) brushes display both positive and negative charges, we can now manipulate

the system parameters to generate electric charges in both acidic and basic solutions,

widening our scope applicability. Nanochannels grafted with polyelectrolyte brushes

have been proven to be useful for a great number of applications. We’ve demonstrated

in this thesis that this system is capable of generating electric energy from conversion

of chemical and mechanical energy. We also notice that we can expand the use of
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these pH-dependent brushes in both acidic and basic solutions. We hope our research

can shed light on the usefulness of polyelectrolyte brushes to be further implemented

into the sciences and future research.
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