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Chapter 1

Introduction

One of the most practical applications of information theory is the optimal dis-
cretization of a continuous-alphabet source, known as quantization. The part
of information theory that deals with the theorctical limitations ol this proce-
dure is called rate-distortion theory. Rate-distortion theory gained a lot of
interest in the late 60s and almost reached its limits in the mid-70s. Unfortu-
nately most real-world problems are too complicated {or information theorists to
tackle them. Even for very simple problems, rate-distortion theory can only he
used to obtain performance bounds that cannot be exceeded by any quantizer.
However, just like in the channel coding problem, information theory does not
provide us with specific tools for designing actual source quantizers, but rather
helps to gain an insight to the problem that can be uselul in developing practical
quantizers.

The rate-distortion function R(D) ol a discrete-time stationary and ergodic

N

source {X,}72, is defined by [1]

RID) = Tim ~ 12, (D) (1.1)

== g



where R, (1)) is given by

Ro(D)= inl (X" X", (1.2)
P XX ) E{d (X X ) <D

The function d, : R" x R" + [0,00), is the distortion measure which
quantifies the “badness™ of representing x by x. According to Shannon’s theory,
R(D) is the smallest rate at which a source can be encoded so that the average
distortion does not exceed D. An optimal vector quantizer achicves the rate-
distortion bound as the dimensionality approaches infinity [2]. Therelore, in
theory, we can obtain vector quantizers that operate arbitrarily close to the
rate-distortion bound [2, 3]. In practice, however, this is not possible because
ol severe complexity Hmitations. Since the convergence of a vector quantizer’s
(VQ) performance to the optimal achievable perlormance as a lunction of block
size is slow [1. 5], there is a great need for low-complexity quantization schemes
that permit reduction in the encoding complexity without any (or small) loss
of performance. This can be achieved by imposing a structure on the VQ and
optimize the VQ subject to the constraints of the chosen structure. The choice
of the structure is based on ad hoc techniques and the resulting optimization
problem is not always straightforward. While the computational and memory
complexity of an unconstrained VQ grows exponentially with the dimension, a
structured VQ usually has a complexity that grows only polynomially with the
dimension. Clearly, at a given encoding rate, a constrained VQ will vield a higher
average distortion than an optimal unconstrained VQ of the same dimensionality.
However. when we look at the distortion achieved by different quantizers of the
same complexity, instead of the same dimensionality, then a structured VQ may
in fact. but not necessarilv. vield a smaller distortion.  Of course. the notion

of complexity is not as well delined as we would like. T general the number of



additions and multiplications required to encode a source sample is a meaningful,
and in most cases uselul, measure of the computational complexity, and the
amount of memory needed for encoding is a measurce of the memory complexity.
IFor example, the memory and the computational complexity of an unstructured
(exhaustively scarched) VQ are both proportional to the number of codevectors
in the codebook. For an n-dimensional VQ of rate [2, this cqnals 27,

A well-known structured VQ is the tree-structured VQ (1TSVQ) [6] in
which the codebook is organized in a tree structure that can he searched subop-
timally but very efficiently by a low-cost encoder which performs a tree search
ol the codebook nstead of a costly exhaustive search. TSVQ suffers small per-
formance degradation and reduces significantly the computational complexity.
These beneflits however, come at the cost of an increase in the memory com-
plexity, which limits its use to small values of the product Ri, where IR denotes
the encoding rate in bits per source sample. and n denotes the dimension of
the TSVQ. Another structured VQ is the lattice VQ [7T] which does not require
traiuing, and theoretically has a good performance with memoryless sources that
are almost uniform, or any memoryless source when the dimension is sufliciently
large. Another class of structured VQs are the residual quantizers (RQs) [8].
An RQ typically consists ol a cascade of exhaustively scarched VQs (1ESVQs).
At each stage, an ESVQ ol relatively emall size encodes the residual error of the
previous stage: the residnal vector of the first stage is simply the input source

veclotr.



1.1 Motivation and Contribution

In this thesis we review a particular form ol RQ known as reflection symmetric
RQ (rRQ). rRQs were introduced by Barnes in [9] as a very low complexity
type of RQ. We have investigated the possibility of incorporating rRQ into a
system that cncodes the line spectrum pair (LSP) vectors of specch. The
LSP parameters of speech form an efficient way ol speech modeling that vields
good results in compression of speech. In order to obtain quantized speech
of transparent quality by encoding its LSP parameters. we need to quantize
the 10-dimeunsional LSP vectors at an encoding rate that exceeds 2.3 hits per
sample. For these values of dimension and rate it is not possible to build a full
scarch VQ becausce of the enormous amount ol memory required to store the
223 codevectors of the codebook and the huge computational power required to
search exhaustively a codebook of that size. Therefore. other forms of reduced
complexity VQ have been used in quantizing LSP vectors of speech. One of
the most promising techniques is split-VQ in which the [0-dimensional LSP
vector is split into two or three sub-vectors of smaller size. cach of which is
encoded by an appropriately designed vector quantizer.  The motivation for
using rtRQ in the context of LSP coding stems from the fact that rRQ has so low
complexity that we can easily design and realize such quantizers {or the above
values of dimension and rate. Our first system s a linite-state quantizer based
on rRQ (I'S-rRQ). I'S-rRQ is one of the methods that can be used to utilize
the inter-vector memory between successive LSP vectors without introducing
additional delay to the system. The second technique we have investigated,
employs rRQ as the building block in a predictive coding system (P-rRQ). Like

I'S-rRQ, this method utilizes the inter-vector memory without any additional



delay. The drawback of this scheme is that it is not robust to channel noise
since it may result in error propagation. The last method we used is a very
simple and straightforward application of rRQ to LSP coding, that utilizes the
inter-frame correlation very efficiently. In this technique, called matrix rRQ,
two or three LSP vectors are concatenated and quantized using an rRQ of the
resulting dimensionality. This permits utilization of the inter-vector memory of
the source, but has the drawback that it introduces an additional delay which is
an undesirable property in two-way communication syvstems.

The next chapter discusses residual quantizers and describes an algorithm
for joint optimization ol its stages. Chapter 3 introduces rRQ and describes a
design algorithim. Results of rRQ on various types ol sources arve given. Chapter
1 describes the use of rRQ in two methods ol LSP coding. Finallv. Chapter 3

imcludes a summary and conclusions.
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Chapter 2

Residual Vector Quantizers

This chapter is organized as follows.  Section 2.1 reviews the basies of guan-
tization theory. The structure of RQs is presented in Section 2.2 followed by

section 2.3 which describes the optimization procedure of RQs.

2.1 Optimal Vector Quantization

We consider the problem ol quantizing a random vector X ol dimension nowith
probability distribution /'y () using an n-dimensional VQ.

An n-dimensional VQ is defined by the lollowing three cntities: 1) an indexed
subset A = {yo.y1.....¥y~n_1} of " called the codebook. 2) a partition
P ={5.5,....5 1} ol R" and 3) a quantizer mapping () : IR" — A that
maps each vector x in R" to a unique codevector yi if x € 5. The triple
(A, Q. P) uniquely specifies a VQ. The necessary conditions for optimality are

[10] (i) the centroid condition

Y, = EX|XE.5'1 {X|X < 'C”,/}t (2. y

0



and (i1) the nearest neighbor condition

X €S, < dxy,) <dx.yy) Yk

N
[N

In general. the above conditions are not sullicient for global optimality. but
there 1s a widely held conjecture that they are suflicient for local optimality.

However, there is no general theoretical derivation of this result [10].

2.1.1 An Algorithm for Vector Quantizer Design

The most popular design algorithm for VQs. involves the nse ol a training set
ol data generated by the probability distribution that describes the source ran-
dom process. This algorithm, known as the Linde-Buzo-Gray (LBG) [1] or the
Generalized Llovd algorithm. applies iteratively the two necessary conditions of
optimality (2.1) and (2.2) on the training set. Thisis done i two steps: st the
training data arve partitioned by associating each training vector with its nearest
codevector using equation (2.2): then the centroid of each cell 1s computed using
cquation (2.2).

Gray, Niefler and Linde [12] have derived an ergodic theorem which states
that il the source is a stationary ergodic discrete time process. then in the limit
as L — oo, the LBG algorithm applied on a sample distribution of a training
sequence of length L will produce the same codebook as il it were ran on the
actual underlyving distribution with the same initial codebook. This is true for

a broad class of distortion measures that satisly the lollowing rules:

I. For anv fixed x € R". d(x,y) is a convex [unction in y.

2. For any fixed x, if y(n) — oo as n — oo, then d(x.y(n)) — ~.



3. For any bounded sets By, By € IR, supyep, yep, dix.y) < x.

Although LBG is an algorithm that always converges to a solution. there is no
guarantee that the solution will be globally optimal. In [I2] it is proven that
under mild restrictions, a vector qnantizer designed by applying the LBG algo-
rithm on a training sequence is locally optimal. Some algorithms like simulated
annealing [13] attempt to find global optima instead ol just local optima. How-
ever, the additional gain is usually moderate to small, and in many cases doces

not justify the additional delay in the design procedure [10].

2.2 Residual Quantizers

Unstructured VQ is conceptually the simplest kind of VQ and for a given block
size yields the smallest (subject to local optimality) average distortion among
all types of memoryvless VQs. However, both its memory and computational
complexity are proportional to the number of codevectors 2. Thus, its com-
plexity grows exponentially with the product Reowhere R denotes the rate and
k denotes the dimension of the VQ. When the product A is greater than 10,
the rcalization of such VQs becomes extremely complex. In order to he able
to design and implement VQs with large dimensions and/or rates. some sort of
structure should be imposed on the codebook and the encoder. A popular kind
of structured VQ is the residual quantizer (RQ).

We now proceed to the definition ol RQs and presentation of necessary con-
ditions for optimality. I'he solution to this problem is aided by the introduction
of the equivalent single-stage quantizer which is delined as a single-stage

VQ that for anv input sequence produces the same outpul sequence as il the
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Figure 2.20 Two-stage residual quantizer decoder

input was quantized by the RQ [14].

2.2.1 Definition of RQ

The encoder and decoder of a two-stage RQ ave depicted in Figures 2.1 and 2.2,
respectively.

Let X' represent a source vector with probability distribution ['yi (). A resid-
wal quantizer with 7 stages is delined as a sequence of 2 VQs {{(AFCPP Q1) | <
p < PY,ocombined in such a way that (A P1Q') quantizes the source out-
put vector x' and (A7 + 1, PP 4 1. Q% 4+ 1) quantizes the residual error vector

xPH = xr — QF(x”) ol the previous stage (A7 PP Q) for | < p < P.

9



We denote by N the size of the stagewise codebook AP = {yy, 1. ..., ¥, 1.

In the following, the superscript of a given quantity specifies its stage number,

and the subscript specifies its index. The map QF(+) is the composition of an

encoder map EP(-) : " — J? and a decoder map DP(-) : J? — A”. where

JP={0,1.....N? = 1} is the index set of stage p. The indices produced by the

et o 5 yE T Py

encoder maps are concatenated to form a P-tuple j7 = (j' 7% .. j7). These

P-tuples are called product codewords. The decoder DP generates the code-

! 2

vector y*, corresponding to the index j? and the final quantized version %' of

the input vector x!' is the direct sum ol the stagewise codevectors. i.c.

]7
=3y, (2.3)

p=1
2.2.2 Definition of Equivalent Quantizers

An optimal RQ is one that minimizes the average distortion
: P
o Iyt ! 9
ELdX. X)) = /(l[x SO QN d iy (2.4)
i p=I
The minimization ol the above is simplified by introducing the equivalent uan-
tizers [9]. Basically an equivalent quantizer is just a single-stage gnantizer that
proditces the same representation for the sonrce. Its advantage is that compu-
tation of the distortion in this case does not require knowledge of the unknown
joint distribution [yi yr(-). We denote the equivalent quantizer by the triple

(AP, Q7). The equivalent codebook A is the direct sum codebook formed

by the stagewise codebooks A ie. A4t = Al + o 4+ 47 The equivalent
codevectors y' € A7 are indexed by the P-tuple j7 = (;' /2 /7)) and cach

ol them represents a path through a tree that can be associated with the RQ.

The j7th equivalent cell S(j”) ¢ R" contains all the vectors in IR that



are mapped into the j7th equivalent codevector y(j””). The equivalent par-
tition P is the collection of all equivalent cells. The equivalent mapping
Q°: IR* — A is defined by Q<(x') = y (3”) i x! € S(j7).

The average distortion of the equivalent quantizer, which is the same as that

of the original RQ. takes the much simpler form

(8
g}
—

ELd(X', X)) = /(/[xlq Q (x1)d 1. (.

The above quantity is minimized by the optimal RQ.

2.3 Optimization of Residual Quantizers

First we consider the scalar case under the squared-crror distortion measure,
Our objective is to choose all stagewise codebooks ¥ and partitions P¥ so that
the resulting RQ minimizes the average distortion. In the following we assume
that the size of cach stagewise codebook is predetermined and fixed. The choice
of the size of cach stagewise codebook is usually made in an ad-hoc lashion and

will not be discussed in this thesis.

2.3.1 Optimal Scalar Residual Quantizers

Optimal Stagewise RQ Levels

[Miest we calculate the optimal stagewise codebooks A7 The expression (2.5) for
the average distortion takes the form
' Il o P2y Py g '
LA XY = [Ty G e (2.6)

Assuming a lixed partition P* and fixed stagewise codehooks except [or codebook

AP E{AXT . XY is minimized by setting its partial devivative with respect to



Yo equal to zero. After some algebra this yields the result [1]

Cirens, fsegey(t = Ty i) Ly (!

Ype = : . (2.7)
’ Z_i"’e/lfﬂ, s g") Jxr(et)da!
where H[, is the set of all j”” such that the pth clementof j7 = (' . e 0"

is equal to &7, e, HE, = {37 : 77 = &}, If we define the pth grafted branch
as

P e/ P P 9w
)=y (G0 = (2.8)

and the pth graft residual as

&=l = g"(i"), (2.9)
then (2.7) becomes

P

JE€ Tirens, langr [xilg"(§7) + €]de
;[//.'/’ — - .

[ Z,ij)E//f,J I(,'//(jl")./‘_\'y [[//’(jl')) _+_ {/‘](/é/./

(2.10)

The sum in the denominator can be viewed as the conditional pdf ol =7 given

Ypo. After some manipulation we can write this conditional pdl as

P QP ) Z-iPEl’lfn ]G’J(jj”)f‘\'] ('L'J )['(///(']I)) + {V-NJ ("’ I )
R D) = - - . 2.
b Prob(a! € Hj.,.)

./.E/J|.,_-/—'es,{’,) (&

where we have defined Hj, = Uirenr, S937). The expression for the optimal

quantization levels becomes

‘(/Zf/, = /Sﬂ/’E’"\J,'/'E,S;“,/,,(E”1'1.0 c ﬁ';j,,)(/éﬁ = /:‘{Eﬂl,,./) c s}/'/} (.

(O
N
—

for Il <p< P and <A < N7,

Equation (2.12) describes the stagewise quantizer levels as a conditional ex-
pectation and adds some useful insight to the problem ol joint optimization. In
general, the equivalent codevectors of an RQ are constrained by the underlyving

tree structure. Changing a single stagewise codevector allects all the equivalent



codevectors which contain that modified stagewise codevector. This constraint
makes it in general impossible to satisfy the centroid condition which is a nec-
essary condition for optimality. Instead, what we can do is choose the stage-
wise codevectors yp, such that the expected (conditional) distortion given that
' € H}, is minimized.

At this point we can make an important comparison between the traditional
(sequential) design method for RQs and the above condition ol optimality. In the
sequential design of RQs, the stagewise quanta yp, are chosen to be the centroids
of the residuals that result from the previous stages only. T'he optimal valnes of
Upe» however, described by equation (2.12) suggest that thev are the centroids of
the residuals that result from all other stages, not only the previous ones. For

this reason this technique is called joint optimization of the stages ol an RQ.

Optimal Stagewise Partitions

This optimization problem is simplified by first solving the corresponding prob-
lem for the equivalent quantizer. Clearly, the optimal equivalent partition P is
o/))

the one that maps each input sample ' into that equivalent codevector yo(j

in the equivalent codebook A¢ that minimizes the distortion de'. ). Thus,
e sgh if Al oy Gy <det kv K (2.13)

The above equation describes the well-known nearest-neighbor condition for
. . e . . Co. , .~ )
optimality. Next, we specify a sequence of stagewise partitions {P P2 .. P}

that yield the above equivalent partition. Equation {(2.13) can be written as

e st if (/(:z'l.y‘lll + ,1/.‘7’_, o ',/j;,,) <ot A A AT,
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Figure 2.3: The first stage partition P! for an unentangled tree (thick line for

S1and thin line for S)).

From this it is clear that the optimal first stage partition cells satisfy
Gl o Aol g2 P NIy 2 AR
€85 il dlc oy + A7+ AT Sd(e AT AT AT (200D)

Hthe distortion measure is translation invariant. i.e. d{w.y) = d(aw—=z,y—=). then
it can be shown recursively that the optimal stagewise partitions PP, | < p < P

are defined by

eSOyl AT e AT < AT T AT,
(2.16)
where @ = oF = 2 Qi ().

To illustrate the various forms that stagewise partitions may take. depending
on the specific stracture of the tree. we give two examples in Figures 2.3 and
2.

[t 15 useful to determine whether the tree structure of RQ results in a reduc-
tion i the encoding complexity when optimal stagewise partitions are used. In
Figure 2.3 the stagewise partition cells are connected intervals and therelore a

single floating point comparison is required to implement it. Since this is true
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for subsequent stages as well 1t s readily seen that the encoding complexity is re-
duced. I N is the total number of codevectors then the complexity is reduced
from N to log N© by using a binary unentangled tree that implements the
given equivalent quantizer. The situation is quite different in the case depicted
i Igure 2000 Here, we see that the fivst stage partition cells are not connected
tervals any more. Thus, more than one comparison may he needed in order to
perform the encoding step of the first stage. In fact. for a completely entangled
tree, the encoding complexity may be the same as that ol the corresponding
one stage quantizer. The above discussion shows that RQs with optimal parti-
tions may or may not reduce the encoding complexity, depending on whether
the corresponding tree is entangled or not [9]. Oue may choose, however, to
search a given RQ codebook sequentially even when this does not realize the
optimal partition. Tu this case the encoding complexity is reduced at the cost
of an increase in the distortion. Another suboptimal encoding algorithm is the
M-algorithm which at cach stage keeps track ol the VM best candidate paths

through the tree [I5]0 In many cases A has to be considerably large in order
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Figure 2.5: Optimal first stage partition (bottomline) and the partition resulting

from a tree-structured encoder for an entangled tree.

to obtain a performance close to that of the exhaustively searched syvstem, and
therefore, the computational savings are not very signiflicant [9].

In general. if an RQ 1s to be used in a syvstem of low encoding complexity,
the encoder should have a tree structure. From Figure 2.3 we see that the op-
timal stagewise partitions can be realized by such an encoder if the tree that
corresponds to the RQ is not entangled. However. if the tree is entangled, then
an encoder with a tree structure is suboptimal. This is illustrated in Figure 2.5
where we see the optimal fivst stage partition and the lirst stage partition that re-
sults from a tree-structured encoder. Clearly, the low-complexity tree-structired
encoder is suboptimal. One way to see thisis the lollowing: The equivalent code-
vectors ¢ and yi will never he chosen by this encoder. This. of course, is a very

imefficient use ol the codebook and is due to the entanglement of that codebook.



2.3.2 Optimum Vector Residual Quantizers

After discussing the necessary conditions for optimality ol scalar RQs, we now
turn to the more general problem of vector RQs. One of the dilferences between
these two cases is that for veetor RQs, the encoding algorithim can be inefficient

even when the (vector) trec is not entangled.

Optimum Stagewise Codevectors

We need to specify the stagewise codebooks A", A% ... A" that for a given set
of stagewise partitions P1 P4 ., PP minimize the average distortion
E{dX" X" = {dX'.Q(X'))) (2.17)

Z/ [AX" vy GPIX e s gMPeX! e s g7 2

Again. under the assumption that the distortion measure is translation invariant.,

we can write the above as

ELAXN XN = 3 X = gt (7). vl IX e ST e X! e 570
3"
= > ) X yiX e s G-
kjteHy,
Pr(Xh e s ). (2.19)

. . . . -y 7. > .
[ntroducing again the pth gralt vesidual £ = x' — g#(j”). we can write

—_—
[

EAXT XYY = ST {dE y )X e HE P X e HYL). 2.20)

Using the delinition of Hj, the above is written
E{d(X'. X)) = ZL [y )X e SEPHX e S7) (2.21)

> Z inf E{d(E" u)| X" e S[PrX" € SL). (2.22)
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In [14] it is shown that the infimum in (2.22) is actually achievable if for all

D )
j” € H], the sets S¢(J7) have non-zero measire.

Finally, the necessary condition for optimality, becomes
EA{dE" y )X €SP} = mm E{d(E’ . u)| X" € S} (2.23)

The expectation in the above equation uses the conditional pdl of the graft

residual fzuxresr, (+) given by

Sirenr, laroir Ix1 (8°(37) +¢7)

= o (EP1XP € 87 ) =
A/:/’|Xﬂehz,,(€ lX € 'A'r') PI'(XI e’ ;’/)

Optimum Stagewise Partitions

The optimum partitions for this case follow {rom the same analvsis as in the

scalar case. Therclore the optimal stagewise partitions are given by

XV € Sh = d(xyl 4 AT e ATy < AP e )

[
!
~—

Equations (2.23) and (2.25) describe the necessary conditions for optimality
of the stagewise codevectors and the stagewise partitions in a residual vector
quantizer. It turns out that in most cases the optimal partition cannot be
rcalized by a low-complexity tree-scarched encoder. Thus, although we have
succeeded in improving the prelormance of an RQ. this was done at the cost
of an increase of the encoder complexity. In the following chapter we introduce
an additional constraint to the already constrained RQ codebook in order to he

able to design jointly optimized RQs while keeping the encoder complexity low.



Chapter 3

The Reflection Symmetric Residual

Quantizer

RQs are introduced for reducing the complexity of codebook scarch. However.
the reduction in complexity requires that the codebook he scarched using a tree-
search algorithm. But a joint optimization of all the stages of an RQ results
in non-convex stagewise partition cells [9]. Thus a computationally eflicient
tree-scarch algorithm will result in poor performance. Several techniques have
been proposed in order to overcome this difliculty, The M-algorithm [15] that
keeps track of the M Dbest paths at cach stage ix one ol them. The algorithm
is a direct tradeoll between computational complexity and average distortion,
but in many cases the tradeofl is not very efficient.  Other methods inipose
additional structure in the codebook so that it can be efficient]ly scarched by a
low-complexity encoder [16].

In this chapter a structured residual quantizer introduced in [9] called veflec-
tion symmetric RQ (rRQ) is described. An algorithm for the optimal design of
rRQ based on the joint optimization algovithm for RQ presented in the previous

chapter is also described. The conditions for optimality however. cannot always
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be satisflied for all stages and certain ad hoc techniques may be necessary dur-
ing the design process. Finally simulation results are given for Gaussian and

Laplacian sources.

3.1 Definition of rRQ

Since there is no concise mathematical definition ol tRQ, we will resort Lo an
illustrative example. For the sake of simplicity, we assume that the tree that
is associated with the tRQ is a binary trec. oo cach stage pcontains only two
codevectors denoted as y5 and yi. rRQ has the following constraint imposed on
its codebook. I we call L2 the hyperplane that contains all points in IR™ that are
equi-distant from y§ and y* then we require that cach eqnivalent codevector on
the one side of L7 has a mirror image on the other side of L7, 11 the final code-
book satisfies the reflection symmetry condition at all stages. and the optimal

stagewise partition cells are convex, then they are described by the hyperplanes
L7, The reflection symmetry property is depicted in Figure 3.1 The equalions
that describe this condition are as follows [9]. In the following, superscript p
imdicates that the pth stage is under consideration. The point midway hetween

’ b
codevectors y; and y{ is given by

YU + Vly
)

m’ =

(3.1)

This point lies on the hyperplane L7 which is the neavest neighbor (ina Fuchidean
sense) boundary for the two stagewise codevectors yi) and y). The vector n” that

s normal to this hvperplance and has unitary length is given by

n’

[




e ] e
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Figure 3.1 The reflection syvimmetry ina two-stage rRQ codebook

where n? = y{ —y{ and ||-]| denotes the Euclidean norm. With these definitions,

the equation for the hyperplane L? becomes

n’ - (u” —m’). (3.3)

W n

where denotes the operation of inner product and u” is anv point on the
hyperplane. Then the distance & of any point x” € IR” [rom this hyvperplane is

given by

6= |n" - (x" —m")||. (3.1)

We now define the reflection operator R, (+) for stage p by
» x" if x" e S _
R (X") = (13.9)

X! =260 il x” e S
We denote the reflected vector RY,(x7) by x#. Here we use the convention that

the reflection operator RY,.(+) maps S} into S5 and coincides with the identity



mapping on S§. We denote by RS (+) the inverse reflection operator, so that
RORE(xP)) = x2. The probability density function (pdl) of the reflected
vector X is given by [, (X") = fxs(x") + [xr (R77(x")).

Now, we define the (p+ 1)st reflected residual x*t' = x? — y”. and the cell
Srtl = ,<'1->—y/). The pdfof the reflected residual is [xm (x71) = [g, (x" +y").

. . - . o1 P
[ the next stage, SP*!is subdivided into S5 and 7+

A recursive definition of the reflected residual x?+! is
p+l 4 py def p P ~p e
X = Q]p(X ) = RU(x") —y". (3.6)

. . . . > .
An expression for the final refllected residnal o7+ is

X = QN QLQ (x)). (3.7)
IJ

= L] Qhx"). (3.5)
ptl

The reconstructed vector of the encoded input vector is derived by perfori-

ing the inverse operations. ie., reflections and translations. We can write an

expression for the partially reconstructed codevector y7(jr. jrtt . g as
Apgoop ptd - -y .
NA WA LA I = Q0 . (3.9)
where the Q77(+) is the inverse reflected residual operator defined by
—pPraptl P+ ~ ) . -
QL (Y™ ) = R 43", (3.10)
Then the reconstructed vector X' of the input vector x' is given by
I
S N AR o8 —p et :
X' =y = et (3.11)

IE

In the above we define ¥7*' = 0.



A simple way of visualizing the structure ol a P-stage rRQ is the following.
Fold a sheet of paper over onto itsell P times and open a hole in it T'his will
create 27 holes in the paper. After unfolding the paper cach hole will represent
a codevector in the codebook. The resulting codebook satisfies the reflection
symmetry condition at each stage. The creases of the folded sheet represent the
stagewise boundaries. Note that when the stagewise houndaries have heen fixed
(after folding the paper P times) the codebook is uniquely determined by the
choice of y». This fact. that resuts from the reflection svimmetry constraint,
suggests a strong structure i the codebook.  [rom a practical point ol view.
this introduces some difficulties in the joint optimization of all the stages. The
reflection symmetry constraint also increases slightly the encoding and decoding
complexity. However, since tRQ has only two codevectors at cach stage, the
overall complexity is still very low and allows us to design codebooks with a

huge number of equivalent codevectors.

3.2 Optimum Design of rRQ Codebook

We now derive necessary conditions for the optimality of rRQ. The average

distortion is given by

x'e ST Pext e G 302

E{d(XT XN =3 E{dix .y §)
i

Now, making usc of the fact that d(-.-) is translation invariant and the reflection
operation preserves the Fuclidean distance, we can write the expression for the

distortion as
E{(l(X'~X] b= 2o li'{(/(U"’“ Q") U, Q) (vt )

'/_;:] = v bl /_)_—._I" <P

X' e i)




Prix! € S7(7)) (3.13)

= S B, 7))t € STt e SGT) 30

where $7(37) is the partially reconstructed codevector. Applving the reflection

operation to both vectors yields

X! §7) = d(RE(x)RE(5)). (3.15)
= X3+ 7). (3.16)
= d(x" =y ). (3.17)

By defining the pth reflected gralt vesidual £ as

=X =yt i X e S (i) (3.18)

the above equations vield

ELAX XN =37 B{die y())x e ST Pext e ST 3.19)
Jr

Iinally, the condition to be satisfied by the stagewise codevectors y7' is

xP e 87} = min E{d(é" u)|x" e 57} (:3.20)
ue R

E{d(&r.y")

for (1 <p < ). Although this seems similar to equation (2.23), the result in
equation (3.20) differs in that if the stagewise boundaries ave held fixed then we
can only optimize one stagewise codevector y* since the rest will be uniquely
determined by y and the stagewise boundaries. In practice, it is preferable to
optimize hoth stagewise codevectors at each stage. instead of just the reflected
codevector. The stagewise boundary is determined by the two codevectors and
is updated whenever the stagewise codevectors change.

This method however, does not guarantee that the resulting codebook will

not be entangled. Morveover, it is still not always possible to simultancously



satisfy the above condition for all P stagewise codevectors without violating
the reflection symmetry condition. This mtroduces some difficulties during the
design process that can be attributed to the highly structured nature of tRQ

codebooks.

3.2.1 An algorithm for rRQ design

In the design algorithm of rRQ we make use of certain ad hoc techniques in
order to overcome the difficulties in the design process. One problem in the
design algorithm is the fact that nnlike the well known LBG algorithm, the
rRQ design algorithm does not guarantee that the distortion will decrease alter
each iteration. Thus the distortion after each iteration is not monotonically
decreasing.  This. of course, poses the question of whether this algovithm is
convergenut to at least a locally optimal solution or not. Unfortunately. there
is no prool of convergence ol the design algorithm. In fact. in many cases the
algorithm does ot converge, and the distortion tends to oscillate hetween two
different valucs. Therefore certain correction steps are necessary in order to
obtain a rcasonable solution by using the rRQ codebook design algorithin.

Following is a description of the algorithm that was used in our simulations.

L. Set the number of stages P = Rd. where R is the rate and d is the dimen-
sion of the rRQ. Choose the stopping criteria ¢y oy and oy Let {x}}E_, be

the sequence of the training vectors.

Do

Set P.,. = 0.

3. Increment P, and use the splitting algorithim to select two initial code-

vectors for stage 2.,



4. Compute the midpoints and normal vectors for stage 12,

m’ = Ly v (3.21)

2

nfer = T (3.22)
||yJ onr __yo (3 ||

5. Improve the codebook of stage Py, Set d,,.., = oc.

(a) Set ¢y =¢cg=0,n; =ng =0 and d.,, = 0.
(b) For all training vectors do:
i, For j =110 P, do:
A. Compute the distance 1, =10’ - (x/ —m’)
B. 17, > 0set X/ = x/ —2t/1 /* If necessary reflect the input
"/
(. Compute the reflected residnal x/7' = x/ — y7).

i A7y, >0 then let e¢p = ¢ +x" v and increment .
i, Else let ¢p = ¢y + x " and increment ng.
. 2 2]
iv. Let d.,, =d., +x"oth oo+l
) P, / o
(¢) Let dioyy, = doy /L. yo ™ = cofno. vy =ci/n.

. . J ~ ) .
(d) Update the midpoint m’== and normal vectors 0/ nsing the eqna-
tions of step .

((;\) L(Z\l‘ (//'r/ — ((//)‘I'El' - (/(’lel')/[/(,ll/' '(Hl(l (//)/'FZ' - (/rur-

(1) Il d,.; > ¢ go to step Ha.
G. Jointly optimize all stages lrom | to ...

(a) Let D, = oc.
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(b) Tor y =1 to Py, do:
i. Let dpep = 0.
. Setcg=c¢; =0, ng=mn; =0, d., =0.
1. For all training vectors do:
o lor b= 1to P, do:

-k

— Set t, =1 k

S(xF —m*)
— If 1, > 0 set x* = x* — 2,0~
N v
o Partiallv reconstruct the codevector:
A ) < Py osety! = 0.
B. Iy <P, forkh=70", to]+1do:
— Set y/ =y’ +yi.
— 11 > 0 then let v/ = v/ +200F /7 Refleet i il
necessary ¥/
L Blse let yo = xoo [es ity =00, 7/
Do, >0 then let ¢ = ¢ + ¥/, and increment i,
5. Llse let ¢y = ¢g + y7. and increment ny,.
o Set d.y. = d.y, +xo . x oot
v Set deyy = deg 1Ly = cofnoe yL =i
v Update m? and 017 using the equations of step L.
vie Let dyer = (dyrew — dee ) [ d e and dyy o =dd

vit. Il doer > ¢y go to step 6(b)i.

(¢) Let D= 1(Dper — des )] Dyprew and let D, o= d,..



() I Dy > €5 go to step Gb.

B

7. I Py < P go to step 3. Else exit with {yiﬁﬂy‘{}l/;“l’ as the codebook.

Although the algorithm presented heve is detailed there arve still some pro-
gramming difficulties associated with it. One of the major problems of rRQ is
the fact that it has “too much structure™ in it. Being more precise, the prob-
lem is related to the fact that a small modification of the codebook ol a given
stage will violate the reflection symmetry in all subsequent stages, thus requiring
an appropriate correction of the stagewise codebooks ol those stages too. This
makes it increasingly difficult to satisfy both the optimality conditions and the
reflecction symmetry property in all stages, as the number of stages increases.
This problem makes it necessary to limit the joint optimization procedure to
a small number of stages. Large rRQ codebooks are obtained by direet con-
catenation of the appropriate number of rRQs with smaller rate and therelore
smialler nwmber of stages. In our simulations. the joint optimization was done
[or 8 stages at most.

Secondly, as it was mentioned in the beginning of this subsection, the main
iteration loop of this algorithm does not guarantee a monotonically decreasing
distortion. Two options are available to the programmer in order to obtain a
solution. The first approach is to abandon the optimization process of a given
stage as soon as an increase in the average distortion on the training sequence
is observed. The second approach, is a delaved decision approach. in which the
optimization is continued even when the distortion increases. Il after a certain
vumber of iterations the distortion is still higher than the minimum distortion
obtained so far. then the optimization is abandoned and the best stagewise

codebook 1s restored. Simulations show that the first method is too conservative
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and results in higher final distortions than the sccond one. The delayed method
results in much better codebooks atl the cost ol additional time required for the

design process.

3.2.2 Discussion of rRQ

In order to obtain a qualitative picture ol the potential of rRQ we present in the
following pages a few two dimensional rRQ codebooks designed for Gaussian and
generalized Gaussian sources, both with and without memory. Figures 3.2 and
3.3 show the rRQ codebooks for a memoryless Gaussian sonrce at rates 1.5 and
3 bps, respectively. Similarly, Figures 3.4 and 3.5 depict similar codebooks for
the case of a Gauss-markov source with correlation coeflicient p = 0.9, Finally,
Figures 3.6 and 3.7 show codebooks for the generalized Ganssian source [17] with
paramecter 0.5 for rates 1O and 2.5 bps respectivelv. T these figures, asterisks
denote the equivalent codevectors that corvespond to the clements ol 115, whereas
crosses denote those codevectors that correspond to the elements of H.

The topology of the codebooks for the Ganssian source reveals some similarity
between these codebooks and the codebooks obtained by scalar quantizers. In
particular. Fignres 3.2 and 3.3 suggest that in this case the tRQ codebook s
very similar to the codebook of a uniform scalar guantizer except that it s
slightly rotated. This rotation is more or less random and depends on the way
that the a new stagewise pair of codevectors is introduced by using a splitting
technique. Since the source pdf has a spherical symmetry this rotation does
not aflect the performance of the codebook. In the Ganss-Markov case we get
a dillerent picture.  In this case the source pdf does not have the spherical

symmetry property anvimore and this has an effeet on the support region of the



rRQ codebook. The shape of the support region is still rectangular (in the 2-
dimensional space) but now it has a definite orientation that matches that of
the principal axis of the elliptical contours of constant pdl. This is a desirable
property, sincein effect, it minimizes the overload probability over all rectangular
support regions ol the same size, a condition which, asyimptotically in rate, is
satisfied by optimal codebooks [7]. An intuitive interpretation of this behavior
is the following: the input training sequence is first rotated around the origin by
7/4. Then an rRQ codebook is designed using the resulting training sequence.
Finally the codebook is rotated around the origin by —7 /1. Note that this
rotation is cquivalent to the KNarhunen-Loceve transform (KET) for the given
input vector [18]. The rRQ quantization process for Gauss-Markov sources is
very similar to a transform coding system that s based on KLT and imiform
scalar quantization. This example shows that tRQ is capable of utilizing the
source memory cfficiently and with very low complexity,

Figures 3.6 and 3.7 reveal a situation dilferent from that in the previons
figures. The generalized Gaussian source {or a = 0.5 is a source with very
peaked pdf. In this case, resolution-constrained scalar quantization vields very
poor performance since its cquivalent 2-dimensional support region is far {rom
the optimal support region. In this case, rRQ actnally outperforms a scalar
quantizer since its support region is closer to the optimal support region that
minimizes the overload probability for a given volnme.

The above observations show some of the main characteristies of rRQ. and

qualitatively sketch its capabilities and its weaknesses.



3.2.3 Complexity of rRQ

rRQ is a highly structured residual quantizer that can he used {or the realization
ol huge equivalent codebooks without imposing excessive complexity require-
ments. Here, we determine the memory and computational complexity of the
encoding and decoding systews of rRQ. In the following we will be referring to
an tRQ with dimensionality n and rate 2 bits per sample. These parameters
completely determine the complexity of the rRQ. Since this is a binary residual
quantizer, i.c., at each stage the stagewise codebook has only two codevectors,
cach stage will correspond to a binary decision and thus contribute one bit in
the resulting codeword. Since the total number of hits per vector is R this will
also equal the number of stages P. Finally. the size of the equivalent codebook
is of course N = 28,

At cach stage we compute the Fuclidean distance of the input from the stage-
wise boundary and il necessary vellect it. Then we subtract from it the stagewise
codevector. The distance computation requires 2 additions and I multiplication
per sample. The vefllection corresponds to I addition and one multiplication. I4-
nally the last step is merely 1 addition. This gives us a total of 1 additions and 2
multiplications per sample per stage, i.c, the encoder’s computational complex-
ity is 6/2n operations in total per sample. Roughly, the decoder™s computational
complexity is the same. except that the distance computation is neceded only
when rellection is necessary.

The memory requirements of tRQ are as lollows. For cach stage, two code-
vectors, one midpoint and one normal vector. need to he stored. T'herefore the

memory complexity ol tRQ is LRn-.



3.2.4 Experimental Results

We designed and simulated rRQs for several synthetic sonrees and the results are
presented in the following pages. The sources that were tested ave the Gaussian
and Laplacian memoryless sources and the Ist-order Markov sources with Gans-
stan and Laplacian innovations and correlation coefficient p = 0.9. Figures 3.8
and 3.9 show the signal-to-noise ratio (SNR) for the memoryvless Ganssian souree
as a [unction of the dimension. The SNR is mostlyv independent of the dimension-
ality and at high rates, when the number of stages is large, the SNR decreases
shightly as the dimension increases. This should not be surprising and can he
explained as follows: In subsection 3.2.2 we mentioned that lor a memorvless
Gaussian source, rRQ behaves similarly to a uniform scalar quantizer. Therelore
its performance should not depend on the dimensionality. In practice however,
as the dimension increases, so does the number of stages and therelore it he-
comes increasingly difficult to jointly optimize the total number of stages. T'his
results in an increased average distortion due to the suboptimal design.

In Figires 3.10 and 3.11 the SNR [or a Gauss-Markov source is shown. In
this case. we sce a clear improvement of the performance as a function ol the
dimmension. The additional gain achicved by incrcasing the ditnension is due to
the utilization ol the memory of the source. In order to provide more insight
on how efficiently rRQ utilizes the intra-vector memory. we compare tRQ to a
transform coding svstem based on KT and Lloyvd-Max scalar quantization [18]
(KLT-5Q). The bit allocation was performed in an optimal lashion using the
algorithm in [19. 20]. The results suggest that rRQ behaves similarly to KLT-
SQ. As we allow the dimension ol the vector to increase. both systems achicve

approximately the same memory gain and the difference in their performance is



approximately constant. Note that the complexity of KL/I' is proportional to n?.
and therefore the rRQ system achieves the memory gain with a lower complexity.
The complexity of other suboptimal transforims, like the DCT, is proportional
to nlogn which is still higher than the complexity of rRQ.

Iigure 3.12 shows the SNR for a memoryless Laplacian source. We sce that
in this case, unlike the memoryless Gaussian source, a small improvement in
the SNR occurs by increasing the dimension. [igure 3.13 shows the SNR for
a lst-order Markov source with correlation cocllicient p = 0.9 and Laplacian
mnovations. [leresas expected. the SNR improves significantly as the dimension

imcreases and saturates approximately al dimension 32
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Memoryless Gaussian Source
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Figure 3.2: tRQ codebook with n = 2 and £t = 1.5 bps.



Memoryless Gaussian Source

4.0

1.0 |

0.0 |

-1.0

-3.0

-4.0

-4.0

-2.0 0.0 2.0

Figure 3.3: tRQ codebook with 1o = 2 and R =3 bps.
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1st-order Gauss-Markov Source

(p=0.9)
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Figure 3.1: rRQ codebook with 1= 2 and 1 = 1.5 bps.
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1st-order Gauss-Markov Source

(p=0.9)
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Figure 3.5: tRQ codebook with n =2 and B = 3 bps.
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Generalized Gaussian Source
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Figure 3.6: rRQ codebook with =2 and i = 1.5 hps.



Generalized Gaussian Source
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IYigure 3.7: rRQ codebook with = 2 and ¥ = 2.5 bps.
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Memoryless Gaussian Source
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Figure 3.8: Performance of rRQ on memorvless Gaussian source for rates 0.5

and 1 bps.
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Memoryless Gaussian Source
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Figure 3.9: Performance of rtRQ on memoryless Gaussian source for rales 1.5

and 2 bps.



Gauss-Markov Source (p=0.9)
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Figure 3.10: Performance of rRQ and NIT-5Q on Gauss-Markov source for rates

0.5 and 1 bps.



Gauss-Markov Source (p=0.9)
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Figure 3.11: Performance of rRQ and KLT-SQ on Gauss-Markov sonree for rates

1.5 and 2 hps.



Memoryless Laplacian Source
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Figure 3.12: Performance of tRQ on memoryless Laplacian sonrce for rates 0.5

and 1 bps.



AR(1) Laplacian Source (p=0.9)
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Iigure 3.13: Performance of tRQ on Markov source with Laplacian innovations

process source for rates 0.5 and | bps.



Chapter 4

Application to Speech Coding

In this chapter rRQ is applied to coding of speech spectral parameters. Tnorder
to quantize specch, we need to convert the speech waveform into a form that
15 well suited to quantizing. Linear predictive coding (LIPC') parameters have
hecome the standard method tor representing the short-term spectral informa-
tion of speech. because they are easily derived from the speech waveform and
can be used (or its reproduction with a great fidelity. The two major types of
speech coding are the vocoders [21] and the Code Excited Lincar Prediction
(CELP) coders [22]. The first type generates speech by exciting a linear filter
with pitch pulses or wiite noise. In CELP coders the excitation is selected from
a codebook of signals. Several different representations of the LPC parameters
have heen used in speech coding. Log-arca ratios (LARs) [23]. arcsine reflection
coellicients [24] and the line spectrum pair (LSP) [25] are some of the represen-
tations that have been used for coding the LPC paramecters. Although all of
these representations are equivalent and LPC parameters can be vrecovered {rom
them, their coding properties differ from one another. In particular. the LSP

parameters can he encoded more efficiently than other representations ol the
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Figure - 1: Block diagram of a simplified model for speech reprodnction.

LPC parameters, and have received more attention during the last few vears.
Section 4.1 reviews the hasies of LPC analvsis and introduces the LSP pa-
rameters. The rest of the chapter describes several methods of LSP coding hased
on rRQ. Section 1.2 describes the use of a finite-state VQ based on rRQ and its
application to coding the LSP parameters. In Section 4.3 predictive rRQ) for
LSP coding is introduced. IMinally, Section 4.4 describes a simple coding scheme

that utilizes the inter-vector memory in a straightforward manner.

4.1 Linear Predictive Analysis

Figure 4.1 depicts a simple speech reproduction system hased on linear predictive
analysis. The speech wavelorm is divided into short frames of 20-25 ms. LFor

cach frame an LPC analysis is performed in order to obtain the parameters of



the linear time-invariant model that best fits the samples of the given frame. For

a given frame the transfer function of this svstem has the form

G G

TOA(D) T T ae

H(z) (1.1)

where A(z) is the inverse filter, (G is a gain parameter and {a;} are the LPC
coefficients. The input to this system is cither an impulse train (voiced speech),
or a random noise sequence (unvoiced speech). The parameters of this model
are: a flag determining whether the given {rame is voiced or unvoiced, the pitch
period [or voiced speech, the gain parameter ¢, and the lilter coeflicients {ay }.
The model assumes that these coeflicients varyv slowly with time. so that it is
suflicient to update them every 20-25 ms.

According to acoustic theory, nasal and fricative sonnds are represented by
a transfer function with both zeros and poles. Howevero il the order p ool the
LPC analysis is high enough, the simple all-pole model of Migure 1.1 provides a
very good representation for almost all specch sounds [21]. A 10th-order LPC
analysis is cnough to vield a good representation of speech and so it has become
a standard.

The LSP parameters [26] are defined by constructing two polvnomials from

the inverse filter polynomial:

and

Q=) = A(z) — ==y, (1.3)

The LSP paramicters are the roots of the polvnomials F(2) and Q). These two
| pol;

polynomials have some very interesting properties:
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L. All zeroes of P(z) and Q(z) lie on the unit circle.
2. The zeroes of P(z) aud (=) are interlaced with one another.

These properties allow for efficient numerical computation of the LSPs from
P(z) and (7). Moreover, it can be shown [27] that -1(z) has the minimum
phase property il its LSPs satisly the above two properties. This is a useful
result because the stability of the LPC synthesis filter alter quantization can be
checked and guaranteed in the LSP domain.

The performance of an LP(C' coding svstem is measured in terms of the spec-
tral distortion measure. I'he spectral distortion SD for a given frame in deci-
bels is given by

- FL
17 Jo

SD = 10log(P(S)) — 10Tog( PN, (1.1)

where [ is the sampling frequency in Hz, P([) and P([) arc the LPC power

spectra of the original and the quantized LPC polvnomials respectively, 1.e.
& A | )

PO = L Alexp(i2n )/ 1)) (13)

and

PUIY = L) Alexp(i2r /)], (1.6)

A~

and A(z) is the gnantized LPC polynomial. SD is computed for cach of the
[rames of the testing data and then its average is computed.  Although the
speech quality is subjective. the S measure manages to capture many ol the
features that determine the quality of reproduced specch. A average SD of 1B
has been used as a threshold for transparent coding ol the specch spectium,
Le. replacing the coded LSP vectors by the uncoded 1.5 vectors will have no

audible effect on the human auditory svstem. However. experimental results
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suggest that when there are too many frames of speech with an SD much higher
than the average SD, then the distortion can be audible even il the average S
is less than 1 dB. Such frames with an SD greater than a given threshold are
called outliers. In order to have speech of transparent quality we mnst it the
number of outliers. Recent studies [28] indicate that the following conditions are
sufficient in order to have transparent quantization ol speech spectrum: 1) The
average S is less than 1 dB. 2) The number of outliers with SD in the range
2-4 dB is less than 2%, and 3) There are no outliers with SD greater than A d13.

We close this section by noting that the SD s usuallv computed over the
total bandwidth of -1 kHz. However, some researchers [29] prefer to compnte the
SD only on a smaller bandwidth on the basis that most of the speech spectral
content is concentrated in a smaller portion of the entirve klHz bhandwidth that
corresponds to the standard sampling lrequency of 8 kllz. Computing the S on
the 300-3,700 Hz. or the 0-3 kHz bands may vield different vesults that sometimes

are misleading or cause confusion.

4.2 Finite-State rRQ for LSP Vectors

LSP vectors have been used in the past in speech coding with very good re-
sults. As we mentioned in the previous section, the standard order of the 1LPC
analysis filter is p = 10. Coding of the LSP parameters requires a rate ol 2.4-
3.3 bits/component of the LSP vector in order to obtain a quantized speech
spectrum of transparent quality. For this range of hits per vector it is notl. pos-
sible to design and use an LBG VQ due to the prohibitively large memory and

computational complexity. Therefore other forms of guantizers have heen ap-



plied to coding the LSP vectors. Scalar quantization [30]. hybrid vector-scalar
quantizer [31], multi-stage VQ and split VQ [29].

In this section we describe a finite-state VQ based on rRQ which we call
I'S-tRQ. The rationale behiud the idea of using a finite-state quantizer for the
LSP vectors resides in the fact that there exists significant correlation between
successive LSP vectors. The strong correlation between snccessive LSP vectors
suggests that the spectral envelope ol speech varies slowly with time. This
inter-vector (inter-frame) correlation can be utilized by the quantizer in order to
obtain improved performance without increasing the complexity of the system
significantly. One way ol achieving this gain is throngh the use of a finite-state

encoder.

4.2.1 Definition of FS-rRQ and an algorithm for FS-rRQ
design

A finite-state rRQ is defined similarly to a finite-state VQ (I'SVQ) [32]. An
n-dimensional N-state 1°S-rRQ is specified by a state space § = {1.2.... N},

an initial state sy and three mappings:

Loa: IR xS — N: finite-state equivalent encoder.

O

AN xS — A: finite-state equivalent decoder.

-

3. [ A xS — 8 next state function,

where a and 13 are explained below. A" and A arc the channel alphabet and the
reproduction space, respectively.
Given an input sequence {x;}b. let {3, }. {5} and {x,} denote the codeword

sequence, state sequence. and reproduction sequence. respectivelyv. These are



determined as {ollows:

3 = alx.s;) (1.7)
}A(,j = /))(‘]“ .5‘,') ( 18)
s = fGes) (1.9)

for v = 0,1..... Foreach s € §, a(-,s) and #(-,s) are the equivalent encoder
and decoder of an rRQ respectively. The reproduction space A can be written
as A = U A} where Aj is the equivalent tRQ) codebook associated with state
he.

A TS5-rRQ design algorithm is given helow:

L. Design an LBG VQ with A codevectors for the given training sequence.
This is called the state-label VQ. Denote its codehook by € = {e(k). h €

S,

2. For cach state & design an initial rRQ using the training subscquence that
1s obtained by keeping only those vectors in the training sequence lor which
the previous vector is represented by A when encoded by the state-label

VQ.
3. Define the next state function [ by

FQ. k) =argmind(#3(). k). e(=)). heS.yje N, (1.10)
SES

A Teeratively improve the codebooks {Ag. k€ St oin the Tollowing manner:
Using the current codebooks and the next state function defined in Step 3
obtain a new state sequence {s,} using equation (1.9). Then partition

the training sequence into A training subsequences based on the state

Zt
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sequence {s,} and update each of the N rRQs using the updated training
subsequence. Repeat this step as long as the average distortion decreases

significantly.

The above algorithm is not guaranteed to converge but in most practical cases
1t actually does. Typically, 2 or 3 iterations of the last step are sufficient to get
close to what seems to be a good solution. Note, that the finite-state structure
of the quantizer effectively increases the size of the codebook. This is done at
the expense of a N-times increase of the memory complexity. The compnta-
tional complexity is practically unaflected. Finally the design procedure is more
complex and requirves a longer training sequence since cach state rRQ uses its
own training subsequence.

In our experiments we have kept the size of all the state vRQ codebooks
fixed. Performance improvements have heen reported when the above constraint
is dropped [33].

I's-rRQ was designed and used to encode a sequence of LSP vectors. The
number of states used was N = 1 or 8. Typicallv. introduction of more states

increases the complexity without substantially improving the performance of

e

I'S-rtRQ. The results are given in Table 1.3 and discussed in Section -4.5.

4.3 Predictive rRQ Coding of LSP Parameters

In this section we describe a predictive VQ svstem based on rRQ (P-rRQ) and
its application to speech spectral coding. Predictive VQ was introduced in [31]
as a way ol incorporating memory in an otherwise memorvless VQ svstem. In-

troducing memory to a VQ system enables it to deal more efficientlv with vector

it
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Figure 120 Predictive tRQ encoder

sources with statistical dependence between successive vectors. One sueh exam-
ple of a vector source with memory is the sequence of LSP vectors. Fach vector
can be thought ol as a realization of a given random vector with the same pdf,
but there exists a strong correlation between successive vectors. T'his correlation
reflects the fact that the short-term spectral envelope ol speech changes slowly
[rom frame to frame.

P-rRQ is a svstem that consists of a vector predictor and an rRQ in a closed-
loop form. The encoder, shown in Iigure 1.2, operates in the following manner:
The difference e, between the mput vector x, and its prediction X, is vector
quantized using the rRQ. The output svmbol j, is output to the channel, while

its reconstruction e, is added to x, and the resulting vector x,, 1s fed to the
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[Migure 1.3: Predictive rRQ decoder

predictor which in turn will produce a prediction X, of the next input vector.
Note thal X, is just the reconstructed input vector. "l“’lw decoder, depicted in
Figure 4.3, works i the following way: The channel symbol j, is used to obtain
a reconstruction €, ol the ervor vector, which is then added to the prediction x,,.
This yields the reconstructed source vector x,, which is then used to obtain the
next prediction. Note that the encoder includes a copy of the decoder.

Before discussing the structure of the vector predictor that appears in hoth
the encoder and the decoder, we will describe an algorithm nsed in the design

of P-rRQ).

4.3.1 Predictive rRQ design

Designing a predictive VQ svstem involves the design of a predictor and the
design ol a VQ. There are two main approaches to this problem [10]. The
simplest approach to designing such a system is the open-loop methodology. In

this method, the predictor is designed f{or the input source {x,} to bhe quantized.



Then using this predictor, the sequence of prediction residuals {e, } is obtained,
where

€, = X, — ]J(Xn——lﬂxn—lw e Xp—n ) ( II l)

In the above equation, P(-) denotes the predictor and m is the predictor order.
The next step is to design a VQ using the sequence {e,} as the training sc-
quence. IFinally, the predictor and the VQ are combined to obtain the system of
Figures 4.2 and -1.3. Note that both the predictor and the VQ are now subopti-
mal. The predictor in the closed-loop system operates on the sequence {x,} of
the reconstructed vectors instead of the sonrcee sequence. whereas the VQ oper-
ales on an ervor sequence which differs from the one that was used during the
design process. sinee only the reconstructed vectors x,, are now available to the
predictor. However, if the VQ operates at high rates. the suboptimality of the
design may not he too severe,

Another design approach that results in a better performance is the closed-
loop method [10]. According to this method. first we obtain an initial VQ and
predictor using the open-loop design. Then the system is used to encode the
training sequence and the resulting sequence ol residuals is used to run one it-
eration of the VQ design algorithm. This process is repeated nntil a stopping
criterion is satisfied. or a maximum number of iterations is exceeded. A deserip-

tion of the algorithim that we have used in our experiments is given helow:

L. Given a training sequence {X'u},lf:—m+1' a predictor 7(-) and stopping

threshold ¢ > 0. obtain the sequence {e, }_, as in 111
2. Design an rRQ for the training sequence {e, }! Set k=0 and 1y = ~.

n=|-

3. Let A=A+ 1. Encode the training sequence {x,,} using the current P-rRQ
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and update the residual sequence {e,} in the following way:

€ = Xp— Xy (11.2)
X, = X,+¢e, (1.13)
5(,,+] = ,/)()A(V,VL,)A(,,*I ..... )A(,,*,,7,+| ) (l]l)

where e, is the reconstruction of e,. Compute the average distortion 1,
between the input and the output of the system. I (Do — D)/ Dy < .

then stop.

4. Using the updated residual sequence. run one iteration ol the rRQ design

algorithm. Go to step 3.

Although there is no proof of convergence or optimality of the above algorithi.
our results indicate that the improvement over the open loop design method
justifies the additional computational effort.

In the above algorithm no effort is made to optimize the predictor for the
actual sequence {X,}. A truly closed-loop design method will attemipt to jointly
optimize the VQ and the predictor. This case is investigated by Chang and Gray
in [35]. The vesulting improvement in the performance of the overall svstem is
msignificant and does not justify the effort,

Next, we address the issue of what form of predictor to use with the P-rRQ
system.  Several different predictor structures and their design are described

hrieflv.

4.3.2 Predictor forms used with P-rRQ

here are two main calegories of predictors. the linear. and the nonlinear pre-

dictors. The optimal finite-memory predictor under the squared-crror distortion
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measure i1s in general nonlinear. However, lor a stationary Gaussian random
process the optimal predictor and the optimal linear predictor coincide [36].

Consider the stationary random vector sequence {X,} and let n be the di-
mension of the vectors. An mth-order vector linear predictor is defined by
a set ol m. n x n linear predictor coeflicient matrices, A, for y = 1,2....,m.
The estimate Xn of X,, is formed according to

. m
X, =Y AX,_,. (1.15)
=1
Note that the predictor desceribed above utilizes the correlation between the -
rent. vector and every component ol the m previous vectors. However. in the
case of a sequence of LSP vectors, the correlation between different components
of sticcessive vectors is very low and most of the prediction gain can be achicved
bv exploiting only the correlation between the same components of successive
vectors. This. essentiallv, amounts (o looking at 10 dillerent scalar sources in-
stead of one 10-dimensional vector sonrce. This reduces the complexity of the
predictor significantly without sacrificing much of its gain.

I the source does not have zero mean. as is the case for the LS vector source.
the predictor performance can be improved by subtracting the mean from the
source before the predictor is applied to it and adding the mean to the predictor
output. Notice that this procedure 15 equivalent to using an afline predictor of
the form

No=Sa, X, + 0 (1.16)
J=1

The above equation describes the linear (scalar) predictor that was used in our
experiments. For the cases v = 1 and m = 2 that we tested the optimal values

of the predictor coellicients, determined using the orthogonality principle [10].



are as follows:

w = C/CI0]. b= (1—C[1]/CIO)E{X}. (1.17)

for m =1, and

Cl ] R[2] — R(0]) .
a) = .12
(R~ ROD(CT + () L)
Gy = ﬁg—[ﬁfﬁ (-1.19)
b= E{X}(l —a) — ay), (1.20)
for m = 2, where
R = L{X N, o) Cl) = R[] - IR (1.21)

are the autocorrelation and autocovariance [unctions of the stationary process
{X,.}. respectively. The parameters concerning the scalar [st and 2nd-order
linear predictors are shown in Table 4.1

The optimal (non-lincar) mth-order scalar predictor with respect to the

squared-error distortion measure takes the form [10]
\ { \u’ \/1 I- /1 2 . \/‘n——‘m } (I._.).Z)

This predictor can be realized approximately by using a quantizer @ of suflicient,

resolution and estimating the above expectation by
X, = B{N, QN ). Q(Na) QX)) (1.23)

In order to quantify the benefits of a given predictor. we define the closed-

loop prediction gain ratio [10] by

"

L 2}.

Gap = =7
T [led 1)



Ist-order 2nd-order

LSP # | « b ay (I b

o

0 0.75 256 1 0.72 1 0.05 | 78.41

~

I 0.73 1 1279 1 0.77 1 -0.05 | 150.50

(W)
=
=3

201.04 | 0.82 | -0.11 | 233.25

3 0.31 | 231.03 | 0.89 | -0.10 | 254.32

4 0.35 | 243.93 | 1.03 | -0.22 | 296.51

N7
—
=
oL
o

359.90 1 0.95 | -0.17 | 121.21

6 0.81 | 1HLTH 1 0.96 | -0.18 | 51958

~1

0.79 ] BR0.64 | 0.89 | -0.13 | 656.93

3 0.7 1 81545 1 0.77 | -0.03 | 842.13

Y 0.75 1 885.79 1 0.77 | -0.03 1 91155

Table 4.1: The Ist and 2nd-order scalar linear predictors for cach LSP parameter.

The coding gain ratio of the rRQ is defined by

E{lled|l”}

len — e[}

(J’Q =

1

Then the overall system’s signal-to-noise power ratio is given by

L1 17

- . (1.26)
ELIX = X1
or in dBs.
SNR.,. = 10log,, (/1 + SNRy,. (1.27)
where SNRq = 10log,, G 1s the signal-to-noise ratio of the rRQ applicd on

e,. Assuming that SNRg is approximately equal to the SNR obtained when

rRQ operates on the signal X,,. Egnation (4.27) shows that the predictor gain



Linear 1 Linear 2 Non-lincar

LSP # | Var{X,} | Var{e,} | Ga, | Var{e,} | G, | Var{e,} | (i,

0 15130.0 7780.99 T=™15.91 TTT2.30
1 212914 | 10426.18 10348.58 10317.12
2 33038.2 | 17600.21 17435.98 17616.22
3 53769.5 | 19814.04 19602.58 19766.39
4 76034.8 | 23430.57 | 2.59 | 22433.07 | 2.6 | 23342.63 | 2.60
5 T1831.6 | 25566.35 25001.87 2516288
6 56321.0 [9678.57 [RO1Y.26 [9591.32
7 50949.5 | 21277.52 21013.24 2123511
8 311940 16380.67 [G350.87 16390.13
9 22076.2 9457.75 94 IR.2] 9110.13

Table 4.2: Variances ol the residual error sequences and the predictor gains for

the Ist and 2nd-order linear predictors and the Ist-order nonlinear predictor.

is a meaningful additive gain. Table 4.2 shows the variances of the LSP compo-
nents, the variances ol each component of the residual crror vectors e, and the
total prediction gain for the Ist-order and 2nd-order lincar predictors defined by
Iequations (4. 17)-(-1.20).

However, it turns out that in the case ol the LSP vector source. the nonlinear
predictor offers insignificant improvement over the hincar predictor and therefore
its additional complexity is not justified. Iurthermore. the Ist-order linear pre-
dictor achicves most of the gain that can be achicved by lincar prediction. The

results on speech coding obtained by P-rRQ. given in Table 11 are hased on a
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simple scalar Ist-order linear predictor. The results are discussed in Section 4.5,

4.4 Matrix rRQ Coding of Speech

In this section we describe and evaluate another scheme for LSP coding based on
tRQ. We use the term matrix rRQ to reler to the following simple quantization
method. Consider an arbitrary vector source {X;} of dimension #. A matrix
rRQ is an rRQ of dimension In for some integer [, that operates on [ successive
source vectors which are regarded as a single In-dimensional vector. Clearly.
the main advantage ol such a scheme is that it utilizes the correlation hetween
successive source vectors. This property makes it suitable for coding the LSP
vectors. sinee they are highly correlated. Note. that although this is a very
simple idea. 1t cannot. be realized by using an arbitrary VQ due to complexity
limitations. The extremely low complexity of rRQ. enables ns to design and
operate rRQs with very large rates and/or dimensions.

There are two hmportant observations to be made about matrix rRQ. The
first concerns the possible limitations to its dimensionality. The complexity of
rRQ is suficiently low, so that rRQ with equivalent codebooks of enormons size
can be designed and used. In theory, tRQ is designed by jointly optimizing the
total number of stages. In practice, however, this joint optimization procedure
1s not possible when the number of stages is too high. Thus. onlv a linited
number of stages can be jointly optimized at a time. Therefore. unlike the LBG
VQ whose performance improves with the dimensionality. the performance of
rRQ may in fact hecome worse by increasing the dimensionality too mnch. This

imposes a limitation on the dimension of matrix rRQ.

62



The second observation is about the encoding delay of the system. The
encoder outputs one codeword for every [ input LSP vectors. Since cach LSP
frame corresponds to approximately 20 ms ol speech. the total encoding delay
is approximately [ - 20 ms. Typically, in a real-time two-wav communication
system the encoding delay should not exceed 10 ms. This Timits the value of |/
to 2. However, it should be noted that for certain applications longer encoding
delays may be acceptable. The matrix tRQ results that we've obtained are for
the cases of [ = 2 and 3, and are given in Table 1.5. In the following section the

restlts for all the svstems presented so [ar arve discussed and compared.

4.5 Experimental Results and Discussion

The speech database used for traiming the various quantizers discussed o this
chapter consisted of 120 min of speech from the TIMIT database. The speech
was sampled at 8 KHz and contains utterances from several male and female
speakers. A 10th-order LPC analysis based on the standard antocorrelation
method was performed every 22.5 msec using a 30 ms analysis window. The size
ol the traming sequence that was actually used depended on the quantization
scheme. P-rRQ required a smaller training sequence of 10,000 vectors, whereas
matrix tRQ and 1'S-rRQ with 4 states required 100, 000 training vectors. Finally,
the S-state I'S-rRQ was designed using 200,000 training vectors. The testing
sequence in all cases consisted of 12.000 vectors outside the training sequence.
The performance ol cach quantization scheme was measured in terms of the
spectral distortion and the number of outliers. The spectral distortion was com-

pruted over the 0-1 Kz frequency band using Lqguation (1.1, In the recon-



struction of the LSP vectors we found that the following technique decrcased
both the spectral distortion and the number of outliers: After quantization by
a residual quantizer, the LSP cocflicients are not necessarily ordered any more.
This may lead to an unstable filter in the speech reproduction system. Therelore
the decoder should check whether this condition is violated and fix the problem
by shightly modifying the coefficients that are not in order. Furthermore. our
experiments showed that even better results are obtained if we require that the
LSP coellicients be at least 100 Hz apart. This condition was imposed by our
decoder simulator.

Tables 1L3-1.5 show the results of the various LSP coding schemes that were
described in this chapter. In Table 4.3 we sce that an S-state I'S-rRQ saves about
I bit/frame over the d-state FS-rRQ. The less complex P-rRQ (based on a scalar
Ist-order lincar predictor) achieves better performance than I'S-rRQ. requiring
approximately 2 bits/frame less than the S-state 1'S-rRQ. This suggests that the
simple Lst-order hinear predictor utilizes the inter-frame corvelation more effi-
ciently than FS-rRQ. Finally, the matrix-rRQ for [ = 2 performs approximately
I bit/frame worse than P-rRQ. whereas for I = 3 its performance is ¢lose to that
ol P-rRQ. It is worth mentioning that (for the same SD) matrix rRQ produces
[ewer outlicrs than P-rRQ. However, as it was pointed ont carlier in this chapter,
the long delay associated with matrix tRQ is often an undesirable property,

For comparison, in Table 1.6 we present the results of several scalar quanti-
zation coding schemes whose complexities are similar to that of P-rRQ. [t can
be seen that P-rRQ performs similarly to scalar quantization of the LSP dil-
ferences producing slightly fewer outhiers. It should he mentioned that i all

our systems, rRQ was designed using the squared-error distortion measure, s



N=1 N =X
Bits/frame | SD |24 dB | >4 dB | SD 2-4dB | >4 dB
2 1.68 7.7 0.6 1.59 131 0.6
25 L.61 | 14.7 0.6 155 | 12,7 0.3
206 1.51 12.5 0.4 LIS 10.9 0.3
27 48 1 107 0.3 142 8.7 0.3
23 L4l 8.2 0.3 .35 6.7 0.3
24 1.3 6.5 0.3 1.29 5.9 0.2
30 1.29 H.3 0.3 .21 0.1 0.2
31 .22 b3 0.2 [LIS 1.3 (.2
32 I 3. 0.2 .14 J.8 0.1
33 L.13 3.8 0.2 110 3.1 0.1

Table -1.3: Spectral distortion and percentage ol outliers for FS-rRQ with 1 and

S stales

known [29] that certain weighted distortion measures. like the inverse harmonic
mean (ILIM). perform better than the simple squared-crror distortion measure.
Unfortunately, it is not possible to design an tRQ for such measures and this

limits the performance of the systems based on rRQ.



Bits/frame | SD | 2-4 dB (in%) | > 1 dB (in'%%)
24 149 10.7 0.3
25 [l 3.5 0.3
20 1.37 7.3 0.3
27 1.33 6.5 0.3
28 1.27 5.0 0.3
29 .21 i 0.2
30 L5 3.8 0.1
31 [0 3.1 0.1
32 1.07 3.0 0.2
33 1.01 2.3 0.1

Table 1.4: Spectral distortion and percentage ol outliers for P-rRQ nsing a Ist-

order scalar lincar predictor

(G



=3 =2
Bits/frame | SD | 2-4 dB | > 1dB | SD |21 dB | >4 dB
24 L.50 | 10.8 0.1 1.56 3.5 0.1
25 .13 8.5 0.1 1.50 11.3 0.1
20 L.37 6.9 0.1 I4d 9.0 0.1
27 1.32 5.4 0.0 1.39 Tl 0.1
28 1.26 1.2 0.1 1.32 6.1 0.1
29 [.2] 3.5 0.0 .27 £ 0.0
30 116 | 2.7 0.0 123 | 42 0.0
31 L1223 0.0 LIS | 3.3 0.0
32 L.07 1.6 0.0 113 2.6 0.1
33 [.03 .5 (0.0 L.O7 2.0 0.0

Table 4.5: Spectral distortion and percentage

[ =3 and [ =2

67

ol outhers for matrix tRQ with



Bits/frame | Parameter | SD | 2-4 dB (in%) | > 4 dB (in%)
28 LsP | .10 9.21 0.05
28 LSPD 1.25 7.36 0.05
28 ASRC 1.32 9.29 0.23
23 LAR .34 9.51 0.16
32 LSP .10 2.2 0.03
32 LSPD 1.05 3.13 0.01
32 ASRC 1.0 3.30 0.09
32 LAR .04 3.20 0.0
31 LSP 0.92 .00 0.01
3 LSPD 0.56 1.10 (.01
31 ASRC 0.92 2.05 0.08
3 LAR 0.92 .65 0.0 |

Table 4.6: Performance of several scalar quantizers using the LSP.LSP differ-
cnce (LSPD). arcsine rellection cocflicient (ASRCY). and log-arca ratio (LAR)

representations.
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Chapter 5

Conclusions and Future Work

We now present an overview of the quantization systems examined in this thesis
and comment on their performance, quantization properties and limitations.
These conclusions are followed by a proposal lor possible future work in this
area.

In Chapter 3 we investigated the performance of plain tRQ on various types
ol sources. The results obtained there suggest the following hehavior of tRQ. For
the memorvless Gaussian source rRQ hehaved similarly to a scalar quantizer hut
an improvement over scalar quantizers was noted on more peaked memoryless
sources like the generalized Gaussian source with parameter o = 0.5, Our com-
parison ol tRQ with KL'T-5SQ for the Markov sources demonstrated the ability
ol tRQ to utilize the memory of the source very elliciently. Therefore rRQ can
be viewed as a very low complexity method of utilizing the source memory.

rRQ was incorporated in several LSP coding svstems. Our results indicate
that P-rRQ and matrix rRQ compared to several scalar speech coding schemes
perform similarlv or better. Matrix rRQ has the undesirable property ol intro-

ducing a long delay. P-rRQ can be uselul in speech coding systems in which
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complexity rather than bit rate is the major concern.

Future work may be concentrated on modifying rtRQ in order to construct
a system ol higher complexity and betier performance. One possible way ol
achieving this is to cascade rRQ by a lattice or LBG VQ. It may be possible
that such a system achieves the memory gain through the rRQ block. and part
of the boundary and granular gains through the sccond-stage VQ. To perform
well, such a system should also be jointly optimized. It would also be desivable
to enable rRQ to use more complicated distortion measures, like the THM. This

would improve the performance of speech coding svstems based on rRQ.
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