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This research studies a static and real-time dial-a-ride problem with time 

varying travel times, soft time windows, and multiple depots. First, a static DARP 

model is formulated as a mixed integer programming and in order to validate the 

model, several random small network problems are solved using commercial 

optimization package, CPLEX.   

Three heuristic algorithms based on sequential insertion, parallel insertion, 

and clustering first-routing second are proposed to solve static DARP within a 

reasonable time for implementation in a real-world situation.  Also, the results of 

three heuristic methods are compared with the results obtained from exact solution by 

CPLEX to validate and evaluate three heuristic algorithms. Computational results 

show that three heuristic algorithms are superior compared to the exact algorithm in 

terms of the calculation time as the problem size (in terms of the number of demands) 

increases. Also among the three heuristic algorithms, the heuristic algorithm based on 



 

sequential insertion is more efficient than other heuristic algorithms that are based on 

parallel insertion and clustering first-routing second.  

For the case study, Maryland Transit Administration (MTA)’s real operation 

of Dial-a-ride service is introduced and compared with the results of developed 

heuristic. The objective function values from heuristic based on clustering first- 

routing second are better than those from MTA’s operation for all cases when waiting 

cost, delay cost, and excess ride cost are not included in the objective function values.  

Also, the algorithm for real-time DARP considering dynamic events such as 

customer no shows, accidents, cancellations, and new requests is developed based on 

static DARP. The algorithm is tested in a simulation framework. In the simulation 

test, we compared the results of cases according to degree of gap between expected 

link speeds and real link speeds. Also for competitive analysis, the results of dynamic 

case are compared with the results of static case, where all requests are known in 

advance. The simulation test shows that the heuristic method could save cost as the 

uncertainty in new requests increases. 
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Chapter 1: Introduction 

1.1 Background 

Dial-a-Ride service (also called demand responsive or paratransit) is the most 

widely available transit service, with 6,700 agencies providing transit service in the 

United States1.  Dial-a-Ride service is comprised of passenger cars, vans or small 

buses operating in response to calls from passengers or their agents to the transit 

operator. The operator dispatches a vehicle to pick up the passengers and transport 

them to their destinations. Dial-a-Ride service can be described as shown in Figure 

1.1.  

 

 
 

Figure 1.1 Dial-a-Ride Service 

 

Most agencies limit this service to disabled persons, their attendants and 

                                                 
1 Based on American Public Transportation Association (APTA) database: National 
total 6,700 agencies (Report year 2009), 2011 Public Transportation Fact Book. 
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companions, or seniors.  There were 54 million people with one or more physical or 

mental disabilities in the United States in 20082, and this number is increasing as the 

population as a whole is growing older.  Americans with Disabilities Act (ADA) of 

1990 was passed with the purpose of eliminating discrimination against individuals 

with disabilities and limited access to transportation that have kept these people from 

participation in the many aspects of society such as employment, public 

accommodation, recreation, and health services.  This act requires that all transit 

agencies which operate a fixed route system have to provide paratransit and other 

special transportation services as a supplement service for individuals with 

disabilities3.  

Dial-a-ride services are operated by public transit agencies, non-for-profit 

organizations, and for-profit companies or operators. Unlike regular fixed route 

transit, dial-a-ride provides shared-ride, door-to-door, or curb-to-curb services with 

flexible routes and schedules using passenger cars, vans or small buses.  Since most 

true dial-a-ride services in United States are subsidized, the cost to the rider can be 

very low. Most of the operating expenses are spent for purchased transportation and 

vehicle operations. Figure 1.2 shows the trends of operating cost and fare revenue for 

paratransit in the United States between 1995 and 2009.  We can see that the gap 

between operating expenses and fare revenue is steadily increasing every year. In 

2009 the total operating cost of paratransit services in the nation exceeded 4.9 billion 

dollars while 0.48 billion dollars was collected in fares. Among the total operating 

cost, 2.6 billion dollars was spent for purchased transportation and 1.5 billion dollars 

                                                 
2 Based on 2008 American Community Survey 
3 By sec. 223, ADA of 1990. 
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was spent for vehicle operations.  

 

 

Source: America Public Transportation Association (APTA) database for 2009 (2011 
Public Transportation Fact Book) 

 

Figure 1.2 The trends of operating expenses and fare revenue for paratransit 

 

The latest development of advanced information technologies such as 

automatic vehicle location (AVL), Global Position Systems (GPS), digital 

telecommunication, computers, and GIS, are making dial-a-ride systems more 

efficient, productive, and reliable. It is necessary to develop an integrated decision 

support system that combines these advanced technologies to provide more efficient 

and effective dial-a-ride routing and scheduling for real world applications. Also a 

decision support system needs appropriate on-line algorithms for solving these large 

scale routing and scheduling problem.  
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1.2 Scope of Dial-a-Ride Problems (DARP) 

The Dial-a-Ride Problem (DARP) belongs to the generic class of vehicle 

routing and scheduling problems and has been extensively studied for several 

decades.  In the DARP, n customers specify the locations of their origin and 

destination, the desired time of pickup or delivery, and specific type of transportation 

requirement.  The aim of DARP is to design vehicle routes and schedules for those 

customers such that a specified objective is optimized. The general objective of 

DARP is to minimize total transportation cost and at the same time minimize user 

inconvenience under a set of constraints.  What makes the DARP different and 

somewhat more difficult than most other routing problems is that transportation cost 

and user inconvenience must be weighed against each other when designing a 

solution (Cordeau, and Laporte, 2003a, 2003b). 

Generally, DARP can be described in terms of the nature of the Dial-a-Ride 

system (Chan, 2004).  The nature of Dial-a-Ride systems can be categorized as 

follows:  

1) the pattern of origins to destinations (one-to-many, many-to-many, many-

to-one) 

2) the type of reservation (advanced, real-time or both) 

3) the number of depots (single or multiple) 

4) the number of vehicles (single or multiple) 

5) the type of requests (pick-up request, drop-off request or both) 

6) the treatment of travel time (static or dynamic) 
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There are variations in the model objectives and constraints. And, these 

complicate the classification of DARP. Also this makes it difficult to compare 

algorithms that focus on different solution types.   

The objectives can be categorized as follows: 

1) Objectives related to service providers: 

minimizing the total vehicle travel time, 

minimizing the number of vehicles used,  

minimizing vehicles’ waiting time, and, 

maximizing total number of trips per vehicle 

2) Objectives related to customers: 

minimizing customers’ excess ride time, 

minimizing customers’ waiting time, and, 

minimizing customers’ service time deviations 

Generally, most DARPs use a general cost function formed to combine 

several of the above objectives together as objective function.  Also most DARPs 

include several constraints that must be satisfied by each route as follows: 

1) round trip: every route starts and ends at the depot 

2) coupling: for every request i , the origin/destination pair ( ,  i i+ − ) must   

 belong to the same route 

3) precedence: the origin stop i+  must be visited before the destination stop  

                  i−  

4) vehicle capacity: vehicles are limited in capacity by seating and vehicle  

                  type at any instant 
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5) time window: customers usually specify either desired pick-up or drop-off  

times and must be scheduled to be picked up or dropped off at specific 

time periods (time windows) 

6) route duration: the total duration of each route must not exceed a specified  

 time as a routing and scheduling criterion. 

7) maximum ride time: the ride time of any user must not exceed a specified  

 maximum ride time. 

8) maximum waiting time: the total waiting time at origin stops must not  

exceed a specified time when the vehicle is carrying passengers while no 

waiting at destination stops is allowed. 

1.3 Motivation of Research 

Generally, all demands are known in advance based on reservations on 

previous days or subscriptions for regular service in static DARP. Usually this 

problem needs to be solved before the operations start at the beginning of every day.  

Before Fu (1999, 2002), all researchers assumed that travel times in an urban traffic 

environment are fixed and constant. In reality, travel times are subject to change 

according to the time of the day, the current weather conditions, the time of the year, 

accidents, events, etc. These variations in travel times may have important effects on 

the reliability and quality of routing and scheduling. Most studies related to the 

DARP assume that the service is provided by a single depot that has a fleet of m 

vehicles to simplify the complicated real-world problem. But, Dial-a-Ride service in 

many instances is provided from multiple depots especially in widely urbanized areas 
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like metropolitan cities in which dial-a-ride service is provided by two or more 

private companies.  

Wilson et al. (1971), Wilson and Weissberg (1976) and Wilson and Colvin 

(1977) were among the first to study the DARP with specific interest in developing 

real-time (dynamic) algorithms for several paratransit systems.  Due to high operating 

costs, most of the dial-a-ride systems turned into reservation-based (static) operation 

after late 1970s. Recently, due to the advancement of computing and real-time 

transportation surveillance technologies, real-time DARPs are becoming focus of 

attention for operations researchers and paratransit operators.  There are only a few 

studies that deal with algorithm development and solution of real-time DARPs 

considering real-time request.   

Also, there is a need to develop fast and appropriate algorithms for solving 

both static and the real-time DARPs efficiently.  Thus, this dissertation research 

mainly focuses on developing algorithms and solution approaches for both static and 

real-time DARPs with many origins to many destinations considering time varying  

travel times, soft time windows, multiple depots, and heterogeneous vehicles.  This 

research extends the works of Fu (1999a, 2002a) and Xiang et al. (2008) by 

considering a more realistic objective function and constraints for dial-a-ride problem 

that were ignored in their work, and considering multiple depots. 
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1.4 Research Objective and Scope 

The main objectives of this research can be summarized as follows: 

1. Formulate a new model:  This research will develop a formulation for a 

static dial-a-ride model considering time-dependent travel times, soft time windows, 

multiple depots, and heterogeneous vehicles.  The model will be formulated as a 

mixed integer mathematical program (MIP). 

2. Develop a heuristic methodology to solve this problem: The real world 

DARPs are very difficult to solve exactly within a reasonable computing time.  The 

formulation that is to be developed in 1 above is no exception.  Therefore, we will 

develop a heuristic algorithm for finding reasonable solutions to this problem within a 

reasonable time in order to be used in a real-time situation. 

3. Perform extensive numerical test and sensitivity analysis: We will evaluate 

the performance of the algorithm developed in 2 above in a variety of test problem 

instances.  We will compare its results with the results of optimal solutions in small 

test problems.  In large problems sensitivity analysis will be performed. 

4. Build simulated frameworks and Implement: It is necessary to build 

simulated frameworks and provide a methodology to evaluate the performance of the 

developed model and algorithm.  We will develop a simulation framework based on 

real-world data obtained from one of the local transit agencies that provides 

paratransit service.  The simulation framework will mimic the real time travel 

conditions and generate the demand based on the real time data.  This will allow us to 

evaluate the performance of the system and its applicability in real world operations. 
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1.5 Organization of the Dissertation 

The organization of this dissertation is as follows.  Chapter 1 introduces the 

background and motivation for this research, and the research objectives.  Chapter 2 

summarizes the literature about models, algorithms and solution approaches for the 

static and dynamic DARPs.  In Chapter 3, we describe the characteristics of our 

problem and then present the proposed formulation of the static DARP. Chapter 4 

presents the developed algorithm for solving static DARP considering time varying 

travel times, soft time windows, multiple depots, and heterogeneous vehicles. The 

computational results which are based on several test problems for static DARP are 

discussed. In Chapter 5, the case study for real world large-scale DARP is discussed 

and the results of heuristic method are compared with real operation. Also, sensitivity 

analysis for the parameters of objective function is described. The methodology for 

solving dynamic DARP considering dynamic demands, cancellation, no-show, 

accidents, and real time travel time is described in Chapter 6. Also, our developed 

model and algorithm for Dynamic DARP is implemented and tested in the simulation 

framework. Finally, the conclusion and further study will be in Chapter 7. 
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Chapter 2: Literature Review 

 

In this chapter, first we briefly discuss previous research related to the static 

and the dynamic DARP and then we describe modern heuristics for solving real 

world DARP.  At the end we present a summary and discuss the characteristics of our 

proposed model. Several surveys on models and algorithms developed for the DARP 

can be found in Savelsbergh and Solomon (1995), Mitrovic-Minic (1998, 2001), 

Desaulniers et. al (2002), and Cordeau and Laporte (2003a, 2007). 

Many models and algorithms for the DARP have been developed over the last 

40 years.  Generally, DARP can be categorized into two types based on the nature of 

the demand.  The first type is the static DARP, in which all demands are known in 

advance based on reservations on previous days or subscriptions for regular service.  

The objective of routing and scheduling for this problem is to determine the 

assignment of all demands to the available vehicles and develop the respective routes 

and schedules for those vehicles.  Usually this problem needs to be solved before the 

operations start at the beginning of every day.  It can be performed off-line and thus 

demands less time.  The second type is the real-time (or dynamic) DARP, in which 

some demands arrive in real-time.  The objective in this case is to assign the new 

demands in real time into the existing routes and schedules of vehicles already in 

service.  In this case, the routes and schedules for the new demands must be found in 

a very short period of time.  Thus, unlike the static DARP, a fast online routing and 

scheduling algorithm is required to solve this real-time DARP. 
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The algorithms developed for DARP can be categorized into exact methods, 

classical heuristic algorithms, and modern heuristic algorithms.  Classical heuristics 

can be classified into construction heuristics and improvement heuristics. 

Construction procedures build a set of feasible routes starting from the information 

that define dial-a-ride problem.  Improvement procedures start with a set of feasible 

routes that are found using construction procedures and seek to improve the solution 

through a sequence of steps.  Construction algorithms can be divided into three 

groups: Decomposition methods, Insertion algorithms, and Clustering-first routing-

second.  Modern heuristic methods were first designed in the early 1980s to solve 

complex and difficult combinatorial optimization problems that arise in many 

practical areas.  After 1990s, most research in DARP has focused on development of 

modern heuristics or metaheuristics such as simulated annealing, tabu search, and 

Genetic Algorithms (GA). 

DARP with time windows is a NP-hard problem (Baugh et al. 1998).  In real 

world, there are sometimes thousands of requests to be served.  Due to the complexity 

of the problem and its large scale, it is impossible to find optimal solutions for this 

problem within a reasonable computation time.  This is the main reason why most of 

the research in this area is focused on finding fast heuristic algorithms that find good 

solutions in reasonably short times. 

2.1 The Static DARP 

The static DARP can be categorized into the single vehicle and multiple 

vehicle problems according to the number of vehicles which serve customers.  If the 
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number of customers in each route remains small, algorithms developed to solve the 

single vehicle problems can be used as subroutines in multiple vehicle problems. 

2.1.1 The Single Vehicle Static DARP 

Exact methods for solving dial-a-ride problems were first developed by 

Psaraftis (1980). Psaraftis (1983) modified an exact dynamic programming algorithm 

he had developed earlier (Psaraftis, 1980) for the single vehicle many-to-many 

immediate request Dial-a-Ride problem.  In this problem, each customer has specified 

upper and lower bounds for his pickup and delivery times, i.e., time windows and the 

objective is to minimize the time needed to provide service to all customers.  The 

major difference between the first (1980) and the second algorithm (1983) is the 

substitution of backward recursion with forward recursion in order to consider time 

windows.  His interesting innovation is the use of a maximum position shift (MPS).  

In order to guarantee good service to all customers he has introduced a bound for both 

the pickup position shift and the delivery position shift. 

Sexton and Bodin (1985a, 1985b) investigated the single vehicle dial-a-ride 

problem in which each customer specifies a desired time for pick-up and drop-off.  

They developed a heuristic routing and scheduling algorithm based on Benders’ 

decomposition.  Decomposition methods are based on the idea of dividing a problem 

into two phases: routing and scheduling.  Their objective was to minimize customer 

inconvenience.  In their model, the objective function is expressed as a linear 

combination of excess ride time, that is, the time difference between the actual ride 

time and the direct ride time of a user and the deviation of the user’s desired drop-off 
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time from the actual drop-off time.  They applied their algorithm to several data sets 

from Gaithersburg and Baltimore, MD., containing between 7 and 20 users.  

For the same problem, Desrosiers et al. (1986) proposed a forward dynamic 

programming algorithm.  Their objective function was to minimize the total distance 

traveled instead of the total time required to serve all customers.  Their algorithm was 

applied to solve instances containing up to 40 users. 

Van Der Bruggen et al. (1993) considered a single depot, a set of customers 

with known demands, and time windows.  For this problem, they developed a local 

search method based on a variable-depth search which consists of two phases.  In the 

first phase, a feasible route is constructed, and in the second phase the route is 

improved.  In order to escape from local optima, they used a simulated annealing 

algorithm.  They found high quality solutions by simulated annealing.  But, their 

method requires a relatively large computation time.  Their objective function was to 

minimize total route duration.  Their method was applied to real data set of Toronto, 

Canada with request sizes ranging from 5 to 38. 

2.1.2 The Multiple Vehicles Static DARP 

Jaw et al. (1986) proposed ADARTW (Advanced Dial-A-Ride with Time 

Window).  In this model, time windows are imposed on the pick-up time of inbound 

requests and on the drop-off time of outbound requests.  Also, a maximum ride time 

is imposed for each user and is expressed as a linear function with respect to the 

direct ride time of the user.  In addition, no waiting at a stop is allowed whenever 

passengers are aboard the vehicle.  Their objective function was to minimize the 

combination of total customer disutility.  They developed one of the first insertion 
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heuristics using sequential insertion for the DARP.  It was applied to randomly 

generated instances containing 250 requests and a real world instance with 2617 

requests. 

Bodin and Sexton (1986) introduced a cluster-first route-second heuristic for 

the problem, employing a space time heuristic to form a route for customers in a 

cluster. The objective was to minimize total customer inconvenience, which is the 

weighted sum of differences between actual and desired delivery time, and 

differences between actual and shortest possible ride times. 

Fuzzy arithmetic rules and logic were first applied to develop the schedules 

for DARP by Kikuchi and Donnelly (1992).  They introduced fuzziness in the values 

of two basic input parameters, travel time and the desired time of vehicle stop.  Their 

algorithm was based on two steps: developing the initial route and inserting leftover 

trips.  This algorithm was originated from those developed by Jaw et al. (1986) and 

Kikuchi and Rhee (1989). 

Ioachim et al. (1995) proposed a mini-cluster first, route second approach 

using column generation to solve a multi-vehicles, door-to-door, handicapped 

transportation system with time windows.  A mini-cluster is a set of geographically 

and temporally cohesive transportation requests that can feasibly be served by the 

same vehicle.  Specifically, they designed vehicles to simultaneously accommodate 

three different types of handicapped persons: the ambulatories who use regular seats, 

those in folding wheel-chairs, and those in non-folding wheel-chairs.  Their objective 

was to minimize total mini-cluster cost, that is, the sum between the total internal 

travel time and the estimated external travel time (i.e., the average external distance 
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multiplied by the number of the mini-clusters in the solution).  Internal travel time is 

the travel time within a mini-cluster and external travel time is the travel time 

between one mini-cluster and another. They tested a large scale problem with 2545 

requests generated by an operation day in Toronto, Canada. 

Toth and Vigo (1997) examined the problem of determining an optimal 

schedule for a fleet of vehicles used to transport handicapped persons with time 

windows in an urban area and developed a parallel insertion procedure for their 

problem.  The heuristic tended to produce several short routes.  To improve this 

heuristic procedure they developed a tabu thresholding post-optimization procedure.  

Their objective function was to minimize the total cost of service.  The instances of 

between 276 and 312 requests were tested based on real data of the city of Bologna, 

Italy.  The results showed significant improvement over previous hand-made 

solutions.  

Baugh et al. (1998) presented a heuristic algorithm for solving multiple 

vehicles DARP.  They used cluster-first route-second strategy and the problem was 

solved by using simulated annealing for clustering and a modified space-time nearest 

neighbor heuristic for developing the routes for the clusters.  In addition a tabu list 

was included to improve the performance of the simulated annealing algorithm.  The 

algorithm was tested on instances randomly generated with up to 25 customers.  Also, 

it was tested on a real-life data set containing up to 300 customers that was provided 

by the Winston Salem Transit Authority (WSTA). 

Before Fu (1999b), all researchers assumed that travel times in an urban 

traffic environment are fixed and constant.  He proposed improving paratransit 
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scheduling by considering dynamic and stochastic variations in travel time.  He 

analyzed a specific case having 463 trips in the morning peak time with hypothesized 

O-D travel time variation pattern and evaluated the performance of schedules such as 

total travel time, vehicle productivity, number of vehicles, average ride time, average 

service time deviation, and percentage of violated trips.  He found that both dynamic 

and stochastic variations in travel times had important effects on the quality of the 

schedules, and an appropriate consideration of these variations in the scheduling 

process could substantially improve the reliability and productivity of the schedules.  

Fu (2002b) developed a DARP model explicitly considering the time varying, 

stochastic attributes of travel times and an algorithm which is efficient enough for 

solving large size problems of this type.  He used parallel insertion heuristics for his 

model.  His model’s objective function was to minimize a weighted sum of the total 

client inconvenience such as excess ride time and service time deviation, and the cost 

to the service providers like total vehicle travel time.  He introduced a unique travel 

time model satisfying FIFO (First In First Out) assumption, and tested his model and 

algorithm on a set of hypothetical instances with 2800 trips. 

Cordeau and Laporte (2003) proposed a tabu search heuristic for the static 

multi-vehicle dial-a-ride problem.  Starting from an initial solution 0 s , the algorithm 

moves at iteration t from ts  to the best solution in a neighborhood ( )tN s  of ts . As is 

common in such algorithms, a continuous diversification mechanism is put in place in 

order to reduce the likelihood of being trapped in a local optimum.  Their model was 

tested on 200 and 295 requests based on real data. 
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Diana and Dessouky (2004) presented a new regret insertion heuristic for 

solving large-scale dial-a-ride problems with time windows.  This algorithm is a 

parallel insertion heuristic with regret metric, aimed at improving the myopic 

behavior that is often the drawback of insertion algorithms.  Instead of ranking the 

requests by certain criteria such as earliest time window or latest time window as in 

classic insertion heuristics, the regret insertion build up an incremental cost matrix for 

each of the unassigned requests when assigned to each of the existing vehicle routes. 

The proposed algorithm was tested on instances of 500 and 1000 requests built from 

the data of paratransit service in Los Angeles County.  The computational results 

show the effectiveness of their approach in terms of trading-off solution quality and 

computational times.  

A modified parallel insertion heuristic to solve the DARP with multi-

dimensional capacity constraints was proposed by Wong and Bell (2006) and the 

performance of the proposed algorithm was tested in simulation. The objective 

function of the problem was a weighted combination of the total operating time of the 

dial-a-ride fleet, the passenger delay (time extra to their direct travel time), and the 

cost for taxi trips for transporting the requests that are not inserted. A set of 

hypothetical problems having a total 150 demands are generated and solved. 

Xiang et al. (2006) used a local search strategy based on insertion algorithm, a 

diversification strategy, and an intensification strategy for solving a large scale static 

DARP under complex constraints. The performance of the heuristic was evaluated by 

intensive computational tests on some randomly generated instances. With a good 
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initial solution, lager instances up to 2000 requests were solved in less than 10 hours 

on a popular personal computer. 

A grouping genetic algorithm for clustering phase and an insertion mechanism 

for routing phase to solve the problem of transporting handicapped people in terms of 

service quality and number of used vehicles were developed by Rekiek et al. (2006). 

The proposed algorithm was tested on instances of 100 to 164 clients. Melachrinoudis 

et al. (2007) proposed a heuristic using tabu search with request reinsertions to 

minimize a linear combination of total vehicle transportation costs and total clients’ 

inconvenience time for client transportation in a health-care organization. Their 

algorithm was tested on problems with up to 50 requests. Both Rekiek et al. (2006) 

and Melanchrinoudis et al. (2007) dealt with multi depot case and individual depots 

(or centers) have their own service areas in their problems. 

A rejected-reinsertion heuristic for the static multi-vehicle DARP was 

proposed by Luo and Schonfeld (2007).  A rejected-reinsertion operation is 

performed each time it is infeasible to insert a new request into the vehicle routes. 

Each assigned request close to the new request in time frame and geographic location 

is tentatively removed from its current vehicle and the new request is inserted into the 

best position in that vehicle route, followed by the reinsertion of the removed request 

elsewhere in the system. Of all available rejected-reinsertions, the least-cost one is 

then implemented. The heuristic was tested with their own problems randomly 

generated and with test problems from Dianna and Dessouky (2004). The proposed 

heuristic achieves vehicle reductions of up to 17% over the parallel insertion heuristic. 
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Jorgensen et al. (2007) developed a heuristic using genetic algorithm to 

construct clusters and space-time nearest neighbor procedure to construct the routes.  

The objective of their problem was to minimize a linear combination of 

transportation time, ride time, excess of maximum ride time, waiting time, time 

windows violations, work time and excess work time. They solved instances of 24 to 

144 requests. 

Parragh et al. (2009) introduced a heuristic two-phase solution approach for 

the dial-a-ride problem with two objectives that the one is to minimize total distances 

traveled by vehicles and the other is to minimize mean user ride times.  Phase one 

consists of an iterated variable neighborhood search-based heuristic, generating 

approximate weighted sum solutions. Phase two is a path linking module, computing 

efficient solutions. Instances of 16 to 96 requests randomly generated were tested. 

Recently, Parragh et al. (2010) proposed variable neighborhood search-based 

heuristic, using three classes of neighborhoods such as swap, chain, and zero split 

neighborhood. Their heuristic was tested on random instances containing between 24 

and 144 requests used by Cordeau and Laporte (2003). 

A summary of the static DARPs is presented in Table 2.1.  This table is based 

on the study by Cordeau and Laporte (2007).  
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Table 2.1 Summary of the static DARPs  

Authors Type of 
Problem Objective Function Main constraints Method 

(Algorithm) 

Size of 
Problem 
Solved 

Psaraftis (1983) Single vehicle, 
Many-to-many, 
Single depot 

Minimize route 
duration 

Hard time windows  
(pick up and drop off) 
No Capacity,  
No precedence 

Exact, 
Dynamic 
programming 
(forward recursion) 

N≤9 

Sexton and Bodin 
(1985a,b) 

Single vehicle, 
Many-to-Many, 
Single depot 

Minimize total 
customers’ 
inconvenience 

Hard time windows  
(Upper bounds on pick up 
and drop off times), 
Vehicle capacity 

Heuristic, 
Benders’s 
decomposition 
procedure 

7≤N≤20 
(real data) 

Bodin and Sexton 
(1986) 

Multi-vehicles 
Many-to-Many, 
Single-depot 

Minimize total 
customers’ 
inconvenience 

Hard time windows  
(pick up and drop off), 
Vehicle capacity 

Heuristic, 
Cluster-first route-
second 

N≤85 

Desrosiers et al. 
(1986) 

Single vehicle, 
Many-to-Many, 
Single depot 

Minimize total 
distance traveled 

Hard time windows  
(pick up and drop off), 
Vehicle capacity 

Exact, 
Dynamic 
programming 
(forward recursion) 

N≤ 40 
(real data) 

Jaw et al. (1986) Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize the 
combination of several 
types of disutility 

Hard time windows 
(pick up or drop off) 
Vehicle capacity, 
Max. ride time,  
Max. time deviation 

Heuristic, 
Insertions 

N=250 
(simulation), 
N=2617 
(real data) 

Desrosiers et al. 
(1988) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize total 
routing cost 

Hard Time windows 
(pick up or drop off) 
 

Heuristic, 
Mini-clustering and 
column generation 

N≤200 

Note: This table is based on Cordeau and Laporte (2007).  
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Table 2.1 (continued) 

Authors Type of 
Problem Objective Function Main constraints Method 

(Algorithm) 

Size of 
Problem 
Solved 

Kikuchi and 
Donnelly (1992) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize the disutility 
and idle time 

Hard time window 
(pickup and drop off), 
Vehicle capacity, 
Max. ride time,  
Max. time deviation 

Heuristic, 
Insertion and 
Fuzzy logic 

25≤N≤200 
(hypothetical 
data) 

Van Der Bruggen  
et al. 
(1993) 

Single vehicle, 
Many-to-Many, 
Single depot 

Minimize the route 
duration 

Hard time windows  
(pick up and drop off) 
Vehicle capacity 

Local search method 
based on a variable-
depth search 

5≤N≤38 
(real data) 

Ioachim et al.  
(1995) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize total mini-
cluster cost  
(the total internal travel 
time + estimated 
external travel time) 

Hard time windows  
(pick up and drop off), 
Multi-dimensional  
vehicle capacity  
(3 types of customers), 
Max. route duration 

Heuristics, 
Create mini-clusters 
and group them by 
column generation. 

N=2545 
(real data) 

Toth and Vigo 
(1997) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize the total 
cost of service 

Soft time windows  
(pick up or drop off), 
Vehicle capacity, 
Max. travel time 

Heuristic,  
Parallel insertion 
followed by 
tabu thresholding 

276≤N≤312 
(real data) 

Baugh et al. 
(1998) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize combination 
of distances traveled by 
all vehicles, customer 
inconvenience,  
and the number of 
vehicles used 

Soft time windows  
(pick up and drop off), 
Vehicle capacity 

Heuristic, 
Simulated annealing, 
Tabu list 

N≤25 
(random 
data), 
N≤300 
(real data) 
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Table 2.1 (continued) 

Authors Type of 
Problem Objective Function Main constraints Method 

(Algorithm) 

Size of 
Problem 
Solved 

Borndörfer et al. 
(1999) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize operational 
costs 
(drivers and vehicles) 

Hard time windows 
(pick up and drop off), 
Vehicle capacity, 
Max. route duration 

Heuristic, 
Set partitioning using 
branch-and-cut 
algorithm 

859≤N≤1771 
(real data) 

Fu (1999a) Multi-vehicles, 
Many-to-Many, 
Single depot, 
Dynamic and  
stochastic travel 
time 

Minimize the total 
disutilities of the  
Service operator 
and customers 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Vehicle service Time 
periods, 
Max. ride time 

Heuristic, 
Insert Algorithm, 
Artificial neural 
network for travel 
time 

N=3024 
(real data) 

Fu (1999b) Multi-vehicles, 
Many-to-Many, 
Single depot, 
Dynamic and  
stochastic travel 
time 

Minimize total 
weighted sum 
(client inconvenience 
and the cost to the 
service providers) 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Service time window, 
Max. ride time 

Heuristic, 
Parallel insertions 

N=463 
(real data) 

Fu (2002b) Multi-vehicles, 
Many-to-Many, 
Single depot, 
Dynamic and  
stochastic travel 
time 

Minimize total 
weighted sum(client 
inconvenience and the 
cost to the service 
providers) 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Service time window, 
Max. ride time 

Heuristic, 
Parallel insertion 

N=2800 
(simulation 
data) 
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Table 2.1 (continued) 

Authors Type of 
Problem Objective Function Main constraints Method 

(Algorithm) 

Size of 
Problem 
Solved 

Cordeau and 
Laporte (2003) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize the total 
routing cost of all 
vehicles 

Soft time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. route duration,  
Max. ride time 

Heuristic, 
Tabu Search 

24≤N≤144 
(random data) 
N=200 and 295 
(real data) 

Diana and  
Dessouky (2004) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize a weighted 
sum of the total 
distance, 
the excess ride time, 
and the total idle times 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. waiting time, 
Max. ride time 

Heuristic, 
Parallel regret 
insertion 

N=500 and 
1000 
(real data) 

Wong and Bell 
(2006) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize a weighted 
sum of the total 
operating time of fleet, 
the passenger delay, 
and the cost for taxi 
trips for transporting 
uninserted requests 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. waiting time, 
Max. ride time 

Heuristic, 
Parallel insertion and 
local post-
optimization 

N=150 
(random data) 

Xing et al. (2006) Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize a weighted 
sum of the fixed cost, 
mileage, driving time, 
waiting time, and 
service time 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. waiting time, 
Max. ride time 

Heuristic, 
Insertion algorithm,  
a diversification, and 
an intensification 
strategy 

N<=2000 
(random data) 

Rekiek et al. 
(2006) 

Multi-vehicles, 
Many-to-Many, 
Multi depot 

Minimize the number 
of vehicles 

Soft time windows  
(pick up and drop off), 
Vehicle capacity 
Max. ride time 

Heuristic, 
Genetic algorithm 

100≤N≤164 
(real data) 
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Table 2.1 (continued) 

Authors Type of 
Problem Objective Function Main constraints Method 

(Algorithm) 

Size of 
Problem 
Solved 

Lou and 
Schonfeld (2007) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize the number 
of vehicles that satisfies 
all demands 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. ride time 

Heuristic, 
Parallel insertion 
(rejected-reinsertion) 

N=500 and 
1000 
(real data) 

Melachrinoudis 
et al. (2007) 

Multi-vehicles, 
Many-to-Many, 
Multi depot 

Minimize a linear 
combination of the 
transportation cost and 
user inconvenience 

Soft time windows 
(pick up and drop off), 
Vehicle capacity 

Heuristic, 
Tabu search 

N<= 50 
(random data) 

Jorgenson et al. 
(2007) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize a linear 
combination of 
transportation time, 
ride time, excess of 
maximum ride time, 
waiting time, time 
windows violations, 
work time and excess 
work time 

Soft time windows 
(pick up and drop off) 
Vehicle capacity, 
Max. ride time 

Heuristic, 
Genetic algorithm  
and space-time 
nearest neighbor 
procedure 

24≤N≤144 
(random data) 

Parrah et al. 
(2009) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize total distance 
traveled and mean user 
ride time 

Soft time windows 
(pick up and drop off), 
Vehicle capacity, 
Max. ride time 

Heuristic, 
Variable 
neighborhood search 
and path relinking 

16≤N≤96 
(random data) 

Parrah et al. 
(2010) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize total routing 
cost 

Soft time windows 
(pick up and drop off), 
Vehicle capacity, 
Max. ride time, 
Max. route duration time 

Heuristic, 
Variable 
neighborhood search 
 

24≤N≤144 
(random data) 
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2.2 Dynamic DARP 

Dynamic DARP was first examined by Wilson et al. (1971, 1976, 1977) who 

developed real-time algorithms for several paratransit systems of Haddonfield, NJ, 

and Rochester, NY.  They developed real time demands, multiple vehicles, many-to-

many DARP model with no time windows using provisional assignment heuristic 

method. 

Daganzo (1978) presented a model to evaluate the performance of many-to-

many dial-a-bus system, and Stein (1978) developed a probabilistic analysis of the 

dial-a-ride problem, describing only the basic approach and its motivation at a 

fundamental level. 

Psaraftis (1980) developed an exact optimization procedure to solve the single 

vehicle, many-to-many, immediate request dial-a-ride problem.  He solved the 

dynamic problem as a sequence of static problems using backward dynamic 

programming.  He used the MPS (Maximum Position Shift) constraint to prevent the 

possibility that the service of any particular customer would be indefinitely deferred 

by the algorithm.  Only very small instances (n ≤ 9) could be handled by this 

algorithm. 

Madsen et al. (1995) applied a heuristic (REBUS) to the dynamic DARP with 

time windows, multiple vehicles capacities, and multiple objectives.  This method is 

based on the insertion heuristic proposed by Jaw et al. (1986).  It was applied to a 

real-life instance containing 300 users based on data of Copenhagen, Denmark. 

Fu (1999a) developed a software system to integrate dial-a-ride routing and 

scheduling principles and practical experience considering travel time variability in 
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urban roadway networks.  He used the artificial neural network technique, which 

allows heuristic estimation of O-D travel times in a dynamic and stochastic fashion.  

Also he extended the insertion algorithm for this problem.  His objective function was 

to minimize the total disutilities of the service operator and customers.  A real 

scheduling problem from Edmonton, Canada, with a total of 3024 trips and 109 

vehicles, was tested. 

Teodorovic and Radivojevic (2000) developed a model based on fuzzy logic 

for dynamic DARP.  They assumed that the passengers, dispatcher, and drivers 

equally have fuzzy notion of the travel times and distances. Thus, the time of travel 

given approximately can be represented by certain fuzzy sets and numbers.  Using 

fuzzy arithmetic, they calculated waiting times for the vehicles, waiting times for the 

passengers, and moments of arrival at specific nodes.  The values calculated in such a 

way represent the input data for approximate reasoning algorithms developed.  The 

model developed was tested on 10 numerical examples with 900 requests. 

Fu (2002a) proposed an on-line algorithm and a simulation model for solving 

and evaluating the dynamic DARP.  Also, he presented technological components of 

an advanced paratransit operation system (APOS) and principle component and 

structure of the simulation system.  In this model, time-dependent and stochastic 

traffic patterns are considered, and the model is able to consider the availability of 

real-time link travel time data.  Finally, a series of simulation experiments were 

performed to investigate the differences in operational performance between a 

paratransit system using AVL (Automatic Vehicle Location) and one without AVL 

on a set of hypothetical cases ranging from 100 to 300 trips.  He mentioned that the 
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benefits of AVL due to increased flexibility in dynamic scheduling are highly case-

dependent. 

Although the GAs are considered to be good approaches for solving routing 

problems, they have not been explored in many instances of DARP.  Uchimura et al. 

(2002) studied a dial-a-ride service, which operates public taxi as a door-to-door 

service, provided by small buses and/or vans.  A genetic algorithm scheme was 

applied for optimization and finding the proper solutions for this problem.  The model 

was tested on 10 requests based on real data. 

In order to speed up computation time, Attanasio et al. (2004) developed 

several parallel tabu search heuristics for the dynamic DARP based on a tabu search 

previously proposed for the static DARP by Cordeau and Laporte (2003). The main 

ingredients of this procedure are as follows: parallelization strategy, static solution 

construction, feasibility check, and post-optimization phase.  The heuristics were 

tested on a set of 26 instances; twenty of them were randomly generated, while the 

remaining six instances were real-life, large scale problems with 200 and 295 trips. 

Coslovich et al (2006) proposed a two-phase insertion heuristic based on route 

perturbations. The first phase is run off-line and aims at creating a feasible 

neighborhood of the current route. The second phase is run on-board the vehicle 

every time a new requests occurs and has the purpose of inserting the delivery of the 

new customer in the current route. A simple insertion procedure allows for quick 

answers with respect to inclusion or rejection of a new customer. The initial solution 

is improved by means of local search using 2-opt arc swaps. 
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Xiang et al. (2008) studied a dynamic and stochastic dial-a-ride problem 

bearing complex constraints on a time-dependent network. A flexible scheduling 

scheme was proposed to dynamically cope with different stochastic events, such as 

the travelling time fluctuation, new requests, absences of customers, vehicle 

breakdowns, cancellations of requests, traffic jams and so on. When a new event 

occurs the schedule is re-optimized. This paper used a similar heuristic by Xiang et al. 

(2006) to solve the dynamic problem.  The simulation results of different scenarios 

with different percentage of dynamic requests reveal that this scheduling scheme can 

generate high quality schedules and is capable of coping with various stochastic 

events. 

Luo and Schonfeld (2011a) adapted an insertion-based rejected-reinsertion 

heuristic developed for the multi-vehicle static DARP to solve the dynamic DARP. 

The main objective was to minimize the number of vehicles used to satisfy all trip 

requests subject to service quality constraints. They developed two online 

implementation strategies, called immediate insertion and rolling horizon insertion, 

coupled with two variations of the insertion heuristic, rejected-reinsertion without and 

with periodic improvement procedures. The heuristics were tested on the same 

randomly generated data for the static DARP introduced by Luo and Schonfeld 

(2007). The online rejected-reinsertion heuristic with periodic improvement achieved 

the best results. 

Also, Luo and Schonfeld (2011b) proposed three performance metamodels 

using the response surface metamodeling approach for the dynamic many-to-many 

DARP. The models predict, respectively, the minimum vehicle fleet size requirement, 
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the average passenger time deviation from desired time, and the average passenger 

ride time ratio. The metamodels are validated using a set of randomly generated data. 

A summary of the dynamic DARPs is presented in Table 2.2. 
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Table 2.2 Summary of dynamic DARPs  

 
Note: This table is based on Cordeau and Laporte (2007). 
 
 
 
 
 
 

Authors Type of Problem Objective Main constraints Method 
(Algorithm) 

Size of 
Problem 
Solved 

Wilson et al. 
(1971) 

Multiple vehicles, 
Many-to-many, 
Single depot 

Minimize combination of 
user time and vehicle 
travel time 

No time windows, 
Waiting time,  
Travel time and total time 
constraint 

Provisional 
assignment heuristic 

N<=250 
(per hour) 
simulation 
data 

Wilson et al. 
(1976) 

Multiple vehicles, 
Many-to-many, 
Single depot 

Minimize combination of 
wait time,  
wait time deviation, 
travel time, 
delivery time deviation,  
system resources 

No Time windows, 
Vehicle capacity 

Provisional 
assignment heuristic 

N=40 and 
80 
(per hour) 
simulation 
data 

Psaraftis (1980) Single vehicle, 
Many-to-Many, 
Single depot 

Minimize combination of 
route duration, 
ride time and 
waiting time 

No Time windows, 
Vehicle capacity, 
Maximum position shift 

Exact dynamic 
Programming 
(backward 
recursion) 

N<=9 
(numerical 
example) 

Xu (1994) Single vehicle, 
Many-to-Many, 
Single depot 

Minimize system time No time windows, 
Infinite and unit capacity 

DDRP-PART Numerical 
example 
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Table 2.2 (continued) 

Authors Type of problem Objective Main constraints Method 
(Algorithm) 

Size of 
Problem 
Solved 

Madsen et al. 
(1995) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Multi criteria 
Objective 

Hard time windows  
(pick up or drop off), 
Vehicle capacity, 
Max. route duration, 
Max. deviation between 
actual and shortest 
possible ride times 

Heuristic, 
Vertex insertion 

N=300 
(real data) 

Fu (1999a) Multi-vehicles, 
Many-to-Many, 
Single depot, 
Dynamic and  
stochastic travel 
time 

Minimize the total 
disutilities of the  
Service operator 
and customers 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Vehicle service Time 
periods duration, 
Max. ride time 

Heuristic, 
Insert Algorithm, 
Artificial neural 
network for travel 
time 

N=3024 
(real data) 

Teodorovic 
and 
Radivojevic 
(2000) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize the total 
vehicle traveling 
distances and total 
waiting time of the 
vehicles 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. ride time 

Heuristic, 
Two approximate 
reasoning 
algorithms, 
Fuzzy logic 

N=900 
(numerical 
example) 

Fu (2002a) Multi-vehicles, 
Many-to-Many, 
Dynamic and  
stochastic travel 
time 

Minimize a combination 
of total service time and 
total disutilities caused to 
the customer 

Soft Time windows  
pick up and drop off), 
Vehicle capacity, 
Vehicle service time, 
Periods duration, 
Max. ride time, 
Seating requirement 

Heuristic, 
Insert Algorithm 
 

N≤300 
(per hour) 
Simulation 
data 
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Table 2.2 (continued) 

Authors Type Objective Time windows 
Other constraints 

Method 
(Algorithm) 

Size of 
Problem 
Solved 

Uchimura et 
al. 
(2002) 

Single vehicle 
Many-to-Many, 
Single depot 

Minimize total distance 
of vehicle and onboard 
Distance of customers 

No time windows, 
No capacity, 
Coupling and Precedence 

Heuristic, 
Genetic algorithm 

N=10 
(real data) 

Attanasio et 
al. 
(2004) 

Multiple vehicles, 
Many-to-Many, 
Single depot 

Minimize routing cost Soft Time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. route duration,  
Max. ride time 

Heuristic,  
Parallel tabu search 

N=200 and 
295 
(real data) 

Coslovich et 
al. 
(2006) 

Multiple vehicles, 
Many-to-Many, 
Single depot 

Minimize the overall 
inconvenience of the 
advanced customers 

Soft time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. ride time 

Heuristic, 
Insertion algorithm 

20≤N≤50 
(Random data) 
 

Xiang et al. 
(2008) 

Multi-vehicles, 
Many-to-Many, 
Single depot 

Minimize a weighted 
sum of the fixed cost, 
mileage, driving time, 
waiting time,  
service time, overdriving 
time, overworking time, 
and delay time 

Soft time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. waiting time, 
Max. ride time 

Heuristic, 
Insertion algorithm, 
a diversification 
strategy 

Simulation 
data 

Luo and 
Schonfeld 
(2011a) 

Multiple vehicles, 
Many-to-Many, 
Single depot 

Minimize the number of 
vehicles that satisfies all 
demands 

Hard time windows  
(pick up and drop off), 
Vehicle capacity, 
Max. ride time 

Heuristic, 
Parallel insertion 
(rejected-
reinsertion) 

Simulation 
data 
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2.3 Modern Heuristic Algorithms for Solving DARP 

Modern heuristic methods were first designed in the early 1980s to solve 

complex and difficult combinatorial optimization problems that arise in many 

practical areas.  After 1990s, most research for DARP has focused on development of 

modern heuristics or metaheuristics such as simulated annealing, tabu search, and 

GAs.  A much smaller number of metaheuristic solution methods have been 

developed for the static and dynamic DARP. In this section, we briefly discuss 

simulated annealing, tabu search, and GAs. 

2.3.1 Simulated Annealing 

Simulated annealing is a versatile heuristic optimization technique based on 

the analogy between simulating physical annealing process of solids and solving 

large-scale combinatorial optimization problems.  It can be summarized as follows.  

The algorithm starts off from an arbitrary initial configuration.  In each iteration a 

new configuration is generated.  The difference in objective value is compared with 

an acceptance criterion which accepts all improvements but also admits, in a limited 

way, deteriorations in cost.  The mechanism for accepting worse feasible solutions is 

a mechanism against getting procedure stuck in local optima.  Simulate annealing was 

used by Van Der Bruggen et al. (1993) and Baugh et al. (1998) to solve their dial-a-

ride problems. 

2.3.2 Tabu Search 

Tabu search is a modern local search technique which examines the 

neighborhood of a current solution in order to make the next move to the best 
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neighbor.  To avoid cycling, solutions that were recently examined are forbidden or 

tabu for a number of iterations.  There are lots of variations among tabu search 

techniques, because the number of parameters that define the technique can be tuned 

differently, and the best neighbor can have a completely different meaning, 

sometimes even allowing a move to an infeasible solution (Glover, 1997). 

Tabu search stands out as a very powerful tool for the DARP since it is at the 

same time highly flexible and efficient.  It is now clear that tabu search is capable of 

consistently generating high quality solutions on a large variety of routing problem.  

On the negative side the running time of tabu search algorithms can be rather high 

(Cordeau and Laporte, 2003, Cordeau et al., 2004).  Baugh et al. (1998), Cordeau and 

Laporte (2003),  Attanasio et al. (2004), and Melachrinoudis et al. (2007) used tabu 

search to solve DARP. 

2.3.3 Genetic Algorithm (GA) 

Genetic Algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics.  GAs are very useful in solving very difficult problems 

and have received considerable attention in combinatorial problems. 

There are two distinguishing characteristics of GAs that separate them from 

the general optimization technique.  The first is that GAs start with an initial set of 

random feasible solutions, not a single solution.  GAs are population-to-population 

approach, can escape from local optima and are very effective in global search with a 

multi directional search while conventional optimization techniques based a point-to-

point approach have the danger of falling in local optima (Gen and Cheng, 1997).  

The second characteristic is that GAs can handle any kind of objective function and 
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constraints.  It is difficult to apply simple GAs to complex optimization problems.  

However, with some modification, GAs can solve some particular problems such as 

Traveling Salesman Problem (TSP) and Time-Dependent Vehicle Routing Problem 

(TDVRP) (Jung, 2000).  Uchimura et al. (2002), Rekiek et al. (2006) and Jorgensen et 

al. (2007) used GA for their dial-a ride model. 

2.3.4 Fuzzy Logic 

Fuzzy logic is widely used in intelligent control systems to make inferences 

about vague rules describing the relation between imprecise, qualitative linguistic 

estimations of the inputs and outputs of a system.  These control rules usually 

represent the knowledge of an expert.  A set of fuzzy rules, describing the control 

strategy of the operator, forms a fuzzy control algorithm, that is, approximate 

reasoning algorithm, whereas the linguistic expressions are represented and quantified 

by fuzzy sets.  The main advantage of this approach is the possibility of introducing 

and using rules from experience, intuition, heuristics, and the fact that a model of the 

process is not required (Teodorovic and Vukadinovic, 1998).  Fuzzy logic was used 

by Kikuchi and Donnelly (1992) and Teodorovic and Radivojevic (2000) to solve 

their dial-a-ride models. 

2.4 Comparison of Heuristic Algorithms 

It is difficult to compare the performance of heuristics.  One possible way to 

compare heuristic performances is to check the problem size a heuristic can solve and 

the computation time it needs.  But this comparison is unfair because we have to 
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consider the rapid development of computer hardware and the diversity of computer 

systems available to different research groups. 

Another difficulty in comparing heuristic performances is that most research 

was motivated by different real world problems. Thus, there are not many papers on 

the same problem.  Problem type (single and multi-vehicles, single and multi-depot, 

heterogeneous and homogeneous fleet, soft and hard time windows, etc.), objective 

function, and constraints can be different.  Also, size of service area, road network, 

and treatment of travel times can be different. This makes it hard to compare the 

heuristic methods. 

 

2.5 Summary 

In this chapter, previous literature related to the static and dynamic DARP 

were discussed.  The single-vehicle DARP and multiple-vehicle DARP were 

presented and several algorithms and solution methods developed for both the static 

and dynamic DARP were described. 

Exact solutions to the DARP have been limited to small problems and 

heuristic algorithms have been developed for large problem. Insertion heuristics are 

used widely because they are quite fast while metaheuristics need more running time 

than insertion heuristic. A much smaller number of metaheuristic solution methods 

have been developed for the static and dynamic DARP.  

Most studies related to the DARP assume that the service is provided by a 

single depot that has a fleet of m vehicles to simplify the complicated real-world 

problem. But, in real world, there may be several depots, especially in widely 
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urbanized areas like metropolitan cities, and two or more private companies serve 

whole areas together.  

Very few research studies deal with real-time demand and time-dependent 

travel time simultaneously.  Fu (1999a, 2002a) and Xiang et al. (2008) are the only 

authors who have attempted to deal with these issues in solving DARP.  These are the 

most advanced research in dynamic dial-a-ride problem; however there is a potential 

for extending their models for application in real world as follows:  

1) Our model has a comprehensive objective function combining service 

provider’s cost and customers’ cost, and complex constraints in order to explain and 

reflect real world operation more reasonably than other models. Also, the 

mathematical formulation of this model is proposed. 

2) Most studies related to the DARP assume that the service is provided by a 

single depot that has a fleet of m vehicles to simplify the complicated real-world 

problem. But, Dial-a-Ride service in many instances is provided from multiple depots 

especially in widely urbanized areas like metropolitan cities in which dial-a-ride 

service is provided by two or more private companies. 

3) Most of research proposed a maximum allowable deviation value for pick-

up and drop-off time using hard time windows.  There could possibly be a scenario 

where the time windows are hard, and the demands are such that there is no feasible 

solution where no time window is violated.  But, we can get a larger feasible solution 

set by loosening time constraints using soft time windows.  Thus, more feasible 

options are available for the algorithm when building the schedules and the system 

can be solved more efficiently. 
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4) In static DARP, the routing and scheduling are done considering time 

varying travel times in each link to reflect real situation and increase efficiency of 

service. Of course, travel times in each link are updated at every time interval in 

dynamic DARP. 

5) Our model is capable of solving large real world problem and the results 

of model are compared with those of operation in real world. 

As noted earlier, it is very difficult to solve dynamic DARP using exact 

algorithms to obtain an optimal solution within a reasonable computation time.  

Therefore, fast heuristic algorithms must be developed which can find a reasonable 

solution to this problem within a reasonable time, so that it can be used in a real-time 

situation.  This dissertation research mainly focuses on developing such algorithms 

and solution approaches for real-time multi-depots, many-to-many DARP with time-

dependent travel times, soft time windows, and heterogeneous vehicles.  The 

proposed model has the following characteristics: 

1) Our model can adjust the number of vehicles to minimize the total cost 

for serving the required demands. Thus, our model can explain and reflect real world 

operation more reasonably. 

2) We can get more reasonable and flexible solution using soft time window 

which are allowed to be violated subject to penalties. 

3) Our model can deal with the time-dependent travel times and demands 

for services that arise in real time simultaneously for multi-depot dial-a-ride problem. 

4) The heuristic solution method can solve large problems with acceptable 

gaps in reasonable solution time.    



 
 

39 
 

Chapter 3: Problem Description and Formulation 

 

3.1 Problem Description 

This research is focused on real-time dial-a-ride problem with many-to-many, 

time-dependent travel times, multi-depots, and heterogeneous vehicles.  This is a 

Dynamic Vehicle Routing Problem (DVRP) with time windows and its real world 

applications are pick-up and drop-off services for disabled persons or paratransit 

service.  In this problem we consider accommodating two types of demands.  Some 

demands are known in advance since the customers have the ability to make 

reservations for service on a particular day in advance.  Other demands are not known 

a priori and arrive during the service period, for example 6 AM to 6 PM.  We also 

consider time varying travel times because link travel speeds are not fixed during the 

service period and fluctuate.  Each customer has a pick-up and drop-off time window. 

Like a real-world situations we consider more than one depot, from where vehicles of 

a fleet can start operating. 

3.1.1 Definitions and Examples 

We define the following terms to be used throughout this document. 

Definition 1 A demand is a request of a customer. Each demand has both a  

pick-up and a drop-off location as well as time windows for pick-  

up and drop-off. 

Definition 2 A pick-up node is the pick-up location of a demand. 

Definition 3 A drop-off node is the drop-off location of a demand. 
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Definition 4 A route is a sequence of pick-up and drop-off nodes assigned to   

                    one vehicle. 

Definition 5 Excess ride time is the time a customer spends in the vehicle, in             

addition to the time it takes to travel directly from his or her pick-

up node to his or her drop-off node.  That is, the total ride time 

minus the direct ride time is the excess ride time. 

Definition 6 Route duration is the time it takes for the vehicle to leave the   

depot, service all customers on its route and return to the depot 

again. 

Figure 3.1 through 3.4 present an example of real-time DARP considered in 

this research.  Let’s assume that there are two depots and three vehicles are available 

at each depot and there are 8 demands (16 nodes) at initial time 0T  as shown in 

Figure 3.1.  

 

 

:  the pick-up node of demand i i+ ,  :  the drop-off node of demand i i−  

Figure 3.1 Demand information at initial time 0T  
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v1 v4v3v2 v6v5
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Figure 3.2 shows an initial routing plan that uses four vehicles by considering 

travel time, vehicle capacity, and time windows of demand nodes based on the 

demands known in advance.  According to this plan, the route of vehicle 1 is 

depot1→ 2+→ 1+→ 2-→ 1-→ depot1, the route of vehicle 2 is depot1→ 3+→ 4+→ 3-

→ 4-→ depot1, the route of vehicle 4 is depot2→ 6+→ 5+→ 5-→ 6-→ depot2, and the 

route of vehicle 5 is depot2→ 7+→ 7-→ 8+→ 8-→ depot2. 

 

Figure 3.2 Initial routing plan at time 0T  

 

Let us assume that while vehicle 1 is approaching 2+, the pickup node of 

demand 2, vehicle 2 is approaching 4+, the pickup node of demand 4 after visiting 3+, 

the pickup node of demand 3, vehicle 4 is approaching 6+, the pickup node of demand 

6, and vehicle 5 is approaching 7-, drop-off node of demand 7.  At this time interval 

we receive information about newly arrived demands at nodes 9+, 9-, 10+, 10-, 11+, 11-

, 12+,12-, and new travel times between all pairs of nodes based on current traffic 

condition.  Figure 3.3 shows this.  In this figure, shadowed circles represent new 

demands, and the dotted lines show the originally planned routes for each vehicle at 
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initial time 0T .  Based on the information about the new demands, new travel times, 

and the current locations of vehicles, we modify routes by inserting new demands to 

good locations of the already generated routes.  The starting points of the vehicles en 

route are the nodes at which the vehicles are currently located or the ones into which 

they are headed.  

 
Figure 3.3 The newly arrived demands at time interval Tn 

 

The results of the route adjustment are shown in Figure 3.4. The new routes 

for the vehicles are as follows: 

Vehicle 1: The present location (v1) → 2+→ 1+→ 9+→ 2-→ 1-→ 9-→ depot1 

Vehicle 2: The present location (v2) → 4+→ 10+→ 3-→ 10-→ 4-→ depot1 

Vehicle 4: The present location (v4) → 6+→ 11+→ 5+→ 5-→ 11-→6- → 

depot2 

Vehicle 5: The present location (v5) → 7-→ 12+→ 8+→ 12-→ 8-→ depot2 
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Figure 3.4 The new routing plan at time interval Tn 

 

  

3.1.2 Assumptions and Limitations 

 
The characteristics of the problem can be described in terms of the nature of 

demands, travel time, routing plan, number of depots, vehicle capacity, time 

windows, and real time information. 

(1) Demands 

Some demands are known in advance because of customers’ reservations 

before the trip day.  Other demands (real-time demands) are not known and arrive 

during the service period.  Real time demands can arrive at any time between 6 A.M.  

and 6 P.M.  After a demand is accepted, it can be canceled.  But, a demand 

reservation cancellation must be made a minimum of 1 hour before the scheduled 

pick-up time for that demand. If a cancellation for some demand is received close to 

its pick-up time, the system will not be able to adjust the route to avoid the excess 

travel time to get to that demand.  Thus, if we know of a cancellation in advance, we 
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can save travel times.  In case of the MTA (Maryland Transit Administration) 

paratransit service, a minimum of two hours advanced notice is required for 

cancellation.   

Every demand has a demand request time, pick-up node, drop-off node, and 

load (ambulatory, wheelchair, and transferable wheelchair passengers).  A customer 

is picked up from the pick-up node and transported to the drop-off node by the same 

vehicle.  There are no customer priorities, and passengers cannot be transferred 

between vehicles.  

(2) Travel Times 

Travel times are subject to change according to the time of the day. Travel 

times from one location to another are not necessarily the same in both directions.  

We assume that in static situation, we have link flow speeds within each time interval 

(10minutes) which are based on historical data in network. In real time situation, link 

flow speeds on the network within each time interval is available through various 

surveillance mechanisms in real time.  If there is no real-time data available, average 

travel speeds based on historical data can be used.  

Given link flow speeds we can calculate the expected travel time between 

origin and destination at starting time using a time dependent shortest path algorithm. 

Calculating time dependent shortest path needs much more computation and memory 

than the general shortest path problem. For one-to-one time dependent shortest path 

algorithm, we extended one-to-all Dijkstra’s algorithm with double buckets used to 

get the shortest paths in static networks by Cherkasssky et al. (1993) and Zhan 
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(1997).  Also, for holding the FIFO property, flow speed model used by Sung et al. 

(2000) is adopted for this problem. 

(3) Routing Plan 

First the initial routing plan is developed based on the demands which are 

known in advance.  This initial routing plan will then be modified periodically 

incorporating newly arrived demands and cancellations if any, and the new link travel 

time information.  Based on the information about the new demands, new travel 

times, and the current locations of vehicles, we plan new routes by inserting new 

demands to good locations of the already generated routes.   Any time a new routing 

plan is developed, two types of demands are being considered.  The old demands are 

the demands that are already assigned to the vehicles in the previous route planning 

process, and the new demands are the demands requested after that.  We allow 

reassignment of the demands that are not yet picked up to other vehicles when we are 

planning new routes.  It is reasonable to expect that this will increase productivity and 

efficiency. 

We assume that there is a maximum route duration, u, which cannot be 

exceeded by any vehicle.  Also, the ride time for a customer who is picked up at pick-

up node i cannot exceed his or her maximum ride time, ir .  The maximum ride time 

for customer i, ir  can be calculated by using a linear function of the direct ride time, 

,i n iR +  between pick-up node, i and drop-off node, n+i as follows (Jaw et al., 1986). 

,(min ) (min) + 1.5 (min)i i n ir Rβ += ×  
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In our model, 𝑅𝑅𝑖𝑖 ,𝑛𝑛+𝑖𝑖   is replaced by 𝑅𝑅𝑖𝑖 ,𝑛𝑛+𝑖𝑖
𝑡𝑡 , that is, the direct ride time between 

pick-up node, i and drop-off node, n+i at time t based on the time-dependent travel 

times. 

(4) Depots 

We assume that there are multiple-depots. The number of available vehicles at 

a depot and locations of depots are known.  When a vehicle completes its service, it 

has to return to the depot to which the vehicle belongs.  Relocating of vehicles 

between depots is not allowed.  This is consistent with paratransit operations of 

Baltimore area, MD.  Maryland Transit Authority (MTA) and two private transit 

companies operate paratransit services in this area and each company has its own 

depot. 

(5) Vehicles 

Each vehicle has its own capacity, and the vehicles are not homogeneous. 

Since most dial-a-ride services are provided to handicapped patients who are 

transported to and from hospitals and medical facilities, it is important to distinguish 

the patient types.  Three different types of handicapped patients are considered in this 

research as follows: the ambulatories who use regular seats, those who use 

wheelchairs, and those who use transferable wheelchairs. Thus, we consider three 

types of vehicles. One is designed to carry only ambulatory passengers, another is 

designed to carry ambulatory passengers and passengers using wheelchairs, and the 

other is designed to carry ambulatory passengers and passengers using transferable 

wheelchairs.  This is consistent with the industry norms. If there is no available 
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vehicle to accept demands at certain time in service period, those demands are 

serviced by taxi. 

We assume that the capacities of all vehicles are known.  We minimize the 

total number of vehicles used for services because the fixed cost of using additional 

vehicles, in real world, is much higher than the routing costs. In this research, 

vehicles have the same fixed unit costs, regardless of the vehicle’s type.  This is not a 

restrictive assumption and can be relaxed very easily. 

(6) Time windows 

Each customer who uses the service has a time window for pick-up and a time 

window for drop-off.  The time window at demand node i is denoted by ( ),i ia b , 

where ia is the earliest allowable arrival time and ib  is the latest allowable arrival 

time. In this research, we consider soft time windows and allow vehicles to arrive at 

the pick-up and drop-off nodes before or after the time interval that is designated for 

service.  The early and late arrivals at a location are penalized so that the violation of 

time windows is kept to a minimum.  The early arrival penalty incurs when a vehicle 

arrives before the earliest allowable arrival time, ia , and the delay penalty incurs 

when a vehicle arrives after the latest allowable arrival time, ib .  This is more 

realistic than hard time windows and consistent with real world operations. 

While it is possible that time windows can be negotiated between the 

customers and the scheduler, in practice, fixed time windows are normally adopted.  

Time windows are set based on the customer’s desired pick-up or drop-off time as 

follows. 
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1) time window at pick-up node 

 the desired pick-up time of customer ia i=  

the desired pick-up time of cutomer  +  minutesib i α=  

2) time window at drop-off node 

 the desired drop-off time of cutomer -  minutesia i α=  

the desired drop-off time of cutomer ib i=  

If the vehicle arrives at the pick-up or drop-off node before the earliest 

allowable arrival time, it has to wait for servicing customers at the node. But, it is not 

allowed to wait for servicing customers at the node if there is any customer on board.  

 

(7) The real time information 

We assume that there is a real-time communication system between the 

vehicles and the control center (or the main depot).  The control center has 

information about the location of all vehicles, and status of old demands and newly 

arrived ones.  The control center also receives real time traffic condition, link travel 

speed and incidents information in real time from a traffic management center.  Given 

this information, at each time interval, dynamic shortest paths between nodes in the 

network can be calculated. 

 
 

3.2 Problem Formulation 

In this section we provide a mathematical formulation for static multi-depot 

DARP with time windows as a mixed integer programming problem. The objective of 
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the formulation is to minimize the total cost that consists of the service provider’s 

cost and the customers’ inconvenience cost.  The service provider’s cost includes 

fixed costs of used vehicles, the routing costs, and vehicle waiting cost, while the 

customers’ inconvenience cost includes customers’ excess ride time cost and delayed 

service cost.  This formulation is used to generate the initial routing plan based on the 

booked requests and the expected travel times between demands at initial time.  It 

will be modified at fixed time intervals if there is any event (new demands or 

cancellations) arrived within previous time interval or to accommodate the real time 

traffic and any accident. 

   
 

3.2.1 Notation and Variables 

The data sets, constraints, and decision variables used in this model 

formulation are defined follows. 

(1) Data Sets 

( , , ) : Demand Set, where =identity number of demand, =pick-up node, 
                 and =drop-off node
D m i j m i

j
: the set of demand indentification numbers{set of  in ( , , )}I m D m i j  

: the set of pick-up nodes {set of  in ( , , )} {1,2,3,..., }P i D m i j n=  

: the set of drop-off nodes {set of  in ( , , )} { 1, 2, 3, , 2 }B j D m i j n n n n= + + + 

: total pick-up and drop-off node set ( )P Bφ ∪  

( , , , ) :  Vehicle information set, where =vehicle number, =depot number,
                    =starting node, =ending node

k l i j k l
i j

δ
 

:  vehicles set {set of  in ( , , , )}V k k l i jδ  

:  the set of depots {set of  in ( , , , )} H l k l i jδ  
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: the set of starting nodes of all vehicles {set of  in ( , , , )}S i k l i jδ  

: the set of ending nodes of all vehicles {set of  in ( , , , )}E j k l i jδ  

: total vehicles K  

: the union of the set of all demand nodes and the set of 
        all starting nodes ( ) S
η

φ ∪
 

: the set of all nodes ( )N S Eφ ∪ ∪  

: the set of all nodes except the starting nodes ( )sN N S−  

: the set of all demand nodes except the starting nodes ( )sD Sφ −  

 

(2) Constants 

:  the fixed cost for a vehiclecf  

: the excess time penalty caused by excess ride time of customer eP  

: the waiting penalty caused by early arrival at each demand node wP  

: the delay penalty caused by late arrival at each demand node dP  

: the traveling cost per unit timecR  

:  time countert  

:  the starting time of the service periodα  

: the end time of the service periodω  

: a large positive numberM  

t : time dependent shortest travel time from demand node  to  at starting time  ijR i j t  

:  the earliest allowable arrival time at demand node ia i  
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:  the latest allowable arrival time at demand node ib i  

:  dwell time needed at demand node  for boarding or alightingis i  

max :  maximum acceptable waiting time at each demand nodew  

max :  maximum acceptable delay time at each demand noded  

:  maximum route duration for all vehiclesu  

:  maximum ride time for passenger with pick-up node ir i  

( , , ): load of ambulatory passengers, wheelchair passengers, 
                     and transferable wheelchair passengers at demand node  
                     (if demand node  is a pick-up 

a wc wt
i i iq q q

i
i service, then  is a positive value, 

                     and if demand node  is a drop-off service, than  is 
                     a negative value.)

i

i

q
i q

( , , ) :  capacity of vehicle a wc wt
k k kC C C k  

(3) Decision Variables 

1, if vehicle  departs from node  to node   at time 
0,otherwise

kt
ij

k i j t
x 

= 


 

: waiting time at demand node  (desired arrival time at demand node  
      - actual arrival time at demand node )

iw i i
i

 

: delayed time at demand node   (actual arrival time at demand node  
     - desired arrival time at demand node )

id i i
i

 

( , , ) :  acutal load of vehicle  when departing demand node 
                 (ambulatory seats, wheelchair seats, transferable wheelchair seats)

a wc wt
ik ik ikQ Q Q k i

 

1, if vehicle  arrives with passengers on board at node 
0,otherwiseik

k i
y 

= 
  
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3.2.2 Objective Function 

The objective of this problem is to minimize the total cost composed of the 

service provider’s cost and the customers’ inconvenience cost. 

First, we try to minimize the service provider’s cost including the fixed costs 

for the used vehicles, the routing costs, and vehicle waiting cost.  We minimize the 

number of used vehicles within the total available number of vehicles.  Whenever 

vehicles arrive at the demand node earlier than the desired time, a penalty is incurred 

for waiting. 

The total fixed costs are as follows: 

Total fixed cost = (fixed cost/vehicle) × total number of vehicle 

                =
s

kt
c ij

k V i S j N t
f x

ω

α∈ ∈ ∈ =

×∑∑∑∑                                                                 (1) 

The routing costs can be written as follows: 

Routing cost = (traveling cost/min) × total traveling time (min) 

            = )(
s

t kt
c ij ij

i j N k V t
R R x

ω

τ α∈ ∈ ∈ =

× ×∑∑∑∑                                                         (2) 

Vehicle waiting cost 

= (waiting penalty/min) ×  total vehicle waiting time (min) 

= w i
i

P w
φ∈

×∑                                                                                                 (3) 

Second, we minimize the user inconvenience cost including customers’ excess 

ride time cost and delayed service cost.  Customers’ excess ride time is used as a 

proxy for bad customer service.  Whenever the service is delayed, a penalty is 

incurred for delay. 
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Customers’ excess ride time cost 

= (excess time penalty/min) ×  total customers excess ride time (min) 

= , ,( )
s

kt kt t kt
e n i n i l ij i n i ij

i P k V l N t k V j t t k V j
p t s x tx R x

ω ω ω

α φ α α φ
+ + +

∈ ∈ ∈ = ∈ ∈ = = ∈ ∈

  
× − − − ×     
∑ ∑∑∑ ∑∑∑ ∑ ∑∑       (4) 

Delayed service cost 

= (delay penalty/min) ×  total delayed time (min) 

= d i
i

P d
φ∈

×∑                                                                                                  (5) 

Finally, the overall objective function is as follows: 

 

)(

, ,

   

         ( )

        

s s

s

kt t kt
c ij c ij ij w i

k V i S j N t i j N k V t i

kt kt t kt
e n i n i l ij i n i ij

i P k V l N t k V j t t k V j

d i
i

Min f x R R x P w

p t s x tx R x

P d

ω ω

α τ α φ

ω ω ω

α φ α α φ

φ

∈ ∈ ∈ = ∈ ∈ ∈ = ∈

+ + +
∈ ∈ ∈ = ∈ ∈ = = ∈ ∈

∈

× + × × + ×

  
+ × − − − ×     
+ ×

∑∑∑∑ ∑∑∑∑ ∑

∑ ∑∑∑ ∑∑∑ ∑ ∑∑

∑

 

                                                                                                                   (6) 

3.2.3 Constraints 

The constraints in this model can be divided into five groups: Depot, capacity, 

precedence and coupling, routing, and time window constraints. 

(1) Depot constraints 

The depot constraints require that unused vehicles start and end in the depot to which 

they belong.  

1                           kt
ij

i S j P t
x k V

ω

α∈ ∈ =

≤ ∈∑∑∑
                                                                (7) 
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1                           kt
ij

j E i B t
x k V

ω

α∈ ∈ =

≤ ∈∑∑∑
                                                                (8) 

Every vehicle has to return to the depot before the end of the service period. 

( )( )          kt t
ij ij

k V i B t
x t R j E

ω

α

ω
∈ ∈ =

+ ≤ ∈∑∑∑                                                                   (9) 

(2) Capacity constraints 

Each vehicle has its own capacity ( , ,a wc wt
k k kC C C ) for ambulatory passengers, 

wheelchair passengers, and transferable wheelchair passengers. These capacities 

cannot be exceeded at any time. 

                       ,a kt a
ik ij k

j t
Q x C k V i

ω

φ α

φ
∈ =

≤ ∈ ∈∑∑                                                         (10) 

                      ,wc kt wc
ik ij k

j t
Q x C k V i

ω

φ α

φ
∈ =

≤ ∈ ∈∑∑                                                       (11) 

                      ,wt kt wt
ik ij k

j t
Q x C k V i

ω

φ α

φ
∈ =

≤ ∈ ∈∑∑                                                       (12) 

If pick-up demand node j is visited after visiting demand node  i , then the carried 

load by a vehicle at demand node j  is the carried load by the vehicle at demand node 

i plus the load of the demand node j .  When node j is a drop-off node, the value of 

a
jkQ  at demand node j  is less than that of q

ikQ  because the  a
jq  has a negative value. 

1 0    , , ,a a a kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − − × − ≤ ∈ ∈ ∈ ≠ 

 
∑                          (13) 

1 0    , , ,a a a kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − + × − ≥ ∈ ∈ ∈ ≠ 

 
∑                         (14) 
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1 0    , , ,wc wc wc kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − − × − ≤ ∈ ∈ ∈ ≠ 

 
∑

                    (15) 

1 0    , , ,wc wc wc kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − + × − ≥ ∈ ∈ ∈ ≠ 

 
∑

                    (16) 

1 0    , , ,wt wt wt kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − − × − ≤ ∈ ∈ ∈ ≠ 

 
∑

                     (17) 

1 0    , , ,wt wt wt kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − + × − ≥ ∈ ∈ ∈ ≠ 

 
∑

                     (18) 

(3) Precedence and coupling constraints 

The precedence and coupling constraints represent the requirement that each 

customer must first be picked up at node i and then dropped off at node n+i by the 

same vehicle k.  Each demand node is visited exactly once during a day.  These 

constraints are represented by three equations. 

1                                 kt
ij

k V j t
x i P

ω

φ α∈ ∈ =

= ∈∑∑∑                                                         (19) 

, 0                 ,kt kt
ij l n i

j t l t
x x k V i P

ω ω

φ α φ α
+

∈ = ∈ =

− = ∈ ∈∑∑ ∑∑                                               (20) 

( ) ( ), ,( ) ( ) 0    ,  kt t kt t
l n i l n i ij ij

l t j t
x t R x t R k V i P

ω ω

φ α φ α
+ +

∈ = ∈ =

+ − + ≥ ∈ ∈∑∑ ∑∑                          (21) 

(4) Routing constraints 

When a vehicle arrives at a node which is not a depot, it has to travel to either another 

demand node or a depot (route continuity). 

0                   ,  
s

kt kt
jl ij s

l N t i t
i jj l

x x k V j D
ω ω

α η α∈ = ∈ =
≠≠

− = ∈ ∈∑∑ ∑∑                                            (22) 
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If demand node j  is visited after visiting demand node i , then the arrival time at 

demand node j  must be equal to the sum of the departure time at demand node i  and 

the travel time, ijR , from demand node i to demand node j . 

( )( ) 1 0  ,  
s

kt kt t kt
jl j j ij ij ij

l N t i t i t
i j i jj l

tx s w x t R M x k V j
ω ω ω

α η α η α

φ
∈ = ∈ = ∈ =

≠ ≠≠

 
 − − − + + − ≥ ∈ ∈  
 

∑∑ ∑∑ ∑∑
   (23) 

( )( ) 1 0  ,  
s

kt kt t kt
jl j j ij ij ij

l N t i t i t
i j i jj l

tx s w x t R M x k V j
ω ω ω

α η α η α

φ
∈ = ∈ = ∈ =

≠ ≠≠

 
 − − − + − − ≤ ∈ ∈  
 

∑∑ ∑∑ ∑∑
   (24) 

The route duration for each vehicle cannot exceed the maximum route duration.   

( )( ) ( )       kt t kt
lm lm ij

l B m E t i S j P t
x t R tx u k V

ω ω

α α∈ ∈ = ∈ ∈ =

+ − ≤ ∈∑∑∑ ∑∑∑
                                        (25) 

The ride time for a customer who is picked up at node i cannot exceed the maximum 

ride time, ir . 

,               
s

kt kt
n i l ij i

k V l N t k V j t
tx tx r i P

ω ω

α φ α
+

∈ ∈ = ∈ ∈ =

− ≤ ∈∑∑∑ ∑∑∑                                                  (26) 

(5) Time window constraints 

The waiting time at a demand node j is the gap between the earliest arrival time and 

the actual arrival time at the demand node j. 

( )0, ( )        kt t
j j ij ij

k V i t
w Max a x t R j

ω

η α

φ
∈ ∈ =

 
= − + ∈ 

 
∑∑∑                                             (27) 

The waiting time cannot exceed the maximum acceptable waiting time, maxw . 

max0               jw w j φ≤ ≤ ∈                                                                                  (28) 
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The delay time at a demand node j is the gap between the latest arrival time and the 

actual arrival time at the demand node j.  

( )0, ( )        kt t
j ij ij j

k V i t
d Max x t R b j

ω

η α

φ
∈ ∈ =

 
= + − ∈ 

 
∑∑∑                                              (29) 

The delay time cannot exceed the maximum acceptable delay time, maxd . 

max0               jd d j φ≤ ≤ ∈                                                                                   (30) 

If there is any customer on board, it is not allowed to wait for servicing customers at 

the node. 

( )1               ,  ik iM y w k V i φ− ≥ ∈ ∈                                                                   (31) 

           ,  a a wc wc wt wt
ik ik i ik i ik iMy Q q Q q Q q k V i P≥ − + − + − ∈ ∈                                   (32) 

( 1) 1           ,  a a wc wc wt wt
ik ik i ik i ik iM y Q q Q q Q q k V i P− ≤ − + − + − − ∈ ∈                   (33)

           ,  a wc wt
ik ik ik ikMy Q Q Q k V i B≥ + + ∈ ∈                                                           (34) 

( 1) 1           ,  a wc wt
ik ik ik ikM y Q Q Q k V i B− ≤ + + − ∈ ∈                                             (35) 

3.3 Summary 

We proposed a mixed integer programming formulation for the static multi-

depot DARP considering time varying travel times, soft time windows and 

heterogeneous vehicles.  The objective of the formulation is to minimize the total cost 

that consists of the service provider’s cost and the customers’ inconvenience cost.  

The service provider’s cost includes fixed costs of used vehicles, the routing costs, 

and vehicle waiting cost, while the customers’ inconvenience cost includes 

customers’ excess ride time cost and delayed service cost. The constraints in this 
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model consist of five groups: Depot, capacity, precedence and coupling, routing, and 

time window constraints. 

The overall formulation is summarized as follows. 

)(

, ,

   

         ( )

        

s s

s

kt t kt
c ij c ij ij w i

k V i S j N t i j N k V t i

kt kt t kt
e i n i l ij i n i ij

i P k V l N t k V j t t k V j

d i
i

Min f x R R x P w

p t s x tx R x

P d

ω ω

α τ α φ

ω ω ω

α φ α α φ

φ

∈ ∈ ∈ = ∈ ∈ ∈ = ∈

+ +
∈ ∈ ∈ = ∈ ∈ = = ∈ ∈

∈

× + × × + ×

  
+ × − − − ×     
+ ×

∑∑∑∑ ∑∑∑∑ ∑

∑ ∑∑∑ ∑∑∑ ∑ ∑∑

∑

 

 Subject to 

1                           kt
ij

i S j P t
x k V

ω

α∈ ∈ =

≤ ∈∑∑∑
                                                      

1                           kt
ij

j E i B t
x k V

ω

α∈ ∈ =

≤ ∈∑∑∑
          

( )( )          kt t
ij ij

k V i B t
x t R j E

ω

α

ω
∈ ∈ =

+ ≤ ∈∑∑∑                                               

                       ,a kt a
ik ij k

j t
Q x C k V i

ω

φ α

φ
∈ =

≤ ∈ ∈∑∑                                                

                      ,wc kt wc
ik ij k

j t
Q x C k V i

ω

φ α

φ
∈ =

≤ ∈ ∈∑∑                                               

                      ,wt kt wt
ik ij k

j t
Q x C k V i

ω

φ α

φ
∈ =

≤ ∈ ∈∑∑
             

1 0    , , ,a a a kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − − × − ≤ ∈ ∈ ∈ ≠ 

 
∑

                 

1 0    , , ,a a a kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − + × − ≥ ∈ ∈ ∈ ≠ 

 
∑
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1 0    , , ,wc wc wc kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − − × − ≤ ∈ ∈ ∈ ≠ 

 
∑

                 

1 0    , , ,wc wc wc kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − + × − ≥ ∈ ∈ ∈ ≠ 

 
∑

                 

1 0    , , ,wt wt wt kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − − × − ≤ ∈ ∈ ∈ ≠ 

 
∑

                

1 0    , , ,wt wt wt kt
ik j jk ij s

t
Q q Q M x k V i j N i j

ω

α

η
=

 
+ − + × − ≥ ∈ ∈ ∈ ≠ 

 
∑

                 

1                                 kt
ij

k V j t
x i P

ω

φ α∈ ∈ =

= ∈∑∑∑                                                     

, 1 0                 ,kt kt
ij l i

j t l t
x x k V i P

ω ω

φ α φ α
+

∈ = ∈ =

− = ∈ ∈∑∑ ∑∑                                          

( ) ( ), ,( ) ( ) 0    ,  kt t kt t
l n i l n i ij ij

l t j t
x t R x t R k V i P

ω ω

φ α φ α
+ +

∈ = ∈ =

+ − + ≥ ∈ ∈∑∑ ∑∑
                    

0                   ,  
s

kt kt
jl ij s

l N t i t
i jj l

x x k V j D
ω ω

α η α∈ = ∈ =
≠≠

− = ∈ ∈∑∑ ∑∑                                       

( )( ) 1 0  ,  
s

kt kt t kt
jl j j ij ij ij

l N t i t i t
i j i jj l

tx s w x t R M x k V j
ω ω ω

α η α η α

φ
∈ = ∈ = ∈ =

≠ ≠≠

 
 − − − + + − ≥ ∈ ∈  
 

∑∑ ∑∑ ∑∑
              

( )( ) 1 0  ,  
s

kt kt t kt
jl j j ij ij ij

l N t i t i t
i j i jj l

tx s w x t R M x k V j
ω ω ω

α η α η α

φ
∈ = ∈ = ∈ =

≠ ≠≠

 
 − − − + − − ≤ ∈ ∈  
 

∑∑ ∑∑ ∑∑
                

( )( ) ( )       kt t kt
lm lm ij

l B m E t i S j P t
x t R tx u k V

ω ω

α α∈ ∈ = ∈ ∈ =

+ − ≤ ∈∑∑∑ ∑∑∑
                                  

,               
s

kt kt
n i l ij i

k V l N t k V j t
tx tx r i P

ω ω

α φ α
+

∈ ∈ = ∈ ∈ =

− ≤ ∈∑∑∑ ∑∑∑                                             
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( )0, ( )        kt t
j j ij ij

k V i t
w Max a x t R j

ω

η α

φ
∈ ∈ =

 
= − + ∈ 

 
∑∑∑                                        

max0               jw w j φ≤ ≤ ∈                                                                            

( )0, ( )        kt t
j ij ij j

k V i t
d Max x t R b j

ω

η α

φ
∈ ∈ =

 
= + − ∈ 

 
∑∑∑                                     

max0               jd d j φ≤ ≤ ∈                                                                            

( )1               ,  ik iM y w k K i φ− ≥ ∈ ∈
                   

           ,  a a wc wc wt wt
ik ik i ik i ik iMy Q q Q q Q q k V i P≥ − + − + − ∈ ∈                                   

( 1) 1           ,  a a wc wc wt wt
ik ik i ik i ik iM y Q q Q q Q q k V i P− ≤ − + − + − − ∈ ∈                   

           ,  a wc wt
ik ik ik ikMy Q Q Q k V i B≥ + + ∈ ∈                                                            

( 1) 1           ,  a wc wt
ik ik ik ikM y Q Q Q k V i B− ≤ + + − ∈ ∈                                              



 
 

61 
 

Chapter 4: Heuristic Algorithms for Static DARP and 

Computational Results 

 
In this paper, the approach for solving this model can be divided into two 

phases including a construction phase and an improvement phase. In the first phase, 

feasible routes are constructed and in the second phase the routes are improved.  

 

4.1 Heuristic Algorithms 

The three different heuristic algorithms including a heuristic based on 

sequential insertion (HSI), a heuristic based on parallel insertion (HPI), and a 

heuristic based on clustering first-routing second (HCR) are proposed.  These are 

different according to the way to construct feasible routes.  

The framework of this heuristic is depicted in Figure 4.1.  
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Figure 4.1 The framework of the heuristic for static DARP 

 

4.1.1 Construction 

Before construction phase, all demands are grouped into the closest depot and 

sorted by earliest allowable time window.  

In construction phase, we build a set of feasible routes for each depot starting 

from the information that define dial-a-ride problem by three different heuristic 

methods such as sequential insertion, parallel insertion, and clustering first-routing 

second.   

The starting time of a route is determined as follows: 

 

Data Input 

Start 

Min total cost=∞ 

Sort requests by earliest allowable time 
window and Construct a list L 

Construct routes based 
on list L 

 

Check feasibility 
by constraints 

 

Create initial routes 
Update Min total cost 

Improving Phase 
(Step I, II, III, and IV) 

 

Output 

Grouping requests into  
the closest depot 

• Sequential Insertion 
• Parallel Insertion 
• Clustering first- 
    Routing second 

• Demands 
• Vehicles 
• Networks 
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𝑒𝑒𝑒𝑒1𝑠𝑠𝑠𝑠 − 𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 1𝑠𝑠𝑠𝑠) 

where,            

 𝑒𝑒𝑒𝑒𝑖𝑖 : 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖,   

 1𝑠𝑠𝑠𝑠: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,      

 𝑇𝑇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 1𝑠𝑠𝑠𝑠): 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 1𝑠𝑠𝑠𝑠 

This time should not be less than start time of service. It is clear that the 

earlier to start, the better to avoid violating the time window constraint (Xiang et al. 

2006).  

Also, feasible routes are made by checking capacity, time window, and route 

duration constraints at construction phase. When assigning a vehicle to the route, the 

method of randomly assigning vehicles is used.  First, vehicles at depots are listed by 

the configuration (only ambulatory, ambulatory and wheelchair, or ambulatory and 

transferable wheelchair). After checking the closeness of first demand location of the 

route to depots and the type (ambulatory, wheel chair, or transferrable wheelchair) of 

first demand of the route, the vehicle is randomly chosen from the list and assigned to 

the route. 

(1) Sequential Insertion 

The procedure is similar to the one proposed in Jaw et al. (1986). The 

algorithm starts by sorting demands in increasing order of their pickup times and 

inserts one demand at a time into one vehicle’s schedule. The used algorithm in this 

research is described as follows: 

1.  Sort demands by earliest time window of them and create list L.  

2.  Construct conflict table C. If demands i and j can’t be serviced in one trip in the worst 

case, they are marked as conflicting.  
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3.  Cluster demands according to the list L and the conflict table C. Unvisited requests are 

clustered into different groups. 

4. Construct a feasible route by sequentially extracting as many demands as possible from 

one route.  

5.  After extracting one route, the remaining requests in the route are regrouped into a new 

route. 

6.  Feasible routes are continuously made until there is no demand left. 

 

(2) Parallel Insertion 

The procedure is similar to the one proposed by Toth and Vigo (1997). First a 

small set of empty routes is initialized, and then iteratively unscheduled demands are 

inserted into the existing route which has cheapest insertion cost for those demands. 

The algorithm is described as follows: 

1. Sort demands by their earliest time window and create list L.  

2.  Construct conflict table C. If demand i and j can’t be serviced in one trip in the 

worst case, they are marked as conflicting. 

3.  Initialize a set of empty routes, M.  

4.  Then each demand is processed in the list in sequence as follows and assigned to 

a vehicle until the list of demands is exhausted.  

For each demand i (i = 1, 2, …, N), 

4.1: For each route j (j = 1, 2, …, M) 
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a)  Find all the feasible insertion sequences in which demand i can be inserted 

into the route j. If it is infeasible to assign demand i to route j, examine the 

next route j +1, and restart Step 4.1; Otherwise 

b)  Find the insertion of demand i into the route j that results in minimum 

additional cost. Call this additional cost  𝐶𝐶𝑗𝑗 . 

 4.2: If it is infeasible to insert demand i into any route j, then make a new route,  

M+1 and insert demand i into that route. Otherwise, assign i to the route j* 

which has a minimum additional cost for all j (j = 1,2, …, M ).  

 

Additional cost is calculated as follows: 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗) − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑗𝑗) 

where,             

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗): 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑗𝑗): 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 

 

(3) Clustering first-Routing second 

By this approach, first clusters are made and a vehicle is assigned to each 

cluster. Then, customers in the group are assigned to each cluster.   The method to 

make clusters for customers is described as follows: 

1. Calculate urgency index value for each customer i  

𝑈𝑈𝑖𝑖 = 𝛼𝛼 ×
𝑑𝑑1𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑1
− 𝛽𝛽 ×

𝐸𝐸𝐸𝐸𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸

+ 𝛾𝛾 ×
𝑑𝑑2𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑2
 

    where, 
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  d1i ∶ Euclidean distance between pickup and dropoff node of a customer 𝑖𝑖 

            

d2i ∶ Euclidean distance between the depot and pickup nodee of a customer 𝑖𝑖 

            ETi ∶ Earliest allowable arrival time of customer 𝑖𝑖 

2.  Sort customers by index value and make a list. 

3.  Choose seed (starting customer) from the list for each cluster. The customers are 

chosen orderly from the list so as to create a set of clusters equal to the minimum 

number of routes that have been set.  

4.  Assign vehicles to seeds. Vehicles are randomly chosen but they should accept 

the type of the assigned customer. 

 

After making clusters, the method to add unassigned customers to clusters is 

as follows: 

1.   Add other customers in the group to clusters one by one according to 

geographical closeness until every customer belongs to one of the clusters  

2.   For unassigned customer i, 

 2.1 Calculate Euclidean distance between unassigned customer i and last added  

  customer j in each cluster. 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑗𝑗)

+ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑗𝑗) 

 

 2.2 Compare the distances of clusters 

 2.3 Finally add customer i to the cluster which has the shortest distance.  
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After adding all customers to the clusters, check feasibility of routes by 

constraints. If a customer violates any constraints, and then the violating customer is 

moved to next route. If there is no route to accept the violating customer, then a new 

route is made. 

4.1.2 Improvements 

After obtaining a feasible solution in the construction phase, the solution is 

improved through 4 steps of improvements. 

 

(1) Step I: Acceptable waiting and delay time 

While the violation of time window is allowed in this model, we can adjust 

the service quality by the maximum acceptable waiting and delay time in this phase. 

After constructing phase, in initial solution, there may be bad routes in which some 

demands have unreasonable waiting or delay time. In this phase, all routes are 

improved to satisfy maximum acceptable waiting and delay time. It is allowed for a 

demand on a route to be moved into another route that starts from a different depot. 

 The method is described as follows: 

1.   After checking waiting and delay time at each demand, choose demands that have 

larger values than maximum acceptable waiting and delay time that is set in 

advance. 

2.   Remove those demands from the original route and insert them into another route 

that does not conflict with them.  

3.   If there is no route that can accept them, make a new route. 
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(2) Step II: Remove one insert one 

For the local improvement procedure to explore the local region, several trip 

operators such as remove two insert one, remove one insert one, and exchange can be 

applied. Among these operators, remove one insert one is frequently used in the local 

search. Also, in this research, remove one insert one is applied at this phase. This trip 

insertion removes a given trip from a route and then inserts it into the best position of 

another route. For example, using this method, customer 3(demand node 5 and 6) is 

inserted in route 1 which produces a smaller additional insertion cost, as shown in 

Figure 4.2. 

 

Figure 4.2 Illustration of the remove one insertion one method 

 

The method is described in detail as follows: 

1.  At a route (original route), choose one pair (pickup and drop off nodes), search all 

possible routes (target routes) that can accept it, and insert it into each target 

route. Find best position in each target route.  

 

9 
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Original arc of a route 

i Pick-up node 

 

i+1 Drop-off node 

Deleted arc of a route  New arc of a route  
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2.  Calculate the Saving Cost (SC) for the original and each target route. Among all 

target routes, choose the target route that has the best saving cost (it should be 

positive), then update the original and target route and minimum total cost.  

 

         

     where, 

   

( ) : the cost of a route i,
: the original route before moving,
: the target route before moving,
: the original route after moving,
: the target route after moving

f i
i
j
i
j
′
′  

 

3. If inserting one pair into other routes fails or best saving cost is negative, the pair 

is inserted back into its original route. 

4.  Repeat steps 1-3 for other pairs in the original route. 

5.  Repeat steps 1-4 for other routes. 

  Through this step, most of all routes having much waiting and delay times 

can be improved and waiting and delay cost in the objective function can be reduced. 

It is allowed for a demand on a route to be moved into another route that starts from a 

different depot. 

 

(3) Step III: Combining vehicles 

After improving step II, there may be some routes which have a few demands.  

These routes can be combined into other routes that can accept customers from them 

without violating constraints.  Combining vehicles is necessary to reduce the 

( , ) ( ) ( ) ( ) ( )SC i j f i f j f i f j′ ′= + − −
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objective function since the fixed cost accounts for a significant portion of the total 

cost. It is allowed for a vehicle to be combined into another vehicle that starts from a 

different depot. 

The procedure of improving step III is described as follows:  

1.  Choose a route that has fewer demands than 𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 guaranteeing that 

each route has at least some demands.  

2. Find other routes which the chosen route can be combined into and calculate 

saving cost for each case. 

3.  Combine the chosen route into the route which has maximum saving cost.  

 

(4) Step IV: Adjusting vehicle starting time 

The starting time of a route is determined in a simple way as to set the 

departure time from the depot as the earliest arrival time at the first pickup node 

minus the travel time between the depot and that node. Still, there is a possibility to 

reduce the waiting time and the total route duration by adjusting vehicle starting time 

at the depot. The method proposed by Xing et al. (2006) is used at this step.   

At this step, we check the waiting time at a demand node in each route.  If 

there is any waiting time at a demand node in a route, the starting time of the vehicle 

serving that route is adjusted using marginal time as follows: 

For each route i (i = 1, 2, …, M), 

1.  Check the waiting time at each demand node in route i. 

2. If there is any waiting time at a demand node in route i, then, calculate marginal 

time at each node in route i. The marginal time at a node is defined as the 
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maximum delay in arrival at the current node that does not cause violation of the 

time windows at the following nodes. Otherwise, go to next route i+1 and repeat 

step 1. 

3. Adjust vehicle starting time as earliest arrival time at first pickup node minus the 

travel time between the depot and that node plus the marginal time at first node in 

route i. 

  

4.1.3 Time-dependent shortest path algorithm 

As it is mentioned earlier, travel times are subject to change according to the 

time of the day. We assume that in static situation, we have link flow speeds within 

each time interval (10minutes) which is based on historical data in network. In real 

time situation, link flow speeds on the network within each time interval is available 

through various surveillance mechanisms in real time.  If there is no real-time data 

available, average travel speeds based on historical data can be used.  

Given link flow speeds we can calculate the expected travel time between 

origin and destination at starting time using a time dependent shortest path algorithm. 

Calculating time dependent shortest path needs much more computation and memory 

than the general shortest path problem. For one-to-one time dependent shortest path 

algorithm, we extended one-to-all Dijkstra’s algorithm with double buckets used to 

get the shortest paths in static networks by Cherkasssky et al. (1993) and Zhan 

(1997).  Also, for holding the FIFO property, flow speed model used by Sung et al. 

(2000) is adopted for this problem. 
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The time dependent shortest path algorithm used for this problem is as 

follows: 

algorithm time dependent shortest path algorithm 
begin 

/* initialization */ 
 𝑑𝑑(𝑗𝑗): =  ∞ 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑗𝑗 ∈ 𝑁𝑁; 
 𝑑𝑑(s): =  0; 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠): = 0; 
 INIT_BHEAP(source); 
 

/* main loop */ 
 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰(1)  𝑑𝑑𝑑𝑑 

begin 
 
  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖); 
  𝑖𝑖𝑖𝑖(𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏; 
   
  𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴(𝑖𝑖)  𝐝𝐝𝐝𝐝 
  begin 
   𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑑𝑑(𝑖𝑖), (𝑖𝑖, 𝑗𝑗)�; 
   𝐢𝐢𝐢𝐢(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 𝑑𝑑(𝑗𝑗)) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
    𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛𝑛𝑛); 
    𝐢𝐢𝐢𝐢 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐼𝐼𝐼𝐼_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑗𝑗))  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
     𝐢𝐢𝐢𝐢(𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑝𝑝𝑝𝑝𝑝𝑝_𝑜𝑜𝑜𝑜𝑜𝑜 ! = 𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛𝑛𝑛))  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
      REMOVE_FROM_BHEAP(j, pos_old); 
    𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 ins:=1; 
    𝐢𝐢𝐢𝐢 (𝑖𝑖𝑖𝑖𝑖𝑖)𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇𝑇𝑇_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑗𝑗,𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛𝑛𝑛); 
    𝑑𝑑(𝑗𝑗): = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
     𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗): = 𝑖𝑖; 
    𝐢𝐢𝐢𝐢(𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏; 

end 
end 

end 
 
INIT_BHEAP(source): Create an empty double heap 
EXTRACT_MIN(node): Find and return a minimum value of node 
REMOVE_FROM_BHEAP(node, pos): Delete a value of node on posth label in 
heap 
INSERT_TO_BHEAP(node, pos): Insert a new value of node on posth label in heap 
TIME_TO_POS(travel_time, pos): Find the location in heap for new travel time 
 

In this time dependent shortest path algorithm, arrival times of node are 

calculated by arrival time function as follows: 
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Function ArrivalTime(d(i), (i, j)) 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: =  𝑑𝑑(𝑖𝑖) ∗ 1.0/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹; 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: =  (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) / 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ; 
𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ: =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 (𝐼𝐼, 𝑗𝑗); 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∶=  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, (𝑖𝑖, 𝑗𝑗));  
𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ ∶=  𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ −  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 _𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

60
∗ ((𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 1) ∗

                                             𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ −  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡);     
𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰(𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ > 0)  𝐝𝐝𝐝𝐝  
begin 
 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 1; 
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∶=  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, (𝑖𝑖, 𝑗𝑗));  
 𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ: =  𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 _𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

60
∗ �(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 1) ∗

                                           𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ  −  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ�; 
end 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≔ (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 1) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ +
𝑅𝑅𝑅𝑅𝑅𝑅_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ∗  60; 

Retrun arrival_time; 
 

4.2 Lower Bound 

In this section the approach to find a lower bound is presented. The original 

formulation is reformulated with new variables and constraint using LP relaxation. 

Then, the new mixed integer programming problem is solved. For finding the lower 

bound the method used by Jung (2000) for pickup and delivery problem is modified 

for DARP. 

When the original problem without integer relaxation is solved, the largest 

problems that can be solved within a reasonable computational time are problems 

with 5 demands and 10 time intervals. In the lower bound solution procedure, we try 

to solve larger problems, although the results are not the exact solutions. 

4.2.1 Procedure 

The strategy of the lower bound solution procedure is to find a way that 

minimizes the number of integer variables. The simplest way to minimize the number 
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of integer variable is LP relaxation. It is necessary that new variables and constraints 

are added to relaxed formulation in order to provide a good lower bound since the 

objective function of relaxed formulation is too low compared to the known optimal 

value for very small problems when the original formulation is relaxed without any 

changes and the problem is solved.  

In the original formulation, there are two kinds of binary variables. These are 

𝑥𝑥𝑖𝑖𝑖𝑖     
𝑘𝑘𝑘𝑘 and 𝑦𝑦𝑖𝑖𝑖𝑖 . For relaxation,  𝑥𝑥𝑖𝑖𝑖𝑖     

𝑘𝑘𝑘𝑘  and  𝑦𝑦𝑖𝑖𝑖𝑖  are changed to general integer variables. 

And, new variables  𝑆𝑆𝑖𝑖𝑖𝑖     
𝑘𝑘𝑘𝑘 ,  𝑍𝑍𝑖𝑖  𝑡𝑡  , and 𝑉𝑉𝑖𝑖     𝑘𝑘  are added as follows: 

𝑆𝑆𝑖𝑖𝑖𝑖     
𝑘𝑘𝑘𝑘 = 1             if vehicle k starts from depot i to demand j at time t, 

       = 0             otherwise 

𝑍𝑍𝑖𝑖     𝑡𝑡 = 1             if vehicle k departs from node i at time t, 

      = 0             otherwise 

𝑉𝑉𝑖𝑖     𝑘𝑘 = 1             if demand i is serviced by vehicle k, 

      = 0             otherwise 

New constraints (36) and (37) are added. Constraints (36) states that new 

variable 𝑆𝑆𝑖𝑖𝑗𝑗     
𝑘𝑘𝑘𝑘 is equivalent to 𝑥𝑥𝑖𝑖𝑖𝑖     

𝑘𝑘𝑘𝑘 when i belongs to the set of starting depot. 

 𝑆𝑆𝑖𝑖𝑖𝑖      
𝑘𝑘𝑘𝑘 =   𝑥𝑥𝑖𝑖𝑖𝑖     

𝑘𝑘𝑘𝑘                                                              𝑖𝑖 ∈ 𝑆𝑆, 𝑗𝑗 ∈ 𝛷𝛷                       (36) 

 ∑ ∑ ∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘∈𝑉𝑉
𝜔𝜔
𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖 ≥   1                                                                            (37) 

Constraint (7) in the original formulation is replaced as expression (38). 

 ∑ ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑤𝑤
𝑡𝑡=𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1                                                  𝑘𝑘 ∈ 𝑉𝑉                           (7) 

∑ ∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑤𝑤
𝑡𝑡=𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1                                                  𝑘𝑘 ∈ 𝑉𝑉                           (38) 

Also new constraint (39), (40), and (41) are added. 
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𝑉𝑉𝑖𝑖      𝑘𝑘 =   ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖     
𝑘𝑘𝑘𝑘w

t=αj∈Ns                                           𝑖𝑖 ∈ 𝛷𝛷, 𝑘𝑘 ∈ 𝑉𝑉                     (39) 

Constraint (40) states that the new variable 𝑍𝑍𝑖𝑖     𝑡𝑡 is the sum of all connection 

from demand node i to any demand node at time t. 

𝑍𝑍𝑖𝑖𝑡𝑡 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘                                   𝑖𝑖 ∈ 𝜙𝜙, 𝑡𝑡 ∈ 𝑇𝑇𝑗𝑗∈𝑁𝑁𝑠𝑠𝑘𝑘∈𝑉𝑉                                     (40) 

 ∑ 𝑍𝑍𝑖𝑖𝑡𝑡  = 1                                                𝑖𝑖 ∈ 𝜙𝜙𝜔𝜔
𝑡𝑡=𝛼𝛼                                                (41) 

Also constraint (27) for waiting penalty and constraint (29) for delay penalty 

in the original formulation can be rewritten as expression (42) and (43) using 𝑍𝑍𝑖𝑖𝑡𝑡 .   

𝑤𝑤𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀�0,𝑎𝑎𝑗𝑗 − ∑ ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝜔𝜔
𝑡𝑡=𝛼𝛼𝑖𝑖∈𝜂𝜂𝑘𝑘∈𝑉𝑉 (𝑡𝑡 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑡𝑡 )�        j ∈ 𝜙𝜙                     (27) 

 𝑑𝑑𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀�0,∑ ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝜔𝜔
𝑡𝑡=𝛼𝛼𝑖𝑖∈𝜂𝜂𝑘𝑘∈𝑉𝑉 �𝑡𝑡 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑡𝑡 � − 𝑏𝑏𝑗𝑗 �        j ∈ 𝜙𝜙                     (29)

 
𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(0,𝑎𝑎𝑖𝑖 − ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝜔𝜔

𝑡𝑡=𝛼𝛼 − 𝑠𝑠𝑖𝑖)        j ∈ 𝜙𝜙                                              (42)
 

𝑑𝑑𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀(0,∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝜔𝜔
𝑡𝑡=𝛼𝛼 − 𝑠𝑠𝑖𝑖 − 𝑏𝑏𝑖𝑖)        j ∈ 𝜙𝜙                                               (43)

 
The fixed cost part of the objective function in the original formulation is 

modified using 𝑆𝑆𝑖𝑖𝑖𝑖   
𝑘𝑘𝑡𝑡 . The underlined part in expression (44) shows the modified part 

as follows: 
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4.3 Computational Study I 

In this section, first, our model is validated through solving a set of small test 

problems by an exact method using a commercial package, CPLEX. Also, the results 

of the exact method and lower bound solutions are compared with the results of the 

heuristic algorithms that are developed for the model in this research. Second, the 

results of three algorithms based on clustering first- routing second, sequential 

insertion, and parallel insertion are compared based on problem instances which have 

30, 50, and 100 customers respectively. Also the performances of three heuristic 

algorithms are analyzed in this section.   

The heuristic algorithms were coded in C++. All computations were carried 

out on a machine with 2.0GHZ Intel Core 2 Duo CPU and 3GB memory in Windows 

XP environment.  

4.3.1 Test problems I for validating the model and heuristic algorithms 

(1) The characteristic of problem instances 

The exact method can solve problems with a few customers that have to be 

serviced with a few vehicles. We assume that the service area is 20 miles by 20 miles 

and there are two depots. The location of depot 1 is (7, 10) and depot 2 is (13, 10).  

The demands are generated at random over the service area. There are 3, 4, and 5 

customers with 10 and 15 time intervals respectively. Each combination of number of 

demand nodes and the time intervals has three cases of examples. Interval length is 6 

minutes. For the 10 time interval case, time period is from 9 am to 10am. For the 15 

time interval case, time period is from 9 am to 10:30 am.  
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(2) Parameter settings 

The duration of time window is 12 minutes, maximum route duration for 10 

time intervals is 60 minutes and for 15 time interval is 90 minutes, maximum 

acceptable waiting and delay time is 30 minutes, the fixed cost for used vehicle is 

$10,000/vehicle, the travel cost is $1/minute, the penalty cost for waiting time is 

$0.5/minutes, the penalty cost for delay time is $0.5/minute, and the penalty cost for 

customers’ excess ride time is $0.5/minute. 

4.3.2 Computational results I   

In this section, the results from exact solution method, lower bound solution 

method, and three heuristic methods are presented. The gaps between the exact 

solution (E), lower bound solution (LB), and three heuristics solutions are calculated 

as follows: 

Total cost gap between HSI and exact solution = (HSI – E)/E*100 

Total cost gap between HPI and exact solution = (HPI – E)/E*100 

Total cost gap between HCR and exact solution = (HCR – E)/E*100 

Total cost gap between HSI and LB solution = (HSI – LB)/LB*100 

Total cost gap between HPI and LB solution = (HPI – LB)/LB*100 

Total cost gap between HCR and LB solution = (HCR – LB)/LB*100 

Total cost gap between LB and exact solution = (E – LB)/LB*100 

Calculation time ratio between HSI and exact solution =E/HSI 

Calculation time ratio between HPI and exact solution =E/HPI 

Calculation time ratio between HCR and exact solution =E/HCR 

Calculation time ratio between HSI and LB solution =LB/HSI 
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Calculation time ratio between HPI and LB solution =LB/HPI 

Calculation time ratio between HCR and LB solution =LB/HCR 

Calculation time ratio between LB and exact solution =E/LB 

 

Each combination of the number of customers and the time intervals has three 

cases of examples. In results, the average value of the three examples for each 

combination is calculated. Table 4.1 and 4.2 show the comparison of the calculation 

times for the exact method, the lower bound, and the three heuristic algorithms. As 

the number of customers exceeds 3 with service period of 10 time intervals, the 

calculation time of exact method increases exponentially and becomes unreasonable. 

The largest DARP problem size that could be solved in a reasonable time by exact 

method was 5 customers with service period of 10 time intervals. For most of the 

cases, the three heuristic algorithms solved the problems within less than 0.2 second 

while the exact method could not solve the problem which has 5 customers and 15 

time intervals. For example, in case of 5customers and 10 time intervals, HPI solved 

the problem within 0.12 seconds, HSI solved the problem within 0.16 seconds and 

HCR solved the problem within 0.17 seconds while the exact method solved the 

problem within about 139 minutes.  

To get the exact solution, we spent about 5091 times as much time as required 

for the HCR solution for the 5 customers and 10 time intervals. For small problems, 

the three heuristics algorithms solved the test problems faster than the lower bound 

and the exact method with almost the same objective function values. Figure 4.3 

shows the comparison of HPI and the exact solutions. 
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Table 4.1 The comparison of results for calculation times (I) 

Number of 

Customers 

Number 

of Time 

interval 

Calculation Times (seconds) 

E LB HCR HSI HPI 

3 10 8.08 6.31 0.16 0.15 0.14 

3 15 62.12 9.94 0.16 0.14 0.14 

4 10 56.30 63.30 0.17 0.17 0.15 

4 15 1410.43 138.37 0.12 0.12 0.11 

5 10 867.18 3563.34 0.17 0.16 0.12 

5 15 - 4717.96 0.14 0.13 0.12 

E: Exact solution 
LB: Lower bound solution 
HCR: Heuristic algorithm based on Clustering first-Routing second 
HSI: Heuristic algorithm based on Sequential Insertion 
HPI: Heuristic algorithm based on Parallel Insertion 
 

Table 4.2 The comparison of results for calculation times (II) 

Number of 

Customers 

Number of 

Time 

interval 

Calculation time ratio 

E&LB HCR&E HSI.&E HPI&E 

3 10 1.28 50.74 53.35 56.43 

3 15 6.25 426.6 473.42 500.66 

4 10 0.89 330.27 340.18 372.77 

4 15 10.19 11328.77 11574.97 12991.39 

5 10 0.24 5091.08 5410.86 7115.81 

5 15 - - - - 
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Figure 4.3 The comparison of the exact and HPI heuristic 

 

Table 4.3, 4.4, and 4.5 show the comparison of the objective function values 

for the exact method, the lower bound, and the three heuristic algorithms. The gaps of 

the objective function value between the exact method and the three heuristic 

algorithms are less than 0.006%. For example, the gap range of the objective function 

value between the exact method and HSI is 0.001% to 0.006% and the gap range of 

the objective function value between the exact method and HPI is 0.001% to 0.003%. 

The gaps of the objective function value between the lower bound and the three 

heuristic algorithms are less than 0.014%. For example, the gap range of the objective 

function value between the lower bound and HSI is 0.007% to 0.014% and the gap 

range of the objective function value between the lower bound and HPI is 0.007% to 

0.014%. The gap range of the objective functions value between the exact solution 

and the lower bound is 0.006% to 0.013%.  
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Table 4.3 The comparison of results for objective functions (I) 

Number of 

Customers 

Number 

of Time 

interval 

Objective Functions 

E LB HCR HSI HPI 

3 10 30015.3  30013.0 30015.7  30017.0 30015.7  

3 15 30019.2 30016.2 30020.0  30019.7  30019.7 

4 10 40023.3  40018.2 40023.7  40023.7  40023.7  

4 15 36689.0  36686.3 36690.7 36690.0  36690.0  

5 10 50028.3  50025.3 50028.8  50028.8  50028.8  

5 15 - 40024.2 40027.2  40027.5  40027.2  

 

 

Table 4.4 The comparison of results for objective functions (II) 

Number of 

Customers 

Number of 

Time 

interval 

Total cost gap 

E&LB HCR&E HSI&E HPI&E 

3 10 0.008 0.001 0.006 0.001 

3 15 0.010 0.003 0.002 0.002 

4 10 0.013 0.001 0.001 0.001 

4 15 0.007 0.005 0.003 0.003 

5 10 0.006 0.001 0.001 0.001 

5 15 - - - - 

 

Table 4.5 The comparison of results for objective functions (III) 

Number of 

Customers 

Number of 

Time interval 

 Total cost gap  

HCR&LB HSI&LB HPI&LB 

3 10 0.009 0.013 0.009 

3 15 0.013 0.012 0.012 

4 10 0.014 0.014 0.014 

4 15 0.012 0.010 0.010 

5 10 0.007 0.007 0.007 

5 15 0.008 0.008 0.008 
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Among the three heuristic algorithms, the heuristic algorithm based on 

parallel insertion has the best performance based on calculation times and objective 

function values. For objective function values, HPI, HSI and HCR almost have the 

same objective function values within less than 0.004% of gap for all cases and HPI 

has a little better objective function value than HSI and HCR. For calculation times, 

there are subtle differences in the three heuristic algorithms and HPI solved the 

problems a little faster than HSI and HCR.  We can conclude that the proposed 

heuristic algorithms work well in static DARP. They produce good results within a 

reasonable calculation time. 

 

4.4 Computational Study II 

4.4.1 Test problems II for analyzing the performance of heuristic 

algorithms 

In order to test larger size problems which are similar to real service, several 

test problems were generated at random.  The three heuristic algorithms were applied 

to these problems and their performances were compared. 

 

(1) The characteristic of problem instances 

We assume that the service area is 20 miles by 20 miles and there are two 

depots. The location of depot 1 is (7, 10) and depot 2 is (13, 10).  The demands are 

generated at random over the service area. The problem sizes are 30, 50 and 100 

customers, respectively. Time periods are from 6 am to 6pm. There are 72 time 

intervals and each time interval is 10 minutes.  
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(2) Parameter settings 

The width of time window is 30 minutes, Maximum route duration is 720 

minutes, Maximum acceptable waiting and delay is 30, 20, and 10 minutes, the fixed 

cost for used vehicle is $500/vehicle, the travel cost is $1/minute, the penalty cost for 

waiting time is $0.5/minute, the penalty cost for delay time is $0.5/minute, and the 

penalty cost for customers’ excess ride time is $0.5/minute. The service times at 

demand node are 2 minutes for a regular passenger and 6 minutes for a passenger 

using wheelchair. 

 

(3) Link Flow Speeds 

In test problems, it is assumed that there are three classes of roads in network. 

First one is highways on which speed limit is 60 mph. Second one is major roads on 

which speed limit is 40 mph. The last one is minor roads on which speed limit is 30 

mph.  Each link belongs to one of these classes. Also it is assumed that link flow 

speeds of highways and major roads except for minor road are varied according to 

time interval. 

 

4.4.2 Computational result II 

As the sizes of the problems increase, the calculation times for solving the 

problems increase exponentially.  In most cases, the problems are solved within 2 

minutes using the heuristic algorithms. The calculation times, objective functions and 

the problem sizes are described in Tables 4.6 and 4.7.  
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Table 4.6 The computational results of test problems II: (a) calculation times 

Customers MaxWD 

Vehicles 

at each 

depot 

Calculation times (ms) 

HSI 

(a) 

HPI 

(b) 

HCR 

(c) 

Savings 

((b-a) 

/b*100) 

Savings 

((c-a) 

/c*100) 

30 30 15 2782 4184 3428 33.5% 18.87% 

30 20 15 3138 3666 3173 14.4% 1.1% 

30 10 15 2972 3446 2915 13.8% -2.0% 

50 30 30 7063 8460 8673 16.5% 18.6% 

50 20 30 7904 8771 7927 9.9% 0.3% 

50 10 30 8036 7590 7993 -5.9% -0.5% 

100 30 99 51647 68469 89682 24.6% 42.4% 

100 20 99 52661 58768 72605 10.4% 27.5% 

100 10 99 51204 55670 78515 8.0% 34.8% 

MaxWD: Maximum allowable waiting and delay time 
 

 

Table 4.7 The computational results of test problems II: (b) objective functions 

Customers MaxWD 

Vehicles 

at each 

depot 

Objective function values 

HSI 

(a) 

HPI 

(b) 

HCR 

(c) 

Savings 

((b-a) 

/b*100) 

Savings 

((c-a) 

/c*100) 

30 30 15 3651 6011 5021 39.3% 27.3% 

30 20 15 5149 5542 5043 7.1% -2.1% 

30 10 15 5595 6074 6043 7.9% 7.4% 

50 30 30 5686 6301 8088 9.8% 29.7% 

50 20 30 8016 6934 7650 -15.6% -4.8% 

50 10 30 8506 7958 8661 -6.9% 1.8% 

100 30 99 12979 15825 17704 18.0% 26.7% 

100 20 99 14947 16359 16578 8.6% 9.8% 

100 10 99 16041 15948 17625 -0.6% 9.0% 
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As mentioned before, maximum allowable waiting and delay (MaxWD) is 

considered in this research and the behaviors of the proposed three heuristics are 

evaluated under three different scenarios in which MaxWD is 30, 20, and 10 minutes, 

respectively in Tables 4.6 and 4.7. HSI performs better than HCR and HPI based on 

calculation times for most cases. For example, in case of 100 customers, HSI solved 

the problem 42.4% faster than HCR for MaxWD of 30 minutes, 27.5% for MaxWD 

of 20 minutes, and 34.8% for MaxWD of 10 minutes, respectively. Even in worst 

cases, the difference between the calculation times of HSI and HCR is less than -

2.0%. Also, it is shown that the difference between the calculation times of HSI and 

HCR and the difference between the calculation times of HSI and HPI are decreasing 

as MaxWD decreases from 30 to 10 minutes for all cases of 30, 50 and 100 

customers.   

Also considering the objective function values, HSI is better than HPI and 

HCR in most cases.  For example, in case of 100 customers, the solution of HSI is 

26.7% better than that of HCR for MaxWD of 30 minutes, 9.8% for MaxWD of 20 

minutes, and 9.0% for MaxWD of 10 minutes, respectively. Even in worst cases, the 

difference between the objective function values of HSI and HCR is less than -5%. 

Also the performances of dial-a-ride service by the three heuristic algorithms 

are shown in Tables 4.8, 4.9, and 4.10 based on routing and scheduling of the results.   
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Table 4.8 The performances of three heuristic algorithms: (a) 30 customer case 
 MaxWD = 30 MaxWD = 20 MaxWD = 10 

HSI HPI HCR HSI HPI HCR HSI HPI HCR 

Objective 

function value 

3651 6011 5021 5149 5542 5043 5595 6074 6043 

Used vehicle 5 10 8 8 9 8 9 10 10 

Serviced 

customers 

30 30 30 30 30 30 30 30 30 

Ave. Serviced 

customers per 

vehicle 

6.0 3.0 3.8 3.8 3.3 3.8 3.3 3.0 3.0 

The number of 

serviced 

ambulatory 

48 48 48 48 48 48 48 48 48 

The number of 

serviced 

wheelchair 

10 10 10 10 10 10 10 10 10 

Ave. travel 

times per 

vehicle (min) 

207.4 93.1 118.1 130.8 108.3 116.0 115.0 101.0 98.4 

Ave. travel 

times per 

customer (min) 

34.6 31.0 31.5 34.9 32.5 30.9 34.5 33.7 32.8 

Ave. waiting 

times per 

vehicle (min) 

15.2 1.3 7.1 3.5 2.6 5.5 2.1 1.2 0.0 

Ave. delay 

times per 

customer (min) 

3.1 2.5 0.1 1.0 3.0 3.3 1.6 0.8 1.2 

Ave. excess 

ride times per 

customer (min) 

2.0 2.40 3.03 2.9 0.7 2.9 1.8 3.0 2.7 

MaxWD: Maximum allowable waiting and delay time 

  



 
 

87 
 

Table 4.9 The performances of three heuristic algorithms: (b) 50 customer case 
 MaxWD = 30 MaxWD = 20 MaxWD = 10 

HSI HPI HCR HSI HPI HCR HSI HPI HCR 

Objective 

function value 

5686 6301 8088 8016 6934 7650 8506 7958 8661 

Used vehicle 7 9 13 12 10 12 13 12 14 

Serviced 

customers 

50 50 50 50 50 50 50 50 50 

Ave. Serviced 

customers per 

vehicle 

7.1 5.6 3.9 4.2 5.0 4.2 3.9 4.2 3.6 

The number of 

serviced 

ambulatory 

73 73 73 73 73 73 73 73 73 

The number of 

serviced 

wheelchair 

26 26 26 26 26 26 26 26 26 

Ave. travel times 

per vehicle (min) 

278.7 175.8 111.5 154.4 178.0 128.0 147.7 153.4 113.4 

Ave. travel times 

per customer 

(min) 

39.0 31.6 29.0 37.1 35.6 30.7 38.4 36.8 31.8 

Ave. waiting 

times per vehicle 

(min) 

15.7 7.7 5.1 2.8 2.6 0.9 0.2 2.2 0.0 

Ave. delay times 

per customer 

(min) 

3.4 3.7 0.9 3.2 2.4 1.8 1.0 1.30 0.8 

Ave. excess ride 

times per 

customer (min) 

3.8 3.7 3.4 2.7 3.3 2.6 2.4 2.9 2.1 

  



 
 

88 
 

Table 4.10 The performances of three heuristic algorithms: (c) 100 customer 

case 
 MaxWD = 30 MaxWD = 20 MaxWD = 10 

HSI HPI HCR HSI HPI HCR HSI HPI HCR 

Objective 

function value 

12979 15825 17704 14947 16359 16578 16041 15948 17625 

Used vehicle 19 25 29 23 26 27 25 25 29 

Serviced 

customers 

100 100 100 100 100 100 100 100 100 

Ave. Serviced 

customers per 

vehicle 

5.3 4.0 3.5 4.4 3.9 3.7 4.0 4.0 3.5 

The number of 

serviced 

ambulatory 

157 157 157 157 157 157 157 157 157 

The number of 

serviced 

wheelchair 

50 50 50 50 50 50 50 50 50 

Ave. travel 

times per 

vehicle (min) 

170.6 122.0 102.3 141.8 118.9 104.3 135.5 130.5 102.8 

Ave. travel 

times per 

customer (min) 

32.4 30.5 29.7 32.6 30.9 28.2 33.9 32.6 29.8 

Ave. waiting 

times per 

vehicle (min) 

4.3 2.1 1.7 1.0 2.6 2.6 1.8 1.0 0.3 

Ave. delay 

times per 

customer (min) 

1.5 1.8 1.1 1.1 1.5 1.4 0.6 0.8 0.7 

Ave. excess 

ride times per 

customer (min) 

2.4 3.2 5.6 2.4 3.2 3.1 2.1 2.6 2.0 
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For most cases, the number of used vehicles by the solution of HPI and HCR 

is larger than that which is obtained by the solution of HSI. For 30 customer cases 

and 30 minutes of MaxWD, 10 vehicles are used in the solution of HPI while 5 

vehicles are used in the solution by HSI.  Also, average travel times per vehicle and 

average travel times per customers by the solution of HSI are larger than those by the 

solution of HPI and HCR for all 30, 50 and 100 customer cases.  

In this research, initial solution is improved through 4 steps of improvement. 

As seen in Figures 4.4, 4.5 and 4.6, most improvements in the objective function 

values for these problems are made through improvement steps I and II and objective 

functions converge as expected. 

 

 
(a) MaxWD 10 
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(b) MaxWD 20 

 

 
(c) MaxWD 30 

 

Figure 4.4 Convergence of objective function by improvement phase  

for 30 customers case 
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(a) MaxWD 10 

 

 

 
(b) MaxWD 20 
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(c) MaxWD 30 

 

Figure 4.5 Convergence of objective function by improvement phase 

for 50 customers case  
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(a) MaxWD 10 

 

 

 
(b) MaxWD 20 
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(c) MaxWD 30 

Figure 4.6 Convergence of objective function by improvement phase  

for 100 customers case 
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4.5 Summary 

In this chapter, heuristic algorithms were developed for static DARP model. 

The approach for solving this model can be divided into two phases including a 

construction phase and an improvement phase. In construction phase, we build a set 

of feasible routes for each depot starting from the information that define dial-a-ride 

problem by three different heuristic methods namely a sequential insertion(HSI), a 

parallel insertion(HPI), and a clustering first-routing second(HCR).  After obtaining a 

feasible solution in the construction phase, the solution is improved through 4 steps of 

improvements, step 1 (acceptable waiting and delay), step 2 (removing one inserting 

one), step 3 (combining vehicles), and step 4 (adjusting vehicle starting time). 

Our model was validated through solving a set of small test problems by an 

exact method using a commercial package, CPLEX. Also, the results of the exact 

method and a lower bound method were compared with the results of the heuristic 

algorithms which are developed for the model in this research. For small problems, 

the proposed heuristic algorithms solved the test problems faster than exact method 

with almost the same objective function values. 

The results of the three algorithms based on clustering first- routing second, 

sequential insertion, and parallel insertion were compared based on problem instances 

that have 30, 50, and 100 customers respectively. HSI performs better than HCR and 

HPI based on the calculation times for most cases. Also considering the objective 

function values, HSI is better than HPI and HCR for most cases.    
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Chapter 5:  Case Study for Large-Scale Static DARP 

In this chapter, a case study for real world large-scale static DARP is 

presented. For the case study, Maryland Transit Administration (MTA)’s real 

operation of Dial-a-ride service is introduced and compared with the results of 

developed heuristic. 

5.1 Dial a-Ride Service by MTA 

5.1.1 Overview 

The real world data for the case study is provided by the Maryland Transit 

Administration (MTA) in Baltimore, Maryland. The MTA has the primary 

responsibility for providing specialized demand-responsive transit (paratransit) 

services for people with disabilities who are not able to use the fixed-route public 

transportation in Baltimore City and Baltimore and Anne Arundel counties within 

three-quarters (3/4) of a mile of any MTA fixed-route service as shown in Figure 5.1.   

 

 

Figure 5.1 Service areas (left) and the locations of three depots (right) 
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In the summer of 2004, MTA introduced a new centralized computer-based 

system for scheduling of rides and daily assignment of passengers to service routes. 

Actual service is provided through a combination of MTA-owned, two private 

companies, MV and Yellow Transportation-owned vehicles, all of whom receive 

instructions from the computer-supported central dispatcher at MTA. 

Unless they are canceled in advance, reserved demands are initially scheduled 

at 5PM, on the day before the scheduled date. In case there are still unscheduled 

demands, the MTA uses so-called protection routes to serve them. Demands that still 

cannot be accommodated in protection routes are assigned to Yellow's taxi. Demands 

are categorized into ambulatory, wheelchair, and transferable wheelchair in terms of 

the type of space they require in vehicles. 

The width of time window is 30 minutes. A minimum of two hours advanced 

notice is required for cancellation. A no show refers to a scheduled rider not showing 

up without prior notice.  

Table 5.1 shows route assignments for the three providers, MTA, Yellow 

Transportation and MV. Once MTA’s routes are all scheduled, Yellow’s 100’s and 

200’s routes are scheduled. And then, MV’s 300’s and 400’s are scheduled. Grouping 

route name is convenient to identify the provider for a certain route in daily 

operations, but it may be unreasonable for using resources efficiently and reducing 

total cost. 
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Table 5.1 Route assignments for the providers by MTA’s operating 

Route Name Provider Feature 

001-040 MTA Regular Routes 

100-161 Yellow Regular Routes 

200-271 Yellow Regular Routes 

300-367 MV Regular Routes 

400-452 MV Regular Routes 

501-504 Yellow Protection Routes 

601-604 MV Protection Routes 

9999 Yellow Taxi 

 

5.1.2 Dial-a-ride operating data 

Corrected data between September 20 and October 1 in 2004 from MTA is 

available. The one day operating data on September 24, 2004 is extracted from 

Trapeze data base of MTA. This day is not a holiday to avoid confounding effects due 

to holidays or other special days. Also, it was a clear day to exclude the effect of 

weather on service performance. Booked, scheduled, performed, vehicle information 

and x-y coordinate for customers were extracted from MTA SQL data. On that date, a 

total 4,726 demand of reserved demands were scheduled excluding 804 demands of 

that were cancelled in advance. Each demand had a request time, time window, 

demand location and space type such as ambulatory, wheelchair, and transferable 

wheelchair. As shown in Table 5.2, there were 2,113 ambulatory passengers, 506 

wheelchair passengers, and 33 transferable wheelchair passengers. 
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Table 5.2 Space type of customers 

Space type Ambulatory Wheelchair Transferable 
wheelchair 

The number of  
passengers 2,113 506 33 

   

The fleet consisted of 103 vehicles of Yellow transportation, 56 vehicles of 

MTA and 103 vehicles of MV. And there were several types of vehicles by 

configuration such as ambulatory space, wheelchair space and transferable wheelchair 

space. 

Figure 5.2 shows the distributions of request times of the total 4,726 demands. 

Most of requests were concentrated on day time, specifically 7am to 10am and 2pm 

to 5pm. 

 
Figure 5.2 The distributions of request times 
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 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 30𝑚𝑚𝑚𝑚𝑚𝑚 

For drop off demand, 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 30𝑚𝑚𝑚𝑚𝑚𝑚 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Real demand locations are regarded as the closest intersection nodes in 

network as shown in Figure 5.3. In this Figure, the symbols of disabled are real 

demand locations and dots are the closest nodes from disabled.  

 
Figure 5.3 Matching demand locations and nodes 
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5.1.3 Network data 

The network data for service areas were obtained from ArcLogistics Data as 

shown in Figure 5.4. Also, network connectivity was checked. Network connectivity 

is necessary for calculating time dependent shortest paths. 

 
Figure 5.4 Service area map from ArcLogistics Data 

 

As shown in Table 5.3, there are a total of 63,356 nodes, 8,446 links and 

142,483 of directional arcs in network. 

Table 5.3 Network size 

Nodes Links Arcs 

63,356 8,446 142,483 

 
There are 3 different types of links according to their function. Each link has 

its own design speed. It is assumed that each link has different link speed according to 

the link type as shown in Table 5.4. This link speed is based on speed limit of the 

link. 



 
 

102 
 

Table 5.4 Link speed and Road factor by link type 

Link type 
Speed limit 
(mile/hour) 

Uncongested 

travel time (min) 
Road factor 

at each interval 

Minor Street 30 =Length/30*60 1(always) 

Major Street 40 =Length/40*60 - 

Highway 60 =Length/60*60 - 

 

Link speed is varying according to the time of day. And, travel time of link i 

at time interval t is calculated as follows:    

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚)

= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ × 60/(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 

× 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡) 

For Minor Streets, there is no variation of link speed as road factor is always 

1. Figure 5.5 shows the variation of road factor for Highways and Major Streets 

according to the time of the day. 

 

 
Figure 5.5 Road factor of Highway and Major Street 

0

0.2

0.4

0.6

0.8

1

1.2

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144

Ro
ad

 F
ac

to
r

Time intervals



 
 

103 
 

5.2 Implementation of the algorithm in the case study 

5.2.1 Decomposition of problem 

It is necessary to decompose whole problem into subproblems to solve it in 

reasonable time. The idea of decomposing the problem comes from Figure 5.2. There 

are two peak periods for reqeust time of demands. Most demands are concentrated 

during the periods of 7 AM to10 AM and 2 PM to 5 PM. Therefore, the 5 time slots 

are decided upon based on the distributions of request times of demands (Table 5.5). 

The demands are grouped into these time slots as follows. If a latest allowalble time 

window of a pickup demand is within a certain time slot, then that pickup demand 

and the dropoff demand which is related to that pickup demand are grouped into the 

same time slot. Figure 5.6 shows the spatial distribution of demands based on the time 

slots. We can see that demands are mainly located in the center of Baltimore city. 

Table 5.5 Distribution of demands by time slots 

Time slots Hour The number of demands 

1 0am – 7am 516 

2 7am – 10am 1,320 

3 10am – 2pm 1,100 

4 2pm – 5pm 1,352 

5 5pm - 0am 438 

Total  4,726 
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(a) Time slot1 (0am-7am) (b) Time slot 2 (7am-10am) 

  
(c) Time slot 3 (10am-2pm) (d) Time slot 4 (2pm-5pm) 

 
(e)  Time slot 5 (5pm-0am) 

 
Figure 5.6 Spatial distributions of demands based on time slots 
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5.2.2 Procedure of HCR for decomposed problem 

In this section, we describe how the proposed HCR in Chapter 4 is modified 

and implemented to the real large-scale problem. The procedure of HCR for this case 

study is as follows: 

 1. Start and T (Time slot) = 0. 

2. Group demands into time slots. 

3. Sort demands in each group. 

4. T=T+1; 

5. Construct initial solution based on the solution made on previous time slot,     

    T-1. 

 6. Improve solution through improving step I, II, III, and IV. 

 7. If T>5, stop. Otherwise, update and check routes, vehicles, and demands.  

                Go to step 4. 

(1) Rate_Ins 

Originally, in improving steps II and IV, when inserting a demand from a 

route into another route we need to check all other routes which can accept it and find 

a target route which has a minimum additional cost. As problem sizes becoming 

larger, there are many target routes to be checked and the procedure needs much time 

to find a good one. Therefore, it is modified to check just randomly selected target 

routs from the set of all routes using Rate_Ins, the ratio of selected target routes to all 

available routes for insertion. 
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(2) Rate_Com 

Also, in Improving step III, when combining a route into another route it need 

to check other whole routes and find a minimum target route. In order to save 

calculation time, it is modified for just randomly selected target routs of all available 

routes to be checked using Rate_Com, the rate of selected target routes to all 

available routes for combining. Of course, solution deterioration by these 

modifications using Rate_Ins and Rate_Com should be accepted to some degree. 

Rate_Ins and Rate_Com will be analyzed in section 5.4. 

 

5.3 Parameter settings 

The width of time window is 30 minutes, Maximum route duration is 540 

minutes, Maximum acceptable waiting and delay is 30, 20, and 10 minutes, the fixed 

cost for used vehicle is $200/vehicle, the travel cost is $1/minute, the penalty cost for 

waiting time is $0.5/minute, the penalty cost for delay time is $0.5/minute, and the 

penalty cost for customers’ excess ride time is $0.5/minute. The service times at 

demand node are 2 minutes for a regular passenger, 4 minutes for a passenger using 

transferable wheelchair, and 6 minutes for a passenger using wheelchair, respectively. 

The heuristic algorithms were coded in C++. All computations were carried 

out on a machine with 2.93GHZ Intel Core i7 CPU and 8GB memory in Windows 7 

environment.  
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5.4 Computation results 

In this section, first we analyze Rate_Ins and Rate_Com and set the value of 

Rate_Ins and Rate_Com to solve the problem within reasonable time without quality 

deterioration. Next, we schedule and route 4726 demands based on three cases, 

MaxWD 30, 20, and 10 minutes, respectively. And, then we compare our results with 

MTA’s real operation. 

5.4.1 Rate_Ins and Rate_Com 

In this section, Rate_Ins and Rate_Com which are introduced in previous 

section are analyzed. To test the effect of Rate_Ins and Rate_Com, we change the 

Rate_Ins and Rate_Com ranges as shown in Table 5.6 

Table 5.6 Rate_Ins and Rate_Com ranges 

Problems Rate_Ins Rate_Com 

HCR (1) 0.1 0.5 

HCR (2) 0.2 0.5 

HCR (3) 0.5 0.5 

 

Table 5.7 and Figure 5.7 show the result of 3 cases using different Rate_Ins 

and Rate_Com. HCR (1) using Rate_Ins, 0.1 and Rate_Com, 0.5 had a good solution 

within reasonable time, 264 minutes. HCR (1) saved calculation times by 30.16% 

compared to HCR (2) and 60.42% compared to HCR (3), respectively. As it is 

expected, the objective function value of HCR (1) is deteriorated by 0.02% compared 

to HCR (2) and 0.02% compared to HCR (3) and it is within an acceptable degree. 

Therefore, the values of 0.1 for Rate_Ins and 0.5 for Rate_Com are used for all 

computations. 
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Table 5.7 Computational Result for Rate_Ins and Rate_Com 

Problems Rate_Ins Rate_Com 
Objective 

functions 

Calculation 

times (min) 

HCR  (1) 0.1 0.5 95759 264 

HCR (2) 0.2 0.5 94113 378 

HCR (3) 0.5 0.5 93722 667 

 

 
Figure 5.7 Objective functions and calculation times by Rate_Ins and Rate_Com 

 

5.4.2 Preliminary results of the three heuristics 

Based on reserved demands excluding the cancelations in advance, a total of 

4,726 demands are scheduled and routed using the three heuristics HCR, HSI, and 

HPI for the large-scale DARP. In this section, the results of three heuristics are 

compared with each other and the best one of the three heuristics is chosen for further 

study. For this preliminary test, acceptable waiting and delay time is 30 minutes. 

Table 5.8 shows the objective function values and calculation times for the 

three heuristics. The last two columns in Table 5.5 are savings of cost and calculation 

time by HCR compared to HSI and HPI. 
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Table 5.8 The costs and calculation times for three heuristics 

Cases 

Total 
cost 

Fixed 
cost 

Routing 
cost 

Waiting 
cost 

Delay 
cost 

Excess 
ride cost 

Cal. 
Time 
(min) 

Saving 
of cost 

(%) 

Saving 
of cal. 
Time 
(%) 

HCR 95759 48400 41035 1194 669 4461 264 - - 
HSI 92161 46600 39564 927 728 4342 375 -3.9% 29.6% 
HPI 110548 66800 38494 1010 715 3529 436 13.4% 39.4% 

 

From the objective function perspective, HSI is better than the two other 

heuristics, HCR and HPI. HSI can reduce the number of routes while HPI has more 

routes than others. The gap of objective function values of HCR and HSI is not large 

(-3.9%). From the calculation time perspective, HCR solves the problem faster than 

HSI and HPI by 29.6% and 39.4%, respectively. HCR is a good heuristic for large-

scale DARP from both the objective function value and calculation time perspective. 

After comparing the three heuristics, HCR is selected for solving the large-

scale DARP.  HCR is applied to three cases, MaxWD 10, 20, and 30 minutes. Table 

5.9 and Figure 5.8 show the results of the three cases. 

We can see that total cost and the fixed cost decrease as maximum acceptable 

waiting and delay increases. More routes are made to satisfy tight constraints of 

waiting and delay times. For example, when MaxWD is 30 minutes, 242 routes are 

made and 308 routes are made when MaxWD is 10 minutes.  

As MaxWD increases, more time is needed to complete scheduling and 

routing. For example, 212 minutes is spent for calculation when MaxWD is 10 

minutes, 222 minutes when MaxWD is 20 minutes, and 264 minutes when MaxWD 

is 30 minutes. We can see that less time is spent for computation as MaxWD is 

tighter. 
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Table 5.9 The cost and calculation times for three cases 

Problems Total  

cost 

Fixed  

cost 

Routing 

cost 

Waiting 

cost 

Delay 

cost 

Excess  

ride cost 

Cal. Time 

(min) 

MaxWD 10 108830 61600 41185 363 1047 4635 212 

MaxWD 20 99962 53200 40889 640 407 4826 222 

MaxWD 30 95759 48400 41035 1194 669 4461 264 

 

 
Figure 5.8 The objective functions and calculation times for three cases 

 

Table 5.10 shows that the performances of scheduling and routing for the 

three cases, MaxWD 10, 20, and 30 minutes, respectively. Average scheduled 

customers per vehicle increase as MaxWD increases. For example, average scheduled 

customers per vehicle are 7.67 for MaxWD 10 minutes, 8.88 for MaxWD 20 minutes, 

and 9.76 for MaxWD 30 minutes. We can see that more customers are serviced by a 

vehicle as the degree of violation of waiting and delay is allowed to be larger. Also, 

the average travel times per vehicle increase as MaxWD increases. For example, the 

average travel times per vehicle are 133.72 minutes for MaxWD 10 minutes, 153.72 
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minutes for MaxWD 20 minutes, and 169.57 minutes for MaxWD 30 minutes. As the 

level of acceptable waiting and delay increase, more customers are serviced by a 

vehicle and therefore travel time of the vehicle increases. As MaxWD increases, 

average waiting times also increase. For example, average waiting times per vehicle 

is 2.35 minutes for MaxWD 10 minutes, 4.81 minutes for MaxWD 20 minutes, and 

9.87minutes for MaxWD 30minutes. For average ride time per customers and average 

excess ride time per customers, there is not much difference. 

Table 5.10 The performances of scheduling and routing for three cases 
 HCR 

MaxWD 30 

HCR 

MaxWD 20 

HCR 

MaxWD 10 

Number of routes 242 266 308 

Scheduled customers 2363 2363 2363 

Scheduled demands 4726 4726 4726 

Ave. scheduled customers per vehicle 9.76446 8.88346 7.67208 

The number of scheduled ambulatory 2113 2113 2113 

The number of scheduled wheelchair 506 506 506 

The number of scheduled 

transferable wheelchair 

33 33 33 

Ave. travel times per vehicle 

 (min) 

169.566 153.718 133.718 

Ave. ride times  per customer 

 (min) 

11.3415 11.6686 11.5032 

Ave. waiting times per vehicle 

 (min) 

9.86777 4.81203 2.35714 

Ave. delay times per customer  

(min) 

0.565806 0.344477 0.886162 

Ave. excess ride times per customer 

(min) 

3.77571 4.08464 3.92256 
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5.4.3 Comparison of results of HCR with MTA’s operating 

(1) Demands 

For comparison of results of HCR with MTA’s operation, 4,604 demands of 

total 4,726 demands are scheduled and routed since operating data of 4,604 demands 

are available from MTA’s database. Table 5.11 shows the distribution of demands by 

time slots. 

 
Table 5.11 The distribution of demands by time slots 

Time slots Hour The number of demands 
1 0am – 7am 510 
2 7am – 10am 1,302 
3 10am – 2pm 1,062 
4 2pm – 5pm 1,310 
5 5pm - 0am 420 

Total  4,604 
 

(2) Link Travel Times 

Also, for comparison of results of HCR with MTA’s operation, in HCR static 

travel times are used instead of time-dependent travel times. And, it is not possible to 

exactly compare the result of HCR with MTA’s operation since link travel times 

which are used in MTA’s operation were not available in the database. Therefore, two 

scenarios are introduced. For the first scenario, we assume that actual link speeds are 

slower by 25% than original link speeds which are set based on speed limits of links. 

In this case, the value of Speed Factor is 0.75 and modified link speed is calculated as 

follows:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
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For the second scenario, we assume that actual link speeds are equal to the 

original link speeds which are set. In this case, the value of Speed Factor is 1.0.  

 (3) Results 

Actually, in MTA’s operation, there is no waiting time, delay time, and excess 

ride time when all demands are scheduled while total cost includes waiting cost, delay 

cost, and excess ride cost in HCR. Therefore, it is necessary to analyze total cost 

according to the variations of waiting cost unit, delay cost unit, and excess ride cost 

unit in HCR. For this analysis, a total of 24 cases are made as shown in Table 5.12. 

Table 5.12 Cases for comparison the results of HCR with MTA’s operation 

Cases MaxWD SpeedFactor Waiting cost 

unit($/min) 

Delay cost 

unit($/min) 

Excess ride  

cost unit($/min) 

1 30 1.0 0 0 0 
2 30 1.0 0.5 0.5 0.5 
3 30 1.0 3 3 3 
4 30 1.0 5 5 5 
5 30 0.75 0 0 0 
6 30 0.75 0.5 0.5 0.5 
7 30 0.75 3 3 3 
8 30 0.75 5 5 5 
9 20 1.0 0 0 0 
10 20 1.0 0.5 0.5 0.5 
11 20 1.0 3 3 3 
12 20 1.0 5 5 5 
13 20 0.75 0 0 0 
14 20 0.75 0.5 0.5 0.5 
15 20 0.75 3 3 3 
16 20 0.75 5 5 5 
17 10 1.0 0 0 0 
18 10 1.0 0.5 0.5 0.5 
19 10 1.0 3 3 3 
20 10 1.0 5 5 5 
21 10 0.75 0 0 0 
22 10 0.75 0.5 0.5 0.5 
23 10 0.75 3 3 3 
24 10 0.75 5 5 5 
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Figure 5.9 and Table 5.13 show the comparison of objective function values 

of HCR with MTA’s operation. For the comparison, waiting cost, delay cost, and 

excess ride cost are not included in the objective function values of HCR. The 

objective function values from HCR are better than those from MTA’s operation for 

all cases. When SpeedFactor is 1.0, the results of heuristic are better than MTA's 

operation based on the variation of cost unit (0, 0.5, 3, and 5) and there is a 39.9 to 

48.2% savings in total cost. Also, when SpeedFactor is 0.75, the results of heuristic 

are better than MTA's operation based on the variation of cost unit (0, 0.5, 3, and 5) 

and there is a 21.4 to 33.3% savings in total cost. Also there is a 40% savings in the 

routing cost for all cases. This big difference between the results of HCR and MTA’s 

operation results from the MTA’s route assignment method. As mentioned earlier, 

MTA assigns a vehicle of specific company to the route which has certain ranges of 

route number to balance used vehicles from each private company. MTA’s routes 

assignment method is not reasonable for minimizing total cost. The gap of objective 

function values between HCR and MTA’s operation for SpeedFactor 1.0 is larger 

than that for SpeedFactor 0.75.  As waiting cost unit, delay cost unit, and excess ride 

cost unit increase, the savings in total cost slightly decrease. Also, the savings in total 

cost slightly decrease as MaxWD decreases.  
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Figure 5.9 The comparison of objective functions of HCR with MTA’s operation 

(I) 
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Table 5.13 Comparison of results of HCR with MTA’s operation (I) 
Cases Total cost Fixed cost Routing cost Total cost 

saving (%) 

Calculation Time 

(min) 

MTA 136473 56400 80073 - - 

1 70642 40000 30642 48.2 341 

2 76366 42600 33766 44.0 203 

3 75885 41400 34485 44.4 207 

4 74784 39800 34984 45.2 217 

5 93112 51800 41312 31.8 323 

6 96417 51600 44817 29.4 257 

7 93547 47200 46347 31.5 257 

8 95983 49800 46183 29.7 230 

9 72802 41600 31202 46.7 294 

10 76541 43200 33341 43.9 196 

11 75048 41200 33848 45.0 190 

12 78892 44400 34492 42.2 201 

13 91012 49000 42012 33.3 287 

14 95345 51000 44345 30.1 220 

15 100647 54200 46447 26.3 212 

16 100297 53400 46897 26.5 214 

17 79957 47600 32357 41.4 208 

18 81585 47800 33785 40.2 168 

19 83349 48600 34749 38.9 170 

20 81969 47000 34969 39.9 176 

21 101610 57800 43810 25.5 236 

22 105799 60200 45599 22.5 201 

23 104413 57600 46813 23.5 207 

24 107303 60000 47303 21.4 202 

 

 

 

 

 



 
 

117 
 

Figure 5.10 and Table 5.14 show the comparison of the results of HCR with 

MTA’s operation when waiting cost, delay cost, and excess ride cost are included in 

the objective function values in HCR. The objective function values from HCR are 

better than those from MTA’s operation except in 4 cases 8, 16, 23, and 24. When 

SpeedFactor is 1.0, the results of heuristic are better than MTA's operation based on 

the variation of cost unit (0, 0.5, 3, and 5). But, when SpeedFactor is 0.75, the results 

of heuristic are better than MTA's operating until cost units increase by 3 and MTA's 

operation is better than the results of heuristic as cost units increase by so many times. 

Also there is a 40% savings in the routing cost for all cases.  

 
Figure 5.10 The comparison of objective functions of HCR with MTA’s operation 

(II) 
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Table 5.14 Comparison of results of HCR with MTA’s operation (II) 
Cases Total   

cost 

Fixed  

cost 

Routing 

cost 

Waiting 

cost 

Delay  

cost 

Excess  

ride cost 

Total cost  

saving (%) 

Calculation

 time(min) 

MTA 136473 56400 80073 0 0 0 - - 

1 70642 40000 30642 0 0 0 56.7 341 

2 80770 42600 33766 698 385.5 3320.5 40.8 203 

3 102675 41400 34485 5277 1083 20430 24.8 207 

4 117799 39800 34984 7075 2850 33090 13.7 217 

5 93112 51800 41312 0 0 0 42.9 323 

6 102847 51600 44817 1046 661.5 4722.5 24.6 257 

7 129310 47200 46347 8016 2781 24966 5.2 257 

8 153838 49800 46183 7260 6135 44470 -12.7 230 

9 72802 41600 31202 0 0 0 55.4 294 

10 81315 43200 33341 643 479 3652 40.4 196 

11 99486 41200 33848 2859 1974 19605 27.1 190 

12 125822 44400 34492 3900 8725 34305 7.8 201 

13 91012 49000 42012 0 0 0 44.2 287 

14 101515 51000 44345 645 730 4795 25.6 220 

15 133473 54200 46447 2832 3444 26550 2.2 212 

16 159762 53400 46897 6265 10920 42280 -17.1 214 

17 79957 47600 32357 0 0 0 51 208 

18 86124 47800 33785 264 446.5 3828 36.9 168 

19 109251 48600 34749 2001 3615 20286 19.9 170 

20 123964 47000 34969 2195 4355 35445 9.2 176 

21 101610 57800 43810 0 0 0 37.7 236 

22 111741 60200 45599 386 666 4890 18.1 201 

23 136714 57600 46813 1449 3276 27576 -0.2 207 

24 162308 60000 47303 3055 5535 46415 -18.9 202 

 

Average calculation time for all cases is 225.7 min. These calculation times 

are reasonable because the computation work can be done before 9pm and there are 

sufficient times to be ready for the next day’s service if the computation work of 

scheduling and routing for reserved demands starts at 5 pm.  
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5.5 Sensitivity Analysis 

In this section, a sensitivity analysis for the parameters that are used in this 

model is performed. A sensitivity analysis is the process of varying model input 

parameter values over a reasonable range and observing the relative change in model 

response. The purpose of the sensitivity analysis is to demonstrate the sensitivity of 

the model simulations to uncertainty in values of model input data.  

The parameters for sensitivity analysis in this section are taken from the 

formulation in chapter 3. The objective function of our proposed mathematical model 

has many parameters such as fc (fixed cost of one vehicle, $/vehicle), rc (routing cost 

for the unit travel time, $/min), pe (excess ride time penalty, $/min), pw (waiting 

penalty, $/min), and pd (delay penalty, $/min). We set a base value and a range for 

each model parameter.  Table 5.15 shows that the base value and the range of the 

parameters. We test three cases, MaxWD 10, 20, and 30 minutes, respectively. 

 

Table 5.15 Sensitivity test ranges of parameters 

Cost Base Value Range 

Fixed cost 200 0, 100, 200, 500 

Routing cost 1 0, 1, 5, 50 

Waiting cost 0.5 0, 0.5, 5, 50 

Delay cost 0.5 0, 0.5, 5, 50 

Excess ride cost 0.5 0, 0,5, 5, 50 

 

5.5.1 Fixed cost 

The fixed cost is the capital cost for a vehicle. Table 5.16 shows the result of 

the fixed cost sensitivity analysis. We change the fixed cost unit range from 0 to 500 
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while other parameters have the fixed value with their base values. In all three cases, 

there is no change in the number of vehicles except for fixed cost unit, 0. The number 

of used vehicles remains the same when the fixed cost unit increases from 100 to 500. 

In the case of MaxWD 30 minutes, when we set the fixed cost unit as 0, 247 vehicles 

are used. And, 242 vehicles are used for fixed cost unit, 100, 200, and 500. In the case 

of MaxWD 20 minutes, when we set the fixed cost unit as 0, 291 vehicles are used. 

And, 266 vehicles are used for fixed cost unit, 100, 200, and 500. In the case of 

MaxWD 10 minutes, 310 vehicles are used for fixed cost unit, 0. And, 308 vehicles 

are used for the fixed cost unit, 100, 200, and 500. 

 
Table 5.16 Sensitivity Analysis of Fixed Cost 

Problems 

Fixed 

cost  

unit 

Number 

of 

vehicles 

Total cost 
Fixed 

cost 

Routing 

cost 

Waiting 

cost 

Delay 

cost 

Excess 

ride cost 

HCR 

MaxWD

30 

0 247 46948 0 40442 1025 912 4569 

100 242 71559 24200 41035 1194 669 4461 

200 242 95759 48400 41035 1194 669 4461 

500 242 168359 121000 41035 1194 669 4461 

HCR 

MaxWD

20 

0 291 45911 0 40519 711 443 4238 

100 266 73362 26600 40889 640 407 4826 

200 266 99962 53200 40889 640 407 4826 

500 266 179762 133000 40889 640 407 4826 

HCR 

MaxWD

10 

0 310 47863 0 41331 347 1490 4696 

100 308 78030 30800 41185 363 1047 4635 

200 308 108830 61600 41185 363 1047 4635 

500 308 201230 154000 41185 363 1047 4635 

 
Figure 5.11 shows the cost comparison for three cases of problems. The cost 

is the total cost minus the fixed cost. As shown in Figure 5.11, there are not big 
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changes in the total cost minus the fixed cost for the three problems when the fixed 

cost unit is between 100 and 500.  

 

 
Figure 5.11 Sensitivity Analysis of Fixed Cost 

 
 

The sensitivity analysis result of the fixed cost shows that the model keeps the 

minimum number of vehicles after the fixed cost unit increases more than 100. We 

cannot reduce operating cost beyond the required minimum level, even when we can 

use unlimited number of vehicles with 0 fixed cost. 

5.5.2 Routing cost 

The routing cost is related with the link travel times. Table 5.17 shows the 

results of the sensitivity analysis for the three cases, MaxWD 10, 20, and 30 minutes, 

respectively. We can see that as the routing cost unit increase, routing times decreases 

In case of MaxWD 30 minutes, the model spends 43,474 minutes for routing when 

routing cost unit is 0 and the routing time is 38,307 minutes when routing cost unit is 
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when routing cost unit is 0 and the routing time is 38,687 minutes when routing cost 

unit is 50. Also, in case of MaxWD 10 minutes, the model spends 43,578 minutes for 

routing when routing cost unit is 0 and the routing time is 40,130 minutes when unit 

routing cost is 50. This shows that it is possible to control the routing time with the 

routing cost.  

 

Table 5.17 Sensitivity Analysis of Routing Cost 

Problems 

Routing 

cost 

unit 

Total cost 
Fixed 

cost 

Routing 

cost 

Waiting 

cost 

Delay 

cost 

Excess 

ride cost 

Routing 

time 

(min) 

HCR 

MaxWD

30 

0 59211 53600 0 981 574 4056 43474 

1 95759 48400 41035 1194 669 4461 41035 

5 254659 51000 196220 1622 1018 4799 39244 

50 1974670 50800 1915350 1718 1710 5092 38307 

HCR 

MaxWD

20 

0 59058 51800 0 783 1941 4534 42905 

1 99962 53200 40889 640 407 4826 40889 

5 252193 50800 194780 992 932 4689 38956 

50 1997889 53800 1934350 1222 3202 5316 38687 

HCR 

MaxWD

10 

0 64381 59200 0 347 520 4315 43578 

1 108830 61600 41185 363 1047 4635 41185 

5 268308 60200 201750 385 961 5013 40350 

50 2072759 59400 2006500 446 1112 5301 40130 

 

As the routing cost unit increases, the fixed cost does not change much except 

for the case of MaxWD 30 minutes. In case of MaxWD 30 minutes, fixed cost for 0 

routing cost unit is higher than those for other routing cost units. We can see that 

when routing cost is 0, more vehicles are needed to reduce other costs of waiting, 

delay, and excess ride which are larger than routing cost. In case of waiting, delay, 

and excess ride cost, they slightly increase as the routing cost unit increases. 
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Figure 5.12 shows the relation between the routing cost unit and the routing 

time generated in the model. 

 

 
Figure 5.12 Sensitivity Analysis of Routing Cost and Routing Time 

 

5.5.3 Waiting cost 

Waiting cost represents penalty cost of vehicles when vehicles arrive before 
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analysis for three cases for the waiting cost variation. 

In Table 5.18, we can see that the waiting cost variation does not much affect 

the fixed cost for range from 0.5 to 5. For example, in case of MaxWD 30minutes, 

when the waiting cost unit is 0.5, 242 routes are made and when the waiting cost unit 
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Table 5.18 Sensitivity Analysis of Waiting Cost 

Problems 

Waiting 

cost    

unit 

Total cost 
Fixed 

cost 

Routing 

cost 

Waiting 

cost 

Delay 

cost 

Excess 

ride cost 

Waiting 

time 

(min) 

HCR 

MaxWD

30 

0 97434 52200 40179 0 526 4529 3197 

0.5 95759 48400 41035 1194 669 4461 2388 

5 99631 48600 41723 2720 1539 5049 544 

50 115893 50600 42371 15000 2825 5097 300 

HCR 

MaxWD

20 

0 97434 52200 40179 0 526 4529 3197 

0.5 99962 53200 40889 640 407 4826 1280 

5 101391 49800 42151 3235 1300 4905 647 

50 113085 51200 42044 12600 2226 5015 252 

HCR 

MaxWD

10 

0 105048 58200 41323 0 908 4617 1209 

0.5 108830 61600 41185 363 1047 4635 726 

5 110209 60200 42366 1320 1409 4914 264 

50 124732 55400 42064 20850 1417 5002 417 

 

Figure 5.13 shows that the relations between the waiting time unit and the 

waiting time generated in the model. We can recognize that the waiting time is 

reduced when the waiting cost unit increases. In case of MaxWD 10 minutes, the 

degree of variation of delay time is smaller than those of MaxWD 30 and 20 minutes. 

With the base waiting cost value, 0.5, 2388 minutes are spent for the case of MaxWD 

30 minutes, 1280 minutes for MaxWD 20 minutes, and 726 minutes for MaxWD 10 

minutes. For waiting time unit, 50, the waiting time is reduced to 300, 252, and 417 

minutes. This result shows that we can control the early arrival at the demand node 

with the waiting time cost and the proposed model works well for the role as 

expected. 
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Figure 5.13 Sensitivity Analysis of Waiting Cost and Waiting Time 

 

Figure 5.14 shows the trend of the total cost minus waiting cost as the waiting 

cost unit increases. For three cases, total cost except waiting cost does not much 

change in the range from 0.5 to 5 of waiting cost unit. 

 
Figure 5.14 Sensitivity Analysis of Waiting Cost 
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5.5.4 Delay cost 

Delay cost and excess ride cost represent the customer inconvenience cost by 

breaking time windows. We change the delay cost unit from 0 to 50 with base value 

for other parameters.  

Table 5.19 shows the results of the sensitivity analysis for three cases for the 

delay cost variation. We can see that the fixed cost and routing cost increases slowly 

according to increasing of the delay cost unit, but not so sensitively. 

The waiting cost increases as the delay cost unit increases. For example, in 

case of MaxWD 30 minutes, when the delay cost unit is 0.5, the waiting cost is 1194 

and when the delay cost unit is 50, the waiting cost is 1694. In case of MaxWD 20 

minutes and 10 minutes, when the delay cost unit is 0.5, the waiting cost is 640 and 

363. However, when the delay cost unit is 50, the waiting cost increases to 1176 and 

509. 

Table 5.19 Sensitivity Analysis of Delay Cost 

Problem 
Delay 
cost  
unit 

Total cost Fixed 
cost 

Routing 
cost 

Waiting 
cost 

Delay 
cost 

Excess 
ride cost 

Delay 
time 
(min) 

HCR 
MaxWD

30 

0 96001 51000 39912 769 0 4321 5583 

0.5 95759 48400 41035 1194 669 4461 1337 

5 112317 52800 41278 1325 1235 4564 2470 

50 141028 52200 41619 1694 40850 4665 817 

HCR 
MaxWD

20 

0 94432 49800 39524 614 0 4495 5102 

0.5 99962 53200 40889 640 407 4826 814 

5 102094 52400 41394 922 2710 4669 542 

50 126933 53600 41555 1176 26000 4603 520 

HCR 
MaxWD

10 

0 101286 56000 40504 300 0 4483 2582 

0.5 108830 61600 41185 363 1047 4635 2904 

5 118362 62000 42921 514 8105 4822 1621 

50 207068 60400 42361 509 98950 4849 1979 
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As the delay cost unit increases, the delay time decreases for all three cases. In 

case of MaxWD 10 minutes, the degree of variation of delay time is smaller than 

those of cases of  MaxWD 30 and 20 minutes. With the base delay cost value, 0.5, 

1337 minutes are spent for the case of MaxWD 30 minutes, 814 minutes for MaxWD 

20 minutes, and 2904 minutes for MaxWD 10 minutes. For the delay time unit, 50, 

the delay time reduced to 817, 520, and 1979 minutes. Therefore, the delay time also 

can be controlled by the delay cost unit like the waiting time. Figure 5.15 shows that 

the relation between the delay cost unit and the delay time generated in the model. 

 

  
Figure 5.15 Sensitivity Analysis of Delay Cost and Delay Time 
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Figure 5.16 shows the trend of the total cost minus the delay cost as the unit 

delay cost increases. There is not much change from 0.5 to 50 of delay cost unit. 

 

 
Figure 5.16 Sensitivity Analysis of Delay Cost 
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routing cost is 42629.  Also waiting cost and delay cost increase as the excess ride 

cost increases except when excess ride cost unit is 50. 

Table 5.20 Sensitivity Analysis of Excess Ride Cost 

Problem 

Excess 

ride cost 

unit 

Total cost 
Fixed 

cost 

Routing 

cost 

Waiting 

cost 

Delay 

cost 

Excess 

ride  

cost 

Excess 

ride 

time 

(min) 

HCR 

MaxWD

30 

0 93759 51800 40336 1063 560 0 9864 

0.5 95759 48400 41035 1194 669 4461 8922 

5 132599 52200 41949 1403 837 36210 7242 

50 473144 49200 42629 1408 4807 375100 7502 

HCR 

MaxWD

20 

0 95890 54200 40235 746 709 0 9981 

0.5 99962 53200 40889 640 407 4826 9652 

5 134600 52000 42114 1417 999 38070 7614 

50 460647 51600 42454 1007 2337 363250 7265 

HCR 

MaxWD

10 

0 102962 61200 40904 261 598 0 9014 

0.5 108830 61600 41185 363 1047 4635 9269 

5 144694 58000 42659 727 1263 42045 8409 

50 510797 59200 43382 444 771 407000 8140 

 
In Figure 5.17, we can see that the relation between the excess ride cost unit 

and the excess ride time generated in the model. As excess ride cost increases, excess 

ride time decreases. In case of MaxWD 10 minutes, the degree of variation of delay 

time is smaller than those of cases of MaxWD 30 and 20 minutes. 

Figure 5.18 shows the trend of the total cost minus the excess ride cost as the 

excess ride cost unit increases. Total cost except the excess ride cost is stable for the 

variation of the excess ride cost unit. 
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Figure 5.17 Sensitivity Analysis of Excess Ride Cost and Excess Ride Times 

 
 
 

 
Figure 5.18 Sensitivity Analysis of Excess Ride Cost 
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5.6 Summary 

In this chapter, a case study for real world large-scale static DARP was 

presented. For the case study, Maryland Transit Administration (MTA)’s real 

operation of Dial-a-ride service was introduced and compared with the results of 

developed heuristic. 

The whole problem was decomposed into 5 time slots problem to solve it in 

reasonable time. The 5 time slots were made based on the distributions of request 

times of demands. After comparing the three heuristic in a preliminary test, HCR was 

selected for solving the large-scale DARP. For comparison of results of HCR with 

MTA’s operation, 4604 demands of total 4726 demands were scheduled and routed. 

Since link travel times which had been used in MTA’s operation were not available to 

us, two scenarios were introduced. For the first scenario, we assumed that actual link 

speeds are slower by 25% compared to the original link speeds which are set based on 

speed limits of links. In this case, the value of Speed Factor is 0.75. For the second 

scenario, we assumed that actual link speeds are equal to the original link speeds 

which are set. In this case, the value of Speed Factor is 1. 

We analyzed the total cost by varying waiting cost unit, delay cost unit, and 

excess ride cost unit in HCR. The objective function values from HCR were better 

than those from MTA’s operation for all cases when waiting cost, delay cost, and 

excess ride cost were not included in the objective function values of HCR. When 

waiting cost, delay cost, and excess ride cost were included in the objective function 

values of HCR, the objective function values from HCR are better than those from 

MTA’s operation except in 4 cases 8, 16, 23, and 24.       
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A sensitivity analysis with respect to the parameters that are used in this 

model was performed. These parameters included the fixed costs, the routing costs, 

the waiting cost, the delay cost, and the excess ride cost. The results indicated that the 

proposed model performed as expected with respect to changes in these parameters. 
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Chapter 6: Heuristic Algorithm for the Real-Time DARP 

There are two modes of Dial-a-Ride service. In the static mode, all requests 

are known in advance by reservations on one day before the service day. Also there 

are cancellations in advance. In the dynamic mode, part of the requests is dynamically 

generated. And these dynamic demands need to be inserted into the routes that are 

made in static problem and scheduled in real time. Also, other dynamic events such as 

customer’s no show, cancellation in a day, and accidents in a network which may 

happen should be considered together for scheduling and routing both static and 

dynamic demands. At each time interval, routes and demands are updated using real 

time travel times. It is necessary to develop a heuristic method for responding to 

dynamic events in a short time and updating scheduling and routing of real-time 

DARP.  

A vehicle is not to be diverted from its immediate destination for a new 

customer. However, diversion is allowed after the first stop, because the location of 

that stop is known to the dispatcher.  

In this chapter, online heuristic algorithm for the real-time DARP is presented 

and its performance is tested on several cases and the results of cases are compared 

with each other. For this work, a simulation framework is made based on MTA’s 

operation and scheduling and routing plan from static problem. 

6.1 Dynamic Events 

In reality, there may be many dynamic events in Dial-a-ride service. Dynamic 

events that are considered in this research are similar to those by Xiang et al. (2008). 
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Breakdown event is not considered in this research since breakdown is very rare in 

real situations. And, accident event is newly introduced. The dynamic events which 

are considered in this research are summarized according to their priority as follows: 

(1) No-shows: some customers may not show up. 

(2) Accidents: there may be accidents in a network. 

(3) Cancellations: some customers may cancel their requests on the service   

      day. 

(4) New requests: new requests may arrive 

(5) Travel times: Link speed varies according to the time of a day. 

In principle, the earlier the customers make the trip requests, the more 

flexibility a service planner can have to schedule the requests and the more efficiency 

a service can have. Therefore, it is assumed that a new request should arrive at the 

dispatch center one hour before their desired service time. Also, as mentioned earlier, 

a minimum of two hours advanced notice is required for cancellation.  

Any event may arrive within each time interval in a queue. In the event queue, 

events are sorted in ascending order with respect to their priorities. In the same kind 

of events, first-come first-serve is applied. 

6.2 Online Heuristic Algorithm 

As an on-line heuristic algorithm, insertion-based heuristic is applied to real-

time DARP since an insertion-based heuristic is computationally efficient and it could 

be easily adapted for real-time DARP. The on-line insertion-based heuristic can be 

described as follows: 

Step 0: time t=0 and time interval i =0. Set time interval length. Input  
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scheduling and routing plan from static problem based on reserved 

demands and expected link travel times.  

Step 1: If the current time is time interval, go to step 2. Otherwise, t= t+1. 

Step 2: Update the status of routes and customer.  

Step 3: If there is any dynamic events, go to Step 4. Otherwise, go to Step 5. 

Step 4: Update scheduling and routing considering dynamic events. Also,  

routes are improved through the operator of combining vehicles. 

Step 5: Update real-time travel times. i =i+1. 

Step 6: If the current time is the end of service time, stop. Otherwise, t= t+1  

and go to Step 1. 

Figure 6.1 show the framework of on-line heuristic developed for real-time 

DARP. 
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Figure 6.1 The framework of on-line heuristic for real-time DARP 
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6.2.1 Updating route and customer status 

It is necessary to check the status of routes and customer at each time interval 

before considering dynamic events. The status of routes and customers are divided by 

5 kinds of status, respectively as follows: 

(1) Route(vehicle) status 

1: At depot (not used still) 

2: IDLE (waiting customer at stop) 

3: At stop (on service) 

4: On the way to next stop 

5: Finished 

(2) Customer status 

1: Before service time 

2: On board 

3: Serviced 

4: No show 

5: Cancellation 

 

6.2.2 No-show events 

In practice, some customers may not show up without any notice and 

cancellation when a vehicle arrived at those customers’ location. It is necessary to 

consider no show event and update the route that already include those no show 

customers. The steps of no-show event are described as follows:  
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1. Check whether there is any customer no show or not within last time 

interval. 

2. If there is any no show, check the routing sequence of drop off demand of 

the absent customer in the route. If the next sequence demand of the 

absent customer’s pickup demand in the route is not drop off demand of 

the absent customer, move drop off demand to the next sequence of the 

absent customer’s pickup demand in the route. Also change node id of 

drop off demand to that of pickup demand.  

3. Update service time, departure time, and load at pickup demand and drop 

off demand of the absent customer (service time =0, load =0, arrival time 

= departure time, waiting time at pickup demand (5minutes) for updating 

routes and scheduling) 

4. Update arrival times of remnant demands in the route considering real 

time link speed. If the waiting time at the next demand of the absent 

customer in the route is greater than acceptable waiting and delay, it is 

allowed. 

5. If there are some demands in the route that violate constraints, after 

removing them from the route, try to insert them to other routes that can 

accept them. Finally insert them to a route that has minimum additional 

cost. If there is no route that can accept a violating demand, then a new 

route is added.  
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6.2.3 Accident events 

Accidents may often happen in a network such as an urban area. Accidents 

affect link speeds and travel times of those links where accidents happen and arrival 

times of demands in the route that travels using those links. Also, drivers’ distraction 

may affect link speeds and travel times in the network.  However, drivers’ distraction 

is not considered in this research. Accident events are considered as follows:   

1.   Check whether there is any accident or not within last time interval. 

2.  If there is any accident, find the link on which it happened and the severity 

of the accident. 

3.  For those links on which accident happened, change link speed value as 0 

during accident clear time. Therefore, travel time of any link that have 

accident is a large number. Accident clearing times vary according to the 

severity of accident as shown below: 

Light: not using the link for next 10minutes,  

Medium: not using the link for next 20 minutes, 

Heavy: not using the link for next 30 minutes. 

4.  Consider the new link speeds for finding shortest travel time and updating 

arrival times of demands at the time interval 

5.  After the accident is cleared, reset the link speed to the real travel speed at 

the new time interval.  
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6.2.4 Cancellation events 

In practice, some customers may cancel their requests. This cancellation 

affects scheduling and routing of the route that includes customers who cancel. 

Cancellation events are considered as follows: 

1.  Check whether there is any cancellations or not within the last time 

interval 

2. If there is any cancellation, remove customer's pickup and dropoff demand 

in the route. 

3.   Check whether the route originally scheduled for this customer is running 

or not at current time. If yes, go to 4, otherwise go to 5. 

4.   Update arrival times of demands for that route considering real time link 

speed. And for violating demands, remove them from originally scheduled 

route, try to insert them into a route that can accept them, and finally insert 

them into the route which has a minimum additional cost. If there is no 

route that can accept a violating demand, add a new route.  

5.   Calculate marginal time of the route and change the start time of route. 

And update arrival times of demands for the route considering real time 

link speed. For violating demands, remove them from originally scheduled 

route, try to insert them into a route that can accept them, and finally insert 

them into the route which has a minimum additional cost.  If there is no 

route that can accept a violating demand, add a new route.  
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6.2.5 New request events 

New requests may arrive between 6am and 6pm. These new requests cannot 

be rejected. New request events are considered as follows: 

1.   Check whether there is any new request or not within last time interval. 

2.  If there is any new request, try to insert the new request into the current 

routes (starting time of the route ≤ request time≤ ending time of the route) 

2.1.  Find the route that has a minimum additional cost, and insert the new 

request into that route. 

2.2.  Update arrival times considering real-time link speed and loads for 

each demand in this route.   

3.   If there is no route that can accept a new request, add a new route.  

6.2.6. Improving by combining vehicles 

After the routes have been updated considering dynamic events, the solution is 

improved by the operator of combining vehicles. There may be some routes which 

have a few demands.  These routes can be combined into other routes that can accept 

customers from them route without violating constraints.  Combining vehicles is 

necessary to reduce the objective function values since the fixed cost accounts for a 

significant part of the total cost. It is allowed for a vehicle to be combined into 

another vehicle that starts from a different depot. 

The procedure of combining vehicles is described as follows:  

1.  Choose a route that has fewer demands than 𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 guaranteeing 

that each route has at least some demands.  



 
 

142 
 

2.  Find other routes into which the chosen route can be combined and 

calculate saving cost for each case. 

3.  Combine the chosen route into the route which has maximum saving cost.  

 

6.2.7 Updating arrival times 

At this step, real-time travel times are considered for updating arrival times of 

demands in routes. After improving by combining vehicles, arrival times of demands 

in routes that is running at current time are updated considering real time link speeds. 

The procedure of updating arrival times is as follows.  

1.   Check real time link speeds. 

2.  For those routes that are running at current time, update arrival times of 

demands in routes. 

3.  For violating demands, remove them from originally scheduled routes, and 

try to insert them into a route that can accept them, and finally insert them 

into the route which has a minimum additional cost. 

4.   If there is no route that can accept a violating demand, add a new route.  
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6.3 Simulation Settings 

6.3.1 Case study I 

In real time situation, link flow speeds on the network within each time 

interval is available through various surveillance mechanisms in real time.  If there is 

no real-time data available, average travel speeds based on historical data can be 

used.  Given link flow speeds we can calculate the expected travel time between 

origin and destination at starting time using a time dependent shortest path algorithm. 

After some time passed, the network conditions may be different from the expected 

condition at time T. Therefore, there are gaps between the expected and actual link 

speed. The new condition of link speed is generated as indicated in Table 6.1. The 

heuristic is tested in simulation scenarios according to the fluctuation of link speeds.  

 

Table 6.1 Gaps between the expected and the actual link speed 

 
Changing Gap at each link 

0% 25% 50% 

Cases Case 1 Case 2 Case 3 

 

Also we need to test the results according to the variation of time interval 

length. At each time interval, after all dynamic events that have arrived within last 

time interval are processed, a dispatcher communicates with drivers and guides 

routes. Therefore, the time interval must be long enough length for this entire 

processing time. For time interval length, 10 minutes and 20 minutes are tested for 

simulation as shown in Table 6.2. 
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Table 6.2 Time interval length 

 1 2 

Time interval length 10 minutes 20 minutes 

 

6.3.2 Case study II 

Usually a dynamic algorithm should be evaluated through the competitive 

analysis. As competitive analyses, the cost of dynamic case is compared with the cost 

of static case, where all requests are known in advance. The scenario for competitive 

analysis is shown in Table 6.3. 

 

Table 6.3 Competitive analysis scenarios   

 
Considering new demands 

Dynamic case Static case 

Time interval 10minutes Scenario 1 Scenario 2 

 

In this analysis, other dynamic events such as no-show, cancellation, and 

accidents in the dynamic case are not considered for comparing with static case. 

To test the difference between dynamic case and static case according to the 

variation of percentage of new requests, four cases are used as shown in Table 6.4. 
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Table 6.4 The variations of new requests 

Cases Variations of new requests 

Case 1 Total new requests = total reserved requests * 0.05 (5%) 

Case 2 Total new requests = total reserved requests * 0.1 (10%) 

Case 3 Total new requests = total reserved requests * 0.2 (20%) 

Case 4 Total new requests = total reserved requests * 0.3 (30%) 

 

6.3.3 Case study III 

Similar to case study II, there may be extreme cases as shown in Table 6.5. 

Table 6.5 The extreme cases for new requests 

Cases Variations of new requests 

Case 1 Total new requests = total reserved requests * 0.0 (0%) 

Case 2 Total new requests = total reserved requests * 1.0 (100%) 

 

For the case 1, the dynamic case is the same as static case because there is no 

new request and other dynamic events such as no-shows, accidents, cancellations, and 

travel time fluctuations are not considered. Therefore, only case 2 is tested for 

comparing dynamic case with static case. In case 2, there are a total of 1,000 demands 

as reserved requests for dynamic case. These demands are randomly chosen from 

4,726 demands. 

6.3.4 Case study IV 

It is assumed that new requests arrive between 6 AM to 6 PM. Also, it is 

possible for all new requests to arrive in first and second time intervals. Therefore, 2 
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scenarios are introduced as shown in Table 6.6. These two scenarios are tested for 

comparison of objective function values. 

Table 6.6 The scenarios for arrivals of new requests 

Scenarios Arrivals of new requests 

Scenario 1 New requests arrive between 6 am to 6 pm 

Scenario 2 New requests arrive in first and second time intervals 

 

Also, 3 cases are used for each scenario as shown in Table 6.7. 

Table 6.7 The variations of new requests 

Cases Variations of new requests 

Case 1 Total new requests = total reserved requests * 0.01 (1%) 

Case 2 Total new requests = total reserved requests * 0.03 (3%) 

Case 3 Total new requests = total reserved requests * 0.05 (5%) 

 

6.3.5 Generating dynamic events 

In this section, we explain how we generate random samples to emulate 

dynamic events such as no-show, accidents, cancellations, and new requests in order 

to develop a simulation model. 

 

(1) Generating no-shows 

Among total customers, 5% of total customers are no-shows. The parameters 

for generating no-shows are as follows: 

No show rate = 0.05 (5% of total customer) 
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 No show customer ID = uniform [1, total customer] 

 

(2) Generating Accidents 

Accident may happen at any link and accident locations are uniformly 

distributed over the network area. The probability of an accident happening time is 

based on the statistic about crashes by time of day in 2006 Maryland Traffic Safety 

Facts. The parameters for generating accidents are as follows: 

 Total accident = 20 

 Link ID of accident = uniform [1, total links] 

 Probability of an accident happening between 6am and 9am: 0.22 

 Probability of an accident happening between 9am and 12pm: 0.2 

 Probability of an accident happening between 12pm and 3pm: 0.25 

 Probability of an accident happening between 3pm and 6pm: 0.33 

 Probability of a light accident: 0.5,  

 Probability of a medium accident: 0.3 

 Probability of a heavy accident: 0.2  

 

(3) Generating cancellations 

Among total customers, 5% of total customers have cancellations of requests. 

The received times of cancellations are uniformly distributed between 0 and 

scheduled pickup time of customer – 60minute. The parameters for generating 

cancellations are as follows: 

 Cancellation rate: 0.05 (5% of total customers) 
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 Customer Id of a cancellation = uniform [1, total customers] 

 Received time of a cancellation = uniform [0, scheduled time-60min] 

 

(4) Generating new requests 

There are new requests equivalent to 5% of reserved requests and new 

requests can arrive between 6am and 6pm. It is assumed that 30% of new requests 

occur between 6am and 9am, 20% between 9am and 12pm, 20% between 12pm and 

3pm, and 30% between 3pm and 6pm, respectively. For the type of new requests, 

50% of new request are ambulatory, 30% wheelchair, and 20% transferable 

wheelchair, respectively. The pickup and drop off locations are uniformly distributed 

in the network area. The parameters for generating cancellations are as follows: 

New request rate: 0.05 (5% of reserved requests) 

Probability of a request between 6am and 9am: 0.3 

Probability of a request between 9am and 12am: 0.2 

Probability of a request between 12am and 3pm: 0.2 

Probability of a request between 3pm and 6pm: 0.3 

Probability of type 1 request (ambulatory): 0.5 

Probability of type 2 request (wheelchair): 0.3 

Probability of type 3 request (transferable wheelchair): 0.2 

Node of a pickup demand = uniform [1, total nodes] 

Node of a drop off demand = uniform [1, total nodes] 

The desired pickup time = uniform [received time+30min, 7pm] 

The desired drop off time = uniform [received time+60min, 8pm] 
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6.3.6 Parameters 

The width of time window is 30 minutes, Maximum route duration is 540 

minutes, Maximum acceptable waiting and delay is 30 minutes, the fixed cost for 

used vehicle is $200/vehicle, the travel cost is $1/minute, the penalty cost for waiting 

time is $0.5/minute, the penalty cost for delay time is $0.5/minute, and the penalty 

cost for customers’ excess ride time is $0.5/minute. The service times at demand node 

are 2 minutes for a regular passenger, 4 minutes for a passenger using transferable 

wheelchair, and 6 minutes for a passenger using wheelchair, respectively. 

The heuristic algorithm was coded in C++. All computations were carried out 

on a machine with 2.93GHZ Intel Core i7 CPU and 8GB memory in Windows 7 

environment.  

 

6.4 Results of Simulation 

6.4.1 Results of case study I 

Figure 6.2 shows the total costs of three cases for time interval 10 and 20 

minutes. Total cost increases as gap between the expected and actual link speed 

increases and the total costs for time interval 20minutes are larger than those for time 

interval 10 minutes. The differences of total cost for 10 minutes time interval and 20 

minutes time interval increases as gap between the expected and actual link speed 

increases. The differences of total costs according to the time interval length are not 

much when the gaps between the expected and actual link speed are between 0% and 

25% while the differences of total costs according to the time interval length become 
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larger as the gaps between the expected and actual link speed exceed 25%. Figure 6.3 

shows that there is no difference of the number of used vehicles between case 1 and 

case 2 for time interval 10minutes and 20 minutes.  

 

Figure 6.2 The total costs of three cases for time interval 10 and 20 minutes 

 

Figure 6.3 Total used routes of three cases for time interval 10 and 20 minutes 

As time interval length is longer, there may be more dynamic events and 

uncertainty of link speeds, and more vehicles and routing times should be needed to 
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satisfy constraints. We can see that the traffic conditions are very unstable and 

fluctuate seriously, shorter time intervals can save more cost. 

Table 6.8 shows average processing time at time interval according to time 

interval length and gaps between the expected and the actual link speed. We can see 

that average processing time at time interval increases with time interval length and 

fluctuation of traffic condition. This occurs because the longer time interval, the more 

new insertion or removing-insertion operation may be involved in the computation. 

 

Table 6.8 Average processing time at time interval 

Gaps between  

the expected and  

the actual link speed 

Time Interval 

Length 

Average processing 

 time at time interval 

Δ (%) 

0% 
10 minutes 103.4 sec - 

20 minutes 115.6 sec 11.8% 

25% 
10 minutes 130.4 sec - 

20 minutes 156.3 sec 19.9% 

50% 
10 minutes 140.0 sec - 

20 minutes 163.6 sec 16.9% 

 

6.4.2 Results of case study II 

For competitive analysis, the results of dynamic case are compared with the 

results of static case, where all requests are known in advance. Competitive ratio 

(CR) is calculated as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

=
𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 100% 
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 Five replications are generated for each case to deal with the randomness of 

new requests, and the statistics reported are the average over five replications. Figure 

6.4 shows the change of competitive ratio according to the variation of new requests. 

The percentages of new requests are 5% for case 1, 10% for case 2, 20% for case 3, 

and 30% for case 4, respectively. As percentage of new requests increases, the 

competitive ratio decreases. For example, competitive ratio is 1.6% for case 1, 1.3% 

for case 2, 0.4% for case 3, and -0.3% for case 4, respectively. Smaller CRs are 

obtained with more number of new requests. This result comes from that more new 

requests provide more chances to adjust scheduling and routing. Also this result gives 

the confidence that the on-line heuristic is very flexible to cope with new request. 

 

 

Figure 6.4 The competitive ratio according to the variation of new requests. 

 

 Figure 6.5 shows the changes of total cost according to the variation of new 

requests. For both static case and dynamic case, total cost increases as percentage of 
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new requests increases. As percentages of new requests increase, the differences of 

total costs between the static case and the dynamic case decrease. For example, for 

case1, the difference of total cost is 1615.2, for case 2, 1478.6, for case 3, 492.6 and 

for case 4, -393. This result shows that the on-line heuristic well works with 

uncertainty of new requests as it is expected.  

 

 

Figure 6.5 The total costs according to the variation of new requests 

 

Figure 6.6 shows the changes of total used routes according to the variation of 

new requests. For both static case and dynamic case, total used vehicles increases as 

percentage of new requests increases. We can see that for dynamic case, the slope of 

change of total used routes is less steep than the slope of change of total used routes 

for static case. This result shows that the on-line heuristic well works with uncertainty 

of new requests as it is expected.  
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Figure 6.6 Total used routes according to the variation of new requests 

 

6.4.3 Results of case study III 

For the extreme case, competitive analysis of dynamic case to static case is 

performed. In this case, total new requests are equivalent to 100% of total reserved 

requests.  

Five replications are generated for the extreme case to deal with the 

randomness of new requests. Figure 6.7 shows the competitive ratio for each 

replication. Objective function values of dynamic case are better than those of static 

case except for replication 4. Average of competitive ratio is -1.7%. Also this result 

gives the confidence that the on-line heuristic is very flexible to cope with new 

request. 
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Figure 6.7 The competitive ratio for the extreme case 

 

6.4.4 Results of case study IV 

Two scenarios are tested for comparison of objective function values. In 

scenario 1, it is assumed that new requests arrive between 6 AM to 6 PM. In scenario 

2, all new requests arrive in first and second time intervals.  

Figure 6.8 shows the change of objective function values to the variation of 

new requests. The percentages of new requests are 1% for case 1, 3% for case 2, and 

5% for case 3, respectively. As percentage of new requests increases, the difference 

of total costs between the scenario 1 and scenario 2 slightly increases. For example, 

the difference of total cost is 267.5 for case 1, -447 for case 2, and -657 for case 3, 

respectively. Smaller CRs are obtained with more number of new requests. Also, we 

can see that objective function values of scenario 2 are better than those of scenario 1 

as percentage of new requests increases.  
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Figure 6.8 The total costs for two scenarios 

 

6.5 Summary 

In this chapter, online heuristic algorithm for the real-time DARP was 

presented and its performance was tested on several cases and the results of cases 

were compared with each other. For this work, simulation framework was made 

based on MTA’s operation and scheduling and routing plan from static problem.  

As an on-line heuristic algorithm, insertion-based heuristic was applied to 

real-time DARP since an insertion-based heuristic is computationally efficient and it 

could be easily adapted for real-time DARP. Also, for dynamic events, customer no-

shows, accidents, cancellation, and new requests are considered in real-time DARP. 

The simulation results were compared with each other according to the gaps 

between the expected and actual link speed and time interval length. In all cases, total 

cost increases as gap between the expected and actual link speed increases and the 

total costs for time interval 20minutes are larger than those for time interval 10 
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minutes. The differences of total costs according to the time interval length are not 

much when the gaps between the expected and actual link speed are between 0% and 

25%. Also, the average processing time at time interval increases with time interval 

length. 

For competitive analysis, the results of dynamic case are compared with the 

results of static case, where all requests are known in advance. As percentage of new 

requests increases, the competitive ratio decreases. For example, competitive ratio is 

1.6% for case 1, 1.3% for case 2, 0.4% for case 3, and -0.3% for case 4, respectively. 

For the extreme case, competitive analysis of dynamic case to static case is 

performed. In this case, total new requests are equivalent to 100% of total reserved 

requests. Objective function values of dynamic case are better than those of static 

case except for replication 4. 

Two scenarios are tested for comparison of objective function values. In 

scenario 1, it is assumed that new requests arrive between 6AM to 6 PM. In scenario 

2, all new requests arrive in first and second time intervals. Objective function values 

of scenario 2 are better than those of scenario 1 as percentage of new requests 

increases.  

We conclude that the more unpredictable the demands are, the more cost can 

be saved by heuristic. Also, when the traffic conditions are very unstable and 

fluctuate seriously, shorter time interval can save more cost. 
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Chapter 7:  Conclusions and Future Research 

 

7.1 Summary and Conclusions 

This research studies a static and real-time dial-a-ride problem with time 

varying travel times, soft time windows, and multiple depots. There is a potential for 

our model for application in real world as follows: Our model has a comprehensive 

objective function combining service provider’s cost and customers’ cost, and 

complex constraints in order to explain and reflect real world operation more 

reasonably than other models. Also, the mathematical formulation of this model is 

proposed. It is assumed that dial-a-ride service is provided from multiple depots in 

wide geographical areas like metropolitan cities. We can get a larger feasible solution 

set by loosening time constraints using soft time windows. In static DARP, the 

routing and scheduling are done considering time varying travel times in each link to 

reflect real situation and increase efficiency of service. Of course, travel times in each 

link are updated at every time interval in dynamic DARP. Our model is implemented 

to large real world problem and the results of model are compared with those of 

operation in real world. 

In this research, a static DARP model considering time varying travel times, 

soft time windows, and multiple depots is formulated as a mixed integer 

programming. The objective of the formulation is to minimize the total cost that 

consists of the service provider’s cost and the customers’ inconvenience cost.  The 

service provider’s cost includes fixed costs of used vehicles, the routing costs, and 

vehicle waiting cost, while the customers’ inconvenience cost includes customers’ 



 
 

159 
 

excess ride time cost and delayed service cost.  In order to validate the model, several 

random small network problems are solved using commercial optimization package, 

CPLEX. The three heuristic algorithms based on sequential insertion, parallel 

insertion, and clustering first-routing second are proposed to solve static DARP 

within a reasonable time for implementation in a real-world situation.  Also, the 

results of the three heuristic methods are compared with the results obtained from the 

exact solution by CPLEX to validate and evaluate the three heuristic algorithms. 

Computational results show that the three heuristic algorithms are superior compared 

to the exact algorithm in terms of the calculation time as the problem size (in terms of 

the number of demands) increases. As the number of customers exceeds 3 with 

service period of 10 time intervals, the calculation time of exact method increases 

exponentially and becomes unreasonable. The largest DARP problem size that could 

be solved in a reasonable time by exact method was 5 customers with service period 

of 10 time intervals. The gaps of the objective function values between the exact 

method and the three heuristic algorithms are less than 0.006%. For most of the cases, 

the three heuristic algorithms solved the problems within less than 0.2 second while 

the exact method could not solve the problem which has 5 customers and 15 time 

intervals. Among the three heuristic algorithms, the heuristic algorithm based on 

parallel insertion has a little better performance based on calculation times and 

objective function values.  

Next, the three heuristic algorithms are tested on lager problems and 

compared with each other. Among the three heuristic algorithms, the heuristic 

algorithm based on sequential insertion is more efficient than other heuristic 
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algorithms that are based on parallel insertion and clustering first-routing second. HSI 

performs better than HCR and HPI based on calculation times for most cases. For 

example, in case of 100 customers, HSI solved the problem 42.4% faster than HCR 

for MaxWD of 30 minutes, 27.5% for MaxWD of 20 minutes, and 34.8% for 

MaxWD of 10 minutes, respectively. Even in worst cases, the difference between the 

calculation times of HSI and HCR is less than -2.0%. Also considering the objective 

function values, HSI is better than HPI and HCR for most cases.  For example, in 

case of 100 customers, the solution of HSI is 26.7% better than that of HCR for 

MaxWD of 30 minutes, 9.8% for MaxWD of 20 minutes, and 9.0% for MaxWD of 

10 minutes, respectively. Even in worst cases, the difference between the objective 

function values of HSI and HCR is less than -5%. 

For the case study, Maryland Transit Administration (MTA)’s real operation 

of Dial-a-ride service is introduced and compared with the results of developed 

heuristic. The objective function values from HCR are better than those from MTA’s 

operation except in 4 cases 8, 16, 23, and 24. As SpeedFactor is 1.0, the results of 

heuristic are better than MTA's operating according to the variation of cost unit (0, 

0.5, 3, and 5). But, as SpeedFactor is 0.75, the results of heuristic are better than 

MTA's operation until cost units increase by 3 and MTA's operation is better than the 

results of heuristic as cost units exceed 3.  

A sensitivity analysis for the parameters that are used in this model was 

performed with respect to the fixed costs, the routing costs, the waiting cost, the delay 

cost, and the excess ride cost. The results indicated that the proposed model 

performed as expected with respect to changes in these parameters. 
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Also, the algorithm for real-time DARP considering dynamic events such as 

customer no shows, accidents, cancellations, and new requests is developed based on 

the static DARP. The algorithm is tested in simulation framework. In the simulation 

test, we compared the results of cases according to degree of gap between expected 

link speeds and real link speeds. For competitive analysis, the results of dynamic case 

are compared with the results of static case, where all requests are known in advance. 

As percentage of new requests increases, the competitive ratio decreases. The 

simulation test shows that the on-line heuristic method could save cost as the 

uncertainty in new requests is high. 

The overall conclusions of this research can be outlined as followed. 

1.  The mathematical model for static DARP with multi depot, heterogeneous 

vehicles, soft time window considering time varying travel times was proposed  

2.  A heuristic methodology based on sequential insertion, parallel insertion 

and cluster first-routing second is proposed to solve this problem within a reasonable 

time for implementation in a real-world situation.   

3.  The heuristic algorithm based on clustering first-routing second was 

applied to real world DARP for case study. The results of heuristic is better than 

MTA’s operating when the waiting cost, delay cost, and excess ride cost unit  are 

between 0 to 3.   

4.  The on-line insertion-based heuristic was developed to solve real-time 

DARP considering dynamic events such as no shows, accidents, cancellations, and 

new requests. 
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5.  Real-time DARP is tested on simulation framework based on real 

problem. The simulation test shows that the more unpredictable the demands are, the 

more cost can be saved by heuristic. Also, when the traffic conditions are very 

unstable and fluctuate seriously, shorter time interval can save more cost. 

 

7.2 Future Research 

Although many achievements have been made in this research, there are still 

many problems that are unsolved and are left for future research. Some of these are as 

follows: 

1. In this model, there is maximum route duration constraint. Still, driver 

constraints such as break time, maximum working time, and maximum driving time 

are not considered. Since the operation of a system is supported by both fleet and 

crew, it is important to consider the corresponding crew scheduling problem. This 

model can be extended for comprehensive routing and scheduling system including 

crew scheduling. 

2.   For small problems, we can obtain optimal solutions from CPLEX, though 

the computational time might be long. For large size problems, CPLEX cannot 

provide optimal solutions.  Therefore, we need to develop lower bound method for 

the DARP.  The simple way of the Lower Bound solution procedure is to minimize 

the number of integer variables by LP relaxation. In this research, the lower bound 

was calculated from the reformulation of the problem that reduced the integer 

variables. We solved 5 customers and 15 time intervals by the lower bound and 

showed that heuristic algorithm performs well compared to the lower bounds for this 
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problem size. However, problems with 5 customers and 15 time intervals are still not 

large enough compared to the real world problems.  Therefore, a more efficient 

method to produce lower bound for larger size problem is required. 

3.  In this research, at the construction phase, violation of maximum 

acceptable waiting and delay time and maximum excess ride time are allowed to get 

the initial solution within a short computational time. And, the quality of the initial 

solution may be low and many computational times are needed for improving the 

initial solution at the improvement phase. Therefore, it is necessary to develop a 

method to get a good initial solution within a short computational time.  

4. In this research, the proposed heuristic algorithm was applied to real-

world large DARP. And, the whole problem was decomposed into 5 time slots 

problem to solve it in reasonable time. Still there is a possibility to develop an 

efficient decomposition method for large problems.   

5. In this research, it is assumed that vehicles have the same fixed unit costs, 

regardless of the vehicle’s type. But, we have to consider that in reality fixed unit 

costs should be different according to the vehicle’s type.  

6.  The proposed heuristic algorithm for DARP in this research can be 

implemented to pickup and delivery problems. 

7. This model can be implemented with GIS technology.  Recently, GIS 

technologies are widely used in logistics and transportation since ArcGIS tool can 

provide a user-friendly graphic interface and decision support system.  We can 

develop a routing and scheduling system based on ArcGIS using heuristic algorithm 

developed in this research.   
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