
ABSTRACT

Title of dissertation: INVESTIGATIONS OF HIGHLY
IRREGULAR PRIMES AND
ASSOCIATED RAY CLASS FIELDS

Morgan Benjamin Stern,
Doctor of Philosophy, 2014

Dissertation directed by: Professor Lawrence Washington
Department of Mathematics

We investigate properties of the class number of certain ray class fields of

prime conductor lying above imaginary quadratic fields. While most previous work

in this area restricted to the case of imaginary quadratic fields of class number 1,

we deal almost exclusively with class number 2. Our main results include finding

5 counterexamples to a generalization of the famous conjecture of Vandiver that

the class number of the pth real cyclotomic field is never divisible by p. We give

these counterexamples the name highly irregular primes due to the fact that any

counterexample of classical Vandiver is an irregular prime. In addition we explore

whether several consequences of Vandiver’s conjecture still hold for these highly

irregular primes, including the cyclicity of certain class groups.



INVESTIGATIONS OF HIGHLY IRREGULAR
PRIMES AND ASSOCIATED RAY CLASS FIELDS

by

Morgan Benjamin Stern

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfilment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Lawrence Washington, Chair/Advisor
Professor Thomas Haines
Professor Xuhua He
Professor Doron Levy
Professor William Gasarch



c© Copyright by
Morgan Benjamin Stern

2014



Acknowledgments

I’d like to first and foremost thank my advisor, Professor Larry Washington

for working with me for these several years, and being infinitely understanding with

the many delays that have gone on. Thanks for reviewing the many drafts of the

dissertation, and particularly for help with the proofs of Theorem 3.1.3 and Section

5.2. I’d like to thank my committee, Professors Thomas Haines, Xuhua He, Doron

Levy, and William Gasarch for their work.

I’d like to thank my wife, Elizabeth Petro, who has been endlessly patient and

supportive through the last many years, making sure I never felt rushed. And I’d

like to thank my mother, Heidi Markovitz, who continued to ask how my homework

was coming along until I was 30.

This is dedicated to Poppy and Grandpa who blazed the trail of scholastic

achievement before me.

ii



Table of Contents

List of Abbreviations iv

1 Introduction 1

2 Background 5
2.1 Vandiver’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Basics of Class Number 2 . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Constructing Ray Class Groups in Class Number 2 . . . . . . . . . . 9

3 Constructing Highly Irregular Primes Using Elliptic Units 14
3.1 Elliptic Units and Their Galois Action in C . . . . . . . . . . . . . . 15
3.2 Calculating Elliptic Units: Computing φ . . . . . . . . . . . . . . . . 23
3.3 Computing Elliptic Units in C . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Constructing Elliptic Units and Their Galois Action Over Zr . . . . . 40
3.5 Schoof’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Following the Trail of Bread Crumbs . . . . . . . . . . . . . . . . . . 51

4 Highly Irregular Primes 58

5 Constructing Unramified Abelian Extensions of Ray Class Fields 63
5.1 Searching for Singular Primary Elements . . . . . . . . . . . . . . . . 63
5.2 Consequences due to α not being singular primary . . . . . . . . . . . 70
5.3 Directly Constructing Extensions of Ray Class Fields . . . . . . . . . 73

A The Uses of algdep() 78

Bibliography 82

iii



List of Abbreviations & Symbols

CRT Chinese Remainder Theorem
ε Generator of the elliptic units of Kp

E Group of elliptic units of Kp

fε Minimal polynomial of ε over K
φ Function defined in eq 3.1
gcd Greatest common divisor
HL Hilbert class field of L
hL Class number of L
I An ideal in K
K Imaginary quadratic number field
KI Ray class field over K of conductor I
L Arbitrary number field
NL′/L Norm map from L′ to L
OL Ring of integers of L
p Integral prime
p Prime above p in OK
σq Galois element corresponding to q under the Artin map
ζn Primitive nth root of unity

iv



Chapter 1: Introduction

Let K be an imaginary quadratic field and p a prime that splits in K/Q.

This work considers the ray class field of conductor p above p, Kp, and is principally

concerned with whether its class number is divisible by p, as well as the consequences

of this event. In order to do this we must perform large computations in several-

hundred-degree extensions of K. Moreover, while previous work in this area often

restricted computations to the simpler case where the base field has class number

1, we deal almost exclusively with class number 2, providing many ideas that can

work in higher class numbers as well. This involves added complexity and requires

reworking several well-known results that were not proven in sufficient generality.

Our main results include finding 5 counterexamples to a generalization of the

famous Vandiver Conjecture that the class number of the pth real cyclotomic field is

never divisible by p. We give these counterexamples the name highly irregular primes

due to the fact that any counterexample of classical Vandiver is automatically an

irregular prime.

Previous work by Kucuksakalli [5] found a single highly irregular prime, and

it was computationally difficult to prove. We are able to provide a shorter proof

that our 5 are indeed highly irregular primes, and confirm Kucuksakalli’s is as well.
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Moreover, we show a simple statistical argument in section 4 that this gives cre-

dence to the standard heuristic argument that there should be primes for which the

classical Vandiver’s conjecture fails.

Much of this work is concerned with computability and precision. Many of the

constituent pieces of what we do have been described elsewhere in theoretical but

not effective (practical and implementable) terms. As we are dealing with extensions

of degree > 100, we are often dealing with degree 100 polynomials, each coefficient

of which is several thousand digits. As we are multiplying these mathematical

objects that take megabytes of storage in memory, the difference between storing a

polynomial versus its square is the difference between feasible and infeasible. Even

normally simple activities, such as taking a gcd between polynomials, have to be

carefully optimized at this size. As a result, there are several algorithms throughout

this text that appear to be performing easy tasks, but which are specifically written

so that they will be quick in very large-degree extensions. When slight changes to

an algorithm cause massive changes to the runtime it is noted in the text, most

notably in sections 3.2, 3.3, and 3.4.

We give a description of a full-rank subgroup of the units for every cyclic ray

class field of prime conductor in section 3.3, and numerically compute said subgroup

for every prime with norm ≤ 307. While [5] used elliptic units when the base field

had class number 1, the obvious generalization of those units often does not have

full rank when the class number is not 1 (and we show a sufficient condition for this

obvious generalization to have full rank in section 3.1).

Our unit group is a variant of elliptic units computed in previous works, in
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particular the work of Ramachandra [9], it is optimized so that the minimal poly-

nomial of a generating set of the group is small. For example, while Ramachandra

constructs elliptic units over base fields of any class number, he raises his generators

to the 12pth power in order to avoid keeping track of roots of unity. In constructing

our new elliptic units we keep track of the roots of unity involved, allowing our com-

putations to (often) use less than a hundredth the precision older elliptic units would

require. The importance of actually being able to implement a theorem cannot be

overstated, as this is exactly how we are able to prove that the generalized Van-

diver’s Conjecture fails for ray class fields, and indeed provide some new evidence

that the famous conjecture may be false.

We use our units in a generalization of an algorithm by Kucuksakalli (which

itself generalized an algorithm by Schoof [10]) in order to determine if the class

number of the ray class field of prime conductor for a degree 1 prime is divisible

by the norm of said prime. Specific implementation details of the algorithm are

described in section 3.5.

In section 5.1 we create a new algorithm to determine when elements are

singular primary. The algorithm, which involves the use of a linear recurrence

relation and the p-adics, may be of more general interest in light of the fact that it

involves taking a 1000-digit precision number, and efficiently raising it to a 1000-

digit power. In particular, when naively trying to implement a test for singular

primary elements, it would be difficult to run on a PC for primes larger than norm

5, while we do it for p of norm 239 in minutes.

In looking for singular primary elements we find an interesting phenomenon
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in a highly irregular prime. Certain portions of the class group of cyclotomic fields

can be shown to be cyclic assuming Vandiver’s Conjecture and it is unclear what

would happen if Vandiver failed. We demonstrate a highly irregular prime where

the corresponding portions are cyclic in spite of the generalization of Vandiver not

holding.

In section 5.3 we provide some numerical evidence that many of the techniques

we use to investigate ray class fields of prime conductor will not easily extend to

non-prime conductor.

The format of this paper is as follows: Chapter 2 goes over Vandiver’s conjec-

ture and basic facts about imaginary quadratic fields of class number 2. Chapter

3 represents the main body of the paper, going over how to construct our group of

units, proving they are finite index, and explaining how to use them to compute

divisibility by p. Chapter 4 contains the results of our calculations, the 5 highly

irregular primes found, as well as statistical analysis that provides heuristic evi-

dence to support a conjecture on the frequency of highly irregular primes. Chapter

5 contains the results of our attempts to construct an unramified abelian extension

of Kp(ζp) of degree p and the consequences of these results.
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Chapter 2: Background

In this section, we go over the basic background material necessary for future

chapters.

2.1 Vandiver’s Conjecture

Conjecture 2.1.1 (Vandiver). For any prime ideal (p) ⊂ Z, the class number of

Q(p) = Q(ζp + ζ−1
p ), the ray class field of conductor (p) is not divisible by p.

A reasonable generalization of this is

Conjecture 2.1.2. Let K be an imaginary quadratic field of class number hK. For

any degree one prime ideal p ⊂ OK such that hK /∈ p, the class number of Kp, the

ray class field of conductor p, is not divisible by p.

This conjecture turns out to be false. In [5] Kucuksakalli demonstrates a single

counterexample, and in this work we find 5 others. As such, we will introduce a new

definition:

Definition. Let K be an imaginary quadratic field of class number hk and p ⊂ OK

a degree one prime ideal above p. We say p is a highly irregular prime if (hK , p) = 1

and p|hKp .
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An irregular prime over Q has the property that p|hQ(ζp). It is well known

( [13] theorem 4.11, for instance) that if a prime violates Vandiver’s conjecture then

it is also irregular (thus motivating our above definition).

2.2 The Basics of Class Number 2

Let K = Q(
√
d) be an imaginary quadratic field of class number 2 (d square-

free). Let p be an odd prime which lies above p in K and is relatively prime to 6d.

In general \mathfrak{} will be used to denote ideals in K. We use Kp to denote

the ray class field generated by p. In addition, for any field L the class number is

denoted hL, the Hilbert class field HL, the number of roots of unity WL, and the

ring of integers OL.

Theorem 2.2.1. Let K = Q(
√
d) be an imaginary quadratic field. K has class

number 2 if and only if d is a square times one of the following integers:

− 5,−6,−10,−13,−15,−22,−35,−37,−51,−58,−91,−115,−123,

− 187,−235,−267,−403,−427

Proof. See Stark [12]

In this work, d will always be one of the above 18 integers. We denote the ring

of integers of K by OK = Z[ω]. If d ≡ 1 mod 4 and is square-free then ω = 1+
√
d

2
,

otherwise ω =
√
d. There are three ways to represent elements of OK which we will

use: First we can embed OK into C by numerically computing
√
d to some precision

(we will pick the root with positive imaginary part). Second, we can embed OK into
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Zr which similarly involves computing
√
d to an r-adic precision, which in practice

means we compute the root of the minimal polynomial in Z/rnZ for large n and

saying our terms are correct within O(rn) (in this case typically the root with the

“smallest” value mod r is picked). Last, we do not embed OK anywhere, but think

of it as Z[ω] mod ω2 − d (or ω2 − ω − d−1
4

) and never let a polynomial in ω have

degree over 2. This last one has no precision limitations but has the potential to

crash a computer without warning if the numbers get too large.

If a prime q splits into qq̄ in K, then
√
d must exist modq. That is, we know

OK/q ' (Z/qZ) so in this isomorphism
√
d must go to something in (Z/qZ). We

will make ωq the smallest positive integer that ω is congruent to mod q. Thus, ωq−ω

must be in the ideal q. Further, q must be in q since the ideal divides (q). Finally,

these two elements generate q since clearly (Z⊕ ωZ)/〈q, ωq − ω〉 ' (Z/qZ).

A similar argument works for any ideal in K: if we want to know the Z-basis

for a given product of ideals, we look at what the quotient space is. It is either cyclic

or bicyclic. In the cyclic case we work out where ω is sent in the space to find one

generator of the ideal, and throw in the order of the group for the other generator.

We use the following lemma to identify non-principal ideals:

Lemma 2.2.2. Given I ⊂ OK principal, the smallest element of the ideal α (that

is |α| ≤ |z| for all non-zero z ∈ I) must generate the ideal.

Proof. All of the units in OK are roots of unity and so have absolute value 1 under

all embeddings. Assume I principal with generator α. If z ∈ (α)−{0} then z = wα

and Norm(z) = Norm(w) ·Norm(α). Since Norm(w) ∈ Z+ and equals the square
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of its absolute value, we get Norm(z) ≥ Norm(α) and the absolute value goes

similarly.

This gives us an easy way to tell if an ideal is principal. Given an integer basis

for the ideal I, we perform Gaussian reduction ( [3], page 23, for example) to get α,

the smallest element in I. We then check if α divides both our initial basis elements

for I. If it does then I = (α) and if not, we must have a non-principal ideal. In

practice, because both basis elements start out within an order of magnitude of each

other, if a and b form a basis the following algorithm suffices:

Algorithm 2.2.3. Finding the generator of an ideal from its Z-basis (a, b) using

Gaussian reduction

1. Replace b with the smallest of b, a+ b, and a− b (this is reversible, and so still

gives a basis).

2. If |a| > |b|, relabel so that |a| ≤ |b|.

3. If b has changed in the last two steps, go to step 1. If not, a is the smallest

element.

4. If a divides b then a is the generator else the ideal is not principal.

We will make use of the following well-known theorem:

Theorem 2.2.4. Let HK be the Hilbert class field of K. An ideal I ⊂ K splits in

HK/K if and only if it is principal.

Finally, genus theory easily characterizes possible HK :
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Theorem 2.2.5. Given K = Q(
√
d), an imaginary quadratic field of class number

2 with d as in Theorem 2.2.1, we have the following 4 cases:

1. HK = Q(
√
−d, i) if d is prime.

2. HK = Q(
√

2,
√
d/2) if d ≡ 6 (mod 8).

3. HK = Q(
√
−d/2,

√
−2) if d ≡ 2 (mod 8).

4. HK = Q(
√
d1,
√
−d2) if −d factors as primes d1, d2 > 0 and d1 ≡ 1 (mod 4).

The fundamental unit δ of OHK is the fundamental unit of the maximal real subfield.

Proof. A simple check for each of the 18 possible d’s.

2.3 Constructing Ray Class Groups in Class Number 2

The ray class group over p is defined to be the group of (fractional) ideals

relatively prime to p mod the group of (fractional) principal ideals with a generator

congruent to 1 mod p. In this section, we show how to construct this group.

Given an odd prime p that splits in K, it is a simple matter to find the ideal

p lying above p. First, we solve the polynomial x2 − d ≡ 0 mod p. We select

one of the roots and declare that (lifted) root to be ωp (or use (1 + root)/2 mod p if

d ≡ 1 mod 4). Finally we form our prime above p by defining it to be p = 〈p, ωp−ω〉.

The above is a constructive version of the fact that odd p splits if and only if

the Legendre symbol
(
d
p

)
= 1: if x2− d = 0 mod p has no solution the construction

would fail, and if it had one the construction leads to a ramified prime. Conversely

p splitting implies OK/p ' Fp ' (Z/pZ), which implies x2 + d = 0 has a solution
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modp since it does in OK . Further, this shows that p ramifies if and only if p|d, as

this is the case when x2 − d ≡ 0 mod p has only one root (and therefore, one can

construct only one prime above p).

We can use a similar fact to quickly see if p is principal: All principal elements

split in the Hilbert class field of K. One can take the norm of the prime above p

down to the maximal real subfield of HK (given in Theorem 2.2.5) where it must

equal a prime above p. So p being principal requires p to split in the maximal real

subfield of HK , which can be checked with a different Legendre symbol. Similarly

p splitting in both K and the maximal real subfield of HK means it splits in their

compositum, which is HK , which means its factors must be principal in K.

Given the generator a + bω of a principal ideal I ⊂ K it is easy to associate

it to one of the ray classes containing (1), (2), ..., (p−1
2

) mod p by noting that we

know ω ≡ ωp mod p and so a + bω ≡ a + bωp, which is an integer. This integer

can be taken mod p since p ∈ p. Finally, if this value is greater than p−1
2

, then we

can note −a− bω generates the same ideal as a + bω but is congruent to a smaller

positive integer mod p. The fact that WK = 2 for all our K means that there is no

smaller integer generating an ideal in the ray class. This also shows that the ray

class group contains a subgroup isomorphic to F×p /〈−1〉, which is cyclic because it

is the quotient of a cyclic group.

Given a non-principal ideal I, we know I2 is principal, and so we can use

the above method to determine what element of the ray class group I2 is. This

completely classifies all p − 1 elements of the ray class field in our case: they are

either in the same class as one of (1), (2), ..., (p−1
2

) or they are not but square to
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something that is.

Lemma 2.3.1. Let p−1 = 2km with m odd. Then the ray class group of conductor

p is cyclic if and only if every non-principal ray classes has order divisible by 2k.

Proof. There are two cases, depending on p mod 4. If p ≡ 3 mod 4 then p−1
2

is

odd and since we have a cyclic subgroup of order p−1
2

and a cyclic subgroup of the

relatively prime order 2 (the class generated by the product of all non-principal ray

classes), we know the group must be cyclic of order p− 1.

When p ≡ 1 mod 4 the ray class group is cyclic, or alternatively it could be

isomorphic to Z/2Z ⊕ Z/p−1
2
Z. Notice that the Sylow 2-subgroup of Z/(p − 1)Z

is cyclic, and not cyclic in the other case, though in both cases it has 2k elements.

In the cyclic case 2k/2 elements of the Sylow 2-subgroup (out of 2k of them) have

order 2k and zero do in the non-cyclic case. Moreover since the principal ray classes

contain a subgroup of size 2k/2 (and so none of these is order 2k), we know that all

elements of order 2k must be non-principal.

There are only 2k/2 non-principal elements in the Sylow 2-subgroup, so all of

these must be order 2k if the ray class group is cyclic. Since the class number is 2,

any non-principal element differs from any other by a principal element. Thus when

the ray class group is cyclic every non-principal ray class differs from a non-principal

ray class of order 2k by a principal element whose order is not divisible by 2k.

If the ray class group isn’t cyclic then no ray class has order 2k (stronger than

the converse of the “only if”) and so we have proven the lemma.

This gives us our next algorithm:
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Algorithm 2.3.2. Determining whether a ray class group of conductor p is cyclic

1. Find a prime q 6= p.

2. Use Legendre symbols to verify q splits non-principally as qq̄.

3. Compute a basis of q2 as above then use Algorithm 2.2.3 to find a principal

generator of the ideal α = a+ bω.

4. Embed the class containing α into Fp with our map ω 7→ ωp. Call the result

c = a+ bωp. Note that (c) is in the same ray class as q2.

5. Compute c
p−1

4 mod p. If this equals ±1 then q2∗ p−1
4 is in the same ray class as

(±1); the order of the class of q divides 2p−1
4

= m2k−1.

6. If c
p−1

4 ≡ ±1 mod p then return “non-cyclic” else “cyclic.”

Because p is small in practice, it is simple to just keep checking different q

until we find q that generates the group, and from then on, just define the group in

terms of powers of q. For convenience in later computations, we make sure that q

generates the ray class group and will tend to refer to ray classes as qj.

Lastly, we will often need to compute a basis of qn (as we did in the above

algorithm); this is polynomial time in n. Since q is prime, we obtained its basis

by considering what ω was congruent to in OK/q. Similarly, since q is a degree 1

prime, OK/qn ' (Z/qnZ).

We know q contains qn and we know ω must go to something which is consistent

with the ωq we defined earlier. But that is exactly what Hensel’s Lemma 1 gives

1Mechanically, in PARI this is accomplished by taking fω(x), the minimal polynomial for ω and
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us: a lift of ωq to a unique consistent value mod qn which we will call ωqn . Since

these two elements of qn enable us to define a homomorphism OK � OK/qn, they

must generate the ideal, and we have qn = 〈qn, ωqn −ω〉. It is worth noting that the

matrix formed by thinking of the elements of this basis as integer sums of 1 and ω

is in rational canonical form.

If we want to compute a basis of a product of prime ideals, we do that by the

Chinese remainder theorem (CRT). In particular, let us consider the ideal pq (which

will show up in later computations). We know by CRT

OK/pq ' (OK/p)⊕ (OK/q) ' Fp ⊕ Fq ' Z/pqZ.

We know further that pq maps to 0 and that ω maps to (ωp, ωq) in the left iso-

morphism (essentially by definition). But, the CRT tells us exactly2 what that is

mapped to in the right isomorphism and we will call this ωpq.

factoring it using the function polrootspadic(f, qn) which gives the roots of a polynomial f mod qn.
We then pick the root which equals ωq mod q

2In PARI the command would be chinese(Mod(ωp, p),Mod(ωq, q)).
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Chapter 3: Constructing Highly Irregular Primes Using Elliptic Units

In [5] Kucuksakalli generalized a method used to compute (approximations

of) class numbers of real cyclotomic fields to instead compute (approximations of)

class numbers of ray class fields of prime conductor lying over imaginary quadratic

fields of class number 1. In doing this, he discovered the first highly irregular prime,

p = (13 − 2ω) ⊂ Z[1+
√
−163
2

]. The method involved exploiting the class number

formula and generalizing a method of Schoof to demonstrate that the class number

of Kp is equal to the index of a group of elliptic units inside of the full unit group

(see section 3.5 for details).

We extend the method to imaginary quadratic fields of class number 2 and

find five further highly irregular primes. Our methods are able to determine if the

class number of Kp is divisible by p, though some care would have to be taken

if one wanted to adapt it to look for divisibility by primes smaller than p. We

restricted our search to ray class fields with cyclic Galois groups, but the techniques

are easily modified to bicyclic Galois groups. Unless otherwise noted, all numerical

calculations for class number 2 were done on a 1.6 GHz Intel Core i5-4200U CPU

with 6 GB of DDR3 memory using PARI/GP Calculator version 2.5.5, 32-bit version.
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3.1 Elliptic Units and Their Galois Action in C

Our goal is to construct a finite index subgroup of the unit group whose index

encodes the class number of our field. In this section we will lay out the theoretical

basis for such a subgroup, leaving the actual method of computation for section

3.3. In [11] Stark introduces elliptic units with this property. Unfortunately, he

only defines them in extensions of fields of class number 1. We will follow his

approach, point out where it breaks down for higher class numbers and introduce a

generalization. As in Stark, we make extensive use of the function φ defined by

φ(x, y, z) =2 sin(π(xz + y)) exp(πi(x2z + ay + z/6))· (3.1)

∞∏
j=1

(1− exp(2πi(y + z(x+ j))))(1− exp(−2πi(y + z(x− j))))

The function φ satisfies several transformation properties (see page 208 of [11]),

most notably:

φ(x, y, z) = −e−πiyφ(x− 1, y, z) (3.2)

= −eπixφ(x, y − 1, z) (3.3)

= −eπi/6φ(x, y + x, z − 1) (3.4)

= e−πi/2φ(y,−x,−1/z) (3.5)

We will assign to each ideal I a particular xI , yI , zI and from this we will have a

function φp(I) = φ(xI , yI , zI)
12p. The selection of xI , yI , zI will depend on choices

made in their construction but φp(I) will be well-defined.

Definition. We say a triple xI , yI , zI is a proper φp(I) triple or (proper triple for
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short) if it can be produced according to the following method.

1. Select a so that aI is principal and generated by α.

2. As a Z-module pa = µZ⊕ νZ where Im(µ/ν) > 0

3. Take u, v ∈ Q so that uµ+ vν = α.

4. Set xI = u, yI = v, and zI = µ/ν.

Stark proves several properties of φp(I) summarized as

Theorem 3.1.1. Given p a degree one prime ideal in a quadratic imaginary number

field K then the following holds:

1. φp(I) = φp(J ) if and only if I and J lie in the same class of the ray class

group of p.

2. A 12p/WHK root of φp(I), which we shall call π(I), lies in the field Kp, where

WHK is also the number of roots of unity lying in Kp.

3. π(I) generates an ideal OKp with NKp/K(π(I)) = p
hKWHK
WK .

4. For a prime q ∈ Z relatively prime to 12p, if q splits as qq̄ then(
π(q)

π(OK)q

)1/WHK

∈ OKp or else

(
π((q))

π(OK)q2

)1/WHK

∈ OKp .

5. Finally, the Galois action is given by φp(I)σq = φp(I q̄).

Proof. See [11], Lemma 7, 9 for proofs of items 1, 2, 3, 5, and a weak form of 4

(note he calls φp(I) by E(c)). Item 4 is given in equation 37 (bottom of page 32) of

Deuring [4].
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From these properties we can deduce another interesting feature with partic-

ular application in our class number 2 case.

Corollary 3.1.2. The following are units in OKp:

1. If p is not principal then (π(I)/π(J ))1/2.

2. If I and J lie in the same class mod principal ideals then π(I)
π(J )

1/WHK .

Proof. We shall proceed in two steps: First we show that (π(I)/π(J ))1/WHK ∈ Kp

for all ideals in the same principal ideal class (and the square root is always in the

field). Then we show that π(I)/π(J ) is a unit given the conditions of the theorem.

We know that

NK/Q(π(I)) = NK/Q(ζWHK
)

(
NQ(ζWHK

)/Q(π(I))
)

and that NQ(ζWHK
)/Q(π(I)) ≡ 1 mod WHK if π(I) is relatively prime to WHK . Thus

NK/Q(π(I)) ≡ 1 mod WHK . Further, we know from Theorem 3.1.1.3 that π(I) is

relatively prime to WHK . The same holds for π(J ). Thus

WHK |
(
NK/Q(J )−NK/Q(I)

)
.

On the other hand, Theorem 3.1.1 says π(I)

π(OK)
NK/Q(I))

π(J )

π(OK)
NK/Q(J ))

1/WHK

∈ Kp

since both the numerator and denominator are in OKp . But this simplifies to

1

π(OK)
1

WHK
(NK/Q(I)−NK/Q(J ))

(
π(I)

π(J )

)1/WHK

∈ Kp
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and multiplying by π(OK) ∈ OKp several times we get
(
π(I)
π(J )

)1/WHK ∈ Kp.

If I is principal but J is not, then we know 2|(NK/Q(I)−NK/Q(J )) and we

get the weaker
(
π(I)
π(J )

)1/2

∈ Kp.

We will now show that these elements are units (and thus in OKp).

If p is not principal then pHK is prime. By class field theory, p ramifies in Kp

with degree (p − 1)/2. If P ⊂ OKp lies above p then we have P
p−1

2 = pKp. Thus,

NKp/HK (P) = p, so NKp/K(P) = p2. Due to the ramification, P is the only ideal in

OKp with norm phK . But we also have NKp/K(π(I)) = pWHK , so (π(I)) = P
WHK

2

for all I. As a result, π(I) and π(J ) generate the same ideal, so their ratio must

be a unit.

Similar to the above, if I and J lie in the same principal ideal class, consider

σI−1J ∈ Gal(Kp/K). By construction I−1J is principal, so let us say (α) = I−1J .

As a result, σI−1J ∈ Gal(Kp/HK) so it must send any prime above p in HK to itself

and therefore (π(I)) = (π(I))σᾱ = (π(J )) meaning π(J )/π(I) must be a unit.

In the similar case when hK = 1, the units from Corollary 3.1.2 form the

basis for what Stark calls elliptic units and one can show they have index in the full

units proportional to the class number of Kp. In our experience, they are also full

rank for hK = 2 and p non-principal, but for principal p they are never full rank as

NKp/HK (π(I)/π(J )) = 1.

In order to guarantee full-rank for our elliptic units we instead define them as

follows

Definition. A group of elliptic units E is defined as the multiplicative group gen-
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erated by the Galois conjugates of

ε =

(
π(q2)

π(OK)

)1/WHK

δ ∈ OKp

where q generates the ray class group of conductor p and δ is the fundamental unit

of HK greater than 1 in the embedding of Kp implicitly computed with φ().

These elliptic units look just like those of Stark from part 2 of Corollary 3.1.2,

but with a power of δ being multiplied in. They have a distinct advantage of being

full rank.

Theorem 3.1.3. The elliptic units E are full-rank. Moreover [O×Kp
: E ] = chKp for

some c divisible only by primes less than p.

Proof. Let RL be the regulator of a field L, let G = Gal(Kp/K) (which is 〈σq〉 since

G cyclic) and G′ = Gal(Kp/HK). Equation 46 of Stark [11] reads

∏
χ 6=1

χ(G′)=1

L′(0, χ) =
∏
χ 6=1

χ(G′)=1

(
− 1

6p

∑
I

χ(I) ln(|φp(I)|)

)
.

Stark then goes on to say that using primitive χ yields

∏
χ 6=1

L′(0, χ) =
hKpRKp/WKp

hK/WK

which is
hKpRKp

WKp
because hK = 2. Every non-trivial character of G is primitive except

for the nontrivial character ψ of Gal(HK/K). So we get

L′(0, ψ) =
hHKRHK

WHK

= 2
hHK
WHK

ln(δ).

Similarly, for the primitive characters we get

L′(0, χ) = − 1

6p

∑
I

χ(I) ln |φp(I)| = −2

p−1∑
j=0

χ(qj) ln |φ(xqj , yqj , zqj)|.

19



There are p− 1 characters of G: 1, ψ, and the remaining p− 3. This gives

hKpRKp

WKp

= 2
hHK
WHK

ln(δ)
∏
χ 6=1,ψ

(
−2

p−1∑
j=0

χ(qj) ln |φ(xqj , yqj , zqj)|

)

which in turn gives us

hKp =
c

RKp

ln(δ)
∏
χ 6=1,ψ

(
p−1∑
j=0

χ(qj) ln |φ(xqj , yqj , zqj)|

)
, (3.6)

where c is a number only divisible by primes1 less than p.

We now appeal to a technical lemma ( [13], Lemma 5.26(c)):

Lemma 3.1.4. Let G be a finite abelian group and let f : G→ C. If
∑

σ∈G f(σ) = 0

then

det(f(στ−1))σ,τ 6=1 =
1

|G|
∏
χ 6=1

(∑
σ∈G

χ(σ)f(σ)

)
,

where χ runs through the non-trivial characters of G.

Let ε0 =

(
π(OK)σ

2
q

π(OK)

)1/WHK

, thus |NKp/HK (ε0)| = 1. Because σq /∈ GHK , note

that G = Gal(Kp/HK) ∪ σqGal(Kp/HK) = GHK ∪ σqGHK . Also |δσq| = |δ−1| and

|δσ| = |δ| for σ ∈ GHK . Applying the lemma we have

det(ln |(ε0δ)στ
−1|)σ,τ 6=1 =

1

p− 1

∏
χ 6=1

(∑
σ∈G

χ(σ) ln |(ε0δ)σ|

)
.

1 The number c is of the form 2i3j except for d = 235 when hHK
= 5 so c is 2i3j5. However,

since 5 ramifies in K in this case, we will have p > 5.
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When χ = ψ the nontrivial character of GHK so that ψ(σq) = −1 we have

∑
σ∈G

ψ(σ) ln |(ε0δ)σ| =
∑
σ∈G

ψ(σ) (ln |δσ|+ ln |εσ0 |)

=
∑

σ∈GHK

ψ(σ) (ln |δ|+ ln |εσ0 |) +
∑

σ∈GHK

ψ(σq)ψ(σ)
(
ln |δσq |+ ln |εσqσ0 |

)
=

∑
σ∈GHK

(ln |δ|+ ln |εσ0 |)−
∑

σ∈GHK

(
− ln |δ|+ ln |εσqσ0 |

)
= 2

∑
σ∈GHK

ln |δ| −
∑

σ∈GHK

(ln |εσ0 |+ ln |(εσ0 )σq|)

= |G| ln |δ| − ln |NKp/HK (ε0)|+ ln |NKp/HK (ε0)σq |

= |G| ln |δ|.

Now assume χ 6= ψ, 1. Then

∑
σ∈G

χ(σ) ln |(ε0δ)σ| =
∑
σ∈G

χ(σ) (ln |εσ0 |+ ln |δσ|)

=
∑

σ∈GHK

χ(σ) (ln |εσ0 |+ ln |δ|) +
∑

σ∈GHK

χ(σq)χ(σ) (ln |(εσ0 )σq | − ln |δ|)

=
∑
σ∈G

χ(σ) ln |εσ0 |+

 ∑
σ∈GHK

χ(σ)

 (1− χ(σq)) ln |δ|.

Note that
(∑

σ∈GHK
χ(σ)

)
= 0 because (by assumption) χ is not trivial when

restricted to GHK . Thus we have that if χ 6= ψ, 1 then

∑
σ∈G

χ(σ) ln |(ε0δ)σ| =
∑
σ∈G

χ(σ) ln |εσ0 |.

It follows that the regulator of the group generated by the Galois conjugates of ε0δ
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is

Rε0δ = det(2 ln |(ε0δ)στ
−1|)σ,τ 6=1

= c ln |δ|
∏
χ 6=ψ,1

(∑
σ∈G

χ(σ) ln |εσ0 |

)

for c a power of 2.

But, by the definition of ε0 this is

Rε0δ = c ln |δ|
∏
χ 6=ψ,1

(∑
σ∈G

χ(σ) ln |εσ0 |

)

= c ln |δ|
∏
χ 6=ψ,1

(
p−2∑
j=0

χ(σjq) (ln |φ(xqj+2 , yqj+2 , zqj+2)| − ln |φ(xqj , yqj , zqj)|)

)

= c ln |δ|
∏
χ 6=ψ,1

(χ(σ2
q)−1 − 1)

(
p−2∑
j=0

χ(σjq) ln |φ(xqj , yqj , zqj)|

)

= c ln |δ|

( ∏
χ 6=ψ,1

(χ(σ2
q)−1 − 1)

) ∏
χ 6=ψ,1

(
p−2∑
j=0

χ(σjq) ln |φ(xqj , yqj , zqj)|

)
.

Finally, we note that since χ(σ2
q) is a (p− 1)/2 root of unity, we have

∏
χ 6=ψ,1

(χ(σ2
q)−1 − 1) =

p−1∏
j=1

(ζjp−1
2

− 1)2 =

(
p− 1

2

)2

with the final equality being the well-known identity
∏n−1

j=1 (ζjn − 1) = n. Plugging

this back into the regulator calculation, we get

Rε0δ = c ln |δ|
(
p− 1

2

)2 ∏
χ 6=ψ,1

(
p−2∑
j=0

χ(σjq) ln |φ(xqj , yqj , zqj)|

)

= c ln(δ)
∏
χ 6=ψ,1

(
p−2∑
j=0

χ(σjq) ln |φ(xqj , yqj , zqj)|

)
, (3.7)

absorbing the p − 1 into c which remains divisible only by primes less than p and

noting δ is positive.
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It is a well-known fact (see [13] Lemma 4.15, for instance) that a ratio of

regulators gives a group index:

Rε0δ

RKp

= [O×Kp
: ±〈(ε0δ)σ〉σ∈G].

Combining equation 3.6 with equation 3.7, using the above relation (and noting

that removing ±1 only changes an index by a factor of 2), we get

hKp = c[O×Kp
: 〈(ε0δ)σ〉σ∈G],

where c has once again absorbed all primes less than p. Since E is defined as being

generated by conjugates of ε = ε0δ we are done.

3.2 Calculating Elliptic Units: Computing φ

It is worth here repeating the transformation properties of φ laid out in equa-

tions 3.2-3.5:

φ(x, y, z) = −e−πiyφ(x− 1, y, z)

= −eπixφ(x, y − 1, z)

= −eπi/6φ(x, y + x, z − 1)

= e−πi/2φ(y,−x,−1/z)

When computing the function φ, there are several trade-offs between numerical

stability and speed. For instance, the dummy variable j in the infinite product of

equation 3.1 only shows up multiplying the z term, but not the x or y. Thus, we

can separate that out, obtaining (1 − c1c
j
2)(1 − c̄1c

j
2) where c1 = exp(2πi(y + zx))
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and c2 = exp(−2πiz). Writing this way it is clear that c2 and thus the imaginary

part of z is the variable that most controls the speed of convergence. As a result,

if one wants to compute φ more quickly with no cost to precision, a simple trick is

to use transformation properties of the function to maximize the imaginary part.

Moreover, if we are using the transformation properties to decrease the size of x and

y or increase the imaginary size of z, we should do all our transformations, and then

simplify. If we do not then φp(I) will paradoxically have less precision than φp(Ip)

even though they are the same (and in fact, φp(Ip−1) will have enough less precision

that our computations will go poorly later on).

Lemma 3.2.1. If Im(z) < 1/2 then using equation 3.4 to reduce to |Re(z)| ≤ 1/2

followed by equation 3.4 causes Im(z) to increase by at least a factor of 2. That is,

this procedure causes Im(z) to increase to greater than 1/2 exponentially fast.

Proof. Assume z = a+ bi with |a| ≤ 1/2. Then we have

Im
−1

z
= Im

−1

a+ bi
=

b

a2 + b2
>

b

1/4 + 1/4
= 2b.

Note that if b� a then |z|2 ≈ a2 so that Im −1
z
≈ a−2b. In other words, the increase

can be super-exponential for very small a.

While hypothetically it can take an arbitrarily long time to get to the largest

possible value of Im(z) (the unique value for which it is≥
√

3/2), in practice it occurs

within one iteration of when the above transformation lemma causes Im(z) > 1/2.

In our calculations Im(z) starts off being proportional to either 1/p or 1/(12p2)

for p ≤ 300, so this alternation between the third and fourth transformation rules
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never needs to be done more than 20 times to get Im(z) ≥ 1/2 (and hits the

maximum within 5 typically). Moreover, as both rules cause us to multiply φ by a

12th root of unity, there is not need for us to actually multiply until the end, when

we know exactly which 12th root of unity it is.

Once we have the optimal z, we reduce x using a first transformation law

and then reduce y using the second so that both have absolute value less than 1.

Because x and y started out as fractions with denominator p, this step only ever

introduces a pth root of unity, and we can just compute which one and multiply by

that rather than computing eπix for a mammoth x (x will often be around 10p−1 in

our computations).

For example, let us say we are computing φp(〈2,
√
−6〉8) = φp(〈16〉) for p =

〈59, 17−
√
−6〉, which lies above 59. We have the following:

φp(〈2,
√
−6〉8) = φ

(
16

59
,

0

59
,

59

17−
√
−6

)12p

But the real part of 59
17−
√
−6

= 17+
√
−6

5
is 3.4 and the imaginary around .49. So, we

start modifying it by alternately reducing the real part and inverting:

φ

(
16

59
,

0

59
,

59

17−
√
−6

)
= −eπi3/6φ

(
16

59
,
48

59
,
3 +
√
−6

5

)
= −eπi3/6e−πi/2φ

(
48

59
,
−16

59
,

5

−3−
√
−6

)
= −φ

(
48

59
,
−16

59
,
−3 +

√
−6

3

)
= eπi/6φ

(
48

59
,
−64

59
,

√
−6

3

)
= eπi/6φ

(
48

59
,
−64

59
,

√
−2√
3

)
= eπi/6e−πi/2φ

(
−64

59
,
−48

59
,

√
−3√
2

)
= e−πi/3φ

(
−64

59
,
−48

59
,

√
−3√
2

)

which has imaginary part around 1.22, well above the .86 that defines the maximum.
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Now, we shrink the first two arguments to ease the computation:

φ

(
16

59
,

0

59
,

59

17−
√
−6

)
= e−πi/3φ

(
−64

59
,
−48

59
,

√
−3√
2

)
= e−πi/3eπi(−48/59)φ

(
−5

59
,
−48

59
,

√
−3√
2

)
=

= e−
πi
3 eπi

−48
59 e−πi

−5
59 φ

(
−5

59
,
11

59
,

√
−3√
2

)
= eπi

166
177φ

(
−5

59
,
11

59
,

√
−3√
2

)
.

Thus we are left with a function that both converges much faster, and with higher

precision.

Further, by thinking of the infinite product in equation 3.1 as being

∞∏
j=1

(1− c1c
j
2)(1− c̄1c

j
2),

we only need to compute c1, c2 once. We can view our infinite product as a geo-

metrically decreasing sequence, rather than recomputing the exponential function

many times. Doing this causes the computation to speed up by several orders of

magnitude. The one potential issue with this that if we don’t recompute cj2 reg-

ularly we might worry about the loss in precision (that is, computing the same

number of terms will have slightly less precision with this method than recomput-

ing the exponential function each time). On the other hand, the precision being

lost to multiplication (around half a bit) is minimal compared with the decrease

in magnitude of c2 so long as |c2| < 1/2 (and after applying transformation rules

| exp(2πic2)| < 0.12). In other words, in practice it is faster (and/or more precise)

to compute the c1, c2 to a higher precision once and do the product than to compute

exp() to a lower precision every time we want another term in the product.
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3.3 Computing Elliptic Units in C

In this section we are concerned with showing that the “correct” way to com-

pute our elliptic units involves the following algorithm:

Algorithm 3.3.1. Computing values of φ which are nearly Galois conjugate

1. Select the smallest q ≡ 1 mod 24p
WHK

such that q = qq̄ and q = 〈q, ωq − ω〉

generates the ray class group

2. Compute α, the principal generator of q2

3. For every j ≤ p−1
2

write αj as aj + bjω

4. Set zqk = p/(ωp − ω) if k = 2j and zqk = pq/(ωqp − ω) if k = 2j + 1

5. Set yqk = −bj

6. Set xqk = (aj + bjωq)/pq

7. Compute φ(xqk , yqk , zqk) for every 0 ≤ k ≤ p

While the unit π(I)
π(OK)

δ may generate a subgroup of the exact index we want,

it is not completely clear how to get π from the function φ. Stark’s function φp(I)

is a power of π(I), and only one root lies in Kp. Unfortunately identifying which

root is the correct one is not easy.

Kucuksakalli takes a slightly different approach in [5], which we follow and gen-

eralize here. In particular, rather than deal with φp(I) = φ(xI , yI , zI)
12p, which is

well-defined for each ray class, we pick a particular xI , yI , zI and compute φ(xI , yI , zI)
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∈ K(12p2). This is not well-defined but depends on our choices. However, Kucuk-

sakalli takes advantage of the Shimura reciprocity law to come up with a good choice

of xqI , yqI , zqI given xI , yI , zI . Here we rewrite the reciprocity law (which is a gen-

eral statement about values of level-N modular functions) to more specifically apply

to values of φ.

Theorem 3.3.2 (Shimura Reciprocity). Take qq̄ = q prime with gcd(q, 12dp) = 1.

Take xI , yI , zI a proper triple. In particular zI = µ/ν where µZ ⊕ νZ is an ideal

of K divisible by p with Im(µ/ν) > 0 (and (xIµ + yIν) is divisible by I). Take

B ∈ GL2(Z) so that det(B) = q and B
(
µ
ν

)
is a basis for the ideal 〈µ, ν〉q̄ and the

ratio of the first basis element to the second has positive imaginary part. Then

φ(xI , yI , zI)
σq = φ

(
(xI , yI)qB

−1, B(zI)
)
∈ K(12p2).

In the above B−1 is acting as a matrix and B as a fractional linear transformation.

Proof. See Theorem 3 in [11].

It should be noted that it appears that B depends entirely on q and zI and

is independent of x, y (except in that they are selected along with z). We will later

show this more formally.

In class number 1, one can pick the same z for all I by carefully selecting the

basis of q (as Kucuksakalli does) thus reusing the same B and getting a compact

closed form for the orbit of an element. In higher class numbers, we can not.

Lemma 3.3.3. If I and J are in the same principal ideal class, then the ratio of

every basis of I can be realized as the ratio of a basis in J . If they are not in the

same ideal class, then no ratio of a basis of I can be realized from a basis of J .
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Proof. If I and J are in the same principal ideal class there exists a (fractional)

principal ideal (α) such that (α)I = J . Take µ, ν as an integer basis for I and call

their ratio z = µ/ν. Clearly αµ, αν is an integer basis for J and (αµ)/(αν) = z.

By way of the contrapositive, assume there exists µ, ν an integer basis of I

and µ′, ν ′ an integer basis of J with µ/ν = µ′/ν ′. We promptly get µ = ν
ν′
µ′ and we

define α = ν
ν′

. We immediately get that (αµ′)/ν = µ′/ν ′ and so ν = αν ′ implying

I = (α)J and the two are in the same principal class.

Thus, the minimum number of z values one will have (and correspondingly the

minimum number of matrices B one will have to keep track of) is the class number

of K; we will attempt to limit z to two values.

We select (xOK , yOK , zOK ) = (1/p, 0, p/(ωp − ω)). That is, (1)OK is principal

and generated by 1, and (1)p = pZ⊕ (ωp − ω)Z. Then

1 = (xOKp) + (yOK (ωp − ω)).

Take q a prime whose ray class generates the ray class group. Let us compute

φ(1/p, 0, p/(ωp−ω))σq using Shimura Reciprocity. As discussed in section 2.3 a basis

of q is q, ωq−ω so a basis of q̄ is q, ωq̄−ω (where ωq̄ = 1−ωq mod q if d = 1 mod 4

and −ωq mod q otherwise). We need a basis of pq̄.

Using the Chinese Remainder Theorem, we can easily compute ωpq̄, the small-

est positive integer congruent to ω mod pq̄. Since we had previously computed ωp

and ωq̄, it can be easily validated that we get

ωpq̄ = [q(q−1 mod p)ωp + p(p−1 mod q)ωq̄] mod pq.
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Thus a Z-basis for our ideal pq̄ is pq, ωpq̄ − ω. We want B0 satisfying

B0

(
p

ωp − ω

)
=

(
pq

ωpq̄ − ω

)
=

r s

t u

( p

ωp − ω

)
.

We get s = 0 since pq is real so r = q. This then lets us solve for t and u:

B0 =

 q 0

ωpq̄−ωp

p
1

 .
Note that ωpq̄ = ωp mod p by construction so the fraction is an integer. Also note

that det(B0) = q as required. We put it all together to get

φ

(
1

p
, 0,

p

ωp − ω

)σq
= φ

(
1

p
, 0,

pq

ωpq̄ − ω

)
.

Now we might want to compute

φ

(
1

p
, 0,

p

ωp − ω

)σ2
q

= φ

(
1

p
, 0,

pq

ωpq̄ − ω

)σq
.

Reiterating our previous argument, we have encoded in the third argument a basis

of pq̄ and we will need to get a basis of pq̄2. But q̄2 is principal since hK = 2 so if

(a+ bω) = q̄2 then a perfectly fine basis of pq̄2 is (a+ bω)p, (a+ bω)(ωp−ω). Better

still, the ratio of these two basis elements is p/(ωp−ω) so this is a convenient basis.

We will let B1 ∈ GL2(Z) be the matrix that accomplishes this change of basis.

B1

(
pq

ωpq̄ − ω

)
=

(
ap+ bpω

(a+ bω)(ωp − ω)

)

=


( ap+bpω

(aωp− d−1
4
b)+(b(ωp−1)−a)ω

)
if d = 1 mod 4

(
ap+bpω

(aωp−db)+(bωp−a)ω

)
otherwise.

30



As before, we have 4 linear equations and 4 unknowns when looking at the real and

imaginary parts of the two components of the right-hand side. In fact we use the

same trick as in B0 to first solve for the right components of B1 since the imaginary

part of the target vector cannot come from pq. Solving we obtain (the somewhat

cumbersome)

B1 =




a+ bωpq̄

q
−bp

aωp −
d− 1

4
b+ (b(ωp − 1)− a)ωpq̄

pq
a− b(ωp − 1)

 if d = 1 mod 4


a+ bωpq̄

q
−bp

aωp − db+ (bωp − a)ωpq̄

pq
a− bωp

 otherwise.

Taking determinants, we get (after fully expanding and cancelling)

det(B1) =


a2+ab+b2 d−1

4

q
= Norm(q̄2)

q
= q if d = 1 mod 4

a2−b2d
q

= Norm(q̄2)
q

= q otherwise

and so B1 satisfies the requirements of Shimura reciprocity. We compute qB−1
1 and

we have

φ

(
1

p
, 0,

p

ωp − ω

)σ2
q

=


φ
(
a+b−bωp

p
,−bp, p

ωp−ω

)
if d = 1 mod 4

φ
(
a−bωp

p
,−bp, p

ωp−ω

)
otherwise.

(3.8)

As we now have p/(ωp − ω) in the third argument again, we are potentially back to

the action of σq being accomplished with B0. At this point we invoke the fact that

B0 and B1 are C-linear (and so B0

(
µ
ν

)
=
(
µ′

ν′

)
implies B0

(
αµ
αν

)
=
(
αµ′

αν′

)
for all α ∈ C).
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The result is that B0 and B1 will effect σq according to Shimura reciprocity so long

as zI is either p
ωp−ω or pq

ωpq̄−ω respectively.

This brings us to the following Theorem, which is what we actually use to

compute φ:

Theorem 3.3.4. Let q be a degree 1 prime ideal that generates the ray class group of

conductor p in K, with hK = 2. Let α be the generator of q̄2 with positive imaginary

part. If αi = u+ vω, then let

xq̄2i−1 =
u+ vωpq̄

pq

yq̄2i−1 = −v

zq̄2i−1 =
pq

ωpq̄ − ω

and let

xq̄2i =
u+ vωp

p

yq̄2i = −v

zq̄2i =
p

ωp − ω
.

Then for all j, k ≥ 0 we have

φ (xq̄j , yq̄j , zq̄j)
σk−jq = φ

(
xq̄k , yq̄k , zq̄k

)
.

Proof. After the above lemma and examples, it is enough to show xq̄j , yq̄j , zq̄j is a

proper φp(q̄
j) triple for all j and demonstrate that both

(
1

p
, 0)
(
(qB−1

0 )(qB−1
1 )
)i

= (xq̄2i , yq̄2i)
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and

(
1

p
, 0)(qB−1

0 )
(
(qB−1

1 )(qB−1
0 )
)i

= (xq̄2i+1 , yq̄2i+1).

By construction, zq̄j = µ/ν with µ = p and ν = ωp − ω or µ = pq and

ν = ωpq̄ − ω. We can quickly verify that

(xq̄j , yq̄j)

(
µ

ν

)
=xq̄jµ+ yq̄jν

=
u+ vωp

p
p+ (−v)(ωp − ω)

=u+ vω = α
j
2

if j even, while if j is odd we get

(xq̄j , yq̄j)

(
µ

ν

)
=
u+ vωpq̄

pq
pq + (−v)(ωpq̄ − ω)

=u+ vω = α
j+1

2 .

As a result, it satisfies the requirements of a proper triple. On the other hand, we

can show that Shimura Reciprocity sends proper triples to proper triples since

(
(x, y)(qB−1)

)
·
(
BT (µ, ν)

)
= (x, y) ·

(
(qB−1)TBT (µ, ν)

)
= q ((x, y) · (µ, ν))

= q(xµ+ yν)

From this we get that if xIµ+yIν = β then xq̄2Iµ
′+yq̄2Iν

′ = q2β after applying

the σq transformation twice in a row. Starting at xOKp + yOK (ωp − ω) = 1 we get

that for all i

xq̄2iαip+ yq̄2iαi(ωp − ω) = q2i
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which, using the identity αiᾱi = q2i, means

xq̄2ip+ yq̄2i(ωp − ω) =ᾱi

=


u+ v − vω if d ≡ 1 mod 4

u− vω otherwise.

At this point we have two linear equations by looking at the real and imaginary

parts, and given that we know xq̄2i , yq̄2i are real, we have two unknowns. Solving

yields the values given in the Theorem.

Similarly, starting with xq̄(pq) + yq̄(ωpq − ω) = 1 we get that

xq̄2i+1αi(pq) + yq̄2i+1αi(ωpq − ω) = ᾱi.

We can once again solve and verify, which completes the proof.

We know the 12pth power of φ(xqj , yqj , zqj) is in OKp and that the WHK power

equals π(qj) up to an appropriate root of unity ( [11] lemma 9, which is slightly

more technical than our Theorem 3.1.1). This implies

φ(xqj , yqj , zqj)
WHK = π(qj)ζk12p (3.9)

for some k. So φ(xqj , yqj , zqj)
WHK is an element of OKp multiplied by a root of unity

(which might not be in Kp). Applying σrq we get

φ(xqj+r , yqj+r , zqj+r)
WHK = φ(xqj , yqj , zqj)

WHK
σrq =

(
π(qj)ζk12p

)σrq = π(qj+r)ζq
rk

12p .

If we could set q ≡ 1 mod 12p then ζq
rk

12p = ζk12p and(
φ(xqj , yqj , zqj)

φ(xqj+r , yqj+r , zqj+r)

)WHK

∈ Kp.
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By construction we know a WHK th root of this lies in OKp if r is divisible by hK .

But since the WHK th roots of unity lie in OKp all roots of the above ratio lie in OKp ,

so that for r even and q ≡ 1 mod 12p we have

φ(xqj , yqj , zqj)

φ(xqj+r , yqj+r , zqj+r)
∈ OKp .

Having q ≡ 1 mod 12p is not possible for every K, in particular, not when HK has

extra roots of unity. This is because q must be non-principal if it generates the ray

class field. Non-principaltiy means q doesn’t split in HK , which means it does not

split in the maximal real subfield of HK . Referring back to Theorem 2.2.5 we get

that if 3|d then q ≡ 2 mod 3 while if d prime then q ≡ 3 mod 4. If for instance 3|d

and q ≡ 1 mod 4p and q ≡ 2 mod 3 then(
φ(xqj , yqj , zqj)

φ(xqj+r , yqj+r , zqj+r)

)3

ζ
(qr−1)k
3 ∈ OKp .

But since ζ3 ∈ OKp the ratio of the two is in OKp as well. Thus we can redefine π(q)

(which was only defined up to root of unity in Kp) so that k ≡ 0 mod 3. Similarly

if d is prime and q ≡ 1 mod 3p the ratio lies in OKp . Thus we are able to compute

our elliptic units of subsection 3.1 as

εσ
r
q =

((
π(q2)

π(K)
δ

) 1
WHK

)σrq

=

(
φ(xqj , yqj , zqj)

φ(xqj+r , yqj+r , zqj+r)

)
δ(−1)q

where δ is the fundamental unit of HK .

To summarize, to generate the elliptic units we perform the following process:

Algorithm 3.3.5. Constructing generators of elliptic units and their Galois action

1. Select primes q = 1 + 12pj for increasing values of j (1 + 4pj or 1 + 3pj for

3|d or d prime respectively).
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2. Increment j until
(
d
q

)
= 1, ensuring q splits in K, and

(
d1

q

)
6= 1 (where d1 is

the discriminant of the maximal real subfield of HK), so the factors of (q) are

non-principal because they don’t split in HK .

3. Fix q by factoring fω(x) mod q and selecting a root. Let ωq be the lift of this

root to Z.

4. Compute α which generates q2 by the methods of section 2.2.

5. Write α as m + nω and check if p−1
2
|Order(m + nωp mod p). If not, go back

to step 1. Because q ≡ 1 mod p is in the trivial class we know the ray class of

q̄ is the inverse of the class of q and so also generates the group.

6. Compute φ(xqj , yqj , zqj) for every 0 ≤ j ≤ p using Algorithm 3.3.1. Ensure

xqj , yqj are stored as rational numbers so they all have the same precision.

7. For every 0 ≤ j < p− 1 compute

εσ
j
q =

(
φ(xqj+2 , yqj+2 , zqj+2)

φ(xqj , yqj , zqj)

)
δ(−1)q .

While Theorem 3.1.3 showed the elliptic units are finite index, we can empiri-

cally verify this once we have computed the conjugates: We create the (p−2)×(p−2)

matrix whose entry in position (i, j) is given by log(|εσij |). Since the group index is

the ratio of the regulators, this has non-zero determinant exactly in the case where

the group is finite index.

With all the Galois conjugates of ε in Kp/K we can obtain the minimal poly-
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nomial by interpolation. That is,

fε(x) =

p−1∏
i=1

(x− εσi) (3.10)

This polynomial lies over K making it a convenient way to check if our computations

have gone correctly regardless of how we computed ε. We divide the imaginary part

of every coefficient by the imaginary part of ω, check we have an integer, then

subtract that integer multiple of ω from the coefficient to verify we have an integer.

Moreover, after doing this step we can write fε = g(x) + h(x)ω where g, h ∈ Z[x].

This seemingly trivial fact bears repeating as it will be used extensively:

Algorithm 3.3.6. Creating a polynomial f independent of the embedding of OK

(or finding out your polynomial does not lie in the polynomial ring).

1. Take f .

2. Let h = dIm(f)/ Im(ω)c where d·c rounds every coefficient to the nearest

integer.

3. Let g = df − hωc.

4. If df − g + hωc == 0 then return g, h ∈ Z[x]

5. Else recompute f with precision greater than the size of the absolute value

largest coefficient, or f /∈ OK [x].

A simple first use of the algorithm allows us to easily compute ε to arbitrary

precision over C: first we compute ω to a high precision, next we recompute fε =

g(x) + h(x)ω with this new precision, then we apply a fast root-finding algorithm
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such as the Splitting Circle Method used in PARI [14] to evaluate the roots of fε

numerically. While the product defining φ converges geometrically, meaning each

extra term we multiply by gets us a fixed number more bits of precision, other

methods converge faster so that each iteration of the algorithm gives more bits of

precision than the last. For instance, computing φ to the precision necessary to

perform the computations in section 3.6 took hours per value of φ (of which there

were over a hundred) while interpolating the minimal polynomial at a lower precision

then using the PARI command polroots() on this polynomial could find all the roots

to the desired precision in a few hours.

Now that we have these units, we can easily recover π(q) and its conjugates.

In fact we can often do better. Let ζj = exp(2πi/j). If

γ = φ(xq, yq, zq)
r ∈ ζk12pKp,

then so is φ(xqj , yqj , zqj)
r for all j so long as we picked σq so that it fixes all 12pth

roots of unity not in Kp (which we can do since the fields Kp and K(ζp) are disjoint).

Without loss of generality, we may assume k < 6p and r < 12p. If q ≡ 1 mod 24p
WHK

then

(
φ(xq, yq, zq)

rζ−k12p

)σj−1
q =φ(xqj , yqj , zqj)

rζ−q
j−1k

12p

=φ(xqj , yqj , zqj)
rζ−k24p

WHK

ζ−q
j−1k

WHK
.

One guesses what k mod 24p
WHK

is (call this guess g) and then interpolates the putative

minimal polynomial of φ(xq, yq, zq)
rζ−g12p as

f̃γ(x) =

p−1∏
i=1

(
x− ζ−g24p

WHK

ζ−q
j−1g

WHK
φ(xqj , yqj , zqj)

r

)
.
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Checking that this polynomial lies in OK [x] then shows that we have chosen

g correctly:

Lemma 3.3.7. If the polynomial f̃γ(x) lies in K[x] then g = k.

Proof. Because K(12p2)/K is an abelian extension we know f̃γ splits in a degree-

(p− 1) extension. Because the roots of f̃γ only differ from the roots of fγ by a root

of unity, fγ12p/r must split in a subfield of the splitting field of f̃γ and in Kp, the

splitting field of fγ. Thus verifying fγ12p/r is irreducible shows by degree arguments

that Kp is the splitting field of f̃γ. Assume fγ12p/r factors into two polynomials

h1, h2 over K. By construction there is a Galois element that moves any given root

of fγ12p/r to any other, thus there is an element that moves any given root of h1

to a root of h2. But since all the Galois conjugates of roots of h1 are themselves

roots of h1 we have that h2 = h1. But this implies there is a Galois element τ with

γ
12p
r = γ

12p
r
τ . Note that δ, the fundamental unit of HK , is fixed by τ 2 since it lies

in a degree-two extension of K. Thus τ induces a relation among the elliptic units,

namely

ε12p =
γ

12p
r
σ2
q

γ
12p
r

δ12p =

(
γ

12p
r
σ2
q

γ
12p
r

δ12p

)τ2

= ε12pτ2

,

and both are elliptic units. As NKp/K(ε) = 1 should be the only relation, we conclude

τ 2 = 1 so τ = σ
p−1

2
q in the splitting field. If p ≡ 1 mod 4 then p−1

2
is even so δτ = δ,

and we get the nontrivial relation

γ
12p
r
σ2
q

γ
12p
r

δ12p =

(
γ

12p
r
σ2
q

γ
12p
r

)τ

δ12p =

(
γ

12p
r
σ2
q

γ
12p
r

δ12p

)σ
p−1

2
q
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which is impossible. Similarly, if p ≡ 3 mod 4 so that

γ
12p
r
σ2
q

γ
12p
r

δ12p =

(
γ

12p
r
σ2
q

γ
12p
r

)σ
p−1

2
q

δ−12p

we can take the norm down to HK and as the left side should norm to positive powers

of δ while the right should norm to negative powers, we have a contradiction. Thus

we conclude fγ12p/r irreducible and we are done.

It should be noted here that the minimal polynomial of π(q) or any other γ

is a larger polynomial typically than fε because it is not a unit (and generally has

been raised to a power) therefore computation of fπ(OK) would require at least twice

the precision. Because interpolating at high precision takes time, one might instead

look at ∣∣∣∣∣
p−1∑
j=1

ζ−q
jg

WHK
φ(xqj , yqj , zqj)

r

∣∣∣∣∣
2

.

When it is an integer, you have probably guessed part of k correctly (and you

certainly have if only one does), at which point we can multiply the sum by powers

of ζ 24p
WHK

until it lies in K. This requires much less precision, and in practice always

works (as in only one g satisfies the conditions), so one can recover k without needing

enough precision to actually compute fγ.

3.4 Constructing Elliptic Units and Their Galois Action Over Zr

We follow [5] in embedding ε and its conjugates into Zr. By splitting fε into

g(x) + h(x)ω we can embed the polynomial into Zr[x] so long as ω ∈ Zr (which

in turn just requires
(
d
r

)
= 1). We then take the roots of this to obtain ε and its
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conjugates. Often the r we deal with are not congruent to 1 mod p, so OK(p)
(which

contains the pth roots of unity) does not embed in Zr. In this case there is only one

way to embed fε into Zr[x] and have it factor into linear terms. As usual we have

OKp ⊂ Zr if and only if r splits in OKp . Thus we construct r’s that specifically split.

Algorithm 3.4.1. Generating r so that OKp ⊂ Zr

1. Select a, b ∈ Z

2. Set j = ω−1
p mod p and k = 0

3. Let r = ((ap+ k + 1)− (bp+ jk)ω). Note that r is in the trivial ray class

modp.

4. Set r = N(r).

5. If r is prime, then OKp embeds in Zr.

6. If r is not prime and k < p then go to 2 and set k = k + 1.

7. If r is not prime and k = p then go to 1 and set a = a + 1 if |a + 1 + bω| <

|a+ (b+ 1)ω| or set b = b+ 1 otherwise.

For speed purposes, we want to have step 3 before 4 because primality testing

is the longest step (if still pretty short) and the probability of r being a prime is

1/ log(r) which is typically much larger than the probability of something being in

the trivial ray class, 1/(p − 1). We increment the way we do in step 7 to keep r

small and thus more likely to be prime. This mostly matters for p in the hundreds

where finding an r may take seconds. If we want to add an additional condition,
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it is easy to do so. For instance, to ensure the pth roots of unity are in Zr we just

require k = 0; to cause no roots of unity to lie in Zr, we skip k = 0.

We continue following the methods of [5] in determining the Galois action on

the roots of fε. For a cyclic Galois group, there is no canonical way to fix which

root of fε in Zr is ε; by declaring a root to be ε we have fixed an embedding. Now

we need to figure out the Galois action. To do this, we encode the action of a Galois

element in the minimal polynomial of an element of the unit group

fincrement(x) =

p−1∏
i=1

(x− εσi+σi+1

). (3.11)

The roots of this polynomial are the product of input/output pairs of the σ function.

We can compute this polynomial over K[x] ∈ C[x] using the techniques of the

previous section. Since this polynomial is over K[x] we can easily break it into two

components g(x) + h(x)ω and embed it into Zr[x]. We can then use its roots, along

with the roots of fε to find every input/output pair of σ in our embedding.

Unfortunately, we do not know which element of the pair is input and which

is output. By starting at a pair that included ε and claiming this pair uses ε as the

input, we can work our way through all the pairs and construct a function. But,

we won’t know if we guessed correctly in the first pair we picked (in which case we

reconstructed σ) or not (meaning we reconstructed σ−1). So we employ one final

polynomial

fdirection(x) =

p−1∏
i=1

(x− εσi+σi+1+σi+3

). (3.12)

We once again embed this in Zr[x] and take roots. We then check whether the

root of fincrement that we thought corresponded to ε1+σ actually is, by multiplying it
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by the purported εσ
3

and seeing if it is a root of fdirection.

An example will hopefully clear things up. Let p = (1 + ω) ⊂ OK with

K = Q(
√
−6), so p = 7. Using the methods of the previous section we can get

fε =x6 + (−2 + 3ω)x5 + (−12 + 6ω)x4 + (−22 + 9ω)x3 + (25− 3w)x2 + 22x+ 1

=(x6 − 2x5 − 12x4 − 22x3 + 25x2 + 22x+ 1)

+ (3x5 + 6x4 + 9x3 − 3x2)ω.

We can verify that a R lying above r = 26209 has the r-adic properties we want.

So, in Zr we get ω = 627 +O(r) and

fε =x6 + (1879 +O(r))x5 + (3750 +O(r))x4 + (5621 +O(r))x3

− (1856 +O(r))x2 + 22x+ 1

=(x− 4521 +O(r))(x− 12045 +O(r))(x− 15266 +O(r))

(x− 21500 +O(r))(x− 24368 +O(r))(x− 25257 +O(r)).

Finding the roots above was a simple polynomial-time algorithm (polrootspadic()

in PARI for instance). We fix an embedding by declaring ε = 4521 +O(r) (the first

root). There is only one way now to consistently assign names to the other roots.

We have

fincrement =(x6 − 14x5 + 101x4 − 138x3 − 668x2 − 16x+ 1)

+ (−6x5 + 75x4 − 309x3 − 228x2 + 3x)ω

=(x− 3693 +O(r))(x− 9289 +O(r))(x− 11301 +O(r))

(x− 12702 +O(r))(x− 22580 +O(r))(x− 22838 +O(r)).

43



We see that the ratio of the 2nd root of fincrement to the 3rd of fε is 4521 + O(r)

(our ε), as is the ratio of the 3rd root of fincrement to the 5rd root of fε. Thus either

εσ = 15266 +O(r) and εσ
5

= 24368 +O(r), or vice versa.

Let’s assume for the moment εσ = 15266 + O(r). Dividing all the roots of

fincrement by 15266+O(r), only the first and second quotients are on the list of roots

of fε. Since we know the second root of fincrement corresponds to εεσ, the first must

be εσεσ
2

and εσ
2

= 21500 +O(r).

Dividing the roots of fincrement by 21500 + O(r), we see the fifth quotient is a

root of fε so εσ
3

= 12045 + O(r). The one remaining root of fε is 25257 + O(r), so

this must be εσ
4
.

In order to see if our guess was correct, we compute εεσεσ
3

= 25993 + O(r),

then we stick it into

fdirection =(x6 + 16x5 − 78x4 + 122x3 − 29x2 − 10x+ 1)

+ (6x5 + 51x4 + 54x3 + 9x2 − 3x)ω

which yields 0 + O(r), so we must have made the correct guess for the value of εσ.

We have now well-defined an embedding of Kp into Zr since we have stated where

a K-linear basis gets sent.

From here on, one should think of εσ
j
q in the r-adics as being an ordered p− 1

long vector where each entry is an integer mod rk for some k.

As our algorithms below will involve embedding in many different r-adics,

lining up roots with fincrement can easily become a bottleneck in the code. As a

result, we here state the standard trick to find pairs of roots of fε whose product is
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a root of fincrement.

The naive method would be to multiply every root of fε by every other (which

will take at least p2/2 operations) and then comparing each of these to the list of

roots of fincrement (another factor of p for a total of p3/2).

A standard speed-up is to sort the list of roots. Sorting a list of length n takes

approximately n log2(n) operations, and most standard programming languages will

have this functionality built in (vecsort() in PARI for instance). First we multiply

every root of fε by a particular root, say ε0 and make a list of tuples (ε0τ, τ). Next,

we add a tuple (γ, 0) to the list for every root γ of fincrement. We sort (say, based

on the value of the roots when lifted naively to the integers). We now need only

compare the first component of every element on our list to those immediately before

and after it. If ε0τ is a root of fincrement then (ε0τ, 0) will be on the list right before

(ε0τ, τ). The work is therefore ≈ 2p log2(2p) for each root of fε or ≈ 2p2 log2(2p)

total.

3.5 Schoof’s Method

Schoof’s method computes a factor of the class number of a field (likely the

whole thing) by finding relations in a group of the same size as the class group.

If we are unable to find relations after a small number of attempts, the remaining

(potentially nontrivial) elements in the group give us a guide for where to look

to prove the existence of a nontrivial element of the class group. While Schoof

only used his method on real cyclotomic fields [10], Kucuksakalli generalized this
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method [5] to ray class fields over imaginary quadratics of class number 1. These

methods, however, carry over in a straightforward way to any cyclic ray class field of

an imaginary quadratic as long as we have a unit whose Galois conjugates generate

a finite index subgroup.

In particular, if E is the group of units and E is our above defined group of

elliptic units, then let B = E/E and R = (Z/pZ)G where G = Gal(Kp/K). We

can see that B[p] is an R-module in a natural way. That is to say, elements of G

stabilize the group E by construction and p-torsion always can be acted upon by

Z/pZ. Our goal is to probe whether this is a trivial module or not. If B[p] has a

non-trivial element then p|[E : E ] and so p|hKp .

Definition. A finite ring R is Gorenstein if the module Rdual = homZ(R,Q/Z) is

free of rank 1 over R.

It is simple to see that our R is finite Gorenstein. Finite Gorenstein rings have

several useful properties (as proved in, for instance [10] or [1]). Most notable for us

are the following:

Theorem 3.5.1. Let R be a finite Gorenstein ring. Then the following hold:

1. Given an R-module A we have A⊥ = homR(A,R) ∼= Adual by the map f 7→ χ◦f

where χ generates Rdual.

2. Any finite A is Jordan-Hölder equivalent to Adual.

3. Given I, J ideals of R and a surjection g : R/J → I⊥ with the property that

AnnR(J) annihilates R/I. Then g is an isomorphism.
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Thanks to Theorem 3.1.3 we know that E is a free R-module generated by ε.

Because R is a finite Gorenstein ring, we have that B[p] is Jordan-Hölder equivalent

to B[p]⊥ = homR(B[p], R). Among other things, this implies they are the same size.

In Schoof’s original method (which concerns itself with Q(p)), he uses an identity on

B[p]⊥ to demonstrate it is isomorphic to I, the augmentation ideal of R quotiented

out by the ideal generated by the group ring elements that correspond to unramified

prime ideals in Q(ζp)/Q. Kucuksakalli shows in Theorem 4.11 of [5] that this same

process works for Kp(ζp)/K. We present a simplified version below:

Theorem 3.5.2 (Kucuksakalli). Let I = 〈σq − 1〉 denote the augmentation ideal of

the group ring R. There is a natural isomorphism of R modules

B[p]⊥ ∼= I/〈FR(σq) : R ∈ S〉,

where S is the set of degree-1 unramified prime ideals in Kp(ζp)/K and the group

ring elements FR(σq) are defined by

FR(ε) =

p−1∑
j=0

cjσ
j
q,

where

(εσ
j

)
r−1
p ≡ ζcjp mod R,

and ε generates the elliptic units.

Our goal therefore, is to find these group ring elements FR. To do this, we

need to simultaneously see how the Galois action effects both the pth roots of

unity and our units ε. Over Q Schoof is able to use algebraic properties of the
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cyclotomic units that we lack. Instead, Kucuksakalli embeds OKp(ζp) into Zr where

r = |NKp(ζp)/K(R)|2.

Given an embedding of OKp(ζp) into Zr there is an obvious homomorphism

ψ : OKp(ζp) → Fr. That is, given x =
∑∞

j=0 xjr
j then ψ(x) = x0 mod r. The kernel

of this homomorphism must be a prime ideal lying above r (since quotienting by

the kernel yields a field) which we will call R. Thus, by selecting an embedding

we immediately select a degree-1 prime which is “easy” to compute with. We have

found an R for which computations modR are actually computations modr in the

r-adics.

In order to ease the notational confusion of having polynomials in values that

are usually considered known, we will denote FR as polynomials in X (instead of σ)

for the remainder of this section.

The first step is to find some R’s, which really reduces to finding r’s.

We need r ≡ 1 mod p so the roots of unity are in Zr, which means we perform

Algorithm 3.4.1 with the slight change that we skip step 6 so that we only produce

r satisfying the congruence. This causes us to take slightly longer than the basic

algorithm (since the r’s are bigger they are less likely to be prime).

Given this r, we raise ε to (r − 1)/p, and then we observe which root of

unity it is congruent to modr. This is repeated for every conjugate, yielding all the

coefficients of fR.

Because r is typically much larger than p2, we are able to do all our compu-

tation mod r. That is, fε(x)(xp − 1) is typically square-free mod r so there is no

ambiguity in our computation. We take a root of xp − 1 mod r and call it a. We
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take each εσ
i
, raise it to the r−1

p
power and see which power of a it is. As there are

only p powers, doing this by exhaustion2 is much less work than embedding into Zr.

Algorithm 3.5.3. Computing FR for some R ∈ Kp(ζp) above r.

1. Find a 6= 1 such that ap ≡ 1 mod r

2. Set j = 0 and initialize FR = 0.

3. Take εσ
j
q ≡ n mod r as computed by section 3.4

4. Compute b = n
r−1
p mod r

5. Take the discrete log of b (which is a pth root of unity) with respect to a which

generates them, calling this c.

6. Add cXj to FR, and if j < p− 1, increment j and go to step 3.

This process involved two arbitrary choices: which root of fε(x) you declare is

ε (from section 3.4) and which root of xp− 1 you declare is a. As a result, whatever

element of the ideal you get is only unique up to multiplication by Xj (if the root

you call ε used to be called εσ
j
) and multiplication by a scalar k (if the root called

a used to be called ak). Since both non-zero scalars and powers of X are units in

R, the ideal FR generates is independent of these choices.

We are trying to find the ideal generated by these FR(X), so we will employ

the above algorithm for many different r. Moreover, when we get an FR(X) we

want to figure out how it limits what could be in the ideal.

2Although we did it using the PARI command znlog(ε
r−1
p σj

q ,a,[p,Mat([p,1])]) which is faster for
larger p
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Consider a single polynomial in our ideal FR(X) =
∑p−1

j=1 cjX
j defined by

ε
r−1
p
σj ≡ ζcjp (modR).

We appeal to the following lemma concerning what generates our ideal.

Lemma 3.5.4. Fix R and take I = 〈FR(X)〉, and F the lowest degree lift of

FR to Fp[x]. If g is the product of all linear polynomials dividing F , then I =

〈g mod Xp−1 − 1〉.

Proof. Since g · (F/g) mod Xp−1 − 1 = FR, clearly I ⊂ 〈g mod Xp−1 − 1〉.

Notice that g|(Xp−1−1) since Xp−1−1 is divisible by every linear polynomial.

On the other hand, F and Xp−1− 1 can share no other factors since Xp−1− 1 is not

divisible by any irreducible polynomials of degree > 1. Thus, there exists a, b ∈ Fp[x]

with aF + b(Xp−1 − 1) = g. And so aFR = g mod Xp−1 − 1 ∈ 〈FR(X)〉.

We are trying to get a handle on the ideal generated by all the FR. So,

we compute several FR for different r, look at common zeroes among them, and

conclude the ideal generated by all FR must contain the ideal generated by the

product of these common linear divisors.

Naively, if we believe FR is a random element of our ring, then it would have

a 1/p chance of being divisible by a particular linear term not in our ideal. That

is, FR(j) has a 1/p chance of being zero, and is independent of the other terms

j′ unless the ideal forces it to be 0. As such, if our ideal were the whole ring, a

single FR(X) would be expected to have (p − 1)/p many zeroes, two polynomials

would be expected to share (p − 1)/p2 many zeroes and more generally, we expect
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(p− 1)/pk shared zeroes from k polynomials with the odds of observing none being

(1 − 1
pk

)p−1 ≈ 1 − p−1
pk

. In other words, observing three FR makes the odds of

thinking there is a nontrivial ideal when there is not (a Type 1 error) less than one

in a hundred (heuristically); we did it for a least 10 primes (or until the gcd was

X − 1 and so we knew the FR generated the entire augmentation ideal I).

If there is a common factor g amongst the FR then it is possible that

B[p]⊥ ∼= I/〈g〉.

Since X − 1 generates I and FR ∈ I, it is always in the ideal; we will only obtain a

degree p element if there is another linear factor.

3.6 Following the Trail of Bread Crumbs

Once we have a putative non-trivial element of the ring B[p]⊥, we can use

this to track down a proof. Since we are asserting there is a non-trivial element of a

group, we must find said element. In this case, the group is units modulo the elliptic

units, so we must find an elliptic unit which has a pth root in the field which is not

an elliptic unit. Such a root would then be in the non-trivial coset.

Our strategy is to take a potential non-trivial element of B[p]⊥, then lift this

to g(σ) ∈ Z[Gal(Kp/K)].

The lift is quite simple, since B[p]⊥ = I/〈FR : S〉 if 〈FR : S〉 = 〈F 〉 then,

going back through the isomorphisms we get

g̃(σq) =
∏

F (j) 6=0

(σq − j) ∈ B[p]⊥.
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This in turn implies that εg(σq) is a nontrivial element of B[p] where g(σq) is any lift

of g̃ from R to ZG. For ease of computation, every coefficient of g will lie between

−(p− 1)/2 and (p− 1)/2.

We apply this element to a generator of the elliptic units (embedded in C),

getting η = εg(σq) and its Galois conjugates εσ
j
qg(σq). It bears thinking for a moment

how to do this:

Algorithm 3.6.1. Computing εσ
j
qg(σq) given ε and its conjugates

1. Use Algorithm 3.3.5 to generate the list (ε, εσq , εσ
2
q , ...)

2. Defining η = εσ
j
qg(σq), set

ησ
j
q =

p−2∏
k=0

(εσ
k
q )coefficientk−jmodp−1(g(X))

3. Return the list (η, ησq , ησ
2
q , ...).

At this point we should check that these η conjugates form a finite index

subgroup of the unit group to verify they are not lying in a subfield. If they do lie

in a subfield, then we can change our arguments below slightly to take place in said

subfield of Kp, but this never happened in practice.

We interpolate all the conjugates of η to get the minimal polynomial fη(x) ∈

K[x].

Our element η is obviously in the group of elliptic units, but since g(σ) is not

divisible by p by construction, and the elliptic units are freely generated by ε, we

know the pth roots of the roots of η are definitely not elliptic. What remains is to

verify that there is some root η1/p ∈ Kp.
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We will try to show η1/p ∈ Kp by constructing the minimal polynomial of η1/p.

If fη(x
p) factors over K[x] and one of the factors f ′ is degree p − 1, then we know

the roots of f ′ are in Kp by the following lemma:

Lemma 3.6.2. Take f ∈ K[x] irreducible with one root of f generating its splitting

field. Take g, h ∈ K[x] so that g|f(h(x)) with g irreducible and of the same degree

as f . Then the roots of g lie in the same field as the roots of f .

Proof. Take α so that g(α) = 0. Then h(α) is a zero of f and so the splitting field

of f is contained in K(α). But as the degree of f is the degree of g, they are the

same field.

Given that the coefficients of fη(x) are very large, often with absolute value

over 101000, factoring fη(x
p) over K[x] is not a trivial task. One can take the norm

of the polynomial down to Z[x], factor there, then if there are factors of degree

2(p − 1), take the gcd of those factors with fη(x) (to get back to K[x]) and verify

it is degree p − 1. The issue with this method is that the algorithms for factoring

polynomials in computer algebra packages require a large amount of memory. The

polynomial itself is in the megabytes.

One might ask why we didn’t take the pth roots of ησ
j

directly and save the

polynomial factoring step. The issue is that there are p many pth roots for each

element, and, because ζp /∈ Kp, at most one of these roots lies in Kp. Our only

reasonable test for membership in Kp involves computing the minimal polynomial,

and so we would have to correctly guess the pth root of all p − 1 units at once, a

p−(p−1) event, or infeasible if p > 11.
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Kucuksakalli [5] has a method for finding unique pth roots in a field which

uses memory proportional to the amount required to store the polynomial, and so

is preferable to factoring for p larger than, say, 50.

He notes that if r 6= 1(modp) then unique pth roots can be taken in Zr. So,

one merely finds an r such that r completely splits in Kp, implying OKp ⊂ Zr and

one can take roots in OKp . In this setup, we embed ε and its conjugates into Zr

as in the previous section by embedding its minimal polynomial, as well as the

polynomials that let us define the Galois action.3 We then directly compute the

εσ
j g(σ)

p and get their minimal polynomial fη1/p(x) over Zr[x]. If this is actually the

minimal polynomial of a unit in Kp then the polynomial fη1/p(x) lies in K[x].

Finally, we lift fη1/p(x) up to (Z⊕ωZ)[x], as described below. There is a little

subtlety to the lifting. Kucuksakalli applied the PARI command algdep() to each

coefficient, which uses the LLL algorithm to find a polynomial of a stated degree

with “small” coefficients that evaluates to zero at the input (a putative minimal

polynomial). One can then factor the polynomial one gets out of algdep() and verify

it splits over K. This leaves one with two roots that we could lift the coefficient to.

To be consistent, we should write the roots as a + bω and a + bω̄. We still know

which embedding of ω into Zr we used, so we verify which of the two roots maps

to our coefficient under this embedding. Another subtlety to this is that algdep()

as coded into PARI does not know we are lifting to a polynomial whose leading

coefficient is 1 (see Appendix). As such, it is using a 3-dimensional lattice, when

3 One interesting new wrinkle is that OKp
can be embedded, but typically not OKp̄

. This
means that one putative embedding of fε ∈ Zr[x] will split (the actual embedding) and the other
won’t (the embedding to f̄ε ).
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really a 2-dimensional lattice would do, slowing down the computation substantially,

and in practice requiring 50% more precision to our numbers (vastly slowing down

the process).

Algorithm 3.6.3. Determining if f(x) ∈ Zr[x] likely lies in OK [x] and finding the

most likely polynomial.

1. Take f(x) ∈ Zr[x] to O(rk) precision. Take fi ∈ Zr its ith coefficient.

2. Set γ ∈ Zr as your favorite root of x2 − d to O(rk) precision.

3. Set i = 1, freal(x) = 0 and fimag(x) = 0.

4. Find a small polynomial gi(x) = aix
2 + bix + ci ∈ Z[x] which fi is almost a

root of (see Appendix for details).

5. If ai = 0 verify bi = ±1 and fi = −bici + O(rk). If yes, set freal+ = −bicixi

(where += means set the left-hand side to its current value plus the right-hand

side) and go to step 4 with i+ = 1, otherwise f /∈ OK [x].

6. Verify ai|bi, ci and (b2
i − 4aici)/d is a square. If not, return f /∈ OK [x].

7. If

fi =
−bi ±

√
(b2
i − 4aici)/dγ

2ai
+O(rk)

then freal+ = −bi
2ai
xi and fimag+ = ±

√
(b2i−4aici)/d

2ai
xi and go to step 4 with

i+ = 1, otherwise f /∈ OK [x].
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8. If i =degree(f) then if d ≡ 1 mod 4 set fimag = fimag/2 and freal− = fimag. If

freal, fimag ∈ Z[x] and freal+γfimag = f(x) up to O(rk) we are done, otherwise

f /∈ OK [x].

A theoretical (though not practical) weakness of this r-adic embedding method

is that if the lifting to OK [x] fails, we do not know whether it is due to a lack of

r-adic precision or because fη1/p(x) /∈ OK [x]; the class number may not really be

divisible by p and we will never find a polynomial of the sort we want. This is

not a practical weakness since Schoof’s method, while probabilistic, is heuristically

giving an astronomically small chance of being wrong, so if fη1/p doesn’t lift one can

assume one has not used enough precision. Second, given the size of the elliptic units

over C one can come up with an upper bound on the minimal amount of precision

needed if one wanted to prove one was using enough precision. In our work, we

never encountered a putative fη1/p which didn’t lift.

Upon lifting fη1/p(x) up to (Z⊕ωZ)[x] we can verify that fη(x
p) mod fη1/p(x) =

0 and invoke Lemma 3.6.2 to prove the lifted fη1/p was in fact the correct polynomial.4

Note, we always know that fη has the correct value since it was computed from ε

and its conjugates directly.

Algorithm 3.6.4. Verifying f |g when f, g ∈ (Z⊕ ωZ)[x].

1. Take df = freal + ωfimag and dg = greal + ωgimag.

2. While degree of f = a > degree of g = b, let c = n + mω be the leading

4 One might claim that the ability to find such a lift is ample heuristic proof that it is true as
the likelihood of algdep() lifting even a single coefficient to K that doesn’t belong there is on the
order of 10−precision. If the pth root isn’t in OK it must be in an extension, so at least one of the
coefficients doesn’t live in K.
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coefficient of f and

freal− =


xdf−dg(ngreal +md−1

4
gimag) if d ≡ 1 mod 4

xdf−dg(ngreal +mdgimag) otherwise

fimag− =


xdf−dgm(greal + gimag) if d ≡ 1 mod 4

xdf−dgmgreal otherwise

3. f mod g = freal + fimagω at the end.

While this method takes some time (we do it as above so we do not need to

worry about precision issues), it is very little compared with the rest of the Kucuk-

sakalli/Schoof process and it is very elegant (requiring all of 4 lines of code). But it

appears to have not been used in [5], who relies on an argument using Chebotarev’s

density theorem and class field theory to show his putative minimal polynomial gives

the same field extension as Kp. Kucuksakalli provides few details of his calculations

so we are unable to reproduce them. However, we have independently verified that

his highly irregular prime p = (13 − 2ω) ⊂ Z[1+
√
−163
2

] is highly irregular using

Algorithm 3.6.4.
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Chapter 4: Highly Irregular Primes

We used the above methods to see whether any class numbers were divisible

by the prime conductor of the field. We exhausted over every imaginary quadratic

field of class number 2 and every prime ≤ 307 which split and gave a cyclic ray class

group for a given field. This came out to 462 many (pairs of conjugate) ray class

fields (83 of 545 primes did not have cyclic class groups). This yielded the following

result:

Theorem 4.0.5. There are exactly 5 pairs of ray class fields Kp/K where K is an

imaginary quadratic field of class number 2 and Kp has a degree 1 prime conductor

p with Norm(p) ≤ 307 and for which p|hKp. These are given by

Quadratic Field p

Q(
√
−267) 41

Q(
√
−10) 103

Q(
√
−235) 113

Q(
√
−22) 211

Q(
√
−427) 239

While we may be able to show p larger than 307 are not highly irregular using
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Schoof, our methods would not work on any that are. This is because the minimal

polynomial of the unit which would correspond to a class group element of order p,

when not embedded into a larger field, has a largest term whose size is expected to

grow cubically in p. We need enough precision to be able to find the nearest element

of OK for each coefficient of a minimal polynomial. The p = 239 example required

over 15,000 digits of precision to do Schoof’s method alone. Moreover, completing

the proof necessitates computing a polynomial fη which typically requires precision

quartic in p. The largest coefficient of fη required over 108,000 digits of precision

for the p = 239 case. This was actually too large for PARI’s native root finding

algorithm to be run on a machine with a 32-bit RAM architecture. Instead we

ran this portion of the computation on compute1, a 48 GB RAM machine with a

64-bit architecture at the University of Maryland running PARI version 4.7.1. The

root-finding took somewhat under 6 hours and appeared to use around 5 GB of

RAM.

Given the number of observed fields, we can compare this with the “expected”

number from some heuristic. In section 8.3 of [13] Washington argues that the num-

ber of highly irregular primes in Q less than n grows as log(log(n))/2, and therefore

if a counterexample to Vandiver’s Conjecture existed, we would not necessarily ex-

pect it to appear at the sizes we have heretofore looked at. These results provide

more evidence for these arguments.

Washington argues that we would expect the numerator of a Bernoulli number

to be random mod p, and that as a result it is a 1/p chance that the numerator

of the jth Bernoulli number is divisible by p. We know that the class number of
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Q(ζp + ζ̄p) is divisible by p only if the jth Bernoulli number’s numerator is divisible

by p for some j less than p − 1 (with each number corresponding to an eigenspace

of the class group). Washington further argues that if the numerator of the jth

Bernoulli number is divisible by p, then and only then should we assume there is

a 1 in p chance that the portion of the class group corresponding to said Bernoulli

number has a 1 in p chance of being divisible by p. Since all odd-indexed Bernoulli

numbers are 0, this works out to a p−3
2p2 ≈ 1

2p
probability that a given prime is

highly irregular.1 Invoking the prime number theorem, the expected number of

counterexamples to Vandiver for p ≤ n is log(log(n))/2. Vandiver’s conjecture is

only verified for p ≤ 163, 577, 356 (see [2]). By the Bernoulli number argument, we

expect around 1.0 primes to be highly irregular (obtained from summing over all

p < 163, 577, 356 and not the prime number theorem approximation). Assuming

the above argument is valid, the likelihood we still observed zero counterexamples

so far is close to e−1.0 ≈ 35%, which is reasonable.

We adapt this argument to our present case. For hK = 1 there are Hurwitz

numbers associated to each imaginary quadratic field defined as

Hj(OK) =
∑

z∈OK/{0}

1

zj
(4.1)

for j ∈ Z+. It was proven by Robert [7] that if p divides the class number of Kp

then there exists a nonzero Hurwitz number whose numerator is divisible by p and

whose index is less than p − 1, with each numerator corresponding to a different

1 Actually, if each Bernoulli number is thought of as independent (which is reasonable as each
corresponds to a different part of the class group) then p−3

2p2 is the expected number of parts of the

class group divisible by p and 1− (1−p−2)
p−3

2 is the probability the class number is divisible by p.
These are nearly the same value, especially as p grows, so we will not give more than 2 significant
digits for any number in this section
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eigenspace of the class group. Hurwitz numbers are zero for any index j not divisible

by the WK , the number of roots of unity in the field2. So following the argument as

before (when WK = 2 and slightly altered when not), if the jth Hurwitz number has

probability 1/p of being divisible by p, we might expect a (p − 3)/2 in p2 chance3

that the class number of Kp is divisible by p. So, overall, there would be a p−3
2p2

chance that a particular hKp is divisible by p. On the other hand, p|hKp if and only

if p|hKp̄
(that is, these events are perfectly correlated).

But, there is no reason why this argument should be limited to the case where

Hurwitz or Bernoulli numbers have historically been defined. The argument is es-

sentially that there is a 1/p2 chance that a non-trivial eigenspace of the class group

of Kp is divisible by p. We can apply this logic to any Kp.

We only checked those p for which the ray class group was cyclic, of which

there were 462. Computing the expected number of counterexamples we get

∑
p that we checked

p− 3

2p2
≈ 3.0 (4.2)

As there were 462 theoretically independent Bernoulli trials (of varying prob-

abilities of success) that went into the above summation, it is reasonable to approx-

imate this as a Poisson distribution. Given this, there is an 10% chance that there

are 5 highly irregular primes (and 19% chance of at least 5), so this is just as we

expect.

2 If OK contains the kth roots of unity, then ζkOK = OK so∑
z∈OK/{0}

z−j =
∑

z∈OK/{0}

(
ζ`kz
)−j

.

Thus, kHj(OK) =
∑k
`=1 ζ

j`
k Hj(OK) which is clearly zero unless k|j.

3 see earlier footnote
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Moreover, we can include Kucuksakalli’s experiments in out data: he per-

formed a similar computation for all degree 1 primes lying above p < 700 for

quadratic imaginary fields of class number 1. He found a single pair of highly

irregular primes (p|307 in Q(
√
−163)) out of the 537 primes he checked. We com-

pute that 1.7 is the expected number of pairs he would have found.4 Adding his

results to our own gives an expected number of highly irregular primes equal to 4.7

of the 999 primes checked, while 6 were found. This gives a probability of 14% that

there were exactly 6 (34% that there was more than 5), which is an even more likely.

This leads to the following conjecture:

Conjecture 4.0.6. Take K equal to Q or an imaginary quadratic field. Let DK(n)

be the number of highly irregular primes p ∈ K with Norm(p) < n. Then

lim
n→∞

DK(n)

log(log(n))
= hK

[K : Q]

WK

Given that we know DQ(163, 577, 356) = 0, the conjecture puts it at roughly

even odds that there is a prime of at most 32 digits that violates Vandiver’s conjec-

ture and 99% chance of a prime with at most 80,000 digits. Both are outside the

realm of possibility for exhaustion for the foreseeable future.

4 Kucuksakalli’s expected number of highly irregular primes is much lower than ours because
in class number 1, p can only split into a principal ideal whose generator has a norm of p. As a
result, p doesn’t split if p < |ω|2. But these are the exact p that give the majority of the weight
to our expected value. This is the reason we haven’t found highly irregular rational primes: there
are many fewer small primes for it to occur at than in quadratic fields. Further, because Q(i) and
Q(
√
−3) have 4 and 6 roots of unity respectively, the ray class fields in those cases have fewer

non-zero Hurwitz numbers.

62



Chapter 5: Constructing Unramified Abelian Extensions of Ray Class

Fields

We numerically explore some consequences of when Vandiver fails. One classic

result is that when Vandiver’s conjecture holds for an irregular prime p, we can

construct an unramified abelian extension of Q(ζp) = Q+(ζp) by adjoining the pth

root of a cyclotomic unit in the field. Similarly, in a ray class field, when the

generalization of Vandiver holds and a certain part of the class number of Kp(ζp) is

a multiple of p, one can construct a unramified abelian extension of Kp(ζp) = K(p)

by adjoining the pth root of an elliptic unit.

However, one might ask what happens for highly irregular primes? For reasons

we describe below, one might assume that taking the pth root of the unit which

causes the counterexample would give an abelian extension; however, we show that

for none of the counterexamples does this generate such an extension.

5.1 Searching for Singular Primary Elements

From the techniques of previous sections, we have identified a non-elliptic unit

whose pth power is elliptic. For this section, we will call said unit α.

We will follow exercise 9.3 of [13] in constructing unramified abelian extensions
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of a field by taking the roots of singular primary elements. Let $ = 1− ζp, an ideal

lying above p. We say an element is singular primary if xp − α mod $p has a

root in our field and (α) = Ip for some ideal. Since α is a unit in field (and so

(α)p = (α)) the later is always true, though verifying the former takes a little more

work. However, as [13] points out, if α is singular primary after being embedded

into a field with the pth roots of unity, then α1/p root will generate an unramified

extension. A lemma will help us find a suitable field:

Lemma 5.1.1. If p does not ramify in K then ζp ∈ K(p) and further Kp(ζp) = K(p).

Proof. The prime (p) is the only prime of Q that ramifies in Q(ζp) and so the only

ideals that ramify in K(ζp)/K are p and p̄. Thus, since K(ζp) is an abelian extension,

by class field theory there exists j with K(ζp) ⊂ K(p)j . On the other hand, we know

for k > 0

[Gal(K(p)k+1/K) : Gal(K(p)k/K)] = p2.

Since Gal(K(ζp)/K) has an element of order p − 1 (the one sending ζp to ζ2
p ) we

know K(ζp) ⊂ K(p)k+1 only if K(ζp) ⊂ K(p)k . Thus K(ζp) ⊂ K(p).

The field Kp/K does not ramify at p̄ while in K(ζp)/K the prime has ramifi-

cation index p−1 (which equals the degree of the extension). Thus Kp∩K(ζp) = K

and we see their compositum must have degree equal to the product of their de-

grees, (p− 1)2. On the other hand K(p)/K is a degree (p− 1)2 extension, so we get

Kp(ζp) = K(p) as desired.

It should be noted (and will be used in a subsequent section) that the above
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lemma actually works for any imaginary quadratic extension, not just those of class

number 2, with the proof just involving the obvious modifications.

To check the existence of the pth root of α in K(p) = Kp(ζp) we will employ

the same method we have been using, embedding the elliptic units in an r-adic field

where the ideal is easily defined. In this case, it will be Zp which contains the ring1

OK . Unfortunately, it cannot contain Kp since p ramifies, but we shall see this is

not necessary.

Without loss of generality, we can replace α with any power of itself not

divisible by p. As a result, we replace α with αp
p−1−1. This operation puts α in

the Sylow p-subgroup of (OK(p)
/($)p)× (which has exponent p) because every prime

lying above p in K(p) has inertia degree dividing2 p− 1. Thus, either xp−α mod $p

has no roots or α = 1 mod $p (and its roots are all the pth roots of unity).

Now we are asking the question of whether we can tell if an element of K(p)

is congruent to 1 mod $p, and this only requires its minimal polynomial to be

embedded in Zp. So, first we embed fα into Zp which can be done since the ring

contains OK . However, we do not know the congruence of this α we have embedded.

However, with fα it is easy to compute fαj in time polynomial in the size of j. In

fact we prove the following statement:

Theorem 5.1.2. Given an element α ∈ L/M with minimal polynomial fα ∈ Zr

and a polynomial g(x) ∈ Z[x] there exists a algorithm for computing fg(α) which is

1 Because K can be embedded two different ways, we will have to repeat all our computations
twice in case we chose the “wrong” embedding

2 The prime p has ramification index p− 1 in K(ζp)/K leaving it to have inertia at most p− 1
in K(p)/K(ζp). Similarly for p̄.
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polynomial in the degree of f , the number of terms of g, and the size of the degree

of g.

Proof. In order to prove the theorem we will need to appeal to two identities by

Newton relating two bases of the symmetric polynomials over n variables: the ele-

mentary symmetric polynomials ek and the power sum polynomials sk. We define

the elementary symmetric polynomials as

ek(x1, ..., xn) =
∑

1≤j1<j2<...<jk≤n

xj1xj2 ...xjk

for k ≤ n and 0 otherwise. We define the power sum polynomials as

sk(x1, ..., xn) =
n∑
j=1

xkj

with s0 = 1.

Both of these form a basis for the symmetric polynomials over n variables with

the change of basis being given by (for k > 0)

sk = (−1)k−1kek +
k−1∑
j=1

(−1)j−1ejsk−j

and

ek =
1

k

k−1∑
j=1

(−1)j−1ek−jsj.

Because fα =
∏

σ∈Gal(L/M)(x − ασ) the coefficients of fα are the elementary

symmetric polynomials evaluated at the Galois conjugates of α. Thus, by using the

above change of basis, we are able to evaluate the sk at the Galois conjugates of α.

However, given sk({ασ}) for k < n, we can easily compute this for n. This is
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because fα(ασ) = 0 so

αnσ = −
n−1∑
j=0

fαjα
jσ. (5.1)

Summing the above equation over all the conjugates yields

∑
σ∈Gal(L/M)

αnσ = −
∑

σ∈Gal(L/M)

n−1∑
j=0

fαjα
jσ

= −
n−1∑
j=0

fαj
∑

σ∈Gal(L/M)

αjσ

= sn({αnσ}) = −
n−1∑
j=0

fαjpn({αnσ})

In essence, α and its conjugates satisfy a linear recurrence relationship, and we

will use this to quickly compute high powers of them. So, similar to the above

calculation, we can easily compute s2n({ασ}). Given equation 5.1, we can square

both sides and collect like terms among the n2 coefficients to get

α2nσ = (
n−1∑
j=0

fαjα
jσ)2

which is (xn − fα(x))2 mod fα(x) evaluated at x = ασ.

Then we sum both sides over all σ ∈ Gal(L/M) to obtain

s2n({ασ}) =
n−1∑
j=0

sj({ασ})coefficientj
(
(xn − fα(x))2 mod fα(x)

)
.

Any polynomial of ασ we would like to compute is treated similarly:

g(α)σ

= g(ασ) = g(x) mod fα(x)|x=ασ

⇒ s1({g(α)σ}) =
n−1∑
j=0

sj({ασ}) · coefficientj (g(x) mod fα(x)) .
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Every monomial xj mod fα(x) is easy to compute via square-and-multiply

methods (with roughly n2 scalar multiplies required for every polynomial square

or multiply), so if g(x) is the sum (or product) of relatively few easy to com-

pute terms, finding s1({g(α)σ}) takes a number of multiplies in the coefficient

ring which is polynomial in the degree and number of non-zero coefficients. Since

sk({g(α)σ}) = s1({(g(α)k)σ}), we can compute sk({g(α)σ}) for all k < n. At this

point one changes the basis back to the elementary symmetric polynomials, and we

have ek({g(α)σ}), the coefficients of fg(α).

While this technique works with fα embedded in any polynomial ring, embed-

ding in a nonarchimedean ring like Zr ensures the precision of fg(α) is the same as

we started with, and causes the algorithm to take polynomial time. For instance,

if performed over Z one would expect the coefficient size to increase proportionally

to the degree of g, and so the multiplication of these coefficients would take time

at least proportionate to the degree of g and the computations would be at best

polynomial time in the degree of g (instead of the size of the degree).

The theorem gives us the remarkable fact: although we struggled to get enough

precision to initially compute α in section 3.6, often needing thousands of digits of

precision in each calculation and going to great lengths in section 3.3 to compute ε

instead of the εWk that Stark uses, we are now able to compute α raised to a hundred

digit number with no problem at all! The number is for instance, far too big to lift

out of Zp using Algorithm 3.6.4.

Since α lies in Kp, we know the prime above p in Kp is ramified at most p− 1
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times, and thus α gets mapped to an element in the finite field of order pp−1 when

OKp is modded out by said prime. With the above theorem in place we can use

any fα in the p-adics to compute a new polynomial fαpp−1−1 of the same precision,

but its roots lie in the Sylow p-subgroup of ((O)K(p)
/($)p)×. So, without loss of

generality, we assume α lies in the Sylow p-subgroup. Given such a polynomial, we

can easily construct fα−1(x) (even without the theorem, it equals fα(x + 1)). Our

goal now is to show every root of fα−1(x) simultaneously is (or is not) congruent to

0 mod $p. Since ($)p−1 = (p), the p-adic valuation of the roots is intimately tied

to the $-adic valuation.

We will show that σ (the Galois element that sends α to its conjugates) fixes

the ideal ($) and so every element of K(p) has the same p-adic valuation as its

conjugates and in particular, all the roots of fα−1 must be equally divisible by $.

This occurs because σ must send ζp to ζjp for some j, which means $σ = 1 − ζjp .

But, this only differs from $ by the cyclotomic unit

1− ζjp
1− ζp

=

j−1∑
m=0

ζmp ,

so σ fixes the ideal ($). Since ($)p−1 = (p), the $-adic valuation of a single

conjugate must equal the p-adic valuation of the product of all p − 1 conjugates.

But the product is just the constant term of fα−1. If its valuation is at least p, then

we know α ≡ 1 mod $p and α’s pth roots generate the extension. If not, then α1/p

does generate a ramified extension of K(p).

For all 5 discovered highly irregular primes and for Kucuksakalli’s highly ir-
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regular prime3, the prime above 307 in Q(
√
−163), this did not get the desired

extension. In particular it always resulted in a valuations of 2 and p − 1, one for

each embedding of fα into Zp. This leaves an open question of whether it is feasi-

ble to construct an unramified abelian extension of K(p), even when its existence is

guaranteed.

5.2 Consequences due to α not being singular primary

The above calculations demonstrating that α is not singular primary actually

allow us to conclude that a part of the class group of Kp(ζp) is cyclic for Kucuk-

sakalli’s highly irregular prime. We will make use of arguments very similar to those

used in cyclotomic fields. This is interesting as in cyclotomic fields one typically

uses Vandiver’s conjecture to show that part of the class group of Q(ζp) is cyclic. It

is therefore unknown whether the class group of Q(ζp) always has cyclic parts even

if the conjecture fails. One would generally suspect that the class group is cyclic

anyway due to the Cohen-Lenstra Heuristics (see, for instance [3]), but there is no

proof. We will demonstrate that at least one known highly irregular prime has the

corresponding effect in an imaginary quadratic field, suggesting that the heuristics

should apply when Vandiver doesn’t hold. In this, we follow very closely to Wash-

ington’s arguments concerning the Reflection Theorems in chapter 10.2 of [13].

For the remainder of this subsection, we shall assume K is an imaginary

quadratic field of class number k and p factors into unramified degree-1 primes

3 We made the obvious modifications in the above for the degree-(p− 1)/2 extension
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and p - k.

Let L = K(p) = Kp(ζp). Lemma 5.1.1 will also apply in these circumstances

with minimal changes to the proof. Let G1 = Gal(Kp/K) ' Gal(L/K(ζp)). Let

G2 = Gal(K(ζp)/K) ' Gal(L/Kp). Because Kp ∩K(ζp) = K we have Gal(L/K) =

G1 ×G2. Let χ be a character of G1 and let ψ generate the characters of G2. Since

ψp−1 = χp−1 = 1 we can regard them as being modp-valued. Let

γχψa =
1

(p− 1)2

∑
(g1,g2)

χ(g1)ψ(g2)ag−1
1 g−1

2 ∈ F[G1 ×G2].

If γχψa acts on y ∈ Kp
×/(Kp

×)p we have

γχψa(y) =
1

(p− 1)2

∑
g1

χ(g1)

(∑
g2

ψ(g2)a

)
y

=


1
p−1

∑
g1
χ(g1)g−1

1 (y) if a = 1 mod p

1 if a 6= 0 mod p.

Let hχ = 1
p−1

∑
g1
χ(g1)g−1

1 (y) ∈ F[G1]. The above says that γχψa restricts to

hχ on Kp
×. Let U = O×L .

Lemma 5.2.1. For all known highly irregular primes, γχ(U/Up) has Fp-dimension

of at most 1.

Proof. Take u ∈ U . We have

γχ(u) ≡ 1

(p− 1)2

∑
g1

χ(g1)g−1
1

∑
g2

g−1
2 (u)

≡
∑
g1

χ(g1)g−1
1

(
NL/Kp(u)

)
.
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If v = NL/Kp(u) ∈ O×Kp
then γχ(u) ≡ hχ(v)−1 mod Up. Therefore we have a surjec-

tion

hχ

(
O×Kp

/(O×Kp
)p
)
� γχ(U/Up).

Since hχ

(
O×Kp

/(O×Kp
)p
)

has dimension ≤ 1 for all known highly irregular primes,

this proves the lemma.

Take α ∈ γχ(U/Up) and suppose it has been shown that L(α1/p)/L ram-

ifies (as we did in the previous section for our highly irregular primes). Since

dimFp γχ(U/Up) ≤ 1 this implies no element of γχ(U/Up) is a Kummer generator for

a non-trivial unramified p-extension of L.

As in section 10.2 of [13] we define L′ as the maximal unramified elementary p

extension of L, and H = Gal(L′/L), and A the Sylow p-subgroup of the class group

of L. One can show that H ' A/Ap as (G1×G2)-modules, and there exists a subset

B of L×/(L×)p so that L′ = L( p
√
B).

The Kummer pairing is a non-degenerate, bilinear pairing from H×B onto the

pth roots of unity, µp. As in [13] there is also a (G1 ×G2)-linear map ϕ : B → A[p]

that induces an exact sequence

γχ(kerϕ)→ γχB → γA[p].

We know γχ(kerϕ) only contains 1 since it is contained in γχ(U/Up) ∩ B and by

assumption γχ(U/Up) has none of the Kummer generators. Thus γχB is mapped

injectively into γχA[p] so that |γχB| ≤ |γχA[p]|. Therefore

|γχ−1ψ(A/Ap)| = |γχ−1ψ(H)| = γχB| ≤ |γχA[p]|. (5.2)
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Thus, if we show L(α1/p)/L ramifies for α ∈ γχ(U/Up) as we did in the previous

section, then demonstrating |γχA[p]| = p will allow us to conclude γχ−1ψA is cyclic.

Kucuksakalli did this for p = 307 and K = Q(
√
−163) and so we can conclude part of

the class group is cyclic. Unlike Kucuksakalli we only performed enough of Schoof’s

algorithm to verify divisibility by p. With minor modifications one could verify

this for the remaining 5 highly irregular primes and assuming the Cohen-Lenstra

heuristics it is very likely they are also cyclic.

5.3 Directly Constructing Extensions of Ray Class Fields

One might try to directly construct K(p). If we could do this, we could look

for singular primary elements here and hopefully construct the unramified abelian

extension we were looking for in section 5.1. This ends up being technically possible

but not practical. With K = Q(
√
−11) we were able to construct K(5). Note that

here 5 = (1 + ω)(2 − ω) and hK = 1 so that if p = (1 + ω) then K(5) = Kpp̄. In

this case, K(5) is a degree (5 − 1)2/2 = 8 extension of K and since (5) is fixed by

complex conjugation, K(5) is Galois over Q (which was not the case for the Kp in

the previous sections). On the other hand, K(5)/Q is not abelian.

We would like a K-basis for K(p). In previous sections, we had been generating

a K-basis for Kp using our elliptic units. However, there are several options for a

finite index subgroup in K(p). We can try the units described by Ramachandra

in [9]. We can go with a simplification of these by Stark in [11] which we used in

previous sections. Last we can try to generalize a subgroup used by Agathocleous
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in [1] to compute in Q(p)(q) when (p, q) = 1.

What we find is that the specific unit group has a big effect on the amount

of precision we need to find its generators, and that these effects do not appear to

be completely consistent across different ray class fields. On the other hand, the

Ramachandra units appear to always be much too large to use in practice.

Agathocleous in [1] used the subgroup of the units in Q(p)(q) = Q(ζpq)
+ gener-

ated by units of the form

ζ−(p+q)
pq (1− ζp+qpq )2 ζ

−a/2
p

ζ
−1/2
p

(1− ζap )

(1− ζp)
ζ
−b/2
q

ζ
−1/2
q

(1− ζbq)
(1− ζq)

.

These are products of the standard generators of the cyclotomic units of Q(ζp)
+ and

Q(ζq)
+ multiplied by ζ

−(p+q)
pq (1− ζp+qpq )2 (a value which is only a unit when Q(ζpq)

+

is the ray class field over a conductor which is the product of two primes).

We similarly could construct a unit in K(p). Note that p and p̄ are distinct

primes whose product is (p). Thus our version of Agathocleous’s units are the

product of the generators of the elliptic units in Kp and Kp̄ along with φ(p)(K)

(which Stark showed is a unit when our ideal is the product of at least two distinct

primes, and p = pp̄). Writing this out we get

φ(p)(I)
φp(Ia)
φp(K)

φp̄(Ib)
φp̄(K)

.

For example, the polynomial we get from the Agathocleous-style units over
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K(5)/Q is

x16 + 23922414x14 + 60598212297x12 + 88210179093022x10+

285548021874380x8 − 35444893310522x6 + 1205555306897x4 + 418177286x2 + 1.

By comparison, the minimal polynomial for the units obtained from Ra-

machandra’s method in this case is

x8 + 37925313474x7 + 15420470282938225x6 − 7475050214671930974x5+

899666793076055571124x4 + 1680008525036003623026x3+

688783180273825x2 + 129529074x+ 1.

Note that although this polynomial is over Z (instead of OK) it is only half the

degree of the field extension over Q. As a result, we can conclude that K(5)/Q is

not an abelian extension. The other thing to note is that the largest coefficient of

the first polynomial (which defines the whole field) is 14 digits, while the largest for

the second (which defines a non-Galois subfield) is 21. This is indicative of other

examples we computed: the minimal polynomial for Ramachandra’s units typically

have very large coefficients.

The degrees of these polynomials are small enough that we can use the PARI

command bnfinit() to compute the class number directly (which is 1). By compar-

ison, when we look at K(5) for K = Q(
√
−19) the Agathocleous-style units have a

40 digit term (and also lie in a non-Galois subfield) which is too large for bnfinit()

to succeed after several hours of computation.

The degree of K(5)/Q is also low enough that we can use algdep() to compute

the minimal polynomial of elements of the field. For instance, we know that some
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root of the unit φ(5)(I) is in the field for every I (and the root we take divides

12 ∗ 5). As a result, for every m dividing 60, we can multiply φ(5)(I)1/m by 60th

roots of unity until algdep() returns a monic polynomial of degree 16. Doing this

we get polynomials with terms that range from 18 to 25 digits long, so this set of

units seems to not be useful, being larger than Agathocleous’s units.

To get a comparison of how large these polynomials for K(p) are compared

to those for the elliptic units in the earlier sections of this paper, the minimal

polynomial associated to the elliptic units for p over 11 in the field K = Q(
√
−10)

is

x10 + 2ωx9 − (17 + ω)x8 + (16− 8ω)x7 + (26 + 12ω)x6−

(54− 9ω)x5 − (29 + 17ω) ∗ x4 + (35− 6ω)x3 + (9 + 5ω)x2 − 5x+ 1.

The norm of the largest element here is only 3 digits (and similar degree to the

above polynomials). In other words, all the units we tried computing in K(p) have

much larger minimal polynomials in practice (and therefore much higher precision

requirements) than those corresponding to the elliptic units of Kp.

Of the 6 known highly irregular primes, p over 41 in K = Q(
√
−267) has the

lowest degree class field, but even K(41)/K is a degree 40 ∗ 40 = 1600 extension,

which is well beyond the size of anything we (or Kucuksakalli) computed before. As

such, at the moment it appears direct calculation of a polynomial which splits over

K(p) is well outside the bounds of practicality for all highly irregular primes.

As it appears that we run into practical computational bounds for field ex-

tensions whose degree is in the hundreds, a future direction would be to look at
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imaginary quadratic fields K of small class number h so that h(p − 1)2/2 (the de-

gree of K(p)/Q) is a few hundred and (h, p) = 1. If one could find a highly irregular

prime in such a field, one might be able to actually construct K(p) using a unit

subgroup and look for singular primary elements directly. On the other hand, given

how the units scale in our small example above, it is quite likely that constructing

the finite index unit group could still require lots of precision.

If one found a highly irregular prime with h(p−1)2/2 < 50 one should be able

to use algdep() to more quickly construct these polynomials. But since p ≥ 5 this

really only means p = 5 for h ≤ 6, or p = 7 for h = 1 or 2, or (possibly) p = 11,

h = 1. However we have verified none of these cases are highly irregular except

possibly p = 5 with h ≥ 3. As there are 7 class number 3 imaginary quadratic

fields where 5 splits (discriminants -31, -59, -139, -211, -331, -379, -499) and these

are all guaranteed to have cyclic ray class groups (because 3 - 5−1
2

), following the

probabilistic arguments of section 4 we have a 1− (4/5)7 ≈ 79% chance that at least

one of the primes above 5 are highly irregular.

We have not done the relevant calculations as they require some substantial

modifications of the code used in Section 3 for hK = 2.
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Chapter A: The Uses of algdep()

We often have an element of an algebraic extension of Q to a certain precision

in C. We may want to either increase the precision, or verify that we are in an

extension. One method of doing this involves the PARI command algdep(z, d). It

takes a complex or r-adic value z and finds a polynomial of degree at most d with

relatively small coefficients which evaluates to a small value at z. It does this by

employing the Lenstra-Lenstra-Lovasz (LLL) algorithm for lattice basis reduction

as described in, for instance, Algorithm 2.6.3 of [3]. The method (described on page

101 of [3]) uses the first d powers of z to construct a lattice, then tries to find a

sum of these powers which equals 0. If one has some idea of the bounds of the

coefficients of a polynomial, then one can verify that what it returned is (divisible

by) the minimal polynomial of x over Z.

Understanding why the algdep() algorithm works is fundamental to under-

standing when it will fail and how to work around these situations. The following

well-known facts establish the behaviour:

Theorem A.0.1. Let Λ be an n-dimensional lattice. Let µ(Λ) be the area of a

fundamental parallelopiped of the lattice.

1. (Minkowski) Given S a compact, convex, symmetric set of measure greater

78



than 2nµ(Λ), we have |S ∩ Λ| > 1.

2. In particular, using S a ball we know Λ contains a non-zero point of length

≤ 2 n
√

Γ(n
2

+ 1)µ(Λ)/
√
π. We will call this the Minkowski bound of Λ.

3. If ~b1,~b2, ...,~bn is a basis of Λ that is the output of the LLL algorithm and ` is

the length of the shortest non-zero vector in Λ then |~b1| ≤ 2(n−1)/2`.

Proof. For a proof of statement 1 see Theorem 4.19 of [6]. Statement 3 see Theorem

2.6.2 of [3]

The function algdep() returns a polynomial whose coefficients are small when

viewed as a vector in Euclidean space. So in practice if we have enough precision

that (the vector formed by the coefficients of) the minimal polynomial of α is well

over 2n/2 shorter than the Minkowski bound, then we expect to find said minimal

polynomial.

Consider the case where we have a complex number α, a number field L, and we

know that µα ∈ L for one of some small number of µ (say, µ is a 12th root of unity).

We can easily determine which µ has µα ∈ L. We compute algdep(µα, [L : Q]) for

each µ and for the correct µ the answer is many orders of magnitude smaller than

any other choice.

Because the size of a vector is within
√
n of the largest-magnitude component,

we need the largest component to be smaller than the Minkowski bound.1 We are

1 The smallest vector the LLL algorithm finds tends to have all its terms be the same order
of magnitude. This is reasonable, because if it is locating an element within 2n of the Minkowski
bound, most of the points inside the n-ball of that radius are located near the surface, and most
of the surface lies far from any one axis.
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often applying algdep() to a unit α. The result is that fα(x) = xnfα−1(1/x) so

we expect the jth coefficient to be about as large as the (n − j)th coefficient and

we expect the central terms to be the largest. As a result, (x ± 1)fα(x) often has

a smaller largest coefficient since either the sum or difference of the two largest

components is smaller than the largest. This generalizes: given that there are a

large number of low degree polynomials with very small coefficients, it is very likely

that one of them multiplied by fα(x) will be small, even if it is a higher degree.

For example, if we take ε a generating elliptic unit of K = Q(
√
−5), p =

〈7, 3− ω〉 and run algdep(ε, 12) at 100 digits of precision we get

x12 − 10x11 + 40x10 − 88x9 + 135x8 − 164x7 + 174x6 − 160x5

+116x4 − 62x3 + 24x2 − 6x+ 1

which has a Euclidean norm of 128,355 (and is the correct answer). By comparison

running algdep(ε, 15) at 100 digits of precision we get

x15 − 7x14 + 13x13 + 3x12 − 19x11 + 17x10 − x9 + 5x8 − 6x7 − 20x6 + 26x5

− 4x4 − 7x3 + 9x2 − 3x+ 1

=(x+ 1)3(x12 − 10x11 + 40x10 − 88x9 + 135x8 − 164x7+

174x6 − 160x5 + 116x4 − 62x3 + 24x2 − 6x+ 1)

which has a Euclidean norm of only 2,172.

If we are unable to compute α to any higher precision, it is always worth it to

run algdep() with a higher target degree than the minimal polynomial in the hopes

that you find a small multiple of fα.
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A better approach would be to actually program a new version of algdep() that

takes into account the fact that we are looking for a unit (and doesn’t increase the

dimension of the problem). Among other things, because we know the coefficients of

xn and x0 are both 1, we should be solving a lattice problem in two lower dimensions.

Moreover, the above discussion of the central terms of the polynomial being larger

could be taken into account by slightly altering the weighting of our rows. Cohen

suggests ( [3], page 101) that we weight the jth row proportionate to An−j for some

reasonable A to try and ensure that all the powers of α show up a similar amount

in the final polynomial. We suggest instead weighting them proportionally to the

inverse of Binomial(n, j), so that the central terms are used more often.

(Un)fortunately the PARI/GP code is highly optimized as written and so we

were not able to perform a reasonable comparison of the two methods.
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