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In this study, the Truckload Delivery with Backhaul Scheduling Problem 

(TDBSP) is formulated and an Ant Colony Optimization methodology developed for 

a related problem, the Vehicle Routing Problem with Backhaul and Time Windows 

(VRPBTW), is adapted for its solution. The TDBSP differs from the VRPBTW in 

that shipments are in units of truckloads, multiple time windows in multiple days are 

available for delivery to customers, limited space for servicing customers is available 

and multiple visits to each customer may be required. The problem is motivated by a 

real-world application arising at a leading cement producer in Thailand. Experts at the 

cement production plant assign vehicles to cement customers and lignite mines based 

on manual computations and experience. This study provides mathematical and 

computational frameworks for modeling and solving this real-world application. 
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Chapter 1: Introduction 

Thailand's government, along with private investors, have for several decades been 

investing in large civil infrastructure projects throughout Thailand to benefit society. 

Examples of such projects include the development of a rapid rail line between the 

central business district of Bangkok and the airport, expansion of the Bangkok Sky 

Train, and a network of highways providing both national and international 

connectivity. Consequently, construction is booming and this boom has significantly 

benefitted the cement industry. In fact, the cement industry in Thailand is one of the 

largest industries in the nation. This industry consists of several companies, but two 

companies take the largest share of the market:  Siam Cement Group (SCG), and 

Siam City Cement Public Company Limited (SCCC). SCG is the largest Thai cement 

company and the product of a private-public partnership. Both companies are 

publically traded. The needed high capital costs prevent others from entering the 

market. 

 With many projects simultaneously running, national transportation costs 

associated with obtaining raw materials for cement production, delivering cement to 

construction sites, and distributing cement for resale, are on average 19% of total 

costs
*
. Thus, it is crucial to the bottom line for the company to carefully plan its 

logistics operations. 

 This thesis seeks to develop a methodology to aid the cement industry with 

reducing its logistics costs through efficient route planning and scheduling. 

Specifically, the problem of routing a cement company's fleet of trucks from the plant 

                                                 
*
 Information on the Thailand logistics costs report in 2008 from www.NESDB.go.th 
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to distribution centers (i.e. customers) and incorporation of materials pickup on the 

backhaul is mathematically formulated. The problem is referred to herein as the 

Truckload Delivery with Backhaul Scheduling Problem (TDBSP). A solution 

methodology based on ant colony optimization, a metaheuristic, is suggested and 

tested on a case study involving typical operations at SCCC in the northern portion of 

Thailand. 

 SCCC has a single cement production plant located in Central Thailand. Its 

main product is bagged cement. The company operates a fleet of nearly 200 trucks in 

Northern Thailand alone for use in distributing the cement. Trucks are sent out from 

the plant to distributors. In addition, the same fleet of trucks is used to pick up lignite 

from lignite mines. Lignite is the main source of energy used in cement production at 

the plant. As the trucks would either travel empty to the lignite mines or return empty 

to the plant after hauling cement to the distributors, these pickup and delivery jobs are 

often coupled. This coupling reduces inefficiencies associated with empty linehauls 

and backhauls.  

SCCC has customers scattered throughout the provinces of Thailand. As 

customer names and locations are proprietary in nature, a single customer in each of 

the provinces is used to represent all customers of the province. Cement demand 

estimates in terms of units of truckloads were provided for the study. SCCC works 

with four lignite mines in the region. Their locations, along with the location of 

SCCC's production plant (the depot), are noted in Figure 1. Distances between 

customer locations, lignite mines and the depot, obtained from Google Maps, are 

provided in Table 1. All trucks are assumed to travel at a speed of 50 km/hr as 
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suggested by SCCC. Trip times between customers range between approximately 2 

and 14 hours. Customer time windows were also supplied by SCCC. All delivery 

time windows are set to an earliest arrival time of 9:00 a.m. and latest arrival time of 

9:00 p.m. The lignite mines operate 24 hours per day. Queues along with service 

times on the order of one to two days at the mines can be expected. Moreover, there is 

a limit on the number of vehicles that can serve a customer simultaneously. A 

schedule is needed for a seven day planning horizon. Available lignite of any required 

blend is available at all lignite mines. Typical loading times per vehicle at the depot 

are on the order of three hours. It is also typical that the vehicle will need 15 hours at 

each customer for unloading and resting. Waiting, resting and unloading times of 38 

hours at the lignite mines is common, as well.  
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Figure 1 Locations of customers, mines and plant
†‡

  

  

                                                 
†
 Customer mine and plant locations are depicted in circle, triangle and square, respectively. Number 

and alphabet denote the name as in Table 1 
‡
 Map picture obtained from www. LEWMANOMONT.com 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 18 

A 

B 

C 

D 

0 



 

 5 

 

Table 1 Distance between plant, customers and mines (in kilometers) 
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(0) Production Plant - 784 574 520 481 

(1) Chiang Mai 708 335 255 176 398 

(2) Mae Hong Son 764 492 383 253 283 

(3) Lamphun 568 372 242 49 262 

(4) Lampang 631 271 84 172 329 

(5) Chiang Rai 724 110 158 313 475 

(6) Phayao 660 138 126 285 442 

(7) Phrae 506 266 66 206 321 

(8) Nan 606 260 151 306 421 

(9) Uttaradit 454 405 205 265 337 

(10) Tak 392 473 284 147 101 

(11) Pichit 274 556 357 349 249 

(12) Phitsanulok 315 462 262 249 273 

(13) Kamphaeng Phet 314 583 384 256 213 

(14) Sukhothai 418 420 220 140 201 

(15) Nakhon Sawan 194 607 407 371 328 

(16) Phetchabun 260 604 404 392 415 

(17) Uthai Thani 254 714 515 371 328 

(18) Chai Nat 179 674 474 402 360 

 

 Despite the complexity involved in routing, scheduling and dispatching the 

large fleet of trucks, or in the determination of when to pick up lignite and selection 

of the specific mines, the company makes such logistics-related decisions manually.  

The contributions of this thesis are: (1) a mixed integer programming 

formulation of this truckload delivery with backhaul scheduling problem (the 

TDBSP) that can be used to model the Thai cement delivery with backhaul problem, 

(2) customization and application of a metaheuristic based on insertion techniques 

developed for routing problems and ant colony optimization to this real-world case 
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study, and (3) evaluation of the benefits of heuristic solution compared with manually 

obtained solution for the case study. 

 In the next chapter, relevant works from the literature are reviewed. This is 

followed by problem description and formulation in chapter 3. To assess the 

applicability of direct solution of the mathematical program for real-world problem 

instances, a set of small problem instances in which their exact solutions are obtained 

is illustrated in chapter 4. In chapter 5, description of the insertion based ant colony 

optimization algorithm, including details associated with customization of a proposed 

approach from the literature for the problem posed herein, is given. Results of 

numerical experiments designed to assess the performance of the algorithm are 

described in chapter 6. In chapter 7, the metaheuristic is applied on the real-world 

case study in Thailand involving a typical set of demands at SCCC. Solutions are 

compared with average reported tour durations from SCCC required to serve similar 

demands.  

 

 

 

 

 



 

 7 

 

Chapter 2: Background and Literature Review 

An enormous number of works in the literature address the related classical Vehicle 

Routing Problem (VRP) and the myriad variants that arise in practical applications. In 

this chapter, only those variants with particular relevance to this thesis are reviewed. 

See (Laporte 2009; Toth and Vigo, 2002; Golden et al., 2008; and Bodin et al., 1983) 

for general background.  

A number of works address the VRP with backhaul (VRPB). Techniques 

proposed in these works can be categorized as belonging to one of the following 

general approaches: pickup then delivery; delivery then pickup; simultaneous pickup 

and delivery.  In addressing the TDBSP herein, trucks are loaded at a depot. The 

goods are first delivered to linehaul customers and then goods are picked up from 

backhaul customers. The vehicle then returns to the depot. Thus, a "delivery then 

pickup" approach is taken. A similar "delivery then pickup" approach is considered 

by Anily (1996), for example. See (Bodin et al., 1983; Toth and Vigo, 2002) for a 

comprehensive review of contributions in the VRPB. Less than truckload customer 

demands are usually considered, but the VRPB can also directly address customers 

with truckload demands. 

A related problem to the VRPB is the General Pickup and Delivery Problem 

(GPDP) in which the vehicle need not start from or return to a depot. A review of 

GPDP works is given by Savelsbergh and Sol (1995). Regan et al. (1995, 1996a, 

1996b, 1998) and Yang et al. (2002) address real-time extensions of the GPDP, 

referred to as the Truckload Pickup and Delivery Problem (TPDP) in which vehicles 

are dispatched to simultaneously pick up and deliver goods. Loads are in units of 
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truckloads. Customers arise over time and may be rejected. No pickup or delivery 

time requirements are imposed in the VRPB, GPDP or TPDP. 

 Other works consider the VRP with time-windows (VRPTW).  Time windows 

indicate earliest and latest permitted pickup or delivery times from or to the 

customers. Time windows may be modeled as hard constraints, where no solution in 

which pickup or delivery occurs outside the time window is considered. 

Alternatively, soft time windows may be used in which solutions may be penalized 

for violating time window constraints. The canonical works on the VRPTW include 

(Savelsbergh,1984; Solomon, 1986; Solomon et al., 1988). Complications due to 

including both pickup and delivery within the routes simultaneously are not modeled. 

Additionally, each customer is assumed to have associated with it only one time 

window. 

 Thangiah et al. (1996) and Reimann et al. (2002) addressed the Vehicle 

Routing Problem with Backhauls and Time-Windows (VRPBTW), a problem that 

combines elements of the VRPB and the VRPTW. Thangiah et al. introduce a 

specialized construction heuristic for this problem class. Reimann et al. propose an 

insertion-based ant colony optimization technique. More recently, Cho and Wang 

(2005) provided an assignment-based formulation of the VRPBTW and propose a 

threshold accepting variant of Simulated Annealing for its solution. Their formulation 

extends the VRPTW formulation in (Goetschalckx and Jacobs-Blecha, 1989). 

Aghdaghi and Jolai (2008) suggest a goal programming formulation of the VRPBTW 

and introduce the Two-Phase Clustering and Sequencing heuristic, designed 

specifically for this problem class. Their formulation builds on the VRPTW 



 

 9 

 

formulation of (Calvete et al., 2007) and VRPB formulation of (Toth and Vigo, 

1997). 

 The Generalized Traveling Salesperson Problem (GTSP) also has relevance 

here. In this variant of the Traveling Salesperson Problem (TSP), a single vehicle 

version of the VRP, there are clusters of customers. It is sufficient to visit only one 

customer within each cluster. Thus, the problem becomes one of not only developing 

a tour for the TSP, but choosing which of the customers in each cluster to visit. This 

problem was introduced by Noon (1988). A stochastic version of the GTSP, in which 

customers probabilistically arise, was later studied by Tang and Miller-Hooks (2005).  

The TDBSP considered herein can be viewed as a VRPBTW with multiple 

time windows and multiple visits. Routes are determined over multiple days, each day 

with a time window for delivery.  Two additional works in the literature have 

applicability to this problem. Favaretto et al. (2007) formulated the Vehicle Routing 

Problem with Multiple Time Windows (VRPMTW). The VRPMTW also involves 

multiple visits and periodicity. They propose an ant colony optimization 

metaheuristic for its solution. The VRPMTW does not consider both pickup and 

delivery, i.e. there are no backhaul customers.   

Thus, the TDBSP addressed herein has elements of the VRPBTW, GTSP and 

VRPMTW.  A formulation that combines elements of the three problem classes is 

provided in the next chapter. This formulation extends the mixed integer program 

given by Solomon et al. (1988) for the VRPTW. The ant colony optimization 

technique proposed by Reimann et al. (2002) is modified (Chapter 5) to solve the 
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TDBSP. Modifications to this technique for the specific application addressed in this 

thesis are discussed.  
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Chapter 3: Problem Formulation 

The TDBSP as applied to the cement delivery with backhaul problem arising at 

SCCC is formulated as a mixed integer mathematical program. The objective of the 

TDBSP is to assign trucks over the planning horizon (e.g. one week) to linehaul 

customers (i.e. cement customer) within the requested time window (i.e. between 

9:00 a.m. and 9:00 p.m.) on a chosen day, schedule their arrival, and choose backhaul 

customers (i.e. lignite mines) so as to minimize total travel time required for delivery 

of cement to all linehaul customers and meet requirements for lignite at the depot (i.e. 

production plant). Thus, a solution consists of a set of vehicle tours, where each tour 

includes one linehaul customer and at most one backhaul customer or, alternatively, 

only a backhaul customer. Customer demand must be served within the planning 

horizon. The earliest possible starting time is preferred for every vehicle. Demand at 

any customer may be served by multiple vehicles, since more than one truckload of 

deliveries (pickups) may be required at a linehaul (backhaul) customer. Demand for 

pickups at the depot must be met. This demand can be met through a visit to any 

backhaul customer. While in reality a fixed fleet of vehicles is available to serve this 

demand, each vehicle becoming available for redeployment upon its return to the 

depot, an infinite fleet size is assumed as SCCC can obtain vehicles to serve the 

demand whenever needed. In reality, it is very rare that their demand needs exceed 

their fleet capacity.  

Solomon et al. (1988)'s VRPTW formulation is employed as the backbone of 

the proposed TDBSP formulation. Terms and notation presented in Solomon et al.'s 

work are employed herein whenever possible.  
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Before proceeding to the formulation, assumptions and additional details of 

the model not yet discussed are mentioned. 

1. Each 24 hour duration is discretized into   blocks of time. Each block is 

referred to herein as a time period. If   is set to 24, then each day will consist 

of 24 one hour blocks. The larger the block, the faster the solution is obtained, 

but the less precise the schedules will be in terms of arrival times at 

customers. 

2. The vehicle fleet is homogeneous.  

3. Capacity limitations at linehaul and backhaul customer facilities exist due to 

space limitations. It is assumed that a fixed number of vehicles,     , can serve 

or be served by a customer in any time period t. This number may vary not 

only by time, but by customer. For simplicity, this is taken to be constant over 

all locations. 

4. Service times are used to model loading times at the depot, waiting and 

unloading times at the linehaul customers and waiting and loading times at the 

backhaul customers. For simplicity, service times are assumed to be constant 

and based only on the customer type (i.e. depot, linehaul and backhaul 

customer).  
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Let         be a digraph, where   is the set of nodes and   is the set of 

arcs. Specifically,   = {0}         {n+1}, where {0} and {n+1} represent a 

single depot, 0 representing the depot when used for a vehicle's departure and n+1 

when used for vehicle's arrival. The set of delivery nodes    and set of pickup nodes 

   represent linehaul customers and backhaul customers, respectively.  Let delivery 

node, ik, denote the k
th

 truckload required at linehaul customer i in    and pickup 

node, jl, denote the l
th

 truckload of available pickup at backhaul customer j in   . For 

each truckload required (available) at a linehaul (backhaul) customer, a copy node is 

included. Thus, if three truckloads of cement are required at linehaul customer i, there 

will be three copies of node i, one for each required truckload.   = {(0, ik)   (0, jl)   

(ik, jl)   (ik, n+1)   (jl, n+1)| ik    , jl    }. 

Let DC =    , the total delivery demand of all linehaul customers, and D0 be 

the total amount of pickup (lignite) demand at the depot (production plant). There are 

three possible scenarios related to demand imbalance that may arise: (i) pickup 

demand is equal to delivery demand (D0 = DC), (ii) pickup demand is greater than 

delivery demand (D0 > DC), and (iii) pickup demand is less than delivery demand (D0 

< DC). To account for all three scenarios, additional notation is required: 

  
 ,   

 ,   
 ,   

  in which      
    

  and      
    

 . 

  
    =  subset of    including only those delivery nodes,   , that are paired in a 

tour with a node        
 . 

  
   =  subset of    including only those pickup nodes,   , that are paired in a tour 

with a node        
 .  



 

 14 

 

  
   =  subset of    including only unpaired delivery nodes,   , i.e. those nodes 

that are contained in a tour that includes only a visit to the delivery node.  

  
  =  subset of    including only unpaired pickup nodes,   , i.e. those nodes that 

are contained in a tour that includes only a visit to the pickup node.  

 Figures 2 through 4 illustrates the effects of imbalances in pickup and delivery 

demand on route topology on the network for two linehaul customers and two 

backhaul customers. The total pickup demand at the depot is given for each of the 

three possible scenarios associated with demand imbalance. 

 

  □ depot  

∆ pickup node  

○ delivery node 

      an arc represent portion of a vehicle tour  

 

 

 

Figure 2 Illustration of an instance where D0 = DC 
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Figure 3 Illustration of an instance where D0 > DC 

 

 

Figure 4 Illustration of an instance where D0 < DC 

Additional notation employed within the formulation are given next. 

Parameters 

     = travel time from linehaul customer i to backhaul customer j 

   = number of time periods per day 

U = number of days in the planning horizon 

  = set of days in the planning horizon 

    = earliest acceptable time to reach the linehaul customer i, where 
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    = latest acceptable time to reach the linehaul customer i, 

where                    

V = number of vehicles to be used, equivalent to max {DC, D0} 

   = set of vehicles 

T = total number of time periods in a planning horizon, T =   U 

   = set of time periods 

si  = service time at site i (i.e. i can represent depot, linehaul customer or 

backhaul customer) 

   = large number 

In addition, each linehaul customer has multiple time-windows as a function 

of   and U. For any    , the time window for linehaul customer i can be expressed 

as: 

 [                     ]    (eq.1)  

Thus, if   = 24, for day 2 (u=2), given earliest and latest arrival times of 9:00 

a.m. (time period 9) and 9:00 p.m. (time period 21), respectively, the time window 

will be [24+9,24+21] or [33,45]. 

Decision variables 

     
  =  1 if delivery node      

   and pickup node      
  are assigned to vehicle 

v; 0, otherwise  

   
   =  1 delivery node       

  is assigned to vehicle v; 0, otherwise 

   
  =  1 pickup node      

  is assigned to vehicle v; 0, otherwise 
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  =  time period within the planning horizon that vehicle v is ready to start out 

from the depot or begin loading for delivery customer 

    
  = time period within the planning horizon that vehicle v returns to the depot  

   
   = time period in which delivery node,   , is visited by vehicle v 

   
  = time period in which pickup node,   , is visited by vehicle v 

     =  day of week in which node    will be visited 

  
  = 1 if vehicle v starts from depot 0 or returns to depot n+1 in time period t; 0, 

otherwise 

 ̈ 
  = 1 if vehicle v arrives at a delivery or pickup node in time period t; 0, 

otherwise 

Formulation TDBSP 

Minimize   ∑      
    

             ∑   
 

    (1) 

Subject to 

∑ ∑      
 

     
                  

  (2) 

∑ ∑      
 

     
                            

  (3) 

∑ ∑      
 

     
      

            (4) 

∑    
 

                  
  (5) 

∑    
 

              
  (6) 

∑    
 

     
            (7) 

∑    
 

     
            (8) 

  
             

          
              

       
      (9) 
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      (10) 

   
                

          
            

       
        (11) 

  
             

         
             

       (12) 

   
                

        
             

      (13) 

  
          

        
             

      (14) 

   
                

        
             

      (15) 

     (     )     
                                 (16) 

     
         

             (17) 

       
         

             (18) 

  |   
   |     ̈ 

                   (19) 

  |   
   |     ̈ 

                   (20) 

∑   
               (21) 

∑   
 

                 (22) 

∑  ̈ 
 

                  (23) 

     
    

   ̈ 
                

       
            (24) 

   
     

               
       

      (25) 

  
     

     
      

      Integer                    (26) 

The objective of this problem is to minimize the total time required for the vehicles to 

serve linehaul customers and obtain required supplies from the backhaul customers; 

that is, minimize all vehicle time spent outside the depot, while simultaneously 

minimizing total elapsed time between time period zero and the start of all tours. 
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While one may treat this problem as one involving multiple objectives, the problem is 

reduced to one with a single additive objective, where 0 ≤ c ≤ 1. 

Constraints (2) through (8) are assignment constraints, where constraints (2) 

and (3) together ensure a single pairing of linehaul customers in   
  to backhaul 

customers in   
 . If there is a demand imbalance, constraints (5) ensure that only one 

delivery node will be included in a tour and constraints (6) ensure that only one 

pickup node will be included in a tour. That only one vehicle will be assigned to each 

tour (i.e. each pickup and delivery pair or each pickup or delivery alone) is 

guaranteed through constraints (4), (7) and (8). 

Constraints (9) through (15) together force the order in which vehicles arrive 

at the nodes to follow the sequence: depot, linehaul customer, backhaul customer, 

depot. To permit tours that skip a linehaul customer and visit only a backhaul 

customer, constraints (14) and (15) are applied. Similarly, constraints (12) and (13) 

allow tour configurations that exclude a backhaul customer. Constraints (9) through 

(15), thus, ensure route formation compatibility. That is, for example, a backhaul 

customer can be visited after departing the depot or a linehaul customer only if the 

linehaul customer is included in the tour.  Constraints (16) enforce the time window 

limitations (described by eq. 1), ensuring that no arrival at a linehaul customer occurs 

outside the specified time windows.  

Constraints (22) and (23) ensure that the total number of vehicles visiting any 

customer at time period t is no greater than     . The total number of times each 

vehicle visits the depot must equal two as enforced through constraint (21). This is 
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accomplished through constraints (17) through (20) that convert each vehicle’s arrival 

time at the depot,   
      

 , to binary variable   
   and each vehicle’s arrival at a 

delivery or pickup node,    
         

 , respectively, to  ̈ 
 . Integrality and non-

negativity are enforced through constraints (24) - (26).  

The objective function and constraints (2) through (16) are identical to, or 

modeled after, the objective and constraints used in the VRPTW formulation given in 

(Solomon et al., 1988).  Modifications, including the use of additional notation and 

additional decision variables, required to address demand imbalances that arise from 

simultaneously addressing pickup and delivery in a truckload trucking operation are 

applied in constraints (5) through (8) and (9) through (15). The time window 

constraints (16) are modified to allow for multiple time windows, allowing delivery 

to a linehaul customer from during one or more given time windows for each day in 

the planning horizon. Remaining functional constraints are specific to the TDBSP. 
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Chapter 4: Application of formulation on small problem 

instances 

The formulation is applied in solving a number of small problem instances designed 

to assess the applicability of direct solution of the mathematical program for real-

world problem instances. IBM's ILOG CPLEX OPL 12.2 was used for this purpose. 

Runs were conducted on a personal computer with Intel Core i5 CPU and 2.0 GB of 

RAM. Nine problem instances are considered as described in Table 2. The instances 

vary in size from two linehaul customers and two backhaul customers to six linehaul 

customers and six backhaul customers. Total delivery demand at each linehaul 

customer and amount of available pickup at backhaul customers is assumed to be one 

truckload. Thus, there is only one delivery node and one pickup node at each linehaul 

and backhaul customer, respectively.   is set to 4 periods. A limit of one vehicle is 

imposed at each site per time period,      = 1,      . To give priority to solutions 

with shorter tour duration, the coefficient c in the objective function is set to be 0.99. 

Computation times required to obtain the optimal solution are reported in 

Table 2 for each setting of the parameters tested. Note that TW indicates whether or 

not time windows were enforced, i.e. TW = 1 if time windows are applied and 0, 

otherwise. Additional details, including exact input values and final objective 

function values, for these test instances are provided in the appendix. 



 

 22 

 

Table 2 Summary of the computational time of each instance from CPLEX 

Instance Input  

( : U: DC: D0: TW) 

Computational time 

(seconds) 

I1 4:4:5:3:1 45.44 

I2 4:4:5:3:0 69.56 

I3 4:5:2:2:0 0.63 

I4 4:5:3:3:0 5.19 

I5 4:5:4:4:1 35.46 

I6 4:5:4:4:0 37.13 

I7 4:5:5:5:1 651.86 

I8 4:5:5:5:0 1198.26 

I9 4:5:6:6:0 65279.36 

 

Solution of problem instances I1, I2, I5, I6, I7, and I8 indicate that the 

inclusion of time-windows affects required computational effort. For example, a 35% 

reduction in computation time was required to solve problem instance I2 in which 

time windows were enforced as compared with problem instance I1 in which no time 

windows were enforced. A reduction in solution time was also obtained through the 

inclusion of time windows as evidenced through a comparison of solution times for 

problem instances I5 and I6 (by 4%), as well as I7 and I8 (by 46%). This is consistent 

with results from previous works related to the VRPTW. One can expect a reduction 

in computational effort with the inclusion of time windows as such inclusion reduces 

the solution space. 
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Figure 5 Comparison of the solving time for the exact solution of each instance size. 

A comparison of computation times required for problem instances I3, I4, I6, 

I8, and I9, in which no time windows are enforced, is given in Figure 5. One can see 

from the figure that the required computation time grows exponentially with 

increasing problem size, even for the small problem instances considered here. While 

less than one second was required to solve the smallest problem instance, with only 

two delivery and two pickup nodes, over eighteen hours was required to solve the 

largest problem instance with six delivery and six pickup nodes. Exact solution of 

problem instances arising in the real-world is likely beyond reach. Moreover, the 

study investigates further if there is any kind of lower bound that could be solved 

exactly without the exhaustive effort. To investigate the possibility of employing the 

LP relaxation as a method for obtaining tight bounds for large problem instances that 

cannot be solved exactly, the bound obtained from the LP relaxation of problem 

instances I3, I4, I6, I8 and I9 is computed. Table 3 Shows that the optimality gap of 

the LP relaxed solutions are below 1%, but increases slightly with the size of the 

problem. Figure 6 shows that the computational effort of the tested set of instances 
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grows exponentially with problem size. Thus, obtaining even a lower bound on a 

large problem instance may be problematic. A metaheuristic is employed in the next 

chapter to address such large-scale problem instances.  

 

Table 3 Exact and LP Relaxed Solutions from CPLEX 

Instance 
Exact 

solution 

LP Relaxed 

solution 

Optimality 

gap (%) 

Computational 

time (seconds) 

4:5:2:2:0 7.92 7.93 0.12 0.41 

4:5:3:3:0 10.89 10.95 0.54 1.47 

4:5:4:4:0 15.84 15.9 0.38 15.76 

4:5:5:5:0 18.81 18.94 0.69 225.36 

4:5:6:6:0 23.76 23.97 0.88 5053.54 

 

 

Figure 6 Computational efforts of small problem instances' relaxed solutions 
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Chapter 5:  Insertion based ants metaheuristic 

In this chapter, the ant colony optimization methodology developed by Reimann et al. 

(2002) for the VRPBTW is adapted for solution of the TDBSP. These adaptations are 

required to address multiple time windows, multiple visits to the same customers and 

truckload demands. For completeness, details of the entire methodology are provided. 

Adaptations are noted. Heuristics have been developed for nearly all, if not all, 

variants of the VRP. Solomon (1987), Cordeau et al. (2001), and Favaretto et al. 

(2007) provide excellent reviews of heuristics designed for the VRPTW. Likewise, 

comprehensive reviews of heuristics designed for the VRPB are given in (Potvin et 

al., 1996; Jacobs-Bleacha and Goetschalckx, 1998; and Mingozzi et al., 1999). Few 

works address the VRPBTW. Reimann et al. (2002) proposed an insertion based ants 

optimization methodology based on concepts of ant colony optimization that was 

shown to outperform an existing heuristic of Thangiah et al. (1996) for the same 

problem. Cho and Wang (2005) introduced a threshold accepting variant of simulated 

annealing for this problem, but did not compare their solutions to any benchmark. 

The Two-Phase Clustering and Sequencing heuristic proposed by Aghdaghi and Jolai 

(2008) for the VRPBTW with soft time windows was also introduced, but no 

comparison to exact or known solutions for benchmark problems was provided. 

5.1 The insertion based ants optimization method for the VRPBTW 

The insertion based ants metaheuristic of Reimann et al. (2002) builds on concepts of 

two methodologies: the ant colony optimization (ACO) metaheuristic and traditional 

insertion techniques (e.g. the cheapest insertion or nearest insertion) designed for 
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routing problems. The ACO concept was first introduced by Dorigo et al. (1991, 

1992, and 1996). ACO mimics the food searching behavior of ants. The technique has 

been further developed since its inception and has been applied in solving problems 

in a wide array of applications. Dorigo et al. (2006) provide an overview of the 

approach and comprehensive review of its application in literature since its 

introduction.  

The insertion based ants metaheuristic is described next in the context of the 

VRP, based on contributions from several works (Dorigo et al., 1991, 1992, and 

1996; and Bullnheimer et al., 1997). The steps exploit a network representation of the 

problem in which nodes represent customers and edges provide existing connections 

between nodes. A complete graph is presumed. 

A colony of ants is sent through the network. In a given iteration, these ants 

are thought to work in parallel networks and, thus, their actions do not affect one 

another in a given iteration. The number of ants working to develop tours is a 

parameter that is set at the start of the procedure. 

A single ant generates a tour by meandering through the network. When at a 

decision point (a node), the ant chooses the next edge probabilistically in direct 

proportion to the level of pheromones already laid on the edges by ants that have 

traversed the edge previously. The level of pheromones present depends not only on 

what was laid during previous visits, but by the length of time (measured in terms of 

iterations) that has elapsed since the visits. That is, pheromone evaporates over time. 

When traversing an edge, the ant lays down one unit of pheromone along the edge, 

dispersed at a constant rate. Thus, the amount of pheromone laid at any location on 
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the edge is equivalent to the reciprocal of the edge’s length. The greater the 

pheromone intensity, the more likely the ant is to follow the edge. The ant continues 

to traverse the network, visiting customers until it reaches a customer whose inclusion 

in the tour would violate feasibility. The ant then returns to the depot from the 

previous customer and begins another tour. Once all customers have been included in 

a tour of all the ants, the pheromone levels along the edges are updated to account for 

the passage of time and the pheromones laid during that iteration.  

Elitism is incorporated in the heuristic by giving more weight to the 

pheromone laid by an ant that produces the best solution in any iteration. The weight 

of that ant’s pheromone depends on a parameter that is set by the user.  In a rank-

based implementation, the pheromone from only those ants providing the top ranked 

solutions will be laid for the next iteration. The higher the ranking, the more weight 

the associated ant’s pheromone will have. The ant with the best found solution over 

all previous iterations is referred to as the elite ant. 

Reimann et al. (2002) proposed the use of an insertion technique developed in 

(Solomon, 1987) within the ACO as a strategy for addressing time-windows within 

the context of the VRPBTW.  This insertion technique is employed herein. 

5.2 A modified insertion based ants optimization method for the TDBSP 

The insertion based ants optimization technique was developed to solve the 

VRPBTW. The VRPTW differs from the TDBSP in several respects, as mentioned 

previously. Thus, changes to the insertion based ants optimization method are 

required for its application to the TDBSP. Specifically, a linehaul customer cannot be 

visited after a backhaul customer and at most one delivery and one pickup can be 
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included in a tour. These specific constraints are handled through minor changes to 

the logic of the insertion procedure. The number of tours required can be 

predetermined. Thus, the number of tours that an ant makes is prefixed. It is possible 

that the ant will build the tours such that not all demand is met. In this case, the 

solution obtained by the ant is infeasible. When this occurs, the results of the entire 

iteration, or results for the single ant, can be discarded and either the iteration can be 

rerun for the single ant or for all ants.  

The most significant changes to the heuristic are required to address multiple 

time windows, a characteristic not shared by the VRPBTW. In addition, more than 

one truckload may be required at (from) a linehaul (backhaul) customer. Restrictions 

on the number of vehicles that can visit any customer in each time period exist, since 

there is limited space at each customer for delivery or pickup. To address this, a 

vector,   , of size        is employed at each site q for each ant. Each element of 

the vector maintains the number of visits to the site included in tours for the 

associated time period. That is, the fifth element of the vector maintains the number 

of vehicles that have thus far (in already constructed tours) been accommodated at the 

site in the fifth time period. The vector is employed over all tours made by a single 

ant. 

Additional notation required in the description of the modified insertion based 

ants algorithm employed herein for the TDBSP, adapted from Reimann’s insertion 

based ants algorithm for the VRPBTW, are given next.  
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    =    
     , for q  , each element   

  of which represents the number of 

visits to site q at time period t 

Kq = amount of delivery (pickup) demand in truckloads at linehaul (backhaul) 

customer             

   = arrival time in terms of time period at site     

   =  number of ants deployed in a run of the algorithm 

   = probability that backhaul customer j is chosen  

   =  attractiveness of backhaul customer j  

    = visibility value of backhaul customer j from linehaul customer i 

    = pheromone intensity on arc (i,j)    

     = added pheromone from ant along arc (i,j)    

    
  = added pheromone from ant ranked r along arc (i,j)    

  = visibility coefficient factor, 0 ≤    ≤ 2 

   =  visibility coefficient factor, 0 ≤    ≤ 1 

   =  evaporation rate 

   =  number of ranks that will be added to the pheromone calculation 

   = intensity of pheromones laid by the elite ant 

  = parameter of algorithm 

  = set of random time period candidates with         

With this notation, the following equations can be given (Reimann et al., 2002). 

   = 
  

∑       
        (eq.2) 
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   =                (eq.3) 

    = max  {           (                 )             
       }

           (eq.4) 

    =           ∑     
  

              (eq.5) 

    
  =               ⁄              (eq.6)  

     =      ⁄          (eq.7) 

 When a backhaul customer is selected, this selection is based on the perceived 

distance (or duration) from the linehaul customer i to the backhaul customer j. This 

perceived distance is referred to as visibility,    . The visibility function is calculated 

from equation (eq.4). How attractive each backhaul customer j, i.e.   , is depends on 

both the visibility of the link between the current linehaul customer i and backhaul 

customer j, and pheromone intensity on link (i,j),    . The intensity is computed from 

the amount of pre-existing pheromone along the arc given evaporation rate,  , the 

pheromone added to the link by ants that are included in a set of ranked ants,  , and 

additional pheromone laid by the elite ant. The strength of pheromone laid by each 

ranked ant is a function of the ant's ranking. The top ranked ants lay pheromone with 

greater strength than the lower ones. Choice of a backhaul customer is made 

probabilistically in direct proportion to its attractiveness. The probability of selecting 

any particular available backhaul customer,   , is computed in equation (eq.2).  

 The algorithm is iterative. In each iteration, multiples solutions are produced. 

The best solution of all completed iterations is saved. An overview of the main steps 

of the algorithm is given next  
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REPEAT 

  FOR         

   FOR            

    Generate tour   for ant  ; 

   END 

   Apply swap procedure on tours generated by ant  ; 

END 

Update pheromones based on solution obtained by all ants;  

UNTIL (number of iterations reaches threshold) 

Figure 7 shows a typical solution obtained by a single ant assuming zero 

service time at customers, unit-time distance between every site, unit available pickup 

at each backhaul customer, unit delivery demand at each linehaul customer, two 

pickup demand units at the depot and space for only one vehicle in a given time 

period at any site.  

 

Figure 7 Illustration of a solution by modified insertion based ants algorithm 
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Specific steps of the algorithm are described in the following subsections. 

5.2.1 Generation of tours by an ant 

Creating each tour for each ant within each iteration of the proposed insertion based 

ants optimization procedure consists of three main steps: (1) selection of the starting 

time from the depot, (2) selection of a linehaul customer for inclusion, and (3) 

selection of a backhaul customer for inclusion. These steps take advantage of the 

problem’s structure. That is, each tour can be created by selecting a maximum of two 

customers, one linehaul and one backhaul customer.  In each step, feasibility 

conditions are checked. These feasibility conditions are given as: 

1)         

           

2)                               

3) ∑   
  

                      

4)                                

5)             
        

6)                              

              ,      

Condition 1 forces the number of vehicles visiting site q in time period    to be less 

than the available number of slots for vehicles at that time period,  (  )   To ensure 

that the arrival time of a vehicle at site q,   , occurs after that vehicle's arrival time at 

the previous site p,   , plus the service time at site p,   , plus the travel time from p 

to q,    , condition 2 must be met. The total number of visits over the planning 

horizon at site q, ∑   
  

   , must not exceed the delivery demand (available pickups) at 
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each linehaul (backhaul) customer q as required by enforcing condition 3. Condition 

4 forces the arrival time at the depot,     , to occur after visiting site q immediately 

preceding return to the depot. Specifically,      must be no less than the arrival time 

at site q plus service time at q,   , plus travel time between q and the depot,       . 

Arrival time at depot n+1 is permitted only if space for at least one vehicle in time 

period      remains, as is given by condition 5. Finally, condition 6 restricts the 

arrival time to a linehaul customer q to be within the prespecified time window for 

the given day,   . 

Specific steps for generating tours by a single ant are given next. 

Step 0: Initialization.  

 Reset   
  = 0,   = 0             . 

 Mark all unavailable linehaul and backhaul customers as available. Let v = 0. 

Step 1: Selection of the starting time from the depot. 

Update v = v +1. 

 Insert in   the earliest     possible starting times from depot 0,   , such that 

   satisfy condition 1. 

If   =  , return to step 0; otherwise, randomly select a time period for the 

starting time at depot 0,   , from   and update   
   =   

  +1. 

 Set      =   .  

If v > min {Dc, Do} and Dc < Do go to Step 3; otherwise, go to step 2. 
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Step 2: Selection of a linehaul customer for inclusion. 

If no linehaul customer available, return to step 0; otherwise, select an 

available linehaul customer, i, probabilistically based on direct proportion of 

the distance from the depot.  

Compute the earliest feasible arrival time at the linehaul customer i,   , and 

update earliest feasible arrival time at depot n+1,     , such that conditions 1 

through 6 are met.  

If      and       , then update   
   =   

  +1 and     
     =     

    +1; 

otherwise, mark linehaul customer i as unavailable and restart step 2. 

If v > min {Dc, Do} and Dc > Do and v =  , terminate. 

If v > min {Dc, Do} and Dc > Do and v <  , go to step 1. 

Step 3: Selection of a backhaul customer for inclusion. 

If no backhaul customer is available, return to step 0; otherwise, randomly 

select an available backhaul customer, j, weighting the selection of each j by 

probability Pj  as in equation (eq.2). 

Compute the earliest feasible arrival time at backhaul customer j,   , and 

earliest feasible arrival time at the depot n+1,     
 , such that conditions 1 

through 5 are met. 

 If      and     
   , then update  

 

    
 

    ,     
         

      , 

     =     
  and     

         
      ; otherwise, mark j as unavailable and 

restart step 3.  

If v <  , go to Step 1; otherwise, terminate. 
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 This procedure terminates with a feasible solution, if one exists, for the 

TDBSP. It can be implemented to stop after a fixed number of iterations to prevent an 

endless loop. 

In step 1, the starting time period from the depot is randomly selected from 

    earliest feasible time periods at the depot. Such random selection is introduced 

for solving the TDBSP so as to create an opportunity for finding solutions that might 

otherwise not be explored. 

5.2.2 Improvement procedure 

After an ant has constructed a feasible solution, a swap procedure that exchanges 

backhaul customers between pairs of tours is implemented. The implementation 

considers the swap in order of tour number. A backhaul customer in tour u will be 

swapped with a backhaul customer in tour w, w > u. During the swap process, the 

earliest arrival time of the swapped backhaul customers,    and   , are computed. If 

the swap leads to an improved solution, the swap is made and   
  ,   

   and     
     are 

updated accordingly. The swapping procedure restarts by comparing backhaul 

customers from tour u = 1 and w = 2 again. The algorithm continues, comparing 

backhaul customers from tour pairs until swaps between all pairs of tours have been 

considered and no improvement is made.  

5.2.3 Pheromone update 

After every ant has finished its tour construction and the solution has been improved 

by the swapping procedure, the pheromone level on each arc is updated according to 

equation (eq. 5). After the pheromones are updated, the solution from each ant is 
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compared with the previous best solution. The best solution is stored. The algorithm 

starts the tour construction process over from the first ant until a pre-specified number 

of iterations is reached. The elite solution is chosen as the final solution. 

This concludes the insertion based ants metaheuristic algorithm and its 

customization for the TDBSP. Results from computational experiments designed to 

assess the quality of the solutions obtain by the adapted procedure are provided in the 

next chapter.   
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5.2.4 Procedure overview 

An overview of the procedure is given in Figure 8. 

 

Figure 8 Flowchart
§
 of modified insertion based ants optimization algorithm.  

                                                 
§
 LHC = linehaul customer, BHC = backhaul customer 
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Chapter 6:  Numerical experiments 

Numerical experiments were designed to assess the quality of solutions obtained by 

the insertion based ants optimization procedure on small problem instances of the 

TDBSP. Exact solution for these instances was obtained through formulation TDBSP 

using ILOG's CPLEX. Parameters of the model are first tuned for best performance. 

This is followed by analysis of results from runs with varying number of iterations to 

study the algorithm's convergence behavior. 

6.1 Parameter tuning 

How the heuristic performs is, in part, dependent on the setting of its parameters. A 

systematic study is conducted on three hypothetical problem instances ranging in size 

for the purpose of tuning the parameters, i.e. finding the best combination of 

parameters to use. Problem instance I9 described in Table 2 involving six linehaul 

and six backhaul customers is the smallest problem instance considered . Two 

additional instances that are approximately 20 and 64 times larger than problem 

instance I9 (H1and H3 in Table 8, respectively), measured in terms of total delivery 

and pickup demand multiplied by the number of time periods in the planning horizon, 

are also considered. These additional larger instances were generated by adding 

pickup and delivery demand at sites included in problem instance I9. Furthermore, the 

problem instances were enhanced by the inclusion of additional randomly selected 

sites. These larger problem instances are studied for the purpose of assessing the 

efficiency of the solution method. The parameters of the algorithm, along with the 

range of their possible values, are summarized in Table 4.  
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Solution performance is assessed according to a score,  , computed from two 

criteria. The first criterion,  , is the average value of the solutions found from each 

ant in each iteration. The average value of the solution is used to determine the 

overall efficiency of the heuristic. The second criterion, b, is the average value of the 

best solutions found up to the beginning of each iteration. Solutions obtained at any 

iteration are compared to the best solution maintained from previous iterations. The 

better of the two solutions is stored as the best solution up to the current iteration. The 

average value of the best solution is used to determine how fast the heuristic 

converges. For each criterion, a score    or    is computed. This score, for each 

criterion, is a function of the relative value of the average solution value from the 

given run to the best obtained average solution value over all runs. Suppose three runs 

are made and the average solution value measured in terms of criterion a is 10, 9 and 

8.    for each of these runs is computed from (1- (10 - 8)/8), (1 - (9 - 8)/8) and (1 - (8 

- 8)/8), respectively.    is computed similarly with respect to criterion b. The final 

score                , for      . This scoring method provides a 

standardized score that can be used as a basis of comparison irrespective of problem 

size.  
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Table 4 Parameters in the modified insertion based ants algorithm 

Parameter Description 

  Number of ants based on the proportion of delivery and pickup demand, can be 

any positive integer value 

  Coefficient in visibility function with range [0,2] 

  Coefficient in visibility function with range [0,1] 

  Evaporation rate of the laid pheromones with range [0,1] 

  Parameter for setting number of ranked ants with range [0, ] 

  Parameter for setting pheromone intensity of the elite ant with range [0, 20] 

  Coefficient used in determining number of candidate starting times from depot 

with range [0,1] 

 

The following subsections, each addressing parameters that affect different 

portions of the solution approach, summarize the experimental results. In all 

experiments,   ⌊
     

 
⌋. 

6.1.1 Visibility function parameters 

The first set of experimental runs was designed to assess the sensitivity of the solution 

due to changes in   and  . Values of   are set between 0.1 and 2 in increments of 

0.1. Similarly,   is set between 0.1 and 1 also in increments of 0.1. These values were 

suggested by Reimann et al., (2003). Equal weights are given to each score 

component in determining the final score for each run. Scores for those combinations 

of    and    that led to the ten highest score values are shown in Table 5. The results 

indicate that the pair of   and   that led to the best solution is 0.9 and 0.7, 

respectively. In these runs, the parameters,  ,  ,   and   are fixed at 0.5, 0.5, 5 and 

0.1, respectively. 
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Table 5 Top ten scores by visibility parameter settings 

    Score,   

0.9 0.7 9955 

0.9 0.5 9934 

1 0.2 9927 

1 0.3 9926 

1 0.5 9925 

1.1 0.3 9924 

1 0.1 9919 

0.8 0.6 9909 

0.8 0.4 9908 

1.2 0.3 9903 

 

6.1.2 Pheromone function parameters 

Three parameters,  , p and  , affect pheromone intensity. Runs are based on pairs of 

settings of these three parameters:     ,    , and     . Evaporation rate,  , is 

varied in increments of 0.05 from 0.05 to 1. The number of ranked ants,  , is varied 

as a percentage of the total number of ants,  , ranging in value from 10% to 100% 

increasing in increments of 10%. Pheromone intensity,  , is varied between 1 and 20 

as an integer coefficient of the total number of ants,  .      . Results of the 10 

best performing runs are given in Table 6. The best solution was obtained when  ,  , 

  are set to 0.5, 0.7, 1, respectively.  ,   and   are fixed at 0.9, 0.7. and 0.1. 
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Table 6 Top ten scores by pheromone parameter settings 

      Score,   

0.5 0.7 1 9969 

0.25 0.1 17 9967 

0.2 1 18 9966 

0.1 0.2 15 9959 

0.4 0.4 20 9959 

0.3 0.4 18 9959 

0.05 1 9 9957 

0.25 0.1 20 9953 

0.1 0.5 15 9953 

0.5 0.8 1 9950 

 

6.1.3 Number of random time period candidates 

To increase diversification, the starting time for each tour at the depot is chosen 

randomly from a set of values in   , where     =  T.   is set to the percentage of the 

planning horizon in terms of time periods, ranging in value between 1% of the 

horizon to 50% of the horizon. As in the previous experimental runs, two criteria are 

used to determine the performance score for each solution. However, the greater the 

value of  , the more randomness in the obtained solution values and the less 

representative    is of the solutions obtained by the ants. Therefore, greater weight is 

given to    than to    in computing the score, i.e.       . Figure 9 shows the 

score from different   while the other parameter,      ,   and   are fixed at 0.9, 0.7, 

0.5, 0.7 and 1, respectively. The results show that the best solution was obtained for  

  set to 13%. 
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Figure 9 Comparison of the scores from different    

From all of the studies in this chapter, it is concluded that the best parameters 

for the insertion based ants heuristic developed are (           ) = 0.9, 0.7, 0.5, 

0.7, 1, 0.13, respectively.  Next, the performance of the heuristic using the 

recommended set of parameters is discussed. 

6.2 Solution quality and convergence 

The quality of the solution as a function of number of iterations is studied on problem 

instance I9, the largest of the studied instances. As in the small problem instance runs 

in chapter 4, c is set to 0.99, thus placing the majority of weight on the first term in 

objective function (1) of the TDBSP. The optimal solution value for this problem 

instance with c = 0.99 is 23.97. Additional details associated with this solution are 

given in appendix. 

The heuristic is run 100 times for each setting of a varying number of 

iterations ranging from 100 to 100,000. The average solution value obtained over the 

100 runs is reported in Table 7. Convergence toward the optimal solution with 
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increasing number of iterations is depicted in Figure 10. To obtain solutions within 

5% of optimality, more than 7,500 iterations were required. 

 

Table 7 Average solution value for problem instance I9 by number of iterations 

completed 

Number of Iterations Average value of the best solutions 

100 28.12 

500 26.85 

1,000 26.36 

2,500 25.76 

5,000 25.34 

7,500 25.17 

10,000 25.08 

25,000 24.75 

50,000 24.55 

100,000 24.18 

 

 

Figure 10 Optimality gap as a function of number of iterations 
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A second set of experiments was conducted on six randomly generated 

problem instances, including instances H1 and H3 discussed previously, to assess the 

increase in computational effort as a function of problem size. The number of 

iterations in each run was set to 1,000. Results are given in Table 8.  

The results indicate that the run time of the modified insertion based ants 

algorithm grows slightly worse than linearly with problem size. Moreover, problem 

instances H4 through H6 are similar in size to problems expected in the field, at least 

in the Thai cement delivery business considered herein and, thus, the solution 

methodology should be efficient enough for real-world application.  

 

Table 8 The capability of the size of problem that can be solved efficiently by 

heuristic 

Instances Input 

( : U: DC: D0: TW) 

Computational time 

(sec) 

H1 24:7:33:35:0 8.48 

H2 8:7:100:100:0 14.59 

H3 24:7:100:100:0 37.54 

H4 8:7:250:250:0 87.39 

H5 8:7:350:350:0 228.54 

H6 8:7:500:500:0 638.17 
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Chapter 7:  Case Study Results 

Exact solution of the Thai cement company could not be obtained through 

formulation and solution by CPLEX. Thus, the modified insertion based ants 

algorithm is applied. Since no optimal solution is known for the case study, and actual 

tours are proprietary to SCCC, the average tour duration over all vehicles supplied by 

SCCC is used as a basis for comparison. Note that if this value is multiplied by the 

number of vehicles and number of time periods in the planning horizon, this is 

equivalent to the first term in objective function (1). Thus, c is set to 1 in seeking the 

optimal solution for the case study by the heuristic.   

 The insertion based ants optimization algorithm is run for 100,000 iterations 

and the average tour duration for the best obtained solution is reported at each 10,000 

iterations. Results of five experimental runs are provided in Table 9. 

Table 9 Average solution value for the case study by number of iterations completed 

Number of Iterations Average tour duration of solution (days) 

1st run 2nd run 3rd run 4th run 5th run Average 

1,000 3.962 3.956 3.975 3.967 3.962 3.964 

5,000 3.963 3.956 3.963 3.967 3.962 3.962 

10,000 3.954 3.956 3.963 3.965 3.960 3.960 

20,000 3.954 3.956 3.963 3.961 3.960 3.959 

30,000 3.948 3.956 3.963 3.961 3.951 3.956 

40,000 3.948 3.956 3.959 3.961 3.951 3.955 

50,000 3.948 3.956 3.959 3.961 3.951 3.955 

60,000 3.948 3.956 3.959 3.953 3.951 3.953 

70,000 3.948 3.956 3.958 3.953 3.951 3.953 

80,000 3.948 3.956 3.953 3.953 3.951 3.952 

90,000 3.946 3.956 3.953 3.950 3.951 3.951 

100,000 3.946 3.956 3.953 3.950 3.951 3.951 
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Figure 11 Comparison of the solution value in different runs by the number of 

iterations 

From Figure 11, various improvement behaviors obtained from the algorithm 

were observed, i.e. rapid improvement at earlier iterations (in the 3
rd

 run), gradual 

improvement through the iterations (in the 1
st
 run), improvement at later iterations (in 

the 4
th

 run) or stagnation since earlier iterations (in the 2
nd

 run). However, on average, 

gradual improvement was noted over the iterations. The average tour duration 

obtained after 100,000 iterations is 3.95 days. Each run with 100,000 iterations of the 

algorithm required slightly longer than two hours of run time (including time for 

input and output).  

By comparison, the average tour duration experienced by SCCC for the same 

customers using the same number of vehicles is 4.5 days. Thus, the obtained solution 

provides 12.3% improvement as compared with the average solutions obtained 

manually by experts at SCCC. It is worth noting that the loading time at the depot and 

backhaul customers and unloading time at the linehaul customers range from 3 to 38 

hours. These times are fixed. Thus, a significant portion of the 4.5 days cannot be 
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reduced and the improvement as a percentage when considering the source of 

flexibility in the tours is actually significantly larger than 12%. 

Another measure of performance of the results found by the algorithm can be 

obtained by investigating the difference between the average tour length that is 

obtained and a bound equal to the minimum possible tour length of tours that include 

both a customer and a mine while using the provided waiting, loading, unloading and 

resting times by SCCC and simultaneously relaxing the time window constraints. It 

turns out that the lowest possible tour length requires 3.27 days. This is 20.8% lower 

than the 3.95 days required for an average tour when time window constraints are 

enforced. Further, it is 37.6% lower than SCCC’s average tour duration. By 

comparing the result from the algorithm and average tour duration provided by SCCC 

with this bound, one will note a difference of 0.68 and 1.23 days respectively. That is, 

the solution obtained by the algorithm leads to improvements in this measure by 

nearly 45% (i.e. (1.23-0.68)/1.23).  

The case study involves very long time windows. To further investigate the 

performance of the algorithm under restrictions that are more difficult to meet, 

instances of the case study with smaller time windows are considered. In these runs, 

the time windows are categorized as follows: (1) morning time window [9:00 a.m., 

12:00 p.m.]; (2) afternoon time window [12:00 p.m., 3:00 p.m.]; (3) evening time 

window [3:00 p.m., 6:00 p.m.]; and (4) nighttime window [6:00 p.m., 9:00 p.m.]. A 

time window falling within one of these categories is randomly assigned to each 

linehaul customer. The time window is repeated each day through the planning 

horizon. The results obtained from five runs, each with different seed values, but with 
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the same inputs are run. Each run involved 100,000 iterations. These results are 

provided in Table 10.  

Table 10 Average solution value for the case study with restrictive time windows by 

number of iterations completed 

Number of Iterations 
Average tour duration of solution (days)  

1st run 2nd run 3rd run 4th run 5th run Average 

1,000 4.358 4.361 4.348 4.345 4.347 4.352 

5,000 4.332 4.346 4.342 4.333 4.342 4.339 

10,000 4.332 4.346 4.331 4.330 4.328 4.333 

20,000 4.331 4.333 4.311 4.329 4.328 4.327 

30,000 4.329 4.333 4.311 4.327 4.322 4.324 

40,000 4.329 4.325 4.311 4.327 4.322 4.323 

50,000 4.329 4.325 4.311 4.327 4.322 4.323 

60,000 4.324 4.324 4.311 4.327 4.322 4.322 

70,000 4.324 4.324 4.311 4.327 4.319 4.321 

80,000 4.324 4.324 4.311 4.327 4.319 4.321 

90,000 4.324 4.324 4.311 4.327 4.319 4.321 

100,000 4.324 4.324 4.311 4.327 4.319 4.321 

 

Figure 12 Comparison of the solution value in different runs by the number of 

iterations 

From Figure 12, the average result shows that gradual improvement was 

observed over the iterations. The average tour duration obtained after 100,000 

iterations is 4.32 days. This shows that the algorithm can be used to give solutions 
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even within more restrictive time windows. Furthermore, as expected, the average 

tour duration increases with reduced time window range. Even with these 

significantly reduced time windows, the obtained solution requires shorter average 

tour length than SCCC obtains.  

The TDBSP is formulated with a fixed vehicle fleet; however, in the case 

study, the fleet size is not imposed. This is because the number of vehicles in SCCC's 

fleet exceeds their demand. It may be beneficial for the company to consider 

measures for reducing the number of vehicles employed in serving the customers. 

The framework proposed herein permits such consideration. 
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Chapter 8:  Conclusions 

In this study, the Truckload Delivery with Backhaul Scheduling Problem (TDBSP) is 

formulated and an ACO methodology developed for a related problem, the 

VRPBTW, is adapted for its solution. The TDBSP differs from the VRPBTW in that 

shipments are in units of truckloads, multiple time windows over multiple days are 

available for delivery to customers, limited space for servicing customers is available 

and multiple visits to each customer may be required. The problem is motivated by a 

real-world application arising at the Siam Cement Public Company Limited (SCCC), 

a leading cement producer in Thailand. SCCC uses lignite as the main energy source 

for its production plant. Lignite mines are abundant in their area of operations, 

particularly in Northern Thailand. Thus, to reduce costly empty backhaul movements, 

the company combines trips to deliver cement to customers with hauling lignite back 

to the production plant. Experts at the SCCC production plant assign vehicles to 

cement customers and lignite mines based on manual computations and experience. 

This study provides mathematical and computational frameworks for addressing this 

real-world problem. 

The primary contributions of this work are (1) the conceptual framework for 

interpreting the real-world problem arising at SCCC and other companies with similar 

problems as an optimization problem; (2) development of a mixed linear integer 

formulation for the conceived TDBSP; (3) modifications to an insertion based ants 

optimization method designed for a related, but different problem; and (4) analysis of 

the performance of the proposed techniques on a real-world problem instance.  
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Additional practicalities of the real-world application might be considered in 

modeling this problem. For example, it was assumed that the mines have unlimited 

stocks of lignite. In reality, the amount of stock at each mine may vary from day to 

day. If the lignite mines are able to predict their stock levels for the planning horizon, 

time-dependent lignite availability might be considered. If such information is not 

shared with lignite customers and stock out is possible, the tours may need to be 

dynamically updated. 

The monthly demand for cement at customers and lignite at the company are 

nearly equivalent over a typical month; however, these demands vary from week to 

week, creating the imbalances that cause the need for empty backhaul. To reduce 

such empty backhaul, the company may consider timing sales incentives and 

promotions or using other demand management strategies accordingly. Additionally, 

they might consider stocking excess lignite at the production plant.  

Finally, the actual demand for lignite at the production plant in reality is a 

function of the energy potential of the lignite that is purchased from each mine. No 

information concerning the energy potential of lignite excavated from the various 

mines is available to the company. However, if this information could be known in 

advance, the formulation and solution technique could be appropriately modified to 

provide solutions that incorporate backhaul trips involving a heterogeneous set of 

lignite mines that meet energy needs rather than requiring a fixed number of 

truckloads from homogeneous lignite sites. 
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The performance of the developed insertion based ants optimization 

methodology might also be compared with that of alternative solution techniques that 

might be developed on a tabu search or simulated annealing framework. 
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Appendix 

This appendix provides the results of the Table 4.1 including the schedule, total trip 

duration, objective function value and computational time for each instance. 

    matrix represent the travel time between linehaul customer and backhaul 

customer. Vector       represents travel time between linehaul customer, i, and depot, 

as well as vector      for backhaul customer, j.     and    represent earliest and latest 

time periods of each day that linehaul customer i can be delivered. 

The input assumed zero service time, si, for all nodes. The symmetric travel 

time is assumed for every pair of nodes. Total delivery demand at each linehaul 

customer and amount of available pickup at backhaul customers is assumed to be one 

truckload.   is set to 4 periods. A limit of one vehicle is imposed at each site per time 

period,      = 1,      . To give priority to solutions with shorter tour duration, the 

coefficient c in the objective function is set to be 0.99.  

The representation of instance inputs,  : U: DC: D0: TW, are defined in 

Chapter 4. On the schedule element, each column represents time period and each 

row represents tour assigned for each vehicle. C# in the schedule element means the 

vehicle arrival time period at linehaul customer #, as well as M# for backhaul 

customer #. Blackened block means the time period that vehicle starting from or 

arrival at the depot. Runs were performed using IBM's ILOG CPLEX OPL 12.2 and 

were conducted on a computer with Intel Core i5 CPU and 2.0 GB of RAM. The 

order of instances is the same as in Table 4.1. The following shows the details of 

obtained results. 
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Instance I1 - 4:4:5:3:1 

    

(

 
 

 
 

 
 

 
 
 

 
 
 

 
 
 
 
 )

 
 

 

     [         ]        [     ]   

   [         ]     [         ]  

Result  

v\t  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1  1 C4 1             

2      1  C5  1       

3     1 C1 M3  1        

4   1  C2 M1  1         

5 1  C3 M2   1          

Total duration = 21 

Objective function value = 20.91 

Computational time = 45.44 Sec  
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Instance I2 – 4:4:5:3:0 

    

(

 
 

 
 

 
 

 
 
 

 
 
 

 
 
 
 
 )

 
 

 

     [         ]        [     ]  

Result  

v\t  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1 1  C3 M2   1          

2      1  C5  1       

3  1 C4 1             

4     1 C1 M1  1        

5   1  C2 M3  1         

Total duration = 21 

Objective function value = 20.91 

Computational time = 69.56 Sec  
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Instance I3 – 4:5:2:2:0 

    (
  
  

) 

     [    ]        [    ]  

Result 

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1  1  C2 M2  1              

2 1 C1 M1 1                 

Total duration = 8 

Objective function value = 7.93 

Computational time = 0.63 Sec  
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Instance I4 – 4:5:3:3:0 

    (
   
   
   

) 

     [     ]       [     ]  

Result 

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1   1 C3 M3 1               

2 1 C1 M1 1                 

3  1  C2 M2  1              

Total duration = 11 

Objective function value = 10.95 

Computational time = 5.19 Sec 
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Instance I5 – 4:5:4:4:1 

    (

  
  

  
  

  
  

  
  

) 

     [       ]       [       ]  

   [       ]     [       ] 

Result 

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1 C3 M3 1                 

2  1 C1 M4  1               

3     1  C4 M1 1            

4   1  C2 M2  1             

Total duration = 16 

Objective function value = 15.91 

Computational time = 35.46 Sec  
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Instance I6 – 4:5:4:4:0 

    (

  
  

  
  

  
  

  
  

) 

     [       ]       [       ]  

Result  

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1   1 C1 M4  1                            
2     1 C3 M3 1              
3    1  C2 M2  1             
4 1  C4 M1 1                             

Total duration = 16 

Objective function value = 15.90 

Computational time = 37.13 Sec  
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Instance I7 – 4:5:5:5:1 

    

(

 
 

  
  

   
   

  
  
  

   
   
   )

 
 

 

     [         ]       [         ]   

   [         ]     [         ] 

Result  

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1     1  C4 M1 1            

2       1 C1 M3 1           

3 1 C3 M5 1                 

4  1 C5 M2  1               

5   1  C2 M4  1             

Total duration = 19 

Objective function value = 18.94 

Computational time = 651.86 sec  
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Instance I8 – 4:5:5:5:0 

    

(

 
 

  
  

   
   

  
  
  

   
   
   )

 
 

 

     [         ]        [         ]   

Result  

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1 C3 M1 1                 

2  1 C5 M2  1               

3   1  C4 M4  1             

4     1  C2 M5 1            

5       1 C1 M3 1           

Total duration = 19 

Objective function value = 18.94 

Computational time = 1198.26 sec  
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Instance I9 – 4:5:6:6:0 

    

(

  
 

   
   
   

   
   
   

   
   
   

   
   
   )

  
 

 

     [           ]        [           ]   

Result 

v\t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1         1 C3 M5 1         

2 1 C5 M3 1                 

3  1  C6 M1 1               

4     1  C2 M2  1           

5   1  C4 M4  1             

6       1 C1 M6  1          

Total duration = 24 

Objective function value = 23.97 

Computational time = 65279.36 sec 
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