
AbstractTitle of Dissertation: Toward Optimizing Distributed ProgramsDirected By Con�gurationsTae-Hyung KimInstitute for Advanced Computer Studiesand Computer Science DepartmentUniversity of MarylandCollege Park, Maryland 20742 , Doctor of Philosophy, 1996Dissertation directed by: Associate Professor James M. PurtiloDepartment of Computer Science
Networks of workstations are now viable environments for running distributed and par-allel applications. Recent advances in software interconnection technology enables program-mers to prepare applications to run in dynamically changing environments because moduleinterconnection activity is regarded as an essentially distinct and di�erent intellectual ac-tivity so as isolated from that of implementing individual modules. But there remains thequestion of how to optimize the performance of those applications for a given execution envi-ronment: how can developers realize performance gains without paying a high programmingcost to specialize their application for the target environment? Interconnection technologyhas allowed programmers to tailor and tune their applications on distributed environments,but the traditional approach to this process has ignored the performance issue over gracefullyseemless integration of various software components.Networks of workstations can be virtual parallel machines. For a distributed and parallelapplication on such environments, an ability to write performance-literate programs is asimportant as that to seemlessly integrate distributed modules. Our dissertation research isan e�ort to extend the plain interconnection technology to that with a variety of performanceattributes. The RPC (remote procedure call) paradigm is used at the module programminglevel because it adopts a widely used and understood procedure call abstraction as the sole

mechanism of remote operations and thus helps to shape reusable components. Most ofperformance related decisions are pertinent to the interconnections among software compo-nents.Our e�ort toward performance tuning consists of two main thrusts. One is an auto-matic adaptation from a performance con�guration, which is analogous to the process ofsoftware interconnection for traditional structure-oriented con�gurations. We present how aperformance con�guration can be represented as an extension to traditional module inter-connections. The other is an optimal transformation for RPC statements in an individualmodule using various program analysis techniques. Conventional stub generation based ap-proach to implement RPC paradigm cannot serve for performance improvement because ofits synchronous property. In concert with the two systematic approaches toward optimizingdistributed programs, programmers can have high performance and conceptual simplicity inwriting distributed programs.

This research has been supported by O�ce of Naval Research under contract No. N000149410320

Toward Optimizing Distributed ProgramsDirected By Con�gurationsbyTae-Hyung KimInstitute for Advanced Computer Studiesand Computer Science DepartmentUniversity of MarylandCollege Park, Maryland 20742Dissertation submitted to the Faculty of the Graduate Schoolof The University of Maryland in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy1996
Advisory Committee:Associate Professor James M. Purtilo , Chair/AdvisorProfessor John GannonProfessor Michael BrinAssociate Professor Richard GerberAssistant Professor Adam Porter

Table of Contents
List of Tables ivList of Figures v1 Introduction 11.1 Motivation : 21.2 Overview of Approach : 61.2.1 Con�guration for High Performance : : : : : : : : : : : : : : : : : : : 71.2.2 Optimal Transformation : 71.2.3 Load Balancing : 81.3 Summary of Contributions : 91.4 Outline of the Dissertation : 102 Related Work 112.1 Remote Procedure Call : 112.2 Message Passing Systems : 122.3 The Linda : 132.4 Program Analysis Techniques for Optimization : : : : : : : : : : : : : : : : : 142.4.1 Basic De�nitions : 142.4.2 Previous Works : 152.5 Load Balancing Schemes : 163 Distributed and Parallel Programming Structures 183.1 Client/Server structure : 183.2 Master/Slave structure : 203.3 Pipeline structure : 213.4 Data parallel structure : 213.5 Remarks : 24

ii

4 Con�guration-Level Performance Programming 264.1 Requirements For Con�guration Optimization : : : : : : : : : : : : : : : : : 284.1.1 Performance Factors : 294.1.2 Load Balancing : 324.2 Developing Applications In CORD : 365 Source-to-Source Transformation 415.1 Constraints On Source Transformation For RPC : : : : : : : : : : : : : : : : 425.2 Transformation Framework : 435.2.1 De�nitions : 445.2.2 Call Tree Construction : 455.2.3 Initialization : 485.2.4 Global Optimization : 495.2.5 Loop Transformation : 515.3 Module Synthesis : 546 Load Balancing 586.1 Loop And Workstation Cluster Models : 596.1.1 Loop Model : 596.1.2 Workstation Cluster Model for Load Balancing : : : : : : : : : : : : 596.2 Load Balancing Method : 606.3 Analysis Of Migration Behaviors : 636.3.1 Preliminaries : 646.3.2 Complexities of Task Migration Overhead : : : : : : : : : : : : : : : 666.3.3 Initial Load Distribution : 686.4 Experiments : 707 Conclusions and Future Works 71Bibliography 73

iii

List of Tables
4.1 Various load balancing expressions and their meanings. : : : : : : : : : : : : 354.2 Measured time (in seconds) to compute Mandelbrot set on [0.5,-1.8] to [1.2,-1.2] with 200� 200 pixel window used. : 395.1 Receive Request and Send Result sets after initialization and global optimiza-tion. : 556.1 Snapshots of load distribution. : 676.2 The sizes of migration units and the frequencies of migrations : : : : : : : : 70

iv

List of Figures
1.1 Basic topologies in client-server model from the perspective of optimization. 41.2 A Logical Con�guration. : 51.3 Various Physical Con�gurations. : 63.1 Client and Server structure with single threaded server. : : : : : : : : : : : : 193.2 Disk scheduling structures. : 203.3 Master and Slave structure. : 213.4 Pipeline structure. : 223.5 Merge sort network. : 233.6 SPMD (Single Program Multiple Data) structure. : : : : : : : : : : : : : : : 244.1 Simple DNA sequence search. : 274.2 Basic con�guration for DNA sequence search example. : : : : : : : : : : : : 284.3 Communication optimization for Figure 4.1 (c). : : : : : : : : : : : : : : : : 314.4 Generated �les from user provided modules using CORD. : : : : : : : : : : : 364.5 Script for the design (user commands pre�xed by a % prompt). : : : : : : : 384.6 Module speci�cation for various load balancing schemes. : : : : : : : : : : : 405.1 Eliminating spurious data dependences for parallelization. : : : : : : : : : : 425.2 An example: CFG and CDG to construct Call Tree. : : : : : : : : : : : : : : 465.3 Example code shapes for global optimization. : : : : : : : : : : : : : : : : : 525.4 Global optimization algorithm. : 535.5 Loop distribution and call streaming : 545.6 Transformed client and server modules for Figure 5.2. : : : : : : : : : : : : : 576.1 Four typical parallel loops. : 596.2 Topologies in workstation cluster model for load balancing. : : : : : : : : : : 606.3 Programs generated for a migration path in Figure 6.2 (b). : : : : : : : : : : 616.4 A cluster tree and its corresponding task migration paths. : : : : : : : : : : 636.5 The load distribution pattern of a loop in the Mandelbrot set computation. : 696.6 Execution times: Mandelbrot set computation on [0.5,-1.8] to [1.2,-1.2] : : : 697.1 Generated codes with RISC and CISC instructions. : : : : : : : : : : : : : : 737.2 Spill code reduction in a distributed program. : : : : : : : : : : : : : : : : : 73v

Chapter 1IntroductionA new trend in parallel processing has emerged to use \clusters of workstations" over LocalArea Networks (LANs) as cost-e�ective parallel computing platforms. This new trend isgaining popularity to establish a new parallel processing paradigm: \network-based comput-ing." It has two noteworthy advantages. First, it provides an opportunity to have a parallelmachine virtually with no extra costs, if software supports are properly provided. Worksta-tions are ubiquitous and most of them have been under-utilized at most of times. Second, thevirtual parallel machine can be constructed so as to take advantage of some special resourcesthat are locally available on some of the network hosts, for example, graphic processors orvector processors. However, still there is an order of magnitude di�erence in the speed oflatency and transmission rate from a real parallel machine whether it is a distributed mem-ory machine like Intel Paragon [Hoc94] or shared memory machine like IBM RP3 [BMW85].Many researches have engaged in providing novel hardware or software solutions to alleviatesuch an obstacle for workstation clusters to be a viable environments for running parallelapplications. Hardware solutions like SHRIMP (Scalable High-performance Really Inexpen-sive Multiprocessor) [BLA+93] and PAPERS (Purdue's Adaptor for Parallel Execution andRapid Synchronization) [DMSM94] projects are to develop an add-on interface unit that isconnected to each workstation so that the resulting cluster can run at faster communicationspeeds and even allow �ne-grain parallel execution. Although the communication in theLAN-based networks of workstations is getting faster, no substantial results have been re-ported to assure whether the add-on interfaces or other communication hardwares can reallyaccomplish a comparable communication performance with real parallel machines. As longas there is a noticeable di�erence between the two platforms for parallel execution, a specialsoftware support, that has an expertise in the `new' parallel platforms, is called for.Writing distributed and/or parallel programs is di�cult for programmers, and even moredi�cult when high performance is required. Many mechanisms to achieve better performancein distributed programming have been proposed [BST89, Geh86, Geh90, Gen81, LS88];however, in practice these mechanisms are hard to utilize, and do not take into accountthe burden placed on programmers who already encounter di�culty in writing functionallycorrect programs. The capability to write an e�cient program is not enough, unless thewriting complexity is controlled in a systematic way. Furthermore, most of these mecha-1

nisms are expressed by special programming language constructs for specifying the exactsemantics on communication and synchronization [BST89]. Such languages are not good ataccommodating the programming skills of those who are already accustomed to conventionalprogramming languages like C.A great deal of this di�culty in developing large distributed programs arises at the earlystages of program development, when the relationship between modules' functionality, theirinteractions and overall performance is hard to discern. For a given module's functionalityas dictated by some design, it is possible to implement many program units, each havingsome di�erent calling conventions, servicing style and communication properties, yet allmaintaining the same functionality. Previously this
exibility in how to implement themodule resulted in a burden to the programmer, who was tasked with selecting one of theimplementations based upon too little information, and who then would be faced with greatprogramming burden should one of those decisions need to be changed later.Since many mechanisms can be expressed in terms of the high-level con�guration ofapplication modules, we sought to derive a practical adaptation system for con�guration levelprogramming. This approach would allow programmers to express performance improvementtechniques abstractly (in terms of the con�guration, instead of the low-level implementation),and then prepare appropriate implementations automatically.The objective of this dissertation has been to provide such an adaptation system, toallow practical employment of existing performance improvement techniques; to suggest newtechniques; and to allow programmers the freedom to study the impact of various techniques{ in concert with one another, as desired { upon the application. Under our adaptationframework, the programmer's original implementation of a module is transformed in twodirections: (1) each RPC statement at client sites is translated into a set of �ne grainedmessage passing primitives (optimization phase), and (2) the stubs are generated at serversites to implement the particular techniques (e.g. load balancing and/or scheduling) speci�edat the con�guration level (adaptation phase).1.1 MotivationOur approach is motivated by the success of on-line system con�guration technologies [Kra90]based on the perception that module interconnection activity is to be an essentially distinctand di�erent intellectual activity from that of implementing individual modules; that is,\programming-in-the-large" is distinct from \programming-in-the-small" [DK76]. Moreover,workstation clusters are becoming viable environments for running parallel applications. Oneof the characteristics of such systems is the lack of solidity in a con�guration of hardware plat-form. At the same time, performance is a key issue in writing distributed parallel programs.It would be an interesting step to adopt these con�guration technologies to a performanceimprovement domain. We share a same philosophy of which module interconnection activ-ity should be isolated from intra-module programming activity. Performance-related factorsneed to be delayed up to con�guration level programming. Otherwise, programmers mayencounter a large portion of their original programs for rewriting although their functionali-2

ties remain unchanged, because many performance improving techniques are tightly relatedto the structure of target workstation clusters. In many cases, such extra codes for betterperformance are orthogonal to the functional behavior among distributed software modules.By isolating performance factors from module programming level, module reusabilities canbe enhanced. Not only it helps to enhance portability in workstation cluster environments,it can also provide an opportunity for programmers to experiment various performance-a�ecting con�gurations for performance tuning.To carry out this approach, we consider the process of writing high-performance dis-tributed parallel programs with two cooperative levels of programming: module- and con�guration-level programming. Con�guration programs will be expressed by a MIL (Module Intercon-nection Language) that has been used in the precursor of this dissertation research, softwarepackager [CP91]. The MIL syntax is slightly extended to include performance-related fac-tors for our purpose (Chapter 4). Module level programming is conducted by conventionalprogramming languages like C with a remote procedure call abstraction for non-local inter-actions among software modules.Conventional stub-generation based RPC implementations [BN84, Gib87, CP91] su�erlow performance because parallelism is inhibited and communications may be redundant.That we want to circumvent those problems motivates us to have a parallelization phase.This is to develop source-level transformation of RPC-based distributed programs for higherperformance. The RPC paradigm adopts the model of client-server computing; caller andcallee correspond to client and server, respectively. Traditional researches on improving RPCprogram performance have focused on reducing latency and transmission time within thispairwise form [JZ93, BELL90, GG88]. When this simple topology extends to a network ofclient-server model computing, more advanced optimization other than just e�cient pairwisehooking between client and server is called for. Figure 1.1 shows two basic topologies toform a general application. These two topologies are basic units where we can account forour optimal source-level transformation techniques. The optimization goals are \enhancingparallelism" (Goal 1) and \reducing communication length" (Goal 2).In Figure 1.1 (a), the client C calls its server CS and it successively calls S to ful�ll C'srequest. The module CS plays both roles respectively to C and S. We name it parallelism indepth because the parallelism stretches in depth in the call graph. Normally, C and CS areblocked when S is working. Parallelism in depth (Goal 1) can be exploited if there are usefuloperations to continue during the call at a client. Towards Goal 2, the performance can beimproved if we can establish a direct message passing path between an indirect client-serverrelationship like that of C and S. Direct path means that a recipient can get a data earlier,and consequently, it can start what it is supposed to do earlier. Moreover, it enables Cto make a single multicast command instead of two separate request sending messages. Asingle multicast is faster than a series of point-to-point communication because the messagepassing system can keep same data in its internal bu�er until delivered to all recipients. Weneed to assure that m2 (r2) is equal to m1 (r1) to make this possible (Algorithm 5.2).In Figure 1.1 (b), the client C calls S1 and then S2. We name it parallelism in breadthbecause the parallelism exists in the direction of breadth in the call graph. Normally, S13

calls

returns

m1 m2

r2r1

C SCS(a) Parallelism in depth
m1

1r

m2

r2

C

S1

S2(b) Parallelism in breadthFigure 1.1: Basic topologies in client-server model from the perspective of optimization.and S2 cannot run in parallel due to a synchronous nature of RPC. However, the parallelexecution of the two servers should be allowed, unless there is a data dependence betweenS1 and S2. For the special case that the value of r1 is equal to the value of m2, we canestablish a direct message passing path between S1 and S2, which is for the Goal 2. Thismay be signi�cant if C calls S1 and S2 in a loop.Notice that it is intentional to treat every argument individually when its optimal messagepassing path is being sought. Each argument has its own data path. For example, if S3(r1; r2)is called in C successively, it is desirable for r1 and r2 to be passed directly from S1 and S2to S3.Meanwhile, a structure of a distributed program is fairly diverse and it has an importantmeaning to the resulting performance. A structure is de�ned in a con�guration that or-chestrates a set of component modules in terms of their interactions. The adaptation phaseis how to come up with compilable source codes according to the user's decisions in thecon�guration program. Figure 1.2 illustrates an example of a logical con�guration of a dis-tributed program that consists of three distinct modules. The arrows represent client-serverrelationships: f1 calls f2 and/or f3. Figure 1.3 enumerates a couple of possible physicalcon�gurations according to the various mappings from a logical module to a physical work-station in a cluster of workstations. Naming is one of the problems of message passing baseddistributed programming. The two communication parties (i.e. sender and receiver) shouldknow the names of each other. In other words, if a physical con�guration should be changed,then we have to change the codes in modules. In Figures 1.3 (a), (b) and (c), they have sametopologies. Nonetheless, a change from one physical con�guration to another one causes thecorresponding source code changes due to the naming problem. For example, the changefrom Figure 1.3 (a) to Figure 1.3 (b) incurs source code changes in all modules. The changefrom Figure 1.3 (a) to Figure 1.3 (c) incurs changes only in f1 and f3. In Figure 1.3 (d), itis desirable to use interprocess communication primitives for the communication between f14

��

��
��
��
��

��
��
��

��
��
��

��
��
��

f1

f2

f3

��client serverFigure 1.2: A Logical Con�guration.and f2, which is more e�cient. These are examples of what programmers should encounterif they decides to use message passing paradigm for distributed applications. Obviously, itis true that message passing gives maximum
exibility in terms of writing the �nest-tunedcodes by programmers themselves. However, if the target platforms are workstation clus-ters, that
exibility accompanies formidable rewritings, even for simple structural changesas illustrated above.Replacing a workstation with faster one can surely be a step to speed up. For example,in Figures 1.3 (a) and (b), if W4, W5 and W6 are faster than W1, W2 and W3, respectively,the same program in Figure 1.2 may run faster. However, such a change is not enough toimprove signi�cantly the overall performance of a program in general. Mostly, such a changeis somewhat related to the porting and/or system recon�gurations rather than aimed atimproving performances. Conventional interconnection methods like polygen [CP91] canbe used to generate compilable source codes for this kind of various structural changes atcon�guration level.More signi�cant improvement can be achieved through a server replication. Server repli-cation is a useful strategy in many cases, but also produces new problems that need to becarefully handled. Otherwise, even a parallelization anomaly, which is the longer elapse timefor the bigger number of servers as explained in Chapter 6. Replication causes topologicalchanges in a program structure. How to organize a pool of servers is a con�guration-leveldecision too { for example, master/slave or pipeline style, and so on. Load imbalance is aserious impediment to achieving good performance if master/slave is a chosen style. Loadbalancing can be understood as an e�ort in a combination or one of two di�erent kinds ofmodule interactions. One is an interaction between a master and its slaves. A master processdetermines the workload for each slave. This is known as load distribution (or initialization).The other is an interaction among slaves. This is for load migration to balance loads amongslaves at run-time. We will see various load balancing schemes can be parameterized where acon�guration program contains a proper set of those parameters in Chapter 4 and Chapter 6.
5

�
�
�
�

��

����
����
����

����
����
��������
����
����
����

W2

f2

f3
f1

W1 f2

f2

f3
f3

��
��
��
��
��

f1

W1

��

��
��
��

��
��
��

W2

W3

W4

W5

��
��
��
��

��
��
��

��

��
��
��
��

f1��
��
��
��

��
��
��

f1

f2

f3

��
��
��
��

��
��
��

��

��
��
��
��

f1
��

��
��
��
��

(e)(d)

f2

f3

W1
W2

W4

(a) (b) (c)

W2

W3

W1 f2

f3

W4
W5

W6

Figure 1.3: Various Physical Con�gurations.1.2 Overview of ApproachOur approach towards optimizing RPC-based distributed programs consists of three pri-mary thrusts. First, we study how to present various con�gurations that result in di�erentperformances after all. Such a con�guration should be adequate to automatically generatecompilable source codes from the basic module programs according to the directions in acon�guration program. How to generate those compilable codes are the next two issues.As for a parallelization phase, we present a source-level transformation framework that isto transform RPC statements in a program into a proper set of message passing primitives.The transformed modules are expected to exploit parallelism and to optimize communicationbehaviors based on the given control and data dependence constraints. On the other hand,as a part of an adaptation phase, we focus on load balancing schemes, which are added to theoriginal module interconnection activities. As a result, those important performance factorsare able to be decoupled from module-level programming. The �nal high performance ex-ecutables are automatically generated according to those user decided performance factorswith a proper performance improving techniques like parallelizing and load balancing.
6

1.2.1 Con�guration for High PerformanceModule interconnection activity is understood to be an essentially distinct and di�erent intel-lectual activity from that of implementing individual modules, that is \programming-in-the-large" is distinct from \programming-in-the-small" [DK76]. Analogously, this observationapplies to performance programming as well. Decisions concerning how a con�gurationmight be adapted in order to allow use of performance improvement mechanisms are inher-ently di�erent from the task of tailoring individual program units and their interfaces toexecute as dictated by the abstract decision. Thus, each module is written to satisfy itsfunctional requirements while each con�guration program is written to specify performancerelated as well as interconnection related information. Many existing performance orientedmechanisms can be achieved by using ordinary modules with proper con�guration programsand source-to-source translation techniques. This frees programmers from making extensiveamounts of manual adaptations for various performance con�gurations.This builds upon the MIL (Module Interconnection Language) approach [CP91, Pur94]for distributed programming, where the original MIL speci�cation is intended only for struc-tural presentation of interfaces between interacting processes. We append performance re-lated speci�cations onto each interface speci�cation in a MIL. As the performance factorsare isolated from the module programming level, changing that information in order to �netune the performance requires not whole changes in source modules, but regeneration of newexecutables for the performance con�guration.1.2.2 Optimal TransformationTwo representative programming models for distributed memory machines are available forprogrammers, message passing (MP) and distributed share memory (DSM). Message pass-ing primitives [Sun90, For93, BL93, Pur94, Fel79, Coo80] are expressive enough to pro-gram for e�ciency; however, they are too low-level to write large distributed programs.Programmers are fully responsible for matching send/receive pairs, allocating bu�ers, andmarshaling/unmarshaling data correctly. Programming under DSM systems [Car93] easessuch di�culties, but the resulting programs su�er e�ciency due to false sharing and co-herence maintaining overhead especially in a distributed-memory machine environments.Our transformation based approach for implementing RPC paradigm is an e�ort to strikea compromise between these two models, using the RPC paradigm for writing distributedprograms plus a source transformation framework for improving performance. Procedure callabstraction has been favored since early programming era because it contributes to constructa well structured modular program, which allows to reuse existing modules and helps writeand maintain a large program by giving a clear view of its structure. The RPC paradigmadopts a widely used and understood procedure call abstraction as the sole mechanism ofremote operations; thus it simpli�es distributed programming by abstracting from details ofcommunication and synchronization.A distributed program is usually written with a number of di�erent abstraction layers. Itis natural to implement each layer of abstraction as a distinct module (or procedure). Follow-7

ing such a natural
ow of concept would help write large distributed programs. However, thisfact does not necessarily mean that the ideal
ow of resulting program for high performanceshould be consistent with the conceptual
ow of RPC paradigm. Two problems should beaddressed to use RPC paradigm for high performance distributed programming. First, theparallelism is inhibited under the paradigm since the caller blocks during the call while it isdesirable to make use of the time between sending requests and getting the responses back.Second, an unnecessary communication is likely to occur especially when a system is layeredand implemented on the basis of modularization. For example, the communication betweenfar distant layers might require a series of communications between a series of adjacent lay-ers. The major problem of traditional stub generation based methods [BN84, Gib87] forimplementing RPC paradigm is that it just adopts the natural
ow of modularization as itsactual
ow of a program while the ideal
ow of it does not conform to that way the programis written.To cope with the discrepancy between the conceptual
ow to write a program conve-niently and the ideal
ow to run a program e�ciently, we present a source transformationframework for RPC-based distributed programs, in order to decide the proper locationsof MP primitives for exploiting function level parallelism and reduction in communicationlengths. It has several advantages over conventional stub generation: (1) it can be safelyparallel { correctness is kept because it is transformed under preserving the given depen-dence constraints, (2) using �ne-grained MP primitives to implement an RPC statementgives an opportunity for further code optimization through static program analysis tech-niques, and (3) modularization is not discouraged because the actual communication pathswill be restructured optimally based on the given control and data dependences rather thanthe modular structure as written.1.2.3 Load BalancingIn a distributed parallel program, tasks are generated and distributed to multiple processorsto be processed simultaneously. Load imbalance is a serious impediment to achieving goodperformance as it leaves some processors idle, when they could be working to make progress.While global load balancing should still be an issue in the whole operating system's concern,our focus is on balancing parallel tasks within an application. Since minimizing the executiontime of an application is more important than average response time, each processor needsto keep making progress rather than merely to have a balanced load. Although the latterstate may �nally lead to the former, this is not a primary goal to shorten the �nish time.From a program's viewpoint, loops are the largest source of task parallelism in a parallelapplication. A loop is called a parallel loop (DOALL-loop) if there are no data dependencesamong all iterations. The question of how to allocate an iteration to a particular processorfor minimizing the total execution time is known as a loop scheduling problem [TY86, KW85,PK87, TN91, CLZ95].Networks of workstations are somewhat new environments for loop scheduling problems:the communication delay is longer and the granularity of a sub-task is coarser. To our knowl-8

edge, the �rst work on parallel loop scheduling in a network of heterogeneous workstationswas done by Cierniak et al. [CLZ95]. They considered three aspects of heterogeneity | loop,processor, and network | and developed algorithms for generating optimal and sub-optimalschedules of loops. Two major limitations are that it is static and that the loop heterogene-ity model is linear. In this dissertation, we present a new dynamic load balancing methodfor parallel loops of more general patterns, since many non-scienti�c applications such asthe DNA sequence search problem [CG89] or the Mandelbrot set computation [FvDF+93],which are good candidate applications for workstation clusters, often do not carry conven-tional regular loop patterns. The unpredictable patterns can even be detrimental to thoseimprovements [KW85, PK87, TN91], although the pure self-scheduling scheme is orthogo-nal to the loop patterns. Our new load balancing scheme reassures the important role ofcon�guration-level programming towards higher performance because a proper load balanc-ing topology can be easily constructed under such a programming environment.1.3 Summary of ContributionsThe major contributions of this dissertation are itemized as follows:� The con�guration issues are popular in constructing large distributed softwares [DK76,CP91, Kra90]. We have extended the idea into the performance issue from the orig-inal interconnection related ones. One may perceive that any structural change in adistributed program con�guration could result in a di�erent performance. This dis-sertation elaborated on this perception in more details toward performance improve-ment. We showed what kind of performance factors a�ects the overall performanceof a distributed program and how they can be represented in forms of MIL (ModuleInterconnection Language) based con�guration programming. We studied how suchan approach help to do a seamless process in developing high performance distributedprograms [KP95].� We have developed an automatic parallelization of RPC-based distributed programs [KP96b].RPC is a convenient paradigm for the sake of writing programs at the sacri�ce of per-formance, if traditional stub generation based approaches [BN84, Gib87, CP91] areused. The automatic parallelization technique compensates programmers for the per-formance problem.� A new decentralized load balancing scheme has been developed for workstation clus-ter environments [KP96a]. This development intensi�es the importance of MIL styleprogramming toward performance tuning because the scheme showed that the load bal-ancing power is dependent on the topology of load migration network. Con�gurableload migration networks have had no application areas before the emergence of work-station clusters. The optimal topology is hard to decide in advance and subjected tobe changed for performance tuning. A topological change is what a MIL program is9

for. A programmer does not have to rewrite a module unless its functionality remainsunchanged.� Moreover, other well-known load balancing schemes (e.g. water-marking, sender-initiated, receiver-initiated, or their combinations) can be parameterized in a con-�guration program. A new scheme may also be adopted later in order to generate thenecessary code for the new load balancing scheme. Programmers are free to experimentvarious schemes that perform di�erently depending on applications without having tochange many of written codes.1.4 Outline of the DissertationThis dissertation is organized as follows. In Chapter 2 we survey background and relatedwork. Chapter 3 discusses the basic forms of parallel programming structures in order toillustrate that an e�cient form of module interactions in a distributed program varies fromapplication to application. Chapter 4 discusses a con�guration-level programming that istopped over the conventional module programming level for various high performance ori-ented con�gurations. Some performance related parameters and how they can be representedin a con�guration are illustrated. In Chapter 5 we provide a source-level transformationframework that transforms one and each of RPC statements into a proper combination ofmessage passing primitives in the light of enhancing parallelism and reducing communicationlengths. Chapter 6 presents a new load balancing technique that is suitable to workstationcluster platforms. Finally, in Chapter 7 we conclude this dissertation with future researchdirections.

10

Chapter 2Related WorkIn this chapter we survey related work in distributed programming. First, we review someof RPC implementations and its variations and other parallel programming paradigms likemessage passing and Linda. Second, we brie
y introduce static program analysis techniquesthat have been used to establish our source-level transformation framework as a way ofimplementing RPC statements, and similar researches that focused on function-level paral-lelism as ours. Finally, we study various load balancing methods and compare them to ourdynamic and decentralized load balancing method.2.1 Remote Procedure CallRemote procedure call [BN84, Cor91] is a popular paradigm for distributed programmingsince it simpli�es program construction by abstracting away from details of communicationand synchronization. However, these early RPC implementations are synchronous in nature,and hence fail to exploit the inherent parallelism in distributed applications. OptimizingRPC performance has been limited to how to e�ciently hook in a pairwise sense betweenclient and server communications as shown in the original work by Birrel and Nelson [BN84]and Peregrine high performance RPC system [JZ93].Since the synchronous property of RPC results in hindrance to parallel executions thatcan increase the total elapse time, various asynchronous RPC mechanisms have been devisedto implement RPC in a non-blocking way [LS88, ATK91, WFN90, GG88]. Call stream-ing [LS88] is a pioneering work in an asynchronous RPC implementation. A new data typecalled a promise { which is created at the time of a call so that the caller can continue its ex-ecution { was designed to support asynchronous calls known as call streaming. It is inspiredby Multilisp [Hal85] that is for parallel execution of Lisp programs by means of future datatype at run-time. However, a static alternative is more attractive because we do not needto rely on new language constructs for parallel execution. Thus far, it has not been soughtas a way to improving RPC programs. Remote pipe [GG88] is used to e�ciently handlecommunication patterns of incremental results passing and bulk rate data transfer which aremajor problem areas in the synchronous RPC communication model. However, the remotepipe can work only for the remote operation that does not expect the return value. In fact,11

the call streaming approach includes return value streaming as well, thus it should be su-perior in this sense. Sun RPC system [Cor91] supports three di�erent asynchronous RPC(non-blocking, asynchronous broadcast, and callback RPC) in addition to synchronous one.For those asynchronous RPC mechanisms that support return values, the disadvantage isthat the programmer is responsible for claiming the delayed return value by specifying theright location in the program. Unfortunately, if users should choose those `right' routines fora proper communication style, the RPC paradigm loses its superiority over message passingstyle programming with explicit send and receive primitives.Another approach to cure the synchronous nature of RPC is using light-weight threadsfor RPC calls [BELL90, BELL89, ABLL92, SB90]. When an RPC is invoked, a new threadis created to take a waiting burden for the return value, and the calling process continues itsexecution. Anderson et al. [ABLL92] reported that user-level light-weight process control ismore e�cient than kernel-level control [ABLL92].Special mechanisms need be provided to make RPC possible if servers are replicated,which is an another form of variation. Replicated Distributed System [Coo85], PARPC [MBR87],Marionette [SA89] and MultiRPC [SS86] present mechanisms to call multiple instances ofsame remote operation in parallel on multiple servers. The caller then blocks until one orall of the requests have been completed. MultiRPC is primary intended for fault tolerancelike in invoking replicated �le servers, rather than for high performance through parallelism.Unlike general asynchronous RPC systems, these parallel RPC systems can not allow fora client to invoke di�erent kinds of RPCs in parallel because they are simply extended tosupport server replications.2.2 Message Passing SystemsMessage passing is a capability to explicitly communicate information among simultaneouslyexecuting components of a distributed application. Unix sockets are the simplest mechanismsavailable and they provide basic mechanism underlying systems like PVM [Sun90]. They arethe lowest-level primitives provided directly by operating systems so aggressive programmerscan achieve signi�cant improvements in the e�ciency of the message passing by minimizingsoftware overhead at the expense of additional e�ort on the part of the programmer. It canbe analogous to the trade-o� between assembler vs. compiler. Higher level message passingsystems include PVM [Sun90], MPI [For93], p4 [BL93] and Polylith [Pur94].PVM PVM [Sun90] (Parallel Virtual Machine) is a user-level code and uses rsh com-mands to initiate daemons on remote machines. The user writes applications as a collectionof cooperative tasks. Tasks access PVM resources through a library of standard interfaceroutines. These routines allow the initiation and termination of tasks across the network aswell as communication and synchronization between tasks. The PVM primitives are intendedfor heterogeneous operations, therefore include bu�ering and data encoding and decodingroutines. Communication structures include those for sending and receiving data as well as12

high-level primitives such as broadcast, barrier synchronization and reduction operations.Task (or process) management operations like spawning, killing, initializing are provided aswell.p4 Message passing in p4 [BL93] system is achieved through similar traditional explicit sendand receive primitives as other message passing systems. However, the user is responsiblefor bu�er allocation and management. Broadcast, barrier synchronization, global operationsare provided. The p4 system supports both the shared-memory model through monitors andthe distributed memory model through conventional message passings.MPI MPI [For93] (Message Passing Interface) is an e�ort by a group of vendors to con-solidate the experienced gleaned from the use of various message passing packages into astandardized system. It is intended to be useful to a wide range of users and e�cientlyimplementable on a wide range of parallel machines. By clearly de�ning the base set of stan-dardized communication interfaces, many parallel machine vendors can optimally implementthose primitive functions for distributed computing. It allows other high-level oriented soft-ware packages to use those underlying primitives in order to be portable on various systemsas well as e�cient.Polylith Polylith [Pur94] system integrated a collection of machine and operating sys-tem dependent ingredients for communication into a single entity called a bus. In hardwareplatforms, a bus system simpli�es to establish a communication network among many dif-ferent hardware components like main memories, disks, or I/O devices. Any componentsthat wish to communicate with others simply need to be plugged in to a bus system withouthaving to know the details of other components' details. Similarly, software bus provides anenvironment where programmers simply need to communicate with message passing inter-faces and the underlying bus system does the rest of job to accomplish the message passing,which includes data abstraction, communication and synchronization. The Polylith systemis an implementation of such a software bus that hides compatibility problems from softwaredevelopers.2.3 The LindaLinda [CG89, CG90] is a unique programming system that is based on a special memorymodel called tuple space. It consists of a few simple operations and is orthogonal to the baselanguages in which it is embedded. Linda memory consists of a collection of logical tuples.Tuples are either active (process tuples) or passive (data tuples). As explained in Chapter 3,Linda model perceives a parallel programming as three basic paradigms of coordinations:agenda, result and specialist. Linda is a programming model that coordinates those threeparadigms. One of its realization, C{Linda [CG90] has four basic tuple-space operations asfollows. 13

out(t) causes tuple t to be added to tuple space; the executing process continues im-mediately. A tuple is a series of typed values, for example, ("a string", 1, 0.17, y).in(s) causes some tuple t that matches s to be withdrawn from tuple space. For example,in("a string", ?a, ?b, y) matches the above tuple and the values in the actuals in tare assigned to the corresponding formals in s: i.e. 1 is assigned to a and 0.17 is to b. Ifno matching t is available when in(s) executes, the executing process suspends until one is,then proceeds as before. If many matching t's are available, one is chosen arbitrarily. rd(s)is same as in(s), with actuals assigned to formals as before, except that the matched tupleremains in tuple space. eval(t) is the same as out(t), except that t is evaluated after ratherthan before it enters tuple space; eval implicitly creates one new process to evaluate each�eld of t.Linda adopts a fairly high level of abstraction for distributed and parallel programming.How to enable associative memory access in a tuple space is purely an implementation issue.Programmers do not need to pay any attention to distributed data or processes or theirinteractions. As a result, performance is generally sacri�ced for easy programming.2.4 Program Analysis Techniques for OptimizationProgram analysis techniques for program optimization have been successful in various kindsof parallel machines, although most of previous works have done for SPMD (Single Pro-gram Multiple Data) style parallel computations. This section brie
y summarizes the basictechniques that have been used in our transformation framework.2.4.1 Basic De�nitionsControl Flow Graph (CFG) A control
ow graph is a directed graph, CFG = (VCFG; ECFG),with unique nodes Entry; Exit 2 VCFG such that there exists a path from Entry to everynode in VCFG and a path from every node to Exit; Entry has no incoming edges, and Exithas no outgoing edges. An edge in ECFG is annotated by a control predicate that determineswhether or not to take the edge [FOW87].Use and Def sets Each vertex in CFG has a Def and a Use set associated with it. TheUse(v) consists of all variables that are accessed during the computation associated withthe vertex v. The Def(v) consists of the variable that is de�ned at the vertex, if any. Adu-chain (def-use chain) is the set of uses of a variable associated with each de�nition of avariable. That is, a du-chain allows us to �nd all tuples that might use the value assigneda variable at a particular vertex in CFG. A ud-chain (use-def chain) is the set of reachingde�nitions associated with each use of a variable [ASU86].Dominance and Post-dominance Node v dominates node w, denoted by v�w, if vappears on every path from Entry to w. A node always dominates itself. Node v immediately14

dominates node w i� v dominates w and there is no node x such that v�x�w. In a dominatortree (DT) of a CFG, the children of a node v are all immediately dominated by v. Node vpostdominates node w, denoted by v�pw, if v appears on every path from w to Exit. If vpostdominates w but v 6= w, then v strictly postdominates w [ARZ92]. In a postdominatortree (PDT), the children of a node v are all immediately postdominated by v.Control Dependence A CFG node w is control dependent on a CFG node v if both ofthe following hold [FOW87]:1. There is a non-null path p: v +) w such that w postdominates every node after v on p.2. The node w does not strictly postdominate the node v.In other words, w is control dependent on v if v can directly a�ect whether or not w isexecuted.Control Dependence Graph (CDG) The control dependence graph CDG is a directedgraph, CDG = (VCDG; ECDG), where the vertices are the same as in CFG and (v; w), for vand w in VCDG, is in the edges ECDG when w is control dependent on v.Data Dependence Vertex v con
icts with vertex w if either v or w share access to acommon variable, at least one of which is a \write" operation. Con
icts induce a datadependence relation among vertices. If v and w con
ict with each other, and if v is reachablefrom w or w is reachable from v in CFG, we say that v is data dependent on w or w is datadependent on v.2.4.2 Previous WorksMany parallelization compilers [KLS+94, HKT92, CMZ92] have a main target of data par-allelism at the loop level. Researches on function-level parallelism are relatively rare partlybecause many scienti�c problems contain data parallelism at the loop level as shown in asystematic work by Fox et el. [FJL+88]. However, workstation clusters environments pro-vide more necessity to exploitation of function-level or control parallelism because �ne grainparallelism is not appropriate due to relatively high communication costs.Girkar and Polychronopoulos [GP92] uses interprocedural dependency analysis techniquesto exploit function-level (task-level) parallelism from ordinary programs written in a serialprogram model. Task-level parallelism exists across loop and procedure boundaries. UsingHierarchical Task Graph (HTG) as an intermediate parallel program representation, theytry to exploit and extract task-level parallelism. To this end, they present how to constructHTG at a given hierarchy level of task and how to derive execution conditions of tasks whichmaximize task-level parallelism. Supplementally, an optimization algorithm which reducessynchronization overhead with preserving control and data dependence constraints. Finally,parallel source code is automatically generated using cobegin/coend parallel constructs and15

wait, post and clear synchronization primitives: wait(a) waits on the event a, post(a)tosses an occurrence of the event a for some other process who is on wait(a), and clear(a)clears all prior posts on the event a.The PARADIGM compiler project [SLR+95, RB93] also deals with extracting function-level parallelism using MDGs (Macro Data
ow Graphs) representation, which is similar toHTG, from the perspective of processor allocation and scheduling problems. When we knowthe available processor resources in a distributed memory multicomputers in advance, theproblem boils down to how to optimally allocate each task node in MDGs to a processorand how to schedule those limited number of available processors.2.5 Load Balancing SchemesLoad balancing concept has been widely studied from an operating system's concerns [Son94,ELZ86b, KS94, CS93, ELZ86a]. When there are multiple applications that are workingsimultaneously on distributed environments, some processors can be too heavily loaded whileothers are not. Dynamic (or adaptive) load balancing, which achieves load balance bymigrating excessive tasks from overloaded processor to underloaded one according to the loadinformation of each processor in the middle of computing, is regarded as an e�ective way inspite of its accompanying overhead, providing that many factors are fairly unpredictable ortoo complicated to make a best scheduling statically in advance.Load balancing for multiple sub-tasks generated from a single application has been knownas \parallel loop scheduling problems" [TY86, KW85, PK87, TN91, CLZ95], which have beenresearched as a way of loop parallelization in a shared-memory programming model. If thereare I uniform-sized iterations, and P identical processors, load can be balanced simply byassigning I=P iterations to each processor. Since both factors may not be known in advanceor may vary substantially, such a static method is often di�cult or ine�cient. Self-scheduling(SS) [TY86] is the simplest dynamic solution. It assigns a new iteration to a processoronly when the processor becomes available. However, this method requires tremendoussynchronization overhead; to be practical, hardware support to fast barrier synchronizationprimitives is desirable. Uniform-sized chunking (CSS) reduces such synchronization overheadby sending K iterations instead of one [KW85]. In this method, the overhead is amortizedto 1=K, but the possibility of load imbalance increases when K is increased. In guided self-scheduling (GSS), the �xed chunk function (K) is replaced with a non-linearly decreasingchunk function in order to reduce the overhead at the beginning of a loop by allocating largerchunks, and also to reduce the chance of load imbalancing at the end of the loop by allocatingsmaller chunks [PK87]. Trapezoid self-scheduling (TSS) uses a linearly decreasing chunkfunction, which helps to reduce scheduling overhead while still maintaining a reasonablebalance [TN91].Grimshaw et al. [GWWECL94] presented a static load balancing method for parallelexecutions in heterogeneous distributed computing systems. The basic idea is to allocatesub-tasks proportionally to the known throughputs of participating workstations. If a sizeof sub-task as a unit of computation is variable, and even worse, if it cannot be known in16

advance or the throughputs are variable too, this proportionally allocating approach cannotbe e�ective. Cierniak et al. [CLZ95] deals with the very parallel loop scheduling problem ina version of a network of workstations. They present an optimal algorithm that allocatessub-tasks to all involving processors so that the elapse time can be minimized, althoughtheir heterogeneity model is limited to linear one. In other words, the processor speeds, thecommunication overheads, and the size of sub-tasks (an iteration in a loop), are assumed tobe only linearly changeable. Their approach is static as well.

17

Chapter 3Distributed and Parallel ProgrammingStructuresSequential programs have a unique paradigm in the light of module interactions, whichis a form of call and return, within a single process boundary. Distributed programs areinherently parallel. Each module is compiled to run as an independent process. Multipleprocesses run in parallel for an application. As each module plays its own functional role,the parallelism arising in distributed applications is referred to as functional parallelism.An e�cient form of interactions among components in a distributed application via remotecommunications can be constructed di�erently from application to application. In otherwords, the nature of an application determines such an `e�cient' form of interactions. Thoseinteractions are summarized by four categories as follows, which have been presented in theprevious researches on various parallel execution paradigms [YBS86, BDZ88, Geh84, Geh86,And91a, CG89, LHG86, SA89, Gen81, Geh90].In the rest of this dissertation, we study how those fundamental parallel program struc-tures can be properly handled during the process of automatic adaptation with optimization.3.1 Client/Server structureFigure 3.1 depicts an interaction of the client and server structure where two clients sharea server. This is how conventional synchronous RPC [Gib87, BN84] works. As a typicalapplication in this category, let's consider a disk server that repeatedly handles read andwrite requests from client processes. A scheduling like SST (Shortest Seek Time �rst),SCAN, and C-SCAN is often used to optimize the moving distance of disk head. Thus,a disk server may include such a scheduling feature. Figure 3.2 illustrates three possibledesigns. In the �rst design, a scheduler is separated from the disk server: (1) clients call thescheduler to request an access, (2) the scheduler returns an acknowledgement, (3) clients callthe disk server to access data, (4) the server returns the data, and (5) clients �nally call thescheduler to release their requests. In other words, three calls are necessary for a disk access,which is tantamount to �ve message passings | the �nal call does not need a return value.When the scheduler is an intermediary, we only need four message passings as shown in the18

Server
Client

Client
request

reply

request

reply

terminate
terminateFigure 3.1: Client and Server structure with single threaded server.�gure. Moreover, if we coalesce the scheduler into the server, which is a self-scheduling diskserver, the number of needed message passings is reduced to two.Two observations can be made through this example. First, the two-way communica-tion in client-server computing can simplify the process of writing distributed programs. Aclient may have other independent computations to the disk access. It is nice if the clientcan continue to execute those computations during accessing the remote disk. The synchro-nization restriction imposed by two-way commnunication, which is too conservative for suchan application, needs to be safely relieved for higher performance. An automatic programtransformation technique is called for. We can see the second design in Figure 3.2 can beautomatically transformed from the �rst one (Chapter 5). Second, while the third design inFigure 3.2 is better than the previous two structures, it is the least tolerant to the changeof the scheduling policy. A scheduling policy was initially not a part of a server function,but coalesced for saving unnecessary communications. When a server is likely to be heavilyloaded, a certain kind of scheduling may be a performance optimization decision. Moreover,it could be clueless at the time of writing modules that which scheduling policy would be thebest. Isolating functionality-independent but performance-a�ecting factors from the mod-ule programming level allows programmers to change those factors freely without having toworry about re-writing burdens.

19

Self-scheduling
disk driver

1

2

3

4

5

1

34

2

1

2

Separate
Scheduler

Scheduler as
intermediary

scheduler

scheduler

client

client

client

disk driver

disk driver

disk driverFigure 3.2: Disk scheduling structures.3.2 Master/Slave structureThis is a variation of client/server computation, through server replication, in order to relieveheavy load at a server side. Replicated servers, called slave processes, are supposed tocooperate to �nish a heavy task under the control of a client process, which is called amaster process. Master process generates many divided sub-tasks and allocates them tomultiple slave processes and �nally collect the results to get an ultimate result as shown inFigure 3.3.Many applications can be suitable to this form of computations. It is also known as ad-ministrator and workers structure [Gen81]. This category encompasses a well-known parallelloop problem in parallel processing [TY86, KW85, PK87, TN91, CLZ95].Conventional RPC represents client/server computations. Some modi�cations are re-quired to utilize the replicated servers. PARPC [MBR87] and MultiRPC [SS86] changed thebasic RPC mechanism to be able to deal with multiple servers. They distinguish a remoteprocedure call to a replicated server from a normal RPC, by providing special proceduresthat programmers need to invoke to process multiple tasks at replicated server sites. Asa result, the source code is not transparent for RPCs to replicated servers, which makesmodules di�cult to be easily con�gurable.On the other hand, load balancing is crucial to good performance in parallel processing.The master/worker structure is a strong basis for building parallel applications with goodload-balance characteristics. We discuss the general issues on how to write load-balancingintended con�guration and what general techniques (e.g. water-marking techniques, schedul-ing) are available in Chapter 4. Speci�cally, we present a new decentralized load balancingscheme that is suitable to the workstation cluster environments in Chapter 6.20

Tasks
Distribute

Collect
Results

Master

Slaves

TerminateFigure 3.3: Master and Slave structure.3.3 Pipeline structureFigure 3.4 shows a pipeline structure in distributed computations. One long computationstage is divided into n sub-stages so that a pipelined parallelism can be exploited. Datapipelining is primarily a network of �lters that transforms an input [And91a]. It is oftenused in data reduction or image processing systems. Since this structure represents a networkof �lter processes, it is naturally suitable to a network of workstations environment.Figure 3.5 exempli�es a 3-stage sorting network where each stage can work in parallel.Each �lter process accepts two inputs and emits a stream of sorted data. Figure 3.5 (a) showsa data
ow in a sorting network of a pipeline structure. For RPC to be used to express thepipeline style computation, the return part of RPC needs to be directed to the next stageof the computation instead of its client side. This can be done by analyzing return pathoptimization in Chapter 5.To be precise, as a side note, the merge-sort network in the �gure is a hybrid formof pipeline structure and master/server structure. The �rst stage in the pipeline has fourreplicated merge modules, and the second has two. Indeed, the merge-sort network is innature hybrid for parallel version. The composition of various computation structures arenatural in writing large distributed programs.3.4 Data parallel structure
21

Collect
Results

Distribute
Tasks

Client

Server 1

Server 2

Server n

Stage

Stage

Stage

 1

 2

 n

Terminate Figure 3.4: Pipeline structure.Figure 3.6 illustrates a data parallel computation. Unlike previous structures each of theprocesses is executing the same program, where the individual processes work on a di�erentset of data.1 It is also called SPMD (Single Program Multiple Data) programming. Whena process needs to access non-local data that are stored and maintained by other processes,they communicate with each other.The communication patterns among processes are expected to be highly structured andoften predictable so that the entire data can be decomposed before starting computationsfor the good performance. Initial data layout and communication optimization [vHK94,HQ91, AL93] are hot issues in this kind of computations and they are mutually related.Many practical scienti�c problems except fairly irregular ones are known to be e�cientlycomputed under this structure [FJL+88]. As scienti�c problems are main targets for thisstyle, parallel variants of Fortran programming language | like Fortran D [HKT92], Vienna1Although the previous merge-sort example uses an identical merge module in its parallel computation,this is not because of the enforcement of the structure but because of user's liberty to do so.22

main

1st stage

2nd stage

3rd stage

Pipelined structure of 3-stage merge sort networkmerge main(DATA)char *DATAf Split DATA stream into 4 data streams;Sort each data streams;/* construct merge network *//* �rst stage: */out1 = merge1(data1, data2);out2 = merge2(data3, data4);out3 = merge3(data5, data6);out4 = merge4(data7, data8);/* second stage: */out12 = merge5(out1, out2);out34 = merge6(out2, out3);/* third stage: */out1234 = merge7(out12, out34);g

char *merge(strm1, strm2)char *strm1, *strm2;f int i = 1, j = 1, k = 1;char outstrm[MAX];while ((i <= strm1[0]) jj (j <= strm2[0])) fif (i <= strm1[0] && j <= strm2[0]) fif (strm1[i] <= strm2[j])outstrm[k++] = strm1[i++];else outstm[k++] = strm2[j++];gelse if (i <= strm1[0])outstrm[k++] = strm1[i++];elseoutstrm[k++] = strm2[j++];goutstrm[0] = strm1[0] + strm2[0];return(outstrm);gFigure 3.5: Merge sort network.
23

while (cond) {

Calculate;
Exchange;

}

while (cond) {

Calculate;
Exchange;

}

while (cond) {

Calculate;
Exchange;

}

Terminate Executions

Distribute Data

Begin Execution

Collect ResultsFigure 3.6: SPMD (Single Program Multiple Data) structure.Fortran [CMZ92] and HPF (High Performance Fortran) [KLS+94] are popular. The primaryworks are concentrated on how to optimize such a Fortran program using program analysistechniques.Many research works have been done for this structure of parallel computations on dis-tributed memory parallel machine environments. Same techniques can be applied for work-station cluster environments. Workstation clusters are by nature distributed memory ma-chines with slightly di�erent communication parameters. Thus, the dissertation researchdoes not focus on exploiting data parallelism, while those program optimization techniquescan be adopted as one of infra-structures in our optimization framework that is aimed atmulti-paradigm distributed and parallel applications on workstation clusters.3.5 RemarksAndrew [And91a, And91b] classi�ed distributed and parallel program structures based onthe behavioral type of a process component in a program rather than the type of interactionamong its components as given in the chapter. The four basic types are `�lter', `client',`server' and `peer' processes. A �lter is a data transformer. It receives streams of data valuesfrom its input channels, performs some computation on those values, and sends streams ofresults to its output channels. Because of those attributes, we can connect �lter processesinto networks that perform larger computations. A client is a process that triggers a servicerequest and a server is a process that reacts for the service request. A client thus initiates24

an activity; it then delays until its service has been serviced and returned. A server waitsfor requests to be made, do the services, and �nishes by replying the results. A server isoften a non-terminating process and often provides service to more than one client. A peeris one of a collection of identical processes that interact to provide a service or to solve alarge problem (SPMD) or several peers might interact to solve a parallel problem, with eachsolving a piece of the problem (master-slave). For example, the types of processes in clientand server structure are of client and server. Pipeline is of �lter. Master/slave and SPMDare of peer.Another classi�cation on paradigms of parallel computations is given by the Linda [CG90]project: result, specialist, and agenda parallelism. Result parallelism focuses on the shape ofresult in order for process interactions. Specialist parallelism focuses on the makeup of thework crew that are specialists for particular jobs. How to divide a job and to design a set ofspecialists who will take care of those distinct small pieces of the job are the issues in thisparadigm. Agenda parallelism focuses on the list of tasks to be performed. Result parallelismis somewhat unique because it no longer presumes that each process has its own local dataand non-local data access through message passings. It is a shared data object. Processes'e�orts to read or write those data are controlled in regards with the critical section problem.The remaining two paradigms are easily constructed through the basic four processes |specialist by �lter, client and server and agenda by peer processes.Andrews [And91a, And91b] presented typical distributed and parallel applications thatcan be optimally expressed as one or combination of the four process types. A versatileprogramming environment for all of the forms of parallelism or process can be provided bymessage passing paradigms like PVM [Sun90] and MPI [For93]. Not only because of theresulting complexity in writing distributed programs with such a low-level abstraction, butalso because of its di�culty to recon�gure, a higher level of abstraction for module interactionis called for.Procedure call abstraction has been favored since early programming era because it con-tributes to construct a well structured modular program, which allows to reuse existingmodules and helps write and maintain a large program by giving a clear view of its struc-ture. The RPC paradigm adopts a widely used and understood procedure call abstractionas the sole mechanism of remote operations; thus it simpli�es distributed programming byabstracting from details of communication and synchronization.Since those conventional implementations of RPC paradigm [BN84, Gib87] only allowclient and server types of processes, the RPC paradigm has a limited coverage of applica-tions especially for high performance. Indeed, any single paradigm is not enough for highperformance. That is why Linda has three paradigms for writing a program based on the datasharing in the form of tuple space. And that is why Andrews [And91a] suggests to use di�er-ent types of processes for di�erent types of applications. To strike a compromise between thepros and cons in the RPC paradigm, and to allow various structures in a distributed appli-cation using reusable modules, we need an automatic adaptation and optimization processfor distributed programs based on RPC paradigm.25

Chapter 4Con�guration-Level PerformanceProgrammingIn this chapter we address writing a MIL-style con�guration program that orchestrates mod-ules in an optimal program structures for a speci�c application. We �rst illustrate a concreteexample that motivates the optimization of RPC-based distributed programs for high per-formance. The example we will discuss involves DNA sequences, an conceptually straight-forward problem whose solutions, though very intricate in implementation, are simple andmay admit several types of parallelism.This is essentially a data structure problem: when a new DNA sequence is discovered, ge-neticists want to �nd out how and which previously known sequences the new one resembles.Suppose we have tens or hundreds of newly discovered sequences that are to be compared toa large database of existing sequences. Suppose the length of each sequence is variant, andso is the comparison time. Figure 4.1 (a) is a client (or master) module that initiates therequired number of comparison tasks.Two basic parallelizing approaches to the DNA example illustrate the problems that weare dealing with: one approach performs many sequential comparisons simultaneously asshown in Figure 4.1 (b), which is a master/slave model (target database is replicated toeach server), and the other constructs a pipeline of a series of sub-comparison modules thatdo comparisons to a part of the entire database (database is divided into smaller ones) inFigure 4.1 (c).The problems for this example, which make direct use of conventional RPC inappropriateto high performance distributed computing, may be summarized as follows:1. Load balancing: Server replication is a basic way to improve throughput. However,the performance of a replicated server can be degenerated to that of the bottleneckprocess or processor unless a proper load balancing scheme is used. In Figure 4.1 (b),no slaves should be idle while others are busy. So far, RPC in itself does not makeany association with load balancing. Previous RPC systems for multiple servers likePARPC [MBR87] and MultiRPC [SS86] do not consider load balancing.2. Scheduling: In our example, the length of each DNA sequence varies, so does com-parison time. In this situation, if the longest sequence is assigned to an unfortunate26

client

compare1

compare2

compare3

compare1 compare2 compare3client

client()

{

 seq[i] = get_next_seq();

 result[i] = compare(seq[i]);

 if (real_max < result[i].max) {
 real_max = result[i].max;

 }
}

 /* get next sequence to compare */
 for (i = 0; i < NUM_NEW_SEQUENCE; i++)

 /* compare a sequence with each sequences */

 for (i = 0; i < NUM_NEW_SEQUENCE; i++)

 /* update result */
 for (i = 0; i < NUM_NEW_SEQUENCE; i++)

 real_max_id = result[i].db_id;

/* in a database */

(a)

(b) Master/Salve style

(c) Pineline styleFigure 4.1: Simple DNA sequence search.process at a late time near the end of all computations, only that process will be busywhile others sit idle. This problem can be solved if the longest sequence is serviced�rst. To do this, the RPC server must be constructed to service tasks with respect totheir given priorities.3. Parallelism: RPC is synchronous in nature. A client must wait to get a responsefor its call before calling another server. Preparing multiple servers or multi-stagepipelines may not be of much use if a synchronous RPC is used for remote interactionas then only one server may be activated by a client. Parallelism can be sought if thegap between send and receive primitives is widened to allow more useful computationsduring the wait for a result.4. Length of communication paths: RPC can lengthen communication paths un-necessarily if involved modules form a computation network (like the trellis model inChapter 8 of [CG90]) because of its two{way communication protocol. For instance,in Figure 4.1 (c), an intermediate result in each stage of the compare module must goback to the client �rst before being delivered to the next stage. An optimization stepthat eliminates such unnecessary communication paths is called for.This example illustrates the several dimensions open to programmers, and serves to helpus state simply our objective: since each of the above types of improvement admits sev-eral strategies for success, and also each can be characterized in terms of the application'scon�guration level description, we seek a development environment where developers mayimplement modules in terms of RPC interfaces (which are comparatively simple constructs),27

module client {
 source = "C" "local"::
 entrypoint = "main"::
 use interface compare
 : pattern = {string}
 : accepts = {integer}
 : interface = "stdio"::
}

module server {
 source = "C" "remote"::
 define interface compare
 : pattern = {string}
 : returns = {integer}
 : interface = "null"::
}

module DNA_seq_search {
 instance client::
 instance server: standalone::
 bind client compare server compare::
 interface = "stdio"::
}Figure 4.2: Basic con�guration for DNA sequence search example.yet separately be able to express performance improvement strategies in terms of the con-�guration description. Figure 4.2 shows the basic con�guration program for the example ofFigure 4.1; it represents (in the notation of our system to be described) the conceptual start-ing point for con�guration programmers who wish to experiment with di�erent optimizationtechniques. After programmers express directions in terms of this con�guration, the systemshould tailor all executables to be consistent with both speci�cations.4.1 Requirements For Con�guration OptimizationWe exposed some limitations of using RPC for high performance distributed programs, andin doing so suggested some dimensions by which improvement can be achieved. This alsomakes it clear that we can separate what programmers should be able to do and what toolscan do as follows:1. High-level decisions regarding performance factors that a�ect overall performance shouldbe speci�ed in the programming-in-the-large level so that module reusability can beenhanced, especially in the process of performance tuning. Programmers should beable to specify those decisions independently.2. High-level decisions regarding performance factors should be automatically realizedand optimized with low-level message passing primitives.The purpose of this section is to discuss in greater detail the various strategies by whichperformance can be improved by con�guration level annotation. This will identify which28

features will be used for optimal realization of RPC (Section 4.1.1) and expression of theload balancing scheme (Section 4.1.2).4.1.1 Performance FactorsPerformance bene�ts are realized as latency and throughput improvements. A distributedprogram is composed of clients, servers and their interactions. We distinguish the taskof performance improvement of a distributed program from the perspectives of its threecomponents. Namely, clients should be able to make multiple requests (parallelism), loadmust be balanced among servers (load balancing), and interprocess communication and itsoverhead must be minimized (communication optimization). We will elaborate on factorsthat a�ect performance and what we can do to improve performance in the followings.All of these factors are related in module interactions rather than functionality; thus theywill be represented at the interconnection programming level. Throughout this section, theexpressions enclosed by an oval box denote our extension of the original MIL speci�cationin polygen [CP91] for a performance con�guration.Calling StyleA synchronous call is a call whereby the client blocks the call until the server completesit [BN84]. An asynchronous call does not block the client, and replies can be received as theyare needed. To date, the decision on calling style is not the programmer's (for example, callsmay be synchronous only [BN84] or they may be asynchronous only [ATK91, LS88, WFN90]),or the decision has to be made at module programming level by use of di�erent library rou-tines [Cor91]. If we let this decision be separate from RPC statement, the modules will remainreusable for di�erent calling styles. Therefore, in devising requirements for a con�gurationlevel optimization system, an asynchronous RPC should be implemented by separating theSend Request primitive and the Receive Result primitive to allow other useful operationsin the midst of remote service. Synchronous calls would be implemented by their placementin sequence in a client module. Thus, a server module does not distinguish whether a serveris called synchronously or asynchronously. It implies that the same server can be calledasynchronously for one client and synchronously for another client in the same application.The calling style should be easily prescribed by programmers in terms of a use clause inthe module speci�cation. Consider the module client in Figure 4.2, which calls the remoteprocedure compare. To specify an asynchronous call, programmers may simply state so inthe MIL speci�cation as follows:use interface compare�� �
: callstyle = "async": pattern = f string g: accepts = f integer g ::29

Servicing StyleWhen the length of a service queue is long, throughput can be improved by the choice of agood servicing style. Servicing style can be characterized by two factors: scheduling policyand server replication. Scheduling policy determines the desirable order of requests to beserviced. Usually the order of service is �xed by arrival time. Scheduling generalizes theorder { i.e. other parameters besides arrival time are considered to determine the order ofservice. For example, the length of a DNA sequence to be compared may be a parameterthat determines such an order as mentioned before. Server replication improves throughputas well because the load is distributed among replicated servers, although load balance iscrucial to good performance.As with calling style, the module speci�cation for expressing scheduling and replicationfeatures should be simple for programmers to assign. Illustrating one way this might appearfor the introductory example, ismodule server fsource = "C" "remote" ::de�ne interface compare�� �
: priority = "strlen(x)"�� �
: replication = "harvey.cs.umd.edu,...": pattern = f string g: returns = f integer g: interface = "null" ::gHere the priority attribute is an expression, which would use valid syntax within themodule compare in order to evaluate a priority. Since we hoped to assign a higher priorityto the longer sequence, evaluating strlen(x) produces the right order of priorities. Thecomparemodule is replicated in its simplest form here, while load balancing will be consideredin Section 4.1.2.The priority expression is directly used to evaluate a priority for the correspondingservice request when a server stub is generated. So, it should have a legal expression ina module language. The variables used in the expression should also be de�ned in theserver module. For more examples, when head, loc and dir are variables used in a diskserver for the current head location, the location of the requested data and the currentmoving direction of the head, the priority expressions for SSTF (Shortest Seek Time First),SCAN and C-SCAN are "abs(loc - head)", "(head - loc) * dir" and "loc * dir",respectively.The replication attribute contains a list of machine names on which the server is repli-cated. 30

Communication StyleA communication pattern in distributed programs occurs in three di�erent forms: intermit-tent, incremental and bulk rate data transfer. A conventional RPC protocol covers onlythe case of intermittent data transfer, i.e. when the number of messages between client andserver is not too big or too frequent. An incremental pattern of communication occurs whenwe try to exploit pipeline concurrency for a chain of clients and servers as in Figure 4.1 (c)and Figure 4.3. This pattern, which forces a single computation to be decomposed into aseries of distinct RPCs, reduces the server's performance since it is inactive between callsunless the synchronous behavior of RPC has been changed. Also, if we want to send bulkdata by a series of RPCs, the communication performance is severely limited since it is notpossible to aggregate data of successive procedure calls from a single client. Even worse,contemporary RPC systems are optimized to transmit limited amounts of data (usually lessthan 103 bytes) per call. To support the incremental and bulk rate data transfer, whereinconventional RPC systems performance su�ers severely, a new communication model calledremote pipe [GG88] has been devised. In the framework we are motivating, these patternsmay be e�ciently handled with automatic communication optimization if programmers spec-ify which communication pattern will appear.
compare1

compare2

compare3

compare1

compare2

compare3

main()

{

}

(a)

 r2 = compare2(r1);

 r3 = compare3(r2);

 r1 = compare1(x);

(b) (c)

main main

Figure 4.3: Communication optimization for Figure 4.1 (c).Once that information has been provided, there would be three ways to improve com-munication performance: (1) choice of proper transport, (2) reduction of kernel overheadby data aggregation and (3) elimination of unnecessary communication. The best transportprotocol depends on the amount of data to be transferred. In other words, the connection-less transport protocol (UDP: User Datagram Protocol) works best for the intermittent datatransfer pattern, and the connection-oriented transport protocol (TCP: Transmission Con-trol Protocol) for the incremental and bulk rate data transfer pattern. Data aggregationallows us to amortize the overhead of kernel calls. If the size of aggregated data is increased,31

the throughput is increased, and if it is decreased, then the latency is reduced. Programmerscan control high throughput vs. low latency by assigning the size of aggregated data to aparticular server.Unnecessary communication is unavoidable in conventional RPC implementation as il-lustrated in Figure 4.3. Figure 4.3 (b) is optimized to (c) by elimination of the unnecessarycommunication paths. The communication optimization like unnecessary communicationpaths elimination can be accomplished by
ow analysis techniques. Chapter 5 presents asource-level transformation algorithms with communication optimization.4.1.2 Load BalancingSince load balance is crucial to good performance among replicated servers, we need to pro-vide a systematic way to customize proper load balancing schemes for an RPC to replicatedservers. Load balancing schemes can be classi�ed as follows. In this section, we present howto express various kinds of load balancing schemes with various load balancing factors.Type 1: Static load distributionStatic load distribution is a simple approach to load balancing. The tasks generated by mas-ter process are distributed to the pool of slave processes according to the statically de�nedtask distribution ratio, which is decided by programmers based on the average performance ofparticipating workstations. The task distribution ratio is the only parameter in this scheme.The approach by Grimshaw et al. [GWWECL94] belongs to this type. Since load distributionis a client side concern, an attribute loadratio is needed in the use clause. The ratio descrip-tion is matched with the replication attribute in the corresponding de�ne clause as follows:use interface compare de�ne interface compare: callstyle = "async" : replication = "harvey.cs.umd.edu,�
 �	: loadratio = "1:2:3" bugs.cs.umd.edu,... thumper.cs.umd.edu"...Type 2: Demand-driven load distributionSimple dynamic load balancing can be achieved through demand-driven load distribution,which does not need to migrate tasks among slaves. When a master process receives aresult from a slave, it sends another task to the slave as the load situation of the slavehas decreased due to the recent �nish, i.e. receiving a result is regarded as a demand foranother task. This scheme contains two problems. First, the master process can generate abottleneck [GBSS89]. For example, if there are 100 slaves and a master needs 10�2 secondto prepare and send a task, the master would create a bottleneck unless the average time32

for each slave to �nish a task is greater than a second. Furthermore, if all slaves took thesame amount of time to �nish their own tasks, the �nish replies would come in burst, andthis would cause a bottleneck, too. Second, the scheme does not allow overlap betweencommunication and computation because the next task can not be issued unless the currentone has been �nished.To alleviate these problems, water-marking can be used [CG90]. The idea is to maintainthe number of tasks between an upper and a lower limit. The upper water-mark limits themaximum number of queuing tasks to a particular slave, thus prevents possible overload. Thelower water-mark is used to maintain the minimum number of tasks to cope with networklatency, which makes a slave sit idle between a �nish of a task and a wait for another one.This requires a change in calling style, represented by \async-demand(L:U)", where L andU are a lower and an upper water-mark, respectively; `*' denotes an unspeci�ed water-mark.Both of L and U cannot remain unspeci�ed. A master sends a task to a server only if thenumber of queued tasks to the server is less than U . If the number is less than L, it needsto send a number of tasks to make it L. Available servers are the servers of which queuelengths are less than U . The demand-driven load distribution can be represented with properwater-mark ranges as follows:module client1 f module server f� � � source = "C" "remote" ::use interface compare de�ne interface compare: callstyle = "async" : priority = "strlen(x)": loadratio = "1:1:1" : replication =� � � "harvey.cs.umd.edu,g bugs.cs.umd.edu,module client2 f thumper.cs.umd.edu"� � � : pattern = f string guse interface compare : interface = "null" ::�� �
:callstyle = "async-demand(*:5)" g� � �gType 3: Dynamic load balancingWhen load balance cannot be reached through the above load distribution methods, tasksshould migrate, which is known as dynamic or adaptive load balancing. Many dynamic loadbalancing algorithms [CS93, ELZ86b, KS94, LK87, Son94] have been devised for good loadbalance with less migration overhead; they are characterized by the following parameterswhich distinguish them. Load balancing algorithms can be �ne tuned when programmerscan change those factors conveniently. 33

� Topology: Topology determines the shape of task migration paths. A fully connectedtopology provides a way to gain load balance in any case, but with some system over-head due to periodic load state exchange. The overhead can be cut through simpli�edtopology. A compromise must be sought between reduced overhead and load balancinggains. In Chapter 6, we present such a topology.� Transfer policy: Transfer policy determines whether load has to migrate at a partic-ular load state. The decision can be made based on local or global load information.� Location policy: Location policy determines which process initiates the migrationand which process should be the source or the destination in this migration: sender-initiated, receiver-initiated or symmetrically-initiated.1� Selection policy: Selection policy determines how many work load units are to mi-grate.The following generic form of a replication expression can express the above information,where M1 and M2 are IP addresses of host machines, oi and ui are logical expressions thatdenote the conditions to be overloaded and underloaded for Mi, and
12 and
21 are thefraction of current load to be migrated from M1 to M2 and M2 to M1, respectively. Thesymbol # denotes a migration linkage. The load balancing information must be given to allload migration paths in an application:�� �
:replication = "M1(u1; o1)[
12]#M2(u2; o2)[
21]"Table 4.1 illustrates various kinds of load balancing expressions and their meanings.Types ofM1()#M2(u2; o2),M1(u1)#M2(u2; o2),M1(o1)#M2(u2; o2),M1(u1; o1)#M2(o2),M1()#M2(o2),M1()#M2(u2), M1(u1)#M2(o2), are omitted for brevity, because each of them is dual to oneof the cases in the table. To denote a symmetrically-initiated case, both of the source andthe destination of the load migration are explicitly speci�ed in the Comments column; e.g.M1 carrys load out to M2. For a receiver-initiated case, only the destination is explicitlyspeci�ed; e.g. M1 carrys load in. For a sender-initiated case, only the source is explicitlyspeci�ed; e.g. M1 carrys load out. Followings are the summary of those types:� Type 1 is the case where only M1 initiates migration as a sender.� Type 2 is the case where only M2 initiates migration as a receiver.� Type 3 is a mixed case where M1 initiates as a sender and M2 does as a receiver.� Type 4 is a purely receiver-initiated case.1With a sender-initiated policy, an overloaded process will look for a destination to export load to.With a receiver-initiated policy, an underloaded process will look for a destination to import load from.Symmetrically-initiated process can play both roles depending on whether it is underloaded or overloaded.34

� Type 5 is a purely sender-initiated case.� Type 6 is the case where only M1 initiates migration as both a sender and a receiver.� Type 7 is an asymmetric case where M1 can be either a sender or a receiver, but M2only can be a receiver.� Type 8 is a fully symmetrically-initiated case where both M1 and M2 can initiatemigration as either a sender or a receiver.� Types 1 through 3 have uni-directional migration paths.� Type 4 through 8 have bi-directional paths.M1 M2 Direction Comments1 o1 � M1 o1�!M2 M1 carrys load out if o1 holds.2 u1 � M1 u1 �M2 M1 carrys load in if u1 holds.3 o1 u2 M1 o1_u2�! M2 M1 carrys load out if o1 holds orM2 carrys load in if u2 holds.4 u1 u2 M1 u1^:u2 � M2 M1 carrys load in if u1 ^ :u2 holds.M1 :u1^u2�! M2 M2 carrys load in if :u1 ^ u2 holds.5 o1 o2 M1 o1^:o2�! M2 M1 carrys load out if o1 ^ :o2 holds.M1 :o1^o2 � M2 M2 carrys load out if :o1 ^ o2 holds.6 u1; o1 � M1 o1�!M2 M1 carrys load out if o1 holds.M1 u1 �M2 M1 carrys load in if u1 holds.7 u1; o1 u2 M1 o1^u2�! M2 M1 carrys load out to M2 if o1 ^ u2 holds.M1 u1^:u2 � M2 M1 carrys load in if u1 ^ :u2 holds.M1 :u1^u2�! M2 M2 carrys load in if :u1 ^ u2 holds.8 u1; o1 u2; o2 M1 o1^u2�! M2 M1 carrys load out if o1 ^ u2 holdsM1 :u1^u2�! M2 M1 carrys load out if :u1 ^ u2 holds.M1 u1^o2 � M2 M1 carrys load in if u1 ^ o2 holdsM1 u1^:u2 � M2 M1 carrys load in if u1 ^ :u2 holds.Table 4.1: Various load balancing expressions and their meanings.As an example, a server module speci�cation is given below, which forms a dynamic loadbalancing scheme that has a circular topology and sender-initiated task migration policy.
35

a.cfgclient.cserver.c =) Makefile client.cl server.cl all.clx.client.c x.client.hx0.server.c x0.server.h x1.server.cx1.server.hx2.server.c x2.server.h x3.server.cx3.server.hFigure 4.4: Generated �les from user provided modules using CORD.module server fsource = "C" "remote" ::de�ne interface compare: priority = "strlen(x)": replication ="harvey.cs.umd.edu(o=(L>=10))[1/2]#bugs.cs.umd.edu,bugs.cs.umd.edu(o=(L>=20))[1/3]#thumper.cs.umd.edu,thumper.cs.umd.edu(o=(L>=10))[1/4]#harvey.cs.umd.edu": pattern = f string g: interface = "null" ::g
4.2 Developing Applications In CORDThe previous section has characterized the various forms of optimization which are possible todiscuss in terms of an application con�guration. We have developed a support environmentcalled CORD (Con�guration-level Optimization for RPC-based Distributed programs) toallow us to experiment with introduction of such adaptations at low cost.The con�guration language chosen for expressing modules and their compositions is de-rived from the Polylith module interconnection language (MIL), and the distributed runtime environment chosen is likewise the software bus behind Polylith. Basic tools forpreparing applications to run in this environment are already available within the polygensystem [CP91], although they are to be tailored to attain our source translation (rather thanstub generation) principle. Therefore the principle thrust of our e�ort has been to add asource translator (gen trans) to the suite of polygen tools. The source translator operatesdi�erently depends on whether a module is a client or a server from given RPC's viewpoint:for a client module, it performs data
ow analyses to place message passing primitives opti-mally, and for a server module, it generates proper codes to implement particular servicing36

styles described in con�guration programs. The next chapter presents the heart of algorithmsfor this purpose.The development of an application in CORD consists of a number of steps. At somepoint, each module used in the application must be given an implementation, each dealingwith interfaces in generic RPC terms, of course. Since performance decisions that occur inmodule interactions are decoupled from the module programming level, module functionalityis the only concern in this step.The second step is to de�ne an application using the module interconnection and perfor-mance con�guration. In the next step, CORD generates all necessary �les for an executableautomatically with respect to the con�guration program. Figure 4.4 shows the automaticallygenerated �les from the user provided �les, which are source programs clnt.c, srv.c andthe con�guration program a.cfg, using CORD. (In the �gure, it is assumed that the srv.cis replicated to four distinct machines.) This step follows the similar packaging process inpolygen, which deals with automatic adaptations for divergent structural and geometriccon�gurations. The interaction between modules in distinct sites, which is an RPC, is re-solved by generating client and server stubs automatically by polygen. CORD does notgenerate stubs but translates source codes in which every RPC is replaced with a set ofmessage passing primitives interspersed for the purpose of optimization. The script of theentire process, which includes both user commands and the execution of the con�gurationprogram, is shown in Figure 4.5. The tools that are involved in this process, are summarizedas follows:� con�g generates prolog assertions (a.pl), which encode facts about the modules andbindings in the con�guration, from user provided con�guration (a.cfg).� prolog: After reading the assertions (a.pl), the CORD uses prolog inferencing mech-anism to search for satisfying the goal, which asks the possibility to create an appli-cation for the con�guration described in a.cfg by means of the available tools in theenvironment. This inference results in a package information (a.pkg) if successful.� gen imake: Using the package information (a.pkg), gen imake generates an Imakefileto create a Makefile for an application. A UNIX imake is used to generate a Makefilefrom a provided template in CORD.� gen module generates a MIL program (.cl) for the module descriptions2.� gen cluster generates a MIL program (.cl) for the application description.� gen header generates a header �le for each module if necessary.� gen trans generates translated source code to realize RPCs using message passingprimitives, and proper codes for scheduling and/or load balancing.2The components of the MIL program are the module descriptions and the application description.See [Pur94]. 37

gen_trans server.c<a.pkg>x.server.c

gen_module client<a.pkg>client.cl
gen_module server<a.pkg>server.cl
gen_cluster < a.pkg > all.cl
csc client.cl

csc server.cl

csc all.cl
csl -o all client.co server.co all.co
cc -o client x.client.c -lith

cc -o server x.server.c -lith

gen_header client<a.pkg>client.h
gen_header server<a.pkg>server.h
gen_trans client.c<a.pkg>x.client.c

generates a header file for the client.c.
generates a header file for the server.c.
translates from the original "client.c".
translates from the original "server.c".
generates the client specification.
generates the server specification.
generates the application specification.
compiles the client spec. into client.co.
compile the server spec. into server.co.
compiles the application spec. into all.co.
creates a root executable that executes client.
compiles and creates a client executable.
compiles and creates a server executable.

Initially a user has source codes ("client.c","server.c")
and a configuration file ("a.cfg").
Creates prolog assertions for the configuration. Given
inference engine ("package.pl"), this generates the
packaging information ("a.pkg") to satisfy the
packaging goal according to the generated assertions.

Creates Makefile file using a prepared Imake

Creates executables according to the interface genera-
tion, source transformation, and compilation

The following output is from commands in Makefile.

Creates Imakefile file from the packaging information.

template ("Imake.tmpl").

information in the Makefile.

% prolog < a.pl > a.pkg

% imake -T "Imake.tmpl"

% make

% gen_imake < a.pkg > Imakefile

% config < a.cfg > a.pl

Figure 4.5: Script for the design (user commands pre�xed by a % prompt).The �nal step is to execute the application, identify performance bottlenecks using a per-formance measurement tool, and repeat the process from the second step until the resultingperformance is satisfactory.It is possible to suggest the potential for CORD in helping programmers to discoverdesirable optimization opportunities at low cost. We do illustrate this using the Mandelbrotexample, using a generically coded C implementation built in the Polylith system. In thisimplementation, a sub-task is to compute the set for one row in 200 � 200 pixel window,therefore 200 RPCs will be made to complete the whole computation. This formulationof the problem increases tra�c beyond that of alternative implementations, but makes thee�ect of any optimization strategies more easily measured for illustration.Table 4.2 shows timing results when we execute this Mandelbrot program for vari-ous performance improvement alternatives, where the programmer may select each mech-anism by making only a simple attribute change in the module speci�cation as in Fig-ure 4.6. Table 4.2 (a) compares the performance between synchronous and asynchronousRPC where the computation is run on each of several di�erent servers in turn. (To beconcrete, `harvey' is SparcStation IPC, `rimfire' is SparcStation IPX, `thumper' is Sparc-38

harvey rim�re thumper highpowerSync 216 103 86 57Async 125 59 52 30(a) Single server caseType 1 Type 2 Type 3ALL 34 26 17(b) Multiple server caseTable 4.2: Measured time (in seconds) to compute Mandelbrot set on [0.5,-1.8] to [1.2,-1.2]with 200� 200 pixel window used.Station 2, and `highpower' is SparcStation 10: the broad spectrum of computing powerin these machines is intentional to cause load imbalance in the later load balancing test.)Asynchronous RPC is better because it allows to overlap server computation with commu-nication. Table 4.2 (b) shows timing results when all four machines are cooperating for thecomputation. Each row in the Table 4.2 (b) indicates the type of load balancing amongfour servers. Type 1 is when tasks are distributed equally in spite of divergence in com-puting power { the performance is degenerated to that of harvey, the slowest machine (see\34 � 125=4"). Type 2 is when the task migration paths are linearly connected, i.e. \client! harvey ! rim�re ! thumper ! highpower." Type 3 is when the paths are circular andthe client distributes the equal number of tasks to all servers initially. The CORD systemallows us to track down these con�gurations towards better performance without having toworry about extensive amount of manual adaptations. Each of the execution scenarios showsperformance that is comparable to a manually coded counterparts, yet these were achievedwithout extensive manual intervention on the part of programmers.

39

Load Balancing

Expressions

loadratio = "1:1:1:1"

replication = "harvey.cs.umd.edu, rimfire.cs.umd.edu,

 thumper.cs.umd.edu, highpower.cs.umd.edu" ::

 ::

replication = "harvey.cs.umd.edu(o=(L>=10)#rimfire.cs.umd.edu,

 rimfire.cs.umd.edu(o=(L>=10)#thumper.cs.umd.edu,

 thumper.cs.umd.edu(o=(L>=15)#highpower.cs.umd.edu ::

loadratio = "1:1:1:1" ::

replication = "harvey.cs.umd.edu(o=(L>=10)#rimfire.cs.umd.edu,

 rimfire.cs.umd.edu(o=(L>=10)#thumper.cs.umd.edu,

 thumper.cs.umd.edu(o=(L>=15)#highpower.cs.umd.edu,

 highpower.cs.umd.edu(o=(L>=25)#harvey.cs.umd.edu" ::

module server {

 source = "C" "server" ::

 define interface calculate

 pattern = { int }

 returns = { int(200) } ::

 interface = "null"

}

Type 1

Type 2

Type 3Figure 4.6: Module speci�cation for various load balancing schemes.

40

Chapter 5Source-to-Source TransformationWhen an RPC is implemented through traditional stub generation based methods [BN84,CP91, Gib87], a stub takes in charge of the three functions: (1) communication { RPCarguments are transmitted to the remote callee, and the result is back to the caller, (2)synchronization { the caller is suspended until the result is back, and (3) data conversion{ machines may have distinct data representation formats from others.1Basically there is no technical di�erence between stub generation and in-line transfor-mation for an RPC statement. Both of them rely on communication primitives provided byunderlying MP systems [For93, Sun90] or operating systems. But the transformation basedmethod allows us to apply various program analysis techniques for program transformationtowards high performance.As we assemble those MP primitives to implement an RPC statement, which is regardedas a `big' statement, we have freedom to place each low-level primitive appropriately inter-spersed in a module in order to achieve our aforementioned goals of enhanced parallelismand minimized communication. The transformation merely a�ects client parts. The trans-formation is performed at client side to implement its remote procedure call. A server issynthesized to start with prologue part that receives various requests from all eligible clients,and to end with epilogue part that sends the result to the actual destination(s) rather thanits caller (Chapter 5.3). The prologue and epilogue parts will be synthesized to processreceive requests and send results along with optimized data paths according to the controldependences.This chapter presents the constraints that must be preserved through in-line RPC trans-formation process, the compiler techniques to achieve our optimization goals, and the methodto �nally produce appropriate client and server modules based on optimizing transformation.1In general, a data type is converted into a standardized type like XDT [Cor91] (encoding) before convertedinto a speci�c type (decoding). Without having external data conversion, if L di�erent languages and Mdi�erent machines are intermixed in a distributed application, then potentially (L � M)2 cases of dataconversion must be used [Gib87].
41

S1: x = f(x);S2: y = g(x, z);S3: z = h(v);S4: x = h(w);(a) Original code
S1: x = f(x);S2: y = g(x, z);S3: zz = h(v);S4: xx = h(w);(b) After renaming

S 01: Send(f(), x);S 02: Send(g(), z);S 03: Send(h(), v, w);S 04: x = Receive(f());S 05: Send(g(), x);S 06: y = Receive(g());S 07: z = Receive(h());S 08: x = Receive(h());(c) After transformedFigure 5.1: Eliminating spurious data dependences for parallelization.5.1 Constraints On Source Transformation For RPCExploitation of parallelism is limited by data and control dependences in a program. Depen-dence constraints are directly related to the semantics of a program. Executing dependentstatements simultaneously or in di�erent order may change the original semantics of a pro-gram. Program transformation to improving the performance must be guided by givenprogram dependences.In Figure 5.1 (a), the execution order between S1 and S2 must be preserved because S2uses the value of x which is de�ned by S1. This is a
ow (true) data dependence denotedby S1 � S2. The order between S2 and S3 must be also preserved, otherwise the value ofz at S2 may be changed by S3. This is an anti dependence denoted by S2 ��1 S3. Theorder between S1 and S4 must be preserved as well because they have same variable x tostore the results. This is an output dependence denoted by S1 �o S4. Anti and outputdependences are \spurious" ones because they can be eliminated if we rename the associatedvariables properly; for example, z in S3 to zz and x in S4 to xx like in Figure 5.1 (b). Sucha renaming releases the imposed execution order constraints by spurious dependences, as aresult, executing them in parallel is possible.Suppose there is a sequential (client) program, where two arbitrary statements S1 andS2 are totally ordered with respect to �: i.e. S1 � S2 denotes S1 is executed before S2. Theparallelization process is to convert the total ordering � into a partial ordering �P under thefollowing semantic-preserving constraints. The relation �P is an irre
exive partial ordering2de�ned as follows: (1) if S1 is executed before S2, then S1 �P S2 and (2) if S1 �P S2 and2It resembles the happened{before relation on a set of distributed events [Lam78]. While the associatedevents in that relation are distributed, the relation �P is an ordering between statements in a single program.Since a statement cannot be executed before itself, it is irre
exive.42

S2 �P S3, then S1 �P S3. If two statements, S1 and S2, are not related by the �P relation,then we say these two statements can be executed in parallel. If, however, S1 �P S2, then itis possible for statement S1 to causally a�ect statement S2.When we transform RPC statements into a set of MP primitives, we have followingordering relation per RPC due to the law of causality that is a reply can be received onlyafter the proper request has been sent out. Let R be a set of RPC statements in a client:8S 2 R : S transform=) Ssnd �P Srecv (Eq5.1)The statement Ssnd only uses variables whereas the Srecv only de�nes variables. This behav-ioral di�erence between Ssnd and Srecv can be utilized to widen the gap by placing Ssnd asearly as possible and placing Srecv as late as possible. It practically implies that other usefulstatements can be executed during a remote call S.We assume that the execution time of a statement in a single program is negligiblecompared to the time for Srecv, which is for server processing time plus communication timeto get back to the client. We even ignore the time for a program to �nish Ssnd assuming thatthe underlying MP system immediately takes the control after executing Ssnd to completethe send. For example, a relation like Ssnd1 �P Ssnd2 is of no signi�cance; they are parallel.Consequently, the outstanding number of Ssnd implies the potential degree of parallelism inan RPC-based distributed program. This implies that we do not need any special constructslike parbegin and parend to express parallelized form after transformation. Srecv is ablocking statement and an order-preserving one that is used to preserve program semanticswhen there are data dependences as follows:8S1; S2 2 R : S1 � S2 ^ S1 � S2) Srecv1 �P Ssnd2 (Eq5.2)8S1; S2 2 R : S1 �o S2 ^ S1 � S2) Srecv1 �P Srecv2 (Eq5.3)8S1; S2 2 R : S1 ��1 S2 ^ S1 � S2) Ssnd1 �P Srecv2 (Eq5.4)Since the constraint (5.2) combined with (5.1) yields Ssnd1 �P Srecv1 �P Ssnd2 �P Srecv2 , thetwo RPCs involved must be serialized. However, the constraints (5.3) and (5.4) apparentlydo not inhibit parallelism because Ssnd1 and Ssnd2 that trigger the server computations arestill independent and can be executed simultaneously.Figure 5.1 (c) shows the transformed code under the above constraints. In summary, theconstraint (5.1) produces relations of S 01 �P S 04, S 02 �P S 06, S 02 �P S 07, and S 05 �P S 08; (5.2)imposes S 04 �P S 05 because of S1 � S2; (5.3) imposes S 04 �P S 08 because of S1 �o S4; (5.4)imposes S 05 �P S 07 because of S2 ��1 S3. As a result, the three RPCs in statements S2, S3and S4 can run in parallel while all RPCs in the statements S1{S4 are executed sequentiallyin the original code.5.2 Transformation FrameworkIn this section we present the heart of our transformation algorithm, which is to hastenRPC argument passing as early as possible (even over a procedure boundary), and to delay43

receiving the return value as late as possible, according to the result of def and use analysisto the variables involved. We do this in a three-step process. First, all RPCs in an applicationare enumerated to be positionally di�erent,3 and represented by a call tree (Section 5.2.2).Next, use-def chains for RPC arguments and def-use chains for a return value are evaluatedby def-use analysis (Section 5.2.3). Finally, global optimization is performed over a procedureboundary (Section 5.2.4).5.2.1 De�nitionsSuppose there is a distributed program P that is composed of k di�erent executable modules,M1;M2; : : : ;Mk running at distinct sites. RPCM1, RPCM2, : : :, RPCMk are sets of position-ally di�erent occurrences of RPCs that are imported in M1, M2, : : :, Mk, respectively. If Micalls Mj (i 6= j) via an RPC r 2 RPCMi, Mi is a client module and Mj is a server module.Notice that \client" and \server" are relative terms; i.e. a client to one module can be aserver to another module and vice versa. A positionally di�erent RPC r has two attributes:its client (r:Client) and server (r:Server).DUCm(l) (Def-Use-Chain) is a set of reachable uses of a de�nition to a variable l in amodule m. UDCm(r) (Use-Def-Chain) is a set of reaching de�nitions of a variable associatedwith use of a variable r in a module m.Receive Request(r) denotes a set that contains every source of arguments, which form arequest for a remote call r. Let jrj be the number of arguments for r. Then, Receive Request(r)can be written by fti j ti = (si; vi); 1 � i � jrjg, where si is the module that de�nes thevalue of the i-th actual argument of the call, and vi is the variable that contains the value inthe module; i.e. vi 2 UDCsi(ai) where ai is the i-th actual argument. The initial (i.e. un-optimized) state of Receive Request(r) is a set of tuples of the client module of r (r:Client)and its argument variables. For example, if \l = f(v1; : : : ; vn)" is an RPC statement r inm, the initial contents of Receive Request(r) will be given by fm : v1; : : : ; m : vng. Ouroptimization algorithm tries to �nd an ultimate source of each argument among k modules.Send Result(r) denotes a set that contains every recipient of the r's return value. Con-ventionally, this is a singleton as the caller is the only recipient of the return value. It canbe written by ft j t = (d; v)g, where d denotes a destination module in fM1; : : : ;Mkg thatreceives the return value, and v denotes a variable that needs it. As we are seeking directmessage passing paths, this set may have multiple elements | for example, in the case of\b = f(a); c = g(b); d = h(b);", g(), h() and maybe the client of f() are the recip-ients of the call f(). In that case, a single multicast can replace a series of point-to-pointcommunications for e�ciency.3Even if there is a single imported RPC in a client, the remote procedure can be called several times atdi�erent places in the client. All of these occurrences are for the the same RPC, but they are considereddi�erent because they may have di�erent data
ow in terms of argument passing and result returning.
44

5.2.2 Call Tree ConstructionAll occurrences of RPC in a program should be distinguished so as to construct their ownoptimized message passing paths. For example, in \a = f(x); b = f(y);", the �rst call tof() has di�erent data
ows on x and a from those on y and b in the next call. We constructa Call T ree (CT) in order to represent all positionally di�erent calls with control predicatesfor them. The call tree (CT) is de�ned as follows.De�nition 5.1 Let P denote an RPC-based distributed program. The call tree of P is anunordered tree CT = (VCT ; ECT), where� The vertices VCT represent a set of positionally di�erent RPCs in P. In addition, thereis a distinguished vertex main, which represents the root of the tree; main is a mainprocedure that is called by an operating system. The remaining vertices are partitionedinto n � 0 disjoint sets T1; : : : ; Tn, and each of these sets is a call tree.� The edges ECT represent calling sequences. That is, an edge (v; w) 2 E means that wis an RPC statement in the module of w:Client (or v:Server, equivalently) that maybe executed when v is being executed. Each edge carries a control predicate. (How todetermine such a predicate is discussed later.) The predicate determines whether ornot w is executed. An edge without a control predicate means T (true).Since the call tree encompasses all possible call sequences in the program, the control predi-cates on edges are
ow-sensitive information [Bar78, Cal88, Hal90]. We also de�ne \v +) w"to mean that v:Server may indirectly call w:Server by a series of RPC statements from vto w. 2A control
ow graph is a directed graph, CFG = (VCFG; ECFG), with unique nodesEntry; Exit 2 VCFG such that there exists a path from Entry to every node in VCFG anda path from every node to Exit; Entry has no incoming edges, and Exit has no outgoingedges [FOW87]. An edge in ECFG is annotated by a control predicate that determineswhether or not to take the edge. We assume T (true) on single outgoing edge (no branch),that means the edge is always taken after executing the predecessor. Otherwise, the (v�w)denotes the control predicate on an edge (v; w) among all outgoing edges from v. If P is apath from v1 to vn, which is <v1; : : : ; vn>, the control predicate for the path Cpred(P) is(v1 � v2) ^ : : : ^ (vn�1 � vn). If there are n di�erent paths P1; : : : ; Pn that are all reachableto vn from v1, the control predicate for vn from v1 is Cpred(P1) _ � � � _ Cpred(Pn).The control predicates will be used to construct optimized server module with low-levelMP primitives in the following section. Consider an example program shown in Figure 5.2(a).4 From the CFG in Figure 5.2 (b), we can evaluate a control predicate as follows.4In the SSA (Static Single Assignment) [CFR+91] representation of the program, a join node for the loopconstruct is omitted for brevity. 45

main()f1 ; /* defs on x1, y1, z1 */loop f2 : y2 = f1(x1);if (2 � 3) f3 ;if (3 � 4)4 : z2 = f2(y2);else 5 ;6 : w2 = h(x1);gelse if (2 � 7)7 ;8 : v2 = g(�z(z1, z2));gprintf(y, z, w, v);g(a) An example

3

5

7

9 Exit

Entry 1

4

2

6

8

T

2-3

3-4 3-5

2-7

8-9

8-2

(b) Control Flow Graph
Exit

2 8

3

4 5

9

7

6

1

Entry

2-3

2-72-3

3-4 3-5(c) Control Dependence Graph 2 4 6 8

2-3
3-4

main

2-3
T T

(d) Call TreeFigure 5.2: An example: CFG and CDG to construct Call Tree.
46

Example 5.1Cpred(Entry � 4) = Cpred(< E; 1; 2; 3; 4 >) _Cpred(< E; 1; 2; 3; 5; 6; 8; 2; 3; 4 >) _Cpred(< E; 1; 2; 7; 8; 2; 3; 4 >)= [(2� 3) ^ (3� 4)] _[(2� 3) ^ (3� 5) ^ (8� 2) ^ (3� 4)] _[(2� 7) ^ (8� 2) ^ (2� 3) ^ (3� 4)]= [(2� 3) ^ (3� 4)] _[(2� 7) ^ (8� 2) ^ (2� 3) ^ (3� 4)]= (2� 3) ^ (3� 4)[OR�simpli�cation on (2� 3) ^ (3� 4)]The above method requires �nding all reachable paths and simplifying boolean expres-sions; it is computationally expensive. Control dependence [FOW87] captures the essentialcontrol
ow relationships in a program. Informally, for nodes v and w in CFG, w is controldependent on v if v can directly a�ect whether w is executed or not. The control dependencegraph is a directed graph, CDG = (VCDG; ECDG), where the vertices VCDG are the same asVCFG and (v; w), for v and w in VCDG, is in ECDG if w is control dependent on v. The controlpredicate for (v; w) 2 ECT in Figure 5.2 (d) is computed as follows. Let all reachable pathsto w in CDG of w:Client be P1; � � � ; Pn. Then, the predicate is Cpred(P1)_� � �_Cpred(Pn),where Cpred(Pi) is (v1 � v2) ^ � � � ^ (vn�1 � vn) ^ (vn � w), if Pi is <v1; : : : ; vn; w>. Forthe edge (main; 4) in Figure 5.2 (d), (2 � 3) ^ (3 � 4) is directly obtained as its predicate,since there is the only path <2; 3; 4> as shown in Figure 5.2 (c). No boolean simpli�cationis needed if we use CDG as in Example 5.1.A call tree construction algorithm is given below.Algorithm 5.1 (Call Tree Construction)Input:1. All involved modules M1; : : : ;Mk, M1 is an imported set by a main procedure main.2. All r 2 RPCM1 [� � � [RPCMk where r:Server; r:Client 2 fM1; : : : ;Mng.Output: CT = (VCT ; ECT) as de�ned in De�nition 5.1.BeginRoot Create Node(main);Suppose RPC1 is fv1; : : : ; vmgFor i = 1 To m ft Create Node(vi);Add Child(Root; t);Evaluate Control Predicate(Root, t);EXPAND(t);gEnd
procedure EXPAND(T : TreeNode) fr T �> r;Suppose RPCr:Server is fw1; : : : ; wngFor i = 1 To n ft Create Node(wi);Add Child(T; t);Evaluate Control Predicate(T, t);EXPAND(t);gg47

5.2.3 InitializationSuppose R is a node in CT (i.e. R 2 VCT). Our goal is to translate R into send (Rsnd) andreceive (Rrecv) primitives for improving performance. First, we initialize Receive Request(R)and Send Result(R) within a module boundary, and then optimize globally. Let trr =(srr; vrr) be an element of Receive Request(R). Recall that a tuple trr corresponds to anargument in R. Since the argument values are provided by a caller itself according to aconventional procedure call/return paradigm, srr is initialized with R:Client and unchangeduntil the global optimization in the next section is performed. On the other hand, the latestlocation among the de�nitions that reach R initializes vrr. Likewise, let tsr = (dsr; vsr) bean element of Send Result(R). Then, dsr is initialized by R:Client, and vsr is initialized bythe earliest use among the uses that are reached by the return value of R. This initializationwidens the gap between Rsnd and Rrecv. The more the gap is widened, the more statements(including another remote call) can be executed during executing R.Let us discuss the initialization in more details. Node v dominates node w, denoted byv�w, if v appears on every path from Entry to w [ASU86]. Node v immediately dominatesnode w i� v�w and there is no node x such that v�x and x�w. In a dominator tree(DT) of a CFG, the children of a node v are all immediately dominated by v. When v isa closer descendent to x than y in the DT , the dominator x is called closer to v than y.Node v post-dominates node w, denoted by v�pw, if v appears on every path from w toExit [FOW87]. Node v immediately post-dominates node w i� v�pw and there is no node xsuch that v�px and x�pw. In a post-dominator tree (PDT), the children of a node v are allimmediately post-dominated by v. When v is a closer descendent to x than y in the PDT ,the post-dominator x is called closer to v than y. Then, the e�ect of initial transformationis described concisely as follows:Property 1 Rsnd is the closest common post-dominator to fd1; : : : ; dmg that is a UDC setfor an argument variable in R.Property 2 Rrecv is the closest common dominator to fu1; : : : ; umg that is a DUC set forthe return value of R.It might be an error that UDC is empty; that means accessing an unde�ned variable.When DUC is empty, the return value is never used in the caller. In this case, Rrecv is ofno use, thus eliminated by the global optimization in Section 5.2.4. For these exceptionalcases, we can safely put Rsnd (Rrecv) to the �rst (last) line of the program. As the propertiesdescribe, an algorithm to �nd such Rsnd and Rrecv is straightforward: (1) compute UDCand DUC accordingly, (2) �nd the least common ancestors for those elements of the setsin the PDT and DT , respectively, and (3) repeat the process for all R 2 VCT . Thenthe transformation with Property 1 and Property 2 preserves the constraints (1)-(4) inSection 5.1.Theorem 5.1 Property 1 and 2 satisfy the Constraint (5.1) in Section 5.1.48

Proof: Obvious. 2Theorem 5.2 Property 1 and 2 satisfy the Constraint (5.2) in Section 5.1.Proof: Suppose S1 is data dependent on S2 w.r.t a variable x. By Property 1, Ssnd2 followsany reaching de�nitions on x, obviously including the de�nition by Srecv1 . If Ssnd2 has toprecede Srecv1 , S2 must not be a reachable use from S1, by Property 1, or equivalently, S1must not be a reaching de�nition to S2, by Property 2, both of which contradict the datadependence between S1 and S2. 2Theorem 5.3 Property 2 satis�es the Constraint (5.3) in Section 5.1.Proof: Suppose S1 is output dependent on S2 w.r.t a variable x. Let x1, x2 be the l-valuesof the de�nitions by S1, S2, respectively. Suppose there exists a u 2 DUC(x1) such thatit is preceded by one of DUC(x2) in the CFG. Then it means that the use u is precededthe de�nition of x2, i.e. the de�nition of x1 is killed by x2 at this point. This is impossiblebecause v must be in DUC(x2) then. Thus, all members of DUC(x1) precede those ofDUC(x2). That is, the maximum depth of DUC(x1) is shallower than the minimum depthof DUC(x2) in the DT . Therefore, the least common ancestor node of DUC(x1), which isSrecv1 , precedes the least common ancestor node of DUC(x2), which is Srecv2 , in other words,Srecv1 �p Srecv2 . 2Theorem 5.4 Property 1 and 2 satisfy the Constraint (5.4) in Section 5.1.Proof: Suppose S1 is anti dependent on S2 w.r.t a variable x. Let xold be the used variablein Ssnd1 . Let xnew be the l-value of the new de�nition by Srecv2 . Suppose that Ssnd1 �p Srecv2cannot be satis�ed by theProperty 1; i.e., Srecv2 �p Ssnd2 is possible after the transformation.To make it possible, some uses in DUC(xnew) must precede (for `�') or be equal to (for `=')some de�nitions in UDC(xold). This is impossible, by the de�nitions of UDC and DUCsets. 25.2.4 Global OptimizationThis phase is to seek a direct message passing path that is originally a series of messagepassings since it is not optimized at the interprocedural level. Sending a message m at amodule y to a module z, if that is sent by a module x, is an unnecessary communicationbecause it can be replaced with a direct communication between y and z: i.e. replacingx ! y ! z with x ! z. To make this optimization possible, we should know that themessage m is not killed at y before sending to z and not used for the rest of the program aty either. Even if m is used at y, seeking a direct path between x and z is still useful because(1) z can receive it earlier than being sent via y and (2) a single multicast operation is fasterthan a series of point-to-point communications. From the viewpoint of each procedure, the49

interprocedural data
ow equations to this end can be expressed as following recursive formswhere the Called(P) is the set of remote procedures called directly from P [Bar78]:Use(P) = LocalUse(P) [Q2Called(P)Use(Q) (Eq5.5)Def(P) = LocalDef(P) [Q2Called(P)Def(Q) (Eq5.6)We can rewrite the above equations as the following concrete forms, because (1) call/returnis the sole mechanism of interactions between remote processes [BN84], and (2) call-by-valuesemantics is useful enough in general distributed programs [HL82].Use(P) = LocalUse(P) [RetUse(P) [Q2Called(P)Call(Q) (Eq5.7)Def(P) = LocalDef(P) [ArgDef(P) [Q2Called(P)Return(Q) (Eq5.8)A local use (LocalUse(P)) is a use that is not used for remote interactions like in argu-ments to issue an RPC or in a return statement in P to its remote client. Non-local usesare two kinds: RetUse(P) is a use in a return statement (it is expected to be used at aremote site (P:Client) that calls P and waits for the return) and Call(Q) is a set of vari-ables that are used in a statement of calling another remote procedure Q. A local de�nition(LocalDef(P)) is a de�nition that is not de�ned by P 's client (the caller provides the initialvalues of the formal parameters in P) or P 's servers (a variable in P is assigned by thereturn value of P 's server procedure). Non-local de�nitions are two kinds: ArgDef(P) is ade�nition that de�nes a formal parameter of P , and Return(Q) is a de�nition that de�nesa variable in P as an l-value of the RPC to Q.On the other hand, from the viewpoint of each positionally di�erent RPC statement,where we are interested in seeking true de�nitions and true uses associated with the call, theReceive Request(r) and Send Result(r) sets can be de�ned as follows:Receive Request(r) = RRr:Server(M1) [� � � [RRr:Server(Mk) (Eq5.9)Send Result(r) = SRr:Server(M1) [� � � [SRr:Server(Mk) (Eq5.10)RRr:Server(Mi) is a set of variables that are de�ned atMi in order to be used at r:Server.SRr:Server(Mi) is a set of uses of the return value of r:Server at Mi. Recalling the only wayto interact between distinct modules is via an argument and return value passing, these twosets can be de�ned as follows:RRs(c) = 8><>: Use(s) \Def(c) � Call(s) \Def(c) if c calls s directlyRRs(tn) \ � � � \ RRt2(t1) \RRt1(c) if c +) s� otherwise (Eq5.11)SRs(c) = 8><>: Def(s) \ Use(c) � Return(s) \ Use(c) if c calls s directlySRs(tn) \ � � � \ SRt2(t1) \ SRt1(c) if c +) s� otherwise (Eq5.12)50

Use(s) in Eq. (5.11) can be replaced with Call(s) because the passed arguments arethe only variables that are used in the server module s, since there are no aliasing andreference variables. Likewise, Def(s) in Eq. (5.12) can be replaced with Return(s), becausethe return value is the only de�nition that can be de�ned by a remote procedure s. Noticethat Eq. (5.11) and Eq. (5.12) are dual only if Def(c) in Eq. (5.11) is Return(s0) and Use(c)in Eq. (5.12) is Call(s0) (i.e. all other terms are null in Eqs. (5.7), (5.8)), which implies thata return value of an RPC s0 is used to call s when c calls s.Consequently, if we compute each de�nition and use set as shown in Eqs. (5.7) and (5.8),we can compute Receive Request(r) and Send Result(r) sets that contain direct messagepaths. As the intraprocedural def-use chains and use-def chains have already beencomputed in an initialization phase, we are ready to solve Eqs. (5.9){(5.12).Interprocedural data path may be analyzed when there is a chain of procedure calls, i.e.c n) s when n > 1. Solving these equations directly is not realistic, however, we can obtainthe solutions indirectly using the implications of the equations. To see if a solution existsin Eq. (5.11), we need to check if an argument is passed without being changed from c to salong the call path. For example, as shown in Figure 5.3 (a), if the client Cn sends a valuea to the server S and the value a is an input argument provided by its caller Cn�1, thenthe server S can receive the argument value directly from Cn�1, and ultimately up from C1.Similarly, to see the same thing in Eq. (5.12), we need to check if a return value from s isreturned again in c. As shown in Figure 5.3 (b), if the client C receives a result from theserver S1 and the value is the return value from its server S2, then the client C can receivethe value directly from S2, and ultimately from Sn. Finally, if the client C sends a requestof values x, y for an RPC \z = S3(x, y)" and the values are actually de�ned by anotherRPCs \x = S1(� � �)" and \y = S2(� � �)", respectively, then they can be directly sent fromthe module S1() and S2() to the module S3() as shown in Figure 5.3 (c). As this is a mixedcase, it is checked by solving SRs1(c) \ RRs2(c). Notice that the parallelism in breadth isexploited between S1() and S2(). Interestingly, the parallelism in breadth is also exploitedbetween S1(), S2() and S3() because of the data dependence on x and y.Other than seeking a direct path, a message passing path can be eliminated if a returnvalue is not used in a caller module except being used as an argument for another RPC; i.e.the corresponding send result and receive result pair collapses. Figure 5.4 summarizes thealgorithm for the global optimization we have discussed in this section.5.2.5 Loop TransformationMany research works have been focused on loop transformations in various parallel com-pilers, for loops are hot spots in a program [Pol88]. We are interested in transforming aloop as well, especially when RPC statements are surrounded by a loop. Executing an RPCis involved in rather longer delay. Aggregating remote messages can drastically reduce aninter-networking overhead by sharing the overhead by multiple messages. If a loop containsRPCs, the chance to reduce the overhead through aggregation is higher [LS88], thus carefulloop transformation provides good opportunity for aggregation.51

C1()f� � �x=C2(a);� � �g � � � Cn�1(Typea)f� � �x=Cn(a);� � �g
Cn(Typea)f� � �x=S(a);� � �g

S(Type a)f/* do S() */return(� � �);g C1 Cn S

a

(a) Call path optimizationC()f� � �x=S1(� � �);y=x+2;� � �g
S1()f/* do S1()*/rv=S2(� � �);return(rv);g

� � � Sn�1()f/*do Sn�1()*/rv=Sn(� � �);return(rv);g Sn()f/*do Sn()*/return(rv);g C S1 Sn

rv

(b) Return path optimization
original

optimized

C

S1

S2

S3
x
y

x

y

C()
{
 x = S1(...);
 y = S2(...);
 z = S3(x, y);
} (c) Mixed path optimizationFigure 5.3: Example code shapes for global optimization.Loop distribution breaks a single loop into multiple loops with the same iteration spacebut each enclosing a subset of the statements in the original loop [PW86]. It is used toimprove instruction and data locality by shortening loop bodies and to allow parallelismthat is hindered by loop-carried dependences in the original loop. The latter e�ect is impor-tant in applying the technique to a loop that contains RPC statements. An original loopshown in Figure 5.5 (a) can be distributed as in Figure 5.5 (c). It surely eliminates the
owdependence between two statements in the loop, however, the F() over the iteration spacecannot run in parallel in Figure 5.5 (c) even if we assume there are replicated servers forthe procedure, because RPC in each iteration is synchronous. If we transform RPC state-ments into statements of message passing primitives according to our transformation basedapproach, the original loop in Figure 5.5 (a) would be transformed into Figure 5.5 (b), andthen Figure 5.5 (d) after loop distribution.Recalling our assumption that Ssnd takes negligible amount of time, N di�erent callscan be placed when there are N servers. Even if only a server is available, the calls can52

Algorithm 5.2 (Optimization)Input:1. CT = (VCT ; ECT) by Algorithm 5.1.2. All r 2 VCT where r:Server; r:Client 2 fM1; : : : ;Mng.3. Initialized Receive Request(r) and Send Result(r).Output: Optimized Receive Request(r) and Send Result(r).Beginfor each trr 2 Receive Request(r) dowhile (val(trr) 2 ArgDef(r; source(trr))) dor previous(r); /* the predecessor of r in CT */source(trr) r:Client; val(trr) UDCr:Client(ACTUAL(r; trr));endwhileendfor /* Call path optimization */for each tsr 2 Send Result(r) dowhile (val(tsr) 2 RetUse(r; dest(tsr))) dor previous(r); /* the predecessor of r in CT */dest(tsr) r:Client; val(trr) DUCr:Client(LV ALUE(r));endwhile /* Return path optimization */for each sibling edge rsib of a node dest(tsr) in CT doif (val(tsr) 2 Call(rsib; rsib:Server))new tsr CreateTupleSR(r);dest(new tsr) rsib:Server; val(new tsr) FORMAL(rsib; tsr);Send Result(r) Send Result(r) [fnew tsrg;for each trr 2 Receive Request(rsib) doif (val(trr) 2 Return(r; r:Client))source(trr) r:Server; val(trr) RETVAL(r);endforendfor /* Mixed path optimization */if (tsr 62 LocalUse(r; r:Client))Send Result(r) Send Result(r)� ftsrg;endforEnd Figure 5.4: Global optimization algorithm.
53

for (i = 0; i < N; i++) fa[i] = a[i] + c;x[i+1] = F(a[i], x[i]);)g(a) Original loop +for (i = 0; i < N; i++) fa[i] = a[i] + c;send req(F(), a[i], x[i]);)x[i+1] = recv res(F());g(b) Transformed RPC into MP primitives

for (i = 0; i < N; i++)a[i] = a[i] + c;for (i = 0; i < N; i++)x[i+1] = F(a[i], x[i]);(c) After loop distributionfor (i = 0; i < N; i++)a[i] = a[i] + c;for (i = 0; i < N; i++)send req(F(), a[i], x[i]);for (i = 0; i < N; i++)x[i+1] = recv res(F());(d) After loop distributionFigure 5.5: Loop distribution and call streamingbe streamed, so it reduces the cost of transmitting the call and reply messages because thestreamed calls and replies can be bu�ered and sent to allow us to amortize the overhead ofkernel calls and the transmission delays over several calls. It is called call-streaming, whichwas proposed to e�ectively support asynchronous calls with an aid of a special data typecalled \promises" [LS88]. Our method presents a static solution for call-streaming withoutrelying on special programming language constructs. Moreover, an output of one remoteprocedure can be directly connected to an input of another one as presented in the previoussection. This is not allowed in call-streaming because the results must be returned to theoriginal caller before streams are composed.Data aggregation to amortize kernel overhead and the transmission delays over severalcalls can be achieved transparently by an aid of underlying MP systems or statically by an aidof compiler that properly generates �ner grained MP primitives. For instance, send res()can be composed of �ner primitives of msg decode(); msg send().5.3 Module SynthesisThe synthesis phase involves implementing source transformations based on the informationfrom optimizing transformations. This must account for correct program behaviors in spiteof drastically changed communication paths between callers and callees. The information tosynthesize communication paths is summarized in Receive Request(r) and Send Result(r)54

Receive RequestINI Send ResultINI Receive RequestOPT Send ResultOPT2 (main, x1) (main, y2) (main, x1) (main,y2) &(f2,Arg1)4 (main, y2) (main, z2) (f1, RetVal) (main,z2) &(g, Arg1)6 (main, x1) (main, w2) (main, x1) (main,w2)8 (main,z1) j (main,v2) (main,z1) j (main,v2)(main,z2) (f2,RetVal)Table 5.1: Receive Request and Send Result sets after initialization and global optimization.for all nodes r in VCT . The information for control paths is contained in CT . A server canbe associated with multiple positionally di�erent RPCs. So, the server should be aware ofall peculiar message paths for each RPC statement in CT and its run-time condition.Table 5.1 shows the contents of Receive Request and Send Result sets for each RPC inthe example of Figure 5.2, after initialization (Section 5.2.3) and global optimization by Algo-rithm 5.2. All are single-argument functions in the example; in other words, Receive Request(r)has a single element. As shown in Receive RequestINI(8), `j' (that denotes an `or') impliesthat there are multiple reaching de�nitions. As in Send ResultOPT (2) and Send ResultOPT (4),`&' (that denotes an `and') implies that the result should be sent to the both destinations.We will use three pairs of message passing primitives: send req, recv req, send res,recv res, send ctrl, recv ctrl. The su�xes \ req", \ res", and \ ctrl" (abbreviating\request", \result", and \control", respectively) are merely used to distinguish their us-ages. Basically, send and receive primitives su�ce to implement. A pair of send req andrecv req forms a call part in an RPC. A pair of send res and recv res forms a return part.A control message is used when an execution should wait for a certain run-time decision.For example, a server can continue to do a service when all input arguments are received,without knowing whether that control
ow is eventually taken or not. But it should wait atthe time of �nishing that service and see if the control message is decided. If it is validated,then the result can be sent, otherwise, it must be discarded. We have explored all controlpredicates for an RPC statement and its optimal communication paths except conditionsthat must be resolved at run-time.In a client module of a call r in CT , those RPC statements are transformed to a pairof send req() and receive res() according to the contents of Receive Request(r) andSend Result(r). Figure 5.6 (a) and (b) shows transformed codes, in which the originalpositions of RPC statements are commented by \null". In a server module S, an originalcode is surrounded by a pair of synthesized prologue and an epilogue codes for each r 2 CTsuch that r:Server is S. For example, there are two calls for the same remote procedure f()at 2 and 4 , thus two pairs of prologue and epilogue are synthesized as shown in Figure 5.6(c) because the two calls have di�erent control and data
ows.55

Data availability is the only �ring condition to perform that particular call. Therefore,when there are multiple data sets that are ready to be serviced, a selection is done non-deterministically. This can be implemented by special message passing primitives that allowsa non-blocking receipt. For example, in Polylith system [Pur94], mh readselect() allowsus to read the next message to arrive on any interface (it will be blocked if no messagearrives), then mh readback() completes the receipt. In PVM [Sun90], pvm nrecv(intmsgtag) checks to see whether a message with label msgtag has arrived. If not arrived,it immediately returns so that other message can be checked out. Non-blocking receiveprimitives are commonly supported by MP systems.Finally, let's consider what has been improved in Figure 5.6 (b) from (a). There is nodi�erence regarding the degree of parallelism, that is constrained by inherent data depen-dences. However, if ` 2 ! 4 ! 6 ! 8 ' is a call sequence to be taken, the messagepassing path of `main! f1 ! main! f2' is simpli�ed by `main! f1' and `main! f2', and`f2 ! main ! g' is simpli�ed by `f2 ! g'. Moreover, the execution of g() is hastened byhoisting the corresponding send req primitive up to the point before 5 (if 3 � 4 branchis taken), or by receiving the necessary argument earlier directly from f() (if 3 � 5 branchis taken).

56

main() f1 ; /* defs on x1, y1, z1 */loop fsend req(f(), x1);2 ; /* null */if (2 � 3) fsend req(h(), x1);3 ;if (3 � 4) f4 ; /* null */y2 = recv res(f());send req(f(), y2);gelse 5 ;6 ; /* null */gelse if (2 � 7) 7 ;8 ; /* null */if (2 � 3 ^ 3 � 4)z2 = recv res(f());send req(g(), �(z1, z2));if (2 � 3)w2 = recv res(h());v2 = recv res(g());gprintf(y, z, w, v);g(a) After initialization only

main() f1 ; /* defs on x1, y1, z1 */loop fsend req(f(), x1);2 ; /* null */if (2 � 3) fsend req(h(), x1);3 ;send ctrl(f(), 2 � 3 ^ 3 � 4);if (3 � 4)4 ; /* null */else fsend req(g(), z1);5 ; g6 ; /* null */gelse if (2 � 7) 7 ;8 ; /* null */y2 = recv res(f());if (2 � 3 ^ 3 � 4)z2 = recv res(f());if (2 � 3)w2 = recv res(h());v2 = recv res(g());gprintf(y, z, w, v);g(b) After global optimizationf(/* int a */) ff1p: a = recv req(main(), x1); endpf2p: a = RetVal of f(); endp/* do f(): original source */f1e: send res(main(), y2);c1 = recv ctrl(main());if (c1) f /* 2 � 3 ^ 3 � 4 */goto f2 p;gendef2e: send res(main(), z2);send res(g(), Arg1);endeg

g(/* int a */) fa=recv req(f()) k recv req(main());/* do g(): original source */send res(main(), v2);gh(/* int a */) fa = recv req(main());/* do h(): original source */send res(main(), w2);g(c) Servers after global optimizationFigure 5.6: Transformed client and server modules for Figure 5.2.57

Chapter 6Load BalancingUnder a heterogeneous network of workstations, a simple policy like equally distributingworkloads to multiple processors may lead to a parallelization anomaly. That is, the exe-cution time of the given workload may take longer even if the number of workstations isincreased. Suppose there are n processors fP1; : : : ; Png, and T identical tasks. Let �i be thenumber of tasks per unit time that the processor i can process. In equal distribution, eachprocessor has T=n numbers of tasks. The execution time of the program is determined by thecritical processor that has the smallest �i value; let's say it is �min. Then the execution timeis T=n�min = Tn�min . Now, let's add a new processor of �new to the cluster for the application.Each processor will have T=(n + 1). Therefore, if �new < nn+1�min, the execution time of(n+ 1)-processors cluster is T(n+1)�new , which is longer than that of n processors!One may want to get around this problem by allocating tasks according to the knowncomputing power of each processor [GWWECL94, CS93]. However, their methods werestatic, thus of limited usefulness. Dynamic loop scheduling methods can deal with moregeneral cases, but the centralized nature of the methods | the central processor that gen-erates sub-tasks has to manage all other processors | may cause a bottleneck in a networkof many workstations. For example, if there are 100 servers, and if a master needs 10�2second to prepare and send a task, the master would create a bottleneck unless the averagetime for each server to �nish a task is greater than one second. In our experimentation withthe Mandelbrot set computation on [0:5;�1:8] to [1:2;�1:2] using a 400 � 400 pixel win-dow, the program reached its saturation point at 25 workstations under the self-schedulingscheme. To avoid such a situation, sub-tasks should be su�ciently large grained comparedto communication overheads, but it is not likely considering relatively high communicationcosts in workstation clusters. Since there are many \embarrassingly parallel" applications,a decentralized load balancing scheme is called for. We present such a method that can re-duce the overheads by means of establishing proper migration topology based on the knowncomputing powers of the processors involved.
58

(a) Constant

i

L(i)

(b) Increasing

i

L(i)

(c) Decreasing

i

L(i)

(d) Irregular

i

L(i)

Figure 6.1: Four typical parallel loops.6.1 Loop And Workstation Cluster ModelsIn this section, we classify four typical parallel loop patterns that a�ect performance of loadbalancing schemes based on workload distribution in an iteration space. Next, we discuss ourworkstation cluster model to deal with those diverse patterns, especially if the workstationsinvolved are heterogeneous.6.1.1 Loop ModelFigure 6.1 shows four typical parallel loops where L(i) represents the execution time of the i-th iteration. The workload may be uniformly distributed over an iteration space as shown inFigure 6.1 (a). It may also be non-uniform but linearly distributed as in Figs. 6.1 (b) and (c);this kind of distribution is often contained in scienti�c programs. Finally, as in Figure 6.1(d), the workload may be quite irregular. Many non-scienti�c applications carry parallelloops of this type. The �rst three cases have been specially considered by conventional loopscheduling methods [PK87, TN91, CLZ95] in order to improve on the basic self-schedulingmethod.Particularly for irregular loops, we can distinguish between the two cases: predictable vs.unpredictable. For example, the parallel tasks in the DNA sequence search problem [CG89]and the Mandelbrot set computation are all irregular, but the tasks in the �rst problem arepredictable while the tasks in the second one are not. Of course, the above three loops areall predictable.6.1.2 Workstation Cluster Model for Load BalancingFigure 6.2 shows two representative topologies in the workstation cluster model for par-allel loops. Figure 6.2 (a) represents the topology of traditional loop scheduling meth-ods [TY86, KW85, PK87, TN91], in which load migration is not performed. Instead, themain processor (shaded circle) prepares a set of tasks and allocates them to each serverwhenever the server demands them. Since the scheduling process is dedicated to the mainprocessor (shaded circle), its chance of creating a bottleneck rises as the number of serverspresent on the network increases. Figure 6.2 (b) illustrates the topology of our workstation59

P1

P2

P3

P4(a) Loop Scheduling
P1 P4 P2 P3

Task Migration Network(b) Our ApproachFigure 6.2: Topologies in workstation cluster model for load balancing.cluster model. The main processor distributes workloads to all servers initially. Load bal-ancing is attempted by task migration via pre-determined paths, deeming load state pollingor exchange overhead unnecessary, unlike in global dynamic load balancing schemes. Themigration is performed in a decentralized fashion between only the two processors involved.The workstation cluster model for load balancing is characterized by the following parame-ters:� N : the number of workstations, fW1; : : : ;WNg.� �i: the throughput of Wi, which is de�ned by the number of unit tasks per unit time.�
ij: the amount of load to migrate from i to j.6.2 Load Balancing MethodTwo important components of dynamic load balancing schemes are transfer policy and lo-cation policy [ELZ86b, KS94]. The transfer policy determines whether a task should beprocessed locally or remotely by transferring it at a particular load state. The location pol-icy determines which process initiates the migration and its source or destination. Theseare for global load balancing from the OS's viewpoints. Multi-dimensional load vectors de-termine the load state of a processor. In our system, we aim to balance parallel loops inan application. A simple `demand' message is enough to initiate load migration rather thanload state exchange [KS94] or random polling of candidate processors [ELZ86b] because theonly load vector is the number of sub-tasks in a processor. The transfer policy then becomessimple: if a processor receives a request message for transfer from a processor that is runningout of sub-tasks to work on, it migrates some of its sub-tasks to that processor.60

/* P i: sender */for (i = 0; i < taskcnt; i++) fif (pvm nrecv(P j,MoreTaskReq)) f/* a request arrived */n = (taskcnt-i+1) * Ratio ij;/* Migrate to P j */if (n) fpvm initsend(PvmDataDefault);pvm pkint(&n,1,1);pvm pkint(&TaskQ[i],n,1);pvm send(P j,TaskMigrating);i += n;continue;gg/* loop body on TaskQ[i] */g

/* P j: receiver */LOOP:for (i = 0; i < taskcnt; i++) f/* loop body on TaskQ[i] */g/* Check the partner processor P i */pvm initsend(PvmDataDefault);pvm pkint(&more,1,1);pvm send(P i,MoreTaskReq);/* Wait until killed by parent */while(1)if (pvm nrecv(P i,TaskMigrating)) f/* migrated tasks arrived */pvm upkint(&taskcnt,1,1);pvm upkint(TaskQ,taskcnt,1);goto LOOP;gFigure 6.3: Programs generated for a migration path in Figure 6.2 (b).Likewise, the location policy is now modi�ed by the problem of establishing proper taskmigration paths. Workstation clusters have virtually no restrictions on topology for migra-tion. It may be assumed that any two point-to-point communication overheads are equal,but identifying the optimal sender and receiver pair is essential. Considering all possiblecandidates for sender (or receiver) to migrate the excess load causes high overhead, but itis avoidable. The key is how to identify the busy and the idle processors in the middle ofcomputations. Since the relative processing speeds of workstations in a cluster are knownin advance, the possible senders and receivers of migrations are not unknown | momentaryoverload by other activities is the reason for uncertainty.In this section, we present how to construct such a task migration network as shownin Figure 6.2 (b). Once the network is constructed, load balancing is pursued through taskmigration on it. For example, each pair connected in a dotted line in Figure 6.2 (b) (Pi ! Pj)is a basic unit of migration; whenever the faster processor (Pj) depletes its workload, itdemands that its pre-determined partner Pi share some of Pi's workload, and Pi migrates
ij of its current workload to Pj. Figure 6.3 shows the generated source codes for such aconnection. First, we will formally de�ne the cluster model in Section 6.1.2. Then, we willdescribe how to construct such a cluster and its corresponding migration network based onthe model.A cluster is a bipartite form of (ws; wf), in which ws is slower than wf : i.e. �s < �f .Throughout the paper, we use the notation (�s; �f) interchangeably with the notation (ws; wf)when we focus on throughputs. An entire workstation cluster is de�ned as follows:61

De�nition 6.1 The cluster tree (CT) of N workstations fW1; : : : ;WNg is a binary treeCT = (V;Eleft [Eright), where� The vertices V represent clusters. A distinguished vertex `root' represents an entirecluster, and the right sub-cluster is faster than (or equal to) the left sub-cluster.� Eleft is a set of edges to the left sub-trees. Eright is a set of edges to the right sub-trees.� If (c; v) 2 Eleft and (c; w) 2 Eright, a load migration path exists from v to w. When vand w are not terminal nodes, the path is established from the fastest node in clusterv, which is the rightmost terminal in the subtree of v, to the slowest node in clusterw, which is the leftmost terminal in the subtree of w.Terminal vertices are individual workstations. Each terminal v is associated with its through-put �v. Throughput of non-terminal node C = (v; w) is de�ned by (�v + �w), which isexplained by Theorem 6.3. 2De�nition 6.2 In a cluster C1 = (�1; �2), the balance ratio BC1 is de�ned by (�2��1)(�2+�1) . Acluster C1 = (�1; �2) is said to be more balanced than another cluster C2 = (�3; �4), if thebalance ratio of C1 is less than that of C2, i.e. (�2��1)(�2+�1) < (�4��3)(�4+�3) . 2De�nition 6.3 A cluster C1 = (�1; �2) is faster than another cluster C2 = (�3; �4) if �C1 isgreater than �C2 , or if �C1 is equal to �C2 and C1 is more balanced than C2. 2In the extreme case that �1 is equal to �2, the balance ratio is zero; thus load is perfectlybalanced. Likewise, in the other extreme in which �2 is much greater than �1, the ratiois asymptotically 1. The balance ratio in a cluster can be related to the amount of loadmigration. When the components in a cluster are equally loaded initially, if the cluster isperfectly balanced, then no intra-cluster migration is necessary. In other words, the morebalanced a cluster is, the less migration is needed.The process of constructing a cluster tree from a set of workstations is done in recursive\bitonic" fashion. First, workstations in the set fw1; : : : ; wng become terminal nodes inthe tree. They are sorted in ascending order by their throughputs. Let the sorted setbe fw01; : : : ; w0ng. The fastest one (w0n) is coupled with the slowest one (w01), the secondfastest one (w0n�1) is coupled with the second slowest one (w02), and so forth. The couplescome to have parents in the tree, i.e. fc1 = (w01; w0n); : : : ; cn=2 = (w0n=2; w0n=2+1)g, whichare likewise sorted by their throughputs. Again, they are coupled in bitonic fashion. Thisprocess continues until it reaches a single cluster. Notice that the cluster of the two identicalcomponents still needs an intra-cluster migration because an equal distribution is not alwayspossible. Once such a tree is constructed, the task migration topology is determined asfollows:Algorithm 6.1 (Task migration network from CT)62

C1234 C5678

W1 2 3 W4 5 6 7 8W W W W W W

W1 2 3 W4 5 6 7 8W W W W W W

C C CC12 34 56 78

Call

Figure 6.4: A cluster tree and its corresponding task migration paths.BeginFor all clusters (non-terminal nodes) c in CTFor two children v and w such that (c; v) 2 Eleft and (c; w) 2 Erightif (v, w are terminals) then CONNECT v TO welse CONNECT RightmostTerminal(v) TO LeftmostTerminal(w)EndFigure 6.4 shows the relationship between the cluster tree and the migration topology.For example, the rightmost terminal of C1234 is W4, and the leftmost terminal of C5678 isW5, so the link for the root cluster Call is constructed between W4 and W5. The thickerlinks denote higher level links; they will be used only if the load cannot be balanced throughthe lower links.6.3 Analysis Of Migration BehaviorsThere are two important concerns in devising a load balancing scheme [ELZ86b]. First, theoverhead should not negate the bene�ts of an improved load distribution. Next, the potentialmigration instability1, in which processors spend too much time transferring tasks, shouldbe avoided. Our method is orthogonal to the stability issue because a demand is issued onlywhen the processor is idle. In this section, we present an analytic result on the overheadsincurred by our method. We start with an example case to explain our method qualitatively.1For example, in a two-processor system where both are overloaded, they may continuously migrate eachpart of loads to the other processor, which does not improve the situation at all.63

Example 6.1 Suppose there are four processors P1; P2; P3 and P4 that have N identicaltasks initially and we know their relative throughputs, which are �; 2�; 3� and 4� . When aload state of a potential sender P1 is probed by other processors, migration to P2 or P3would be wasteful because its resulting resolution of P1's overloaded state may be merelytemporal. Since P4 is the fastest, the then-migrated load may have to be migrated again toP4, while a single migration directly to P4 would have been more e�cient. Thus we can saythe P1 has the greatest a�nity to P4 among all possible receiver candidates. 2The above example suggests that the slowest processor should be connected to the fastestprocessor, and the second slowest one is to the second fastest one, and so on, in bitonicfashion. The resulting pairs would tend to be more balanced in terms of the combinedthroughputs. We will elaborate on the e�ects of this kind of bitonic pairing in Section 6.3.1.This method calls for load migration to be done in as much bulk as possible. One ten-bytesized load migration is cheaper than ten one-byte sized load migrations. This is particularlyimportant in workstation clusters where the communication overheads are still high.Example 6.2 Let us consider the topology of P1 ! P4 and P2 ! P3 as shown in Fig-ure 6.2 (b). Throughputs are the same as in Example 6.1. In this case the combinedthroughputs of the two sub-clusters turn out to be equal. That is, no further load migrationis necessary through the link between the two clusters (P1; P4) and (P2; P3)! 2However, now that cluster (P2; P3) is more balanced than cluster (P1; P4), the resultingdecrease in the intra-cluster migration makes cluster (P2; P3) process more tasks. That iswhy this cluster is de�ned as the faster one in Def. 6.3. In general, such an ideal case maynot be common in real situations; throughputs may
uctuate in the middle of computing andinitial distributions are not always equal. For the case that the load is not balanced in the �rstcluster for some reason, we continue to balance the load through inter-cluster migrations.In the following analysis, we use
ij = 1=2, for all i; j, which guarantees uni-directionalmigration is enough for load balancing (notice Pj is faster), although more aggressive choicelike
ij = �i=�j may reduce overheads.6.3.1 PreliminariesTo examine migration overhead, we need a communication time model. The conventionalapproach to modeling communication time for transferring a message of m bytes is a simplelinear function, i.e. Tcomm = � + �m, where � is startup time and � is transfer time perbyte [BR89]. The empirical values for � and � under the PVM system [Sun90] at LAN-based clustered workstations are 4:527 msec, 0:0024 msec and 1:661 msec, 0:00157 msec fordatagram and stream transmission cases, respectively, which imply �� � [SS94].In Theorems 6.1 and 6.2, we compute the total number of migrated tasks (�'s multiplier)and the frequencies of migrations (�'s multiplier) in a cluster. Furthermore, we also illustratean important characteristics of our method, which is that balance ratio gets improved asclustering happens at higher levels. 64

Theorem 6.1 In a cluster C = (v; w) where v and w are terminal nodes in CT , and theyhave initially loaded N identical tasks respectively, the total number of tasks to be migratedfrom v to w to meet the �nish times at both processors is �w��v�w+�vN , i.e. the balance ratio ofC times N .Proof: Let us determine the general terms of the number of tasks to be migrated from vto w at the time w becomes idle. Since w is faster than v, w's �rst incidence of task depletionoccurs after N�w ; thus the number of tasks in the �rst migration is half of what remains in vat that time, which is 12(N � N�w � �v) = N2 (1� �v�w). Notice that �v=�w is less than 1. Tw, thetotal number of tasks that are eventually processed by w, is a summation of the followingseries: Tw = N + N2 (1� �v�w) + N4 (1� �v�w)2 + � � � = N 1Xi=0 12i (1� �v�w)i= N limk!1 1� (12(1� �v�w))k+11� 12(1� �v�w) = 2N�w�v + �wTherefore, Migratedv!w = Tw �N , which yields �w��v�w+�vN . 2Theorem 6.2 In a cluster C = (v; w) where v and w are terminal nodes in CT , and theyhave initially loaded N identical tasks respectively, the frequency of migration from v to wto meet the �nish times at both processors is log 12 (1� �v�w) 1N .Proof: The general term in the series is N2k (1� �v�w)k. Thus, k = log 12 (1� �v�w) 1N . 2Theorem 6.3 In a cluster C = (v; w) where v; w are arbitrary nodes in CT , and they haveinitially loaded N identical tasks, the combined throughput of a cluster C = (v; w) is �v+�w,assuming no migration overhead. Proof: Suppose v and w are terminal nodes in CT . InTheorem 6.1, the total number of tasks processed by v and w is given by 2N�v�v+�w and 2N�w�v+�w ,respectively, and the �nish time is N(�v+�w)=2 at either processor. As cluster C have loaded 2Ntasks in total, this may be interpreted to mean that the de facto throughputs of the clusteris �v + �w. Now let us assume this holds for two clusters C1 = (�1; �2) and C2 = (�3; �4); i.e.�C1 and �C2 are �1 + �2 and �3 + �4, respectively. For a cluster C = (C1; C2) (we can assumeC1 is slower without loss of generality), we can calculate the number of tasks processed byC2 as follows:TC2 = N 1Xi=0 12i (1� �C1�C2)i = N � 2�C2�C1 + �C2 = N � �C2(�C1 + �C2)=2By induction, this completes our proof. 2Theorem 6.3 implies that the sum of the two throughputs in a cluster may representthe combined throughput of the cluster so that we can cluster recursively in bitonic fashion.The real combined throughput can be yielded by subtracting the throughput loss incurredby migration overheads (see Section 6.3.2) from that amount.65

Theorem 6.4 If there are two clusters C1 = (�1; �4) and C2 = (�2; �3), and C1 is slower thanC2 (i.e. �C1 is less than �C2), then another cluster C = (C1; C2) is always more balanced thanthe less balanced cluster between C1 and C2.Proof: Consider the case when BC1 is greater than BC2 (i.e. C1 is less balanced than C2).Due to the property of bitonic coupling, �1 � �2 � �3 � �4 must hold. Let us write �2 = a�1,�3 = ab�1 and �4 = abc�1, where a; b; c � 1. By Theorem 6.3, BC is yielded by �2+�3��1��4�1+�2+�3+�4 .That is, BC1 = abc�1abc+1 and BC = a+ab�(abc+1)abc+ab+a+1 . Since (abc + ab + a+ 1) � (abc� 1)� (a+ ab�(abc + 1)) � (abc + 1) = 2abc(abc + 1)� 2a(b + 1) � 0, BC is less than or equal to BC1 . Butif 2abc(abc + 1)� 2a(b + 1) = 0, all a, b, c must be 1, which implies �1 = �2 = �3 = �4 thatcontradicts the given assumption (�C1 < �C2 or BC1 > BC2). Hence BC is strictly less thanBC1 . Likewise, when BC1 is less than BC2 (i.e. C2 is less balanced than C1), we also can showthat BC is less than BC2 | now �2 � �1 � �4 � �3 holds. Finally, consider the case whenBC1 is equal to BC2 . Again, due to the property of bitonic coupling, this condition implies�1 = �2 = �3 = �4, which is a contradiction. This completes the proof. 2Theorem 6.4 contains an important subtlety. It implies the amount of inter-cluster mi-gration is always less than that of intra-cluster migration in a critical sub-cluster. Sincemigrations through a higher-level link may need multi-hop communications, they result inhigher overheads. Theorem 6.4 assures that the amount of migrations of such higher over-heads get smaller. Consequently, the complexity of migration overheads is bounded.6.3.2 Complexities of Task Migration OverheadConsider the topologies in Figure 6.2 (a) and (b) extended to p processors and the totalnumber of tasks are pN . Self-scheduling requires pN(� + �), where N is the total numberof tasks between a master and its servers. Putting aside the fact that the master caneasily create a bottleneck in that topology, we investigate the complexity of our method andcompare it with that of self-scheduling.The worst case happens when the fastest processor (the rightmost one in a cluster tree)is far faster than the remaining ones: i.e. �3 � �1; �4; �2 in Fig 6.2 (b). Let us calculatethe overhead for a one-hop migration in this scenario. For example, in a link between P2and P3, the total number of tasks to migrate is, by Theorem 6.1, �3��2�3+�2N . As �3 � �2, thenumber becomes N . In other words, all of the task in a slower processor must be migrated tothe in�nitely faster one. Likewise, by Theorem 6.2, the frequency of migrations is given bylog 12 1N = log2N . Thus, the one-hop overhead (OH1) is � log2N+�N . Since the farthermosttasks need p� 1 hops, we obtain the worst case complexity of migration overhead as follows:OHworst = p�1Xk=1 k �OH1 = 12p(p� 1)(� log2N + �N)Recalling the facts that � � � and N � p, OHworst can hardly be worse than pN(� + �).Now let us consider an average case where each processor contains the average number of66

tasks (N) at any moment during computation.2 Consider a lowest-level cluster (v; w); i.e. vand w are terminal nodes in CT . By Theorem 6.2 and 6.1, the one-hop migration overheadis obtained as follows:OH1 = 11� log2 �v�w log2N � � + �w � �v�w + �vN � �By Theorem 6.4, the balance ratio of a higher-level cluster is always less than the maximumof those of the two sub-clusters. That is, the maximum balance ratio among all clusters(v; w) at the lowest level is the maximum balance ratio of all clusters in an entire clustertree. Let it be Bmax. Then, no (p� 1) links in the topology can migrate more than Bmax �Ntasks. Therefore, the average case complexity of migration overhead is a lower bound of thefollowing formula, where rmax is the maximum of �v�w for all clusters (v; w) at the lowest levelin CT : OHaverage = p�1Xk=1OH1 = p� 11� log2 rmax log2N � � +Bmax(p� 1)N�Notice that 0 < rmax < 1 and 0 < Bmax < 1. OHaverage is always better than pN(� + �).Furthermore, since �� � and N � p, it is signi�cantly better in general.Example 6.3 Let us consider Figure 6.2 (b) again. Each processor initially has N identicalsub-tasks. Throughputs are the same as in Example 6.1: i.e. �; 2�; 3�; 4� for P1; P2; P3and P4, respectively. For brevity, suppose all processors have constant throughputs, andwe assume no migration overhead for the time being. Then the following table shows eachsnapshot of load distribution under our load balancing method in case we chose
14 = 45 and
23 = 35 particularly. P1 P4 P2 P3Initial Load N N N NAfter N=4� 3N=4 0 N=2 N=4After Load Migration 3N=20 3N=5 N=2 N=4After N=12� N=15 4N=15 N=3 0After Load Migration N=15 4N=15 2N=15 3N=15After N=15� 0 0 0 0Table 6.1: Snapshots of load distribution.The table shows that total execution time is N4� + N12� + N15� = 2N5� ; in other words, theaverage throughput of this 4-processor cluster with 4N sub-tasks is 10� . However, the real2Obviously this is a harsher condition than what a real average case needs to be, since the number ofremaining tasks gets decreased as time goes by. Therefore, our obtained complexity is an upper-bound ofthe average complexity. 67

behavior deviates from this ideal behavior because of migration overheads. We calculate theoverhead for two di�erent choices of
: when
 is taken proportionally based on throughput(Case 1) and when all
 = 12 (Case 2).Case 1: As shown in Table 6.1, migrations occur twice of amount 3N=5 and 3N=15,respectively. Thus, the overhead is yielded by � + 35N� + � + 315N� = 2�+ 45N�.Case 2: By Theorem 6.1, the number of tasks to migrate for P1 ! P4 and P2 ! P3links is calculated as follows:MP1!P4 = 4� � �4� + � N = 35N; MP2!P3 = 3� � 2�3� + 2� N = 15NSimilarly, by Theorem 6.2, the number of migrations that occur for the two links is as follows:kP1!P4 = log 12 (1� 14) 1N = log 38 1N ; kP2!P3 = log 12 (1� 23) 1N = log 16 1NThus, the overhead is yielded byOH = �(kP1!P4 + kP2!P3) + �(MP1!P4 +MP2!P3)= �(log 38 1N + log 16 1N) + 45N� � 3:63 logN� + 45N�In either case, the overhead is much less than that of self-scheduling, which is 4N(� + �).26.3.3 Initial Load DistributionWhile any initially distributed load should be balanced through a dynamic load balancingmethod, the resulting overhead is associated. We discuss now the initial load distributionissue that can lower overhead, compared with the equal distribution that was assumed foranalysis in the previous sections.When loops are predictable (see Section 6.1.1), there are two cases: one is when we knowthe amount of the required computation exactly, as in Figure 6.1 (a), (b), (c) and sometimes(d), and the other is when we can determine just the orderings, like in the DNA sequencesearch problem [CG89]. For the former case, as L(i) is known in advance, if we distributeproportionately according to each processor's throughput, we can reduce the likelihood ofmigration. In other words, the processor Pi with �i will get �iPi L(i)=Pk �k. Dynamicadjustments to this approximation are made by our load balancing method. In a lowest-level cluster (v; w) in CT , if we allocate b�iPi L(i)=Pk �kc to v, and d�iPi L(i)=Pk �ke,Since v is slower than w, uni-directional migration is enough. If we cannot guarantee thefaster processor �nishes earlier, the migration paths must be bi-directional as in the followingcases.For the latter case, we cannot initialize in the above way as the value of L(i) is unknown.The LPT (Largest Processing Time �rst) algorithm [BB90] is for this class of loop models.The tasks are sorted in descending order based on execution time L(i). Each processor68

should process the largest task �rst. Otherwise, an unfortunate processor may happen totake a large task (say, about 100 times larger than the small ones) as a last one at thenear end of all computations, which results in a load imbalance | other processors are idlebecause few tasks left to migrate at this moment.When tasks are not \orderable" and quite irregular like in the Mandelbrot set computa-tion problem, we can neither quantify the loads to proportionately distribute to processors ofdiverse throughputs nor sort in decreasing order and apply the LPT algorithm. No generalheuristics can be used | random distribution does not need to be worse.

0100K200K300K400K500K600K
0 100 200 300 400 500 600 700 800

L(i)
i-th task

L(i) is the # of iterations for i-th loop

Figure 6.5: The load distribution pattern of a loop in the Mandelbrot set computation.

200400600800100012001400160018002000
0 2 4 6 8 10 12 14 16

Secs
Workstations

Finish Times"Single"
25303540
45505560

0 2 4 6 8 10 12 14 16
Secs

Workstations

Finish Times"Ours""SS"
Figure 6.6: Execution times: Mandelbrot set computation on [0.5,-1.8] to [1.2,-1.2]

69

6.4 ExperimentsTo demonstrate the performance of our method, we conducted our experiment on 16 work-station clusters using PVM message passing systems. The example program was Mandelbrotset computation on [0:5;�1:8] to [1:2;�1:2] using a 800� 800 pixel window. This programcontains unpredictably irregular loops as shown in Figure 6.5, which cannot be analyzableas in Section 6.3. The x-value indicates the x-th row in an outer loop. The y-value is thenumber of inner iterations (L(x)) to compute the corresponding x-th row. The total numberof sub-tasks are 800, and the result size of a sub-task is 800 in integers: one integer per pixel.We have initially distributed those tasks in a round-robin style. A variety of heteroge-neous workstations have been used as shown in Figure 6.6 (a) which shows the executiontime for each of 16 workstations3 to compute the given Mandelbrot set; the range is from250 seconds to 2000 seconds. The results by 16-workstation cluster are given by Figure 6.6(b). The dotted boxes represent the �nish times of each workstation under the pure self-scheduling method, which substantiate the expected good load balance. The result by ourmethod is seemingly imbalanced but the actual �nish time is much improved. Perfect bal-ance may be good but the evaluation should be based on how much its overheads negate itsresulting bene�ts.taskcnt 1 2 3 4 5 6 7 10 11 12 17 19 20 30freq 13 6 3 3 3 1 4 1 1 1 1 1 1 1Table 6.2: The sizes of migration units and the frequencies of migrationsTable 6.2 summarizes the size of each migration and its frequency that are counted in ourexperimentation. For example, the single-task migration occurred 13 times, and the 30-tasksmigration occurred once, etc, during the entire task migration attempts. In the table, we cancompute the total occurrences of migrations by summing all frequencies up, that is 40. If wecalculate this �gure from our formula on OHaverage, that is p�11�log2 rmax log2N , where p = 16,N = 800=16 = 50, rmax = 692=693 � 1. This formula gives 15 log2 50 � 84:7. Consideringthis formula is obtained as an upper bound, the experimental value is said to conform tothe theoretically obtained value. Although the theoretical model does not exactly matchwith our experimental environments, the model gives us a reasonable implication about themigration behaviors in general cases.
31 SPARCstation 20, 3 SPARCstation 5's, 2 SPARCstation 10's, 2 DECstation 5000/25's, 4 SPARCstationIPX's, 2 DECstation 23/100's, 2 SPARCstation IPC's are used.70

Chapter 7Conclusions and Future WorksFor many applications, the message passing style programming is plainly too di�cult to copewith all kinds of control parallel intricacies. Our approach toward distributed program op-timization is based on constructing statically con�gurable programming environments. Wehave developed an automatic adaptation system that allows con�guration-level optimizationof RPC-based distributed programs. Because it automatically adapts the application at thesource level, it encourages programmers to experiment with various performance improve-ment strategies in order to discover the best for their environment and data. Programmingdirectly in terms of message passing primitives may still give programmers the maximumability to write high-performance programs in distributed environments, but this freedomcomes at a high price in programmer time and e�ort, and reduces the programmer's freedomto port, upgrade or reuse the component program units. These bene�ts have been availablebecause many types of performance factors are isolated from the module programming leveland deferred such decisions to the con�guration level. Therefore, our approach helps todecrease the code of developing and tailoring application programs, while at the same timeachieving overall performance comparable to manually tailored counterparts, which has beensacri�ced before.Exploiting parallelism is a complicated process. Data parallelism has been widely ac-cepted while control parallelism has been used only at the low-level procedural messagepassing systems like PVM and MPI. Higher level systems still have not displaced such alow-level system, although the low-level systems are usually understood as error-prone andtedious to use. As we have discussed in Chapter 3, many practical distributed and parallelapplications can be expressed in a modular way using procedure call abstraction. The pre-vious unavailability of proper optimization methods discouraged programmers from usingthe RPC paradigm for higher performance oriented distributed programming, in spite ofits convenience and simplicity owing to its high abstraction power. We have presented asource-level transformation framework for RPC-based distributed programs, whose goal isautomatically extracting RPC task-level parallelism and reducing the communication pathsaccording to the constraints of data and control dependences.We also have presented a new decentralized load balancing method for parallel tasksin heterogeneous workstation clusters to deal with various patterns of parallel loops. We71

discussed why the conventional global dynamic load balancing methods are not adequate toour application areas. Loop scheduling schemes that have been useful under shared-memorymultiprocessor machines cause a bottleneck in workstation cluster environments becausethe communication overheads are higher. To our knowledge, migration topology for loadbalancing is considered for the �rst time. The topology has not been considered importantheretofore because sometimes it is given in a hard-wired form [LK87] or it is meaninglesswhere distributed load patterns cannot be assumed to be known in advance [ELZ86b, KS94].We have shown analytically that the overhead of our method is lower than that of the self-scheduling scheme when an \predictability" condition is given. We have also provided someexperimental data for cases when the loop pattern is unpredictably irregular. Most strikingfact from our new load balancing scheme is its relevance to the con�guration programming.As our suggested topology is of binary tree form, more interesting topologies can be studiedanalytically or experimentally in the future.Assessing the usability of a parallel programming system is one of important researchareas from the viewpoint of software engineering. Wilson [Wil94] proposes 9 applicationsthat can assess how well a parallel programming system can support large scale softwareengineering and how easily systems can be learned or how quickly code can be developed.Prior to that Feo [bJTF92] suggested Salishan Problems and collected results for the problemsfrom various parallel programming systems | all at the module programming level. Thecomparison goals in the assessments were two-fold. First, how well parallel programmingsystem can support large-scale software engineering concerns based on software engineeringmetrics like LOC (Lines of Codes), Halstead's \program volume" measure, and McCabe's\cyclometic complexity decomposition of
ow graphs." Second, how easily systems can belearned or how quickly code can be developed by measuring the time taken from noviceto expert. Assessing our framework using the same problems and the same criteria willsubstantiate the usability of our framework.There is also an interesting research direction in regards with extending to a visual pro-gramming environment. Textual MIL programming can still be a nuisance to programmerswho write large distributed applications that consist of many software components. If hun-dreds of slave processes are involved, the load balancing expressions in the con�gurationprogram may exceed hundreds of lines as well. A visual approach is the alternative suchas Newton's graphical environment for parallel programming [New93]. A graph editing toolthat is capable of processing all necessary attributes in con�guration-level programming canhelp to deal with a large program of many components. The tool may produce the textualequivalent MIL program as an output.Another important research direction is improving the program performance throughmore aggressive program transformations that have been successful in general compiler-assisted optimization areas. Especially, it is interesting to see there is an analogy betweenthe transformation-based RPC compilation and RISC (Reduced Instruction Set Computers)compilers. It is illustrated in Figure 7.1 and Figure 7.2. Figure 7.1 (b) shows that the CISCcode needs six memory accesses while the RISC one needs only four at (1), (2), (4), (6) inFigure 7.2 (c). This is due to an optimization known as spill code reduction. Figure 7.272

(1) A := B + C(2) B := A + C
(a) High-level

(1) ADD A, B, C(2) ADD B, A, C
(b) CISC

(1) LD rB,B(2) LD rC,C(3) ADD rA,rB,rC(4) ST A,rA(5) ADD rB,rA,rC(6) ST B,rB(c) RISCFigure 7.1: Generated codes with RISC and CISC instructions.
(1) a = f(a, b)(2) b = g(a, c)(a) RPC code

(1) Send(f(), a, b)(2) a = Receive(f())(3) Send(g(), a, c)(4) b = Receive(g())(b) Compiled code
(1) Send(f(), a, b)(2) Send(g(), c)(3) a = Receive(f())(4) b = Receive(g())(c) Optimized codeFigure 7.2: Spill code reduction in a distributed program.shows the e�ect of the similar optimization, that is already presented in Algorithm 5.2.This is because a memory access in RISC programs appears in a form of message passingin RPC programs. More important aspects of RISC compilers are on instruction schedul-ing. Basically RISC programs contain many pipeline bubbles (NOP: No OPeration) to avoidpipeline interlocks [Pat85]. Instruction scheduling is how to �ll up those bubbles with usefuloperations safely without changing program semantics. Moreover, message passing primi-tives also have varieties in its functional complexity. For example, in PVM, pvm psend()packs and sends a set of data while there are speci�c primitives of pvm pack() for packingand pvm send() for sending. Using reduced primitives allows more leeway for aggressivetransformations.Our research strategy shows how to enhance current interconnection technologies to sup-port automatic analysis and tailoring of distributed applications for use in a wide range oftarget application environments. As a result of our work, programmers can build applicationsusing simple structures that are easy for them to reason about, yet still have performanceimprovements that would have been very complex and costly for them to build-in manually,with an aid of compiler optimization techniques.73

Bibliography[ABLL92] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler activations:E�ective kernel support for the user-level management of parallelism. ACMTransactions on Computer Systems, 10(1):53{79, February 1992.[AL93] S. P. Amarasinghe and M. S. Lam. Communication optimization and codegeneration for distributed memory machines. In Proceedings of the ACMSIGPLAN '93 Conference on Programming Language Design and Implemen-tation, pages 126{138, June 1993.[And91a] G. R. Andrews. Concurrent Programming: Principles and Practice. TheBenjamin/Cummings Publishing Co., Inc., 1991.[And91b] G. R. Andrews. Paradigms for process interaction in distributed programs.ACM Computing Surveys, Vol. 23(1), March 1991.[ARZ92] F. Allen, B. K. Rosen, and K. Zadeck. Optimization in Compilers. ACMPress, 1992.[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,and Tools. Addison Wesley, 1986.[ATK91] A. L. Ananda, B. H. Tay, and E. K. Koh. Astra { An asynchronous remoteprocedure call facility. In Proceedings of the 11th International Conferenceon Distributed Computing Systems, pages 172{179, 1991.[Bar78] J. M. Barth. A practical interprocedural data
ow analysis algorithm. Com-munication of the ACM, Vol. 21(9):724{736, September 1978.[BB90] K. P. Belkhale and P. Banerjee. An approximate algorithm for the parti-tionable independent task scheduling problem. In Proceedings of '90 Inter-national Conference on Parallel Processing, August 1990.[BDZ88] P. A. Buhr, Glen Ditch�eld, and C. R. Zarke. Adding concurrency to astatically type-safe object-oriented programming language. In Proceedingsof the ACM SIGPLAN Workshop on object-based concurrent programming,pages 18{21, September 1988.74

[BELL89] B. N. Berstad, T. E.Anderson, E. D. Lazowska, and H. M. Levy. Lightweightremote procedure call. In Proceedings of 12th Symposium on Operating Sys-tems Principles, pages 102{113, 1989.[BELL90] B. N. Berstad, T. E.Anderson, E. D. Lazowska, and H. M. Levy.Lightweight remote procedure call. ACM Transactions on Computer Sys-tems, Vol. 8(8):37{55, February 1990.[bJTF92] Edited by J. T. Feo. A Comparative Study of Parallel Programming Lan-guages: The Salishan Problems. North-Holland, 1992.[BL93] R. Butler and E. Lusk. Monitors, messages and clusters: The p4 parallelprogramming system. Technical Report MCS-P362-0493, Argonne NationalLaboratory, Argonne, IL, 1993.[BLA+93] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sand-berg. Virtual memory mapped network interface for the shrimp multicom-puter. Technical Report TR{437{93, Princeton University Computer ScienceDepartment, November 1993.[BMW85] W. C. Brantley, K. P. McAuli�e, and J. Weiss. RP3 processor-memoryelement. In Proceedings of the 1985 International Conference on ParallelProcessing, August 1985.[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACMTransactions on Computer Systems, Vol. 2(1):39{59, February 1984.[BR89] L. Bomans and D. Roose. Benchmarking the iPSC/2 hypercube multipro-cessor. Concurrency: Practice and Experience, Vol. 1(1):3{18, September1989.[BST89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages fordistributed computing systems. ACM Computing Surveys, Vol. 21(3):260{322, September 1989.[Cal88] D. Callahan. The program summary graph and
ow-sensitive interproceduraldata
ow analysis. In Proceedings of the ACM SIGPLAN '88 Conference onProgramming Language Design and Implementation, pages 47{56, June 1988.[Car93] John B. Carter. E�cient Distributed Shared Memory Based On Multi-Protocol Release Consistency. PhD thesis, Rice University, sep 1993.[CFR+91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.E�ciently computing static single assignment form and the control depen-dence graph. ACM Transactions on Programming Languages and systems,13:451{490, October 1991. 75

[CG89] N. Carriero and D. Gelernter. How to write parallel programs: A guide to theperplexed. ACM Computing Surveys, Vol. 21(6):322{356, September 1989.[CG90] N. Carriero and D. Gelernter. How to write parallel programs: A �rst course.MIT Press, 1990.[CLZ95] M. Cierniak, W. Li, and M. J. Zaki. Loop scheduling for heterogeneity.In Proceedings of the 4th International Symposium on High-PerformanceDistributed Computing, August 1995.[CMZ92] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.Scienti�c Programming, 1(1):31{50, 1992.[Coo80] R. P. Cook. *MOD { A language for distributed programming. IEEE Trans-actions on Software Engineering, Vol. 6(6), November 1980.[Coo85] E. C. Cooper. Replicated Distributed System. In Proceedings of the 10thACM Symposium on Operating Systems Principles, pages 63{78, 1985.[Cor91] John R. Corbin. SUN RPC: The art of distributed applications: programmingtechniques for remote procedure calls. Springer-Verlag, 1991.[CP91] J. R. Callahan and J. M. Purtilo. A packaging system for heteroge-neous execution environments. IEEE Transactions on Software Engineering,Vol. 17(6):626{635, June 1991.[CS93] Clemens H. Cap and Volker Strumpen. E�cient parallel computing in dis-tributed workstation environments. Parallel Computing, Vol. 19:1221{1234,1993.[DK76] F. DeRemer and H. Kron. Programming-in-the-large versus programming-in-the-small. IEEE Transactions on Software Engineering, Vol. 2(2), June1976.[DMSM94] H. G. Dietz, T. Muhammad, J. B. Sponaugle, and T. Mattox. PA-PERS:Purdue's Adapter for Parallel Execution and Rapid Synchronization.Technical Report TR{EE94{11, Purdue University School of Electrical En-gineering, March 1994.[ELZ86a] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated and sender-initiated adaptive load sharing. Performance Evalua-tion, Vol. 6:53{68, 1986.[ELZ86b] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive loadsharing in homogeneous distributed systems. IEEE Transactions on SoftwareEngineering, Vol. 12(5):662{675, May 1986.76

[Fel79] J. A. Feldman. High level programming for distributed computing. Commu-nication of the ACM, Vol. 22(6), June 1979.[FJL+88] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. SolvingProblems on Concurrent Processors, volume 1. Prentice Hall, 1988.[For93] The MPI Forum. MPI: A Message Passing Interface. In Proceedings Super-computing '93, pages 878{883, 1993.[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D.Warren. The program depen-dence graph and its use in optimization. ACM Transactions on ProgrammingLanguages and systems, 9(3):319{349, July 1987.[FvDF+93] J. D. Foley, A. van. Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips.Introduction to Computer Graphics. Addison-Wesley Publishing Company,1993.[GBSS89] J. L. Gustafson, R. E. Benner, M. P. Sears, and T. D. Sullivan. A radarsimulation program for a 1024-processor hypercube. In Proceedings of Su-perComputing 1989, pages 96{105, 1989.[Geh84] N. H. Gehani. Broadcasting Sequential Processes (BSP). IEEE Transactionson Software Engineering, Vol. 10(4), July 1984.[Geh86] N. H. Gehani. Concurrent C. Journal of Software Practice and Experience,Vol. 16:821{844, September 1986.[Geh90] N. H. Gehani. Message passing in concurrent C: Synchronous versus asyn-chronous. Journal of Software Practice and Experience, Vol. 20(6):571{592,June 1990.[Gen81] W. M. Gentleman. Message passing between sequential processes: The replyprimitive and the administrator concept. Journal of Software Practice andExperience, Vol. 11:435{466, May 1981.[GG88] D. K. Gi�ord and N. Glasser. Remote pipes and procedures for e�-cient distributed communication. ACM Transactions on Computer Systems,Vol. 6(3):258{283, August 1988.[Gib87] Philip B. Gibbons. A stub generator for multilanguage RPC in heterogeneousenvironments. IEEE Transactions on Software Engineering, Vol. 13(1), Jan-uary 1987.[GP92] M. Girkar and C. D. Polychronopoulos. Automatic extraction of functionalparallelism from ordinary programs. IEEE Transactions on Parallel andDistributed Systems, Vol. 3(2):166{178, March 1992.77

[GWWECL94] A. S. Grimshaw, J. B. Weissman, E. A. West, and Jr. E. C. Loyot. Meta-systems: An approach combining parallel processing and heterogeneous dis-tributed computing systems. Journal of Parallel and Distributed Computing,Vol. 21:257{270, 1994.[Hal85] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic com-putation. ACM Transactions on Programming Languages and systems,Vol. 7(4):501{538, October 1985.[Hal90] Mary W. Hall. Managing Interprocedural Optimization. PhD thesis, RiceUniversity, oct 1990.[HKT92] S. Hiranandani, K. Kennedy, and C.-W Tseng. Compiling fortran Dfor MIMD distributed-memory machines. Communication of the ACM,35(8):66{80, August 1992.[HL82] M. Herlihy and B. Liskov. A value transmission method for abstractdata types. ACM Transactions on Programming Languages and systems,4(4):527{551, October 1982.[Hoc94] R. W. Hockney. The communication challenge for MPP: Intel paragon andmeiko CS-2. Parallel Computing, 20(3):389{398, March 1994.[HQ91] P. J. Hatcher and M. J. Quinn. Data-parallel programming on MIMD com-puters. MIT Press, 1991.[JZ93] D. B. Johnson and W. Zwaenepoel. The Peregrine high{performance RPCsystem. Journal of Software Practice and Experience, Vol. 23(2):201{221,February 1993.[KLS+94] C. Koelbel, D. Loveman, R. Schreiber, Jr G. Steele, and M. Zosel. The HighPerformance Fortran Handbook. MIT Press, 1994.[KP95] T.-H. Kim and J. M. Purtilo. Con�guration-level optimization of RPC-baseddistributed programs. In Proceedings of the 15th International Conferenceon Distributed Computing Systems, May 1995.[KP96a] T.-H. Kim and J. M. Purtilo. Load balancing for parallel loops in workstationclusters. In Proceedings of the 25th International Conference on ParallelProcessing, pages III:182{190, August 1996.[KP96b] T.-H. Kim and J. M. Purtilo. A source-level transformation framework forRPC-based distributed programs. In Proceedings of the 5th IEEE Interna-tional Symposium on High Performance Distributed Computing, pages 78{87,August 1996. 78

[Kra90] J. Kramer. Con�guration programming | a framework for the developmentof distributable systems. In Proceedings of the IEEE International Confer-ence on Systems and Software Engineering (CompEuro 90), May 1990.[KS94] Philip Krueger and Niranjan G. Shivaratri. Adaptive location poli-cies for global scheduling. IEEE Transactions on Software Engineering,Vol. 20(6):432{444, June 1994.[KW85] C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallelprocessors. IEEE Transactions on Software Engineering, Vol. 11(10):1001{1016, October 1985.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.Communication of the ACM, Vol. 21(7):558{565, July 1978.[LHG86] B. Liskov, M. Herlihy, and L. Gilbert. Limitations of synchronous communi-cation with static process structure in languages for distributed computing.In Proceedings of the 13th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 150{159, 1986.[LK87] Frank C. H. Lin and Robert M. Keller. The gradient model load balanc-ing method. IEEE Transactions on Software Engineering, Vol. 13(1):32{38,January 1987.[LS88] B. Liskov and L. Shrira. Promises: Linguistic support for e�cient asyn-chronous procedure calls in distributed systems. In Proceedings of the ACMSIGPLAN '88 Conference on Programming Language Design and Implemen-tation, pages 260{267, June 1988.[MBR87] Bruce Martin, Charles Bergan, and Brian Russ. PARPC: A system for par-allel remote procedure calls. In Proceedings of the International Conferenceson Parallel Processing, pages 449{452, 1987.[New93] Peter W. Newton. A Graphical Retargetable Parallel Programming Environ-ment and Its E�cient Implementation. PhD thesis, The University of Texasat Austin, dec 1993.[Pat85] D. Patterson. Reduced Instruction Set Computers. Communications ofACM, pages 8{21, Jan 1985.[PK87] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practi-cal scheduling scheme for parallel supercomputers. IEEE Transactions onComputer, Vol. C-36(12):1425{1439, December 1987.[Pol88] C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Aca-demic Publishers, 1988. 79

[Pur94] J. M. Purtilo. The polylith software bus. ACM Transactions on ProgrammingLanguages and systems, Vol. 16(1):151{174, January 1994.[PW86] D. A. Padua and M. Wolfe. Advanced compiler optimizations for super-computers. Communication of the ACM, Vol. 29(12):1184{1201, December1986.[RB93] S. Ramaswamy and P. Banerjee. Processor allocation and schedulingof macro data
ow graphs on distributed memory multicomputers by thePARADIGM compiler. In Proceedings of the 22nd International Conferenceon Parallel Processing, 1993.[SA89] M. Sullivan and D. Anderson. Marionette: a system for parallel distributedprogramming using a master/slave model. In Proceedings of the 9th Interna-tional Conference on Distributed Computing Systems, pages 181{188, 1989.[SB90] M. Schroeber and M. Burrows. Performance of Fire
y RPC. ACM Trans-actions on Computer Systems, 8(1):1{17, February 1990.[SLR+95] E. Su, A. Lain, S. Ramaswamy, D. Palermo, E. Hodges IV, and R. Baner-jee. Advanced compilation techniques in the PARADIGM compiler fordistributed-memory multicomputers. In Proceedings of the InternationalConference on Supercomputing '95, 1995.[Son94] Jianjian Song. A partially asynchronous and iterative algorithm for dis-tributed load balancing. Parallel Computing, Vol. 20:853{868, 1994.[SS86] M. Satyanarayanan and E. H. Siegel. MultiRPC: A parallel remote proce-dure call mechanism. Technical Report CMU-CS-86-139, Carnegie-MellonUniversity, 1986.[SS94] B. K. Schmidt and V. S. Sunderam. Empirical analysis of overheads incluster environments. Concurrency: Practice and Experience, Vol. 6(1):1{32, February 1994.[Sun90] V. S. Sunderam. PVM: A framework for parallel distributed computing.Concurrency: Practice and Experience, Vol. 2(4):315{339, December 1990.[TN91] T. H. Tzen and L. M. Ni. Dynamic loop scheduling for shared-memorymultiprocessors. In Proceedings of '91 International Conference on ParallelProcessing, pages II:247{250, August 1991.[TY86] P. Tang and P. C. Yew. Processor self-scheduling for multiple nested parallelloops. In Proceedings of '86 International Conference on Parallel Processing,pages 528{535, August 1986.80

[vHK94] R. von Hanxleden and K. Kennedy. Give{N{Take | A balanced code place-ment framework. In Proceedings of the ACM SIGPLAN '94 Conference onProgramming Language Design and Implementation, pages 107{120, June1994.[WFN90] E. F. Walker, R. Floyd, and P. Neves. Asynchronous remote operation indistributed systems. In Proceedings of the 11th International Conference onDistributed Computing Systems, pages 253{259, 1990.[Wil94] Gregory V. Wilson. Assessing the usability of parallel programming systems:The cowichan problems. In Proceedings of the IFIP WG 10.3 Working Con-ference on Programming Environments for Massively Parallel DistributedSystems, April 1994.[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concurrent programming in ABCL/1. In Proceedings of OOPSLA'86, pages 258{268, 1986.

81

