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Current state-of-the-art coupled data assimilation systems handle the ocean

and atmosphere separately when generating an analysis, even though ocean atmo-

sphere models are subsequently run as a coupled system for forecasting. Previous

research using simple 1-dimensional coupled models has shown that strongly coupled

data assimilation (SCDA), whereby a coupled system is treated as a single entity

when creating the analysis, reduces errors for both domains when using an ensemble

Kalman filter. A prototype method for SCDA is developed with the local ensemble

transform Kalman filter (LETKF). This system is able to use the cross-domain back-

ground error covariance from the coupled model ensemble to enable assimilation of

atmospheric observations directly into the ocean. This system is tested first with the

intermediate complexity SPEEDYNEMO model in an observing system simulation

experiment (OSSE), and then with real observations and an operational coupled

model, the Climate Forecasting System v2 (CFSv2). Finally, the development of a

major upgrade to ocean data assimilation used at NCEP (the Hybrid-GODAS) is



presented, and shown how this new system could help present a path forward to

operational strongly coupled DA.
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Dedication

My wife: “You should plant pansies outside.”

Me: “We should be getting a hard freeze soon, it’s pointless!”

Me two months later in late December: “It’s been 60 degrees outside for weeks, I

should have planted pansies a long time ago!”

...may my research someday help improve short-term climate forecasts, so I’ll know

when to plant the stupid pansies.
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Chapter 1: Introduction

1.1 Data assimilation in coupled ocean atmosphere models

Coupled ocean-atmosphere models have become increasingly important to im-

proving operational numerical weather prediction for a wide range of phenomena.

Such phenomena on seasonal climate timescales include the forecasting of the El

Niño Southern Oscillation (ENSO) and the Madden Julian Oscillation (Madden

and Julian, 1972; Zebiak, 1989). It has been shown that improvements on shorter

time-scales can be made with coupled ocean-atmosphere models as well for tropi-

cal cyclones (Fu et al., 2007) and annual monsoons (Klingaman et al., 2008). The

importance of such systems can be noted by the choice of the European Centre for

Medium-Range Weather Forecasts (ECMWF) to transition to fully coupled models

for all of their operational numerical weather prediction.

Climate models typically consist of separate domains, modeled independently,

which are then coupled together when running the forecast. For example, an earth

system model might be composed of individual ocean, atmosphere, land, ice, and

wave, models. This work will focus primarily on data assimilation in a coupled ocean-

atmosphere model context, though the concepts can be applied to all components

of a coupled Earth system model that would normally be considered as separate

1



domains.

In order to initialize these coupled models, an accurate estimate of the initial

state of the atmosphere and ocean is required. Over the past several decades nu-

merical weather prediction has advanced in part due to progress made in producing

these initial conditions more accurately. The process of generating this objective

analysis is known as data assimilation (DA), and can be described most succinctly

as combining current observations with past information (from a previous model

forecast) to produce an analysis, the best estimate of the system’s current state.

DA methods have evolved from simple nudging, optimal interpolation (OI), and

three dimensional variational (3DVAR) methods, to the more advanced ensemble

Kalman filter (EnKF) and four-dimensional variational method (4DVAR) (Kalnay,

2003). Today, further advances are made in the area of data assimilation by com-

bining the most advanced of these existing methods into hybrid EnKF/Var systems

(Bannister, 2017).

The data assimilation methods used for coupled models can be broadly divided

into three categories summarized by fig 1.1:

1. uncoupled DA - A separate ocean background forecast and atmosphere back-

ground forecast are used with separate data assimilation.

2. weakly coupled DA (WCDA) - A single coupled forecast is used for the

background, but DA is still performed separately on the ocean and atmosphere.

3. strongly coupled DA (SCDA) - A single coupled forecast is used for the

background, and a single DA system is used for generating the analysis.

2



It is important to remember that here the word “coupled” when describing

data assimilation refers to how the domains interact with each other for the gener-

ation of the analysis, and not with subsequent longer forecasts using those initial

conditions. Uncoupled DA (fig 1.1a) uses the background forecast from separate

ocean and atmosphere model runs, and also performs data assimilation on each do-

main completely independently (e.g. Saha et al. (2006); Maclachlan et al. (2015)).

As an example, the original Climate Forecasting System (CFS) used at the Na-

tional Centers for Environmental Prediction (NCEP) starting in 2004 (Saha et al.,

2006), was a coupled ocean-atmosphere-land model that was used for climate fore-

casts. However, the initial conditions for the background were obtained from data

assimilation cycles that used different stand-alone models. The atmospheric ini-

tial conditions were obtained from the atmosphere-only NCEP Reanalysis-2 (R2)

(Kanamitsu et al., 2002), and the ocean initial conditions were obtained from the

ocean-only Global Ocean Data Assimilation System (GODAS) (Behringer and Xue,

2004). R2 is prescribed sea surface temperatures from an independent SST product,

and the GODAS ocean is given atmospheric fluxes from the independent R2 run.

So, although CFS was a coupled model, it utilized uncoupled data assimilation to

initialize the model.

With weakly coupled DA (fig 1.1b), the same coupled model that is used for

subsequent forecasts is also used to generate the background for the data assimilation

cycle. The actual data assimilation is, however, still then done separately. Infor-

mation can be transferred between the two domains only through the integration

of the background forecast. Therefore assimilation of observations in one domain

3



Figure 1.1: Schematic of ocean-atmosphere data assimilation coupling types: un-
coupled (a), weakly coupled (b), and strongly coupled (c).

take time to become beneficial, if ever, to the other domain. WCDA has been per-

formed successfully in at various centers including the UK Met Office (Lea et al.,

2015), GFDL (Zhang et al., 2007), and NCEP (Saha et al., 2014), and has been

shown to possibly produce better forecasts due to better initial conditions from the

weakly coupled DA. The CFSv2, for example, uses the Climate Data Assimilation

System (CDAS), in which the same coupled model is used for the forecasts and for

the generation of the background for the data assimilation.

When initializing any model there is a potential for ”initialization shocks”

whereby some type of imbalance, artificially generated as an artifact from the data

assimilation cycle, is present and can degrade the initial forecast performance. This

is true of any model, but coupled models present additional opportunities for gener-

ating initialization shocks. As described by Mulholland et al. (2015), these shocks

can occur when:

1. using an uncoupled model to produce the initial conditions for the coupled
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forecast model

2. using a different forecast model than the model used for the data assimilation’s

background

3. using the same model, but with different or removed bias correction schemes

All of the above instances produce initial conditions that may be initially

incompatible with the coupled model and so require a spin-up time while the flux

balances adjust. Using the same coupled ocean atmosphere model for the forecasts

as is used for the data assimilation should therefore reduce the initialization shocks

that would otherwise be produced. Reducing these initialization shocks is thought

to be important for improving seasonal forecasts (Balmaseda and Anderson, 2009)

and the Madden-Julian oscillation (Marshall et al., 2011).

There are several reasons why uncoupled DA had been, and still is in some

situations, preferred over WCDA. Drifts in coupled ocean-atmosphere models are

a common problem, and unless they are properly accounted for these drifts can

significantly impact the background used in the data assimilation. For example, it

is a currently reoccurring problem for NCEP’s weakly coupled CDAS used in the

CFSv2 that the ocean in the tropical Atlantic develops a large cold bias and drifts

away from observations. However, the standalone ocean-only GODAS, for which

the data assimilation system is nearly identical, does not drift.

Strongly coupled DA (SCDA) (fig 1.1c) uses a coupled forecast for the back-

ground, similar to WCDA, but then also performs the data assimilation as a single

system. In this way, observations in one domain are able to immediately impact
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other domains during the analysis step. SCDA is able to transmit corrections to

the state of one domain both through the integration of the model background fore-

cast, and also by utilizing the cross-domain background-error covariance during the

analysis step. Such coupling allows observations in one domain to instantaneously

impact the state variable in the other domain. Strongly coupled DA should be able

to extract more information from the same observations, given that there are mean-

ingful ocean-atmosphere correlations to be used by the data assimilation system,

and should retain a better balance between the two domains.

It is being increasingly realized by various centers in the United States (Na-

tional Academies of Sciences Engineering andMedicine, 2016) and Europe (ECMWF,

2016) that moving from weakly to strongly coupled DA has the potential to be bene-

ficial for sub-seasonal to seasonal (S2S) prediction and may be crucial for improving

long range forecasts. There are currently no operational systems utilizing SCDA for

Earth system models, and until now, the majority of research into SCDA has been

performed using simplistic models. Efforts are now being made to accelerate the

development of SCDA research (Lawless, 2012; Penny and Hamill, 2017).

There are several reasons why ocean-atmosphere models have used WCDA, ini-

tializing the two domains independently. There is often a much higher observational

coverage in the atmosphere compared to the ocean, and additionally ocean obser-

vations had traditionally been slower to be processed, lagging behind the sub-daily

times common for synoptic atmospheric observations. Advancements in data assim-

ilation have usually been focused on improving the atmosphere first, and so ocean

DA has generally lagged behind. For example both NCEP (Kleist and Ide, 2015)
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and ECMWF (Bonavita et al., 2012) have operational hybrid ensemble/variational

DA systems for the atmosphere, though are still using traditional 3-D variational

methods for the ocean (Saha et al., 2014; Mogensen et al., 2012). There have been no

significant updates to the global ocean DA system used by NCEP since about 2003

(Behringer and Xue, 2004) relying on the same 3d variational system. Different tem-

poral and spatial scales and different grid types by each model adds complications

as well.

Much work goes into specifying the background error covariance for either an

atmospheric or oceanic variational data assimilation system, and needing to specify

cross domain covariance would greatly add to the difficulty. The ocean-atmosphere

boundary layer between two domains, is often insufficiently modeled. The first level

of NCEP’s current global ocean system is 10 meters thick, far too coarse to properly

resolve a diurnal cycle in the ocean. It is recognized that the vertical resolution of the

models at the interface, and parameterizations used for representing the boundary

layer need to be improved (Grissom et al., 2017; Cravatte et al., 2015).

1.2 Strongly coupled DA and recent research

The possible reduction of initialization shocks is one motivation for moving

from uncoupled data assimilation to weakly coupled DA (Mulholland et al., 2015).

Even when the same model is used for the data assimilation background and the

subsequent forecast, initialization shocks can still occur due to the way in which

the data assimilation is performed. For example, ensemble data assimilation often
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specifies a localization radius, eliminating the impact of an observation from model

grid points that are too far away to account for spurious correlations caused by

insufficient ensemble size (Greybush et al., 2011). If the localization radius is too

small, such as less than the Rossby radius of deformation, the analysis is left in an

imbalanced state, and gravity waves are generated at the first time-steps of the fore-

cast, and therefore represent an initialization shock. This has been observed within

a single model domain, but it is also likely that weakly coupled data assimilation

(which is in effect using domain localization) is generating cross domain shocks, as

the surface states and fluxes might no longer be in a physically realistic state.

No operational strongly coupled ocean-atmosphere data assimilation system

currently exists but the closest to SCDA is the coupled ECMWF reanalysis (CERA)

(Laloyaux et al., 2015). With this system, the atmosphere data assimilation is per-

formed with a 4DVAR, and the ocean with a separate 3DVAR. The analysis step

is therefore inherently weakly coupled DA, and observations do not directly impact

across the domain. However, the 4DVar uses an outer loop, whereby a minimization

is performed with the tangent linear model, and then the full non-linear coupled

model is run again before repeating the inner loop minimization. By using the full

coupled model in the outer loop, the observations are able to indirectly impact the

opposite domains as can be seen in single observation experiments (fig 1.2). This

method lies somewhere between SCDA and WCDA (Quasi-SCDA), since the varia-

tional minimization does not work across the domain, but the analysis is impacted

due to the model integration of the outer loop.

Most research with truly strongly coupled data assimilation has been carried
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Figure 1.2: Single observation tests with the ECMWF CERA climate reanalysis
showing the cross domain impacts due to it’s ’quasi-strongly coupled’ implementa-
tion. A single ocean temperature observation at 5m depth (left). A single atmo-
spheric zonal wind observation at the lowest atmospheric level (right). (Laloyaux
et al., 2015)
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Figure 1.3: A simplified coupled ocean-atmosphere single column model from Liu
et al. (2013).

out using simple one-dimensional toy models, such as coupled Lorenz models (fig 1.3).

Most have used an EnKF (Lu et al., 2015a; Liu et al., 2013; Han et al., 2013; Luo and

Hoteit, 2014; Tardif et al., 2014) although some work has been done with 4DVAR

data assimilation as well (Smith et al., 2015). Liu et al. (2013) found that strongly

coupled DA provides substantial improvements, with the greatest impacts seen by

assimilating atmospheric observations into the oceans in the extra-tropics. Tardif

et al. (2014) found that the Atlantic meridional overturning circulation (AMOC) in

the ocean can is not be correctly initialized in their low dimensional model even

when only time averaged atmospheric observations are assimilated.

One study to date with a more realistic coupled ocean atmosphere model has

explored SCDA (Lu et al., 2015b). Lu et al. (2015b) uses a low resolution ocean
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atmosphere model to assimilate averaged atmospheric observations into the ocean.

They found that weakly coupled DA is detrimental with regard to maintaining a

proper correlation at the ocean atmosphere interface fig 1.4. Also, correlations

between the two domains are stronger when the atmospheric observations are aver-

aged over at least a week. A method called the lagged average coupled covariance

(LACC) is developed. Using this method, they find that they, similar to the sim-

plified 1-dimensional models, are able to improve the extra-tropics by assimilating

atmospheric observations into them (fig 1.5). The LACC experiments, though, were

driven with monthly averaged SSTs, at shorter timescales the signals would have

been damped.

For strongly coupled DA systems to be practical for operational numerical

weather prediction (NWP), the ocean and atmosphere DA cycles should use sim-

ilar observational windows. Ensemble Kalman filters (EnKFs), in contrast to 4D-

Variational methods, perform best with short assimilation windows (Kalnay et al.,

2007). Thus, the EnKF allows for both systems to perform assimilation at the

shorter window length of the atmosphere (Singleton, 2011). With a variational sys-

tem, the cross domain covariance needs to be explicitly defined in some manner.

There is a significant amount of work, even for a single domain in uncoupled DA,

that goes into generating these background error covariances. It would be expected

that things would be further complicated by having to generate the covariances for

a coupled system, though some groups are pursuing this route (Frolov et al., 2016;

Smith et al., 2018). A benefit of the EnKF is that these background-error covari-

ances are automatically generated by the ensemble, assuming that such correlations
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Figure 1.4: Impact of coupled DA on cross domain correlations, from Lu et al.
(2015b).
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Figure 1.5: Impact of strongly coupled DA on intermediate complexity model
from Lu et al. (2015b). Simple simultaneous SCDA worsens the analysis (top) but
assimilating averaged atmospheric observations improves the analysis compared with
WCDA (middle) and simultaneous SCDA (bottom).

13



are indeed present in the model. Special care does need to be taken though to prune

spurious correlations that appear due to rank deficiency of the ensemble (Yoshida

and Kalnay, 2018). Given the EnKFs preference for short assimilation windows,

allowing us to perform all DA at the atmospheric timescale (6 hrs to 1 day), as well

as not needing to manually specify cross-domain background-error covariances, the

EnKF was chosen here to pursue SCDA experiments with a realistic model.

Given that multiple studies with low dimensional ocean atmosphere models

(Liu et al., 2013; Tardif et al., 2014) demonstrate that SCDA has a more beneficial

impact when assimilating the atmospheric observations into the ocean, the initial

experiments for this dissertation will focus on the same method of assimilating

atmospheric observations into the ocean with the LETKF.

1.3 Local ensemble transform Kalman filter

A brief description of how the LETKF operates, and how its formulation can

benefit from strongly coupled DA follows. The LETKF (Hunt et al., 2007) is a

type of ensemble Kalman filter (Evensen, 1994), using an ensemble of forecasts

{

xb(i) : i = 1, 2, ..., k
}

to determine the statistics of the background error covariance.

This information is combined with new observations yo, to generate an analysis

mean, x̄a, and a set of new ensemble members, xa(i). First, the model state is

mapped to observation space by applying a non-linear observation operator H to

each background ensemble member yb(i) = Hxb(i). If the observed and modeled

variables are the same, H is simply an interpolation of the model state to the
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observation locations. The weights w̄a are calculated to find the analysis mean x̄a

P̃a =
[

(k − 1) I+
(

Yb
)T

R−1Yb
]

−1

(1.1)

w̄a = P̃a
(

Yb
)T

R−1
(

yo − ȳb
)

(1.2)

x̄a = x̄b +Xbw̄a (1.3)

where x̄b and ȳb are the ensemble mean of the background in model space and obser-

vation space, respectively, Xb and Yb are the matrices whose columns represent the

ensemble perturbations from those means, and R is the observation error covariance

matrix. Last, the set of weights Wa are calculated to find the perturbations in the

model space for the analysis ensemble by

Wa =
[

(k − 1) P̃a
]1/2

(1.4)

Xa = XbWa (1.5)

In practice, the LETKF is able to calculate the above equations in parallel for

each grid point j using the subset of observations, yo
j , within its localization radius.

This makes the LETKF computationally efficient and highly scalable. For weakly

coupled DA, yo
j contains only observations from the same domain as the grid point
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being considered, whereas yo
j can contain both atmospheric (yo

atm) and ocean (yo
ocn)

observations in strongly coupled DA.

The LETKF benefits from strongly coupled DA in two key ways. First, the

calculation of x̄a by equations (1.1) − (1.3) uses the cross domain error covariance

to allow observations in one domain to directly inform the analysis mean calculated

at grid points in the other domain. This can be especially beneficial to the ocean,

where observations are often sparse compared with the observation densities of the

atmosphere.

Second, the creation of the analysis ensemble by equations (1.4) and (1.5) main-

tains balance between the two domains within each ensemble member. Neighboring

grid points use overlapping sets of observations, and since yo
j will be nearly identical

for adjacent grid points, Wa
j will be similar as well (Yang et al., 2009). Similar

weights for neighboring grid points, both vertically and horizontally, ensures the en-

semble perturbations are kept “matched together” at the domain interface. Weakly

coupled DA is not able to retain this ocean-atmosphere surface balance within the

ensemble members.

1.4 Outline of this research

The goal of this research is produce a prototype strongly coupled ocean-

atmosphere data assimilation system that would be suitable for operational numeri-

cal weather prediction. Previous studies have not been conducted with operational

quality models, and those that have used realistic models are oriented towards differ-
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ent timescales, such as Lu et al. (2015b) focusing on monthly and weekly timescales.

These timescales, and associated methods, are not practical for real-time operations.

The methods developed here will focus on daily and sub-daily SCDA cycles.

The research will be conducted in three steps. The first step toward SCDA in

an operational cycle, described in Chapter 2, will be the construction of a strongly

coupled DA system using the local ensemble transform Kalman filter (LETKF). This

system will be tested with an observing system simulation experiment (OSSE) and

a simplified climate model (SPEEDYNEMO). This model is still able to produce

realistic phenomena, though is simple enough to be run extremely fast.

Next, a realistic, operational quality model, the Climate Forecasting System

version 2 (CFSv2) will be used in Chapter 3, this time under an OSE experiment

using real observations. The model is identical to that which is being used opera-

tionally by NCEP, though with a lower horizontal resolution in the atmosphere due

to computational constraints. This CFSv2-LETKF strongly coupled system will be

tested with real observations. Assimilation of real observations presents a slew of ad-

ditional difficulties such as observation and model biases, and so these experiments

will only be carried out with a limited subset of insitu observations to demonstrate

potential improvements and difficulties with a full system.

Finally, the development of a next generation ocean data assimilation system

(Hybrid-GODAS) at NCEP will be discussed in Chapter 4. While Hybrid-GODAS

does not directly relate to strongly coupled data assimilation at the moment, this sys-

tem uses the LETKF as its backbone, and may form the foundation of a near-future

coupled ocean/ice/wave data assimilation at NCEP, a possible gateway toward a
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full earth system model SCDA system.
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Chapter 2: Intermediate Model OSSE: SPEEDYNEMO-LETKF

Before beginning strongly coupled data assimilation experiments with a full

ocean-atmosphere general circulation model, it is useful to apply the method first

to a more simple, yet still realistic, model. There exists a general hierarchy of cou-

pled ocean-atmosphere climate models, ranging from simplified analytical models

of ENSO variability (e.g. Battisti and Hirst (1989); Zebiak (1989)) and the MJO

(Madden and Julian, 1972) to full scale state-of-the-art models used for operational

climate prediction such as the Climate Forecasting System (CFSv2) (Saha et al.,

2014), Community Earth System Model (CESM) (Hurrell et al., 2013), or Goddard

Earth Observing System Model (Molod et al., 2012), just to name a few. Most

studies of strongly coupled data assimilation to date have been performed using one

extreme of this hierarchy: one-dimensional simplistic models (e.g. Singleton (2011);

Han et al. (2013); Luo and Hoteit (2014)). With the ultimate goal of providing

improvements to the operational coupled data assimilation systems used for numer-

ical weather forecasting, it is therefore logical to move toward studying SCDA with

intermediate complexity models, also known as Earth system model of intermediate

complexity (EMIC), (Kucharski et al., 2013).

EMICs are a big step up in terms of complexity compared with simple one-
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dimensional analytical models and share many similarities with ocean-atmosphere

GCMs. Where they differ from full scale GCMs is usually with regard to lower

resolution, both in the horizontal and the vertical direction, which allows for longer

step sizes and therefore lowers the costs of the dynamical core. Also, parameteri-

zations usually have been simplified as much as possible, such as by not including

a diurnal cycle, which greatly speeds up the radiative transfer parameterizations.

These types of simplifications help reduce the costs of the model physics. Despite

the simplifications present with an EMIC, they are still three dimensional models

with orography in the general shape of the continents and oceans, and are able to

often represent features such as seasonal cycles, Hadley circulations, jet streams,

inter-tropical convergence zones, and even ENSO-like phenomena if system is tuned

correctly. This balance between model speed and the fidelity required to still exhibit

somewhat realistic phenomena is extremely beneficial to ensemble data assimilation.

Multiple iterative experiments utilizing many ensemble members are often required

to test and tune a system. However, this requirement would likely be overly costly

to do first with a full atmosphere-ocean general circulation model (AOGCM).

The SCDA system developed here is designed with an operational data assim-

ilation cycle in mind, namely a 6 hour cycle similar to that used by the National

Center for Environmental Prediction’s (NCEP) Climate Forecasting System version

2 (CFSv2). Since the SPEEDY-NEMO model is very fast, testing can be done in

short time, and the lessons learned in the process and the resulting system developed

can then be ported to use an operational-quality model such as the CFSv2.

Two unique experiments are carried out with the SPEEDY-NEMO, each com-
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paring the performance of weakly coupled versus strongly coupled DA:

1. atmospheric observations only

2. ocean observations only

Experiments with both ocean and atmosphere observations being simultane-

ously assimilated into both domains were attempted as well, but were not successful,

as will be described in the concluding section.

2.1 Method

The following experiments of SCDA with an intermediate model are performed

as a series of observing system simulation experiments (OSSEs). In an OSSE, the

model is first integrated for a long period of time and the output is saved as what is

called a “nature run”. This nature run is the truth from which synthetic observations

are generated and to which the subsequent data assimilation experiment analyses

are compared against to evaluate performance. By utilizing an OSSE with this

nature run, the experiments and performance metrics are simplified because the

truth is known. This would not be the case if initial experiments were to use actual

observations because the truth from which real observations were obtained is not

known. Also, by using the same model in the generation of the nature run as is used

in the data assimilation experiments (known as a “perfect twin” experiment) we can

ignore the effects of model and observation bias that must be handled with actual

observations. A drawback to this approach that must be kept in mind is that since
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model and observation biases are not introduced it is possible that results from such

a system are not actually relevant to an operational system using real observations.

2.1.1 Data assimilation

Data assimilation will be accomplished by using the Local Ensemble Transform

Kalman Filter (LETKF). Two separate systems will be used, one for the atmosphere

and one for the ocean. For the atmosphere, the SPEEDY-LETKF (Miyoshi, 2005)

has widely been used for past data assimilation experiments and will be used here

with only minor modifications. For the ocean, the NEMO-LETKF has been devel-

oped, but it is based mostly on the ocean LETKF developed by Penny et al. (2013).

The general structure of how these computer programs will be connected to form a

strongly coupled data assimilation system are shown in Fig 2.1, with mathematical

justification given by Eq 1.1-1.5. The code for each domain is actually two executa-

bles, OBSOP and LETKF. The OBSOP program first performs the observation

operator on the ensemble model state, yb = Hxb, transforming the state to obser-

vation space. In this case OBSOP is specific to the domain. The SPEEDY-LETKF

OBSOP will only process atmospheric observations, and the NEMO-LEKTF OB-

SOP will only process the ocean observations. Once the observation departures

have been calculated, the next executable, LETKF, can use the departures regard-

less of which domain it comes from. The NEMO-LETKF can use the output from

SPEEDY-LEKTF OBSOP and vice-versa. The only modification to the SPEEDY-

LETKF and NEMO-LETKF LETKF codes required is to inform the solver how the
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vertical localization should be performed for observations from the opposite domain.

xb
ocn

xb
atm

yo
atm

yo
ocn

xa
atm

xa
ocn

background analysis

coupled model 6hr forecast

NEMO-LETKF

SPEEDY-LETKF

LETKF
OBSOP oceanocean

atmosphere atmosphere

SPEEDY

NEMO

ocn obs

atm obs

LETKF
OBSOP

Figure 2.1: Schematic of the LETKF configuration for the coupled SPEE-
DYNEMO system. Shared observational departures (red arrows) between the sepa-
rate LETKF systems enable them to effectively perform as a single strongly coupled
DA system.

It is possible to alternatively have a single strongly coupled SPEEDYNEMO-

LETKF that handles the entire system in one executable. However, it is preferable

to use the approach given here for several reasons. By keeping the LETKF code

separate for the two domains, the code is simpler and easier to follow. Since the

atmosphere and ocean often are run with different grid resolutions, the code is kept
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cleaner by keeping the LETKFs separate. The benefits might seem small for for just

a two domain ocean-atmosphere SCDA system, but the complexity would quickly

add up for a full Earth system model. The land, atmosphere, ocean, ice, wave, etc,

can all be coded as separate LETKFs that are then made into a SCDA system just

by sharing the observation operator output.

It was found that the respective SPEEDY-LETKF and NEMO-LETKF code-

bases contained an unnecessarily large number of places with hard-coded variable

names, which slowed down transition from WCDA to SCDA experiments. Because

of this, a prototype for a universal LETKF that should work with any geophysical

system was created. This publicly available software is a complete re-factorization

of the original Miyoshi code, termed the universal multi-domain LETKF (UMD-

LETKF, Sluka (2018b)) and should allow a future researcher to experiment with

SCDA without having to change any of the LETKF code. All state variables, do-

mains, parameters, etc., are controlled by a set of configuration files. The UMD-

LETKF software is described in more details in Chapter 5, and its development

continues as it is made ready for adoption by the marine modeling group at NCEP.

Inflation methods

To account for errors in the background estimate, covariance inflation is typ-

ically required to keep the ensemble spread from becoming too small or even col-

lapsing. There are several choices for covariance inflation including a constant mul-

tiplicative factor (Anderson, 2001), adaptive multiplicative (Miyoshi, 2011), addi-

24



tive (Houtekamer and Mitchell, 2005), relaxation to prior background (Zhang et al.,

2004), and relaxation to prior spread (Whitaker and Hamill, 2012). Also, during the

model integration stochastic parameterizations (Shutts, 2005; Berner et al., 2009)

can be used to increase the ensemble spread. Additive inflation is typically more

important for dealing with model error (Whitaker and Hamill, 2012). Since we are

using a perfect model OSSE, a form multiplicative inflation will instead be used.

Several of these inflation methods have been previously incorporated into the

LETKF code, but the ones already provided create problems with the ocean. Con-

stant multiplicative inflation is the simplest, but this method causes problems with

the ocean-LETKF. With a constant multiplicative factor, unobserved regions of

the ocean (such as the southern hemisphere before the satellite era, or the deeper

ocean) will have their spread continue to grow unbounded and will eventually blow

up unless artificial bounds are placed on the spread at various locations and depths.

Adaptive inflation (Miyoshi, 2011) is often used for data assimilation exper-

iments with the SPEEDY-LETKF. This method estimates an evolving spatially

varying multiplicative covariance inflation factor, and often works well assuming the

observation network does not change in time and that model grid-point locations

with an observation have all of its state variables observed. Since the same inflation

factor is applied to all state variables, the unobserved state variables can “blow-

up”, unless variable localization is used in the data assimilation. Temperature and

salinity are typically the only widely sampled variables in the ocean, and adaptive

inflation therefore has a tendency to cause the spread of the ocean currents to grow

unbounded and fails to work.
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It is for these reasons that relaxation to prior spread (RTPS) method of

Whitaker and Hamill (2012) was added to the LETKF. This method, shown by

eq 2.1, inflates the spread of the analysis, σa, some percentage, α, back toward the

original spread of the background, σb, where x
′a
i are the analysis ensemble pertur-

bations for each ensemble member i.

x
′a
i ← x

′a
i

(

α
σb − σa

σb
+ 1

)

(2.1)

This method is simple to implement and has the benefit of inflating the anal-

ysis more where observation density is higher (similar to what adaptive inflation

will do), but without over-inflating as adaptive can do if there are no directly ob-

served variables. RPTS was chosen over the similar relaxation to prior perturbations

(RTPP) (Zhang et al., 2004) in part because it was shown by Whitaker and Hamill

(2012) that RTPS is less sensitive to the choice of the α value. RTPP was shown to

blow-up if α is chosen from outside a narrower range of acceptable values, however,

this result was found with a different flavor of EnKF and might not hold true with

the LETKF.
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2.1.2 SPEEDYNEMO model

The SPEEDYNEMO model is a simplified ocean-atmosphere coupled model

that was developed by Kucharski et al. (2015) to investigate the role of the Atlantic

Multidecadal Oscillation (AMO) on the tropical Pacific. The primary benefit of this

model is that the configuration and parameterizations are comprehensive enough to

create realistic atmospheric phenomena while at the same time is computationally

cheap. For example, the atmospheric component by itself is able to perform a

one year simulation in a mere 6 minutes on a single core of a standard desktop

computer (Kucharski et al., 2013). This intermediate-complexity model enables

ensemble experiments with a fast turn around time and is therefore chosen for the

strongly-coupled OSSEs.

The atmospheric component consists of the Simplified Parameterization, prim-

itivE Equation DYnamics (SPEEDY) model, version 41 (Molteni, 2003; Kucharski

et al., 2006). SPEEDY is a hydrostatic, eight-level sigma coordinate spectral model

with T30 resolution and is capable of producing fairly realistic phenomena despite

the simplified parameterizations. This model is a small upgrade from the SPEEDY

model used for the initial LETKF experiments (Miyoshi, 2005), primarily using an

increase in the number of vertical levels from 7 to 8.

The ocean component consists of the Nucleus for European Modeling of the

Ocean (NEMO) (Madec, 2008). NEMO is configured with the ORCA2 grid, a 30

level vertical z-coordinate grid with a 2◦ horizontal tripolar grid that tapers to

0.25◦ at the equator to capture equatorial wave dynamics.
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The SPEEDY and NEMO models are coupled by exchanging SST from the

ocean to the atmosphere, and total heat flux, shortwave radiation, wind stress, and

evaporation minus precipitation from the atmosphere to the ocean. This exchange

was originally performed by the OASIS coupler, though the coupler was removed for

simplicity due to the fact that the coupling period (6 hours) would be the same as

the data assimilation period and so the data assimilation code is used as the coupler.

If a period other than this is required the OASIS coupler will have to be reinserted.

The original SPEEDYNEMO has been modified to produce instantaneous model

output every 6 hours. The LIM ice model that comes with NEMO is turned off

and sea ice distribution is prescribed by using observed monthly climatology from

ERA-15 (Gibson et al., 1999)

In order for the model to produce ENSO-like patterns when run as a freely

running nature run, a flux correction has to be applied. Following Kröger and

Kucharski (2011) a one-way anomaly coupling is applied from the ocean to the at-

mosphere. This corrects a cold bias in the East Pacific. The reduced East-West SST

gradient allows for El Niño-Southern Oscillation-type variability to occur (fig 2.2).

However, the model has an ENSO pattern with a lower frequency and more per-

sistent signal than what should be observed (fig 2.3). Also, the SST anomalies are

slightly too far to the west and do not move northward along the coast.
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Figure 2.2: The spontaneous ENSO-like pattern seen in the SPEEDYNEMO dur-
ing a long nature run. Shown are the SST anomaly over the Niño 3.4 region (a) and
an example of a typical El Niño phase during 2007 (b) and La Niña phase during
2008 (c)
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c)

Figure 2.3: Auto-correlation of NINO3.4 indices (a) for observed conditions (black)
and the SPEEDYNEMO model nature run (red). Power spectrum of observations
(b) and the SPEEDYNEMO model (c). SPEEDYNEMO is shown to produce ENSO
phases that last too long and at a period longer than observed in nature. Image
courtesy of Alfredo Ruiz-Barradas.
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2.2 One-way SCDA with atmospheric observations

Perfect model observation system simulation experiments (OSSEs) are con-

ducted using synthetic atmospheric observations. First, a long free run of the model

is performed and used as the truth for the remainder of the experiments. To generate

this nature run, SPEEDY-NEMO is first initialized with climatological ocean tem-

perature and salinity, an atmosphere at rest, and run freely for 20 years to spin-up.

The subsequent 6 years are then saved as the nature run.

From this run, synthetic rawinsonde observations and satellite retrievals are

generated every 6 hours at the locations shown in fig 2.4. This provides observations

of surface pressure (Ps) and vertical profiles of temperature (T), humidity (q), and

wind(U,V). For each observation the values at the appropriate times and positions

of the nature run are used and independent Gaussian errors are added with zero

mean and unit standard deviation (1 hPA, 1◦ C, 1 g/kg, and 1 m/s). It should

be emphasized that for this first OSSE no ocean observations are generated or

assimilated. For simplicity, observations are only generated at the analysis times,

though a 4D-LETKF that uses observations throughout a window would be expected

to perform similarly. Also, these observations are generated at the exact grid-points,

and so no interpolation is needed from the observation operator.

Two runs of the data assimilation system are performed, one with weakly

coupled DA (WEAK) and a second with strongly coupled DA (STRONG). For

WEAK the atmospheric observations are assimilated only into the atmosphere by

the SPEEDY-LETKF. NEMO-LETKF is not run and the ocean is updated every 6
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Figure 2.4: Locations of atmospheric observations for SPEEDYNEMO OSSE over
a single 6 hour period. The locations of the AIRS-like T and q satellite observations
changes with each 6 hour time period to provide global coverage.

hours only through the normal flux exchanges of heat, momentum, and evaporation

minus precipitation. This method is the standard way a coupled ocean-atmosphere

system would be run given only atmospheric observations.

For the second data assimilation run with strongly coupled DA (STRONG),

both SPEEDY-LETKF and NEMO-LETKF are given the atmospheric observation

departures, thereby allowing the atmospheric observations to be assimilated into the

ocean. In this case the ocean state is corrected both by the fluxes from the atmo-

sphere during the model integration and by the data assimilation that is performed

every 6 hours.

It should be emphasized that in both cases the atmosphere (xa
atm) and the

ocean (xa
ocn) analyses are generated separately by the respective SPEEDY-LETKF

and NEMO-LETKF codes, though for STRONG this is mathematically identical to

having a single LETKF handling the entire state (xa) due to the fact that cross-
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horizontal localization 1000 km
vertical localization (atm) 0.1 ln(∆P )
vertical localization (ocn) none

ensemble size 40
inflation RTPS (αocn = 90% αatm = 60%)

Table 2.1: Data assimilation parameters used by the SPEEDYNEMO OSSEs

domain observational departures are shared with the two systems.

Starting with an arbitrarily labeled date of January 1, 2005, both experiments

are initialized with identical ensemble members that are randomly chosen from sub-

sequent years of the nature run. This gives the initial conditions sufficient error and

spread from which to start the experiments. STRONG and WEAK experiments are

then run for 6 years using the data assimilation parameters summarized by table 2.1.

A horizontal localization radius of 1000km is used in both the atmosphere and the

ocean. Vertical localization in the atmosphere is carried out by each model level

so that observations at one level only have minimal impact on the levels above and

below it.

No vertical localization is used in the ocean, the entire water column is there-

fore able to be updated by the atmospheric observations at the lowest level of the

atmosphere in STRONG. It has been shown that while vertical localization is very

important for atmospheric data assimilation, the ocean performs better without any

vertical localization (Penny et al., 2015). In fact, not using any vertical localization

in the ocean is computationally more efficient, since the analysis needs to only be

calculated once for the entire column instead of separately at each level, and is more

able to produce an analysis where the water column remains in hydrostatic balance.
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The relaxation to prior spread method, or RTPS (Whitaker and Hamill, 2012),

is used and has been tuned with different values for the atmosphere (αatm = 0.6) and

the ocean (αocn = 0.9) so that in the STRONG run an ensemble spread of similar

magnitude to the root-mean-square-error is maintained. The use of different RTPS

values for the two domains is not ideal, however. A major benefit of SCDA is that it

should improve balance at the domain interface, but this balance may be disturbed

by not keeping the ensemble perturbations matched up perfectly. Preferably, other

methods of increasing ensemble spread for the ocean, such as using a higher eddy-

permitting resolution or stochastic perturbations, should be used so that an identical

RTPS value can be used for both domains. These changes are not practical for the

following experiments, though.

Results

The root mean square error (RMSE), as given by eq 2.2, is used as the pre-

dominant verification method for the performance of the experiments. The RMSE

is calculated for the ocean temperature, salinity, and sea surface height, as well as

the atmospheric variables.

RMSE =

√

√

√

√

1

n

n
∑

j=1

(xj − x̂j)
2 (2.2)

The difference in analysis RMSE as compared to the nature run truth for

STRONG minus WEAK (fig 2.6) shows that the ocean is significantly improved

when strongly coupled DA is used to assimilate atmospheric observations into both
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Figure 2.5: Temporally averaged ocean analysis RMSE for the WEAK run. Shown
are upper temperature (a), salinity (b), sea surface height (c), and zonal currents
(d).

the ocean and atmosphere at the same time. The near-surface temperatures and

SSH RMSE are reduced compared with WEAK results by about 50% after an initial

spin-up period of just a couple of weeks. The Northern Hemisphere (NH) and tropics,

which have the largest initial errors in the WEAK run (fig 2.5), also improve the

most in STRONG.
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Ocean salinity errors are reduced more slowly than temperature, but this reduc-

tion continues for several years throughout the duration of the experiment. Globally,

the strongly coupled DA reduces errors in salinity and temperature an average of

46% for the upper ocean over the last 5 years of the experiment.

Annual variations in the RMSE reduction by STRONG can be seen at the

ocean surface (fig 2.6a). The northern hemisphere mid-latitudes experiences the

greatest improvement in SST during the winter/spring months, averaging 52% over

the last 5 years while only 37% over the summer months. The same is true for

the southern hemisphere, though with a smaller amplitude. These results could

be expected due to stronger mid-latitude atmospheric dynamics driving the ocean

during the winter and spring months, as well as well as a deeper mixed layer depth

in the winter.

Figure 2.7 shows the spatial patterns of analysis RMSE reduction between the

two cases. The ocean state is improved most in the NH midlatitudes where the

greatest density of atmospheric observations are and where the ocean is generally

considered to be driven by weather anomalies. The NEMO-LETKF is configured to

use no vertical localization in the ocean, which enables observations above the ocean

to impact the entire water column, accelerating the improvement of the barotropic

mode of the ocean. The strongest improvements in the northern Atlantic extend

down below 2.5 km. Although SST errors are not reduced significantly in the tropical

Pacific, RMSE errors of the subsurface waters in the upper 250m are reduced by

about 1 ◦ C.

Assimilating atmospheric observations into the ocean corrects the sea surface
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a) b)

c) d)

MidLat - NH Tropics MidLat - SH Global

Figure 2.6: Spatially averaged difference of analysis RMSE for STRONG-WEAK
using only atmospheric observations. Negative values indicate improvements by
strongly coupled DA. Shown are results averaged over the Northern Hemisphere
mid-latitudes (blue), tropics (green), and Southern Hemisphere mid-latitudes (red).
Shown are temperatures (a and c) and salinity (b and d) at the surface (a and b)
and deep ocean (c and d). Sluka et al. (2016)
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Figure 2.7: Time mean difference of analysis RMSE for STRONG-WEAK using
only atmospheric observations. Negative values (blue) indicate improvements by
strongly coupled DA. Shown are temperatures (a,c, and e) and salinity (b,d,and f)
over the upper 500 meters (a and b) and cross sections of the Pacific (c and d) and
Atlantic (e and f) basins. Sluka et al. (2016)
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Figure 2.8: Time mean difference of analysis RMSE for STRONG-WEAK using
only atmospheric observations. Negative values (blue) indicate improvements by
strongly coupled DA. Shown are temperature (a) and humidity (b) at the lowest
model levels, and zonal wind speed through the troposphere (c). Sluka et al. (2016)

temperatures in STRONG which then reflect back on the atmosphere, resulting in a

reduction in atmospheric RMSE in STRONG, as shown in figure 2.8. Improvements

in atmospheric temperature and humidity at the lowest model levels overlap the

same areas of the ocean (fig 2.7) experiencing corrected SSTs. Precipitation and

other fluxes are all improved in these areas as well. Zonal winds are improved

throughout the troposphere of the tropical Pacific, presumably from an improved

Walker circulation, as well as over the oceanic NH mid-latitudes.

In addition to the STRONG and WEAK cases using all atmospheric obser-

vations, a similar experiment was performed using only rawinsonde observations

(fig 2.9). Although extremely few observations are directly over the oceans, the

strongly coupled data assimilation was still able to provide similar improvements in
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most regions, except for the Southern Hemisphere where there are too few rawin-

sondes.
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Figure 2.9: Time mean difference of analysis RMSE for STRONG-WEAK using
only rawinsonde observations (top) compared with the rawinsonde and satellite ob-
servations (bottom). Shown are RMSE in upper 512m for ocean temperature (left)
and salinity (right).
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2.3 One-way SCDA with ocean observations

Experiments similar to the previous atmospheric-only observation experiments

are repeated, although this time using only ocean observations in both weakly and

strongly coupled settings. The same nature run is utilized, and the STRONG vs

WEAK experiments are run over the same 2005-2010 time period. This configu-

ration tests what impacts ocean observations have on the atmosphere when using

strongly coupled data assimilation. Synthetic observations are generated to mimic

temperature and salinity profiles from Argo floats (Roemmich et al., 2009) and satel-

lite based sea surface temperature platforms. Argo floats provide temperature and

salinity profiles down to about 2km with nearly global coverage, although with a

sparse 300 or so profiles a day, starting in the early 2000’s. With fewer observations

now being assimilated into the ocean and atmosphere, less inflation was required.

The RTPS value was reduced from 90% to 50% for both the atmosphere and ocean.

Horizontal localization for the ocean is 700km at the equator, decreasing to 200km

at the poles. Atmospheric horizontal localization of 1000km was used.

Roughly 120 temperature and salinity profiles each day are generated with

random locations to simulate the Argo profiles (fig 2.10). These positions are pseudo-

randomly generated, with less likelihood of observations being generated in the polar

regions, or in areas where the ocean depth is less than 2km. The number generated

is less than the actual number of operational Argo profiles that are currently present

in reality, which consists of roughly 3000 floats that give profiles every 10 days, for

a total of 300 profiles a day. This reduction is justified given the reduced resolution
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Figure 2.10: Example location of synthetic Argo T/S ocean profile observations
for one day. The locations are randomly generated to cover an area similar to that
of the actual Argo system with about 200 profiles per day.

and variability of the low resolution NEMO system being used. The values generated

from the nature run have Gaussian noise, with mean of zero, and a depth dependent

standard deviation as given by fig 2.11. This simulates increased errors near the

thermocline. Synthetic satellite based SST observations are generated by randomly

selecting 1/4 of the ocean grid points each day, and adding 1 degree error.

Results of the RMSE differences for STRONG vs WEAK are shown in fig 2.12.

Overall, it can be seen that the error in the heat flux between the atmosphere

and ocean is improved globally when ocean observations are assimilated into the

atmosphere. The mid latitudes require a spin-up of several months before SCDA is

able to outperform WCDA, but then after this period these fluxes are consistently

better throughout the remainder of the experiment. Initially, the other atmospheric

variables plotted (humidity, temperature, and wind speed, all at the lowest model

level) show reduced errors with SCDA for the first 2 years, but then SCDA performs
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Figure 2.11: Argo profile errors are randomly generated with a Gaussian distribu-
tion using depth dependent standard deviation given in the table.
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Figure 2.12: Spatially averaged analysis RMSE for ocean observations only exper-
iments. Shown are results for STRONG (solid) and WEAK (dashed) for both the
tropics (blue) and mid-latitudes (red). Atmospheric variables are heat flux (a), and
humidity (b), temperature (c), and zonal wind (d), at the lowest levels.

the same as WCDA in the tropics. In the extra-tropics, temperature and humidity

continue to have lower RMSE with SCDA compared with WCDA throughout the

duration of the experiment.

The results given in fig 2.13 show that in these experiments the atmospheric

observations have a slightly larger impact with SCDA in the tropics (especially zonal

winds), whereas ocean observations have a stronger impact in the extra-tropics.

This latitudinal variation in the effects of SCDA can possibly be explained

by an observed latitudinal variation of which domain typically dynamically drives

the other. Several studies (e.g. Pena et al. (2003); Ruiz-Barradas et al. (2017))

have sought identify the spatial variation of which domain is the main driver of the

coupled system, the atmosphere or the ocean, by examining the coupled anomalies
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Figure 2.13: Temporally averaged difference of analysis RMSE for STRONG-
WEAK for several atmospheric variables. Shown are experiments using ocean obser-
vations only (left) and atmospheric observations only (right). Variables shown are
at the lowest model level for zonal wind (U), temperature (T), humidity (q), as well
as downward shortwave radiation (SWFlux) and evaporation minus precipitation
(E-P). Ocean observations mainly show improvement in the extra-tropics, whereas
atmospheric observations show improvements in the tropics.
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Figure 2.14: Schematic of local dynamical ocean-atmosphere coupling. Shown
are instances where atmospheric anomalies drive the ocean (top) and where ocean
anomalies drive the atmosphere (bottom). Ruiz-Barradas et al. (2017)

in atmospheric vorticity at 850mb and ocean SST. Figure 2.14 summarizes these

coupled anomalies. The atmosphere typically drives the ocean in the mid-latitudes,

where a cyclonic atmosphere is associated with storminess which drives ocean cool-

ing through reduced shortwave radiation and Ekman upwelling in the ocean. Con-

versely, an anticyclonic atmosphere is associated with higher downward radiation

and therefore a warmer ocean. The opposite is true in the tropics, where the ocean

is typically the main dynamic driver of the coupled system. Warm SST anomalies

lead to convection and subsequent cyclonic vorticity in the atmosphere, while cold

SSTs lead to an anti-cyclonic atmosphere.

With data assimilation, the flow of information across the ocean-atmosphere

domain interface is accomplished in two ways:
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1. the previously explained dynamical forcing which is mediated by the flux ex-

change during model integration

2. by performing SCDA and utilizing the coupled covariance to allow observations

in one domain to impact the other domain

Since the atmosphere is the main dynamical driver of the system in the mid-

latitudes, the impact of atmospheric observations assimilated into only the atmo-

sphere are inherently felt by the ocean anyway even with WCDA thanks to the

atmosphere passing that information to the ocean via the fluxes, and so assimila-

tion of atmospheric observations into the ocean under SCDA have little impact in

the mid-latitudes. On the other hand, if an ocean observation is assimilated into

the ocean only with WCDA, then that information has no way of improving the

atmosphere, since the ocean is not dynamically driving the atmosphere in this loca-

tion. The only way to have an ocean observation improve the atmosphere is through

SCDA. The coupled covariance enables the ocean observation to correct the atmo-

sphere, by choosing the atmosphere that led to that ocean state. In the tropics

everything is reversed, and atmospheric observations have a bigger impact under

SCDA due to the ocean being the main dynamical driver of the atmosphere.

The above results, however, are complicated by the fact that the SPEEDY

atmospheric model has a tendency to easily become unstable during the course of

data assimilation cycles. This problem is more likely to happen for SPEEDY in cases

involving an imperfect model or imperfect boundary conditions. The SCDA and

WCDA experiments performed are inherently using imperfect boundaries, since the
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SST during the data assimilation run will necessarily not be the same as that of the

nature run. These types of instabilities developing in the atmospheric model are the

result of an accumulation of energy at the shortest wavelengths in temperature and

humidity at the lowest model levels (e.g. fig 2.15) and were found by several other

students, Cathy Thomas (Thomas, 2017) and Yan Zhou (Zhou, 2014). It appears

that a regular grid of observations, along with an imperfect model, are enough to

force the problem. Neither student was able to eliminate the spurious high energy

waves completely, but it was found that performing an additional spectral truncation

of the analysis, or performing the analysis at a resolution lower than the forecast

were helpful methods.

Even with attempting additional spectral truncation of the atmospheric state

by removing all spectral coefficients with wave-number n >= 30, SCDA experiments

with ocean observations assimilated into the atmosphere were not able to be run for

indefinite periods of time without the atmospheric model blowing up. The results in

fig 2.12 and fig 2.13 are therefore not completely conclusive. The atmospheric surface

pressure appears fine for the first year or two before the high frequency variations

in tropical pressure become visible. However, even with surface pressure becoming

unstable, the other fields plotted show little difference over the years, meaning the

results might be trusted somewhat. These instabilities, and the inability by several

students to overcome them, are the major reasoning for moving on to more realistic

SCDA tests with the CFSv2 model as described in the subsequent chapters.
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Figure 2.15: Instance of SPEEDY model exhibiting growing standing waves in
the temperature field at the σ = 0.5 level. These waves eventually cause the model
to blow up (top), compared with a normal run (bottom). Image courtesy of Cathy
Thomas.
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2.4 Summary

By performing strongly coupled DA, where the ocean-atmosphere states and

observations are effectively treated as a single system, improvements can be seen

in both domains compared to weakly coupled DA in specific situations. Sharing

the ensemble observational departures between the separate SPEEDY-LETKF and

NEMO-LETKF systems takes advantage of the cross-domain background error co-

variance and allows atmospheric observations to directly impact the ocean. Ocean

observations can similarly improve the atmosphere, though this is more difficult for

long term runs with SPEEDYNEMO given the instabilities in the atmosphere.

Several findings with the SPEEDYNEMO system are interesting and should be

further explored with a more realistic (and more stable) system. It is hinted at that

atmospheric observations have more of an impact with SCDA in the tropics, and

ocean observations having more of an impact with SCDA in the extra-topics. This

latitudinal dependence on the directionality of impact for observations can possibly

be explained in terms of the latitudinal dependence on who the dynamical driver

of the system is. I.e, if the ocean is the dynamical driver, atmospheric observations

should have more of an impact with SCDA since there is no other way for information

from the atmosphere to improve the ocean during model integration. In essence, the

downstream observations improve the upstream domain.

These results contradict other findings (Lu et al., 2015a), but this could be

explained by the fact that the data assimilation cycle period in the experiments

presented here are different. Lu et al. used longer weekly or monthly timescales,
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whereas 6 hourly scales are used here. With the longer data assimilation cycles the

previous assumption of “the atmospheric observations assimilated into the ocean

don’t help much under SCDA in the extra-topics because the atmospheric observa-

tions are felt by the ocean anyway via the flux exchange during model integration”

isn’t necessarily true. If the coupled anomalies have a lag period of several days then

an error in the atmosphere would have enough time to lead to an error in the ocean.

This error could then be corrected by assimilating the atmospheric observations into

the into the ocean with SCDA.

A number of problems were found with the SPEEDYNEMO-LETKF system

that limits its use in studying short, 6-hour, strongly coupled data assimilation

cycles as intended. These include:

• The atmospheric SPEEDY-LETKF can be unstable when imperfect models

are used. In this case, the sea surface temperature boundary conditions pro-

vided by the ocean are inherently going to be imperfect. The LEKTF is then

more likely to excite atmospheric waves at the lower levels that are then not

properly damped by the model.

• The coupling frequency of SPEEDYNEMO is at the same timescale as the data

assimilation length. It is possibly too infrequent for a proper cross domain

covariance to form for use in SCDA.

• The low resolution of the ocean model causes very little ocean variability,

especially in the extra-tropics, as shown in fig 2.13. Because of this lack of

variability, it is difficult to maintain a proper ensemble spread even with large
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values of relaxation. The small spread becomes even more problematic when

atmospheric observations, which are more numerous than ocean observations,

are assimilated into the ocean.

• Due to the low variability of the ocean, the errors in the ocean when assimilat-

ing any ocean observation is very low, meaning the atmospheric observations

have very little ability to improve the ocean and in the case of experiments

tried SCDA actually decreased the performance when all observations are used.

Due to the above mentioned difficulties with the SPEEDYNEMO-LETKF, its

use has proven less than ideal for the 6 hour cycling experiments performed. Since

the SPEEDYNEMO model itself was initially designed for climate length runs, the

system may be better suited for studying strongly coupled data assimilation with

other phenomena at longer timescales such as the Atlantic meridional overturning

circulation (AMOC), Pacific decadal oscillation (PDO), and Atlantic multidecadal

oscillation (AMO), assuming these phenomena are able to be represented by the

model. Such an experiment was performed by Tardif et al. (2014), though with

a more simplistic model. Choices that were made earlier in the development of

the SPEEDYNEMO-LETKF make changing from a 6 hour cycle difficult, and is

therefore easier to switch to a different model (CFSv2) for the remainder of the

experiments.
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Chapter 3: Full Model OSE: CFSv2-LETKF

The goal of this section is to develop a strongly coupled ocean atmosphere

data assimilation system that is geared towards an operational quality model with

a realistic 6 hour or daily data assimilation cycle, such as is used by many opera-

tional centers worldwide. The system that has been built for the simplified SPEE-

DYNEMO in chapter 2 will be modified to utilize a realistic model, namely NCEP’s

Climate Forecasting System v2 (CFSv2). This should additionally alleviate some

of the problems that were occurring with SPEEDYNEMO, particularly the issues

of the atmosphere blowing up when the ocean was assimilated into the atmosphere,

and the low resolution and insufficient ensemble spread of the ocean. This will be

tested, with real observations.

The LETKF used is a combination of the already existing GFS-LETKF

(Lien et al., 2013) and MOM-LETKF (Penny et al., 2013). First, an initial ensemble

will be spunup for several months. Then, WCDA will be used to further spinup

the ensemble members. The cross-domain correlations found in the WCDA results

will then be used to determine which observations should be used in the SCDA

experiment. And finally, a SCDA cycle is run over the same period that was used

for the WCDA run.
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3.1 CFSv2 model

The second version of the Climate Forecast System (CFSv2) is a coupled

atmosphere-ocean-land model that was made operational at NCEP in March of 2011

Saha et al. (2010, 2014). It has been used since by NCEP for seasonal forecasting,

retrospective reanalysis, and reforecasts. The CFSv2 has shown significant skill

improvements in seasonal forecasts for coupled ocean-atmosphere phenomena such

ENSO and Madden-Julian Oscillation. It consists of three separate executables

that are run simultaneously, the atmosphere-land model (GFS), the ocean model

(MOM4), and the coupler. The CFSv2 is used as the forecast model for the Climate

Forecast System Reanalysis (CFSR) that runs from 1979 to 2011 (Saha et al., 2010),

and for the realtime Climate Data Assimilation System (CDAS) that is run to the

present.

The atmospheric component consists of the Global Forecasting System (GFS)

run at a reduced resolution than what the standalone atmosphere for weather fore-

casting is run. For the CFSR a resolution of T382 is used for the 9 hour forecast used

as the background in the data assimilation cycle. The subsequent seasonal forecasts

use a horizontal resolution of T126. There are 64 vertical levels, in a hybrid sigma

coordinate system. The 4 level Noah land surface model (Ek, 2003) is run as part

of the GFS component.

The ocean component consists of the GFDL Modular Ocean Model (MOM)

version 4 run at a horizontal resolution of 1/2 degree with a latitudinal spacing of

1/4 degree near the equator to better capture the equatorial dynamics. The vertical
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coordinates are 40 z* levels.

These two components are coupled at the ocean time step, every thirty min-

utes. The atmosphere accumulates net downward shortwave and longwave radiation,

sensible and latent heat flux, wind stress, and precipitation. The ocean sends back

the atmosphere SST and sea ice fraction. The land model is run as part of the

atmospheric model, and so is not seen directly by the coupler. With coupling every

30 minutes, fluxes are exchanged 18 times in the 9 hour forecast generated for the

background. This is compared with the 6 hour forecast for the SPEEDYNEMO that

used a 6 hour period of the coupling. The strength of the resulting cross domain

covariance should therefore be stronger and more useful for SCDA with the CFSv2.

3.2 Experiment Setup

The observation set to be used consists of the in-situ portion of the observa-

tions used operationally at NCEP for the CDAS. For the atmosphere this is a subset

of the PREPBUFR data as described in table 3.1. Observations such as nexrad

wind reports (VADWND) and wind profilers and acoustic sounders (PROFLR) are

not utilized due to their high density and concentration over land. Ocean observa-

tions consist of the in-situ temperature and salinity profiles from the moored buoys

(MRBs), expendable bathythermographs (XBTs), and Argo floats (ARGO). An ex-

ample of the observation density over a given day is shown in fig 3.1.

The CFSv2 uses a relaxation to OISST in operations for a more accurate anal-

ysis. No relaxation is used in these experiments so as not to dampen the ensemble
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a)

b)

ATM

OCN

Figure 3.1: The subset of conventional observations used in the experiments.
Shown are the atmospheric PREPBUFR obs over a 6 hour period (a) and ocean
profiles over a 24 hour period (b).
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ob type description count

atmosphere observations 288,938
ADPUPA upper-air reports, mainly rawinsondes 74,322
AIRCAR MDCRS ACARS aircraft reports 53,953
AIRCFT AIREP, PIREP, AMDAR, TAMDAR aircraft reports 49,076
SATWND satellite derived motion vectors 20,496
ADPSFC surface land reports (SYNOPTIC, METAR) 31,606
SFCSHP marine surface reports (SHIP, BUOY) 26,569
QKSWND scatterometer wind data from quickscat 11,906
SPSMIR scatterometer wind data from SSM/I 21,010

ocean observations 14,949
OCN T ocean temperature 9,253
OCN S ocean salinity 5,696

Table 3.1: Operational in-situ atmospheric observations used from PREPBUFR
along with counts from a typical 24 hour period (Jun 1, 2005). SFCSHP are the only
observations used by the ocean during strongly coupled DA. Each state variable and
vertical level counts as a separate observations.

spread and weaken the cross domain correlations. Also, without SST relaxation,

larger biases in the ocean are expected, which for the purposes of these experiments

is good as it gives the strongly coupled DA another possible area to improve com-

pared with WCDA.

To generate the initial ensemble the CFSR analysis from January 01, 2005 is

used and run freely for each of the 50 ensemble members until sufficient spread in

both the atmosphere and ocean develops. Tiny perturbations in the atmosphere

quickly give rise to large spread after several weeks, and this difference in forcing

causes spread in the subsurface ocean after several months (fig 3.2).

These members are run for a total of four months until May 01, 2005. Weakly

coupled DA is then performed for one month until June 01, 2005. This is necessary

so that the atmospheric ensemble is collapsed sufficiently so that large analysis

increments from the atmospheric observations do not overly disturb the ocean during
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the spin-up phase of the strongly coupled DA. The final output of the ensemble

members at June 01, 2005 are used as the initial conditions for the subsequent

experiments.

Other methods of generating an initial ensemble are possible, such as using

a random sampling of CFSR analyses from the same month over the historical

reanalysis period, which would help result in a larger and more realistic initial

spread at depth. However, by initializing with random samples of CFSR analyses,

it was found that the ocean had difficulty spinning up without generating large noise

and ultimately diverging if the ensemble differed too greatly from the truth, and so a

single CFSR analysis was used and run for sufficient time to generate ample spread

and errors.

The following parameters are used by the LETKF for all experiments:

ensemble size 50
inflation RTPS at 95%

ATM localization 1000km Hz, 0.4lnP vertical
OCN localization 720-200km Hz, 0.4lnP into ATM

Table 3.2: LETKF parameters used for CFSv2-LETKF experiments with real
observations.

3.3 Control run OSE with WCDA

WCDA ensemble spread/rmsd/bias

The CFS-LETKF is run with weakly coupled DA for one month from May 1,

2005 to June 1, 2005. The ensemble spread of the ocean temperature and salinity
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at various depths is shown in fig 3.2. Compared to the SPEEDYNEMO weakly

coupled runs, the spread in the CFS is much larger and exhibits realistic patterns of

increased spread along the equatorial thermocline and western boundary currents.

This increased spread is likely due in large part to increase ocean model resolution

from 2◦to 1/2 ◦.

The WCDA configuration run is continued for several more months, and the

resulting background minus observation (B-O) bias and RMSD averaged over the

summer months are shown in fig 3.3. There are small upper ocean errors throughout

most of the open ocean (less than 0.5◦C), with larger errors (> 2◦C) in the northern

hemisphere mid latitudes and along the coastlines. These same areas of larger RMSD

also have a large warm bias in the model, as seen from the SFCSHP and ocean B-O

bias.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Ocean ensemble spread after the WCDA spinup for one month, ending
Jun 1, 2005. Temperature in C (left) salinity in PSU (right) at 5m (a,b) 50m (c,d),
100m (e,f) and 500m (g,h) depths on a semi-logarithmic scale.
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SFCSHP ATM T bias SFCSHP ATM T RMSD

Figure 3.3: Background minus observation statistics of bias (left) and RMSD
(right) averaged over JJA of 2005 with weakly coupled DA. Shown are the statistics
for 5m ocean temperature observations (top) and SFCHP atmospheric temperature
(bottom) in C.
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WCDA ensemble cross-domain correlations

The background error cross-domain correlations from a single date in the NH

summer (June 1, 2005) and a single date in the NH winter (December 1, 2005)

are examined to determine how much information within the ensemble is available

for use by SCDA. These data shown are from a single instantaneous time, and not

a climatological average. If there is no correlation shown, SCDA would not be

expected to provide any benefit, and may even harm the analysis if any correlations

present are spurious. The strength of spurious correlations would be expected to

change based on the ensemble size used.

The cross correlations in fig 3.4 and fig 3.5 are generated from the given vari-

ables by calculating the correlation between each atmospheric model level and the

ocean surface level (top) and between each ocean level and the bottom atmosphere

level (bottom) using the ensemble member perturbations. The results are then

zonally averaged.

For the ocean and atmosphere temperature cross correlations, it can be seen

in Fig 3.4 that temperature near the interface is highly correlated as would be

expected. The highest correlation extends down into the ocean to the base of the

mixed layer. The highest correlation extends up into the atmosphere to roughly the

0.9 sigma level. The correlations are stronger in the summer time (NH in fig 3.4a,

SH in fig 3.4b). The plotted values have been normalized due to the differences in

maximum correlation in June and December (0.64 vs 0.36). The June values are

likely artificially large due to insufficient spinp-up time: the ensemble spread in the
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a) b)

Figure 3.4: Zonally averaged instantaneous cross-domain background error corre-
lations represented by the ensemble between ocean temperature at each level and
surface atmospheric temperature (bottom) and atmospheric temperature at each
level and surface ocean temperature (top). Dark blue line indicates location of the
ocean mixed layer depth. NH summer (left) and NH winter (right) are shown. Plot-
ted values have been normalized, maximum correlations are 0.64 for NH summer,
and 0.36 for NH winter.

ocean is large in June, resulting in larger corresponding anomalies in the atmosphere.

The 0.36 maximum correlation value in the winter is closer to the results found from

Feng et al. (2018) with the ECMWF CERA for SST-T2m 3hr ensemble correlations.

Fig 3.5 shows the similar cross correlations against ocean temperature for at-

mospheric humidity (fig 3.5a) and wind speed (fig 3.5b), zonal wind speed and

meridional ocean current(fig 3.5c), and meridional wind speed and zonal ocean cur-

rent(fig 3.5d)in December. The overall pattern of OCN T X ATM Q is similar to

that of OCN T X ATM T, although weaker. Atmospheric wind is shown to be

negatively correlated with surface ocean temperature as a likely result of increase

heat loss from the higher winds. The cross correlations with atmospheric winds are

much weaker than those of temperature and humidity, and so are not likely to be

represented will with a limited ensemble size. Winds are correlated with ocean cur-
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(a) (b)

(c) (d)

Figure 3.5: Zonally averaged instantaneous cross-domain background error cor-
relations represented by the ensemble between the three-dimensional ocean value
and the surface atmospheric value (bottom), and the three-dimensional atmospheric
field and the surface ocean field (top). Variables shown are between ocean temper-
ature and atmospheric humidity (a), ocean temperature and wind speed (b), ocean
meridional currents and atmospheric zonal wind (c), and ocean zonal currents and
atmospheric meridional wind (d). Dark blue line indicates location of the ocean
mixed layer. Plotted values have been normalized, maximum correlations are given
by table 3.3. The ensemble at a single snapshot at 2005-12-01 00Z is used.
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ATM
T q u v wnd vort

T 0.34 0.15 0.07 0.02 0.11 0.06
OCN S 0.04 0.05 0.04 0.03 0.03 0.05

u 0.08 0.06 0.17 0.14 0.11 0.05
v 0.06 0.06 0.21 0.14 0.13 0.03

Table 3.3: The absolute values of the maximum zonally averaged cross correlation
between the given atmospheric and oceanic variables between 60N and 60S on 2005-
12-01 00Z.

rents that are at a 90◦ angle, due to the Ekman transport. Table 3.3 shows a more

complete listing of the absolute value of the maximum cross-domain correlation for

various variables, including derived atmospheric vorticity and divergence. Atmo-

spheric temperature and humidity have the strongest correlations with the surface

ocean.

Observation bias

When the SFCHP observation bias with respect to the model forecast is cal-

culated over the summer months, and separated by observation hour (0, 6, 12, 18Z)

it can be seen that the bias over large parts of the ocean are diurnally dependent

(fig 3.6). The model is systemically colder than observations during the daytime,

and warmer than observations at night. This type of bias is seen in the MERRA2

reanalysis also (James Carton, personal comm.), and is theorized to be a combi-

nation of model and observation biases. The SFCSHP temperature observations

are obtained from ships and so are placed over a warm deck, and variables such

as sensor position and deck color are not well accounted for. As a result the sen-
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00Z 06Z

12Z 18Z

[K]

Figure 3.6: Background minus observation (B-O) diurnal bias shown by comparing
CFS weak run with SFCSHP T observations averaged over JJA of 2005.

sors may read observations warmer than they would otherwise during the daytime.

Also, the CFSv2 ocean model uses a top layer thickness of 10m, and so has a poor

representation of the diurnal cycle.

3.4 SCDA OSE with SFCSHP obs

Single Observation Test

After 1 month of spinup with WCDA configuration, there are several areas,

especially along the coastline, that exhibit large SST errors. The Yellow sea is

chosen as a quick test of the SCDA configuration, the location of the observations

and the background biases are shown in fig 3.7. By independently assimilating the
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ocean observation or atmospheric observation with SCDA, a beneficial cross-domain

analysis increment is generated (fig 3.8).

It is interesting to note that, at least in this one test case, the ocean obser-

vation was able to improve the atmosphere more than the atmosphere observation

was able to. This can be attributed to the difference in the background and obser-

vation error ratio of the two domains. The ocean background spread (not shown) is

larger than that of the atmosphere. The synthetic observations for both the atmo-

sphere and ocean have a prescribed observation error of 1◦C. Therefore, the ocean

observation carries more information about the coupled system compared with the

background than the atmospheric observation does. With SCDA, it is possible that

there are inter-domain observations that are have more impact than intra-domain

observations, depending on the background ensemble spread, cross domain correla-

tions, and the observation error variance.

Experiment Setup

For the full SCDA experiment, only the SFCSHP temperature and humidity

observations are assimilated into the ocean. These are the most abundant insitu

atmospheric temperature observations over the ocean, and given that the ocean and

atmosphere temperature cross correlations were the strongest in the WCDA run,

other atmospheric observation types will not be used. By removing observations

of model states shown to have small cross domain correlations, a form of variable

localization (Kang et al., 2011) is essentially being used. Since the GODAS ocean
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Figure 3.7: Location of the single test observations (yellow dots) and background
bias for the ocean (top) and atmosphere (bottom).
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Figure 3.8: Vertical cross section of the SCDA analysis increment resulting from
assimilating a single atmospheric temperature observation (top) and a single ocean
temperature observation(bottom).
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Figure 3.9: The subset of observations that are used across domains with SCDA.
Shown are the top level ocean observation (top) and SFCSHP T and q (bottom)
over the months of June, July, August in 2005.

70



observation dataset has already undergone daily averaging, the assimilation of the

upper ocean observations into the atmosphere would be more difficult. So, as with

the SPEEDYNEMO experiments, only a one-way atmosphere into the ocean SCDA

experiment will be attempted with real observations.

Both the ocean and the atmosphere LETKF are running in 6 hour cycles.

However, ocean observations are only available every 24 hours, whereas atmospheric

observations are available for each 6 hour cycle. Given that the ocean DA is essen-

tially only occurring every 24 hours, how often should atmospheric observations be

assimilated into the ocean, 6 hours or 24 hours? Synchronous SCDA (fig 3.10a),

is called so because the atmosphere observations are assimilated into the ocean at

the same time as they are into the atmosphere. Initial experiments with the CFS

failed with synchronous SCDA. This is likely due to the large diurnal bias discovered

(fig 3.6) resulting in repeated shocks to the ocean by pulling it in opposite directions

every 12 hours.

For SCDA to be successful, the model and observation biases could be ad-

dressed (which is important, but outside the scope of this work). Or, a longer

window can be used for the ocean DA. Asynchronous SCDA (fig 3.10b), assimilated

the atmospheric observations into the atmosphere every 6 hours, but those ensemble

observation departures are saved up and then used in the ocean data assimilation

every 24 hours, the same time that ocean observations are present. This is a similar

concept to the lagged average coupled covariance of Lu et al. (2015b), except with-

out any explicit averaging of the observations, leveraging the ability for the LETKF

to operate as a 4D-EnKF.
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00Z

atmosphere

ocean

06Z 12Z 18Z 00Z 06Z 12Z

00Z

atmosphere

ocean

06Z 12Z 18Z 00Z 06Z 12Z

a) synchronous assimilation

b) asynchronous assimilation

Figure 3.10: Synchronous SCDA (top) whereby atmospheric observations are
assimilated into the ocean at the same time they are assimilated into the atmo-
sphere (every 6 hours). Asynchronous SCDA (bottom) where the atmospheric
observation are assimilated into the ocean at the normal ocean cycle time (every 24
hours).
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It is not obvious that an asynchronous SCDA method would work, however

it does if the background and analysis ensemble members stay ”matched up” after

the analysis step. The local ensemble Kalman filter, LEKF, (Ott et al., 2004), on

which the LETKF is based, has the beneficial property that the distance between

the background and analysis ensemble member is minimized (see Ott et al. (2004)

Appendix A). This has been shown to be useful by Kretschmer et al. (2015), who

has developed the climatologically augmented LETKF (CaLETKF). The CaLETKF

splits the ensemble members into dynamic and static ensemble members, the first

kd members are always the dynamic members. Separating the ensemble members

this way works because there is a natural correspondence between the perturbation

direction of a given ensemble member’s background and analysis with the LETKF.

Results

Comparing the resulting SCDA run to WCDA over the summer months in

fig 3.11, the errors in the 6 hour background for atmospheric temperature are greatly

reduced in the northern hemisphere where there is the greatest density of observa-

tions. SFCSHP temperature RMSD reduction is 13% by the end of August in the

northern hemisphere, with small improvements of 3.8% and 2% seen in the southern

hemisphere and the tropics, respectively.

Shown spatially (fig 3.12), both the ocean and atmosphere are shown to have

improvements in the northern hemisphere in the same regions shown to have the

large biases. There is some degradation in the ocean near the coasts. For better
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Figure 3.11: The RMSD for atmospheric SFCSHP surface ship temperature ob-
servations comparing the 6 hour forecast to the observed values. Shown are results
with WCDA (dashed) and SCDA (solid) averaged over the northern hemisphere
(NH), tropics (TP), and southern hemisphere (SH)

performance, the SFCSHP observations close to land should be excluded.

The SCDA-WCDA O-F RMSD at various depths is shown in fig 3.13. It can

be seen that the RMSD of the tropical ocean is reduced between the surface down to

100m. In the northern hemisphere however, only the upper ocean is improved, and

is in fact degraded below 15m. This is likely due to spurious correlations between

the surface and the deeper ocean due to insufficient ensemble size.

The ocean in the extra-tropics during the summer time have a very shallow

mixed layer (fig 3.14). As was shown with the WCDA correlations, the strongest

correlations between the ocean and the atmosphere exists within the mixed layer.
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Figure 3.12: STRONG - WEAK change in observation minus forecast (O-F)
RMSD for atmospheric temperature at the lowest model level (top) and upper ocean
temperature (bottom).
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Figure 3.13: STRONG - WEAK change in observation minus forecast (O-F)
RMSD for ocean temperature. Averaged over the tropics (TP) and Northern Hemi-
sphere (NH) at various depths (left) and shown spatially (right). For the spatial
plot blue is an RMSD improvement, red is a degradation.

Therefore, to further improve performance, the vertical localization needs to be

applied to limit the impact of the atmospheric observations to the mixed layer. The

tropics exhibit a slightly deeper mixed layer, which explains why the tropical ocean

has a consistent reduction of RMSD to a deeper depth.

3.5 Summary

The strongly coupled data assimilation experiments performed with the CFSv2

and real observations has demonstrated that SCDA in an operational context might

be possible if done carefully, however model and observational biases likely need
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Mixed layer depth* JJA average

*MLD defined as level where θ = θ10m ± 0.2°C

Figure 3.14: The depth of the mixed layer averaged over the JJA months for 2005
in the WCDA experiment as calculated by a change in surface temperature of 0.2C.

to be addressed first before any substantial improvements can be had with real

observations.

A coupled run with weakly coupled DA is beneficial for identifying the state

variables and observation types that have a chance to provide beneficial impacts to

the SCDA analysis. Using vertical and variable localization (Kang et al., 2011) as

a form of correlation cutoff method (Yoshida and Kalnay, 2018) is vital when using

a limited ensemble size. These cross-domain state variables with small correlations

need to be removed in the data assimilation step in order to avoid the detrimental

impact of spurious correlations in the ensemble.

The weakly coupled CFSv2-LETKF runs exhibited a strong bias in parts of

the northern hemisphere, when examining the observation minus forecast statistics.
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These areas were the areas most easily helped by using SCDA to assimilate the

atmospheric surface temperature and humidity into the ocean. Areas without a

large ocean bias did not improve as substantially.

The CFSv2-LETKF was difficult to get working well in a SCDA setting. This

was due to the very strong diurnal signal in the atmospheric observation minus

forecast biases. For a well tuned ocean-atmosphere SCDA to work correctly, the

vertical resolution of the ocean model needs to be increased to allow for better

representation of the surface diurnal cycle, and bias correction of the atmospheric

observations needs to be performed. As a work around, asynchronous SCDA was

utilized. With asynchronous DA, the 6-hourly atmospheric observation ensemble

departures were collected for several cycles and then assimilated into the ocean at

the 24-hour interval the ocean observations were present. This method smoothed out

the diurnal bias of the atmospheric observations allowing assimilation into the ocean

to work. This has a similar effect as the lagged average coupled covariance (LACC)

method of Lu et al. (2015b) increasing the strength of atmosphere-ocean correlations.

If diurnal bias issues are resolved, synchronous SCDA may be beneficial.
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Chapter 4: Towards Operational SCDA: Hybrid-GODAS

A new ocean data assimilation system is currently being developed at NCEP

called the Hybrid-GODAS. This system will serve as a replacement for the global

ocean data assimilation system (GODAS) used at NCEP for realtime ocean moni-

toring (Behringer and Xue, 2004; Behringer, 2007). GODAS is run in two configu-

rations, one is as part of the weakly coupled data assimilation used for the CFSv2,

the other configuration is a stand-alone ocean monitoring system driven by offline

atmospheric fluxes. Hybrid-GODAS will serve as an upgrade to the stand-alone GO-

DAS (described in this chapter), but a similar upgrade will be made to the coupled

system in the near future.

While the work presented does not directly involve strongly coupled ocean-

atmosphere data assimilation, the upgrade of GODAS presented will outline the

ways in which considerations are made for future use as a strongly coupled system.

The future coupled model should alleviate some of the problems noted with the

CFSv2 in chapter 3 that are preventing the system from easily being used with

SCDA. Notably, the ocean vertical resolution will be much higher at the surface,

allowing for a better diurnal cycle representation in the ocean. Also, Hybrid-GODAS

is based on the LETKF, meaning the SCDA methods presented in chapters 2 and
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3 can easily be implemented in the future with it.

The current GODAS is based on the original 3DVAR algorithm for the ocean

developed by Derber and Rosati (1989) using a state-space variational solver. The

background error covariance model is simple compared with more modern ocean DA

systems used operationally. All background error covariances are univariate: tem-

perature and salinity analysis are essentially performed independently. This can be

compared with other systems, such as NEMOVAR, which have balance operators to

allow for a single temperature increment to update all other state variables (salinity,

zonal, and meridional current).

GODAS has served well over the years, and is a popularly downloaded dataset.

However, the last major update was in 2003, and the system is beginning to show

its age. The system often does not perform as well as other centers (Xue et al.,

2017). Several design deficiencies compared with other operational centers are noted:

GODAS only assimilates insitu temperature, and does not take advantage of a wide

range of other observation platforms (e.g. salinity, satellite altimetry, satellite SST,

drifter positions, and ocean currents from ADCP). The 3DVAR algorithm that is

implemented is computationally inefficient for the ocean, due to its state space

formulation and the use of diffusion operators for the horizontal background error

correlation model.

The GODAS system is being replaced by the Hybrid-GODAS, described in

this chapter, with a target operational deployment at NCEP by the end of 2019.

The new system is a complete upgrade (no code spared!) and aims to improve

all aspects of the system: observation platforms and their quality control, ocean
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and ice model, atmospheric surface forcing, and data assimilation method (fig 4.1).

Hybrid-GODAS will become the next real-time ocean monitoring system used by

the CPC. It is also expected to form the basis for future work at NCEP with cou-

pled ocean/ice/wave data assimilation, and parts of the advancements made will

be available for the coupled data assimilation system using MOM6/FV3 under the

Joint Effort for Data Assimilation Integration (JEDI). JEDI is expected to be the

replacement data assimilation system used at NCEP, and is being developed by the

Joint Center for Satellite Data Assimilation (JCSDA)

All code for Hybrid-GODAS is already publicly available online for use by the

research community, even though active system development is still ongoing, (Sluka,

2018a).

4.1 Hybrid-GODAS

A summary of the major changes between GODAS and hybrid-GODAS are

given in Table 4.1 and are expanded upon in the text following.

4.1.1 Model

The Modular Ocean Model 6 (MOM6), is the latest generation of ocean model

produced by the NOAA Geophysical Fluid Dynamics Laboratory (GFDL), and is a

substantial change from the previous MOM models. MOM6 uses a new algorithm,

the arbitrary Lagrangian-Eulerian (ALE) algorithm, to allow for any type of vertical

grid without having to worry about violating CFL conditions. MOM6 is coupled
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Ocean/Ice Model

MOM 6/SIS2
MOM 6/SIS2
MOM 6/SIS2

LETKF

3DVar

adjust 
ens. mean

Data Assimilation

Observations

• T/S insitu profiles

• L2 satellite SST from 
   ACSPO AVHRR RAN1

• L2 ADT Satellite Al"metry

Surface Forcing

CFSR

20CRv220CRv220CRv2

clim.
 correc"on

DFS5.2

adjust
ens. mean

6hr: T/q 2m, U/V10m, SLP
daily: DSW, DLW, Precip

monthly clim.
correction

ens. perturbations

GFDL’s OM4_025 1/4°
configuration

guess

analysis

analysis mean

adjusted
analysis mean

Figure 4.1: Overview schematic of the Hybrid-GODAS ocean data assimilation
system, with updates to all components.
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GODAS Hybrid-GODAS
model
model MOM4p1 MOM6
ice model -none- SIS2
hz resolution 1 deg 1/4 deg
vt resolution 40 levels, top 10m thick 75 levels, top 2m thick
forcings

atm. forcing
R2 daily fluxes

(wind stress, heat
& freshwater flux)

CFSR: 6hr U/V/T/q/MSLP
daily DSW, DLW, Precip.

clim. correct. -none-
DFS52:

U/V/DSW/DLW/Precip
ens. purturb. -none- 20 members from 20CRv2
SST relaxation OISST, 5 day scale -none-

SSS relaxation WOA, 10 day scale
Monthly WOA clim.

166 mm/day

river runoff
Dai and Trenberth

annual clim.

Dai and Trenberth
monthly clim.

+ stochastic perturb.
observations
T profile NCEP BUFR tank WOD & NCEP BUFR tank

for operations
S profile synthetic salinity from clim. observed S profiles
SST relaxation to Reynolds SST Night time ACSPO L2 SST

Altimetry -none-
L2 ADT altimetry

(in progress)
data assim.
method univariate 3DVar Hybrid EnKF/3DVar
ensemble size 1 20
bkg. err. var. vertical gradient of bkg ensemble spread, vertical gra-

dient of bkg, horizontal T O-F
at surface

vertical scales model level thickness mixed layer depth at surface
transitioning to model level
thickness

Table 4.1: Major differences between GODAS and the new Hybrid-GODAS
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with the sea ice simulator 2 (SIS2) ice model.

The configuration used here is the OM4 1/4 degree configuration from GFDL,

which is the configuration to be used in their next coupled model system. The

horizontal grid is 1/4 degree, and the vertical grid consists of 75 levels, with the

top levels at 2m thickness down to 10m. The default vertical coordinate system

used in OM4 is the hybrid z-isopycnal coordinate. However, due to issues with

spurious spread that have been found (Steve Penny, personal comm.) current work

with MOM6 here is being done with z* coordinates. Hybrid vertical coordinates

are shown to have better model performance in the deep ocean and in areas of high

vertical stratification, and so we do wish to switch from Z* to the hybrid- vertical

coordinates as soon as the spurious spread issue is resolved.

The increased horizontal resolution allows the model to be eddy permitting in

the mid latitudes, and therefore should represent western boundary currents better

than the ocean model in the current CFSv2. Also, the increase in vertical resolution

at the surface should allow for a better diurnal cycle representation.

4.1.2 Surface forcing

The stand-alone GODAS is forced with a set of atmospheric fluxes from the

NCEP-DOE AMIP-II Reanalysis (R2) (Kanamitsu et al., 2002). R2 provides the

momentum (zonal and meridional wind stress), heat (sensible, latent, radiative), and

freshwater (precipitation minus evaporation) fluxes from 1979 to the present on a

T62 resolution grid. Since the ocean model is driven by a set of fluxes calculated by

84



an offline atmospheric reanalysis, a strong relaxation to a sea surface temperature

product must be used in order to provide the negative feedback needed to keep the

ocean temperature from drifting. The weekly Reynolds (Reynolds et al., 2002) SST

product is used with a relaxation timescale of 5 days, and the World Ocean Atlas

climatological salinity (Conkright and Coauthors, 1999) is used with a relaxation

timescale of 10 days. Without relaxation of the SSS and SST to these products, the

ocean surface state would begin to drift away quite rapidly.

The surface forcing for Hybrid-GODAS uses a bulk formulation based on Large

and Yeager (2004). With this formulation the fluxes are calculated from the SST of

the ocean model and the surface fields of the offline atmosphere. Since the model’s

SST is considered in these calculations, there exists a negative feedback the prevents

the model SST from drifting too far away from nature. For this reason relaxation

to an SST product is no longer as important and can be removed entirely if the

model biases are small enough. Since there is no similar negative feedback for ocean

salinity, an SSS restoration term is still required.

The atmospheric forcing for Hybrid-GODAS uses a combination of information

from three different sources. These components are a 1) relatively high resolution

mean forcing from the CFSR, 2) a climatological correction to the CFSR from

DFS5.2, and 3) a low resolution set of ensemble perturbations from the 20th Century

Reanalysis.
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4.1.2.1 Mean Forcing from CFSR

The CFSR provides the mean surface forcing for the ocean from 1979 to 2011

at a resolution of T382. The CFSv2 operational analysis provides the mean forcing

from 2011 to the present, however, due to it’s higher resolution at T574 the sur-

face fields are remapped to the lower resolution of T382 for consistency. For the

Hybrid-GODAS, daily averaged fields of downward shortwave (DSW), downward

longwave (DLW), and precipitation rate (rain + snow) are calculated. The ocean

model calculates an artificial diurnal cycle using the daily averaged radiation fields

when the model is run. Also, 6 hourly instantaneous fields for 2m temperature and

humidity, mean sea-level pressure, and 10m zonal and meridional winds are used.

Daily averaged winds had been used initially in the testing of Hybrid-GODAS, but

this produced wind stresses that were too weak in the extra tropics. Hourly fields

were tested as well, but the difference with 6 hourly fields was determined to be

minimal for the purposes of this system.

Since precipitation rate in CFSR is provided as the total sum of liquid and

frozen precipitation, the default MOM6 configuration is changed to partition frozen

and liquid precipitation from the total based on the 2m atmospheric temperature.

4.1.2.2 Climatological Correction

There exist very large known biases in the CFSR fluxes. The CFS, as well as

many other coupled climate models, fails to produce correct marine cloud patterns

in several key regions. The eastern ocean basins are home to persistent marine
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Figure 4.2: The CFSR exhibits a very large bias in the shortwave radiation of over
60 W/m2. Shown is CFSR - CORE2 for the annually averaged downward shortwave
in 2005.

stratocumulus clouds which the model does not produce well. As a result, shortwave

radiation is too high, and longwave radiation is too low in these regions. In the

western tropical pacific and Indian ocean, the downward shortwave radiation is too

high by as much as 60 W/m2. (Imagine an extra incandescent light bulb sitting over

the ocean every meter!). This can be seen compared to other reanalysis products

that have been calibrated to fit observations, fig 4.2.

The original GODAS had very strong relaxation to an SST product, which

likely masked the effect of atmospheric forcing biases. Since the Hybrid-GODAS

does not use any SST relaxation, these forcing biases must be handled as best as

possible. The climatology of the DRAKKAR forcing set (DFS52) (Dussin et al.,

2016) is used to correct the climatology of the CFSR. DFS52 is a product that is

based on the ERA-interim reanalysis (Dee et al., 2011) and uses various observa-
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tional datasets to correct the radiation, precipitation rate, and surface winds.

Monthly climatologies are calculated for the 1980 to 2015 period for both the

CFSR and the DFS5.2. A multiplicative correction factor (Eq 4.1) is calculated for

each month in the period for precipitation rate, downward shortwave, and downward

longwave, and 2m humidity. An additive correction factor (Eq 4.2) is calculated for

the winds and temperature.

corrmul = (CFSRclim −DFS52clim)/CFSRclim (4.1)

corradd = CFSRclim −DFS52clim (4.2)

The choice of an additive or multiplicative correction factor both result in iden-

tical climatologies, but the actual daily fields will be different. The multiplicative

factor is used for fields that should not become negative (radiation, precipitation,

humidity) when applying the correction. The winds receive an additive correction

so that high wind events in the storm tracks don’t receive an overly large increase

in intensity as they would with a multiplicative correction factor.

The CFSR, as well as many other reanalysis products, exhibits serious shifts

in its climatology due to abrupt changes in the observation platforms being assimi-

lated. The largest known shift occurs between 1998 and 1999 due to the assimilation

of the Advanced TIROS Operational Sounder (ATOVS). This jump resulted in a

marked increase in global precipitation rate (Zhang et al., 2012). Many other atmo-

spheric surface fields are affected in the tropics, including temperature, humidity,
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field description freq. clim. corr.

DSWRF downward shortwave daily multiplicative
DLWRF downward longwave daily multiplicative
PRATE precipitation rate daily multiplicative
PRES sea level pressure 6 hr NONE
TMP 2m temperature 6 hr NONE
SPFH 2m humidity 6 hr NONE
UGRD 10m zonal wind 6 hr additive
VGRD 10m meridional wind 6 hr additive

Table 4.2: Overview of the atmospheric forcing fields supplied to the Hybrid-
GODAS. Shown for each field are the short names used within the code, description,
whether daily averaged or 6 hourly instantaneous frequency, and the type of clima-
tological correction applied.

and winds. As a result, two climatology periods 1980-1998 and 1999-2015 are used

when calculating the correction factors. These are shown in Fig 4.3 and Fig 4.4. It

should be noted though that monthly correction fields are calculated and used by

the model, though only an annual average is shown in these figures for simplicity.

Using the corrected fields with a free running model ocean (as described later),

the model SST exhibits a cold bias especially in the tropics. As has also been found

in applications of DFS5.2 forced SODA (James Carton, personal comm.) it appears

that there is a bias in the 2m temperature and humidity in the DFS5.2 that results

in too much cooling of the ocean through latent and sensible heat fluxes (fig 4.5).

For this reason, the temperature and humidity corrections that have been calculated

for CFSR from the DFS52 are not applied. By only applying a correction to the

radiative, precipitation, and wind fluxes, an SST in the tropics with less bias is

produced. A summary of the final configuration for the atmospheric forcing files is

given by Table 4.2.
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Figure 4.3: The multiplicative bias corrections that are applied to the downward
shortwave, downward longwave, and precipitation rate, as calculated from the clima-
tology difference between CFSR and DFS52. Monthly bias corrections are generated,
but only the annual average is shown here.
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Figure 4.4: The multiplicative bias corrections for 2m humidity, and the additive
bias corrections for 2m temperature and 10 meter winds, as calculated from the
climatology difference between CFSR and DFS52. Monthly bias corrections are
generated, but only the annual average is shown here.
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a)

b)

Figure 4.5: Difference in the ocean SST for forced run without data assimilation
compared with DA analysis, averaged over 1 year. Shown is a forced run using
uncorrected CFSR fluxes (a) and CFSR fluxes with climatology corrected by DFS5.2
(b).
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4.1.2.3 Ensemble Perturbations

After the climatological correction is applied to the CFSR fields, ensemble

perturbations for each ocean ensemble member are applied. These perturbations are

derived from the 6 hour forecast fields of the 20th Century Reanalysis v2, 20CRv2

(Compo et al., 2006). The 20CRv2 fields are not used directly because of the low

resolution of the reanalysis (T62). The 20CRv2 is a 56 ensemble member reanalysis

that assimilates only surface pressure. It is chosen for its long timeline available

(1851-2014).

As can be seen in Fig 4.6, most of the spread in the 20CRv2 is located in

the tropics. The extra-tropics are suspected of having insufficient spread in the

T2m, Q2m, and wind fields for our purposes. This is expected given the coarse

resolution of the 20CRv2, and the fact that the ocean SST driving the 20CRV2

ensemble members are very similar. Future improvements to Hybrid-GODAS will

use a higher resolution reanalysis (20CRv3, which is in the works) or the ensemble

reanalysis from a coupled model.

In addition to the atmospheric surface forcings, the ocean also requires river

and land water runoff fields. The monthly Dai-Trenberth (Dai, 2016) climatology

is used for this purpose. In initial tests Hybrid-GODAS had shown difficulty in

maintaining the salinity spread, and seemed especially weak near the coastlines.

Stochastic perturbations to the runoff fields are therefore used to help add salinity

spread to the ocean.

The monthly climatological variability of the Dai-Trenberth dataset is first
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Figure 4.6: Ocean surface forcing spread from the 20CRv2 for a single date, 2003-
03-15, for 2m temperature, humidity, downward shortwave, downward longwave,
precipitation rate, and windspeed.
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Figure 4.7: The increase in surface salinity spread after 1 month data assimilation
cycle when turning on stochastic land/river runoff perturbations.

calculated using the available interannual forcing files from 1948 - 2007. Then a

Perlin noise is generated for each ensemble member that slowly varies from month

to month. This noise generates a field varying from -1.0 to 1.0 with per-ensemble

member horizontal and temporal correlations. Each ensemble member’s stochastic

noise is then multiplied by the climatological variability, and then added to the

climatology. In this way, short of obtaining a better estimate of the actual monthly

river and continental runoff in real-time, this method adds a slightly more realistic

spread to the runoff climatology for the ocean ensemble.

There is a resulting increase in the salinity spread along the coastlines, and

especially near rivers, Fig 4.7. It is not clear how much of an impact this actually

has in the ensemble ocean DA system, as the spread dissipates rapidly as the water
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mass leaves the coastline, especially when the nearly-global coverage of satellite SST

observations are used. However, this method is likely to be of more importance when

ocean data assimilation is applied on regional scales.

4.1.3 Observations

The inclusion of additional observations is another area of significant progress

with the Hybrid-GODAS. The previous GODAS only assimilated observed temper-

ature profiles. Salinity was constrained by assimilating a synthetic salinity that

was calculated from an observed climatological temperature / salinity relationship.

While this served well for purposes of analyzing temperature, the salinity fields were

always very close to climatology and exhibited very little inter-annual variability.

Hybrid-GODAS has been upgraded to use insitu temperature, insitu salinity, and

along track satellite SST retrievals. Future plans also include the use of satellite

altimetry.

Insitu temperature and salinity profiles are obtained from the world ocean

database (WOD) (Boyer et al., 2013). Only the profiles with the highest quality

control flags are used. There are multiple platform types in WOD, but only a subset

are used here: expendable bathythermographs (XBT), moored buoys (MRB), and

profiling floats (PFL). The profiles are temporally and spatially averaged so that

multiple profiles from a single platform, in a single grid point, in a single day, are

averaged together. These observations are suitable for testing and reanalysis, but

observation quality control procedures are being developed so that ocean profiles
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from the NCEP BUFR data tanks can be used going forward.

The previous GODAS used satellite SST indirectly by relaxing the top layer

of the ocean model toward the weekly Reynolds SST product (Reynolds et al.,

2007). This method resulted in an adequately accurate SST from GODAS, but

was not taking full advantage of all the information SST observations could offer.

Hybrid-GODAS directly assimilates the SST by using the along track retrievals from

NOAA’s Advanced Clear Sky Processor for Ocean, ACSPO, (Ignatov et al., 2016).

When assimilated, the 3DVar and LETKF use the satellite SST to impact the entire

mixed layer. This results in an instantaneous correction to the mixed layer with

Hybrid-GODAS, whereas GODAS would take much longer to impact the mixed

layer since only the top layer is being relaxed toward observed SST. Additionally,

the LETKF produces a multivariate update, and so SST observations can impact

the salinity and ocean currents, which will be shown to be important in maintaining

more accurate western boundary currents in the model background during the DA

cycle.

The definition of “SST” is an ambiguous term. For our purposes, the SST is

represented by the top level of the model, at 1m. However, due to stratification in

the upper centimeters and even millimeters of the ocean, satellites observe a different

SST depending on the time of day, underlying stratification of the ocean, and the

amount of mixing from the wind. Satellites actually observe a skin-SST, which for

infrared satellites is at a depth on the order of a centimeter. During the day, this

skin-SST will be significantly warmer than the temperature just below this at 1m.

During the night time, this warm skin disappears, and the skin-SST is more similar
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to the bulk SST, although a cool skin layer is still present due to evaporative cooling.

For this reason, only the night time tracks of the SST retrievals are assimilated.

Initially, the Hybrid-GODAS reanalysis was planned to use the AVHRR Path-

finder dataset, version 5.3 (Casey et al., 2010). Pathfinder presents an SST retrieval

spanning from the beginning of the satellite era (1979) to near present (2012). The

best quality AVHRR satellite at any given time is used, and efforts are made to bias

correct among the satellites for a continuous reliable record. Due to the extensive

record presented by this dataset, it is widely used.

However, large biases were discovered in Pathfinder while developing the Hybrid-

GODAS, which were negatively impacting the resulting analysis. A negative bias

exists in the tropics, and a positive bias in the extra-tropics, which can be seen by

comparing the insitu and satellite SST observation minus forecast (O-F) statistics.

As can be seen in Fig 4.8a, the insitu observations were constantly trying to cool the

model due to excess warming from the SST observations. Additionally, when com-

paring Pathfinder to other SST retrievals such as Reynolds, Fig 4.8b, these biases

are more apparent. Pathfinder is known to have shifts in the bias when the predom-

inant satellite is changed, and has poor performance when dealing with aerosols and

cloud contamination. Most importantly, Pathfinder is not maintained in real-time.

Hybrid-GODAS was switched to the Advanced Clear Sky Processor for Ocean

(ACSPO) produced by NOAA/NESDIS (Ignatov et al., 2016). This SST retrieval is

superior to Pathfinder in that the satellite SST minus insitu temperature differences

are far smaller, as confirmed by NESDIS with their quality control routines, and

by examining O-F statistics in the Hybrid-GODAS. The best two satellites at any
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Figure 4.8: Insitu O-F bias in an early Hybrid-GODAS run
(a) and the difference between Pathfinder and daily OISST (from
https://www.nodc.noaa.gov/SatelliteData/pathfinder4km53/). Pathfinder ex-
hibits large biases that change when satellites are changed (e.g. vertical dashed
lines on July 2002).
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Figure 4.9: Satellite SST observation density for a single 5 day cycle (January
1 to January 5 of 2004). Shown is the number of satellite SST observations, after
superobbing, per 1◦.

given time are used with ACSPO, and a wider scan angle of the AVHRR satellites is

used. This increases the number of available observations in the dataset compared

with Pathfinder, and end up providing nearly global coverage of every model grid

box in any given 5 day data assimilation cycle (Fig 4.9), except in areas of persistent

cloud cover.

As with the Pathfinder dataset, only the observations at nighttime and with

the highest quality control flags are used. Another benefit of the ACSPO dataset

is that an estimate of the skin-SST to 1m-SST bias correction is given, as well as

an observation error estimate. The observation error estimate primarily takes into

consideration the errors from cloud contamination and the reduced quality of the

SST observations near the edge of the satellites swath. The provided bias correction
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term was found to be adequate to remove biases between the satellite SST and insitu

top level temperature observations within Hybrid-GODAS.

Before being assimilated, the satellite SST observations undergo superobbing

so that there is at most 1 observation per grid-box per day. Otherwise, the over

abundance would lead to difficulty in maintaining the ocean ensemble spread. To

help account for errors of representativeness, the variance of the observations going

into each grid-point before the superobbing is calculated. The final observation

error variance then equal to the variance of the superobbed observations plus the

estimated error variance from the ACSPO dataset.

4.1.4 Data assimilation

The upgrade to the data assimilation system, from a simple 3DVar to the hy-

brid gain EnKF/Var (Penny, 2014), is the central motivation for the Hybrid-GODAS

project. In the atmosphere, operational centers have moved to more advanced hybrid

EnKF/Var systems (Kleist and Ide, 2015; Bonavita et al., 2012), relying on ensemble

perturbations from an EnKF system to provide the dynamic part background error

covariance used in the variational solver. In such systems, the variational solver is

the true work-horse of the system. With the hybrid-gain, the opposite is true in

that the EnKF solver is the system’s work-horse. Described in more depth in Penny

(2014), the essence of the hybrid gain solver (green box in fig 4.1) is that the EnKF

creates an analysis, which then has its mean partially corrected by a variational

solver that is run using the analysis created from the EnKF as it’s background.
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By using the 3DVAR after the EnKF, the 3DVar allows the system to explore

parts of the model state space that are not represented by the ensemble. This is

essential when using a small ensemble size, as we are doing with Hybrid-GODAS’s

limited ensemble of 20 members. Model biases and highly non-linear regions of the

ocean that are not captured well by the ensemble such at near the Gulf Stream could

ultimately cause the EnKF to undergo filter divergence and begin to drift from the

observations, but the 3DVar helps mitigate this and allows the data assimilation to

remain stable with a much smaller ensemble size than would normally be possible

with just an EnKF implemented.

A significant benefit of switching from 3DVAR to hybrid-gain is that the data

assimilation system will now be able to create multivariate analysis increments. GO-

DAS is only able to update temperature and salinity independently. Hybrid-GODAS

will update all state variables (temperature, salinity, currents), likely resulting in a

better analysis and a better balance in the analysis, as shown in Penny et al. (2015).

As shown in the NEMOVAR ocean data assimilation system (Mogensen et al., 2012)

maintaining a proper temperature/salinity balance near the thermocline is impor-

tant for a good quality analysis. GODAS was not able to do this, but the EnKF

portion of Hybrid-GODAS now should be able to.

Hybrid-GODAS makes use of the LETKF and a new observation space 3DVar.

The LETKF used is the UMD-LETKF implementation (described in chapter 5)

(Sluka, 2018b), that aims to become the standard LETKF implementation used at

NCEP. The UMD-LETKF is a generic model-independent solver, and seeks to make

future SCDA easier by ensuring the various domains of a coupled model are using an
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identical LETKF code base. The current LETKF configuration for Hybrid-GODAS

uses relaxation to prior spread of 60% for covariance inflation, and a latitudinally

dependent localization that varies from 600km at the equator to 100km in the high

latitudes for insitu observations, and a smaller 200km EQ to 50km high latitudes

for satellite SST observations. The smaller localization radius for satellite SST

observations is important, otherwise the large number of SST observations leads to

an overly small ensemble spread.

The observation space formulation solver for the 3DVar is modeled after the

Navy’s NCODA (Daley and Barker, 2001; Cummings and Smedstad, 2013), and is

described in more detail in Appendix A. The observation space formulation allows

the solver to run much faster than the previous state space GODAS, given that

ocean observations are very sparse compared with the number of 3D grid points.

One current shortcoming though is the lack of multi-variate balance operators, so

for the time being this new 3DVAR is essentially performing separate temperature

and salinity analyses such as GODAS was doing. This will be remedied in the

future by migrating toward the JEDI ocean 3DVAR system, which is still under

development, but will be a more sophisticated multivariate 3DVar with background

error covariance model similar to NEMOVAR (Mogensen et al., 2012). Within

the hybrid-gain framework, the 3DVAR uses the analysis mean from the LETKF

analysis, and applies a percentage of the analysis increment (currently configured

as 50%) to adjust the analysis ensemble mean.

Hybrid-GODAS has been built so that switching between data assimilation

methods (freerun, 3DVar, EnKF, hybrid EnKF/Var) is done simply through the
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configuration scripts.

4.2 Initial Results

Iterative tests are being conducted with a 20 ensemble member Hybrid-GODAS

to tune the system before implementation into operations at NCEP. To setup the

test experiments, the ocean model ensemble members are initialized with identical

climatological temperature and salinity from the World Ocean Atlas 2013 (Locarnini

et al., 2013; Zweng et al., 2013). The hybrid data assimilation is then run from Jan

1, 2003 to Jan 1, 2004, and the ensemble members at the end date are saved as

the initial conditions for subsequent experiments. All ensemble members start with

initial conditions, however due to the atmospheric forcing perturbations, the spread

in the ocean ensemble quickly grows after several months. At the beginning of the

run, the 3DVar will be doing all of the work, since the initial members are all nearly

identical and therefore LETKF will have no impact on the analysis. As the data

assimilation cycle progresses, the spread increases and the LETKF begins to have

more of an impact. This gradual increase in LETKF impact prevents large initial

shocks to the system as was experienced with the CFS-LETKF experiments. This

initial spinup method is used for simplicity for these experiments, though other

methods of initial ensemble generation could be used.

From these Jan 1, 2004 initial conditions, experiments with several config-

urations are conducted. Hybrid-GODAS is run with 1) no data assimilation, just

prescribed atmospheric forcing 2) 3DVar data assimilation mode, and 3) hybrid-gain
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(a) (b)

Figure 4.10: Hybrid-GODAS ensemble spread at the surface averaged over June
(left) and December (right) of 2004. Surface spread is higher in the summer months.

EnKF/3DVar data assimilation. The results are then compared against several data

sets, including the original GODAS, the UK MetOffice EN4, OISST, and OSCAR

surface current estimates.

The resulting ensemble spread for the hybrid-gain run is shown in Figure 4.10

and Figure 4.11. After tuning the LETKF localization and satellite observation thin-

ning parameters, the resulting spread looks reasonable. There is increased spread,

and corresponding uncertainty in the analysis, in the mid-latitude ocean surface

during the summer months, along the western boundary currents, and along the

thermocline in the tropics.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Hybrid-GODAS ensemble spread averaged over the June 2004 for
temperature in C (left) salinity in PSU (right) at depths of 1m (a,b), 50m (c,d),
100m (e,f), and 500m (g,h).
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4.2.1 Comparison to GODAS/EN4/CMC

To evaluate the performance of Hybrid-GODAS, it is first compared against the

pentad analysis from GODAS and either the UK MetOffice EN4 objective analysis

(Good et al., 2013) for temperature and salinity at depth, or the SST product from

the Canada Meteorological Center (Brasnett, 2008) for sea surface temperature. The

following issues should be noted while examining the results:

• For technical reasons in the file processing, the 5 day background average

(not the analysis), was used for the Hybrid-GODAS. This is due to the fact

that IAU has not yet been implemented for Hybrid-GODAS.

• The Hybrid-GODAS freerun (marked fr.02 in some of the figures), was ini-

tialized on 2004-01-01 from a spinup with hybrid DA, and so a subsequent

longer freerun is likely to show a bigger difference between the freerun and

data assimilation run.

• The EN4 and CMC datasets are not truth, they have their own errors, and so

other methods of verification (e.g. O-F statistics) will be discussed later

It will be seen though that despite these considerations, Hybrid-GODAS largely

outperforms GODAS in several key areas.

To evaluate the performance of sea surface temperature for Hybrid-GODAS,

the RMSD compared with the daily SST product from the Canadian Meteorological

Center (CMC) are calculated over the year 2004 and shown in fig 4.18. Unsurpris-

ingly, Hybrid-GODAS has better SST due to the fact that it directly assimilates
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Figure 4.12: SST RMSD (C) as compared with CMC SST averaged over 2004
for GODAS (top left), Hybrid-GODAS forced run with no DA (top right), 3DVAR
component only of Hybrid-GODAS (bottom left), and the full 3DVAR/LETKF
Hybrid-GODAS (bottom right).

the along-track SST retrievals from ACSPO, whereas GODAS relaxes to OISST.

Hybrid-GODAS shows marked improvement globally, especially in the Southern

Oceans, the eastern coastline of the Pacific and Atlantic basins, as well as along the

Western boundary currents. The Hybrid-GODAS is also an eddy-permitting model,

at 1/4 ◦ , and so better resolves the position of the Western boundary currents,

especially once altimetry data is assimilated.

The timeseries of model minus OISST RMSD averaged over the globe (fig 4.13)
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Figure 4.13: SST RMSD compared with OISST for 2004 averaged globally over
60S to 60N. Shown are GODAS (blue) Hybrid-GODAS (red), Hybrid-GODAS with
only 3DVar on (green) and Hybrid-GODAS with no DA (dashed red).

shows again that Hybrid-GODAS has less error over time, with an average SST

RMSD of 0.4C. Even without any data assimilation, the SST RMSD only grows as

high as 0.6C, showing that it is well constrained by the atmospheric surface forcings.

The heat content in the upper 300 meters (fig 4.14), unfortunately, does not

show marked improvement yet. There is some improvement with Hybrid-GODAS in

the Southern Ocean, however, there are currently known issues being addressed that

are degrading performance in the western boundaries and open ocean. These issues,

mainly the lack of vertical localization with the LETKF for satellite SST observation,

and quality control of profile observations, are being addressed and should hopefully

be fixed in the next iteration of Hybrid-GODAS being tested before implementation
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Figure 4.14: Heat content in upper 300m RMSD as compared with EN4 averaged
over 2004 for GODAS (top left) Hybrid-GODAS with no DA (top right), Hybrid-
GODAS with only 3DVar (bottom left), and Hybrid-GODAS with EnKF/3DVar
(bottom right).

into operations.

The sea surface salinity RMSD compared against EN4 (fig 4.15) shows that

Hybrid-GODAS is clearly improved. This is not surprising given that we now as-

similate actual salinity observations, whereas GODAS only used synthetic salinity.

Noticeable decreases in RMSD are visible in the tropics, however, occasional large

salinity errors in Hybrid-GODAS along the west coast of equatorial Africa are ap-

parent. It is suspected that the cause of this is the same cause of the H300 under-

performance (lack of LETKF vertical localization, and observation quality control),

and will therefore hopefully be improved in the next Hybrid-GODAS test iteration.
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Figure 4.15: Sea surface salinity RMSD as compared with EN4 averaged over 2004
for GODAS (top left) Hybrid-GODAS with no DA (top right), Hybrid-GODAS with
only 3DVar (bottom left), and Hybrid-GODAS with EnKF/3DVar (bottom right).

Salinity RMSD compared against EN4 in the deeper ocean levels of 300m

to 750m (fig 4.16) again shows the improvement in Hybrid-GODAS especially in

the extra-tropics. There is a decrease in performance near the Gulf Stream and

equatorial Atlantic, likely due to the previously mentioned outstanding DA issues.

It should also be noted that the difference between the hybrid-DA, 3DVar, and

freerun versions of Hybrid-GODAS are small. This similarity in results is due to

the fact that all three of those experiments were initialized with the same initial

conditions on Jan 1, 2004, from an ensemble run made with hybrid-DA over 2003.
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Figure 4.16: Ocean salinity RMSD as compared with EN4 averaged over 2004
between 300m and 700m for GODAS (top left) Hybrid-GODAS with no DA (top
right), Hybrid-GODAS with only 3DVar (bottom left), and Hybrid-GODAS with
EnKF/3DVar (bottom right).

The results would expect to diverge more as the experiments are run into later years.

4.2.2 Comparison to OSCAR

An important test of the data assimilation system is to compare against ob-

servations that are not assimilated into the system. Here we look at the surface

currents from OSCAR (Ocean Surface Current Analysis Real-time) (Bonjean et al.,

2002). OSCAR estimates surface ocean currents from indirect observations such as
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sea surface height, SST, and surface winds, and then using dynamical balances such

as geostrophic balance to calculate surface currents. A 1/3 degree grid is produced

every 5 days.

The western boundary currents can be difficult for an ocean data assimilation

system to properly capture. The Kuroshio current, as observed by OSCAR, is shown

in fig 4.17a for a single day in Oct 2004. The GODAS analysis (fig 4.17b) is not

capable of reproducing the Kuroshio because of the coarse horizontal resolution

of the model, 1 degree. There is a resemblance of the currents in the GODAS

analysis, however it is too weak and diffuse, with a maximum current speed less

than 0.5 m/s, compared with the observed > 1.5 m/s. The Hybrid-GODAS is

eddy-permitting due to its 1/4 degree horizontal grid. As a result, a forced run will

spontaneously produce a Kuroshio current (fig 4.17c) even though it is not in the

correct place. Using Hybrid-GODAS with 3DVar-only enabled (fig 4.17d) is still

not able to put the current in the correct location. The Hybrid-GODAS with full

hybrid DA, however, is able to place the Kuroshio current (fig 4.17e) with reasonably

accurate location and speed of the meanders. There are even some eddies present in

OSCAR that the hybrid DA is trying to place in the model. This is a good result,

especially considering that altimetry is not being assimilated yet in Hybrid-GODAS.

Once altimetry is being assimilated, it is expected that the placement of the western

boundary currents and some eddies could be even better.
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(a)

(b) (c)

(d) (e)

Figure 4.17: Top level ocean current speed on Oct 6, 2004, for OSCAR observa-
tions (a) GODAS (b) Hybrid-GODAS with no DA (c) Hybrid-GODAS with only
3DVAR (d) and Hybrid-GODAS with EnKF/3DVar (e).
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4.2.3 Comparison of O-F RMSD/bias

The remaining system evaluations are performed using the observation minus

forecast (O-F) statistics and compare only the various configurations of the Hybrid-

GODAS runs. The RMSD for SST observations is shown in fig 4.18 over the 1 year

data assimilation experiment. The forced run (exp none.02) begins to diverge from

the initial conditions, but stays relatively constrained by the atmospheric surface

forcing, reaching a peak error of slightly over 1◦ C in the northern hemisphere

summer. The summer time is typically when the highest surface RMSD occurs. The

3DVAR (exp var.02) and hybrid DA (exp hyb.02) are substantially better than the

freerun, although there is not much difference between 3DVAR and hybrid RMSD in

the northern hemisphere and tropics, although hybrid performs slightly better. The

hybrid DA does perform quite a bit better than 3DVAR in the southern hemisphere,

reducing the SST RMSD from just under 0.6C to 0.4C.

The global SST O-F bias is shown in fig 4.19. An earlier configuration of the

Hybrid-GODAS using DFS5.2 climatology corrections on all atmospheric variables

(denoted exp.none.01) shows that such a configuration resulted in overly cold model

SST that the observations were constantly trying to warm. By removing the clima-

tology correction on 2m temperature and humidity (denoted exp.non.02) the global

SST bias still exhibits small seasonal variations, but is now centered around 0◦C.

The hybrid data assimilation results in SST bias very close to 0◦C.

Vertical profiles averaged over the 1 year experiment are shown for temper-

ature (fig 4.20) and salinity (fig 4.21), showing that the hybrid DA has a marked
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Figure 4.18: Hybrid-GODAS SST O-F RMSD averaged over northern hemisphere
(NH), tropics (TP), and southern hemisphere (SH). Shown are forced run with no
data assimilation (blue), 3DVar only (orange) and hybrid EnKF/3DVar (green).
Ensemble spread is shown in dashed line. A 1 month moving average applied to
smooth data.
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Figure 4.19: Hybrid-GODAS SST O-F bias averaged over the globe between 60S
and 60N. Shown are forced run with no data assimilation (blue), 3DVar only (orange)
and hybrid EnKF/3DVar (green). Original forced run with full DFS5.2 corrections
(red) also shown. A 1 month moving average applied to smooth data.

benefit over 3DVar, except for salinity in the northern hemisphere, which is likely

due to the previously mentioned known issues with the system. It is again worth

mentioning that all three experiments were initialized from the same Jan 1, 2004

initial conditions, which would likely mean that the 3DVar and no data assimilation

runs would appear worse compared with the hybrid DA once the experiments are

run for longer.

4.2.4 Deficiencies

The results shown are only the second iteration of hybrid DA comparison ex-

periments integrated over a full year, and so the system is still being tuned for

optimal performance as issues are found. Several areas of the system under per-

forming have already been mentioned, but the most striking deficiency is currently

with the salinity at depths in the tropical Atlantic as shown in fig 4.22. Salinity
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(a) (b) (c)

Figure 4.20: Hybrid-GODAS temperature profile O-F RMSD for the northern
hemisphere (left) tropics (center) and southern hemisphere (right). Shown are forced
run with no data assimilation (blue), 3DVar only (Orange) and hybrid EnKF/3DVar
(green).
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(a) (b) (c)

Figure 4.21: Hybrid-GODAS salinity profile O-F RMSD for the northern hemi-
sphere (left) tropics (center) and southern hemisphere (right). Shown are forced run
with no data assimilation (blue), 3DVar only (Orange) and hybrid EnKF/3DVar
(green).
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Figure 4.22: Ocean salinity RMSD as compared with EN4 averaged over 2004
along the equator between 0m and 700m depth for GODAS (top left) Hybrid-
GODAS with no DA (top right), Hybrid-GODAS with only 3DVar (bottom left),
and Hybrid-GODAS with EnKF/3DVar (bottom right). Large errors are introduced
in the tropical Atlantic with Hybrid-GODAS

is improved most everywhere with Hybrid-GODAS, except for large errors that are

introduced by the 3DVar in the western tropical Atlantic below 750m. Several bad

salinity observations have been found that have slipped past the WOD quality con-

trol procedures, which is likely the cause of this problem. Custom quality control

code that is currently being developed will be used before the next test experiments

are started. Results are also expected to be better, especially near the boundary

currents, once altimetry observations are being assimilated.
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4.3 Operational plans

As has been shown here, the Hybrid-GODAS is already superior to the current

operational GODAS in several major areas (salinity, SST, surface currents). There

are however some areas (upper 300m heat content in the Atlantic) that are under-

performing with respect to the operational GODAS. These deficiencies are expected

to be addressed as the system continues to be tuned, and known issues (such as lack

of LETKF vertical localization for satellite observations, and observation quality

control) are fixed.

Immediate plans for Hybrid-GODAS are to prepare it for implementation into

operations with a target date of late 2019. Several changes will be made to accom-

modate this, including replacing the SIS2 ice model with CICE5 to maintain an

identical model configuration to that which will be used for the upcoming NCEP

coupled model. Profile observation sources will be switched from the World Ocean

Database to NCEP’s in house data tanks. If time permits, the observation opera-

tors used by Hybrid-GODAS will be replaced by the JEDI unified forward operators

(UFO). Several benefits will be had by switching to UFO, including having an online

observation operator, meaning all observation operators will be performed at their

observed time and at the closest model time step. Currently daily averages are used

as input to the observation operator, having an at time observation operator from

UFO should provide improvements near the surface where the diurnal cycle is im-

portant, and could allow for the assimilation of not only night time SST data, but

also daytime SST. Last, the source of atmospheric perturbations will be switched to
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a different source that is run in realtime at NCEP, as the 20CRv2 is not available

in real-time.

But how does this all fit into the goal of strongly coupled data assimilation?

Hybrid-GODAS is expected to form the basis of work at NCEP for marine data

assimilation. This includes not only the ocean, but wave and ice DA. All three

of these domains are expected to use the UMD-LETKF, which has been designed

with strongly coupled DA in mind. In this way, after independent development on

the data assimilation for these components has been completed. Strongly coupled

configurations can be ’switched on’ in the UMD-LETKF for experimentation with

SCDA.
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Chapter 5: Conclusion

In summary, strongly coupled data assimilation with the LETKF has been

shown to be easy to implement from a software engineering standpoint, and may

soon be practical in operational settings for limited sets of observations used across

domains. SCDA was able to have a small, but beneficial impact on the CFSv2 using

real observations. Currently, an effective implementation of SCDA is made difficult

by biases in the observations and the models. However, near-term upgrades to the

operational coupled models may alleviate this. The observations that can be used

in SCDA depend heavily on the timescale of the desired DA cycle, with the use of

strong vertical and variable localization required for short timescales

As a result of the work presented here, several software packages have been

developed and are publicly available on GitHub.

• SPEEDYNEMO-LETKF

• CFSv2-LETKF (https://github.com/UMD-AOSC/CFSv2-LETKF)

• UMD-LETKF (https://github.com/travissluka/UMD-LETKF)

• Hybrid-GODAS (https://github.com/UMD-AOSC/hybrid-godas)
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5.1 Unified Multi-Domain LETKF (UMD-LETKF)

While developing the strongly coupled ocean-atmosphere data assimilation

systems for both the SPEEDY-NEMO, and the CFSv2, it became apparent that the

current structure of the local ensemble transform Kalman filter code was problematic.

Typically, when someone was creating an LETKF for a new model, they would have

to use an existing LETKF for a similar model and then go through and replace

sections of hard-coded logic. This is somewhat tedious and prone to error. If an

improvement is then made to the LETKF by someone else (for example updating

to include a different inflation scheme), the user would then have to manually find

a way to include this improvement into their own code.

The Ocean-LETKF by Steve Penny mitigates this to some degree by pulling

out code that is common to multiple ocean models. However, for a strongly coupled

DA system, it would still be beneficial to have a base LETKF that can be used by

any domain (ice, ocean, land, atmosphere, etc.) and any specific changes required

by the domain’s model are kept completely separately.

Most of the code for the LETKF is not in the core algorithm itself (which only

take up at most 100 lines of code). Instead, most of the code is in the support

for the core LETKF algorithms (localization, reading/writing observations and the

model state, distributing the state and observations in an intelligent and scalable

manner).

As a result of the CFSv2-LETKF, SPEEDYNEMO-LETKF, andMOM6-LETKF

development, I have developed a completely independent Universal Multi-Domain
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LETKF library (UMD-LETKF) that should be able to be used as-is for nearly any

geophysical model (Sluka, 2018b). The only assumption made by the code is that

the domain of interest is represented by a latitude/longitude grid, with one or more

state variables of arbitrary vertical structure. The “geophysical grid” assumption

would unfortunately make the library as it currently stands more difficult to use

with models such as the Lorenz95. For most cases, all configuration can be done

through configuration files, and the provided LETKF driver can be used, resulting

in the user not needing to touch any code for the LETKF to port to a new model.

If the user desires changes to the code, they simply need to use the LETKF library

and provide function callbacks for the places where they wish to modify the behavior

of the code.

A summary of the design choices made when creating the UMD-LETKF are

as follows:

• model independent library - provides a single LETKF library that is com-

piled once and can be used for all systems. Eliminates redundancies in code.

Most specialization for a given domain is done though configuration file, a

generic driver is provided for simple use cases, and if the user is willing to

constraints such as having all I/O be in NetCDF format. A custom driver can

easily be built to interface with the library with minimal code required.

• object oriented design - classes for observation I/O, state I/O, and local-

ization behavior have a default implementation that are capable of providing

for most use cases, but can be overridden with user specified code if required.
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• multi-model strong coupling - The code should allow for easy transition

from weakly coupled to strongly coupled DA with no changes required by the

code, everything is done within the configuration files.

Special attention has been paid to improving memory and computational effi-

ciency in the MPI code, as well as a complete generalization of model state definition

and state / observation I/O.

The code, and further documentation of it, is publicly available on github at

https://github.com/travissluka/UMD-LETKF.
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5.2 Possible future work

SPEEDYNEMO was originally designed for climate length runs and has proved

less than ideal for the 6 hour cycling runs I performed. However, given its low

computational cost, it may be very useful in examining the impacts of strongly

coupled DA on climate timescales. For example, Tardif et al. (2014) found with a

simple model that the Atlantic meridional overturning circulation cant be initialized

correctly using only ocean observations. Similar results may be found with this and

other longer timescale phenomena such as the Pacific decadal oscillation and Atlantic

multidecadal oscillation. SPEEDYNEMO has been used to examine the Atlantic

forcing of Pacific decadal variability (Kucharski et al., 2015). It is not known if

such decadal variability results spontaneously from the model, such as the case with

ENSO where flux corrections had to be performed in order to get an ENSO signal to

appear. It would be a good project to see if SPEEDYNEMO produces semi-realistic

decadal variability, and if so use the SPEEDYNEMO-LETKF to examine the role

of strongly vs weakly coupled DA on the model’s performance.

The CFSv2-LETKF experiments with real observations only used conventional

observations due to the added difficulty of using radiances. The Community Radia-

tive Transfer Model (CRTM) is being integrated with the GFS-LETKF by others

and should be available for use shortly. This will allow an investigation of the effects

of strongly coupled DA on the assimilation of radiances. Since the ocean sea surface

temperature is required by the CRTM when computing radiances from atmospheric

temperatures, and conversely, corrections due to atmospheric conditions need to be
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Figure 5.1: Coupled Earth system data assimilation

considered when using infrared brightness temperatures to examine SST, it is an

inherently coupled observations, and so strongly coupled DA could provide an extra

benefit in this case.

The successor to the CFSv2 being developed by NCEP will be using an EnKF

of some flavor for all components of the data assimilation system. More specifically,

the land, ice, wave, and ocean components will be using the LETKF. This provides

an ample opportunity to test the concepts of strongly coupled DA on this future
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model version.
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Appendix A: Observation-space 3DVar for Hybrid-GODAS

The development of the data assimilation system for Hybrid-GODAS depends

on the combination of two systems, the LETKF and an ocean 3DVAR. Originally,

this task was to be accomplished using the existing GODAS 3DVAR. However, the

existing system was quite slow and did not scale well due to the use of a diffusion

operator to model the horizontal correlations and from the algorithm’s state-space

formulation. It was expected that the speed of the 3DVAR would become a bot-

tleneck at the planned 1/4 degree model resolution. Therefore, a new 3DVAR was

created by combining concepts from the operational ocean data assimilation systems

of the Navy (Cummings and Smedstad, 2013), UK MetOffice (Waters et al., 2015),

and ECMWF (Mogensen et al., 2012).

Hybrid-GODAS is designed expecting that the LETKF performs most of the

heavy lifting. The accompanying 3DVAR is there mainly to correct any biases that

the LETKF cannot handle on its own. A lightweight, fast, 3DVAR is therefore the

target, and while on its own its performance might not match that of the other

operational centers, it should perform well when combined with the LETKF. This

new ocean 3DVAR is seen as temporary, ultimately it will be replaced with the

marine data assimilation being developed under the JEDI for NCEP.
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State-Space Formulation

The cost function which is to be minimized is given by

J =
1

2
(y −Hx)T R−1 (y −Hx) + (x− xb)

T B−1 (x− xb) (A.1)

where x is the resulting analysis, y is the observations, H the observation operator

to take state-space to observation-space, and B and R are the background and

observation error covariances, respectively. Typically, this is solved in an incremental

3DVAR with a state-space formulation

[

B−1 +HTR−1H
]

δx = HTR−1δy (A.2)

where δx is the analysis increment that is iteratively solved for through some type

of minimization algorithm, and δy = yo −H
(

xb
)

are the observation increments.

When solved using a preconditioned conjugate gradient decent method, the B

matrix is used as the preconditioner, eliminating the need to explicitly calculate B−1.

The matrix to effectively be inverted by the iterative solver is A = HTR−1H+B−1.

This is the method that was used in the existing GODAS 3DVAR.
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A.1 Observation-Space Formulation

Using the Sherman-Morrison-Woodbury formula, Equation A.2 can be rear-

ranged to obtain the following observation-space formulation

δx = BHT
[

HBHT +R
]

−1
δy (A.3)

This formulation is known otherwise as PSAS (Physical Space Assimilation System)

at NASA/Goddard (Cohn et al., 1998). The matrix to effectively be inverted by

the iterative solver is A = HBHT +R. If the number of observations is less than

the number of grid points, which is easily the case with the ocean, the A matrix is

smaller with this formulation, and therefore computationally faster. Satellite based

observations can be thinned or superobbed in order to maintain the assumption that

there are fewer observations than model grid points.

The observation-space formulation can be divided into two steps, the calcula-

tion of an intermediate vector z

[

HBHT +R
]

z = δy (A.4)

followed by the projection of z vector back into state-space

δx = BHTz (A.5)

the computational expense of calculating z by an iterative algorithm depends on the
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number of observations. So, for the ocean, the minimization here should be faster

than with state-space. The subsequent matrix multiplication required project z onto

the model-space is more computationally expensive, but is only required once, not

iteratively.

Preconditioned Conjugate Gradient Solver

An outline of the preconditioned conjugate gradient algorithm used to solve

the observation-space formulation follows, with A∗
−1

defined as an approximate

inverse to A, and A =
[

HBHT +R
]

. The following variables are first initialized:

z0 = 0

r0 = δy

s0 = A∗
−1

r0

p1 = s0

(A.6)

The iterative solver is run until the solution converges, usually when the residual

decreases by two orders of magnitude. At each step:

if k > 1:

βk =
rTk−1sk−1

rTk−2sk−2

pk = sk−1 + βkpk−1

(A.7)
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then for each iteration with k > 0:

qk = Apk

αk =
sTk−1rk−1

pT
k qk

zk = zk−1 + αkpk

rk = rk−1 + αkqk

sk = A∗
−1

rk

(A.8)

it should be noted that in the actual code, only the most recent vectors for rk and

sk are stored, and so only the final dot products of rT s are kept from two previous

steps for calculating βk.

The preconditioning matrix A∗
−1

is calculated by a block diagonal approxima-

tion to the full A−1 matrix. This is done by dividing observations into blocks so that

each block contains a reasonably small number of observations (on the order of 1000).

Then a Cholesky decomposition is performed on each block in parallel to directly

invert the matrix. The use of this preconditioning step speeds up convergence of the

solver substantially and is relatively inexpensive to perform as A∗
−1

is calculated

once at the beginning of the solver and stored for subsequent applications.

A.2 Background Error Covariance Model

For the observation-space formulation of the 3DVAR, the background error

covariance between two observation locations (HBH), and the background error

covariance between an observation location and a model grid location (BH) are
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required. These are nearly identical functions, however, there are small differences

in the code for performance reasons, which will not be discussed here.

The covariance is decomposed into a background error variance and correlation.

The correlations are further separated into the horizontal, vertical, and variable

correlations, as well as an SSH gradient tensor and coast distance tensor to modulate

the horizontal correlation. Since the background error covariance model used here is

rather simple, there is no balance operator between temperature and salinity, and so

the covariance between observations and model variables of different types is zero.

All distance based correlations are calculated using a compact spline

(Gaspari and Cohn, 1999) given the distance between two points, d, and the desired

length scale, L, (equivalent to 1 standard deviation of a Gaussian). Using r =

d/(L
√

10/3), a distance based correlation value is given by:

gc(r) = −r5/4 + r4/2 + 5r3/8− 5r2/3 + 1, 0 ≤ r ≤ 1,

= r5/12− r4/2 + 5r3/8 + 5r2/3− 5r + 4− 2/3r, 1 ≤ r ≤ 2,

= 0, r > 2

(A.9)

Horizontal Correlation

The correlation lengths in the horizontal are calculated as an anisotropic 2D

Gaussian approximated by the Gaspari-Cohn function. These lengths vary with

latitude as a function of the Rossby radius. The correlation length in the meridional
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Figure A.1: The zonal and meridional horizontal correlation length scales used in
the 3DVAR.

direction is given by

Lφ (φ) = max

(

min

(

c

2Ω |sin (φ)|
, Lφmax

)

, Lφmin

)

(A.10)

where c = 2.7 m/s is the assumed gravity wave speed. The value is clamped to

a minimum of 50 km in the high latitudes, and a maximum of 150km along the

equator. The correlation length in the zonal direction is equal to Lφ in the extra-

tropics, but is stretched longer near the equator within 10◦to a maximum of 525km

as given by

Lλ (φ) = Lφ (φ) (1 + gc (2φ/φL) (δ − 1.0)) (A.11)

The value of the parameters used are given in Table A.1 and the resulting

horizontal correlation length scales are shown in Figure A.1.
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Lφmin
50 km

Lφmax
150 km

φL 10◦

δ 3.5
c 2.7 m/s
Ω 7.29× 10−5

Table A.1: horizontal correlation length scale parameters

Coast Distance and SSH Gradient Tensor

In order to introduce an element of crude flow dependence into the background

error covariance model, the horizontal correlations are modulated by two gradient

tensors based on 1) the distance from the coast and 2) the SSH field. This method

is borrowed from Cummings and Smedstad (2013).

The horizontal correlation is modified by multiplying by the following calcula-

tion

Ccoast = max

(

Ccoastmin
, 1−

|r1 − r2|

rc

)

(A.12)

where rc is the distance from the coast at which this effect begins, r1 and r2 are the

distances to the coast for the two grid points of interest (clamped to a maximum

value of rc). Ccoastmin
is the strength of the effect, 1.0 being off and 0.0 forcing grid

points on the coast to be completely uncorrelated with those points rc away from

the coast. Hybrid-GODAS uses rc = 75km, Ccoastmin
= 0.3. For an observation that

is next to the coast, this has the effect of spreading the analysis increment along the

coastline, and not out into the open ocean.

An additional similar modulation is performed to the horizontal correlations
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based on the difference in sea surface height of the two points. In this way, anal-

ysis increments are spread along fronts instead of across them, a feature that is

particularly important along the western boundary currents, as can be shown in

Figure A.2. Any surface field can be used, SSH, SST, etc, but the benefit of this

surface gradient tensor relies on the surface fields being represented relatively real-

istically. For Hybrid-GODAS, SSH is used, with a strength of 10cm. As can be

seen in Figure A.2, increments are stretched out along the Kuroshio Current, and

not across it. This method is also useful for preventing analysis increments across

bodies of water separated by land, such as between the Pacific and Atlantic oceans

near Panama, since the SSH is different enough between the two locations to isolate

analysis increments.

(a) (b)

Figure A.2: Surface temperature analysis increment for a single cycle with normal
horizontal correlations (a) and horizontal correlations modulated by an SSH gradient
tensor (b)
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Vertical Correlation

Three dimensional vertical correlation lengths were originally calculated by

scaling the vertical density gradient, as done in Cummings and Smedstad (2013).

However, if not done very carefully and with ample smoothing of the resulting field,

this would lead to instances where B was not positive definite, and the Cholesky

decomposition for the preconditioner would fail.

Instead, the vertical correlation length is first set equal to the model level

thickness. The top ocean model level has its vertical correlation length set equal

to the mixed layer depth (MLD) defined as the depth where a reduction in density

of 0.125 kg/m3 occurs. If this depth is deeper than 250m it is clamped to 250m.

Between the top model level and the base of the mixed layer, the vertical correlation

length is linearly interpolated between the values at the two locations. In this way,

satellite SST observations are able to impact the entire mixed layer, but below the

mixed layer observation profiles impact primarily only the model level in which they

occur.

The 3D vertical correlation length field is then smoothed using a recursive filter

using the horizontal and vertical correlation lengths that were found. This helps

ensure stability of the solver, as B can fail to be positive definite if the correlation

lengths vary spatially at a rate faster than their own correlation length. A cross

section along the equation for an example date is shown in Figure A.3.

139



Figure A.3: Cross section of vertical correlation lengths along equator a single
example date. Vertical correlation length is equal to model level thickness, except
when within the mixed layer.

Background Error Variance

The method of calculating the 3D background error variance for the temper-

ature and salinity was adopted from the 1/4 degree NEMOVAR data assimilation

system used at the UK MetOffice (Waters et al., 2015), and is similar in concept to

the method used for the original GODAS. First, the vertical temperature gradient

is calculated and multiplied by a scaling factor δz

σvg = δz

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

(A.13)
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The resulting 3D field is smoothed by the previously calculated horizontal and ver-

tical correlation lengths. The final standard deviations of the background error

variance are given by

σ = max (σmin,min (σvg , σmax)) (A.14)

where σmax is a defined constant, and σmin is calculated from

σmin = σdo + (σsurf − σdo) exp

[

d (1)− d (k)

L

]

(A.15)

The minimum background error varies vertically with a maximum at the sur-

face of σsurf decreasing exponentially with a length scale of L to a minimum of σdo.

The value for σsurf for salinity is a fixed constant, however for temperature a 2D

field is generated based on a scaled and clamped climatological average of the O-F

RMSD from the satellite SST observations of a previous 3DVar run (Figure A.4).

The other constant parameters used in the calculation of the background error

variance for temperature and salinity are given by Table A.2.

Temp Salt
L 500m 250m

σmax 1.8 0.25
σdo 0.1 0.02
σsurf 2D field 0.3
δz 20 2.5

Table A.2: Parameters used by 3DVar background variance calculation

The 2D σsurf field for temperature is needed in order to increase the back-

ground error variance where the vertical temperature gradient does not capture all
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Figure A.4: The minimum surface temperature background error covariance used
in the Hybrid-GODAS 3DVar. Calculated from annual average of satellite SST O-F
RMSD.

the error, such as near the western boundary currents. This effect can be seen in

Figure A.5.
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a)

b)

c)

d)

f )

e)

Figure A.5: The 3DVar background error variance for 2004-04-01 at depths of 1
meter (top), 50 meters (middle), and 200 meters (bottom) using minimum surface
background error variance of 0.5C as done by GODAS (left) and a 2D varying
modified background error variance as in Hybrid-GODAS (right).
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