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Abstract

Partial Likelihood analysis of a general regression model for the analysis of non-stationary
categorical time series is presented, taking into account stochastic time dependent covariates.
The model links the probabilities of each category to a covariate process through a vector of
time invariant parameters. Under mild regularity conditions, we establish good asymptotic
properties of the estimator by appealing to martingale theory. Certain diagnostic tools are
presented for checking the adequacy of the fit.
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1 Introduction

Categorical time series arise in numerous applications many of which are reported in the
recent books by [8], [10], and [15][Ch. 9]. Examples of categorical time series include signals
quantized at several levels, clipped binary time series, and any multi-response longitudinal
data observed on an ordinal or nominal scale. And just as with “ordinary” time series the
problem of forecasting or prediction in categorical series is of importance, except that usually
it concerns the estimation of a future transition probability given past data and auxiliary
information. In this regard, the prediction problem is essentially synonymous with the problem
of classification of a future value in one of several categories given the past. In some cases,
the complete dependence structure is known thus making statistical inference relatively easy.
For example, when the series can be regarded as a homogeneous Markov chain, the inference
problem can be attacked using the methods of [4], but when the complete dependence structure
is unknown, the problem becomes quite challenging.

Recent advances in categorical time series owe greatly to the introduction of generalized
linear models and link functions as described in [21]. Accordingly, the one step transition
probability is conveniently parametrized via the link, and this goes along well with conditional
inference, allowing for some form of non-stationarity. Conditional inference where a Markov
assumption is made can be found in [17],[16], [29] [22], [5], [9], [13], [20], [19] to name only a
few.

This paper is a generalization of [28] who only dealt with logistic regression for binary time
series. We perform conditional inference using partial likelihood, a concept introduced by [7],
and extended and ramified by [31], [27]. Partial likelihood simplifies conditional inference—for
example, it obviates the Markov assumption—and is particularly useful for time series where
the dependence is unknown, let alone the knowledge of joint distributions. Furthermore, as
noted by [23], partial likelihood inference allows missing values. Indeed, all that is needed is
a nested sequence of histories.

Following [31] and [27], we first give the definition of partial likelihood, and then setup the
model. We next discuss the large sample theory. This is followed by some diagnostic tools.

2 The Mathematical Setup

2.1 Partial Likelihood

Assume that an individual observes a stochastic process, say (z:,vy:),t = 1,..., N. In principle,
we can write down the joint distribution of all the observations up to time N, by employing




the law of total probability; that is ([31})

N N
f($1,y1,«7«'2,y2, . '7$N’yN) = [H f(yt I dt)][]_—_[ f(xt [ Ct)] (1)
t=1 t=1
where dt = (ylawb s 7yt—17xt—1) and Ct = (yb:cl) e ‘ayt—laxt—l,yt)-

[7] defined the second product on the right hand side of (1) as the Partial Likelihood. It
is helpful to note that the o-field generated by ¢;-; is contained in the one generated by c;.
This is a key feature which motivates our definition(see [27], and [28]).

Definition 2.1 Let F;, t = 0,1,... be an increasing sequence of o-fields, Fo C F, C Fs.. .,
and let X1, Xs,... be a sequence of random variables on some common probability space such
that X, is F; measurable. Denote the density of X, given F,_1 by fi(zs; ), where B € RP is a
parameter. The partial likelihood (PL) function relative to 8, F;, and the data X1, X,, ..., XN,
is given by the product

N
PL(B;Xla-'wXN) = ]_:_[ft(ivt;ﬁ) (2)

This definition generalizes both likelihood and conditional likelihood. Unlike (full) likeli-
hood, partial likelihood does not require complete knowledge of the joint distribution of the
covariates. Unlike conditional likelihood, complete covariate information need not be known
throughout the period of observation. Partial likelihood takes into account only what is known
to the observer up to the time of actual observation.

The vector B that maximizes (2) is called the maximum partial likelihood estimator
(MPLE). Its asymptotic distribution has been studied by several authors (see [31] ; [28]).
In the context of survival analysis and counting processes see [2], [3], for example. The key
point is that the gradient of the logarithm of (2) is a martingale with respect to the nested
sequence of histories F;.

2.2 A General Model

We introduce now some notation and terminology which will be found useful in the sequel. Sup-
pose that we actually observe a non-stationary categorical time series, say {y:, t =0,1,...,N}.
Let m denote the number of possible categories and assume that the ¢'th observation is given
by a vector ys = (Yi1,...,Ys) of length ¢ = m — 1, where

yei = 1 if the 5 th category is observed at time ¢
& 0 otherwise



Let p: = (pu, ... py)' denote the corresponding vector of conditional probabilities given F;_;.
In other words p;; = P(ys; = 1 || Fi—1) for j = 1,...,q. The o-algebra F;_, represents the
whole available information to the observer up to and including time ¢. For the m'th category,
put

q
Yom =1 =Y Yy (3)

j=1

and .
Ptm = 1 — Zptj (4)

7=1

Assume that Z;_, is a p X ¢ matrix that represents a covariate process. In other words each
response yy; corresponds to a vector of random time dependent covariates, say z(;—1);, which

is the j £ column of Z;_;. The covariate matrix usually consists of any lagged values of the
response process and (or) any exogenous variables that evolve in time simultaneously with the
response variable. Moreover lagged values of the exogenous variables are allowed as well as
any interactions between the response and the covariates.

The aim of this paper is to develop an asymptotic theory for a flexible and parsimonious
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class of models that link the probability of the j & category with the covariate process in
a certain way. This leads to an attractive parametrization, which extends ideas from the
generalized linear models (GLIM) and the autoregressive moving average models (ARMA)
([6]).

Define ( see [9], [13] )

pe = h(Z;_,B) (5)

Here § denotes a p dimensional vector of time invariant unknown parameters which belongs to
an open set B C I??. The function A is called the link function. We assume that the link func-
tion maps a subset H C R bijectively onto {(wy,...,w,)": w; >0, 3=1,...,9, Ti_jw, <
1}. Note that the multinomial logits and the cumulative odds models fall in this category ([1]).

In our context, since each component of y; takes the values 0 or 1, we have the multinomial
probability

£ 81 i) = T () )

Consequently, the corresponding Partial Likelihood is:

PLB) = TIf(yiB1Fi-)

t=1



T I ps(8) 7)

t=17=1
It follows that the partial log-likelihood is given by

N m

Pin(B) = 32D yeslog pi(B) (8)

t=1j=1
The partial score is given by the vector

Opin(B)  Ipln(B)

Swll) = (=55~ 95,

) (9)
It follows that N
Z Z:1Di1(B)(y: — pe(8)) (10)

where D,_1(8) = [0d(Z;_,3)/071-1] with vy = Z,_,8. The function d is defined as the
composition of the functions ~ and [ with [ standing for the logits function. This function is

defined by
l(p:) = (log(par/pem), - - - s Log(pig/pim))

The conditional information matrix is given by

N
Gn(B) = D Cov[ZiyDey(B8)(y: — pe(B)) | Fr-i]

]=V1
= Z_:Zt~1Dt~1(ﬁ)2tD§_1(ﬁ)Z§_1 (11)

with X;(8) is the conditional covariance matrix of y; with generic element

(u) Pn(ﬁ)l’tj(ﬁ) if 4 74— J
(8) = { palB)(1 = pu(B)) ifi = j

for 7,7 =1...,q. The unconditional information matrix is:

Fn(B) = E[GN(0)] (12)
Finally, the second derivative of the partial log likelihood multiplied by —1, is
_0%pln(B) .
Hy(9) = 21 = Tn(B) - Ra(9) (13)
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where
N g

Ry(B) = Z Z Zt~1W(t—1)r(5)Z§-1(ytr — per(B))
t=1r=1
with W,_1).(8) = [0%d.(Z;_,8)/0v:-107,_,]. Notice, that the expectation and variance have
been taken above with respect to the true parameter. The maximum Partial Likelihood Esti-
mator is the consistent solution of the Sy () = 0. We point out that existence and uniqueness
of the estimator is not guaranteed for finite samples. However, we obtain concavity of the log-
likelihood for many important applications. In the setting of independent observation these
questions have been studied by several authors. Among them are [11], [30], [24], [26], [14].

3 Large Sample Theory

We prove now existence, consistency and asymptotic normality of the MPLE under regularity
conditions. We will consistently suppress any notation which depends on the true parameter.
Assumption (A)

A.1 The parameter 3, belongs to an open set B C RP.

A.2 The covariate matrix Z;_; almost surely lie in a nonrandom compact subset I' of RP*?
such that P[YN, Z,_1Z! | > 0] = 1. Furthermore we assume that Z!_,/ lies almost
surely in the domain H of h for all Z,_; € I" and 8 € B.

A.3 The probability measure P which governs {y;, Z;—1},t =1,..., N obeys (5) with 8 = f,.
A.4 The link function k is twice continuously differentiable, det[0h(y)/dv] # 0

A.5 There is a probability measure g on RP*? such that [pyx, ZZ'u(dZ) is positive definite,
such that under (5) with 3 = [, for Borel sets A C RP*? we have

1N
—> Iz, yea = u(A) ,as N — oo.
N t=1

Assumption A.1 and A.4 guarantee that the second derivative of the partial log-likelihood
is a continuous function of 5. The Condition det[0h(y)/07v] # 0, implies in particular that
D;_; is not singular, so from A.2 the conditional information matrix is positive definite with



probability 1. To see this note that for any vector A € R?

N
NGyA = N(O_ 21D D) Z;_ )X

t=1

N

Z rntinAmin(Dt—lztD;-—l)(AlEZt_lZ;—l/\/)
t=1

> 0

with Aynin denoting the minimum eigenvalue. The claim is true. Since the variance-covariance
matrix is positive definite and the matrix of derivatives, D;_;, is not singular we have that
the minimum eigenvalue is positive almost everywhere. It follows that the unconditional
information matrix is positive definite as well. The last part of assumption A.2 assures that
we have a well defined model. The compactness assumption will be useful in deriving bounds
for the asymptotics. Assumption A.5 simply states that if ¢ is any continuous and bounded
function on I' taking values on RP*? then we have that

N
Lt 1 [ yzyu(az)

Thus the conditional information matrix, Gy(8) has a non-random limit

ijvvw) - /R ZD(B)%(B)D'(8)Z'u(dZ) = G(6) (14)

where D(0) = [Oh(Z'B)/0(Z'F)] and X has generic element

o9(8) = —hi(Z'B)hi(Z'B) ifi#y
hi(Z'B)(1 — hi(Z'B)) ifi=3j

for 1,7 = 1...,q. Note that integration with respect to a matrix, means that we integrate
with respect to cach element of the matrix. From (A.4) G(f) is a positive definite matrix at
the true value and therfore its inverse exist. It is important to emphasize that our approach
is quite general and does not call for any Markov assumption (compare with [9]; [13]).

At this point , we want to mention that we will use the right Cholesky square root of a
positive definite matrix in the sequel. More precisely, if B is a positive definite matrix then
the right Cholesky square root, denoted by B%, is defined as the unique upper triangular
matrix with positive elements such that B = (Bz)/(Bz). We denote by Bz = (Bz). Our
proof of consistency and asymptotic normality is based on the classical approach of Cramer,



namely we first exhibit a solution of the score equations and then prove that is consistent and
asymptotically normally distributed.

At this end, we will need some helpful Lemmas. The following lemma shows that the
partial score process is a zero mean square integrable martingale which satisfies the conditions
for an application of a martingale central limit theorem.

Lemma 3.1 Consider the model (5) and assume that assumption (A) holds. Then the partial
score process {S¢, Fi} is a zero mean square integmble martingale such that :

as N — oo ,with N denoting a standard normal random vector.

Proof: The fact that the partial score process is zero mean square integrable martingale follows
from (10) and assumption A.2. To show it actually converges in distribution, we consider
¢n = NSy, with A € RP, having in mind the Cramer-Wald device. Then ¢y is a univariate
zero-mean martingale. Its conditional and unconditional covariance matrices are NGy and
NFnA respectively. Thus

XGyA _ NGMN 5 NGA _
NFyA ~ NEyA/N NG

upon invoking A.2 and A.5. Furthermore, by letting In¢(e) to be the indicator of the set
{INa,2 > (WVFyxA)ze} with a; = ps, — psi_y, we get

N
E[|Nas|? ] < Bl Na? B
)\'I‘N/\Z [|N INt()” Fio1] < (/\'F S %6; (| Na || Fizi]
< NM,;
T (WFpa))Ze

where M; is a bound. Such a bound exists from A.2. Therefore Lindeberg’s condition holds
since the right hand side of the above tends to zero. The conclusion of the Lemma follows, by
appealing to the Central Limit Theorem for martingales ([12, Corollary 3.1]). O

The next lemma, a consequence of the Lindeberg’s condition, parallels the well-known result
from linear models ([18])

Lemma 3.2 Under (A) we have that
/\min(FN) — 0

as N — oo, where Ay, is the minimum eigenvalue of the unconditional information matriz.
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Proof: Recall that if A and B are positive definite matrices,
[Amin(A) = Amin(A)] < ¢|A - B| (15)

where the positive constant depends only on the norm of the matrix. Then, by the proof of

Lemma 3.1, we get .
N

I)\min(w

It follows that Apin(Fn) = O(N) and the claim is true. O

We prove now a continuity condition. Namely, we would like to have the matrix of second

derivatives as close as possible to the information matrix. This is a technical lemma and the

proof is along the lines of [13].

) — Amin(G)| — O

Lemma 3.3 Under (A) the following continuity condition holds

_sup ||Fn? (Ha(8) — GN)FR? || 5 0
BEON(8)

with On(6) = {3 : ||F]%\,(,é — B)|| < 6}, holds for any § > 0.

Proof: Let A € RP, with A # 0 and assume without loss of generality that ||A|| = 1. We will
show the equivalent condition, for any ¢ > 0

sup NFy? (Hy(B) — Gn)ER A 5 0 (16)
5601\7(5)

using once more Cramer-Wold Device. By decomposing Hy(8) = Gn(3) — Ry (8) we need
really to show

gv = sup NFy (Gn(B) — GN)F A D0 (17)
BeOn(9)
and . o,
sup NFy Ry (B)Fa A 50 (18)
BeON()

Y
hold simultaneously. Define the vectors wy_yyy = NFpN*Zioy , for 1 <t < N, and wy =
Zf;l w(t_l)Nw(t_l)N. Then we have that

N
gN = _Sup szt—l)N(Lt—l(ﬂ) — Li1)wi-—1)n
ﬁEON(5) t=1



where L;_;(8) = D;_15:D)_, for t =1,..., N. It follows that

gNn < wN _ sup ||Lt—1(ﬂ~) - Lt—l“
BEON(8),t

Using A.2 , sup, ULt_l(B) — L;_,|| can be estimated from above by a continuous function of
B with a zero at § = 3. Notice that {On(6)} shrinks to 3. Hence

Csup ||Ly—y(B) — Leet|| = 0
,@EON((S),t

By applying Markov’s inequality we have that

b
Pllov| > < 2
< E[wy] sup ||Le-1(B) — Loy
Geon(8),t
Fn. 1SN ElZ: 7, ] Fn._:
_ viEN t=1 -1l XN
- A [ N] 2 ] N [N] 2/\
_sup  |[Le—1(8) — Li—tf| = 0
BEON ()t

since the other terms converge to a limit by the continuity of the square root and the assump-
tion A.5. By further decomposition we obtain

sup Zwt 1)N(W(t 1) ([5') - W(t—l)j)w(t—l)N(yt]’ ~ Pij) 50 (19)
,BEON((S)t 1
sup Zwt 1)NWt 1) (B) (Pty —pt](ﬁ)) =0 (20)
BeON(8) t=1

/

w(t_1)NW(t—l)jw(t—l)N(ytj - Ptj) 50 (21)

Mz i

t=1

for any j, 1 < 7 < g, jointly are sufficient for (18). The proofs of (19), (20), are the same as
that of (17). To prove (21), consider the increments of (21), that is

Ut-1)N = We_1yn W (t-1)jW (1N (Ytj — Pij)

Then we see, that
E[U(t—l)N H ]:t—1] =0

9



and

Varlug-yn || Fierl = wiemyn W e—1);0-1)n
Varlyy — py | Feea]wip iy nWis—1);@0 -1
< K(wi_ynwi-nn)?
where K is a bound on ||W_yy;||*Var(y, — pe || Fezi]. Actually, the above two relations

make clear that {u;_1)n, t =1,..., N} are the orthogonal increments of a square integrable
zero mean martingale. It follows that

N
E(}Y ug-yn) =0
t=1

and

N N
Var[} Jue-nn] < K ) Blwj_yynwe-yn]

t=1 t=1
< ngp E[w{t_l)Nw(t—l)N]E[wN]

However
Sli.p E(wzt-—l)Nw(t—l)N) = SL}p )\IFX[EE(Zt._1Z;_1)F]_V§)\

< NFER'A sup ||E(Zs-y)|)?
Z;_,el

supg, ,er [|£(Z-1)]”
/\min(FN)
Since E[wy] is bounded, from its convergence, relation (21) holds and therefore the continuity

condition was established. O
We prove now the main result of this section.

I

Theorem 3.1 Under (A), the probability that a locally unique mazimum partial likelihood es-
timator exists converges to one. Moreover there exists a sequence of mazimum partial likelihood
estimators By which is consistent and asymptotically Normal.

VN (Bn — Bo) = N(0,G™(fo))
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Proof: From Lemma 3.1 we get that
(Fn* Sy, FA?GaFR?) 3 (VD)

1 L1
where NV is a standard normal vector . Choosing G such that Fy?G% to be the Cholesky

_L 1
square root of F2GnFy?, we have from the continuity of the square root that
~L 1 1 D
(FNz‘S’Na FN2 G]2V) - (NaI)

where A is as above.
We first prove asymptotic existence and consistency. By Taylor expansion we have that

pln(B) = pin(Bo) + (B — fo)'Sw — 5(B — o) Hix(B)(5 — o)
where Z? lies between (3 and Bo. Equivelantly
pin(B) — pl (Bo) = (B — Bo)/Sxe — 5(B — o) Hx(B)(B o) 22)

Let now \ = F]%V(B — B0)/8. Then it follows by choosing & such that XA = 1 that (8 — B,)' =
)
N'Fp? 4. Substituting into (22), we have

. v 1 6%, 1 X
PIN(B) = pln(Bo) = SXFy* Sy — Ny Hy(B)Fy

Do+

A (23)
We are going to prove that for every n > 0 there exists NV and ¢ such that
Plpin(B) = plv(flo) <0 ¥B € 90N ()] 2 1 =1 (24)

This shows that, with probability tending to one, there exists a local maximum inside Oy (4).
From (23), we recognize that it is sufficient to show

~1L o _t
Amin(Fn HN(B)F ?)

PIIFR Sull* < 6° ;

]>21-n (25)
This is so because of the inequality

v L S~ 1 _t. _1 é _1 %
AP S — AR Hu(H)F 3P ) < [F Sxl1? = Shmin(Fr Hu(DF )

11



Consequently we have that

1 t
-1 M. (FyPH F.2 7 ¢
PlF5t iy < 52 2min O BVAIENT), 5y B Sl

Since E[||F1_V%SN||2] = p and the denominator is bounded, the above expression can become
arbitrarily small. The last claim follows from 15 and lemma 3.3. Asymptotic existence there-
fore was established. More specifically, we have that there exists a sequence {BN} of PMLE’s
such that for any n > 0, there is a §, N; with

P[By € On(8)] 2 1 —n YN > Ny (26)

From Lemmas 3.1 and 3.3 we obtain that Hy(B) is positive definite throughout On(8) with
probability converging to 1. Therefore the MPLE By is also locally unique. Consistency was
established as well, upon noting

PlIFE By — Bo)ll < 4]

. )
< Pl||Bn = Boll £ m]

IN

l—n

We prove now asymptotic normality. By Taylor expansion around ,@N, and using the mean
value theorem for multivariate function we obtain

Sn = Hn(8y — Bo) (27)

where Hy = Jo Hy(Bo + S(BN — Bo)ds and the integration is taken elementwise. We need to
show that

[CIEN
O]

FyHyFE 51 (28)

But
F?(Hy — Gn)Fy? + Fy? Gy 7
0+I=1

L~ -t
F;]zHNFN2

R

This is so because for N — oo , the MPLE is consistent so that ﬁN — Gy behaves the same
as Hy — Gy . Invoking Lemmas 3.1 and 3.3 we have that (28) holds. Therefore, from (27)

FI_V%SN = (FJ_\I%ItINFJ_\r%)(FfL\I(BN — o))

12



Thus

A

FY(Bn = Bo) = N
But t A t t ot .
GX(By — Bo) = GRFN FX (B — Bo) = N
since G]%\,F]_V% 2 1. From the continuity of the square root

t

2
t
L% Ge

VN

An application of Slutsky’s theorem yields to the conclusion of the theorem 0.

Corollary 3.1 Under (A) we have

V(B = 0) = &S 30

" Proof: Using again Slutsky’s theorem and the continuity of the square root we obtain that

Laisy B N(0,G7Y)
N
The claim follows from the previous theorem and Slutsky’s theorem once again O.

Now, assume that each component of the link function is log-concave, that is logh; is
concave for every j = 1,...,m with h,, = 1 =31_, h;. It follows that the logarithm is concave
and if the parameter space B is R? we obtain the following:

Corollary 3.2 Suppose (A) holds. Assume further that logh, is concave for j = 1,...,m.
Then the probability that a unique maximum partial likelihood estimator exists converges to
one. Any such sequence is consistent and asymptotically normal as in Theorem 3.1.

4 Goodness of fit Statistics

A question which arises naturally after every procedure involving regression is that of goodness
of fit. Our approach is to classify the responses y; according to mutually exclusive events in

13



terms of the covariates Zy_; (see [25]; [28]). Suppose that Ay, ..., Ay constitute a partition of
RPX1, For [=1,...,k define

N
My =" Iiz,_ ey

t=1
and

N

E(B) = _ Iiz._,eap:(B)

t=1
where [ is the indicator of the set {Z;—; € A}, for I =1,... k. Let My = (M],...,M]),
EN(B) = (E{(B),---, EL(B)). It welet I, 1 = (Ilz,_year)s- - - » [[Z._ca,]) We can see that

dn(B) = My — En(B) = Z_:It—l ® (y: — p(B))

with @ denotes Kronecker product. It follows that dy(f) is a zero mean square integrable
martingale that satisfies all the conditions needed for an application of the Central Limit
Theorem under our previous assumptions. Thus

AN v
\/N—H\/(O,C)

where C = @F_, C;, the direct sum of k matrices !, and C; is a g X ¢ symmetric matrix given

by
Ja, P1(Bo)(1 — pr(Bo))pu(dZ) - - — Ja, P1(Bo)py(Bo)p(dZ)
Ci(Bo) = P :
— J4, 1(Bo)pg (Bo)(dZ) -+ [4, Pa(Bo)(1 — py(Bo))p(dZ)

From the above result we have the following proposition:

Proposition 4.1 As N — oo, the asymptotic distribution of the statistic

X(B0) = 7 2 ()7 (o) (29)

is chi-square with kq degrees of freedom.

We are going to demonstrate now another theorem which gives rise to another goodness of fit
statistic.

LA @ B creates a partitioned diagonal matrix, having A, B on the main diagonal.

14




Theorem 4.1 Suppose that (A) hold. Let Ay,..., Ay be a partition of RP*?. Then we have
as N — oo

1.
VR (B - ) B NOLT)

where I' is a square matrix of dimension p + kq

c B
=[5 &

Here C is as in Proposition (29), G is the limiting p X p information matrix, and the [ %
column of B is given by the matrix

G [ ZD3u(dZ)
A

2. We also have, as N — oo that

EN(IBN)\/—NEN(ﬂO) — VNB'G(By — o) B 0

Proof: For proving (1) we only need to observe from Corollary 3.1 that for some integer N
greater than Ny we have that

1 ! 5 P L 1 -1
\/_N( Ny (B = Bo)) = \/N( NG SN) (30)

Now we know that dy and Sy are martingales which obey the conditions for an application
of a Central Limit Theorem for martingales. It follows that jointly (using again the Cramer-
Wold device) the vector on the right hand side of the above equation converges to normal as
N — oo. We only need to compute the asymptotic covariance matrix of its component. We
have

1 N 1 _ N N
—N—G_ISN Z [[zt_leAz](yt —pi) = NG ! Z Zs 1D 1(ys — ps) Z ][Zt_leAl](yt — Pt)
t=1 s=1 t=1

But for s < t
BlZs 1Ds1(ys — ps)1z,_rean(ys — pt)] = ElZo1Ds_1(ys — ps)lizo_yena) El(ye — 1) || Fioa]] =0
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Therefore, we have from assumption A.5 that

1 N 1 N N
ElGGT SN ) Tz ean(i = p)] = Bl5G7 Y 2o Dona(ys — o) 3 N1z sean(ve — po))
t=1 s=1 =1
N 3
= B[} Ig_ eagZeiDi 3] B G /A ZDSud(7Z)
t=1 !

The first part of the theorem follows. For proving the second part, we have by Taylor’s
expansion

0Ew(B)
o

N
= Ex(Bo) + [ lizi_sean aﬂ](/@’z\r Bo) + op([1Bn — Boll)
t=1

Q

Ey(Bn) = En(fo) +| Jo (B = Bo) + ([l B — foll)

l N 8Pt A 2
= En(fo) + 1> Zt—ll[zt~1€Al]a__](:8N — Bo) + o ([|Bn — Boll)

=1

8]31} (‘31 apt A
= F! Zi_11
N ﬂO + [tZ; t-14[{Z;_1 €A a7 ol 8]9 a'Yt 1](ﬂN /80) +o0 (“/BN /80”)

= EN (Bo) + Z][Zt eanZi—1Di 12t](/31\7 Bo) + OP(HBN — foll)

t=1

where [ is the logits function and v,y = Z}_, 3. So the desired result follows O.
Remark: From the second part of the Theorem 4.1 we obtain that

1 A 1

7 My — En(Bn)) = (M — En(Bo) + En(Bo) - En(Bw))
~ %(MN — En(f0) — VNB'G(by — o)

It follows that the asymptotic covariance matrix of (My — Ex(8x))/N is given by C — B'GB.
So another useful statistic is

(M — En(B)(C — B'GB]™ (My — En(3))

where the inverse is a symmetric generalized inverse. The asymptotic distribution of this
statistic is again chi-square but the number of degrees of freedom is less or equal to kg — 1.
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