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Networks of workstations are now viable environments for running distributed and par-
allel applications. Recent advances in software interconnection technology enables program-
mers to prepare applications to run in dynamically changing environments because module
interconnection activity is regarded as an essentially distinct and different intellectual ac-
tivity so as isolated from that of implementing individual modules. But there remains the
question of how to optimize the performance of those applications for a given execution envi-
ronment: how can developers realize performance gains without paying a high programming
cost to specialize their application for the target environment? Interconnection technology
has allowed programmers to tailor and tune their applications on distributed environments,
but the traditional approach to this process has ignored the performance issue over gracefully
seemless integration of various software components.

Networks of workstations can be virtual parallel machines. For a distributed and parallel
application on such environments, an ability to write performance-literate programs is as
important as that to seemlessly integrate distributed modules. Our dissertation research is
an effort to extend the plain interconnection technology to that with a variety of performance
attributes. The RPC (remote procedure call) paradigm is used at the module programming
level because it adopts a widely used and understood procedure call abstraction as the sole



mechanism of remote operations and thus helps to shape reusable components. Most of
performance related decisions are pertinent to the interconnections among software compo-
nents.

Our effort toward performance tuning consists of two main thrusts. One is an auto-
matic adaptation from a performance configuration, which is analogous to the process of
software interconnection for traditional structure-oriented configurations. We present how a
performance configuration can be represented as an extension to traditional module inter-
connections. The other is an optimal transformation for RPC statements in an individual
module using various program analysis techniques. Conventional stub generation based ap-
proach to implement RPC paradigm cannot serve for performance improvement because of
its synchronous property. In concert with the two systematic approaches toward optimizing
distributed programs, programmers can have high performance and conceptual simplicity in
writing distributed programs.
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Chapter 1

Introduction

A new trend in parallel processing has emerged to use “clusters of workstations” over Local
Area Networks (LANs) as cost-effective parallel computing platforms. This new trend is
gaining popularity to establish a new parallel processing paradigm: “network-based comput-
ing.” It has two noteworthy advantages. First, it provides an opportunity to have a parallel
machine virtually with no extra costs, if software supports are properly provided. Worksta-
tions are ubiquitous and most of them have been under-utilized at most of times. Second, the
virtual parallel machine can be constructed so as to take advantage of some special resources
that are locally available on some of the network hosts, for example, graphic processors or
vector processors. However, still there is an order of magnitude difference in the speed of
latency and transmission rate from a real parallel machine whether it is a distributed mem-
ory machine like Intel Paragon [Hoc94| or shared memory machine like IBM RP3 [BMWS85].
Many researches have engaged in providing novel hardware or software solutions to alleviate
such an obstacle for workstation clusters to be a viable environments for running parallel
applications. Hardware solutions like SHRIMP (Scalable High-performance Really Inexpen-
sive Multiprocessor) [BLA193] and PAPERS (Purdue’s Adaptor for Parallel Execution and
Rapid Synchronization) [DMSM94] projects are to develop an add-on interface unit that is
connected to each workstation so that the resulting cluster can run at faster communication
speeds and even allow fine-grain parallel execution. Although the communication in the
LAN-based networks of workstations is getting faster, no substantial results have been re-
ported to assure whether the add-on interfaces or other communication hardwares can really
accomplish a comparable communication performance with real parallel machines. As long
as there is a noticeable difference between the two platforms for parallel execution, a special
software support, that has an expertise in the ‘new’ parallel platforms, is called for.
Writing distributed and/or parallel programs is difficult for programmers, and even more
difficult when high performance is required. Many mechanisms to achieve better performance
in distributed programming have been proposed [BST89, Geh86, Geh90, Gen81, LS88|;
however, in practice these mechanisms are hard to utilize, and do not take into account
the burden placed on programmers who already encounter difficulty in writing functionally
correct programs. The capability to write an efficient program is not enough, unless the
writing complexity is controlled in a systematic way. Furthermore, most of these mecha-



nisms are expressed by special programming language constructs for specifying the exact
semantics on communication and synchronization [BST89]. Such languages are not good at
accommodating the programming skills of those who are already accustomed to conventional
programming languages like C.

A great deal of this difficulty in developing large distributed programs arises at the early
stages of program development, when the relationship between modules’ functionality, their
interactions and overall performance is hard to discern. For a given module’s functionality
as dictated by some design, it is possible to implement many program units, each having
some different calling conventions, servicing style and communication properties, yet all
maintaining the same functionality. Previously this flexibility in how to implement the
module resulted in a burden to the programmer, who was tasked with selecting one of the
implementations based upon too little information, and who then would be faced with great
programming burden should one of those decisions need to be changed later.

Since many mechanisms can be expressed in terms of the high-level configuration of
application modules, we sought to derive a practical adaptation system for configuration level
programming. This approach would allow programmers to express performance improvement
techniques abstractly (in terms of the configuration, instead of the low-level implementation),
and then prepare appropriate implementations automatically.

The objective of this dissertation has been to provide such an adaptation system, to
allow practical employment of existing performance improvement techniques; to suggest new
techniques; and to allow programmers the freedom to study the impact of various techniques
— in concert with one another, as desired — upon the application. Under our adaptation
framework, the programmer’s original implementation of a module is transformed in two
directions: (1) each RPC statement at client sites is translated into a set of fine grained
message passing primitives (optimization phase), and (2) the stubs are generated at server
sites to implement the particular techniques (e.g. load balancing and/or scheduling) specified
at the configuration level (adaptation phase).

1.1 Motivation

Our approach is motivated by the success of on-line system configuration technologies [Kra90|
based on the perception that module interconnection activity is to be an essentially distinct
and different intellectual activity from that of implementing individual modules; that is,
“programming-in-the-large” is distinct from “programming-in-the-small” [DK76]. Moreover,
workstation clusters are becoming viable environments for running parallel applications. One
of the characteristics of such systems is the lack of solidity in a configuration of hardware plat-
form. At the same time, performance is a key issue in writing distributed parallel programs.
It would be an interesting step to adopt these configuration technologies to a performance
improvement domain. We share a same philosophy of which module interconnection activ-
ity should be isolated from intra-module programming activity. Performance-related factors
need to be delayed up to configuration level programming. Otherwise, programmers may
encounter a large portion of their original programs for rewriting although their functionali-



ties remain unchanged, because many performance improving techniques are tightly related
to the structure of target workstation clusters. In many cases, such extra codes for better
performance are orthogonal to the functional behavior among distributed software modules.
By isolating performance factors from module programming level, module reusabilities can
be enhanced. Not only it helps to enhance portability in workstation cluster environments,
it can also provide an opportunity for programmers to experiment various performance-
affecting configurations for performance tuning.

To carry out this approach, we consider the process of writing high-performance dis-
tributed parallel programs with two cooperative levels of programming: module- and configuration-
level programming. Configuration programs will be expressed by a MIL (Module Intercon-
nection Language) that has been used in the precursor of this dissertation research, software
packager [CP91]. The MIL syntax is slightly extended to include performance-related fac-
tors for our purpose (Chapter 4). Module level programming is conducted by conventional
programming languages like C with a remote procedure call abstraction for non-local inter-
actions among software modules.

Conventional stub-generation based RPC implementations [BN84, Gib87, CP91]| suffer
low performance because parallelism is inhibited and communications may be redundant.
That we want to circumvent those problems motivates us to have a parallelization phase.
This is to develop source-level transformation of RPC-based distributed programs for higher
performance. The RPC paradigm adopts the model of client-server computing; caller and
callee correspond to client and server, respectively. Traditional researches on improving RPC
program performance have focused on reducing latency and transmission time within this
pairwise form [JZ93, BELL90, GG88]. When this simple topology extends to a network of
client-server model computing, more advanced optimization other than just efficient pairwise
hooking between client and server is called for. Figure 1.1 shows two basic topologies to
form a general application. These two topologies are basic units where we can account for
our optimal source-level transformation techniques. The optimization goals are “enhancing
parallelism” (Goal 1) and “reducing communication length” (Goal 2).

In Figure 1.1 (a), the client C calls its server CS and it successively calls S to fulfill C’s
request. The module CS plays both roles respectively to C and S. We name it parallelism in
depth because the parallelism stretches in depth in the call graph. Normally, C and CS are
blocked when S is working. Parallelism in depth (Goal 1) can be exploited if there are useful
operations to continue during the call at a client. Towards Goal 2, the performance can be
improved if we can establish a direct message passing path between an indirect client-server
relationship like that of C and S. Direct path means that a recipient can get a data earlier,
and consequently, it can start what it is supposed to do earlier. Moreover, it enables C
to make a single multicast command instead of two separate request sending messages. A
single multicast is faster than a series of point-to-point communication because the message
passing system can keep same data in its internal buffer until delivered to all recipients. We
need to assure that ms (r9) is equal to my (r;) to make this possible (Algorithm 5.2).

In Figure 1.1 (b), the client C calls S1 and then S2. We name it parallelism in breadth
because the parallelism exists in the direction of breadth in the call graph. Normally, S1
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Figure 1.1: Basic topologies in client-server model from the perspective of optimization.

and S2 cannot run in parallel due to a synchronous nature of RPC. However, the parallel
execution of the two servers should be allowed, unless there is a data dependence between
S1 and S2. For the special case that the value of r1 is equal to the value of m2, we can
establish a direct message passing path between S1 and S2, which is for the Goal 2. This
may be significant if C calls S1 and S2 in a loop.

Notice that it is intentional to treat every argument individually when its optimal message
passing path is being sought. Each argument has its own data path. For example, if S3(r, 75)
is called in C successively, it is desirable for r; and r, to be passed directly from S1 and S2
to S3.

Meanwhile, a structure of a distributed program is fairly diverse and it has an important
meaning to the resulting performance. A structure is defined in a configuration that or-
chestrates a set of component modules in terms of their interactions. The adaptation phase
is how to come up with compilable source codes according to the user’s decisions in the
configuration program. Figure 1.2 illustrates an example of a logical configuration of a dis-
tributed program that consists of three distinct modules. The arrows represent client-server
relationships: f1 calls f2 and/or f3. Figure 1.3 enumerates a couple of possible physical
configurations according to the various mappings from a logical module to a physical work-
station in a cluster of workstations. Naming is one of the problems of message passing based
distributed programming. The two communication parties (i.e. sender and receiver) should
know the names of each other. In other words, if a physical configuration should be changed,
then we have to change the codes in modules. In Figures 1.3 (a), (b) and (c¢), they have same
topologies. Nonetheless, a change from one physical configuration to another one causes the
corresponding source code changes due to the naming problem. For example, the change
from Figure 1.3 (a) to Figure 1.3 (b) incurs source code changes in all modules. The change
from Figure 1.3 (a) to Figure 1.3 (¢) incurs changes only in f1 and f3. In Figure 1.3 (d), it
is desirable to use interprocess communication primitives for the communication between f1
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Figure 1.2: A Logical Configuration.
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and f2, which is more efficient. These are examples of what programmers should encounter
if they decides to use message passing paradigm for distributed applications. Obviously, it
is true that message passing gives maximum flexibility in terms of writing the finest-tuned
codes by programmers themselves. However, if the target platforms are workstation clus-
ters, that flexibility accompanies formidable rewritings, even for simple structural changes
as illustrated above.

Replacing a workstation with faster one can surely be a step to speed up. For example,
in Figures 1.3 (a) and (b), if W4, W5 and W6 are faster than W1, W2 and W3, respectively,
the same program in Figure 1.2 may run faster. However, such a change is not enough to
improve significantly the overall performance of a program in general. Mostly, such a change
is somewhat related to the porting and/or system reconfigurations rather than aimed at
improving performances. Conventional interconnection methods like polygen [CP91] can
be used to generate compilable source codes for this kind of various structural changes at
configuration level.

More significant improvement can be achieved through a server replication. Server repli-
cation is a useful strategy in many cases, but also produces new problems that need to be
carefully handled. Otherwise, even a parallelization anomaly, which is the longer elapse time
for the bigger number of servers as explained in Chapter 6. Replication causes topological
changes in a program structure. How to organize a pool of servers is a configuration-level
decision too — for example, master/slave or pipeline style, and so on. Load imbalance is a
serious impediment to achieving good performance if master/slave is a chosen style. Load
balancing can be understood as an effort in a combination or one of two different kinds of
module interactions. One is an interaction between a master and its slaves. A master process
determines the workload for each slave. This is known as load distribution (or initialization).
The other is an interaction among slaves. This is for load migration to balance loads among
slaves at run-time. We will see various load balancing schemes can be parameterized where a
configuration program contains a proper set of those parameters in Chapter 4 and Chapter 6.
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Figure 1.3: Various Physical Configurations.

1.2 Overview of Approach

Our approach towards optimizing RPC-based distributed programs comnsists of three pri-
mary thrusts. First, we study how to present various configurations that result in different
performances after all. Such a configuration should be adequate to automatically generate
compilable source codes from the basic module programs according to the directions in a
configuration program. How to generate those compilable codes are the next two issues.
As for a parallelization phase, we present a source-level transformation framework that is
to transform RPC statements in a program into a proper set of message passing primitives.
The transformed modules are expected to exploit parallelism and to optimize communication
behaviors based on the given control and data dependence constraints. On the other hand,
as a part of an adaptation phase, we focus on load balancing schemes, which are added to the
original module interconnection activities. As a result, those important performance factors
are able to be decoupled from module-level programming. The final high performance ex-
ecutables are automatically generated according to those user decided performance factors
with a proper performance improving techniques like parallelizing and load balancing.



1.2.1 Configuration for High Performance

Module interconnection activity is understood to be an essentially distinct and different intel-
lectual activity from that of implementing individual modules, that is “programming-in-the-
large” is distinct from “programming-in-the-small” [DK76|. Analogously, this observation
applies to performance programming as well. Decisions concerning how a configuration
might be adapted in order to allow use of performance improvement mechanisms are inher-
ently different from the task of tailoring individual program units and their interfaces to
execute as dictated by the abstract decision. Thus, each module is written to satisfy its
functional requirements while each configuration program is written to specify performance
related as well as interconnection related information. Many existing performance oriented
mechanisms can be achieved by using ordinary modules with proper configuration programs
and source-to-source translation techniques. This frees programmers from making extensive
amounts of manual adaptations for various performance configurations.

This builds upon the MIL (Module Interconnection Language) approach [CP91, Pur94]
for distributed programming, where the original MIL specification is intended only for struc-
tural presentation of interfaces between interacting processes. We append performance re-
lated specifications onto each interface specification in a MIL. As the performance factors
are isolated from the module programming level, changing that information in order to fine
tune the performance requires not whole changes in source modules, but regeneration of new
executables for the performance configuration.

1.2.2 Optimal Transformation

Two representative programming models for distributed memory machines are available for
programmers, message passing (MP) and distributed share memory (DSM). Message pass-
ing primitives [Sun90, For93, BL93, Purd4, Fel79, Coo80|] are expressive enough to pro-
gram for efficiency; however, they are too low-level to write large distributed programs.
Programmers are fully responsible for matching send/receive pairs, allocating buffers, and
marshaling/unmarshaling data correctly. Programming under DSM systems [Car93] eases
such difficulties, but the resulting programs suffer efficiency due to false sharing and co-
herence maintaining overhead especially in a distributed-memory machine environments.
Our transformation based approach for implementing RPC paradigm is an effort to strike
a compromise between these two models, using the RPC paradigm for writing distributed
programs plus a source transformation framework for improving performance. Procedure call
abstraction has been favored since early programming era because it contributes to construct
a well structured modular program, which allows to reuse existing modules and helps write
and maintain a large program by giving a clear view of its structure. The RPC paradigm
adopts a widely used and understood procedure call abstraction as the sole mechanism of
remote operations; thus it simplifies distributed programming by abstracting from details of
communication and synchronization.

A distributed program is usually written with a number of different abstraction layers. It
is natural to implement each layer of abstraction as a distinct module (or procedure). Follow-
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ing such a natural flow of concept would help write large distributed programs. However, this
fact does not necessarily mean that the ideal flow of resulting program for high performance
should be consistent with the conceptual flow of RPC paradigm. Two problems should be
addressed to use RPC paradigm for high performance distributed programming. First, the
parallelism is inhibited under the paradigm since the caller blocks during the call while it is
desirable to make use of the time between sending requests and getting the responses back.
Second, an unnecessary communication is likely to occur especially when a system is layered
and implemented on the basis of modularization. For example, the communication between
far distant layers might require a series of communications between a series of adjacent lay-
ers. The major problem of traditional stub generation based methods [BN84, Gib87] for
implementing RPC paradigm is that it just adopts the natural flow of modularization as its
actual flow of a program while the ideal flow of it does not conform to that way the program
is written.

To cope with the discrepancy between the conceptual flow to write a program conve-
niently and the ideal flow to run a program efficiently, we present a source transformation
framework for RPC-based distributed programs, in order to decide the proper locations
of MP primitives for exploiting function level parallelism and reduction in communication
lengths. It has several advantages over conventional stub generation: (1) it can be safely
parallel — correctness is kept because it is transformed under preserving the given depen-
dence constraints, (2) using fine-grained MP primitives to implement an RPC statement
gives an opportunity for further code optimization through static program analysis tech-
niques, and (3) modularization is not discouraged because the actual communication paths
will be restructured optimally based on the given control and data dependences rather than
the modular structure as written.

1.2.3 Load Balancing

In a distributed parallel program, tasks are generated and distributed to multiple processors
to be processed simultaneously. Load imbalance is a serious impediment to achieving good
performance as it leaves some processors idle, when they could be working to make progress.
While global load balancing should still be an issue in the whole operating system’s concern,
our focus is on balancing parallel tasks within an application. Since minimizing the execution
time of an application is more important than average response time, each processor needs
to keep making progress rather than merely to have a balanced load. Although the latter
state may finally lead to the former, this is not a primary goal to shorten the finish time.
From a program’s viewpoint, loops are the largest source of task parallelism in a parallel
application. A loop is called a parallel loop (DOALL-loop) if there are no data dependences
among all iterations. The question of how to allocate an iteration to a particular processor
for minimizing the total execution time is known as a loop scheduling problem [TY86, KW85,
PKS87, TN91, CLZ95].

Networks of workstations are somewhat new environments for loop scheduling problems:
the communication delay is longer and the granularity of a sub-task is coarser. To our knowl-



edge, the first work on parallel loop scheduling in a network of heterogeneous workstations
was done by Cierniak et al. [CLZ95]. They considered three aspects of heterogeneity — loop,
processor, and network — and developed algorithms for generating optimal and sub-optimal
schedules of loops. Two major limitations are that it is static and that the loop heterogene-
ity model is linear. In this dissertation, we present a new dynamic load balancing method
for parallel loops of more general patterns, since many non-scientific applications such as
the DNA sequence search problem [CG89] or the Mandelbrot set computation [FvDF93],
which are good candidate applications for workstation clusters, often do not carry conven-
tional regular loop patterns. The unpredictable patterns can even be detrimental to those
improvements [KW85, PK87, TN91]|, although the pure self-scheduling scheme is orthogo-
nal to the loop patterns. Our new load balancing scheme reassures the important role of
configuration-level programming towards higher performance because a proper load balanc-
ing topology can be easily constructed under such a programming environment.

1.3 Summary of Contributions
The major contributions of this dissertation are itemized as follows:

e The configuration issues are popular in constructing large distributed softwares [DK76,
CP91, Kra90]. We have extended the idea into the performance issue from the orig-
inal interconnection related ones. One may perceive that any structural change in a
distributed program configuration could result in a different performance. This dis-
sertation elaborated on this perception in more details toward performance improve-
ment. We showed what kind of performance factors affects the overall performance
of a distributed program and how they can be represented in forms of MIL (Module
Interconnection Language) based configuration programming. We studied how such
an approach help to do a seamless process in developing high performance distributed
programs [KP95].

e We have developed an automatic parallelization of RPC-based distributed programs [KP96h].
RPC is a convenient paradigm for the sake of writing programs at the sacrifice of per-
formance, if traditional stub generation based approaches [BN84, Gib87, CP91] are
used. The automatic parallelization technique compensates programmers for the per-
formance problem.

e A new decentralized load balancing scheme has been developed for workstation clus-
ter environments [KP96a]. This development intensifies the importance of MIL style
programming toward performance tuning because the scheme showed that the load bal-
ancing power is dependent on the topology of load migration network. Configurable
load migration networks have had no application areas before the emergence of work-
station clusters. The optimal topology is hard to decide in advance and subjected to
be changed for performance tuning. A topological change is what a MIL program is



for. A programmer does not have to rewrite a module unless its functionality remains
unchanged.

e Moreover, other well-known load balancing schemes (e.g. water-marking, sender-
initiated, receiver-initiated, or their combinations) can be parameterized in a con-
figuration program. A new scheme may also be adopted later in order to generate the
necessary code for the new load balancing scheme. Programmers are free to experiment
various schemes that perform differently depending on applications without having to
change many of written codes.

1.4 Outline of the Dissertation

This dissertation is organized as follows. In Chapter 2 we survey background and related
work. Chapter 3 discusses the basic forms of parallel programming structures in order to
illustrate that an efficient form of module interactions in a distributed program varies from
application to application. Chapter 4 discusses a configuration-level programming that is
topped over the conventional module programming level for various high performance ori-
ented configurations. Some performance related parameters and how they can be represented
in a configuration are illustrated. In Chapter 5 we provide a source-level transformation
framework that transforms one and each of RPC statements into a proper combination of
message passing primitives in the light of enhancing parallelism and reducing communication
lengths. Chapter 6 presents a new load balancing technique that is suitable to workstation
cluster platforms. Finally, in Chapter 7 we conclude this dissertation with future research
directions.
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Chapter 2

Related Work

In this chapter we survey related work in distributed programming. First, we review some
of RPC implementations and its variations and other parallel programming paradigms like
message passing and Linda. Second, we briefly introduce static program analysis techniques
that have been used to establish our source-level transformation framework as a way of
implementing RPC statements, and similar researches that focused on function-level paral-
lelism as ours. Finally, we study various load balancing methods and compare them to our
dynamic and decentralized load balancing method.

2.1 Remote Procedure Call

Remote procedure call [BN84, Cor91] is a popular paradigm for distributed programming
since it simplifies program construction by abstracting away from details of communication
and synchronization. However, these early RPC implementations are synchronous in nature,
and hence fail to exploit the inherent parallelism in distributed applications. Optimizing
RPC performance has been limited to how to efficiently hook in a pairwise sense between
client and server communications as shown in the original work by Birrel and Nelson [BN84]
and Peregrine high performance RPC system [JZ93].

Since the synchronous property of RPC results in hindrance to parallel executions that
can increase the total elapse time, various asynchronous RPC mechanisms have been devised
to implement RPC in a non-blocking way [LS88, ATK91, WFN90, GGS88|. Call stream-
ing [LS88] is a pioneering work in an asynchronous RPC implementation. A new data type
called a promise — which is created at the time of a call so that the caller can continue its ex-
ecution — was designed to support asynchronous calls known as call streaming. It is inspired
by Multilisp [Hal85] that is for parallel execution of Lisp programs by means of future data
type at run-time. However, a static alternative is more attractive because we do not need
to rely on new language constructs for parallel execution. Thus far, it has not been sought
as a way to improving RPC programs. Remote pipe [GGS88| is used to efficiently handle
communication patterns of incremental results passing and bulk rate data transfer which are
major problem areas in the synchronous RPC communication model. However, the remote
pipe can work only for the remote operation that does not expect the return value. In fact,

11



the call streaming approach includes return value streaming as well, thus it should be su-
perior in this sense. Sun RPC system [Cor91| supports three different asynchronous RPC
(non-blocking, asynchronous broadcast, and callback RPC) in addition to synchronous one.
For those asynchronous RPC mechanisms that support return values, the disadvantage is
that the programmer is responsible for claiming the delayed return value by specifying the
right location in the program. Unfortunately, if users should choose those ‘right’ routines for
a proper communication style, the RPC paradigm loses its superiority over message passing
style programming with explicit send and receive primitives.

Another approach to cure the synchronous nature of RPC is using light-weight threads
for RPC calls [BELL90, BELL89, ABLL92, SB90]. When an RPC is invoked, a new thread
is created to take a waiting burden for the return value, and the calling process continues its
execution. Anderson et al. [ABLL92] reported that user-level light-weight process control is
more efficient than kernel-level control [ABLL92].

Special mechanisms need be provided to make RPC possible if servers are replicated,
which is an another form of variation. Replicated Distributed System [Coo85], PARPC [MBRS8T7],
Marionette [SA89] and MultiRPC [SS86] present mechanisms to call multiple instances of
same remote operation in parallel on multiple servers. The caller then blocks until one or
all of the requests have been completed. MultiRPC is primary intended for fault tolerance
like in invoking replicated file servers, rather than for high performance through parallelism.
Unlike general asynchronous RPC systems, these parallel RPC systems can not allow for
a client to invoke different kinds of RPCs in parallel because they are simply extended to
support server replications.

2.2 Message Passing Systems

Message passing is a capability to explicitly communicate information among simultaneously
executing components of a distributed application. Unix sockets are the simplest mechanisms
available and they provide basic mechanism underlying systems like PVM [Sun90|. They are
the lowest-level primitives provided directly by operating systems so aggressive programiers
can achieve significant improvements in the efficiency of the message passing by minimizing
software overhead at the expense of additional effort on the part of the programmer. It can
be analogous to the trade-off between assembler vs. compiler. Higher level message passing
systems include PVM [Sun90], MPI [For93|, p4 [BL93] and Poryrita [Pur94].

PVM PVM [Sun90] (Parallel Virtual Machine) is a user-level code and uses rsh com-
mands to initiate daemons on remote machines. The user writes applications as a collection
of cooperative tasks. Tasks access PVM resources through a library of standard interface
routines. These routines allow the initiation and termination of tasks across the network as
well as communication and synchronization between tasks. The PVM primitives are intended
for heterogeneous operations, therefore include buffering and data encoding and decoding
routines. Communication structures include those for sending and receiving data as well as
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high-level primitives such as broadcast, barrier synchronization and reduction operations.
Task (or process) management operations like spawning, killing, initializing are provided as
well.

p4  Message passing in p4 [BL93] system is achieved through similar traditional explicit send
and receive primitives as other message passing systems. However, the user is responsible
for buffer allocation and management. Broadcast, barrier synchronization, global operations
are provided. The p4 system supports both the shared-memory model through monitors and
the distributed memory model through conventional message passings.

MPI MPI [For93] (Message Passing Interface) is an effort by a group of vendors to con-
solidate the experienced gleaned from the use of various message passing packages into a
standardized system. It is intended to be useful to a wide range of users and efficiently
implementable on a wide range of parallel machines. By clearly defining the base set of stan-
dardized communication interfaces, many parallel machine vendors can optimally implement
those primitive functions for distributed computing. It allows other high-level oriented soft-
ware packages to use those underlying primitives in order to be portable on various systems
as well as efficient.

Polylith Poryrita [Pur94| system integrated a collection of machine and operating sys-
tem dependent ingredients for communication into a single entity called a bus. In hardware
platforms, a bus system simplifies to establish a communication network among many dif-
ferent hardware components like main memories, disks, or I/O devices. Any components
that wish to communicate with others simply need to be plugged in to a bus system without
having to know the details of other components’ details. Similarly, software bus provides an
environment where programmers simply need to communicate with message passing inter-
faces and the underlying bus system does the rest of job to accomplish the message passing,
which includes data abstraction, communication and synchronization. The PoLyLITH system
is an implementation of such a software bus that hides compatibility problems from software
developers.

2.3 The Linda

Linda [CG89, CGYI0] is a unique programming system that is based on a special memory
model called tuple space. It consists of a few simple operations and is orthogonal to the base
languages in which it is embedded. Linda memory consists of a collection of logical tuples.
Tuples are either active (process tuples) or passive (data tuples). As explained in Chapter 3,
Linda model perceives a parallel programming as three basic paradigms of coordinations:
agenda, result and specialist. Linda is a programming model that coordinates those three
paradigms. One of its realization, C-Linda [CG90] has four basic tuple-space operations as
follows.
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out(?) causes tuple ¢ to be added to tuple space; the executing process continues im-
mediately. A tuple is a series of typed values, for example, ("a string", 1, 0.17, y).
in(s) causes some tuple ¢ that matches s to be withdrawn from tuple space. For example,
in("a string", 7a, ?b, y) matches the above tuple and the values in the actuals in ¢
are assigned to the corresponding formals in s: i.e. 1 is assigned to a and 0.17 is to b. If
no matching ¢ is available when in(s) executes, the executing process suspends until one is,
then proceeds as before. If many matching ¢’s are available, one is chosen arbitrarily. rd(s)
is same as in(s), with actuals assigned to formals as before, except that the matched tuple
remains in tuple space. eval(t) is the same as out(t), except that ¢ is evaluated after rather
than before it enters tuple space; eval implicitly creates one new process to evaluate each
field of t.

Linda adopts a fairly high level of abstraction for distributed and parallel programming.
How to enable associative memory access in a tuple space is purely an implementation issue.
Programmers do not need to pay any attention to distributed data or processes or their
interactions. As a result, performance is generally sacrificed for easy programming.

2.4 Program Analysis Techniques for Optimization

Program analysis techniques for program optimization have been successful in various kinds
of parallel machines, although most of previous works have done for SPMD (Single Pro-
gram Multiple Data) style parallel computations. This section briefly summarizes the basic
techniques that have been used in our transformation framework.

2.4.1 Basic Definitions

Control Flow Graph (CFG) A control flow graphis a directed graph, CFG = (Vora, Ecrea),
with unique nodes Entry, Exit € Vopg such that there exists a path from Entry to every
node in Vopg and a path from every node to Fxit; Entry has no incoming edges, and Ewit
has no outgoing edges. An edge in F¢cp¢ is annotated by a control predicate that determines
whether or not to take the edge [FOWS8T].

Use and Def sets Each vertex in CF'G has a Def and a Use set associated with it. The
Use(v) consists of all variables that are accessed during the computation associated with
the vertex v. The Def(v) consists of the variable that is defined at the vertex, if any. A
du-chain (def-use chain) is the set of uses of a variable associated with each definition of a
variable. That is, a du-chain allows us to find all tuples that might use the value assigned
a variable at a particular vertex in CFG. A ud-chain (use-def chain) is the set of reaching
definitions associated with each use of a variable [ASUS6|.

Dominance and Post-dominance Node v dominates node w, denoted by vAw, if v
appears on every path from Entry to w. A node always dominates itself. Node v immediately
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dominates node w iff v dominates w and there is no node x such that vAzrAw. In a dominator
tree (DT) of a CF@, the children of a node v are all immediately dominated by v. Node v
postdominates node w, denoted by vA,w, if v appears on every path from w to Exit. If v
postdominates w but v # w, then v strictly postdominates w [ARZ92]. In a postdominator
tree (PDT), the children of a node v are all immediately postdominated by wv.

Control Dependence A C'FG node w is control dependent on a CF'G node v if both of
the following hold [FOWST]:

1. There is a non-null path p: v £ w such that w postdominates every node after v on p.
2. The node w does not strictly postdominate the node v.

In other words, w is control dependent on v if v can directly affect whether or not w is
executed.

Control Dependence Graph (CDG) The control dependence graph C DG is a directed
graph, CDG = (Vepa, Fope), where the vertices are the same as in CFG and (v, w), for v
and w in Vepg, is in the edges Ecpg when w is control dependent on v.

Data Dependence Vertex v conflicts with vertex w if either v or w share access to a
common variable, at least one of which is a “write” operation. Conflicts induce a data
dependence relation among vertices. If v and w conflict with each other, and if v is reachable
from w or w is reachable from v in C'F'G, we say that v is data dependent on w or w is data
dependent on v.

2.4.2 Previous Works

Many parallelization compilers [KLST94, HKT92, CMZ92] have a main target of data par-
allelism at the loop level. Researches on function-level parallelism are relatively rare partly
because many scientific problems contain data parallelism at the loop level as shown in a
systematic work by Fox et el. [FJL*88]. However, workstation clusters environments pro-
vide more necessity to exploitation of function-level or control parallelism because fine grain
parallelism is not appropriate due to relatively high communication costs.

Girkar and Polychronopoulos [GP92] uses interprocedural dependency analysis techniques
to exploit function-level (task-level) parallelism from ordinary programs written in a serial
program model. Task-level parallelism exists across loop and procedure boundaries. Using
Hierarchical Task Graph (HTG) as an intermediate parallel program representation, they
try to exploit and extract task-level parallelism. To this end, they present how to construct
HTG at a given hierarchy level of task and how to derive execution conditions of tasks which
maximize task-level parallelism. Supplementally, an optimization algorithm which reduces
synchronization overhead with preserving control and data dependence constraints. Finally,
parallel source code is automatically generated using cobegin/coend parallel constructs and
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wait, post and clear synchronization primitives: wait(a) waits on the event a, post(a)
tosses an occurrence of the event a for some other process who is on wait(a), and clear(a)
clears all prior posts on the event a.

The PARADIGM compiler project [SLR195, RB93] also deals with extracting function-
level parallelism using MDGs (Macro Dataflow Graphs) representation, which is similar to
HTG, from the perspective of processor allocation and scheduling problems. When we know
the available processor resources in a distributed memory multicomputers in advance, the
problem boils down to how to optimally allocate each task node in MDGs to a processor
and how to schedule those limited number of available processors.

2.5 Load Balancing Schemes

Load balancing concept has been widely studied from an operating system’s concerns [Son94,
ELZ86b, KS94, CS93, ELZ86a]. When there are multiple applications that are working
simultaneously on distributed environments, some processors can be too heavily loaded while
others are not. Dynamic (or adaptive) load balancing, which achieves load balance by
migrating excessive tasks from overloaded processor to underloaded one according to the load
information of each processor in the middle of computing, is regarded as an effective way in
spite of its accompanying overhead, providing that many factors are fairly unpredictable or
too complicated to make a best scheduling statically in advance.

Load balancing for multiple sub-tasks generated from a single application has been known
as “parallel loop scheduling problems” [TY86, KW85, PK87, TN91, CLZ95|, which have been
researched as a way of loop parallelization in a shared-memory programming model. If there
are I uniform-sized iterations, and P identical processors, load can be balanced simply by
assigning I /P iterations to each processor. Since both factors may not be known in advance
or may vary substantially, such a static method is often difficult or inefficient. Self-scheduling
(SS) [TYS86] is the simplest dynamic solution. It assigns a new iteration to a processor
only when the processor becomes available. However, this method requires tremendous
synchronization overhead; to be practical, hardware support to fast barrier synchronization
primitives is desirable. Uniform-sized chunking (CSS) reduces such synchronization overhead
by sending K iterations instead of one [KW85]. In this method, the overhead is amortized
to 1/K, but the possibility of load imbalance increases when K is increased. In guided self-
scheduling (GSS), the fixed chunk function (K) is replaced with a non-linearly decreasing
chunk function in order to reduce the overhead at the beginning of a loop by allocating larger
chunks, and also to reduce the chance of load imbalancing at the end of the loop by allocating
smaller chunks [PK87]. Trapezoid self-scheduling (TSS) uses a linearly decreasing chunk
function, which helps to reduce scheduling overhead while still maintaining a reasonable
balance [TN91].

Grimshaw et al. [GWWECL94| presented a static load balancing method for parallel
executions in heterogeneous distributed computing systems. The basic idea is to allocate
sub-tasks proportionally to the known throughputs of participating workstations. If a size
of sub-task as a unit of computation is variable, and even worse, if it cannot be known in
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advance or the throughputs are variable too, this proportionally allocating approach cannot
be effective. Cierniak et al. [CLZ95] deals with the very parallel loop scheduling problem in
a version of a network of workstations. They present an optimal algorithm that allocates
sub-tasks to all involving processors so that the elapse time can be minimized, although
their heterogeneity model is limited to linear one. In other words, the processor speeds, the
communication overheads, and the size of sub-tasks (an iteration in a loop), are assumed to
be only linearly changeable. Their approach is static as well.
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Chapter 3

Distributed and Parallel Programming
Structures

Sequential programs have a unique paradigm in the light of module interactions, which
is a form of call and return, within a single process boundary. Distributed programs are
inherently parallel. Each module is compiled to run as an independent process. Multiple
processes run in parallel for an application. As each module plays its own functional role,
the parallelism arising in distributed applications is referred to as functional parallelism.
An efficient form of interactions among components in a distributed application via remote
communications can be constructed differently from application to application. In other
words, the nature of an application determines such an ‘efficient’ form of interactions. Those
interactions are summarized by four categories as follows, which have been presented in the
previous researches on various parallel execution paradigms [YBS86, BDZ88, Geh84, Geh86,
And91a, CG89, LHG86, SA89, Gen81, Geh90].

In the rest of this dissertation, we study how those fundamental parallel program struc-
tures can be properly handled during the process of automatic adaptation with optimization.

3.1 Client/Server structure

Figure 3.1 depicts an interaction of the client and server structure where two clients share
a server. This is how conventional synchronous RPC [Gib87, BN84| works. As a typical
application in this category, let’s consider a disk server that repeatedly handles read and
write requests from client processes. A scheduling like SST (Shortest Seek Time first),
SCAN, and C-SCAN is often used to optimize the moving distance of disk head. Thus,
a disk server may include such a scheduling feature. Figure 3.2 illustrates three possible
designs. In the first design, a scheduler is separated from the disk server: (1) clients call the
scheduler to request an access, (2) the scheduler returns an acknowledgement, (3) clients call
the disk server to access data, (4) the server returns the data, and (5) clients finally call the
scheduler to release their requests. In other words, three calls are necessary for a disk access,
which is tantamount to five message passings — the final call does not need a return value.
When the scheduler is an intermediary, we only need four message passings as shown in the
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Figure 3.1: Client and Server structure with single threaded server.

figure. Moreover, if we coalesce the scheduler into the server, which is a self-scheduling disk
server, the number of needed message passings is reduced to two.

Two observations can be made through this example. First, the two-way communica-
tion in client-server computing can simplify the process of writing distributed programs. A
client may have other independent computations to the disk access. It is nice if the client
can continue to execute those computations during accessing the remote disk. The synchro-
nization restriction imposed by two-way commnunication, which is too conservative for such
an application, needs to be safely relieved for higher performance. An automatic program
transformation technique is called for. We can see the second design in Figure 3.2 can be
automatically transformed from the first one (Chapter 5). Second, while the third design in
Figure 3.2 is better than the previous two structures, it is the least tolerant to the change
of the scheduling policy. A scheduling policy was initially not a part of a server function,
but coalesced for saving unnecessary communications. When a server is likely to be heavily
loaded, a certain kind of scheduling may be a performance optimization decision. Moreover,
it could be clueless at the time of writing modules that which scheduling policy would be the
best. Isolating functionality-independent but performance-affecting factors from the mod-
ule programming level allows programmers to change those factors freely without having to
worry about re-writing burdens.
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3.2 Master/Slave structure

This is a variation of client/server computation, through server replication, in order to relieve
heavy load at a server side. Replicated servers, called slave processes, are supposed to
cooperate to finish a heavy task under the control of a client process, which is called a
master process. Master process generates many divided sub-tasks and allocates them to
multiple slave processes and finally collect the results to get an ultimate result as shown in
Figure 3.3.

Many applications can be suitable to this form of computations. It is also known as ad-
ministrator and workers structure [Gen81|. This category encompasses a well-known parallel
loop problem in parallel processing [TY86, KW85, PK87, TN91, CLZ95].

Conventional RPC represents client/server computations. Some modifications are re-
quired to utilize the replicated servers. PARPC [MBR&7] and MultiRPC [SS86] changed the
basic RPC mechanism to be able to deal with multiple servers. They distinguish a remote
procedure call to a replicated server from a normal RPC, by providing special procedures
that programmers need to invoke to process multiple tasks at replicated server sites. As
a result, the source code is not transparent for RPCs to replicated servers, which makes
modules difficult to be easily configurable.

On the other hand, load balancing is crucial to good performance in parallel processing.
The master/worker structure is a strong basis for building parallel applications with good
load-balance characteristics. We discuss the general issues on how to write load-balancing
intended configuration and what general techniques (e.g. water-marking techniques, schedul-
ing) are available in Chapter 4. Specifically, we present a new decentralized load balancing
scheme that is suitable to the workstation cluster environments in Chapter 6.
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Figure 3.3: Master and Slave structure.

3.3 Pipeline structure

Figure 3.4 shows a pipeline structure in distributed computations. One long computation
stage is divided into n sub-stages so that a pipelined parallelism can be exploited. Data
pipelining is primarily a network of filters that transforms an input [And91a]. It is often
used in data reduction or image processing systems. Since this structure represents a network
of filter processes, it is naturally suitable to a network of workstations environment.

Figure 3.5 exemplifies a 3-stage sorting network where each stage can work in parallel.
Each filter process accepts two inputs and emits a stream of sorted data. Figure 3.5 (a) shows
a data flow in a sorting network of a pipeline structure. For RPC to be used to express the
pipeline style computation, the return part of RPC needs to be directed to the next stage
of the computation instead of its client side. This can be done by analyzing return path
optimization in Chapter 5.

To be precise, as a side note, the merge-sort network in the figure is a hybrid form
of pipeline structure and master/server structure. The first stage in the pipeline has four
replicated merge modules, and the second has two. Indeed, the merge-sort network is in
nature hybrid for parallel version. The composition of various computation structures are
natural in writing large distributed programs.

3.4 Data parallel structure
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Figure 3.4: Pipeline structure.

Figure 3.6 illustrates a data parallel computation. Unlike previous structures each of the
processes is executing the same program, where the individual processes work on a different
set of data.! Tt is also called SPMD (Single Program Multiple Data) programming. When
a process needs to access non-local data that are stored and maintained by other processes,
they communicate with each other.

The communication patterns among processes are expected to be highly structured and
often predictable so that the entire data can be decomposed before starting computations
for the good performance. Initial data layout and communication optimization [vHIK94,
HQI1, AL93] are hot issues in this kind of computations and they are mutually related.
Many practical scientific problems except fairly irregular ones are known to be efficiently
computed under this structure [FJLT88]. As scientific problems are main targets for this
style, parallel variants of Fortran programming language — like Fortran D [HKT92|, Vienna

! Although the previous merge-sort example uses an identical merge module in its parallel computation,
this is not because of the enforcement of the structure but because of user’s liberty to do so.
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merge_main(DATA)
char *DATA

Split DATA stream into 4 data streams;
Sort each data streams;

/* construct merge network */
/* first stage: */

outl = mergel(datal, data2
out2 = merge2(data3, datad
out3 = merge3(data5, data6
outd = merged(data7, data8
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/* second stage: */
outl2 = merge5(outl, out2);
out34 = merge6(out2, out3);

/* third stage: */
out1234 = merge7(outl2, out34);

char *

merge(strm1, strm?2)

char *strm1, *strm2;

{ inti=1,j=1k=1;

char outstrm[MAX];

while ( (i <= strm1[0]) || (j <= strm2[0])) {
if (i <= strm1[0] && j <= strm?2[0]) {
if (strm1[i] <= strm2[j])
outstrm[k++] = strm1[i++];
else outstm[k++] = strm2[j++];
}
else if (i <= strm1[0])
outstrm[k++] = strm1[i++];
else
outstrmk++] = strm2[j++];

}
outstrm[0] = strm1[0] + strm2][0];
return(outstrm);

Figure 3.5: Merge sort network.
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Figure 3.6: SPMD (Single Program Multiple Data) structure.

Fortran [CMZ92] and HPF (High Performance Fortran) [KLS*94] are popular. The primary
works are concentrated on how to optimize such a Fortran program using program analysis
techniques.

Many research works have been done for this structure of parallel computations on dis-
tributed memory parallel machine environments. Same techniques can be applied for work-
station cluster environments. Workstation clusters are by nature distributed memory ma-
chines with slightly different communication parameters. Thus, the dissertation research
does not focus on exploiting data parallelism, while those program optimization techniques
can be adopted as one of infra-structures in our optimization framework that is aimed at
multi-paradigm distributed and parallel applications on workstation clusters.

3.5 Remarks

Andrew [And9la, And91b| classified distributed and parallel program structures based on
the behavioral type of a process component in a program rather than the type of interaction
among its components as given in the chapter. The four basic types are ‘filter’, ‘client’,
‘server’ and ‘peer’ processes. A filter is a data transformer. It receives streams of data values
from its input channels, performs some computation on those values, and sends streams of
results to its output channels. Because of those attributes, we can connect filter processes
into networks that perform larger computations. A client is a process that triggers a service
request and a server is a process that reacts for the service request. A client thus initiates

24



an activity; it then delays until its service has been serviced and returned. A server waits
for requests to be made, do the services, and finishes by replying the results. A server is
often a non-terminating process and often provides service to more than one client. A peer
is one of a collection of identical processes that interact to provide a service or to solve a
large problem (SPMD) or several peers might interact to solve a parallel problem, with each
solving a piece of the problem (master-slave). For example, the types of processes in client
and server structure are of client and server. Pipeline is of filter. Master/slave and SPMD
are of peer.

Another classification on paradigms of parallel computations is given by the Linda [CG90)]
project: result, specialist, and agenda parallelism. Result parallelism focuses on the shape of
result in order for process interactions. Specialist parallelism focuses on the makeup of the
work crew that are specialists for particular jobs. How to divide a job and to design a set of
specialists who will take care of those distinct small pieces of the job are the issues in this
paradigm. Agenda parallelism focuses on the list of tasks to be performed. Result parallelism
is somewhat unique because it no longer presumes that each process has its own local data
and non-local data access through message passings. It is a shared data object. Processes’
efforts to read or write those data are controlled in regards with the critical section problem.
The remaining two paradigms are easily constructed through the basic four processes —
specialist by filter, client and server and agenda by peer processes.

Andrews [And91a, And91b] presented typical distributed and parallel applications that
can be optimally expressed as one or combination of the four process types. A versatile
programming environment for all of the forms of parallelism or process can be provided by
message passing paradigms like PVM [Sun90] and MPI [For93]. Not only because of the
resulting complexity in writing distributed programs with such a low-level abstraction, but
also because of its difficulty to reconfigure, a higher level of abstraction for module interaction
is called for.

Procedure call abstraction has been favored since early programming era because it con-
tributes to construct a well structured modular program, which allows to reuse existing
modules and helps write and maintain a large program by giving a clear view of its struc-
ture. The RPC paradigm adopts a widely used and understood procedure call abstraction
as the sole mechanism of remote operations; thus it simplifies distributed programming by
abstracting from details of communication and synchronization.

Since those conventional implementations of RPC paradigm [BN84, Gib87| only allow
client and server types of processes, the RPC paradigm has a limited coverage of applica-
tions especially for high performance. Indeed, any single paradigm is not enough for high
performance. That is why Linda has three paradigms for writing a program based on the data
sharing in the form of tuple space. And that is why Andrews [And91a] suggests to use differ-
ent types of processes for different types of applications. To strike a compromise between the
pros and cons in the RPC paradigm, and to allow various structures in a distributed appli-
cation using reusable modules, we need an automatic adaptation and optimization process
for distributed programs based on RPC paradigm.
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Chapter 4

Configuration-Level Performance
Programming

In this chapter we address writing a MIL-style configuration program that orchestrates mod-
ules in an optimal program structures for a specific application. We first illustrate a concrete
example that motivates the optimization of RPC-based distributed programs for high per-
formance. The example we will discuss involves DNA sequences, an conceptually straight-
forward problem whose solutions, though very intricate in implementation, are simple and
may admit several types of parallelism.

This is essentially a data structure problem: when a new DNA sequence is discovered, ge-
neticists want to find out how and which previously known sequences the new one resembles.
Suppose we have tens or hundreds of newly discovered sequences that are to be compared to
a large database of existing sequences. Suppose the length of each sequence is variant, and
so is the comparison time. Figure 4.1 (a) is a client (or master) module that initiates the
required number of comparison tasks.

Two basic parallelizing approaches to the DNA example illustrate the problems that we
are dealing with: one approach performs many sequential comparisons simultaneously as
shown in Figure 4.1 (b), which is a master/slave model (target database is replicated to
each server), and the other constructs a pipeline of a series of sub-comparison modules that
do comparisons to a part of the entire database (database is divided into smaller ones) in
Figure 4.1 (c).

The problems for this example, which make direct use of conventional RPC inappropriate
to high performance distributed computing, may be summarized as follows:

1. Load balancing: Server replication is a basic way to improve throughput. However,
the performance of a replicated server can be degenerated to that of the bottleneck
process or processor unless a proper load balancing scheme is used. In Figure 4.1 (b),
no slaves should be idle while others are busy. So far, RPC in itself does not make
any association with load balancing. Previous RPC systems for multiple servers like
PARPC [MBRR87] and MultiRPC [SS86] do not consider load balancing.

2. Scheduling: In our example, the length of each DNA sequence varies, so does com-
parison time. In this situation, if the longest sequence is assigned to an unfortunate
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client()

/* get next sequence to compare */ @ ;

for (i = 0; i < NUM_NEW_SEQUENCE; i ++) % o
cecfi] = get_next_seq();

/* compare a sequence with each sequences */

/* in adatabase */

for (i =0; i <NUM_NEW_SEQUENCE; i++)
result[i] = compare(seq([i]);

[* update result */

for (i =0; i < NUM_NEW_SEQUENCE; i++)
if (real_max < result[i].max) {

real_max = result[i].max;
real_max_id = result[i].db_id; (dlient)—=(GompareD)—= Ccompared—=

}

(b) Master/Salve style

@ (c) Pineline style

Figure 4.1: Simple DNA sequence search.

process at a late time near the end of all computations, only that process will be busy
while others sit idle. This problem can be solved if the longest sequence is serviced
first. To do this, the RPC server must be constructed to service tasks with respect to
their given priorities.

. Parallelism: RPC is synchronous in nature. A client must wait to get a response
for its call before calling another server. Preparing multiple servers or multi-stage
pipelines may not be of much use if a synchronous RPC is used for remote interaction
as then only one server may be activated by a client. Parallelism can be sought if the
gap between send and receive primitives is widened to allow more useful computations
during the wait for a result.

. Length of communication paths: RPC can lengthen communication paths un-
necessarily if involved modules form a computation network (like the trellis model in
Chapter 8 of [CG90]) because of its two—way communication protocol. For instance,
in Figure 4.1 (c), an intermediate result in each stage of the compare module must go
back to the client first before being delivered to the next stage. An optimization step
that eliminates such unnecessary communication paths is called for.

This example illustrates the several dimensions open to programmers, and serves to help

us state simply our objective: since each of the above types of improvement admits sev-
eral strategies for success, and also each can be characterized in terms of the application’s
configuration level description, we seek a development environment where developers may
implement modules in terms of RPC interfaces (which are comparatively simple constructs),
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nodul e client { nodul e server {

source = "C' "local":: source = "C' "renote":
entrypoint = "main":: define interface conpare
use interface conpare . pattern = {string}
: pattern = {string} : returns = {integer}
accepts = {integer} : interface = "null"::
interface = "stdio":: }

nodul e DNA _seq_search {
instance client::
i nstance server: standal one::
bind client conpare server conpare::
interface = "stdio"::

}

Figure 4.2: Basic configuration for DNA sequence search example.

yet separately be able to express performance improvement strategies in terms of the con-
figuration description. Figure 4.2 shows the basic configuration program for the example of
Figure 4.1; it represents (in the notation of our system to be described) the conceptual start-
ing point for configuration programmers who wish to experiment with different optimization
techniques. After programmers express directions in terms of this configuration, the system
should tailor all executables to be consistent with both specifications.

4.1 Requirements For Configuration Optimization

We exposed some limitations of using RPC for high performance distributed programs, and
in doing so suggested some dimensions by which improvement can be achieved. This also
makes it clear that we can separate what programmers should be able to do and what tools
can do as follows:

1. High-level decisions regarding performance factors that affect overall performance should
be specified in the programming-in-the-large level so that module reusability can be
enhanced, especially in the process of performance tuning. Programmers should be
able to specify those decisions independently.

2. High-level decisions regarding performance factors should be automatically realized
and optimized with low-level message passing primitives.

The purpose of this section is to discuss in greater detail the various strategies by which
performance can be improved by configuration level annotation. This will identify which
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features will be used for optimal realization of RPC (Section 4.1.1) and expression of the
load balancing scheme (Section 4.1.2).

4.1.1 Performance Factors

Performance benefits are realized as latency and throughput improvements. A distributed
program is composed of clients, servers and their interactions. We distinguish the task
of performance improvement of a distributed program from the perspectives of its three
components. Namely, clients should be able to make multiple requests (parallelism), load
must be balanced among servers (load balancing), and interprocess communication and its
overhead must be minimized (communication optimization). We will elaborate on factors
that affect performance and what we can do to improve performance in the followings.
All of these factors are related in module interactions rather than functionality; thus they
will be represented at the interconnection programming level. Throughout this section, the
expressions enclosed by an oval box denote our extension of the original MIL specification
in polygen [CP91] for a performance configuration.

Calling Style

A synchronous call is a call whereby the client blocks the call until the server completes
it [BN84]. An asynchronous call does not block the client, and replies can be received as they
are needed. To date, the decision on calling style is not the programmer’s (for example, calls
may be synchronous only [BN84] or they may be asynchronous only [ATK91, LS88, WFN90]),
or the decision has to be made at module programming level by use of different library rou-
tines [Cor91]. If we let this decision be separate from RPC statement, the modules will remain
reusable for different calling styles. Therefore, in devising requirements for a configuration
level optimization system, an asynchronous RPC should be implemented by separating the
Send_Request primitive and the Receive_Result primitive to allow other useful operations
in the midst of remote service. Synchronous calls would be implemented by their placement
in sequence in a client module. Thus, a server module does not distinguish whether a server
is called synchronously or asynchronously. It implies that the same server can be called
asynchronously for one client and synchronously for another client in the same application.
The calling style should be easily prescribed by programmers in terms of a use clause in
the module specification. Consider the module client in Figure 4.2, which calls the remote
procedure compare. To specify an asynchronous call, programmers may simply state so in
the MIL specification as follows:

use interface compare

(: callstyle = "async" )
pattern = { string }
accepts = { integer } ::
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Servicing Style

When the length of a service queue is long, throughput can be improved by the choice of a
good servicing style. Servicing style can be characterized by two factors: scheduling policy
and server replication. Scheduling policy determines the desirable order of requests to be
serviced. Usually the order of service is fixed by arrival time. Scheduling generalizes the
order — i.e. other parameters besides arrival time are considered to determine the order of
service. For example, the length of a DNA sequence to be compared may be a parameter
that determines such an order as mentioned before. Server replication improves throughput
as well because the load is distributed among replicated servers, although load balance is
crucial to good performance.

As with calling style, the module specification for expressing scheduling and replication
features should be simple for programmers to assign. Illustrating one way this might appear
for the introductory example, is

module server {
source = "C" '"remote"
define interface compare

C priority = "strlen(x)'D
C replication = "harvey.cs.umd.edu,.. .'D

pattern = { string }
returns = { integer }
interface = "null"

Here the priority attribute is an expression, which would use valid syntax within the
module compare in order to evaluate a priority. Since we hoped to assign a higher priority
to the longer sequence, evaluating strlen(x) produces the right order of priorities. The
compare module is replicated in its simplest form here, while load balancing will be considered
in Section 4.1.2.

The priority expression is directly used to evaluate a priority for the corresponding
service request when a server stub is generated. So, it should have a legal expression in
a module language. The variables used in the expression should also be defined in the
server module. For more examples, when head, loc and dir are variables used in a disk
server for the current head location, the location of the requested data and the current
moving direction of the head, the priority expressions for SSTF (Shortest Seek Time First),
SCAN and C-SCAN are "abs(loc - head)", "(head - loc) * dir" and "loc * dir",
respectively.

The replication attribute contains a list of machine names on which the server is repli-
cated.
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Communication Style

A communication pattern in distributed programs occurs in three different forms: intermit-
tent, incremental and bulk rate data transfer. A conventional RPC protocol covers only
the case of intermittent data transfer, i.e. when the number of messages between client and
server is not too big or too frequent. An incremental pattern of communication occurs when
we try to exploit pipeline concurrency for a chain of clients and servers as in Figure 4.1 (c)
and Figure 4.3. This pattern, which forces a single computation to be decomposed into a
series of distinct RPCs, reduces the server’s performance since it is inactive between calls
unless the synchronous behavior of RPC has been changed. Also, if we want to send bulk
data by a series of RPCs, the communication performance is severely limited since it is not
possible to aggregate data of successive procedure calls from a single client. Even worse,
contemporary RPC systems are optimized to transmit limited amounts of data (usually less
than 103 bytes) per call. To support the incremental and bulk rate data transfer, wherein
conventional RPC systems performance suffers severely, a new communication model called
remote pipe [GG88| has been devised. In the framework we are motivating, these patterns
may be efficiently handled with automatic communication optimization if programmers spec-
ify which communication pattern will appear.

main()

t / @ /
. G &
r2 = compare2(rl);
r3 = compare3(r2); \

:

(@ (b) ©

Figure 4.3: Communication optimization for Figure 4.1 (c).

Once that information has been provided, there would be three ways to improve com-
munication performance: (1) choice of proper transport, (2) reduction of kernel overhead
by data aggregation and (3) elimination of unnecessary communication. The best transport
protocol depends on the amount of data to be transferred. In other words, the connection-
less transport protocol (UDP: User Datagram Protocol) works best for the intermittent data
transfer pattern, and the connection-oriented transport protocol (TCP: Transmission Con-
trol Protocol) for the incremental and bulk rate data transfer pattern. Data aggregation
allows us to amortize the overhead of kernel calls. If the size of aggregated data is increased,
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the throughput is increased, and if it is decreased, then the latency is reduced. Programmers
can control high throughput vs. low latency by assigning the size of aggregated data to a
particular server.

Unnecessary communication is unavoidable in conventional RPC implementation as il-
lustrated in Figure 4.3. Figure 4.3 (b) is optimized to (c¢) by elimination of the unnecessary
communication paths. The communication optimization like unnecessary communication
paths elimination can be accomplished by flow analysis techniques. Chapter 5 presents a
source-level transformation algorithms with communication optimization.

4.1.2 Load Balancing

Since load balance is crucial to good performance among replicated servers, we need to pro-
vide a systematic way to customize proper load balancing schemes for an RPC to replicated
servers. Load balancing schemes can be classified as follows. In this section, we present how
to express various kinds of load balancing schemes with various load balancing factors.

Type 1: Static load distribution

Static load distribution is a simple approach to load balancing. The tasks generated by mas-
ter process are distributed to the pool of slave processes according to the statically defined
task distribution ratio, which is decided by programmers based on the average performance of
participating workstations. The task distribution ratio is the only parameter in this scheme.
The approach by Grimshaw et al. GWWECL94| belongs to this type. Since load distribution
is a client side concern, an attribute loadratio is needed in the use clause. The ratio descrip-
tion is matched with the replication attribute in the corresponding define clause as follows:

use interface compare define interface compare
callstyle = "async" :  replication = "harvey.cs.umd.edu,
(: loadratio = "1:2:3") bugs.cs.umd.edu,

thumper.cs.umd.edu"

Type 2: Demand-driven load distribution

Simple dynamic load balancing can be achieved through demand-driven load distribution,
which does not need to migrate tasks among slaves. When a master process receives a
result from a slave, it sends another task to the slave as the load situation of the slave
has decreased due to the recent finish, i.e. receiving a result is regarded as a demand for
another task. This scheme contains two problems. First, the master process can generate a
bottleneck [GBSS89]. For example, if there are 100 slaves and a master needs 10~2 second
to prepare and send a task, the master would create a bottleneck unless the average time
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for each slave to finish a task is greater than a second. Furthermore, if all slaves took the
same amount of time to finish their own tasks, the finish replies would come in burst, and
this would cause a bottleneck, too. Second, the scheme does not allow overlap between
communication and computation because the next task can not be issued unless the current
one has been finished.

To alleviate these problems, water-marking can be used [CG90]. The idea is to maintain
the number of tasks between an upper and a lower limit. The upper water-mark limits the
maximum number of queuing tasks to a particular slave, thus prevents possible overload. The
lower water-mark is used to maintain the minimum number of tasks to cope with network
latency, which makes a slave sit idle between a finish of a task and a wait for another one.
This requires a change in calling style, represented by “async-demand(L:U)”, where L and
U are a lower and an upper water-mark, respectively; ‘*’ denotes an unspecified water-mark.
Both of L and U cannot remain unspecified. A master sends a task to a server only if the
number of queued tasks to the server is less than U. If the number is less than L, it needs
to send a number of tasks to make it L. Available servers are the servers of which queue
lengths are less than U. The demand-driven load distribution can be represented with proper
water-mark ranges as follows:

module clientl { module server {
source = "C" '"remote"
use interface compare define interface compare
callstyle = "async" :  priority = "strlen(x)"
loadratio = "1:1:1" :  replication =
"harvey.cs.umd.edu,
} bugs.cs.umd.edu,
module client2 { thumper.cs.umd.edu"
pattern = { string }
use interface compare :  interface = "null"
( :callstyle = "async—demand(*:S)'D }
}

Type 3: Dynamic load balancing

When load balance cannot be reached through the above load distribution methods, tasks
should migrate, which is known as dynamic or adaptive load balancing. Many dynamic load
balancing algorithms [CS93, ELZ86b, KS94, LK87, Son94] have been devised for good load
balance with less migration overhead; they are characterized by the following parameters
which distinguish them. Load balancing algorithms can be fine tuned when programmers
can change those factors conveniently.
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e Topology: Topology determines the shape of task migration paths. A fully connected
topology provides a way to gain load balance in any case, but with some system over-
head due to periodic load state exchange. The overhead can be cut through simplified
topology. A compromise must be sought between reduced overhead and load balancing
gains. In Chapter 6, we present such a topology.

e Transfer policy: Transfer policy determines whether load has to migrate at a partic-
ular load state. The decision can be made based on local or global load information.

e Location policy: Location policy determines which process initiates the migration
and which process should be the source or the destination in this migration: sender-
initiated, receiver-initiated or symmetrically-initiated.!

e Selection policy: Selection policy determines how many work load units are to mi-
grate.

The following generic form of a replication expression can express the above information,
where M; and M, are IP addresses of host machines, o; and u; are logical expressions that
denote the conditions to be overloaded and underloaded for M;, and ;2 and 79 are the
fraction of current load to be migrated from M; to M, and M, to M, respectively. The
symbol # denotes a migration linkage. The load balancing information must be given to all
load migration paths in an application:

(: replication = "M;(uy, 01)[v12]#Ma(ug, 09)[V21] 'D

Table 4.1 illustrates various kinds of load balancing expressions and their meanings.
Types of Ml()#M2(U2, 02), M1(u1)#M2(u27 02)7 M1(01)#M2(U2, 02), Ml(ul, 01)#M2(02)7 Ml()#M2(02)7
M, ()#My(uy), My(uy)#Ms(02), are omitted for brevity, because each of them is dual to one
of the cases in the table. To denote a symmetrically-initiated case, both of the source and
the destination of the load migration are explicitly specified in the Comments column; e.g.
M carrys load out to M,. For a receiver-initiated case, only the destination is explicitly
specified; e.g. M; carrys load in. For a sender-initiated case, only the source is explicitly
specified; e.g. M, carrys load out. Followings are the summary of those types:

e Type 1 is the case where only M, initiates migration as a sender.
e Type 2 is the case where only M, initiates migration as a receiver.
e Type 3 is a mixed case where M, initiates as a sender and M, does as a receiver.

e Type 4 is a purely receiver-initiated case.

IWith a sender-initiated policy, an overloaded process will look for a destination to export load to.
With a receiver-initiated policy, an underloaded process will look for a destination to import load from.
Symmetrically-initiated process can play both roles depending on whether it is underloaded or overloaded.
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e Type 5 is a purely sender-initiated case.
e Type 6 is the case where only M, initiates migration as both a sender and a receiver.

e Type 7 is an asymmetric case where M; can be either a sender or a receiver, but M,
only can be a receiver.

e Type 8 is a fully symmetrically-initiated case where both A; and M, can initiate
migration as either a sender or a receiver.

e Types 1 through 3 have uni-directional migration paths.

e Type 4 through 8 have bi-directional paths.

H ‘ M, ‘ M, ‘ Direction ‘ Comments H
1 01 — M, 2 M, | M, carrys load out if o; holds.
Uy - M, <2 M, | M, carrys load in if u; holds.
01 Us My 222 M, | My carrys load out if o holds or
M, carrys load in if uy holds.
4 ws | My "2 M, | My carrys load in if ug A —us holds.
My "8222 An | My carrys load in if —up A ug holds.
51 o0 09 My "2 M, | My carrys load out if 0 A -0y holds.
My "2 N, | M, carrys load out if —0; A 0y holds.
6 | uy, 01 - M, =2 M, | M, carrys load out if o; holds.

M, <~ M, | M carrys load in if u; holds.

71 uy, 01 U9 M, IATE My | My carrys load out to My if 01 A us holds.
M, "2 0, | M, carrys load in if uy A —us holds.

My "822 An | My carrys load in if —up A ug holds.

8| uy,01 | ug,09 | M IATE My | My carrys load out if o1 A uy holds

M, 822 0, | M,y carrys load out if —uy A uy holds.

My 22 Af, | My carrys load in if ug A 0y holds

My "2 0, | My carrys load in if up A - holds.

Table 4.1: Various load balancing expressions and their meanings.

As an example, a server module specification is given below, which forms a dynamic load
balancing scheme that has a circular topology and sender-initiated task migration policy.
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Makefile client.cl server.cl all.cl

a.cfg x.client.c x.client.h
client.c — x0.server.c x0.server.h xl.server.c
server.c x1.server.h

x2.server.c x2.server.h x3.server.c
x3.server.h

Figure 4.4: Generated files from user provided modules using CORD.

module server {
source = "C" '"remote"
define interface compare
priority = "strlen(x)"
replication =
"harvey.cs.umd.edu(o=(L>=10)) [1/2]#bugs.cs.umd.edu,
bugs.cs.umd.edu(o=(L>=20)) [1/3]#thumper.cs.umd.edu,
thumper.cs.umd.edu(o=(L>=10)) [1/4]#harvey.cs.umd.edu"
pattern = { string }
interface = "null"

4.2 Developing Applications In CORD

The previous section has characterized the various forms of optimization which are possible to
discuss in terms of an application configuration. We have developed a support environment
called CORD (Configuration-level Optimization for RPC-based Distributed programs) to
allow us to experiment with introduction of such adaptations at low cost.

The configuration language chosen for expressing modules and their compositions is de-
rived from the PorLyrLiTH module interconnection language (MIL), and the distributed run
time environment chosen is likewise the software bus behind PoryriTH. Basic tools for
preparing applications to run in this environment are already available within the polygen
system [CP91], although they are to be tailored to attain our source translation (rather than
stub generation) principle. Therefore the principle thrust of our effort has been to add a
source translator (gen_trans) to the suite of polygen tools. The source translator operates
differently depends on whether a module is a client or a server from given RPC’s viewpoint:
for a client module, it performs data flow analyses to place message passing primitives opti-
mally, and for a server module, it generates proper codes to implement particular servicing
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styles described in configuration programs. The next chapter presents the heart of algorithms
for this purpose.

The development of an application in CORD consists of a number of steps. At some
point, each module used in the application must be given an implementation, each dealing
with interfaces in generic RPC terms, of course. Since performance decisions that occur in
module interactions are decoupled from the module programming level, module functionality
is the only concern in this step.

The second step is to define an application using the module interconnection and perfor-
mance configuration. In the next step, CORD generates all necessary files for an executable
automatically with respect to the configuration program. Figure 4.4 shows the automatically
generated files from the user provided files, which are source programs clnt.c, srv.c and
the configuration program a.cfg, using CORD. (In the figure, it is assumed that the srv.c
is replicated to four distinct machines.) This step follows the similar packaging process in
polygen, which deals with automatic adaptations for divergent structural and geometric
configurations. The interaction between modules in distinct sites, which is an RPC, is re-
solved by generating client and server stubs automatically by polygen. CORD does not
generate stubs but translates source codes in which every RPC is replaced with a set of
message passing primitives interspersed for the purpose of optimization. The script of the
entire process, which includes both user commands and the execution of the configuration
program, is shown in Figure 4.5. The tools that are involved in this process, are summarized
as follows:

e config generates prolog assertions (a.pl), which encode facts about the modules and
bindings in the configuration, from user provided configuration (a.cfg).

e prolog: After reading the assertions (a.pl), the CORD uses prolog inferencing mech-
anism to search for satisfying the goal, which asks the possibility to create an appli-
cation for the configuration described in a.cfg by means of the available tools in the
environment. This inference results in a package information (a.pkg) if successful.

e gen_imake: Using the package information (a.pkg), gen_imake generates an Imakefile
to create a Makefile for an application. A UNIX imake is used to generate a Makefile
from a provided template in CORD.

e gen _module generates a MIL program (.cl) for the module descriptions?.
e gen_cluster generates a MIL program (.cl) for the application description.
e gen_header generates a header file for each module if necessary.

e gen_trans generates translated source code to realize RPCs using message passing
primitives, and proper codes for scheduling and/or load balancing.

2The components of the MIL program are the module descriptions and the application description.
See [Pur94].
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% config < a.cfg > a.pl Initially a user has source codes ("client.c","server.c")
and a configuration file ("a.cfg").

% prolog < a.pl > a.pkg Creates prolog assertions for the configuration. Given
inference engine ("package.pl"), this generates the
packaging information ("a.pkg") to satisfy the
packaging goal according to the generated assertions.

% gen_i make < a.pkg > I makefile Creates Imakefile file from the packaging information.

% imke -T "l make. tnpl" Creates Makefile file using a prepared Imake
template ("1make.tmpl").

% make Creates executables according to the interface genera-

tion, source transformation, and compilation
information in the Makefile.
The following output is from commands in Makefile.

gen_header client<a. pkg>client.h generates a header file for the client.c.
gen_header server<a. pkg>server.h generates a header file for the server.c.
gen_trans client.c<a.pkg>x.client.c translates fromthe original "client.c".
gen_trans server.c<a. pkg>x.server.c trandates fromthe original "server.c".
gen_nodul e client<a. pkg>client.cl generates the client specification.
gen_nodul e server<a. pkg>server. cl generates the server specification.
gen_cluster < a.pkg > all.cl generates the application specification.
csc client.cl compiles the client spec. into client.co.
csc server.cl compile the server spec. into server.co.
csc all.cl compiles the application spec. into all.co.
csl -o all client.co server.co all.co creates a root executable that executes client.
cc -oclient x.client.c -lith compiles and creates a client executable.
cc -0 server x.server.c -lith compiles and creates a server executable.

Figure 4.5: Script for the design (user commands prefixed by a % prompt).

The final step is to execute the application, identify performance bottlenecks using a per-
formance measurement tool, and repeat the process from the second step until the resulting
performance is satisfactory.

It is possible to suggest the potential for CORD in helping programmers to discover
desirable optimization opportunities at low cost. We do illustrate this using the Mandelbrot
example, using a generically coded C implementation built in the PoLyLITH system. In this
implementation, a sub-task is to compute the set for one row in 200 x 200 pixel window,
therefore 200 RPCs will be made to complete the whole computation. This formulation
of the problem increases traffic beyond that of alternative implementations, but makes the
effect of any optimization strategies more easily measured for illustration.

Table 4.2 shows timing results when we execute this Mandelbrot program for vari-
ous performance improvement alternatives, where the programmer may select each mech-
anism by making only a simple attribute change in the module specification as in Fig-
ure 4.6. Table 4.2 (a) compares the performance between synchronous and asynchronous
RPC where the computation is run on each of several different servers in turn. (To be
concrete, ‘harvey’ is SparcStation IPC, ‘rimfire’ is SparcStation IPX, ‘thumper’ is Sparc-
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H H harvey ‘ rimfire ‘ thumper | highpower H

Sync 216 103 86 57
Async 125 59 52 30

(a) Single server case

H ‘ Type 1 ‘ Type 2 ‘ Type 3 H
[ALL| 34 | 26 | 17 |

(b) Multiple server case

Table 4.2: Measured time (in seconds) to compute Mandelbrot set on [0.5,-1.8] to [1.2,-1.2]
with 200 x 200 pixel window used.

Station 2, and ‘highpower’ is SparcStation 10: the broad spectrum of computing power
in these machines is intentional to cause load imbalance in the later load balancing test.)
Asynchronous RPC is better because it allows to overlap server computation with commu-
nication. Table 4.2 (b) shows timing results when all four machines are cooperating for the
computation. Each row in the Table 4.2 (b) indicates the type of load balancing among
four servers. Type 1 is when tasks are distributed equally in spite of divergence in com-
puting power — the performance is degenerated to that of harvey, the slowest machine (see
“34 &~ 125/4”). Type 2 is when the task migration paths are linearly connected, i.e. “client
— harvey — rimfire — thumper — highpower.” Type 3 is when the paths are circular and
the client distributes the equal number of tasks to all servers initially. The CORD system
allows us to track down these configurations towards better performance without having to
worry about extensive amount of manual adaptations. Each of the execution scenarios shows
performance that is comparable to a manually coded counterparts, yet these were achieved
without extensive manual intervention on the part of programmers.
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 loadratio = "1:1;1;1"

! replication = "harvey.cs.umd.edu, rimfire.cs.umd.edu,

module server { el thumper.csumd.edu, highpower.csumded”s: 3

source ="C" "server" ::

A : replication = "harvey.cs.umd.edu(o=(L >=10)#rimfire.cs.umd.edu, ‘
Load Balancing : rimfire.cs.umd.edu(o=(L>=10)#thumper.cs.umd.edu,

Expressions thumper.cs.umd.edu(o=(L>=15)#highpower.cs.umd.edu ::

define interface calculate

pattern = { int} loadratio="1:1:1:1" ::

returns = { int(200) } ::  replication = "harvey.cs.umd.edu(o=(L>=10)#rimfire.cs.umd.edu,
interface = "null” ‘ rimfire.cs.umd.edu(o=(L>=10)#thumper.cs.umd.edu,
thumper.cs.umd.edu(o=(L>=15)#highpower.cs.umd.edu,
highpower.cs.umd.edu(o=(L>=25)#harvey.cs.umd.edu" ::

Figure 4.6: Module specification for various load balancing schemes.
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Chapter 5

Source-to-Source Transformation

When an RPC is implemented through traditional stub generation based methods [BN84,
CP91, Gib87], a stub takes in charge of the three functions: (1) communication — RPC
arguments are transmitted to the remote callee, and the result is back to the caller, (2)
synchronization — the caller is suspended until the result is back, and (3) data conversion
— machines may have distinct data representation formats from others.

Basically there is no technical difference between stub generation and in-line transfor-
mation for an RPC statement. Both of them rely on communication primitives provided by
underlying MP systems [For93, Sun90] or operating systems. But the transformation based
method allows us to apply various program analysis techniques for program transformation
towards high performance.

As we assemble those MP primitives to implement an RPC statement, which is regarded
as a ‘big’ statement, we have freedom to place each low-level primitive appropriately inter-
spersed in a module in order to achieve our aforementioned goals of enhanced parallelism
and minimized communication. The transformation merely affects client parts. The trans-
formation is performed at client side to implement its remote procedure call. A server is
synthesized to start with prologue part that receives various requests from all eligible clients,
and to end with epilogue part that sends the result to the actual destination(s) rather than
its caller (Chapter 5.3). The prologue and epilogue parts will be synthesized to process
receive requests and send results along with optimized data paths according to the control
dependences.

This chapter presents the constraints that must be preserved through in-line RPC trans-
formation process, the compiler techniques to achieve our optimization goals, and the method
to finally produce appropriate client and server modules based on optimizing transformation.

'In general, a data type is converted into a standardized type like XDT [Cor91] (encoding) before converted
into a specific type (decoding). Without having external data conversion, if L different languages and M
different machines are intermixed in a distributed application, then potentially (L x M)? cases of data
conversion must be used [Gib87].
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Si: Send(£f(), x);
Sy: Send(g(), z);
Sy: Send(h(O), v, w);
Sy: x = Receive(£());

S x = £(x); S x = £(x); Si: Send(g(), x);
Sy y = glx, 2); Syt y = glx, 2); Sg: v = Receive(g());
S3: z = h(v); S3: zz = h(v); Si: z = Receive(h());
Si: x = hw); Si: xx = h(w); Sg: x = Receive(h());
(a) Original code (b) After renaming (c) After transformed

Figure 5.1: Eliminating spurious data dependences for parallelization.

5.1 Constraints On Source Transformation For RPC

Exploitation of parallelism is limited by data and control dependences in a program. Depen-
dence constraints are directly related to the semantics of a program. Executing dependent
statements simultaneously or in different order may change the original semantics of a pro-
gram. Program transformation to improving the performance must be guided by given
program dependences.

In Figure 5.1 (a), the execution order between S; and S, must be preserved because S,
uses the value of x which is defined by S;. This is a flow (true) data dependence denoted
by S1 6 Sy. The order between S, and S3 must be also preserved, otherwise the value of
z at S, may be changed by S;. This is an anti dependence denoted by Sy 6=! S3. The
order between S; and S; must be preserved as well because they have same variable x to
store the results. This is an output dependence denoted by S; 6° S;. Anti and output
dependences are “spurious” ones because they can be eliminated if we rename the associated
variables properly; for example, z in S3 to zz and x in Sy to xx like in Figure 5.1 (b). Such
a renaming releases the imposed execution order constraints by spurious dependences, as a
result, executing them in parallel is possible.

Suppose there is a sequential (client) program, where two arbitrary statements S; and
S, are totally ordered with respect to <: i.e. S; < S5 denotes Sy is executed before S;. The
parallelization process is to convert the total ordering < into a partial ordering <p under the
following semantic-preserving constraints. The relation <p is an irreflexive partial ordering?
defined as follows: (1) if S is executed before Sy, then S} <p Sy and (2) if S} <p Sy and

It resembles the happened-before relation on a set of distributed events [Lam78]. While the associated
events in that relation are distributed, the relation <p is an ordering between statements in a single program.
Since a statement cannot be executed before itself, it is irreflexive.
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Sy <p S3, then S; <p S5. If two statements, S; and S,, are not related by the <p relation,
then we say these two statements can be executed in parallel. If, however, S; <p Ss, then it
is possible for statement S; to causally affect statement S,.

When we transform RPC statements into a set of MP primitives, we have following
ordering relation per RPC due to the law of causality that is a reply can be received only
after the proper request has been sent out. Let R be a set of RPC statements in a client:

VS € R: S gend ) grecy (Eq5.1)

The statement S*"¢ only uses variables whereas the S’ only defines variables. This behav-
ioral difference between S*"¢ and S’ can be utilized to widen the gap by placing S°"? as
early as possible and placing S" as late as possible. It practically implies that other useful
statements can be executed during a remote call S.

We assume that the execution time of a statement in a single program is negligible
compared to the time for S, which is for server processing time plus communication time
to get back to the client. We even ignore the time for a program to finish S*"? assuming that
the underlying MP system immediately takes the control after executing S*"¢ to complete
the send. For example, a relation like Si™ <p S5™ is of no significance; they are parallel.
Consequently, the outstanding number of S*"? implies the potential degree of parallelism in
an RPC-based distributed program. This implies that we do not need any special constructs
like parbegin and parend to express parallelized form after transformation. S™ is a
blocking statement and an order-preserving one that is used to preserve program semantics
when there are data dependences as follows:

VS, Sy ER: S1 68y A Sy <S8y = 57 <p S (Eq5.2)
VS1,S3 € R: Sy 6° Sy A Sy < Sy = S <, Shee (Eq5.3)
VS, Sy €ER: Sy 61 Sy, A S < Sy = S <p Sheet (Eq5.4)

Since the constraint (5.2) combined with (5.1) yields S:"? <p Sie® <p S5"d <p Siee’. the
two RPCs involved must be serialized. However, the constraints (5.3) and (5.4) apparently
do not inhibit parallelism because S{"¢ and S5™¢ that trigger the server computations are
still independent and can be executed simultaneously.

Figure 5.1 (¢) shows the transformed code under the above constraints. In summary, the
constraint (5.1) produces relations of S| <p S}, S, <p S§, S), <p S5, and SL <p Si; (5.2)
imposes S; <p Si because of S; 6 Sy; (5.3) imposes S; <p S because of S} 6° Sy; (5.4)
imposes S <p SI because of Sy 1 S3. As a result, the three RPCs in statements Sy, Ss
and Sy can run in parallel while all RPCs in the statements S;—S4 are executed sequentially
in the original code.

5.2 Transformation Framework

In this section we present the heart of our transformation algorithm, which is to hasten
RPC argument passing as early as possible (even over a procedure boundary), and to delay
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receiving the return value as late as possible, according to the result of def and use analysis
to the variables involved. We do this in a three-step process. First, all RPCs in an application
are enumerated to be positionally different,® and represented by a call tree (Section 5.2.2).
Next, use-def chains for RPC arguments and def-use chains for a return value are evaluated
by def-use analysis (Section 5.2.3). Finally, global optimization is performed over a procedure
boundary (Section 5.2.4).

5.2.1 Definitions

Suppose there is a distributed program P that is composed of £ different executable modules,
My, M, ..., M, running at distinct sites. RPC)y,, RPCyy,, ..., RPC)y, are sets of position-
ally different occurrences of RPCs that are imported in My, M,, ..., My, respectively. If M;
calls M; (i # j) via an RPC r € RPCyy,, M; is a client module and M; is a server module.
Notice that “client” and “server” are relative terms; i.e. a client to one module can be a
server to another module and vice versa. A positionally different RPC r has two attributes:
its client (r.Client) and server (r.Server).

DUC,,(l) (Def-Use-Chain) is a set of reachable uses of a definition to a variable [ in a
module m. UDC,,(r) (Use-Def-Chain) is a set of reaching definitions of a variable associated
with use of a variable r in a module m.

Receive_Request(r) denotes a set that contains every source of arguments, which form a
request for a remote call r. Let || be the number of arguments for r. Then, Receive_Request(r)
can be written by {t; | t; = (s;,v;),1 < i < |r|}, where s; is the module that defines the
value of the ¢-th actual argument of the call, and v; is the variable that contains the value in
the module; i.e. v; € UDCy,(a;) where a; is the i-th actual argument. The initial (i.e. un-
optimized) state of Receive_Request(r) is a set of tuples of the client module of r (r.Client)
and its argument variables. For example, if “1 = f£(vy,...,v,)” is an RPC statement r in
m, the initial contents of Receive_Request(r) will be given by {m : vy,...,m : v,}. Our
optimization algorithm tries to find an ultimate source of each argument among k£ modules.

Send_Result(r) denotes a set that contains every recipient of the 7’s return value. Con-
ventionally, this is a singleton as the caller is the only recipient of the return value. It can
be written by {t | t = (d,v)}, where d denotes a destination module in {Mj, ..., M} that
receives the return value, and v denotes a variable that needs it. As we are seeking direct
message passing paths, this set may have multiple elements — for example, in the case of
“p = f(a); ¢ = glb); d = h(b);”, gO), h() and maybe the client of £() are the recip-
ients of the call £(). In that case, a single multicast can replace a series of point-to-point
communications for efficiency.

3Even if there is a single imported RPC in a client, the remote procedure can be called several times at
different places in the client. All of these occurrences are for the the same RPC, but they are considered
different because they may have different data flow in terms of argument passing and result returning.
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5.2.2 Call Tree Construction

All occurrences of RPC in a program should be distinguished so as to construct their own
optimized message passing paths. For example, in “a = £(x); b = £(y);”, the first call to
() has different data flows on x and a from those on y and b in the next call. We construct
a Call Tree (CT) in order to represent all positionally different calls with control predicates
for them. The call tree (CT) is defined as follows.

Definition 5.1 Let P denote an RPC-based distributed program. The call tree of P is an
unordered tree CT = (Vor, Ecr), where

e The vertices Vo represent a set of positionally different RPCs in P. In addition, there
is a distinguished vertex main, which represents the root of the tree; main is a main
procedure that is called by an operating system. The remaining vertices are partitioned
into n > 0 disjoint sets 17, ...,7},, and each of these sets is a call tree.

e The edges Ecp represent calling sequences. That is, an edge (v, w) € E means that w
is an RPC statement in the module of w.Client (or v.Server, equivalently) that may
be executed when v is being executed. Each edge carries a control predicate. (How to
determine such a predicate is discussed later.) The predicate determines whether or
not w is executed. An edge without a control predicate means 7" (true).

Since the call tree encompasses all possible call sequences in the program, the control predi-
cates on edges are flow-sensitive information [Bar78, Cal88, Hal90]. We also define “v = w”
to mean that v.Server may indirectly call w.Server by a series of RPC statements from v
to w. O

A control flow graph is a directed graph, CFG = (Vorg, Fcra), with unique nodes
Entry, Exit € Vopg such that there exists a path from Entry to every node in Vopg and
a path from every node to Exit; Entry has no incoming edges, and Ewit has no outgoing
edges [FOWST7]. An edge in Fcpg is annotated by a control predicate that determines
whether or not to take the edge. We assume T (¢rue) on single outgoing edge (no branch),
that means the edge is always taken after executing the predecessor. Otherwise, the (v —w)
denotes the control predicate on an edge (v, w) among all outgoing edges from v. If P is a
path from v; to v,, which is <wvy,...,v,>, the control predicate for the path Cpred(P) is
(v —wv9) Ao A (Vo1 — v,). If there are n different paths Py, ..., P, that are all reachable
to v, from vy, the control predicate for v, from vy is Cpred(Py) V --- VvV Cpred(P,).

The control predicates will be used to construct optimized server module with low-level
MP primitives in the following section. Consider an example program shown in Figure 5.2
(a).* From the CFG in Figure 5.2 (b), we can evaluate a control predicate as follows.

“In the SSA (Static Single Assignment) [CFR™91] representation of the program, a join node for the loop
construct is omitted for brevity.
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main()

{
% /* defs on x1, y1, 21 */

1f —
Zz = fz (y2);

else

5]

} - wo = h(xy);
else if ( — )

(7}
(8] v2 = g(¢-(21, 22));

printf(y, z, w, v);

}

(a) An example

Entr

(¢) Control Dependence Graph

Figure 5.2: An example: CFG and CDG to construct Call Tree.

(d) Call Tree

46




Example 5.1

Cpred(Entry — ) = Cpred(< E,1,2,3,4 >) V
Cpred(< ,1,2,3,5,6,8,2,3,4>) V
Cpred(< E,1,2,7,8,2,3,4 >)

= [(2-3)A(3—-4)] Vv
(2=3)AB=5)A(8=2)A(3—4)] V
(2=T)ANB=2)A(2-3)A(3—14)]

= [(2-3)A(3—-4)] Vv
(2=T)ANB=2)A(2=3)A(3—14)]

= (2-3)A(3—4)

[OR—simplification on (2 — 3) A (3 — 4)]

The above method requires finding all reachable paths and simplifying boolean expres-
sions; it is computationally expensive. Control dependence [FOWS8T] captures the essential
control flow relationships in a program. Informally, for nodes v and w in C'F'G, w is control
dependent on v if v can directly affect whether w is executed or not. The control dependence
graph is a directed graph, CDG = (Vepa, Ecpa), where the vertices Vo are the same as
Vere and (v, w), for v and w in Vepg, is in Ecpg if w is control dependent on v. The control
predicate for (v, w) € Ecr in Figure 5.2 (d) is computed as follows. Let all reachable paths
to w in CDG of w.Client be Py, ---, P,. Then, the predicate is Cpred(P;)V---V Cpred(P,),
where Cpred(P;) is (vy — vg) A+ A (V1 — v,) A (v, — w), if P;is <vq,...,v,, w>. For
the edge (main, 4) in Figure 5.2 (d), (2 — 3) A (3 — 4) is directly obtained as its predicate,
since there is the only path <2,3,4> as shown in Figure 5.2 (¢). No boolean simplification
is needed if we use C'DG as in Example 5.1.

A call tree construction algorithm is given below.

Algorithm 5.1 (Call Tree Construction)

Input:
1. All involved modules My, ..., My, M; is an imported set by a main procedure main.
2. All r € RPCy, U ---URPCyy, where r.Server,r.Client € {M, ..., M,}.

Output: CT = (Vor, Ecr) as defined in Definition 5.1.

Begin procedure EXPAND(T : TreeNode) {
Root — Create_Node(main); T =>r;
Suppose RPCY is {vi,...,vm} Suppose RPC gerver 05 {wi, ..., wy}
Fori=1Tom { Fori=1Ton {
t — Create_Node(v;); t «— Create_Node(w;);
Add_Child(Root, t); Add_Child(T,t);
Evaluate_Control_Predicate(Root, t); Evaluate_-Control_Predicate(T, t);
EXPAND(t); EXPAND(t);
} }
End }
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5.2.3 Initialization

Suppose R is a node in CT (i.e. R € Vor). Our goal is to translate R into send (R*"?) and
receive (R™Y) primitives for improving performance. First, we initialize Receive_Request(R)
and Send_Result(R) within a module boundary, and then optimize globally. Let ¢.. =
(Spry Urr) be an element of Receive Request(R). Recall that a tuple ¢, corresponds to an
argument in R. Since the argument values are provided by a caller itself according to a
conventional procedure call/return paradigm, s, is initialized with R.Client and unchanged
until the global optimization in the next section is performed. On the other hand, the latest
location among the definitions that reach R initializes v,.. Likewise, let t,. = (dg.,vs,) be
an element of Send_Result(R). Then, d,, is initialized by R.Client, and vy, is initialized by
the earliest use among the uses that are reached by the return value of R. This initialization
widens the gap between R*"¢ and R"*’. The more the gap is widened, the more statements
(including another remote call) can be executed during executing R.

Let us discuss the initialization in more details. Node v dominates node w, denoted by
vAw, if v appears on every path from Entry to w [ASU86]. Node v immediately dominates
node w iff vAw and there is no node = such that vAx and xrAw. In a dominator tree
(DT) of a CFG, the children of a node v are all immediately dominated by v. When v is
a closer descendent to x than y in the DT, the dominator x is called closer to v than y.
Node v post-dominates node w, denoted by vA,w, if v appears on every path from w to
Ezit [FOWS8T]. Node v immediately post-dominates node w iff vA,w and there is no node x
such that vA,x and A w. In a post-dominator tree (PDT), the children of a node v are all
immediately post-dominated by v. When v is a closer descendent to x than y in the PDT,
the post-dominator x is called closer to v than y. Then, the effect of initial transformation
is described concisely as follows:

Property 1 R*™ is the closest common post-dominator to {dy, ..., d,} that is a UDC set
for an argument variable in R.

Property 2 R is the closest common dominator to {ui, ..., un} that is a DUC set for
the return value of R.

It might be an error that UDC' is empty; that means accessing an undefined variable.
When DUC' is empty, the return value is never used in the caller. In this case, R™*® is of
no use, thus eliminated by the global optimization in Section 5.2.4. For these exceptional
cases, we can safely put R (R"°) to the first (last) line of the program. As the properties
describe, an algorithm to find such R*"? and R"* is straightforward: (1) compute UDC
and DUC accordingly, (2) find the least common ancestors for those elements of the sets
in the PDT and DT, respectively, and (3) repeat the process for all R € Vgp. Then
the transformation with Property 1 and Property 2 preserves the constraints (1)-(4) in
Section 5.1.

Theorem 5.1 Property 1 and 2 satisfy the Constraint (5.1) in Section 5.1.
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Proof: Obvious. 0
Theorem 5.2 Property 1 and 2 satisfy the Constraint (5.2) in Section 5.1.

Proof: Suppose S; is data dependent on S, w.r.t a variable . By Property 1, S3"¢ follows
any reaching definitions on x, obviously including the definition by Si¢e. If S3"? has to
precede S7°’, S must not be a reachable use from S;, by Property 1, or equivalently, S,
must not be a reaching definition to Sy, by Property 2, both of which contradict the data
dependence between S; and .S. O

Theorem 5.3 Property 2 satisfies the Constraint (5.3) in Section 5.1.

Proof: Suppose S; is output dependent on Sy w.r.t a variable x. Let xy, x5 be the [-values
of the definitions by S;, Ss, respectively. Suppose there exists a u € DUC(xy) such that
it is preceded by one of DUC(z5) in the CFG. Then it means that the use u is preceded
the definition of x5y, i.e. the definition of x; is killed by x, at this point. This is impossible
because v must be in DUC(x3) then. Thus, all members of DUC(x;) precede those of
DUC/(x3). That is, the maximum depth of DUC () is shallower than the minimum depth
of DUC(x5) in the DT. Therefore, the least common ancestor node of DUC(x1), which is
S7eev | precedes the least common ancestor node of DUC(x3), which is S3¢*, in other words,
SI‘@C’U _<p S;ecv‘ |:|

Theorem 5.4 Property 1 and 2 satisfy the Constraint (5.4) in Section 5.1.

Proof: Suppose S; is anti dependent on S, w.r.t a variable x. Let z,4 be the used variable
in S;". Let e, be the [-value of the new definition by S;®’. Suppose that S <, Syec
cannot be satisfied by the Property 1; i.e., 53¢ <, S3"%is possible after the transformation.
To make it possible, some uses in DUC (2, ) must precede (for ‘<’) or be equal to (for ‘=)
some definitions in UDC(2,4). This is impossible, by the definitions of UDC' and DUC
sets. O

5.2.4 Global Optimization

This phase is to seek a direct message passing path that is originally a series of message
passings since it is not optimized at the interprocedural level. Sending a message m at a
module y to a module z, if that is sent by a module z, is an unnecessary communication
because it can be replaced with a direct communication between y and z: i.e. replacing
r — y — z with + — z. To make this optimization possible, we should know that the
message m is not killed at y before sending to z and not used for the rest of the program at
y either. Even if m is used at y, seeking a direct path between x and z is still useful because
(1) z can receive it earlier than being sent via y and (2) a single multicast operation is faster
than a series of point-to-point communications. From the viewpoint of each procedure, the
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interprocedural data flow equations to this end can be expressed as following recursive forms
where the Called(P) is the set of remote procedures called directly from P [Bar78|:

Use(P) = LocalUse(P) |J) Use(Q) (Eq5.5)
QcCalled(P)

Def(P) = LocalDef(P) |J Def(Q) (Eq5.6)
QcCalled(P)

We can rewrite the above equations as the following concrete forms, because (1) call /return
is the sole mechanism of interactions between remote processes [BN84], and (2) call-by-value
semantics is useful enough in general distributed programs [HL82].

Use(P) = LocalUse(P) | ) RetUse(P) U Cal(Q) (Eq5.7)
QcCalled(P)

Def(P) = LocalDef(P) |J ArgDef(P) |J  Return(Q) (Eq5.8)
QcCalled(P)

A local use (LocalUse(P)) is a use that is not used for remote interactions like in argu-
ments to issue an RPC or in a return statement in P to its remote client. Non-local uses
are two kinds: RetUse(P) is a use in a return statement (it is expected to be used at a
remote site (P.Client) that calls P and waits for the return) and Call(Q) is a set of vari-
ables that are used in a statement of calling another remote procedure ). A local definition
(LocalDef(P)) is a definition that is not defined by P’s client (the caller provides the initial
values of the formal parameters in P) or P’s servers (a variable in P is assigned by the
return value of P’s server procedure). Non-local definitions are two kinds: ArgDef(P) is a
definition that defines a formal parameter of P, and Return(Q) is a definition that defines
a variable in P as an [-value of the RPC to Q.

On the other hand, from the viewpoint of each positionally different RPC statement,
where we are interested in seeking true definitions and true uses associated with the call, the
Receive_Request(r) and Send_Result(r) sets can be defined as follows:

Receive_Request(r) = RR, serper(M1) U -+ U RR, server(My) (Eq5.9)
Send_Result(r) = SRy,server(M1)U---USR, server(My) (Eq5.10)

RR, server(M;) is a set of variables that are defined at M, in order to be used at r.Server.
SR, server(M;) is a set of uses of the return value of r.Server at M;. Recalling the only way
to interact between distinct modules is via an argument and return value passing, these two
sets can be defined as follows:

Use(s) N Def(c) = Call(s)nDef(c)  if ¢ calls s directly

RR,(c) = { RR,(t,)N---N RRy(t;) N RRy,(c) if e > s (Eq5.11)
) otherwise
Def(s)NUse(c) = Return(s)NUse(c) if ¢ calls s directly

SR,(c) = { SR,(t,)N---N SR, (t;) N SR, (c) ife s (Eq5.12)
) otherwise

50



Use(s) in Eq. (5.11) can be replaced with Call(s) because the passed arguments are
the only variables that are used in the server module s, since there are no aliasing and
reference variables. Likewise, Def(s) in Eq. (5.12) can be replaced with Return(s), because
the return value is the only definition that can be defined by a remote procedure s. Notice
that Eq. (5.11) and Eq. (5.12) are dual only if Def(c) in Eq. (5.11) is Return(s') and Use(c)
in Eq. (5.12) is Call(s') (i.e. all other terms are null in Eqgs. (5.7), (5.8)), which implies that
a return value of an RPC s’ is used to call s when ¢ calls s.

Consequently, if we compute each definition and use set as shown in Eqgs. (5.7) and (5.8),
we can compute Receive_Request(r) and Send_Result(r) sets that contain direct message
paths. As the intraprocedural def-use chains and use-def chains have already been
computed in an initialization phase, we are ready to solve Eqs. (5.9)—(5.12).

Interprocedural data path may be analyzed when there is a chain of procedure calls, i.e.
¢ = s when n > 1. Solving these equations directly is not realistic, however, we can obtain
the solutions indirectly using the implications of the equations. To see if a solution exists
in Eq. (5.11), we need to check if an argument is passed without being changed from ¢ to s
along the call path. For example, as shown in Figure 5.3 (a), if the client C,, sends a value
a to the server S and the value a is an input argument provided by its caller C, 1, then
the server S can receive the argument value directly from C, ;, and ultimately up from C;.
Similarly, to see the same thing in Eq. (5.12), we need to check if a return value from s is
returned again in ¢. As shown in Figure 5.3 (b), if the client C receives a result from the
server S; and the value is the return value from its server S,, then the client C can receive
the value directly from S,, and ultimately from S,. Finally, if the client C sends a request
of values x, y for an RPC “z = S3(x, y)” and the values are actually defined by another
RPCs “x = S1(---)” and “y = 82(---)", respectively, then they can be directly sent from
the module S1() and S2() to the module S3() as shown in Figure 5.3 (¢). As this is a mixed
case, it is checked by solving SR, (c) N RRsy(c). Notice that the parallelism in breadth is
exploited between S1() and S2(). Interestingly, the parallelism in breadth is also exploited
between S1(), S2() and S3() because of the data dependence on x and y.

Other than seeking a direct path, a message passing path can be eliminated if a return
value is not used in a caller module except being used as an argument for another RPC; i.e.
the corresponding send_result and receive_result pair collapses. Figure 5.4 summarizes the
algorithm for the global optimization we have discussed in this section.

5.2.5 Loop Transformation

Many research works have been focused on loop transformations in various parallel com-
pilers, for loops are hot spots in a program [Pol88]. We are interested in transforming a
loop as well, especially when RPC statements are surrounded by a loop. Executing an RPC
is involved in rather longer delay. Aggregating remote messages can drastically reduce an
inter-networking overhead by sharing the overhead by multiple messages. If a loop contains
RPCs, the chance to reduce the overhead through aggregation is higher [LS88], thus careful
loop transformation provides good opportunity for aggregation.
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Figure 5.3: Example code shapes for global optimization.

Loop distribution breaks a single loop into multiple loops with the same iteration space
but each enclosing a subset of the statements in the original loop [PW86]. It is used to
improve instruction and data locality by shortening loop bodies and to allow parallelism
that is hindered by loop-carried dependences in the original loop. The latter effect is impor-
tant in applying the technique to a loop that contains RPC statements. An original loop
shown in Figure 5.5 (a) can be distributed as in Figure 5.5 (c). It surely eliminates the flow
dependence between two statements in the loop, however, the F() over the iteration space
cannot run in parallel in Figure 5.5 (c¢) even if we assume there are replicated servers for
the procedure, because RPC in each iteration is synchronous. If we transform RPC state-
ments into statements of message passing primitives according to our transformation based
approach, the original loop in Figure 5.5 (a) would be transformed into Figure 5.5 (b), and
then Figure 5.5 (d) after loop distribution.

Recalling our assumption that S°"? takes negligible amount of time, N different calls
can be placed when there are N servers. Even if only a server is available, the calls can
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Algorithm 5.2 (Optimization)

Input:
1. CT = (VCT,ECT) by AlgOI‘ithIn 5.1.
2. All r € Vor where r.Server,r.Client € {My,...,My}.
3. Initialized Receive_Request(r) and Send_Result(r).
Output: Optimized Receive_Request(r) and Send_Result(r).
Begin
for each t,.. € Receive_Request(r) do
while (val(t,.) € ArgDef(r, source(t,,))) do
r — previous(r); /* the predecessor of r in CT */
source(t,,) « r.Client; val(t,,) — UDC, client(ACTUAL(r, t,));
endwhile
endfor /* Call path optimization */
for each t,, € Send_Result(r) do
while (val(ts.) € RetUse(r, dest(ts,))) do
r «— previous(r); /* the predecessor of r in CT */
dest(ts,) « r.Client; val(t,,) «— DUC, client(LV ALU E(r));
endwhile /* Return path optimization */
for each sibling edge 74, of a node dest(ts,) in CT do
if (val(ts,) € Call(rsp, rsip-Server))
new_ts, «— CreateTupleSR(r);
dest(new_ts,) « rgp.Server; val(new_ts,) «— FORMAL(7sip, tsr);
Send_Result(r) «— Send_Result(r) U {new_ts,};
for each t,. € Receive_Request(rg;) do
if (val(t,,) € Return(r,r.Client))
source(t,,) < r.Server; val(t,.) «— RETV AL(r);
endfor
endfor /* Mixed path optimization */
if (ts & LocalUse(r,r.Client))
Send_Result(r) «— Send_Result(r) — {ts. };
endfor

End
Figure 5.4: Global optimization algorithm.
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for (i = 0; i < N; i++) { for (i = 0; i < N; i++)
ali] = al[i] + c; ali] = al[i] + c;
x[i+1] = F(al[il, x[il); = for (i = 0; i < N; i++)
} x[i+1] = F(alil, x[i]);
(a) Original loop (c) After loop distribution
U
for (i = 0; i < N; i++)
for (i = 0; i < N; i++) { ali] = al[i] + c;
ali] = al[i] + c; for (i = 0; i < N; i++)
send_req(F(), alil, x[i]); = send_req(F(), al[il, x[il);
x[i+1] = recv_res(F()); for (i = 0; i < N; i++)
} x[i+1] = recv_res(FQ));

(b) Transformed RPC into MP primitives  (d) After loop distribution

Figure 5.5: Loop distribution and call streaming

be streamed, so it reduces the cost of transmitting the call and reply messages because the
streamed calls and replies can be buffered and sent to allow us to amortize the overhead of
kernel calls and the transmission delays over several calls. It is called call-streaming, which
was proposed to effectively support asynchronous calls with an aid of a special data type
called “promises” [LS88]. Our method presents a static solution for call-streaming without
relying on special programming language constructs. Moreover, an output of one remote
procedure can be directly connected to an input of another one as presented in the previous
section. This is not allowed in call-streaming because the results must be returned to the
original caller before streams are composed.

Data aggregation to amortize kernel overhead and the transmission delays over several
calls can be achieved transparently by an aid of underlying MP systems or statically by an aid
of compiler that properly generates finer grained MP primitives. For instance, send_res()
can be composed of finer primitives of msg_decode(); msg_send().

5.3 Module Synthesis

The synthesis phase involves implementing source transformations based on the information
from optimizing transformations. This must account for correct program behaviors in spite
of drastically changed communication paths between callers and callees. The information to
synthesize communication paths is summarized in Receive_Request(r) and Send_Result(r)
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Receive_Request;nr | Send_Result;y; | Receive_Requestopr | Send_Resultopr
(main, x7) (main, ys) (main, x7) (main,ys) &
(f2,Argl)
(main, ys) (main, z3) (f1, RetVal) (main,zs) &
(g, Argl)
6] (main, x;) (main, wy) (main, x;) (main,ws)
(main,z; ) | (main,vs) (main,z; ) | (main,vy)
(main,zy) (f2,RetVal)

Table 5.1: Receive_Request and Send_Result sets after initialization and global optimization.

for all nodes r in Veop. The information for control paths is contained in C'T. A server can
be associated with multiple positionally different RPCs. So, the server should be aware of
all peculiar message paths for each RPC statement in C'T" and its run-time condition.

Table 5.1 shows the contents of Receive_Request and Send_Result sets for each RPC in
the example of Figure 5.2, after initialization (Section 5.2.3) and global optimization by Algo-
rithm 5.2. All are single-argument functions in the example; in other words, Receive_Request(r)
has a single element. As shown in Receive_Request;y;([8]), ‘|’ (that denotes an ‘or’) implies
that there are multiple reaching definitions. Asin Send_Resultopr([2]) and Send_Resultopr([4)),
‘&’ (that denotes an ‘and’) implies that the result should be sent to the both destinations.

We will use three pairs of message passing primitives: send req, recv_req, send_res,
recv_res, send_ctrl, recv_ctrl. The suffixes “_req”, “_res”, and “_ctrl” (abbreviating
“request”, “result”, and “control”, respectively) are merely used to distinguish their us-
ages. Basically, send and receive primitives suffice to implement. A pair of send_req and
recv_req forms a call part in an RPC. A pair of send_res and recv_res forms a return part.
A control message is used when an execution should wait for a certain run-time decision.
For example, a server can continue to do a service when all input arguments are received,
without knowing whether that control flow is eventually taken or not. But it should wait at
the time of finishing that service and see if the control message is decided. If it is validated,
then the result can be sent, otherwise, it must be discarded. We have explored all control
predicates for an RPC statement and its optimal communication paths except conditions
that must be resolved at run-time.

In a client module of a call » in C'T', those RPC statements are transformed to a pair
of send req() and receive res() according to the contents of Receive Request(r) and
Send_Result(r). Figure 5.6 (a) and (b) shows transformed codes, in which the original
positions of RPC statements are commented by “null”. In a server module S, an original
code is surrounded by a pair of synthesized prologue and an epilogue codes for each r € C'T
such that r.Server is S. For example, there are two calls for the same remote procedure £ ()
at|2|and , thus two pairs of prologue and epilogue are synthesized as shown in Figure 5.6
(c) because the two calls have different control and data flows.
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Data availability is the only firing condition to perform that particular call. Therefore,
when there are multiple data sets that are ready to be serviced, a selection is done non-
deterministically. This can be implemented by special message passing primitives that allows
a non-blocking receipt. For example, in PoLYLITH system [Pur94], mh readselect() allows
us to read the next message to arrive on any interface (it will be blocked if no message
arrives), then mh_readback() completes the receipt. In PVM [Sun90|, pvm_nrecv( int
msgtag ) checks to see whether a message with label msgtag has arrived. If not arrived,
it immediately returns so that other message can be checked out. Non-blocking receive
primitives are commonly supported by MP systems.

Finally, let’s consider what has been improved in Figure 5.6 (b) from (a). There is no
difference regarding the degree of parallelism, that is constrained by inherent data depen-
dences. However, if {2] — — [6] — [8] is a call sequence to be taken, the message
passing path of ‘main — f; — main — f,’ is simplified by ‘main — f,” and ‘main — f,’, and
‘fy — main — g’ is simplified by ‘fy — g’. Moreover, the execution of g() is hastened by
hoisting the corresponding send_req primitive up to the point before (if | 3] —|4| branch
is taken), or by receiving the necessary argument earlier directly from £() (if — branch
is taken).
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main() {

; /* defs on x1, y1, z1 */
loop {
send_req(f(), x1);

; /* null */
if (2] - [3) {

send req(h(), x1);

3]

if (3] - [4) {
; /* null */
y2 = recv_res(f());
send req(f(), y2);

}
else ;
@; /* null */

}
else if ( - ) 5
; /* null */
if (2]-[3]A[3]-[4)
z> = recv_res(f());
send._req(g(), ¢(z1, 22));
if (2] - [3])
wy = recv_res(h());
vy = recv_res(g());
}
printf(y, z, w, v);

}

(a) After initialization only

f(/* int a %) {
f1,: a = recv_req(main(), x1); end,
f2,: a = RetVal of f(); end,
/* do f(): original source */
f1.: send_res(main(), y2);
cl = recv_ctrl(main());
if (c1) { /*[2]-[3]n[3]-[4]*/
goto f2_p;
}
end,
f2.: send_res(main(), z2);
send_res(g(), Argl);
end,

}

main() {

; /* defs on x1, y1, z1 */
loop {
send_req(f(), x1);

; /* null */
if (2] - [3]) {

send req(h(), x;);

H;
send_ctrl(f(), —|3[A[3]|— );

if (3] - [4)

1 /* null */
send req(g(), z1);
(5]}

@; /* null */

}

else if ( - ) ;
; /* null */

y2 = recv_res(f());

if (2]-[3][3]-[4)

Zy = recv_res(f() ) )

if (2] - [3)
wy = recv_res(h());
vy = recv_res(g());

}

printf(y, z, w, v);

}

(b) After global optimization

g(/* int a*/) {

a=recv_req(f()) || recv_req(main());

/* do g(): original source */
send_res(main(), vz);

}

b(/* int 2 */) {
a = recv_req(main());
/* do h(): original source */
send_res(main(), ws);

}

(c) Servers after global optimization

Figure 5.6: Transformed client and server modules for Figure 5.2.
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Chapter 6

Load Balancing

Under a heterogeneous network of workstations, a simple policy like equally distributing
workloads to multiple processors may lead to a parallelization anomaly. That is, the exe-
cution time of the given workload may take longer even if the number of workstations is
increased. Suppose there are n processors {P;, ..., P,}, and T identical tasks. Let 7; be the
number of tasks per unit time that the processor i can process. In equal distribution, each
processor has T'/n numbers of tasks. The execution time of the program is determined by the
critical processor that has the smallest 7; value; let’s say it is 7,,,;,. Then the execution time
is I — —L_ Now, let’s add a new processor of T, to the cluster for the application.

Eacrlnlmprocesrsn(l)nr will have T'/(n 4+ 1). Therefore, if 7,0, < 5 Tmin, the execution time of

(n + 1)-processors cluster is #

TN which is longer than that of n processors!

One may want to get around this problem by allocating tasks according to the known
computing power of each processor [GWWECL94, CS93]. However, their methods were
static, thus of limited usefulness. Dynamic loop scheduling methods can deal with more
general cases, but the centralized nature of the methods — the central processor that gen-
erates sub-tasks has to manage all other processors — may cause a bottleneck in a network
of many workstations. For example, if there are 100 servers, and if a master needs 102
second to prepare and send a task, the master would create a bottleneck unless the average
time for each server to finish a task is greater than one second. In our experimentation with
the Mandelbrot set computation on [0.5, —1.8] to [1.2, —1.2] using a 400 x 400 pixel win-
dow, the program reached its saturation point at 25 workstations under the self-scheduling
scheme. To avoid such a situation, sub-tasks should be sufficiently large grained compared
to communication overheads, but it is not likely considering relatively high communication
costs in workstation clusters. Since there are many “embarrassingly parallel” applications,
a decentralized load balancing scheme is called for. We present such a method that can re-
duce the overheads by means of establishing proper migration topology based on the known
computing powers of the processors involved.
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(a) Constant (b) Increasing (c) Decreasing (d) lrregular

Figure 6.1: Four typical parallel loops.

6.1 Loop And Workstation Cluster Models

In this section, we classify four typical parallel loop patterns that affect performance of load
balancing schemes based on workload distribution in an iteration space. Next, we discuss our
workstation cluster model to deal with those diverse patterns, especially if the workstations
involved are heterogeneous.

6.1.1 Loop Model

Figure 6.1 shows four typical parallel loops where L(i) represents the execution time of the i-
th iteration. The workload may be uniformly distributed over an iteration space as shown in
Figure 6.1 (a). It may also be non-uniform but linearly distributed as in Figs. 6.1 (b) and (c);
this kind of distribution is often contained in scientific programs. Finally, as in Figure 6.1
(d), the workload may be quite irregular. Many non-scientific applications carry parallel
loops of this type. The first three cases have been specially considered by conventional loop
scheduling methods [PK87, TN91, CLZ95] in order to improve on the basic self-scheduling
method.

Particularly for irregular loops, we can distinguish between the two cases: predictable vs.
unpredictable. For example, the parallel tasks in the DNA sequence search problem [CG89]
and the Mandelbrot set computation are all irregular, but the tasks in the first problem are
predictable while the tasks in the second one are not. Of course, the above three loops are
all predictable.

6.1.2 Workstation Cluster Model for Load Balancing

Figure 6.2 shows two representative topologies in the workstation cluster model for par-
allel loops. Figure 6.2 (a) represents the topology of traditional loop scheduling meth-
ods [TY86, KW85, PK87, TNO1|, in which load migration is not performed. Instead, the
main processor (shaded circle) prepares a set of tasks and allocates them to each server
whenever the server demands them. Since the scheduling process is dedicated to the main
processor (shaded circle), its chance of creating a bottleneck rises as the number of servers
present on the network increases. Figure 6.2 (b) illustrates the topology of our workstation
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(a) Loop Scheduling (b) Our Approach

Figure 6.2: Topologies in workstation cluster model for load balancing.

cluster model. The main processor distributes workloads to all servers initially. Load bal-
ancing is attempted by task migration via pre-determined paths, deeming load state polling
or exchange overhead unnecessary, unlike in global dynamic load balancing schemes. The
migration is performed in a decentralized fashion between only the two processors involved.
The workstation cluster model for load balancing is characterized by the following parame-
ters:

e N: the number of workstations, {W;,...,Wx}.
e 7;. the throughput of W;, which is defined by the number of unit tasks per unit time.

e 7;;: the amount of load to migrate from ¢ to j.

6.2 Load Balancing Method

Two important components of dynamic load balancing schemes are transfer policy and lo-
cation policy [ELZ86b, KS94]. The transfer policy determines whether a task should be
processed locally or remotely by transferring it at a particular load state. The location pol-
icy determines which process initiates the migration and its source or destination. These
are for global load balancing from the OS’s viewpoints. Multi-dimensional load vectors de-
termine the load state of a processor. In our system, we aim to balance parallel loops in
an application. A simple ‘demand’ message is enough to initiate load migration rather than
load state exchange [KS94] or random polling of candidate processors [ELZ86b| because the
only load vector is the number of sub-tasks in a processor. The transfer policy then becomes
simple: if a processor receives a request message for transfer from a processor that is running
out of sub-tasks to work on, it migrates some of its sub-tasks to that processor.
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/* P_i: sender */ /* P_j: receiver x/

for (i = 0; i < taskcnt; i++) { LOOP:
if (pvmnrecv(P_j,MoreTaskReq)) { for (i = 0; i < taskent; i++) {
/* a request arrived */ /* loop body on TaskQ[i] */
n = (taskecnt-i+1) * Ratio_ij; }
/* Migrate to P_j */ /* Check the partner processor P.i */
if () { pvm_initsend (PvmDataDefault) ;
pvm_initsend (PvmDataDefault) ; pvmn_pkint (&more,1,1);
pvm_pkint(&n,1,1); pvmn_send (P_i,MoreTaskReq) ;
pvm_pkint (&TaskQ[i],n,1); /* Wait until killed by parent */
pvm_send (P_j,TaskMigrating) ; while(1)
i += n; if (pvmnrecv(P_i,TaskMigrating)) {
continue; /* migrated tasks arrived */
} pvm_upkint (&taskcnt,1,1);
} pvm_upkint (TaskQ,taskcnt,1);
/* loop body on TaskQ[i] */ goto LOOP;
} }

Figure 6.3: Programs generated for a migration path in Figure 6.2 (b).

Likewise, the location policy is now modified by the problem of establishing proper task
migration paths. Workstation clusters have virtually no restrictions on topology for migra-
tion. It may be assumed that any two point-to-point communication overheads are equal,
but identifying the optimal sender and receiver pair is essential. Considering all possible
candidates for sender (or receiver) to migrate the excess load causes high overhead, but it
is avoidable. The key is how to identify the busy and the idle processors in the middle of
computations. Since the relative processing speeds of workstations in a cluster are known
in advance, the possible senders and receivers of migrations are not unknown — momentary
overload by other activities is the reason for uncertainty.

In this section, we present how to construct such a task migration network as shown
in Figure 6.2 (b). Once the network is constructed, load balancing is pursued through task
migration on it. For example, each pair connected in a dotted line in Figure 6.2 (b) (P, — P;)
is a basic unit of migration; whenever the faster processor (P;) depletes its workload, it
demands that its pre-determined partner P; share some of P;’s workload, and P, migrates
745 of its current workload to P;. Figure 6.3 shows the generated source codes for such a
connection. First, we will formally define the cluster model in Section 6.1.2. Then, we will
describe how to construct such a cluster and its corresponding migration network based on
the model.

A cluster is a bipartite form of (ws, wy), in which w; is slower than w;: ie. 7, < 7.
Throughout the paper, we use the notation (7,, 77) interchangeably with the notation (w,, wy)
when we focus on throughputs. An entire workstation cluster is defined as follows:
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Definition 6.1 The cluster tree (CT) of N workstations {W;,..., Wy} is a binary tree
CT = (Vvv Eleft U Eright>7 where

e The vertices V' represent clusters. A distinguished vertex ‘root’ represents an entire
cluster, and the right sub-cluster is faster than (or equal to) the left sub-cluster.

o Ej.p is aset of edges to the left sub-trees. E,;4, is a set of edges to the right sub-trees.

o If (c,v) € Ejpy and (c,w) € E,igne, a load migration path exists from v to w. When v
and w are not terminal nodes, the path is established from the fastest node in cluster
v, which is the rightmost terminal in the subtree of v, to the slowest node in cluster
w, which is the leftmost terminal in the subtree of w.

Terminal vertices are individual workstations. Each terminal v is associated with its through-
put 7,. Throughput of non-terminal node C' = (v,w) is defined by (7, + 7,), which is
explained by Theorem 6.3. O

Definition 6.2 In a cluster C, = (71, 72), the balance ratio B¢, is defined by EZ;E% A

cluster Cy = (71, 72) is said to be more balanced than another cluster Cy = (73,74), if the
(r2—71) (Ta—T3)
(m2+71) (Ta+73)" =

balance ratio of C is less than that of Cy, i.e.

Definition 6.3 A cluster Cy = (7, 72) is faster than another cluster Cy = (73,74) if 7¢, is
greater than 7¢,, or if 7¢, is equal to 7¢, and Cy is more balanced than Cs. O

In the extreme case that 7 is equal to 7, the balance ratio is zero; thus load is perfectly
balanced. Likewise, in the other extreme in which 75 is much greater than 7y, the ratio
is asymptotically 1. The balance ratio in a cluster can be related to the amount of load
migration. When the components in a cluster are equally loaded initially, if the cluster is
perfectly balanced, then no intra-cluster migration is necessary. In other words, the more
balanced a cluster is, the less migration is needed.

The process of constructing a cluster tree from a set of workstations is done in recursive
“bitonic” fashion. First, workstations in the set {wy,...,w,} become terminal nodes in
the tree. They are sorted in ascending order by their throughputs. Let the sorted set
be {w},...,w!l}. The fastest one (w)) is coupled with the slowest one (w}), the second

fastest one (w!, ;) is coupled with the second slowest one (w}), and so forth. The couples
come to have parents in the tree, ie. {cy = (wi,wy,),...,cop2 = (W), 9, W) 54,)}, Which
are likewise sorted by their throughputs. Again, they are coupled in bitonic fashion. This
process continues until it reaches a single cluster. Notice that the cluster of the two identical
components still needs an intra-cluster migration because an equal distribution is not always
possible. Once such a tree is constructed, the task migration topology is determined as

follows:

Algorithm 6.1 (Tusk migration network from CT)

62



il

Figure 6.4: A cluster tree and its corresponding task migration paths.

Begin
For all clusters (non-terminal nodes) ¢ in CT
For two children v and w such that (¢,v) € Ej.p and (¢, w) € Erjgnt
if (v, w are terminals) then CONNECT v TO w
else CONNECT RightmostTerminal(v) 7O LeftmostTerminal(w)
End

Figure 6.4 shows the relationship between the cluster tree and the migration topology.
For example, the rightmost terminal of Cys34 is Wy, and the leftmost terminal of Csg7g is
W5, so the link for the root cluster C,y; is constructed between W, and W5. The thicker
links denote higher level links; they will be used only if the load cannot be balanced through
the lower links.

6.3 Analysis Of Migration Behaviors

There are two important concerns in devising a load balancing scheme [ELZ86b]. First, the
overhead should not negate the benefits of an improved load distribution. Next, the potential
migration instability!, in which processors spend too much time transferring tasks, should
be avoided. Our method is orthogonal to the stability issue because a demand is issued only
when the processor is idle. In this section, we present an analytic result on the overheads
incurred by our method. We start with an example case to explain our method qualitatively.

!For example, in a two-processor system where both are overloaded, they may continuously migrate each
part of loads to the other processor, which does not improve the situation at all.
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Example 6.1 Suppose there are four processors P1, P2, P3 and P4 that have N identical
tasks initially and we know their relative throughputs, which are 7,27,37 and 47. When a
load state of a potential sender P1 is probed by other processors, migration to P2 or P3
would be wasteful because its resulting resolution of P1’s overloaded state may be merely
temporal. Since P4 is the fastest, the then-migrated load may have to be migrated again to
P4, while a single migration directly to P4 would have been more efficient. Thus we can say
the P1 has the greatest affinity to P4 among all possible receiver candidates. O

The above example suggests that the slowest processor should be connected to the fastest
processor, and the second slowest one is to the second fastest one, and so on, in bitonic
fashion. The resulting pairs would tend to be more balanced in terms of the combined
throughputs. We will elaborate on the effects of this kind of bitonic pairing in Section 6.3.1.
This method calls for load migration to be done in as much bulk as possible. One ten-byte
sized load migration is cheaper than ten one-byte sized load migrations. This is particularly
important in workstation clusters where the communication overheads are still high.

Example 6.2 Let us consider the topology of P1 — P4 and P2 — P3 as shown in Fig-
ure 6.2 (b). Throughputs are the same as in Example 6.1. In this case the combined
throughputs of the two sub-clusters turn out to be equal. That is, no further load migration
is necessary through the link between the two clusters (P1, P4) and (P2, P3)! O

However, now that cluster (P2, P3) is more balanced than cluster (P1, P4), the resulting
decrease in the intra-cluster migration makes cluster (P2, P3) process more tasks. That is
why this cluster is defined as the faster one in Def. 6.3. In general, such an ideal case may
not be common in real situations; throughputs may fluctuate in the middle of computing and
initial distributions are not always equal. For the case that the load is not balanced in the first
cluster for some reason, we continue to balance the load through inter-cluster migrations.
In the following analysis, we use 7;; = 1/2, for all 7, j, which guarantees uni-directional
migration is enough for load balancing (notice P; is faster), although more aggressive choice
like 7;; = 7;/7; may reduce overheads.

6.3.1 Preliminaries

To examine migration overhead, we need a communication time model. The conventional
approach to modeling communication time for transferring a message of m bytes is a simple
linear function, i.e. T.omm = « + [fm, where « is startup time and [ is transfer time per
byte [BR89]. The empirical values for a and  under the PVM system [Sun90| at LAN-
based clustered workstations are 4.527 msec, 0.0024 msec and 1.661 msec, 0.00157 msec for
datagram and stream transmission cases, respectively, which imply a > 3 [SS94].

In Theorems 6.1 and 6.2, we compute the total number of migrated tasks (/3’s multiplier)
and the frequencies of migrations (a’s multiplier) in a cluster. Furthermore, we also illustrate
an important characteristics of our method, which is that balance ratio gets improved as
clustering happens at higher levels.
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Theorem 6.1 In a cluster C' = (v, w) where v and w are terminal nodes in C'T, and they
have initially loaded N identical tasks respectively, the total number of tasks to be migrated
from v to w to meet the finish times at both processors is %N, i.e. the balance ratio of
C times N.

Proof: Let us determine the general terms of the number of tasks to be migrated from v
to w at the time w becomes idle. Since w is faster than v, w’s first incidence of task depletion
occurs after %; thus the number of tasks in the first migration is half of what remains in v

at that time, which is (N — £ . 7,) = &(1 — =). Notice that 7,/7, is less than 1. T,,, the

total number of tasks that are eventually processed by w, is a summation of the following
series:

N T, N T, =1 T,
T, = N+—=(1-"35)+=—1--"2)Y+ —(1--2)
+2( Tw)+4( Tw> ;2 Tw
1 — (1(1 — ) )kt N
O (Ut s
k— 00 1—5(1—:—:) To + Tw
Theretore, Migrated, ., = 1, — N, which yields = N. a

Theorem 6.2 In a cluster C' = (v, w) where v and w are terminal nodes in CT, and they
have initially loaded N identical tasks respectively, the frequency of migration from v to w
to meet the finish times at both processors is log1( ) %

Proof: The general term in the series is 2t (1 — T—“) - Thus, k =log1 =, e

(Il
Theorem 6.3 In a cluster C' = (v, w) where v, w are arbitrary nodes in C'T, and they have
initially loaded N identical tasks, the combined throughput of a cluster C' = (v, w) is 7, + Ty,
assuming no migration overhead. Proof: Suppose v and w are terminal nodes in C'T". In
Theorem 6.1, the total number of tasks processed by v and w is given by - N7 and 27w

+Tw To+Tw
respectively, and the finish time is m at either processor. As cluster C have loaded 2N
tasks in total, this may be interpreted to mean that the de facto throughputs of the cluster
is 7, + 7. Now let us assume this holds for two clusters C) = (71, 72) and Cy = (73, 74); i.e.
T, and 7¢, are 7 + 7y and 73 4 74, respectively. For a cluster C' = (C, Cy) (we can assume
(' is slower without loss of generality), we can calculate the number of tasks processed by

Cy as follows:

> 1 TC «; 27’0 e
To, = NY —(1— -Z)i=N. 22 Ny,
? ;02 ( 7'02 T01+TC2 (T01+TC2)/2
By induction, this completes our proof. O

Theorem 6.3 implies that the sum of the two throughputs in a cluster may represent
the combined throughput of the cluster so that we can cluster recursively in bitonic fashion.
The real combined throughput can be yielded by subtracting the throughput loss incurred
by migration overheads (see Section 6.3.2) from that amount.
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Theorem 6.4 If there are two clusters Cy = (71, 74) and Cy = (79, 73), and C} is slower than
Cy (i.e. 7¢, is less than 7¢, ), then another cluster C' = (C, Cy) is always more balanced than
the less balanced cluster between C; and C,.

Proof: Counsider the case when B¢, is greater than Be, (i.e. C| is less balanced than Cy).
Due to the property of bitonic coupling, 71 < 7 < 73 < 74 must hold. Let us write 7, = ary,

73 = abm, and 74, = abcry, where a,b,c > 1. By Theorem 6.3, B¢ is yielded by mﬁ

That is, Be, = 221 and Be = 2 Gince (abe + ab+a + 1) - (abe — 1) — (a + ab —
(abc + 1)) - (abc + 1) = 2abe(abe + 1) — 2a(b+ 1) > 0, Be is less than or equal to Be,. But
if 2abc(abe + 1) — 2a(b+ 1) = 0, all a, b, ¢ must be 1, which implies 77 = 7, = 73 = 74 that
contradicts the given assumption (7¢, < 7¢, or Be, > Be,). Hence Be is strictly less than
B, . Likewise, when B, is less than B, (i.e. Cy is less balanced than C7), we also can show
that B¢ is less than Be, — now 75 < 73 < 74 < 73 holds. Finally, consider the case when
Be, is equal to Be,. Again, due to the property of bitonic coupling, this condition implies
T1 = Ty = 73 = T4, which is a contradiction. This completes the proof. O

Theorem 6.4 contains an important subtlety. It implies the amount of inter-cluster mi-
gration is always less than that of intra-cluster migration in a critical sub-cluster. Since
migrations through a higher-level link may need multi-hop communications, they result in
higher overheads. Theorem 6.4 assures that the amount of migrations of such higher over-
heads get smaller. Consequently, the complexity of migration overheads is bounded.

6.3.2 Complexities of Task Migration Overhead

Consider the topologies in Figure 6.2 (a) and (b) extended to p processors and the total
number of tasks are p/N. Self-scheduling requires pN(a + /), where N is the total number
of tasks between a master and its servers. Putting aside the fact that the master can
easily create a bottleneck in that topology, we investigate the complexity of our method and
compare it with that of self-scheduling.

The worst case happens when the fastest processor (the rightmost one in a cluster tree)
is far faster than the remaining ones: ie. 73 > 71,74, 72 in Fig 6.2 (b). Let us calculate
the overhead for a one-hop migration in this scenario. For example, in a link between P2
and P3, the total number of tasks to migrate is, by Theorem 6.1, %N. As 13 > 7y, the
number becomes N. In other words, all of the task in a slower processor must be migrated to
the infinitely faster one. Likewise, by Theorem 6.2, the frequency of migrations is given by
log: ~ = log, N. Thus, the one-hop overhead (OH;) is alog, N+ 3N. Since the farthermost
tasks need p — 1 hops, we obtain the worst case complexity of migration overhead as follows:

p—1
1
OHyorst = Z k-OH, = §p(p - 1)(0&10g2N + 6N>

k=1

Recalling the facts that « > # and N > p, OH s can hardly be worse than pN(a + ).
Now let us consider an average case where each processor contains the average number of
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tasks (V) at any moment during computation.? Consider a lowest-level cluster (v, w); i.e. v
and w are terminal nodes in C'T". By Theorem 6.2 and 6.1, the one-hop migration overhead
is obtained as follows:

j— TU

1 T,
OH = ————1og, N - -
! l—logQZ—;OgQ a+Tw—|—TU

N-pj

By Theorem 6.4, the balance ratio of a higher-level cluster is always less than the maximum
of those of the two sub-clusters. That is, the maximum balance ratio among all clusters
(v,w) at the lowest level is the maximum balance ratio of all clusters in an entire cluster
tree. Let it be B,,q,. Then, no (p — 1) links in the topology can migrate more than B,,.. - N
tasks. Therefore, the average case complexity of migration overhead is a lower bound of the
following formula, where 7,4, is the maximum of TT—:) for all clusters (v, w) at the lowest level
in CT:

average - Z OHI 10g2 N« + Bmam(p - ]-)N/B

1— log2 T'rax

Notice that 0 < 7,0, < 1 and 0 < By < 1. OHgperage is always better than pN(a + 3).
Furthermore, since a > [ and N > p, it is significantly better in general.

Example 6.3 Let us consider Figure 6.2 (b) again. Each processor initially has N identical
sub-tasks. Throughputs are the same as in Example 6.1: i.e. 7,27, 37,47 for P1, P2, P3
and P4, respectively. For brevity, suppose all processors have constant throughputs, and
we assume no migration overhead for the time being. Then the following table shows each
snapshot of load distribution under our load balancing method in case we chose 4 = % and
V23 = % particularly.

P1 P4 P2 P3
Initial Load N N N N
After N/4At 3N/4 0 N/2 N/4
After Load Migration | 3N/20 | 3N/5 | N/2 N/4
After NJ127 N/15 | 4N/15| N/3 0
After Load Migration | N/15 | 4N/15 | 2N/15 | 3N /15
After N/151 0 0 0 0

Table 6.1: Snapshots of load distribution.

2N .

The table shows that total execution time is E + E + E = %Z—; in other words, the

average throughput of this 4-processor cluster with 4N sub-tasks is 107. However, the real

20bviously this is a harsher condition than what a real average case needs to be, since the number of
remaining tasks gets decreased as time goes by. Therefore, our obtained complexity is an upper-bound of
the average complexity.
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behavior deviates from this ideal behavior because of migration overheads. We calculate the
overhead for two different choices of v: when v is taken proportionally based on throughput
(Case 1) and when all v = £ (Case 2).

Case 1: As shown in Table 6.1, migrations occur twice of amount 3N/5 and 3N/15,
respectively. Thus, the overhead is yielded by « + %Nﬂ + o+ %Nﬁ =20+ %Nﬁ.

Case 2: By Theorem 6.1, the number of tasks to migrate for P1 — P4 and P2 — P3
links is calculated as follows:
47 — 1 3 3r—2r 1

N=2N, Mpy py=L—TN=—Z-N
AT 4+ 71 5 Pa=Ps = 5 L or 5

MP1~>P4 -

Similarly, by Theorem 6.2, the number of migrations that occur for the two links is as follows:

1
5N
Thus, the overhead is yielded by

OH = alkpi_ps+kpap3)+ B(Mpi_ps+ Mpy_.p3)

1 1 4 4
= a(log% N + log: N) + gNﬁ ~ 3.63log Na + gNﬁ
In either case, the overhead is much less than that of self-scheduling, which is 4N (a + ).
([

6.3.3 Initial Load Distribution

While any initially distributed load should be balanced through a dynamic load balancing
method, the resulting overhead is associated. We discuss now the initial load distribution
issue that can lower overhead, compared with the equal distribution that was assumed for
analysis in the previous sections.

When loops are predictable (see Section 6.1.1), there are two cases: one is when we know
the amount of the required computation exactly, as in Figure 6.1 (a), (b), (¢) and sometimes
(d), and the other is when we can determine just the orderings, like in the DNA sequence
search problem [CG89]. For the former case, as L(i) is known in advance, if we distribute
proportionately according to each processor’s throughput, we can reduce the likelihood of
migration. In other words, the processor P; with 7, will get 7,3, L(i)/ >, 7. Dynamic
adjustments to this approximation are made by our load balancing method. In a lowest-
level cluster (v,w) in CT, if we allocate |7;>; L(i)/ > p 7] to v, and [, L(i)/ >k Tk |,
Since v is slower than w, uni-directional migration is enough. If we cannot guarantee the
faster processor finishes earlier, the migration paths must be bi-directional as in the following
cases.

For the latter case, we cannot initialize in the above way as the value of L(i) is unknown.
The LPT (Largest Processing Time first) algorithm [BB90] is for this class of loop models.
The tasks are sorted in descending order based on execution time L(i). Each processor
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should process the largest task first. Otherwise, an unfortunate processor may happen to
take a large task (say, about 100 times larger than the small ones) as a last one at the
near end of all computations, which results in a load imbalance — other processors are idle
because few tasks left to migrate at this moment.

When tasks are not “orderable” and quite irregular like in the Mandelbrot set computa-
tion problem, we can neither quantify the loads to proportionately distribute to processors of
diverse throughputs nor sort in decreasing order and apply the LPT algorithm. No general
heuristics can be used — random distribution does not need to be worse.

L(1) is the # of iterations for i-th loop

600K | | | | — |
~
F\
500K | £ .
") [
400K PV ““‘».\_,‘ .
L(i) 300K - / .
200K e ,_,’ -
100K |- ! \ .
0 A J&4"’.-\:| | ' | | | | ‘\h
0 100 200 300 400 500 600 700 800
1-th task

Figure 6.5: The load distribution pattern of a loop in the Mandelbrot set computation.

Finish Times Finish Times
2000 T T T T T 60 T T T T T
1800 - "Single” — 1 55 I "Ours” — A
1600 M 50 7SS” i
1400 H
Sees 1000 |- x Secs 40 B
800 H 35 B :
600 H
400 | 30
200 c b b e Bl 25 c b b e Bl
0 2 4 6 8 1012 14 16 0 2 4 6 8 10 12 14 16
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Figure 6.6: Execution times: Mandelbrot set computation on [0.5,-1.8] to [1.2,-1.2]
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6.4 Experiments

To demonstrate the performance of our method, we conducted our experiment on 16 work-
station clusters using PVM message passing systems. The example program was Mandelbrot
set computation on [0.5, —1.8] to [1.2, —1.2] using a 800 x 800 pixel window. This program
contains unpredictably irregular loops as shown in Figure 6.5, which cannot be analyzable
as in Section 6.3. The z-value indicates the x-th row in an outer loop. The y-value is the
number of inner iterations (L(z)) to compute the corresponding z-th row. The total number
of sub-tasks are 800, and the result size of a sub-task is 800 in integers: one integer per pixel.

We have initially distributed those tasks in a round-robin style. A variety of heteroge-
neous workstations have been used as shown in Figure 6.6 (a) which shows the execution
time for each of 16 workstations® to compute the given Mandelbrot set; the range is from
250 seconds to 2000 seconds. The results by 16-workstation cluster are given by Figure 6.6
(b). The dotted boxes represent the finish times of each workstation under the pure self-
scheduling method, which substantiate the expected good load balance. The result by our
method is seemingly imbalanced but the actual finish time is much improved. Perfect bal-
ance may be good but the evaluation should be based on how much its overheads negate its
resulting benefits.

taskent | 1 2
freq 13 6

3 4 6 7 10 11 12 17 19 20 30
3 3 14 1 1 1 1 1 1 1

5
3

Table 6.2: The sizes of migration units and the frequencies of migrations

Table 6.2 summarizes the size of each migration and its frequency that are counted in our
experimentation. For example, the single-task migration occurred 13 times, and the 30-tasks
migration occurred once, etc, during the entire task migration attempts. In the table, we can
compute the total occurrences of migrations by summing all frequencies up, that is 40. If we
calculate this figure from our formula on OHgyerage, that is % log, N, where p = 16,
N =800/16 = 50, rpee = 692/693 ~ 1. This formula gives 15log, 50 ~ 84.7. Considering
this formula is obtained as an upper bound, the experimental value is said to conform to
the theoretically obtained value. Although the theoretical model does not exactly match
with our experimental environments, the model gives us a reasonable implication about the

migration behaviors in general cases.

31 SPARCstation 20, 3 SPARCstation 5's, 2 SPARCstation 10’s, 2 DECstation 5000/25’s, 4 SPARCstation
IPX’s, 2 DECstation 23/100’s, 2 SPARCstation IPC’s are used.
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Chapter 7

Conclusions and Future Works

For many applications, the message passing style programming is plainly too difficult to cope
with all kinds of control parallel intricacies. Our approach toward distributed program op-
timization is based on constructing statically configurable programming environments. We
have developed an automatic adaptation system that allows configuration-level optimization
of RPC-based distributed programs. Because it automatically adapts the application at the
source level, it encourages programmers to experiment with various performance improve-
ment strategies in order to discover the best for their environment and data. Programming
directly in terms of message passing primitives may still give programmers the maximum
ability to write high-performance programs in distributed environments, but this freedom
comes at a high price in programmer time and effort, and reduces the programmer’s freedom
to port, upgrade or reuse the component program units. These benefits have been available
because many types of performance factors are isolated from the module programming level
and deferred such decisions to the configuration level. Therefore, our approach helps to
decrease the code of developing and tailoring application programs, while at the same time
achieving overall performance comparable to manually tailored counterparts, which has been
sacrificed before.

Exploiting parallelism is a complicated process. Data parallelism has been widely ac-
cepted while control parallelism has been used only at the low-level procedural message
passing systems like PVM and MPI. Higher level systems still have not displaced such a
low-level system, although the low-level systems are usually understood as error-prone and
tedious to use. As we have discussed in Chapter 3, many practical distributed and parallel
applications can be expressed in a modular way using procedure call abstraction. The pre-
vious unavailability of proper optimization methods discouraged programmers from using
the RPC paradigm for higher performance oriented distributed programming, in spite of
its convenience and simplicity owing to its high abstraction power. We have presented a
source-level transformation framework for RPC-based distributed programs, whose goal is
automatically extracting RPC task-level parallelism and reducing the communication paths
according to the constraints of data and control dependences.

We also have presented a new decentralized load balancing method for parallel tasks
in heterogeneous workstation clusters to deal with various patterns of parallel loops. We
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discussed why the conventional global dynamic load balancing methods are not adequate to
our application areas. Loop scheduling schemes that have been useful under shared-memory
multiprocessor machines cause a bottleneck in workstation cluster environments because
the communication overheads are higher. To our knowledge, migration topology for load
balancing is considered for the first time. The topology has not been considered important
heretofore because sometimes it is given in a hard-wired form [LK87] or it is meaningless
where distributed load patterns cannot be assumed to be known in advance [ELZ86b, KS94].
We have shown analytically that the overhead of our method is lower than that of the self-
scheduling scheme when an “predictability” condition is given. We have also provided some
experimental data for cases when the loop pattern is unpredictably irregular. Most striking
fact from our new load balancing scheme is its relevance to the configuration programming.
As our suggested topology is of binary tree form, more interesting topologies can be studied
analytically or experimentally in the future.

Assessing the usability of a parallel programming system is one of important research
areas from the viewpoint of software engineering. Wilson [Wil94]| proposes 9 applications
that can assess how well a parallel programming system can support large scale software
engineering and how easily systems can be learned or how quickly code can be developed.
Prior to that Feo [bJTF92] suggested Salishan Problems and collected results for the problems
from various parallel programming systems — all at the module programming level. The
comparison goals in the assessments were two-fold. First, how well parallel programming
system can support large-scale software engineering concerns based on software engineering
metrics like LOC (Lines of Codes), Halstead’s “program volume” measure, and McCabe’s
“cyclometic complexity decomposition of flow graphs.” Second, how easily systems can be
learned or how quickly code can be developed by measuring the time taken from novice
to expert. Assessing our framework using the same problems and the same criteria will
substantiate the usability of our framework.

There is also an interesting research direction in regards with extending to a visual pro-
gramming environment. Textual MIL programming can still be a nuisance to programmers
who write large distributed applications that consist of many software components. If hun-
dreds of slave processes are involved, the load balancing expressions in the configuration
program may exceed hundreds of lines as well. A visual approach is the alternative such
as Newton’s graphical environment for parallel programming [New93|. A graph editing tool
that is capable of processing all necessary attributes in configuration-level programming can
help to deal with a large program of many components. The tool may produce the textual
equivalent MIL program as an output.

Another important research direction is improving the program performance through
more aggressive program transformations that have been successful in general compiler-
assisted optimization areas. Especially, it is interesting to see there is an analogy between
the transformation-based RPC compilation and RISC (Reduced Instruction Set Computers)
compilers. It is illustrated in Figure 7.1 and Figure 7.2. Figure 7.1 (b) shows that the CISC
code needs six memory accesses while the RISC one needs ounly four at (1), (2), (4), (6) in
Figure 7.2 (¢). This is due to an optimization known as spill code reduction. Figure 7.2
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(1) A ;=B +C (1) ADD A, B, C (1) LD rB,B
(2) B:=A+C (2) ADD B, A, C (2) LD «rC,C
(3) ADD rA,rB,rC
(4) ST A,rA
(5) ADD rB,rA,rC
(6) ST B,rB
(a) High-level (b) CISC (c) RISC
Figure 7.1: Generated codes with RISC and CISC instructions.
(1) a = f(a, b) (1) Send(f(), a, b) (1) Send(f(), a, b)
(2) b = g(a, c) (2) a = Receive(f()) (2) Send(g(), c)
(3) Send(g(), a, c) (3) a = Receive(f())
(4) b = Receive(g()) (4) b = Receive(g())
(a) RPC code (b) Compiled code (c) Optimized code

Figure 7.2: Spill code reduction in a distributed program.

shows the effect of the similar optimization, that is already presented in Algorithm 5.2.
This is because a memory access in RISC programs appears in a form of message passing
in RPC programs. More important aspects of RISC compilers are on instruction schedul-
ing. Basically RISC programs contain many pipeline bubbles (NOP: No OPeration) to avoid
pipeline interlocks [Pat85]. Instruction scheduling is how to fill up those bubbles with useful
operations safely without changing program semantics. Moreover, message passing primi-
tives also have varieties in its functional complexity. For example, in PVM, pvm_psend()
packs and sends a set of data while there are specific primitives of pvm_pack() for packing
and pvm_send() for sending. Using reduced primitives allows more leeway for aggressive
transformations.

Our research strategy shows how to enhance current interconnection technologies to sup-
port automatic analysis and tailoring of distributed applications for use in a wide range of
target application environments. As a result of our work, programmers can build applications
using simple structures that are easy for them to reason about, yet still have performance
improvements that would have been very complex and costly for them to build-in manually,
with an aid of compiler optimization techniques.
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