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Abstract
This paper presents a generalization of standard effect systems that
we call contextual effects. A traditional effect system computes
the effect of an expression e. Our system additionally computes
the effects of the computational context in which e occurs. More
specifically, we compute the effect of the computation that has
already occurred (the prior effect) and the effect of the computation
yet to take place (the future effect).

Contextual effects are useful when the past or future compu-
tation of the program is relevant at various program points. We
present two substantial examples. First, we show how prior and
future effects can be used to enforce transactional version consis-
tency (TVC), a novel correctness property for dynamic software up-
dates. TVC ensures that programmer-designated transactional code
blocks appear to execute entirely at the same code version, even if a
dynamic update occurs in the middle of the block. Second, we show
how future effects can be used in the analysis of multi-threaded
programs to find thread-shared locations. This is an essential step
in applications such as data race detection.

1. Introduction
Type and effect systems provide a framework for reasoning about
the possible side effects of a program’s executions. Effects tra-
ditionally consider assignments or allocations, but can also track
other events, such as functions called or operations performed. A
standard type and effect system (Lucassen 1987; Nielson et al.
1999) proves judgments ε; Γ ` e : τ , where ε is the effect of
the expression e. For many applications, knowing the effect of the
context in which e appears is also useful. For example, if e includes
a security-sensitive operation, then knowing the effect of execution
prior to evaluating e could be used to support history-based access
control (Abadi and Fournet 2003; Skalka et al. 2007). Conversely,
knowing the effect of execution following e could be used for some
forms of static garbage collection, e.g., to free initialization func-
tions once initialization is complete (Foster et al. 2006).

The core idea of this paper is a generalization of standard effect
systems to compute what we call contextual effects. Our contextual
effect system proves judgments of the form Φ; Γ ` e : τ , where Φ
is a tuple [α; ε; ω] containing ε, the standard effect of e, and α and
ω, the prior effect and future effect, respectively, of e’s context. For
example, in an application e1 e2, the prior effect of e2 includes the
effect of e1, and likewise the future effect of e1 includes the effect
of e2. The first contribution of this paper is a system for computing
contextual effects and a proof that the system is sound (Section 2).

∗ This paper completes the paper of the same name that appears in POPL
2008 (Neamtiu et al. 2008) with a full formal development and proofs.

The inspiration for contextual effects arose from experience
with two research projects. The first considers dynamic software
updating (DSU), a technique by which running software can be
updated on-the-fly with new code and data. In prior work we for-
malized and implemented Ginseng, a compiler and tool suite that
supports DSU for C programs (Neamtiu et al. 2006; Stoyle et al.
2007). Updates are at the granularity of function calls, meaning
that following an update, active code continues with the old ver-
sion, while subsequent calls are to the new version. A key consid-
eration for update correctness is timing, since, applied at the wrong
time, the changes due to an update could conflict with processing
in flight. For example, suppose the original code defined function
h() { f (); g (); }, but then is changed to move the call to g from h
to f, i.e., h() { f (); } and f () { ...; g (); }. Suppose the update
occurs just prior to the original pair of calls. The call to f will be to
the new version that calls g, but then returns to its caller, the old h,
which then calls g again, potentially leading to an error.

We address this problem with a novel correctness property
called transactional version consistency (TVC), the second con-
tribution of this paper. In this approach, programmers designate
blocks of code as transactions whose execution must always be
attributable to a single program version. Thus an update is only
allowed within a transaction if the transaction’s execution still ap-
pears due to either the old or new program version. The problem-
atic update above would be ruled out by placing the body of h in a
transaction. We formalize this idea in a small language Proteus-tx,
which extends our prior dynamic updating calculus Proteus (Stoyle
et al. 2007) with transactions. Proteus-tx’s type system uses con-
textual effects at candidate update points within a transaction to
determine what updates are safe to apply. We have proven that
Proteus-tx enforces transactional version consistency, and we have
developed a preliminary implementation for C. In our prior work,
we manually specified that updates could occur at one or two qui-
escent program points, typically at the conclusion of event pro-
cessing loops (Neamtiu et al. 2006). Using these quiescent points
to identify transaction boundaries, we discovered many additional
version-consistent update points within transactions, which can be
used to reduce the time from when an update becomes available to
when it is applied (Section 3).

The second research effort from which contextual effects arose
is Locksmith (Hicks et al. 2006; Pratikakis et al. 2006), a tool
that can automatically detect data races in C programs. We found
that we could use contextual effects to compute what memory
locations are shared among threads in a multi-threaded program.
The basic idea is that thread-shared locations are exactly those in
the intersection of the standard effect of a child thread and the
future effect of the parent thread at the point the child is created.
Locations accessed prior to creating the child but not afterward are
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Expressions e ::= v | x | let x = e in e | e e
| if0 e then e else e
| refL e | ! e | e := e

Values v ::= n | λx.e
Effects α, ε, ω ::= ∅ | 1 | {L} | ε ∪ ε
Contextual Effs. Φ ::= [α; ε; ω]
Types τ ::= int | ref ε τ | τ −→Φ τ
Labels L

Figure 1. Contextual effects source language

not shared. The final contribution of this paper is a presentation
of our algorithm for computing shared locations as an extension
to contextual effects. We used this analysis to compute shared
locations in a range of C programs. Our algorithm finds that many
locations are thread-local, and hence cannot have races (Section 4).

We believe that contextual effects have many other uses, in
particular any application in which the past or future computation
of the program is relevant at various program points. The remainder
of the paper presents our core contextual type and effect system,
followed by its application to transactional version consistency and
thread sharing analysis.

2. Contextual effects
To begin, we present a core contextual effect system for a sim-
ple imperative calculus and prove it sound. Figure 1 presents our
source language, which contains expressions e that consist of val-
ues v (integers or functions); variables; let binding; function appli-
cation; and the conditional if0, which tests its integer-valued guard
against 0. Our language also includes updatable references refL e
along with dereference and assignment. Here we annotate each syn-
tactic occurrence of ref with a label L, which serves as the abstract
name for the locations allocated at that program point. We use la-
bels to define contextual effects. For simplicity we do not model
recursive functions directly in our language, but they can be en-
coded using references.

Our system uses two kinds of effect information. An effect,
written α, ε, or ω, is a possibly-empty set of labels, and may
be 1, the set of all labels. A contextual effect, written Φ, is a tuple
[α; ε; ω]. In our system, if e′ is a subexpression of e, and e′ has
contextual effect [α; ε; ω], then

• The current effect ε is the effect of evaluating e′ itself.
• The prior effect α is the effect of evaluating e up until we begin

evaluating e′.
• The future effect ω is the effect of the remainder of the evalua-

tion of e after e′ is fully evaluated.

Thus ε is the effect of e′ itself, and α∪ω is the effect of the context
in which e′ appears—and therefore α∪ ε∪ω contains all locations
accessed during the entire reduction of e.

To make contextual effects easier to work with, we introduce
some shorthand. We write Φα, Φε, and Φω for the prior, current,
and future effect components, respectively, of Φ. We also write Φ∅
for the empty effect [1; ∅; 1]—by subsumption, discussed below,
an expression with this effect may appear in any context. In what
follows, we refer to contextual effects simply as effects, for brevity.

2.1 Typing
We now present a type and effect system to determine the contex-
tual effect of every subexpression in a program. Types τ , listed at
the end of Figure 1, include the integer type int ; reference types
ref ε τ , which denote a reference to memory of type τ where the
reference itself is annotated with a label L ∈ ε; and function types

Typing

(TINT)
Φ∅; Γ ` n : int

(TVAR)
Γ(x) = τ

Φ∅; Γ ` x : τ

(TLET)

Φ1; Γ ` e1 : τ1 Φ2; Γ, x : τ1 ` e2 : τ2
Φ1 B Φ2 ↪→ Φ

Φ; Γ ` let x = e1 in e2 : τ2

(TIF)

Φ1; Γ ` e1 : int Φ2; Γ ` e2 : τ
Φ2; Γ ` e3 : τ Φ1 B Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ

(TREF)
Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L} τ

(TDEREF)
Φ1; Γ ` e : ref ε τ Φε

2 = ε Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

(TASSIGN)

Φ1; Γ ` e1 : ref ε τ Φ2; Γ ` e2 : τ
Φε

3 = ε Φ1 B Φ2 B Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

(TLAM)
Φ; Γ, x : τ ′ ` e : τ

Φ∅; Γ ` λx.e : τ ′ −→Φ τ

[TAPP]

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ1
Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

(TSUB)
Φ′; Γ ` e : τ ′ τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

Effect combinator

(XFLOW-CTXT)

Φ1 = [α1; ε1; (ε2 ∪ ω2)]
Φ2 = [(ε1 ∪ α1); ε2; ω2]
Φ = [α1; (ε1 ∪ ε2); ω2]

Φ1 B Φ2 ↪→ Φ

Subtyping

(SINT)
int ≤ int

(SREF)
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

(SFUN)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′1 −→Φ′
τ ′2

(SCTXT)
α2 ⊆ α1 ε1 ⊆ ε2 ω2 ⊆ ω1

[α1; ε1; ω1] ≤ [α2; ε2; ω2]

Figure 2. Contextual effects type system

τ −→Φ τ ′, where τ and τ ′ are the domain and range types, respec-
tively, and the function has contextual effect Φ.

Figure 2 presents our contextual type and effect system. The
rules prove judgments of the form Φ; Γ ` e : τ , meaning in type
environment Γ, expression e has type τ and contextual effect Φ.
The first two rules, (TINT) and (TVAR), assign the expected types
and the empty effect, since values have no effect.

(TLET) types subexpressions e1 and e2, which have effects Φ1

and Φ2, respectively, and requires that these effects combine to
form Φ, the effect of the entire expression. We use a call-by-value
semantics, and hence the effect of the let should be the effect of e1

followed by the effect of e2. We specify the sequencing of effects
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with the combinator Φ1 B Φ2 ↪→ Φ, defined by (XFLOW-CTXT)
in the middle part of Figure 2. Since e1 happens before e2, this rule
requires that the future effect of e1 be ε2 ∪ ω2, i.e., everything
that happens during the evaluation of e2, captured by ε2, plus
everything that happens after, captured by ω2. Similarly, the past
effect of e2 must be ε1 ∪ α1, since e2 happens just after e1. Lastly,
the effect Φ of the entire expression has α1 as its prior effect,
since e1 happens first; ω2 as its future effect, since e2 happens
last; and ε1 ∪ ε2 as its current effect, since both e1 and e2 are
evaluated. We write Φ1 B Φ2 B Φ3 ↪→ Φ as shorthand for
(Φ1 B Φ2 ↪→ Φ′) ∧ (Φ′ B Φ3 ↪→ Φ).

(TIF) requires that its branches have the same type τ and ef-
fect Φ2, which can be achieved with subsumption (below), and
uses B to specify that Φ1, the effect of the guard, occurs before
either branch. (TREF) types memory allocation, which has no ef-
fect but places the annotation L into a singleton effect {L} on the
output type. This singleton effect can be increased as necessary by
using subsumption.

(TDEREF) types the dereference of a memory location of type
ref ε τ . In a standard effect system, the effect of ! e is the effect
of e plus the effect ε of accessing the pointed-to memory. Here, the
effect of e is captured by Φ1, and because the dereference occurs
after e is evaluated, (TDEREF) puts Φ1 in sequence just before
some Φ2 such that Φ2’s current effect is ε. Therefore by (XFLOW-
CTXT), Φε is Φε

1 ∪ ε, and e’s future effect Φω
1 must include ε and

the future effect of Φ2. On the other hand, Φω
2 is unconstrained

by this rule, but it will be constrained by the context, assuming
the dereference is followed by another expression. (TASSIGN) is
similar to (TDEREF), combining the effects Φ1 and Φ2 of its
subexpressions with a Φ3 whose current effect is ε.

(TLAM) types the function body e and sets the effect on the
function arrow to be the effect of e. The expression as a whole has
no effect, since the function produces no run-time effects until it is
actually called. (TAPP) types function application, which combines
Φ1, the effect of e1, with Φ2, the effect of e2, and Φf , the effect of
the function.

The last rule in our system, (TSUB), introduces subsumption
on types and effects. The judgments τ ′ ≤ τ and Φ′ ≤ Φ are
defined at the bottom of Figure 2. (SINT), (SREF), and (SFUN) are
standard, with the usual co- and contravariance where appropriate.
(SCTXT) defines subsumption on effects, which is covariant in
the current effect, as expected, and contravariant in both the prior
and future effects. To understand the contravariance, first consider
an expression e with future effect ω1. Since future effects should
soundly approximate (i.e., be a superset of) the locations that may
be accessed in the future, we can use e in any context that accesses
at most locations in ω1. Similarly, since past effects approximate
locations that were accessed in the past, we can use e in any context
that accessed at most locations in α1.

2.2 Semantics and Soundness
We now prove that our contextual effect system is sound. The top
of Figure 3 gives some basic definitions needed for our operational
semantics. We extend values v to include the form rL, which is a
run-time heap location r annotated with label L. We need to track
labels through our operational semantics to formulate and prove
soundness, but these labels need not exist at run-time. We define
heaps H to be maps from locations to values. Finally, we extend
typing environments Γ to assign types to heap locations.

The bottom part of Figure 3 defines a big-step operational se-
mantics for our language. Reductions operate on configurations
〈α, ω, H, e〉, where α and ω are the sets of locations accessed be-
fore and after evaluation of e, respectively; H is the heap; and e is
the expression to be evaluated. Evaluations have the form

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, R〉

Values v ::= . . . | rL

Heaps H ::= ∅ | H, r 7→ v
Environments Γ ::= ∅ | Γ, x : τ | Γ, r : τ

[ID]
〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉

[CALL]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′, H′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H′, v〉

[REF]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H′, v〉 r /∈ dom(H′)

〈α, ω, H, refL e〉 −→ε 〈α′, ω′, (H′, r 7→ v), rL〉

[DEREF]
〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H′, rL〉 r ∈ dom(H′)

〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H′, H′(r)〉

[ASSIGN]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L}
〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[IF-T]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, v1〉 v1 = 0
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v〉

〈α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈α2, ω2, H2, v〉

[IF-F]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, v1〉 v1 = n 6= 0
〈α1, ω1, H1, e3〉 −→ε3 〈α3, ω3, H3, v〉

〈α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε3 〈α3, ω3, H3, v〉

[LET]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, v1〉
〈α1, ω1, H1, e2[x 7→ v1]〉 −→ε2 〈α2, ω2, H2, v2〉

〈α, ω, H, let x = e1 in e2〉 −→ε1∪ε2 〈α2, ω2, H2, v2〉

Figure 3. Contextual effects operational semantics (partial)

where ε is the effect of evaluating e and R is the result of reduction,
either a value v or err, indicating evaluation failed. Intuitively,
α records a trace of what has happened in the past, and ω is a
capability describing what locations may be accessed in the future.
As evaluation proceeds, labels move from the capability ω to the
trace α.

The reduction rules are straightforward. [ID] reduces a value to
itself without changing the state or the effects. [CALL] evaluates
the first expression to a function, the second expression to a value,
and then the function body with the formal argument replaced by
the actual argument. [REF] generates a fresh location r, which is
bound in the heap to v and evaluates to rL. [DEREF] reads the
location r in the heap and adds L to the standard evaluation effect.
This rule requires that the future effect after evaluating e have the
form ω′ ∪ {L}, i.e., L must be in the capability after evaluating e,
but prior to dereferencing the result. Then L is added to α′ in
the the output configuration of the rule. Notice that ω′ ∪ {L} is
a standard union, and so L may also be in ω′. This allows the
same location can be accessed multiple times. [ASSIGN] behaves
similarly to [DEREF].

Lastly, [IF-T] and [IF-F] give the two cases for conditionals,
and [LET] binds x to the result of evaluating e1 inside of e2.
Our semantics also includes rules (not shown) that produce err
when the program tries to access a location that is not in the input
capability, or when values are used at the wrong type.

Given this operational semantics, we can now prove that the
contextual effect system in Figure 2 is sound. We only state
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our lemmas and theorems here. The proofs can be found in Ap-
pendix A.

We begin with a standard definition of heap typing.

Definition 2.1 (Heap Typing). We say heap H is well-typed un-
der Γ, written Γ ` H , if dom(Γ) = dom(H) and if for every
r ∈ dom(H), we have Φ∅; Γ ` H(r) : Γ(r).

Given this definition, we show the standard effect soundness
theorem, which states that the program does not go wrong and that
the standard effect Φε captures the effect of evaluation.

Theorem 2.2 (Standard Effect Soundness). If Φ; Γ ` e : τ and
Γ ` H and 〈1, 1, H, e〉 −→ε 〈1, 1, H ′, R〉, then there is a Γ′ ⊇ Γ
such that R is a value v for which Φ0; Γ

′ ` v : τ where Γ′ ` H ′

and ε ⊆ Φε.

Next, we show the operational semantics is adequate, in that it
moves effects from the future to the past during evaluation.

Lemma 2.3 (Adequacy of Semantics). If 〈α, ω, H, e〉 −→ε

〈α′, ω′, H ′, v〉 then α′ = α ∪ ε and ω = ω′ ∪ ε.

Next we must define what it means for the statically-ascribed
contextual effects of some expression e to be sound with respect to
the effects of e’s evaluation. Suppose that ep is a program that is
well-typed according to typing derivation T and evaluates to some
value v as witnessed by an evaluation derivation D. Observe that
each term e1 that is reduced in a subderivation of D is either a
subterm of ep, or is derived from a subterm e2 of ep via reduction;
in the latter case it is sound to give e1 the same type and effect that
e2 has in T . To reason about the soundness of the effects, therefore,
we must track the static effect of expression e2 as it is evaluated.

We do this by defining a new typed operational semantics that
extends standard configurations with a typing derivation of the term
in that configuration. The key property of this semantics is that it
preserves the effect Φ of a term throughout its evaluation, and we
prove that given standard evaluation and typing derivations of the
original program, we can always construct a corresponding typed
operational semantics derivation.

Finally, we prove that given a typed operational semantics
derivation, the effect Φ in the typing in each configuration con-
servatively approximates the actual prior and future effect.

Theorem 2.4 (Prior and Future Effect Soundness). If

E :: 〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉

where T :: Φ; Γ ` e : τ , α ⊆ Φα and ω′ ⊆ Φω then
for all sub-derivations Ei of E, Ei :: 〈Ti, αi, ωi, Hi, ei〉 −→ε

〈Tvi , α
′
i, ω

′
i, H

′
i, vi〉 where Ti :: Φi; Γi ` ei : τi, it will hold that

αi ⊆ Φα
i and ω′

i ⊆ Φω
i .

The proof of the above theorem is by induction on the deriva-
tion, starting at the root and working towards the leaves, and relying
on Theorem 2.2 and Lemma 2.3.

2.3 Contextual Effect Inference
The typing rules in Figure 2 form a checking system, but we would
prefer to infer effect annotations rather than require the program-
mer to provide them. Here we sketch the inference process, which
is straightforward and uses standard constraint-based techniques.

We change the rules in Figure 2 into inference rules by making
three modifications. First, we make the rules syntax-driven by in-
tegrating (TSUB) into the other rules (Mitchell 1991); second, we
add variables χ to represent as-yet-unknown effects; and third, we
replace implicit equalities with explicit equality constraints.

The resulting rules are mostly as expected, with one interesting
difference for (TAPP). We might expect inlining subsumption into

(TAPP) to yield the following rule:

(*)

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ ′1
τ ′1 ≤ τ1 Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

However, this would cause the inferred Φf effect to be larger
than necessary if there are multiple calls to the same function.
For example, consider the following code, where f is some one-
argument function, x, y, and z are references, and A and B identify
two program points:

( if0 ... then /∗A∗/ (f 1; !x) else /∗B∗/ (f 2; !y )); !z

If we used rule (*), then from branch A, we would require {x, z} ⊆
Φω

f , and from branch B , we would require {y, z} ⊆ Φω
f , where Φf

is the effect of function f. Putting these together, we would thus
have Φω

f = {x, y, z}. This result is appropriate, since any of those
locations may be accessed after some call to f. However, consider
the future effect Φω

A at program point A. By (XFLOW-CTXT), Φω
A

would contain Φω
f , and yet y will not be accessed once we reach

A, since that access is on another branch. The analogous problem
happens at program point B , whose future effect is polluted by x.

The problem is that our effect system conflates all calls to f. One
solution would be to add Hindley-Milner style parametric poly-
morphism, which would address this particular example. However,
even with Hindley-Milner polymorphism we would suffer the same
problem at indirect function calls, e.g., in C, calls through function
pointers would be monomorphic.

The solution is to notice that inlining subsumption into (TAPP)
should not yield (*), but instead results in the following rule:

(TAPP′)

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ ′1
Φf ≤ Φ′

f τ ′1 ≤ τ1 Φ′
f fresh

Φ1 B Φ2 B Φ′
f ↪→ Φ

Φ; Γ ` e1 e2 : τ2

Applied to the above example, (TAPP′) results in two constraints
on the future effect of Φf :

Φω
f ⊇ Φω

fA = {x, z} Φω
f ⊇ Φω

fB = {y, z}
Here ΦfA and ΦfB are the fresh function effects at the call to f in A
and B, respectively. Notice that we have Φω

f = {x, y, z}, as before,
since f is called in both contexts. But now Φω

fA need not contain
y, and ΦfB need not contain x. Thus with (TAPP′), a function’s
effect summarizes all of its contexts, but does not cause the prior
and future effects from different contexts to pollute each other.

To perform type inference, we apply our inference rules, view-
ing them as generating the constraints C in their hypotheses, given
by the following grammar:

C ::= τ ≤ τ ′ | Φ ≤ Φ′ | Φ1 B Φ2 ↪→ Φ

We can then solve the constraints by performing graph reachability
to find, for each variable χ, the set of base effects {L} or 1 that
reach it. In practice, these constraints can be solved very efficiently
using a toolkit such as Banshee (Kodumal and Aiken 2005), which
also can be used to build a context-sensitive version of inference
using context-free language reachability (Pratikakis et al. 2006).

3. Transactional Version Consistency for DSU
In prior work we developed Ginseng, a dynamic software updating
(DSU) system for C programs (Neamtiu et al. 2006; Stoyle et al.
2007). To use Ginseng, programmers construct dynamic patches
that contain new or updated functions and data. Ginseng applies
these patches to the running program, and then subsequent function
calls and data accesses apply to the new versions. A key novelty
of Ginseng is that it ensures dynamic updates do not violate type
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1 int main() { ...
2 conn = accept loop();
3 init log ();
4 handle sess (conn);
5 ... }
6
7 void handle sess (conn) {
8 ...
9 while (1) {

10 tx {
11 cmd = get(conn.fd);
12 if (cmd == ”LIST”) {
13 handle list (cmd);
14 } else ...
15 /∗ new: log log () ∗/
16 } /∗ end tx ∗/
17 }
18 }

19 conn accept loop() {
20 ...
21 while (1) {
22 tx {
23 addr = accept();
24 if (! fork ())
25 /∗ child ∗/
26 return conn;
27 }
28 } /∗ end tx ∗/
29 }
30 }
31
32 void handle list (cmd) {
33 start log entry ();
34 ...
35 log log (); /∗ old ∗/
36 }

Figure 4. High-level structure of the vsftpd server

safety while still allowing patches to change function and data
types (Neamtiu et al. 2006; Stoyle et al. 2007), which is often
necessary (Baumann et al. 2007; Neamtiu et al. 2005).

However, while type safety is important, it is only one aspect
of program correctness. In this section we introduce transactional
version consistency (TVC), a new property that lets programmers
reason more easily about the safety of updates, and show how
contextual effects can enforce TVC.

To illustrate the problem with an example, consider Figure 4,
which sketches the structure of vsftpd, an FTP server which we
have dynamically updated using Ginseng (Neamtiu et al. 2006).
For the moment, ignore the tx{} annotations in the code. In this
program, main (lines 1–5) first calls accept loop, whose body
(lines 19–30) contains an infinite loop. Each iteration of the loop
accepts a connection request (line 23) and forks a child process
to handle the requested session (line 24). If forking succeeds, the
child returns (line 26) to main, which initializes the session’s log
(line 3, function not shown) and processes the session (line 4) by
calling handle sess (lines 7–18). In turn, handle sess processes
client commands until the session is closed. We show one command
processor, handle list (lines 32–36), which is called on line 13.
This function creates a log entry (line 33) that is flushed when
processing is finished (line 35).

Consider the following update, inspired by actual changes to
vsftpd. Rather than flush the log entry at the end of each command
processing function (like handle list), the update changes the code
to do so in handle sess instead, e.g., the call to log log on line 35
is moved to line 15. Once this update is applied, the next iteration
of the loop will execute the new version of the code.1

This update is type safe, but notice that its behavior may be in-
correct depending on where it occurs. Suppose Ginseng applies the
update after line 15, meaning that future calls to handle list and the
handle sess loop body go to the new version. Then everything hap-
pens correctly: we have just called the old version of handle list,
so logging occurred, and we finish executing the old version of the
handle sess loop, and thus do not call log log. The next iteration
uses all new code, and so logging continues as usual.

In contrast, suppose the update was applied at line 11. At this
point we are executing the old handle sess, but we will call the new

1 Updates to functions in Ginseng take effect the next time the function is
called. To update the body of a long-running loop, programmers specify
the loop should be treated as a tail-recursive function, which can then be
updated using the normal function update mechanism. Thus the update
takes effect at the next iteration of the loop (Neamtiu et al. 2006).

1 f () // {f} = α {v, g} = ω
2 v := 2; (∗) // {f, v} {g}
3 g(); // {f, v, g} {}

Figure 5. A sample transaction

handle list, which no longer calls log log. Moreover, handle list
returns to its caller, i.e., the old handle sess, which also does not
call log log. Thus no log entry is produced for the command.

This example reveals a violation of what we call version consis-
tency: due to the timing of the update, we execute part old code and
part new code, and the overall result is inconsistent. It is easy to
construct other problematic updates that violate program semantics
in various ways depending where the update is applied.

Prior to the current work, we maintained version consistency in
Ginseng by only allowing updates at programmer-specified posi-
tions. In vsftpd, we chose update points on lines 16 and 28, at the
end of the connection acceptance and request processing code, just
prior to the next iteration of the loop. However, this approach of
having one or two well-placed update points may result in less up-
date availability, meaning it may take longer for updates to occur
once submitted to the program. While this may be reasonable for
single-threaded programs with low-latency event processing code,
in a multi-threaded program—like an operating system or embed-
ded system—the problem could be quite serious. In particular, we
would have to require that all threads reach their update points si-
multaneously for an update to take place. Since this is unlikely
to happen naturally, we could treat update points as synchroniza-
tion barriers, waiting until all threads have blocked before applying
the update (Stoyle et al. 2007). However, this will degrade service
while waiting for threads to block, and at worst could introduce
deadlock.

3.1 Version Consistency via Contextual Effects
To increase update availability while ensuring version consistency,
we draw inspiration from recent work on making multi-threaded
programming simpler by using atomic blocks (Harris and Fraser
2003). The key benefit of atomic blocks is that the programmer can
consider them in isolation, because the language guarantees they
will be serializable with respect to the rest of the computation.

Analogously, we allow programmers to specify transactions
within their code, and we enforce transactional version consistency
(TVC), meaning that transactions execute as if they were entirely
the old version or entirely the new version, no matter where an
update actually occurs. For example, in Figure 4, we have marked
the bodies of the two event-processing loops as transactions by
placing them within tx{} blocks (lines 10 and 22), and thus the
programmer can consider updates as occurring at lines 10 or 16 in
handle sess or lines 22 or 28 in accept loop, which are equivalent
to the manually specified locations we used earlier.

We can use contextual effects to enforce TVC while still al-
lowing updates to occur within transactions. To see how, consider
the code snippet in Figure 5. Comments show the prior and future
effects after each statement, where we include both locations ac-
cessed and functions called in effects. Suppose we are running this
code within a transaction and have just executed line 2, marked
with a star, when an update becomes available. At this point the
transaction has called f and written to v (α = {f, v}), and will call
g in the future (ω = {g}). Consider the possible outcomes depend-
ing on the effect ε of the update, where an update’s effect consists
of the set of functions and global variables that it adds or changes.

1. If α ∩ ε = ∅, e.g., the update only modifies g (ε = {g}), then
the update is safe. In our example, this would result in using the
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Definitions d ::= main e
| var g = v in d
| fun f(x) = e in d

Expressions e ::= v | x | let x = e in e | e e
| if0 e then e else e
| ref e | ! e | e := e
| tx e | updateα,ω

Values v ::= n | z
Effects α, ω, ε ::= ∅ | 1 | {z} | ε ∪ ε
Global symbols f, g, z ∈ GSym

Dynamic updates upd ::= {chg, add}
Additions add ∈ GSym ⇀ (τ × b)
Changes chg ∈ GSym ⇀ (τ × b)
Bindings b ::= v | λx.e

Figure 6. Proteus-tx syntax, effects, and updates

new versions of f and v, which are the same as the old versions,
with the new version of g. It is as if we applied the update at
the beginning of the transaction, and the entire transaction runs
under the new version.

2. If ω∩ε = ∅, e.g., the update only modifies f (ε = {f}), then the
update is also safe. In our example, this would result in using
the old versions of f, v, and g. Notice that although we have
called f (α ∩ ε 6= ∅), we never call it again after the update. It
is as if we applied the update at the end of the transaction, and
the whole transaction runs under the old version.

3. If α ∩ ε 6= ∅ and ω ∩ ε 6= ∅, e.g., the update modifies f and g,
then we cannot apply the update, because that would result in
using some old code (f) and some new code (g).

Putting these together, we can apply an update with effect ε any-
where in a transaction such that α ∩ ε = ∅ or ω ∩ ε = ∅, where α
and ω are the prior and future effects at the update point.

Our transactions are enforced using statically-determined con-
textual effects as defined in Section 2. Alternatively, we could log a
transaction’s actual effects at run-time and use these to check ver-
sion consistency. Similar to common implementations of transac-
tional memory (Harris and Fraser 2003; Herlihy and Moss 1993),
we could optimistically apply an update when it becomes avail-
able, and then commit it or roll it back at the end of a transaction
depending how the transaction’s effect intersects with the effect of
the update. This might improve update availability, since contex-
tual effects are conservative approximations of the actual run-time
effects. Nevertheless, we believe the benefits of a static approach
outweigh the drawbacks. First, the static approach does not pay the
overhead of logging, which is unnecessary most of the time since
updates are infrequent. Second, there are no restrictions on the use
of I/O within transactions; notice that network I/O occurs in both
transactions in Figure 4. The optimistic approach generally must
avoid I/O in transactions to properly roll back if version consis-
tency is violated.

3.2 Syntax
Figure 6 presents Proteus-tx, which extends the language from Sec-
tion 2 to model transactionally version-consistent dynamic updates,
adapting the ideas of Proteus, our prior dynamic updating calcu-
lus (Stoyle et al. 2007). A Proteus-tx program is a definition d,
which consists of an expression main e, possibly preceded by def-
initions of global symbols, written f, g, or z and drawn from a set
GSym . The definition var g = v in d binds mutable variable g
to v within the scope of d, and the definition fun f(x) = e in d
binds f to a (possibly-recursive) function with formal parameter x
and body e.

(TMAIN)
Φ; Γ ` e : τ

Γ ` main e

(TDVAR)
Φ∅; Γ ` v : τ Γ, g : ref {g} τ ` d

Γ ` var g = v in d

(TDFUN)

Γ′ = Γ, f : τ −→Φ τ ′ Φ; Γ′, x : τ ` e : τ ′

Γ′ ` d {f} ⊆ Φ

Γ ` fun f(x) = e in d

(TGVAR)
Γ(f) = τ

Φ∅; Γ ` f : τ

(TUPDATE)
Φα ⊆ α′ Φω ⊆ ω′

Φ; Γ ` updateα′,ω′
: int

(TTRANSACT)
Φ1; Γ ` e : τ Φα ⊆ Φα

1 Φω ⊆ Φω
1

Φ; Γ ` tx e : τ

Figure 7. Proteus-tx typing (extends Figure 2)

Expressions e in Proteus-tx have several small differences from
the language of Figure 1. We add global symbols z to the set of val-
ues v. We also remove anonymous lambda bindings to keep things
simpler, for reasons discussed in Section 3.4. To mark transactions,
we add a form tx e for a transaction whose body is e.

We specify program points where dynamic updates may occur
with the term updateα,ω , where the annotations α and ω specify
the prior and future effects at the update point, respectively. When
evaluation reaches updateα,ω , an available update is applied if its
contents do not conflict with the future and prior effect annotations;
otherwise evaluation proceeds without updating.

A dynamic update upd consists of a pair of partial functions chg
and add that describe the changes and additions, respectively, of
global symbol bindings. The range of these functions is pairs (τ, b),
where b is the new or replacement value (which may be a function
λx.e) and τ is its type. Note that Proteus-tx disallows type-altering
updates, though Section 3.6 explains how they can be supported by
employing ideas from our earlier work (Stoyle et al. 2007). Also,
although our implementation allows state initialization functions,
for simplicity we do not model them in Proteus-tx.

Finally, effects in Proteus-tx consist of sets of global symbol
names z, which represent either a dereference of or assignment to
z (if it is a variable) or a call to z (if it is a function name). Because
updates in Proteus-tx can only change global symbols (and do not
read or write through their contents), we can ignore the effects of
the latter (we use syntax ref e instead of refL e).

3.3 Typing
Figure 7 extends the core contextual effect typing rules from Fig-
ure 2 to Proteus-tx. The first three rules define the judgment Γ ` d,
meaning definition d is well-typed in environment Γ. (TMAIN)
types e in Γ, where e may have any effect and any type. (TDVAR)
types the value v, which has the empty effect (since it is a value),
and then types d with g bound to a reference to v labeled with effect
{g}. The last definition rule, (TDFUN), constructs a new environ-
ment Γ′ that extends Γ with a binding of f to the function’s type.
The function body e is type checked in Γ′, to allow for recursive
calls. This rule also requires that f appear in all components of the
function’s effect Φ, written {f} ⊆ Φ. We add f to the prior effect
because f must have been called for its entry to be reached. We add
f to the current effect so that it is included in the effect at a call site.
Lastly, we add f to the future effect because f is on the call stack and
we consider its continued execution to be an effect. Note that this
prohibits updates to main(), which is always on the stack. How-
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ever, we can solve this problem by extracting portions of main()
into separate functions, which can then be updated; Ginseng pro-
vides support to automate this process (Neamtiu et al. 2006). The
next rule, (TGVAR), types global variables, which are bound in Γ.
The last two rules type the dynamic updating-related elements of
Proteus-tx. (TUPDATE) types update by checking that its prior and
future effect annotations are supersets of (and thus conservatively
approximate) the prior and future effects of the context.

Finally, (TTRANSACT) types transactions. A key design choice
here is deciding how to handle nested transactions. In (TTRANS-
ACT), we include the prior and future effects of Φ, from the outer
context, into those of Φ1, from the transaction body. This ensures
that an update within a child transaction does not violate version
consistency of its parent. However, we do not require the reverse—
the components of Φ1 need not be included in Φ. This has two
consequences. First, sequenced transactions are free to commit in-
dependently. For example, consider the following code

tx { tx { /∗A∗/ }; /∗B∗/ tx { /∗C∗/ } }

According to (TTRANSACT), the effect at B is included in the prior
and future effects of C and A, respectively, but not the other way
around. Thus neither transaction’s effect propagates into the other,
and therefore does not influence any update operations in the other.

The second consequence is that version consistency for a parent
transaction ignores the effects of its child transactions. This resem-
bles open nesting in concurrency transactions (Ni et al. 2007). For
example, suppose in the code above that A and C contain calls to
a hash table T . Without the inner transaction markers, an update
to T available at B would be rejected, because due to A it would
overlap with the prior effect, and due to C it would overlap with
the future effect. With the inner transactions in place, however, the
update would be allowed. As a result, the parent transaction could
use the old version of the hash table in A and the new version in C .

This treatment of nested transactions makes sense when inner
transactions contain code whose semantics is largely independent
of the surrounding context, e.g., the abstraction represented by a
hash table is independent of where, or how often, it is used. (Bau-
mann et al. 2007) have applied this semantics to successfully par-
tition dynamic updates to the K42 operating system into indepen-
dent, object-sized chunks. While we believe open nesting makes
sense, we can see circumstances in which closed nesting might be
more natural, so we expect to refine our approach with experience.

3.4 Operational Semantics
Figure 8 defines a small-step operational semantics that reduces
configurations 〈n; Σ; H; e〉, where n defines the current program
version (a successful dynamic update increments n), Σ is the
transaction stack (explained shortly), H is the heap, and e is
the active program expression. Reduction rules have the form
〈n; Σ; H; e〉 −→η 〈n′; Σ′; H ′; e′〉, where the event η on the
arrow is either µ, a dynamic update that occurred (discussed be-
low), or ε, the effect of the evaluation step.

In our semantics, heaps map references r and global variables z
to triples (τ, b, ν) consisting of a type τ , a binding b (defined in
Figure 6), and a version set ν. The first and last components are
relevant only for global symbols; the type τ is used to ensure
that dynamic updates do not change the types of global bindings,
and the version set ν contains all the program versions up to, and
including, the current version since the corresponding variable was
last updated. When an update occurs, new or changed bindings are
given only the current version, while all other bindings have the
current version added to their version set (i.e., we preserve the fact
that the same binding was used in multiple program versions).

As evaluation proceeds, we maintain a transaction stack Σ,
which is a list of pairs (n, σ) that track the currently active transac-

tions. Here n is the version the program had when the transaction
began, and σ is a trace. A trace is a set of pairs (z, ν), each of
which represents a global symbol access paired with its version set
at the time of use. The traces act as a log of dynamic events, and we
track them in our semantics so we can prove that all global symbols
accessed in a transaction come from the same version.

To evaluate a program d, we first compute C(∅, d) using the
function C shown at the top of Figure 8, which yields a pair H; e.
This function implicitly uses the types derived by typing d using
the rules in Figure 7. Then we begin regular evaluation in the
configuration 〈0; (0, ∅); H; e〉, i.e., we evaluate e at version 0, with
initial transaction stack (0, ∅), and with the declared bindings H .
This causes the top-level expression e in main e to be treated as if
it were enclosed in a transaction block.

The first several reduction rules in Figure 8 are straightforward.
[LET], [REF], [DEREF], [ASSIGN], [IF-T], and [IF-F] are small-step
versions of the rules in Figure 3, though normal references no
longer have effects. None of these rules affects the current version
or transaction stack. [CONG] is standard.

[GVAR-DEREF], [GVAR-ASSIGN], and [CALL] each have effect
{z} and add (z, ν) to the current transaction’s trace, where ν is
z’s current version set. Notice that [CALL] performs dereference
and application in one step, finding z in the heap and performing
substitution. Since dynamic updates modify heap bindings, this
ensures that every function call is to the most recent version. Notice
that although both functions and variables are stored in the heap, we
assign regular function types to functions ((TDFUN) in Figure 7)
so that they cannot be assigned to within a program. Including λ-
terms in the expression language would either complicate function
typing or make it harder to define function updates so we omit them
to keep things simpler.

The next several rules handle transactions. [TX-START] pushes
the pair (n, ∅) onto the right of the transaction stack, where n is
the current version and ∅ is the empty trace. The expression tx e is
reduced to intx e, which is a new form that represents an actively-
evaluating transaction. The form intx e does not appear in source
programs, and its type rule matches that of tx e (see Figure 9).

Next, [TX-CONG-1] and [TX-CONG-2] perform evaluation
within an active transaction intx e by reducing e to e′. The latter
rule applies if e’s reduction does not include an update, in which
case the effect ε of reducing e is treated as ∅ in the outer transac-
tion. This corresponds to our model of transaction nesting, which
does not consider the effects of inner transactions when updating
outer transactions. Otherwise, if an update occurs, then [TX-CONG-
1] applies, and we use the function U to update version numbers on
the outermost entry of the transaction stack. U is discussed shortly.

The key property guaranteed by Proteus-tx, that transactions are
version consistent, is enforced by [TX-END], which gets stuck un-
less traceOK (n′′, σ′′) holds. This predicate, defined just below the
reduction rules, states that every element (z, ν) in the transaction’s
trace σ′′ satisfies n′′ ∈ ν, meaning that when z was used, it could
be attributed to version n′′, the version of the transaction. If this
predicate is satisfied, [TX-END] strips off intx and pops the top
(rightmost) entry on the transaction stack.

The last two rules handle dynamic updates. When updateα,ω

is in redex position, these rules try to apply an available update
bundle µ, which is a pair (upd , dir) consisting of an update (from
Figure 6) and a direction dir that indicates whether we should con-
sider the update as occurring at the beginning or end of the trans-
action, respectively. If updateOK (upd , H, (α, ω), dir) is satisfied
for some dir , then [UPDATE] applies and the update occurs. Other-
wise [NO-UPDATE] applies, and the update must be delayed.

If [UPDATE] applies, we increment the program’s version num-
ber and update the heap using U [H]updn+1, defined in the middle-right
of Figure 8. This function replaces global variables and adds new
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Definitions
Heaps H ::= ∅ | r 7→ (·, b, ν), H

| z 7→ (τ, b, ν), H
Version sets ν ::= ∅ | {n} ∪ ν
Traces σ ::= ∅ | (z, ν) ∪ σ
Transaction stacks Σ ::= ∅ | (n, σ), Σ
Expressions e ::= ... | r | intx e
Events η ::= ε | µ
Update Direction dir ::= bck | fwd
Update Bundles µ ::= (upd , dir)

Compilation
C(H; main e) = H; e
C(H; fun f(x) = e in d) = C(H, f 7→ (τ −→Φ τ ′, λx.e, {0}); d)
C(H; var g = v in d) = C(H, g 7→ (τ, v, {0}); d)

Evaluation Contexts
E ::= [ ] | E e | v E | let x = E in e

| ref E | ! E | E := e | r := E | g := E
| if0 E then e else e

Computation
[LET] 〈n; (n′, σ); H; let x = v in e〉 −→∅ 〈n; (n′, σ); H; e[x 7→ v]〉
[REF] 〈n; (n′, σ); H; ref v〉 −→∅ 〈n; (n′, σ); H[r 7→ (·, v, ∅)]; r〉 r 6∈ dom(H)

[DEREF] 〈n; (n′, σ); H; ! r〉 −→∅ 〈n; (n′, σ); H; v〉 H(r) = (·, v, ∅)
[ASSIGN] 〈n; (n′, σ); H; r := v〉 −→∅ 〈n; (n′, σ); H[r 7→ (·, v, ∅)]; v〉 r ∈ dom(H)

[IF-T] 〈n; (n′, σ); H; if0 0 then e1 else e2〉 −→∅ 〈n; (n′, σ); H; e1〉
[IF-F] 〈n; (n′, σ); H; if0 n′′ then e1 else e2〉 −→∅ 〈n; (n′, σ); H; e2〉 n′′ 6= 0

[CONG] 〈n; Σ; H; E[e]〉 −→η 〈n′; Σ′; H′; E[e′]〉 〈n; Σ; H; e〉 −→η 〈n′; Σ′; H′; e′〉
[GVAR-DEREF] 〈n; (n′, σ); H; ! z〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); H; v〉 H(z) = (τ, v, ν)

[GVAR-ASSIGN] 〈n; (n′, σ); H; z := v〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); H[z 7→ (τ, v, ν)]; v〉 H(z) = (τ, v′, ν)

[CALL] 〈n; (n′, σ); H; z v〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); H; e[x 7→ v]〉 H(z) = (τ, λx.e, ν)

[TX-START] 〈n; (n′, σ); H; tx e〉 −→∅ 〈n; (n′, σ), (n, ∅); H; intx e〉
[TX-CONG-1] 〈n; (n′′, σ), Σ; H; intx e〉 −→µ 〈n′;U [(n′′, σ)]µ

n′ , Σ
′; H′; intx e′〉 〈n; Σ; H; e〉 −→µ 〈n′; Σ′; H′; e′〉

[TX-CONG-2] 〈n; Σ; H; intx e〉 −→∅ 〈n′; Σ′; H′; intx e′〉 〈n; Σ; H; e〉 −→ε 〈n′; Σ′; H′; e′〉
[TX-END] 〈n; ((n′, σ′), (n′′, σ′′)); H; intx v〉 −→∅ 〈n; (n′, σ′); H; v〉 traceOK (n′′, σ′′)

[UPDATE] 〈n; (n′, σ); H; updateα,ω〉 −→(upd,dir) 〈n + 1;U [(n′, σ)]upd,dir
n+1 ;U [H]updn+1; 1〉 updateOK (upd , H, (α, ω), dir)

[NO-UPDATE] 〈n; (n′, σ); H; updateα,ω〉 −→∅ 〈n; (n′, σ); H; 0〉

Update Safety
updateOK (upd , H, (α, ω), dir) =

dir = bck ⇒ α ∩ dom(updchg ) = ∅
∧ dir = fwd ⇒ ω ∩ dom(updchg ) = ∅
∧ Γ = types(H)
∧ Γupd = Γ, types(updadd )
∧ ∀z 7→ (τ, b, ·) ∈ updchg .`

Φ∅; Γupd ` b : τ ∧ heapType(τ, z) = Γ(z)
´

∧ ∀z 7→ (τ, b, ·) ∈ updadd .`
Φ∅; Γupd ` b : τ ∧ z /∈ dom(H)

´

Trace Safety
traceOK (n, σ) = (∀(z, ν) ∈ σ. n ∈ ν)

Heap Updates

U [(z 7→ (τ, b, ν), H)]updn =

8>><>>:
z 7→ (τ, b′, {n}),U [H]upd

n
if updchg (z) 7→ (τ, b′)

z 7→ (τ, b, ν ∪ {n}),U [H]upd
n

otherwise

U [(r 7→ (·, b, ∅), H)]updn = (r 7→ (·, b, ∅)),U [H]upd
n

U [∅]updn = {z 7→ (τ, b, {n}) | z 7→ (τ, b) ∈ updadd}

Heap Typing Environments
types(∅) = ∅

types(z 7→ (τ, b, ν), H′) = z : heapType(τ, z), types(H′)
heapType(τ1 −→Φ τ2, z) = τ1 −→Φ τ2 z ∈ Φ

heapType(τ, z) = ref {z} τ τ 6= (τ1 −→Φ τ2)

Trace Stack Updates
U [(n′, σ)]upd,fwd

n = (n′, σ)

U [(n′, σ)]upd,bck
n = (n,Ut[σ]updn )

Ut[σ]updn = {(z, ν ∪ {n} | z 6∈ dom(updchg )}
∪ {(z, ν) | z ∈ dom(updchg )}

Figure 8. Proteus-tx operational semantics

bindings according to the update. New and replaced bindings’ ver-
sion sets contain only the current version, while unchanged bind-
ings add the current version to their existing version sets.

The updateOK () predicate is defined just below the reduction
rules in Figure 8. The first two conjuncts enforce the update safety
requirement discussed in Section 3.1. There are two cases. If dir =
bck , then we require that the update not intersect the prior effects,
so that the update will appear to have happened at the beginning
of the transaction. In this case, we need to update the version
number of the transaction to be the new version, and any elements
in the trace not modified by the update can have the new version
added to their version sets, i.e., the past effect can be attributed

to the new version. To do this, [UPDATE] applies the function
U [(n′, σ)]

upd,dir
n+1 , defined on the bottom right of Figure 8, with

dir = bck . The update applies to outer transactions as well, and
thus [TX-CONG-1] applies this same version number replacement
process across the transaction stack.

In the other case, if dir = fwd , we require that the remainder
of the transaction not be affected by the update, so the update
will appear to have happened at the end of the transaction. In
this case we need not modify the transaction stack, and hence
U [(n′, σ)]

upd,dir
n with dir = fwd simply returns (n′, σ).

The remaining premises of updateOK () determine whether the
update itself is well-formed: each replacement binding must have
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TIntrans
Φ1; Γ ` e : τ Φα ⊆ Φα

1 Φω ⊆ Φω
1

Φ; Γ ` intx e : τ

dom(Γ) = dom(H)
∀z 7→ (τ −→Φ τ ′, λx.e, ν) ∈ H.

Φ; Γ, x : τ ` e : τ ′ ∧ Γ(z) = τ −→Φ τ ′ ∧ z ∈ Φ
∀z 7→ (τ, v, ν) ∈ H. Φ∅; Γ ` v : τ ∧ Γ(z) = ref ε τ ∧ z ∈ ε
∀r 7→ (·, v, ν) ∈ H. Φ∅; Γ ` v : τ ∧ Γ(r) = ref ε τ
∀z 7→ (τ, b, ν) ∈ H. n ∈ ν

n; Γ ` H

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n ∈ ver(H, f)

[α; ε; ω], ·; H ` (n, σ)

(TC2)

Φ′,R; H ` Σ
f ∈ σ ⇒ f ∈ α

f ∈ ε ⇒ n ∈ ver(H, f)

[α; ε; ω], Φ′,R; H ` (n, σ), Σ

where ver(H, f) = ν iff H(f) = (τ, b, ν)

Figure 9. Proteus-tx typing extensions for proving soundness

the same type as the original, and new and added bindings must
type check in the context of the updated heap.

3.5 Soundness
We have proven that well-typed Proteus-tx programs are version-
consistent. The main result is that a well-typed, well-formed pro-
gram either reduces to a value or evaluates indefinitely while pre-
serving typing and version consistency. To prove this we need two
additional judgments, shown in Figure 9. Heap typing n; Γ ` H
extends Definition 2.1 from the core system, where the additional
conditions ensure that global symbols are well-typed, have well-
formed effects, and include version n (presumed to be the current
version) in their version sets.

Stack well-formedness R; H ` Σ checks that a transaction
stack Σ is correctly approximated by a transaction effect R, which
consists of a list of contextual effects Φ, one for each nested trans-
action.R is computed from a typing derivation in a straightforward
way according to the function JΦ; Γ ` e : τK = R, extracting Φ1

from each occurrence of (TINTRANS) recursively; the rules are not
shown due to space constraints. Stack well-formedness ensures two
properties. First, it ensures that each element in the trace σ is in-
cluded in the corresponding prior effect α (i.e., f ∈ σ ⇒ f ∈ α).
As a result, we know that bck updates that rewrite the stack will
add the new version to all elements of the trace, since none have
changed. Second, it ensures that elements in each transaction’s cur-
rent effect (i.e., the part yet to be executed) have the version of that
transaction: f ∈ ε ⇒ n ∈ ver(H, f).

With this we can prove the core result:

Theorem 3.1 (Single-step Soundness). If Φ; Γ ` e : τ where
JΦ; Γ ` e : τK = R; and n; Γ ` H; and Φ,R; H ` Σ; and
traceOK (Σ), then either e is a value, or there exist n′, H ′, Σ′,
Φ′, e′, and η such that 〈n; Σ; H; e〉 −→ η 〈n′; Σ′; H ′; e′〉 and
Φ′; Γ′ ` e′ : τ where JΦ′; Γ′ ` e′ : τK = R′; and n′; Γ′ ` H ′;
and Φ′,R′; H ′ ` Σ′; and traceOK (Σ′) for some Φ′, Γ′,R′.

The proof is based on progress and preservation lemmas, as is
standard. Details are in Appendix B.

From this lemma we can prove soundness:

Corollary 3.2 (Soundness). If Φ; Γ ` e : τ and 0; Γ ` H then
〈0; (0, ∅); H; e〉 A 〈n′; (n′′, σ); H ′; v〉 for some value v or else

evaluates indefinitely, where A is the reflexive, transitive closure
of the −→ η relation such that A is a set of events η.

3.6 Transactional Version Consistency for C Programs
We extended Ginseng to implement transactional version consis-
tency for C using contextual effects. In our implementation, trans-
actional blocks are indicated with a special label, and are written

DSU TX : {...}. Candidate update points can be inserted either
manually or, in our experiment, automatically, as discussed below.
To perform effect inference, we first compute a context-sensitive
points-to analysis using CIL (Necula et al. 2002). Then we gener-
ate (context-insensitive) effect constraints (following Section 2.3)
using labels derived from the points-to analysis, and we solve the
constraints with Banshee (Kodumal and Aiken 2005).

After computing the contextual effects, Ginseng transforms the
program to make it updatable, and transforms each update point
into a call to a function update(∆, α, ω). Here α and ω are the
prior and future effects at the update point, pre-computed by our
contextual effect inference, and ∆ is a set of type names whose
definitions cannot be modified and variables whose types cannot
be modified. More specifically, ∆ contains all of those entities that
could be accessed—functions f that might be called, variables g
that might be dereferenced, and types t whose values might be
destructed—by code possibly on the stack at the time of the update,
since that code will expect the old version’s type (Neamtiu et al.
2006; Stoyle et al. 2007). When update is called at run time, it
checks to see whether an update is available and, if so, applies the
update if it is both type safe (i.e., no variable or type in ∆ has
been changed by the update to have a different type) and version
consistent (given α and ω). If an update is not safe, it is delayed
and execution continues at the old version.

Type-altering Updates Since a function f’s type is annotated with
its contextual effect Φ, a modification to the program that causes
f’s effect Φ to change must be considered a change to f’s type.
This can occur even when f’s code has not changed, e.g., if f calls
g and an update changes g’s effect. Our implementation handles
such changes following the approach of our earlier work (Stoyle
et al. 2007). In particular, if a variable f’s type changes from τ to
τ ′ due to an update, then if either τ ′ ≤ τ or τ ′ 6≤ τ and f 6∈ ∆,
the update is safe and can be applied. In the latter case, although
f’s type changes in an incompatible way, no active code depends
on its type. On the other hand, if τ ′ 6≤ τ and f ∈ ∆ then the update
may be unsafe, since active code may rely on its type, and thus the
update must be delayed.

State Transformation Our version consistency condition is slight-
ly more complicated in practice due to state transformers. A state
transformer is an optional function, supplied by the programmer,
that is called at update time to transform old program state into
new program state. The programmer writes the state transformer
as if it will be run at the beginning or end of a transaction, and our
system must ensure that this appearance is true. That is, to allow
an update to occur within a transaction, we must ensure that (1) the
writes performed by the state transformer do not violate the version
consistency of the current program transactions, and (2) the effects
of the current transactions do not violate the version consistency
of the state transformer itself. We achieve both ends by consider-
ing the update changes (dom(updchg)) and the state transformer’s
current effect εxf as the effect of the update when performing the
usual checks for version consistency.

For example, if an update point update(∆, α, ω) is reached
within a transaction, then if ω ∩ (εxf ∪ dom(updchg)) = ∅ then
the remaining actions of the transaction will not affect the state
transformer, and vice versa, and so it is as if the update occurred at
the end of the transaction. Likewise, if α∩(εxf ∪dom(updchg)) =

9



∅ then the effect of the transaction to this point has no bearing on
the execution of the state transformer, and vice versa, so it is as if
the update occurred at the beginning of the transaction. Note that
because state transformers can also access the heap from global
variables we need to include accesses to standard heap references
(i.e., names L as in Section 2) in our effects.

Non-updatable transactions When writing a state transformer,
the programmer needs to anticipate where it might be applied in
the program, i.e., the transformer might need to do different things
depending on which transactions have completed (as evidenced
by the current state). Thus we have found it is convenient to rule
out updates in some transactions, to limit the amount of location-
dependent code in a state transformer. For example, in Figure 4,
we would like to forbid updates from the program start up to the
first transaction on line 22, and from the end of the transaction on
line 28 to the beginning of the transaction on line 10. Since this
code is not run very often, prohibiting transactions in it should not
significantly reduce update availability.

Formally, we could support this notion by adding a new form
tx∗ e that has the same type rule and operational semantics as a
transaction tx e, but in which no updates are allowed at run time.
In the example, however, the regions to which we would like to
apply tx∗ are non-lexically scoped. We could refactor the code to
form lexical blocks, but ultimately we plan to support non-lexical
transactions in our implementation. For our experiments below,
we simulate tx∗ e transactions by simply not flowing the prior
and future effect of the outer context into the tx e blocks (i.e.,
eliminating the constraints in the hypothesis of (TTRANSACT)).
This produces the result we want and is safe because the tx e blocks
in vsftpd are only nested inside the transaction for the top-level
expression, and everything else in that expression is effectively in
a tx∗ block.

3.7 Experiments
We measured the potential benefits of transactional version consis-
tency by analyzing 12 dynamic updates to vsftpd. The updates
correspond to versions 1.1.0 through 2.0.2. For our experiment, we
modified Ginseng to seed the transactions in each vsftpd version
with candidate update points. While we could conceivably insert
update points at every statement, we found through manual exami-
nation that inserting update points just before the return statement
of any function reachable from within a transaction provides good
coverage. Then we used Ginseng to infer the contextual effects and
type modification restrictions at each update point, and computed
at how many of them we could safely apply the update.

We conducted our experiments on an Athlon 64 X2 dual core
4600 machine with 4GB of RAM, running Debian, kernel version
2.6.18. Figure 10 summarizes our results. For each version, we list
its size, the time Ginseng takes to pre-compute contextual effects
and type modification restrictions, and the number of candidate
update points that were automatically inserted. The analysis takes
around 10 minutes for the largest example, and we expect that
time could be reduced with more engineering effort. The last two
columns indicate how many update points are type safe, and how
many are both type safe and version consistent, with respect to the
update from the version in that row to the next version. Note that
determining whether an update is type safe and version consistent
is very fast, and so we do not report the time for that computation.

Recall that in our prior work with vsftpd we manually added
two update points. From the table, we can see that several additional
update points are type safe and version consistent. We manually ex-
amined all of these update points. For all program versions except
1.1.0, 1.2.1, and 2.0.2pre2, we found that roughly one-third of the
VC-safe update points occur somewhere in the middle of a trans-
action, providing better potential update availability. Another third

Version LoC Time (s) Upds Type-safe VC-safe
1.1.0 10,157 193 344 300 33
1.1.1 10,245 196 346 19 9
1.1.2 10,540 234 350 25 8
1.1.3 10,723 238 354 19 8
1.2.0 12,027 326 413 31 9
1.2.1 12,662 264 438 368 146
1.2.2 12,691 278 439 32 9
2.0.0 13,465 440 471 392 9
2.0.1 13,478 420 471 459 9
2.0.2pre2 13,531 632 471 471 9
2.0.2pre3 14,712 686 484 484 8
2.0.2 17,386 649 471 468 9

Figure 10. Version consistency analysis results

1 let x = ref 0, y = ref 1,
2 z = ref 2, w = ref 3 in
3 y := 4;
4 fork (!x; !y; !z );
5 x := 5;
6 fork (z := 2);
7 while (...) fork (w := (!w) + 1)

(TFORK)
Φei; Γ ` e : τ Φε

ei ⊆ Φε
i

Φi; Γ ` forki e : τ

Figure 11. Thread sharing analysis: example and type rule

occur close to or just before the end of a transaction, and the last
third occur in dead code, providing no advantage. For the remaining
versions, 1.1.0, 1.2.1, and 2.0.2pre2, we found that roughly 10% of
the update points are in the middle of transactions, and almost all
the remaining ones are close to the end of a transaction, with a few
more in dead code.

One reason so many update points tend to occur toward the end
of the transaction is due to the field-insensitivity of the alias anal-
ysis we used. In vsftpd, the type vsf session contains a multitude
of fields and is used pervasively throughout the code. The field-
insensitive analysis causes spurious conflicts when one field is ac-
cessed early in the transaction but others are accessed later on, as
is typical. This pushes the update points to the end of the transac-
tion, following vsf session’s last use. We plan to integrate a field-
sensitive alias analysis into Ginseng to remedy this problem.

Interestingly, there are generally far more updates that are ex-
clusively type safe than those that are both type safe and version
consistent. We investigated some of these, and we found that the
reasons for this varied with the update. For example, the updates
that do not change vsf session (e.g., 1.1.0) have a high number of
type-safe update points, while those that do (e.g., 1.1.1) have far
fewer. This makes sense, given vsf session’s frequent use.

In summary, these results show that many update points are both
type safe and version consistent, providing greater availability of
updates than via manual placement. We expect still more update
availability with a more accurate alias analysis.

4. Thread Sharing Analysis
Data race detectors (Savage et al. 1997; Flanagan and Freund 2000;
Pratikakis et al. 2006; Naik et al. 2006) and other static analysis
tools often perform thread sharing analysis to identify memory lo-
cations that may be accessed by multiple threads (and conversely
those locations that are purely thread-local) in a concurrent pro-
gram. This is useful because only shared locations need to be pro-
tected from concurrent access. In this section we show how contex-
tual effects can be used to implement a thread sharing analysis.
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We illustrate our analysis with an example. Suppose we have a
language construct fork e, which creates a new thread that evalu-
ates e, and consider the code in the top of Figure 11, written in an
ML-like language with a while loop. This program creates four up-
datable references and then manipulates them in the parent thread
and various child threads.

One simple but incorrect method for computing sharing would
be to compute the (standard) effects of each thread and then inter-
sect them; any location in the intersection of two threads would be
considered thread-shared. In this case the effect of the main thread
is {x, y} (the writes on lines 3 and 5), and the effects of the threads
on lines 4, 6, and 7 are {x, y, z}, {z}, and {w}, respectively. Thus
we would compute that x, y, and z are shared, and that w is not.

The most obvious problem here is that w is determined thread-
local, even though it is shared among the several threads created
on line 7. We could solve this problem by performing some kind of
analysis to determine which calls to fork might be invoked multiple
times, but that adds complexity and does not solve another problem
involving precision.

Observe that although x and y are accessed both by the main
thread and the thread created on line 4, their sharing is different.
The main thread writes to x on line 5 after the child thread on line 4
may have started, hence the read and write may be simultaneous.
On the other hand, the write to y on line 3 happens before (Lamport
1978; Manson et al. 2005) the child thread is created on line 4, and
since there is no other write in the parent thread, we can consider y
to be thread-local—there are no possible concurrent accesses from
different threads.

We can solve both of these problems by using contextual effects
rather than regular effects to determine sharing. The idea is simple:
a location is thread-shared if it may be accessed by a child thread
and by the parent thread, but only after the child thread is created—
and we can use the future effect to compute what happens after
thread creation. This takes care of the problems with loops, since
the future effect of a fork in a loop will include the back-edge in
the loop; and it allows the parent to modify data before a child
thread is created without forcing that data to be considered shared.
This technique is even more useful when we distinguish read and
write effects, which we do in practice, in which case data need only
be considered shared if at least one of the potential simultaneous
accesses is a write.

4.1 Typing
The bottom of Figure 11 gives the new type rule (TFORK) needed
for sharing analysis. This rule types thread creation, where each
syntactic occurrence forki e has been named with an index i. In this
rule, we compute the effect Φei of the child thread separately from
the effect Φi of the parent thread. Once we have all such effects, we
can compute the set of shared locations as shared =

S
i(Φ

ε
ei∩Φω

i ).
In other words, a location is shared if it is accessed both in the child
thread and in the parent thread after a call to fork.

There is one catch, however. Consider z from the example
program in Figure 11. This particular location is not accessed by
the parent thread after it is created, and hence is not (yet) in Φω

i ,
and thus will not be considered shared. To handle this case, sharing
among two child threads, we simply add the child’s effects to the
parent’s effects with the constraint Φε

ei ⊆ Φε
i . Considering the

example again, this causes the write to z on line 6 to be added to
the parent thread’s effect on the same line, and therefore it will be
in the parent’s future effect on line 4.

4.2 Implementation and Experiments
We have incorporated our thread sharing analysis into Lock-
smith (Pratikakis et al. 2006), a static analysis tool we developed to
find data races in C programs. Locksmith works by enforcing the

Name LoC Time (s) Shared Total %
aget 1,914 0.40 60 338 18%

ctrace 2,212 0.25 21 307 7%
engine 2,608 0.49 10 390 3%

knot 1,985 0.35 29 319 9%
pfscan 1,948 0.25 26 238 11%
smtprc 8,630 2.46 128 1077 12%

eql 16,568 1.68 22 240 9%
3c501 17,441 0.64 23 353 7%

plip 19,141 0.88 64 402 16%
sundance 19,951 1.05 25 633 4%
wavelan 20,085 1.14 123 660 19%

hp100 20,368 1.16 24 450 5%
synclink 24,691 2.65 219 1158 19%

Figure 12. Sharing analysis results

guarded-by pattern: Every shared location in the program must be
consistently guarded by some lock. Locksmith requires essentially
no annotations, and uses several other analyses in addition to the
thread sharing analysis described above. Previous presentations of
Locksmith’s sharing analysis were informal (Pratikakis et al. 2006)
or used a different formulation (Hicks et al. 2006) (see Section 5),
and did not report the effectiveness of the analysis.

Figure 12 shows the results. We measure the running time, the
number of shared locations, and the total number of locations.
Here locations include all global variables, syntactic occurrences
of malloc, local variables whose address is taken, or fields of lo-
cations (our analysis is field sensitive). The results show that con-
textual effect inference runs very quickly, and is able to determine
that many locations in the program are thread-local. On average,
only 11% of the total locations are determined to be shared. Thus
Locksmith can safely assume that accesses to the remaining 89%
of locations need not be guarded by locks, greatly improving the
precision of race detection.

5. Related Work
5.1 Effect Systems
Several researchers have proposed extending standard effect sys-
tems (Lucassen 1987; Nielson et al. 1999) to model more com-
plex properties. One common approach is to use traces of actions
for effects rather than sets of actions. These traces can be used to
check that resources are accessed in the correct order (Igarashi and
Kobayashi 2002), to statically enforce history-based access con-
trol (Skalka et al. 2007), and to check communication sequenc-
ing (Nielson et al. 1999). While these systems can model the or-
dering of events, they do not compute the prior or future effect at a
program point. We believe we could combine trace effects with our
approach to create a contextual trace effect system, which we leave
for future work.

In prior work (Hicks et al. 2006) we introduced continuation
effects γ, which resemble the union ε∪ω of our standard and future
effects. Judgments in this system have the form γ; Γ ` e : τ ; γ′,
where γ′ describes the effect of e’s continuation in the remainder
of the program, and γ is equivalent to ε∪γ′ where ε is the standard
effect of e. The drawback of this formulation is that the standard
effect ε of e cannot be recovered from γ, since (ε ∪ γ′) − γ′ 6= ε
when ε ∩ γ′ 6= ∅. This system also does not include prior effects.

Capabilities in Alias Types (Smith et al. 2000) and region sys-
tems like CL (Walker et al. 2000) are likewise related to our stan-
dard and future effects. A capability consists of static approxima-
tion of the memory locations that are live in the program, and thus
may be dereferenced in the current expression or in later evalua-
tion. Because these systems assume their inputs are in continuation
passing style (CPS), the effect of a continuation is equivalent to our
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future effects. The main differences are that we compute future ef-
fects at every program point (rather than only for continuations),
that we compute prior effects, and that we do not require the input
program to be CPS-converted.

5.2 Correctness of Dynamic Software Updating
Several systems for on-line updates have been proposed. Here we
focus on how prior work controls an update’s timing to assure its
effects are correct.

Most work disallows updates to code that is active, i.e., actu-
ally running or referenced by the call stack. The simplest approach
to updating active code, taken by several recent systems (Gilmore
et al. 1997; Makris and Ryu 2007; Chen et al. 2006), is to pas-
sively wait for it to become inactive. This can be problematic for
multi-threaded programs, since there is a greater possibility that ac-
tive threads reference a to-be-updated object. To address this prob-
lem, (Soules et al. 2003) developed a quiescence protocol to sup-
port dynamic updating in the object-oriented K42 operating sys-
tem (Baumann et al. 2005, 2007). Once an update for an object
is proposed, an adaptor object is interposed to block subsequent
callers of the object. Once the active threads have exited, the ob-
ject is upgraded and the blocked callers are resumed. The danger is
that dependencies between updated objects could result in a dead-
lock. While code inactivity is useful, it is not sufficient for ensuring
higher-level properties like version consistency. In particular, ver-
sion consistency may require delaying an update if to-be-updated
objects are not currently active but were during the transaction.

(Lee 1983) proposed a generalization of the quiescence con-
dition by allowing programmers to specify timing constraints on
when elements of an update should occur; recent work by (Chen
et al. 2007) is similar. As an example, the condition update P,
Q when P, M, S idle specifies that procedures P and Q should
be updated only when procedures P, M, and S are not active. Lee
provides some guidance for using these conditions. For example, if
procedure P’s type has changed, then an update to it and its callers
should occur when all are inactive. Our work uses a program analy-
sis to discover conditions such as these to establish the higher-level
transactional version consistency property.

Prior work with Ginseng focused on ensuring that a dynamic
update does not introduce type errors when it is applied (Neamtiu
et al. 2006; Stoyle et al. 2007). For example, the program point
just before a call to a function f is restricted from changing the
type of f—to allow the update would result in the old code calling
the new f at an incompatible type. We developed a static updata-
bility analysis that gathers type constraints imposed by the active
(old) code at each program point and only allows an update to take
place if it satisfies the constraints. This is more fine-grained than
Lee’s constraints—if the type of a function changes, we can up-
date it even when its callers are active so long as they will not call
the updated function directly. Our current work is complementary
to this work, as a type-safe update will not necessarily be version-
consistent (as illustrated by the example in Section 3), and depend-
ing on how transactions are specified the reverse may also be true.

Our use of transactions to ensure version consistency resem-
bles work by (Boyapati et al. 2003) on lazily upgrading objects
in a persistent object store (POS). Using a type system that guar-
antees object encapsulation, their system ensures that an object’s
transformation function, used to initialize the state of a new ver-
sion based on old state, sees only objects of the old version, which
is similar to our version consistency property. How updates interact
with application-level transactions is less clear to us. The assump-
tion seems to be that updates to objects are largely semantically-
independent, so there is less concern about version-related depen-
dencies between objects within a transaction.

5.3 Thread Sharing Analysis
Thread sharing analysis is a key part of several tools for analyzing
multi-threaded programs. Eraser (Savage et al. 1997), a dynamic
data race detector, assumes locations are shared after they have
been accessed by at least two threads. Our thread-sharing analysis
can be seen as a static version of this approach. RCC Java (Flanagan
and Freund 2000) allows programmers to manually add annotations
to mark classes as thread local, so that their fields need not be
guarded by locks when accessed.

Chord (Naik et al. 2006) uses a thread escape analysis to find
shared locations; a location is considered shared if it is reachable
from a thread object. This is more conservative than our approach,
which allows data to be thread-local as long as it is not used in the
parent after a child thread is forked. Chord avoids this problem by
discounting constructors when determining thread sharing or data
races. A newer version of Chord includes a flow-sensitive sharing
analysis (Naik and Aiken 2007), but it is not described in detail.

(von Praun and Gross 2003) propose a thread sharing analysis
for Java. Their system determines that an object is shared if it is
accessed by multiple threads, and includes additional reasoning to
reduce sharing by taking thread creation and joining into account.

RacerX (Engler and Ashcraft 2003) performs deadlock and data
race detection for C. RacerX uses a heuristic, statistical approach
to decide whether data is likely to be shared, based on how often it
is accessed when a lock is held. This is in contrast to our approach,
which tries to compute thread sharing in a sound manner.

6. Conclusion
We have introduced contextual effects, which extend standard ef-
fect systems to capture the effect of the context in which each
subexpression appears, i.e., the effect of evaluation both before and
after the evaluation of the subexpression. We formalized a core con-
textual type and effect system and proved it sound. We then used
extensions of our core system in two applications. First, we pro-
posed transactional version consistency, a new correctness condi-
tion for dynamic software updates. We showed how to use contex-
tual effects to enforce this property while allowing updates to occur
more frequently within programs. Second, we used contextual ef-
fects to compute locations shared between threads in concurrent
programs. We determined shared locations by intersecting the fu-
ture effect of the parent at thread creation time with the effect of the
child. Our experimental results show that our static contextual ef-
fect system is useful in both applications. These examples show the
utility of contextual effects, and we anticipate they will also prove
useful in a variety of other applications.
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A. Core Effect System Proofs
We add a typing rule for heap locations:

[TLOC]
Γ(r) = τ

Φ∅; Γ ` rL : ref {L} τ

We also add a list of evaluation rules that define when a program goes wrong:

[CALL-W]

〈α, ω, H, e1〉 −→ε1 〈α′, ω′, H ′, v〉
v 6= λx.e

〈α, ω, H, e1 e2〉 −→∅ 〈α, ω, H, err〉

[IF-W]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, v1〉
v1 6= n

〈α, ω, H, if0 e1 then e2 else e3〉 −→∅ 〈α, ω, H, err〉

[DEREF-H-W]

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉
r /∈ dom(H ′)

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H, err〉

[DEREF-L-W]

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉
r ∈ dom(H ′)

L /∈ ω′

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H, err〉

[ASSIGN-H-W]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v〉

r /∈ dom(H2)

〈α, ω, H, e1 := e2〉 −→∅ 〈α, ω, H, err〉

[ASSIGN-L-W]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, (H2, r 7→ v′), v〉

L /∈ ω2

〈α, ω, H, e1 := e2〉 −→∅ 〈α, ω, H, err〉
Definition A.1 (Heap Typing). We say heap H is well-typed under Γ, written Γ ` H , if

1. dom(Γ) = dom(H) and
2. for every r ∈ dom(H), we have Φ∅; Γ ` H(r) : Γ(r).

Theorem A.2 (Standard Effect Soundness). If

1. Φ; Γ ` e : τ ,
2. Γ ` H and
3. 〈1, 1, H, e〉 −→ε 〈1, 1, H ′, R〉

then there is a Γ′ ⊇ Γ such that:

1. R is a value v for which Φ∅; Γ
′ ` v : τ ,

2. Γ′ ` H ′ and
3. ε ⊆ Φε.

Proof. Proof by induction on the evaluation derivation.

case [ID] :

[ID]
〈1, 1, H, v〉 −→∅ 〈1, 1, H, v〉

Then obviously v is a value and Φ; Γ ` v : τ is given from hypothesis.
case [CALL] :

From the assumptions, we have an evaluation derivation:

[CALL]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, λx.e〉
〈1, 1, H1, e2〉 −→ε2 〈1, 1, H2, v2〉

〈1, 1, H2, e[x 7→ v2]〉 −→ε3 〈1, 1, H ′, v〉
〈1, 1, H, e1 e2〉 −→ε1∪ε2∪ε3 〈1, 1, H ′, v〉
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and also a typing derivation Φ; Γ ` e1 e2 : τ2. The typing derivation could be produced either by [TSUB] or [TAPP]. We show how to
handle [TSUB] now and ignore it for the other cases:

[TSUB]

Φ′; Γ ` e1 e2 : τ ′

τ ′ ≤ τ
Φ′ ≤ Φ

Φ; Γ ` e1 e2 : τ

Assuming the theorem holds for the premise:

Γ′ ⊇ Γ (1)
Γ′ ` H1 (2)
ε ⊆ Φ′ε (3)

Then from Φ′ ≤ Φ we get that ε ⊆ Φ′ε ⊆ Φε.
In the case that the last rule of the typing derivation is [TAPP]:

[TAPP]

Φ1; Γ ` e1 : τ1 −→Φf τ2

Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

We inductively apply the theorem on the first premise:

Γ1 ⊇ Γ (4)
Φ∅; Γ1 ` λx.e : τ1 −→Φf τ2 (5)

Γ1 ` H1 (6)
ε1 ⊆ Φε

1 (7)

From the second premise of [TAPP], Γ1 ⊇ Γ and Lemma A.7 we get Φ2; Γ1 ` e2 : τ1. From this, Γ1 ` H1 and the second premise of
the [CALL] rule, we apply the theorem inductively and get:

Γ2 ⊇ Γ1 (8)
Φ∅; Γ2 ` v2 : τ1 (9)

Γ2 ` H2 (10)
ε2 ⊆ Φε

2 (11)

Finally, we apply Lemma A.7 to get:

Φ∅; Γ2 ` λx.e : τ1 −→Φf τ2 (12)
Φ∅; Γ2 ` v2 : τ1 (13)

(14)

From the first we get:

[TLAM]
Φf ; Γ2, x : τ1 ` e : τ2

Φ∅; Γ2 ` λx.e : τ1 −→Φf τ2

From the premise and (13) it follows from Lemma A.6 that Φf ; Γ2 ` e[x 7→ v2] : τ2. Inductively applying the theorem then gives:

Γ3 ⊇ Γ2 (15)
Γ3 ` H ′ (16)

Φ∅; Γ3 ` v : τ2 (17)
ε3 ⊆ Φε

f (18)

From Φ1 B Φ2 B Φf ↪→ Φ we get Φε
1 ∪ Φε

2 ∪ Φε
f = Φε.

Finally, we have shown that:

Γ3 ⊇ Γ2 ⊇ Γ1 ⊇ Γ (19)
Γ3 ` H ′ (20)

Φ∅; Γ3 ` v : τ2 (21)
ε1 ∪ ε2 ∪ ε3 ⊆ Φε

1 ∪ Φε
2 ∪ Φε

f = Φε (22)

case [REF] :
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From assumptions:

[TREF]
Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L} τ
(23)

Γ ` H (24)

[REF]

〈1, 1, H, e〉 −→ε 〈1, 1, H ′, v〉
r /∈ dom(H ′)

〈1, 1, H, refL e〉 −→ε 〈1, 1, (H ′, r 7→ v), rL〉
(25)

Let H ′′ = (H ′, r 7→ v).
From the premises of the above derivations we can apply the theorem inductively and get

Γ′ ⊇ Γ (26)
Φ∅; Γ

′ ` v : τ (27)
Γ′ ` H ′ (28)
ε ⊆ Φε (29)

From Γ′ ` H ′ and r /∈ dom(H ′) we have r /∈ dom(Γ′). So, we select Γ′′ = Γ′, r 7→ τ . Obviously Γ′′ ⊇ Γ′ ⊇ Γ, and Γ′′(r) = τ , from
which we get

[TLOC]
Γ′′(r) = τ

Φ∅; Γ
′′ ` rL : ref {L} τ

Moreover, H ′′(r) = v. Also, dom(Γ′′) = dom(Γ′) ∪ {r} = dom(H ′) ∪ {r} = dom(H ′′). From Lemma A.7 we get Φ∅; Γ
′′ ` v : τ ,

which means Φ∅; Γ
′′ ` H ′′(r) : Γ′′(r). It follows that Γ′′ ` H ′′.

case [DEREF] :
From assumptions:

[TDEREF]

Φ1; Γ ` e : ref ε1 τ
Φε

2 = ε1

Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ
(30)

Γ ` H (31)

[DEREF]

〈1, 1, H, e〉 −→ε 〈1, 1 ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈1, 1, H, ! e〉 −→ε∪{L} 〈1 ∪ {L}, 1, H ′, H ′(r)〉
(32)

By applying the theorem inductively we get

Γ′ ⊇ Γ (33)
Γ′ ` H ′ (34)

Φ∅; Γ
′ ` rL : ref ε τ (35)

ε ⊆ Φε
1 (36)

From (35) and [TLOC] we have:

[TLOC]
Γ′(r) = τ

Φ∅; Γ
′ ` rL : ref {L} τ

which means {L} = ε1 and Γ′(r) = τ . From Φε
2 = ε1 = {L} and Φ1 B Φ2 ↪→ Φ we have Φε = Φε

1 ∪ Φε
2 = Φε

1 ∪ {L}. Also, from
Γ′ ` H ′ and r ∈ dom(H ′) we have Φ∅; Γ

′ ` H ′(r) : Γ(r).
Then, for Γ′ it is the case that:

Γ′ ⊇ Γ (37)
Γ′ ` H ′ (38)

Φ∅; Γ
′ ` H ′(r) : τ (39)

ε ∪ {L} ⊆ Φε
1 ∪ {L} = Φε (40)

case [ASSIGN] :
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From assumption

[TASSIGN]

Φ1; Γ ` e1 : ref ε τ
Φ2; Γ ` e2 : τ

Φε
3 = ε

Φ1 B Φ2 B Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ
(41)

Γ ` H (42)

[ASSIGN]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, rL〉
〈1, 1, H1, e2〉 −→ε2 〈1, 1 ∪ {L}, (H2, r 7→ v′), v〉

〈1, 1, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈1 ∪ {L}, 1, (H2, r 7→ v), v〉
(43)

We apply the theorem inductively on the first premise:

Γ1 ⊇ Γ (44)
Γ1 ` H1 (45)

Φ∅; Γ1 ` rL : ref ε τ (46)
ε1 ⊆ Φε

1 (47)

From (46) and [TLOC] we have

[TLOC]
Γ1(r) = τ

Φ∅; Γ1 ` rL : ref {L} τ
So Φε

3 = ε = {L} and Γ1(r) = τ . From Γ1 ` H1 we have Φ∅; Γ1 ` H1(r) : τ .
We then apply the theorem inductively to the second premise:

Γ2 ⊇ Γ1 (48)
Γ2 ` (H2, r 7→ v′) (49)

Φ∅; Γ2 ` v : τ (50)
ε2 ⊆ Φε

2 (51)

Using Lemma A.7 we get Φ1; Γ2 ` rL : ref {L} τ . From (49) we get Φ∅; Γ2 ` v′ : τ . Therefore, dom(Γ2) = dom(H2, r 7→ v′) =
dom(H2, r 7→ v). and for all r′ ∈ dom(H2) ∪ {r}.Φ∅; Γ2 ` (H2, r 7→ v)(r′) : Γ2(r).
Finally:

Γ2 ⊇ Γ1 ⊇ Γ (52)
Γ2 ` (H2, r 7→ v) (53)

Φ∅; Γ2 ` v : τ (54)
ε1 ∪ ε2 ∪ {L} ⊆ Φε

1 ∪ Φε
2 ∪ Φε

3 = Φε (55)

case [IF-T] :
From assumption

(TIF)

Φ1; Γ ` e1 : int
Φ2; Γ ` e2 : τ
Φ2; Γ ` e3 : τ
Φ1 B Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ
(56)

Γ ` H (57)

[IF-T]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, v1〉
v1 = 0

〈1, 1, H1, e2〉 −→ε2 〈1, 1, H2, v〉
〈1, 1, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈1, 1, H2, v〉

(58)

We apply the theorem inductively to the first premise:

Γ1 ⊇ Γ (59)
Γ1 ` H1 (60)

Φ∅; Γ1 ` v1 : int (61)
ε1 ⊆ Φε

1 (62)

By Lemma A.7 and the second premise of [TIF] we have Φ2; Γ1 ` e2 : τ . So, we can apply the theorem inductively to get:

Γ2 ⊇ Γ1 (63)
Γ2 ` H2 (64)

Φ∅; Γ2 ` v : τ (65)
ε2 ⊆ Φε

2 (66)
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From Φ1 B Φ2 ↪→ Φ we have Φε = Φε
1 ∪ Φε

2

Finally we show

Γ2 ⊇ Γ1 ⊇ Γ (67)
Γ2 ` H2 (68)

Φ∅; Γ2 ` v : τ (69)
ε1 ∪ ε2 ⊆ Φε

1 ∪ Φε
2 = Φε (70)

case [IF-F] :
Similar to the above.

case [LET] :
Similar to [CALL].

case [CALL-W] :
Assume:

[TAPP]

Φ1; Γ ` e1 : τ1 −→Φf τ2

Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2
(71)

Γ ` H (72)

[CALL-W]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H ′, v〉
v 6= λx.e

〈1, 1, H, e1 e2〉 −→∅ 〈1, 1, H, err〉
(73)

We apply the theorem recursively to the first premise:

Γ′ ⊇ Γ (74)
Γ′ ` H ′ (75)

Φ∅; Γ
′ ` v : τ1 −→Φf τ2 (76)

ε1 ⊆ Φε
1 (77)

Then the only rule that can create a derivation for (76) is [TLAM], meaning v = λx.e. But we have v 6= λx.e, a contradiction. Therefore,
there is no derivation for 〈1, 1, H, e1 e2〉 −→∅ 〈1, 1, H, err〉 when Γ ` H and Φ; Γ ` e1 e2 : τ2.

case [IF-W] :
Assume:

(TIF)

Φ1; Γ ` e1 : int
Φ2; Γ ` e2 : τ
Φ2; Γ ` e3 : τ
Φ1 B Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ
(78)

Γ ` H (79)

[IF-W]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, v1〉
v1 6= n

〈1, 1, H, if0 e1 then e2 else e3〉 −→∅ 〈1, 1, H, err〉
(80)

We apply the theorem recursively to the first premise:

Γ′ ⊇ Γ (81)
Γ′ ` H ′ (82)

Φ∅; Γ
′ ` v1 : int (83)

ε1 ⊆ Φε
1 (84)

Then the only rule that can create a derivation for (83) is [TINT], meaning v1 = n. But we have v1 6= n, a contradiction.
case [DEREF-H-W] :

Proof by contradiction, similar to the previous case. Assume there is a derivation that evaluates to err, under the assumptions:

[TDEREF]

Φ1; Γ ` e : ref ε1 τ
Φε

2 = ε1

Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ
(85)

Γ ` H (86)

[DEREF-H-W]

〈1, 1, H, e〉 −→ε 〈1, 1, H ′, rL〉
r /∈ dom(H ′)

〈1, 1, H, ! e〉 −→∅ 〈1, 1, H, err〉
(87)
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We apply the theorem inductively to the premise:

Γ′ ⊇ Γ (88)
Γ′ ` H ′ (89)

Φ∅; Γ
′ ` rL : ref ε1 τ (90)

ε ⊆ Φε
1 (91)

(92)

From (89) and [TLOC] we have r ∈ dom(Γ′). Then (89) gives r ∈ dom(H ′). But we have that r /∈ dom(H ′), a contradiction.
Therefore, there is no derivation for 〈1, 1, H, ! e〉 −→∅ 〈1, 1, H, err〉 that ends by [DEREF-H-W] when Γ ` H and Φ; Γ ` e1 e2 : τ2.

case [DEREF-L-W] :

[DEREF-L-W]

〈1, 1, H, e〉 −→ε 〈1, 1, H ′, rL〉
r ∈ dom(H ′)

L /∈ 1

〈1, 1, H, ! e〉 −→∅ 〈1, 1, H, err〉
It is obvious that this rule cannot be applied, as L /∈ 1 is tautologically false.

case [ASSIGN-H-W] :

[TASSIGN]

Φ1; Γ ` e1 : ref ε τ
Φ2; Γ ` e2 : τ

Φε
3 = ε

Φ1 B Φ2 B Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ
(93)

Γ ` H (94)

[ASSIGN-H-W]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, rL〉
〈1, 1, H1, e2〉 −→ε2 〈1, 1, H2, v〉

r /∈ dom(H2)

〈1, 1, H, e1 := e2〉 −→∅ 〈1, 1, H, err〉
(95)

Similarly to the case for [DEREF-H-W], we apply the theorem inductively on the first premise:

Γ1 ⊇ Γ (96)
Γ1 ` H1 (97)

Φ∅; Γ1 ` rL : ref ε τ (98)
ε1 ⊆ Φε

1 (99)

From Lemma A.7 we get Φ2; Γ1 ` e2 : τ and apply the theorem on the second premise:

Γ2 ⊇ Γ1 (100)
Γ2 ` H2 (101)

Φ∅; Γ2 ` v : τ (102)
ε2 ⊆ Φε

2 (103)

From (98) and [TLOC] we have r ∈ dom(Γ1). Then from (100) we have that dom(Γ1) ⊆ dom(Γ2) and from (101) we get
dom(Γ2) = dom(H2). It follows that r ∈ dom(H2). But we have r /∈ dom(H2) from hypothesis, a contradiction. Therefore, there is
no derivation for 〈1, 1, H, e1 := e2〉 −→∅ 〈1, 1, H, err〉 that ends by [ASSIGN-H-W] when Γ ` H and Φ; Γ ` e1 := e2 : τ .

case [ASSIGN-L-W] :

[ASSIGN-L-W]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, rL〉
〈1, 1, H1, e2〉 −→ε2 〈1, 1, (H2, r 7→ v′), v〉

L /∈ 1

〈1, 1, H, e1 := e2〉 −→∅ 〈1, 1, H, err〉
It is obvious that this rule cannot be applied, as L /∈ 1 is tautologically false.

Lemma A.3 (Weakening of evaluation sub-derivations). Given a derivation 〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉, there exists a derivation
〈α ∪ αw, ω ∪ ωw, H, e〉 −→ε 〈α′ ∪ αw, ω′ ∪ ωw, H ′, v〉,

Proof. Proof by induction on the derivation.

case [ID] :
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Given
[ID]

〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉
then we can apply [ID] again:

[ID]
〈α ∪ αw, ω ∪ ωw, H, v〉 −→∅ 〈α ∪ αw, ω ∪ ωw, H, v〉

case [CALL] :

[CALL]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′, H ′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H ′, v〉

Assuming the lemma holds for the premises:

〈α ∪ αw, ω ∪ ωw, H, e1〉 −→ε1 〈α1 ∪ αw, ω1 ∪ ωw, H1, λx.e〉 (104)
〈α1 ∪ αw, ω1 ∪ ωw, H1, e2〉 −→ε2 〈α2 ∪ αw, ω2 ∪ ωw, H2, v2〉 (105)

〈α2 ∪ αw, ω2 ∪ ωw, H2, e[x 7→ v2]〉 −→ε3 〈α
′ ∪ αw, ω′ ∪ ωw, H ′, v〉 (106)

From these, we can apply [CALL] again to get the wanted

〈α ∪ αw, ω ∪ ωw, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α
′ ∪ αw, ω′ ∪ ωw, H ′, v〉

case [REF] :

[REF]

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉
r /∈ dom(H ′)

〈α, ω, H, refL e〉 −→ε 〈α′, ω′, (H ′, r 7→ v), rL〉
Assuming the lemma holds for the premise:

〈α ∪ αw, ω ∪ αw, H, e〉 −→ε 〈α′ ∪ αw, ω′ ∪ αw, H ′, v〉

we can then apply [REF] again to get

〈α ∪ αw, ω ∪ ωw, H, refL e〉 −→ε 〈α′ ∪ αw, ω′ ∪ ωw, (H, r 7→ v), rL〉

case [DEREF] :

[DEREF]

〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉
Assuming the lemma holds for the premise we have:

〈α ∪ αw, ω ∪ ωw, H, e〉 −→ε 〈α′ ∪ αw, ω′ ∪ {L} ∪ ωw, H ′, rL〉

Then we can apply [DEREF] again to get the weakened derivation.
case [ASSIGN] :
case [IF-T] :
case [IF-F] :
case [LET] :

These cases are similar.

Lemma A.4 (Canonical Derivation). If and only if 〈1, 1, H, e〉 −→ε 〈1, 1, H ′, v〉 then there exists a derivation 〈∅, ω, H, e〉 −→ε

〈α, ∅, H ′, v〉, and also ω = α = ε.

Proof. The only-if case trivially follows from A.3 by adding 1 to both α and ω in the given derivation. We prove the if case by induction on
the derivation:

case [ID] :
Given

[ID]
〈1, 1, H, v〉 −→∅ 〈1, 1, H, v〉

then it is also the case that
[ID]

〈∅, ∅, H, v〉 −→∅ 〈∅, ∅, H, v〉
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case [CALL] :

[CALL]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, λx.e〉
〈1, 1, H1, e2〉 −→ε2 〈1, 1, H2, v2〉

〈1, 1, H2, e[x 7→ v2]〉 −→ε3 〈1, 1, H ′, v〉
〈1, 1, H, e1 e2〉 −→ε1∪ε2∪ε3 〈1, 1, H ′, v〉

Assuming the lemma holds for the premises:

〈∅, ε1, H, e1〉 −→ε1 〈ε1, ∅, H1, λx.e〉 (107)
〈∅, ε2, H1, e2〉 −→ε2 〈ε2, ∅, H2, v2〉 (108)

〈∅, ε3, H2, e[x 7→ v2]〉 −→ε3 〈ε3, ∅, H ′, v〉 (109)

Then from Lemma A.3 we get:

〈∅, ε1 ∪ ε2 ∪ ε3, H, e1〉 −→ε1 〈ε1, ε2 ∪ ε3, H1, λx.e〉 (110)
〈ε1, ε2 ∪ ε3, H1, e2〉 −→ε2 〈ε1 ∪ ε2, ε3, H2, v2〉 (111)

〈ε1 ∪ ε2, ε3, H2, e[x 7→ v2]〉 −→ε3 〈ε1 ∪ ε2 ∪ ε3, ∅, H ′, v〉 (112)

Then we can apply [CALL] again to get

〈∅, ε1 ∪ ε2 ∪ ε3, H, e1 e2〉 −→ε1∪ε2∪ε3 〈ε1 ∪ ε2 ∪ ε3, ∅, H ′, v〉
case [REF] :

[REF]

〈1, 1, H, e〉 −→ε 〈1, 1, H ′, v〉
r /∈ dom(H ′)

〈1, 1, H, refL e〉 −→ε 〈1, 1, (H ′, r 7→ v), rL〉
Assuming the lemma holds for the premise, we can apply [REF] again and get

〈∅, ε, H, refL e〉 −→ε 〈ε, ∅, (H, r 7→ v), rL〉
case [DEREF] :

[DEREF]

〈1, 1, H, e〉 −→ε 〈1, 1 ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈1, 1, H, ! e〉 −→ε∪{L} 〈1 ∪ {L}, 1, H ′, H ′(r)〉
We write 1 ∪ {L} for clarity in the premise, however L ∈ 1 so 1 ∪ {L} = 1. Assuming the lemma holds for the premise we have:

〈∅, ε, H, e〉 −→ε 〈ε, ∅, H ′, rL〉
We apply Lemma A.3 to get

〈∅, ε ∪ {L}, H, e〉 −→ε 〈ε, ∅ ∪ {L}, H ′, rL〉
Then, we can apply [DEREF] again to get:

〈∅, ε ∪ {L}, H, ! e〉 −→ε∪{L} 〈ε ∪ {L}, ∅, H ′, H ′(r)〉
case [ASSIGN] :

[ASSIGN]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, rL〉
〈1, 1, H1, e2〉 −→ε2 〈1, 1 ∪ {L}, (H2, r 7→ v′), v〉

〈1, 1, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈1 ∪ {L}, 1, (H2, r 7→ v), v〉
where obviously 1 ∪ {L} = 1, since L ∈ 1. Assuming the lemma holds for the premises we get:

〈∅, ε1, H, e1〉 −→ε1 〈ε1, ∅, H1, rL〉 (113)
〈∅, ε2, H1, e2〉 −→ε2 〈ε2, ∅, (H2, r 7→ v′), v〉 (114)

Applying Lemma A.3 we get:

〈∅, ε1 ∪ ε2 ∪ {L}, H, e1〉 −→ε1 〈ε1, ε2 ∪ {L}, H1, rL〉 (115)
〈ε1, ε2 ∪ {L}, H1, e2〉 −→ε2 〈ε1 ∪ ε2, {L}, (H2, r 7→ v′), v〉 (116)

Then we can apply [ASSIGN] again to get:

〈∅, ε1 ∪ ε2 ∪ {L}, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈ε1 ∪ ε2 ∪ {L}, ∅, (H2, r 7→ v), v〉
case [IF-T] :

[IF-T]

〈1, 1, H, e1〉 −→ε1 〈1, 1, H1, v1〉
v1 = 0

〈1, 1, H1, e2〉 −→ε2 〈1, 1, H2, v〉
〈1, 1, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈1, 1, H2, v〉
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Assuming the lemma holds for the premises we have:

〈∅, ε1, H, e1〉 −→ε1 〈ε1, ∅, H1, v1〉 (117)
〈∅, ε2, H1, e2〉 −→ε2 〈ε2, ∅, H2, v〉 (118)

We can transform these with Lemma A.3 to:

〈∅, ε1 ∪ ε2, H, e1〉 −→ε1 〈ε1, ε2, H1, v1〉 (119)
〈ε1, ε2, H1, e2〉 −→ε2 〈ε1 ∪ ε2, ∅, H2, v〉 (120)

then we apply [IF-T] again to get:

〈∅, ε1 ∪ ε2, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈ε1 ∪ ε2, ∅, H2, v〉
case [IF-F] :

Similar to the above.
case [LET] :

Similar to [CALL].

Lemma A.5 (Adequacy of Semantics). If
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉

then

1. α′ = α ∪ ε
2. ω = ω′ ∪ ε

Proof. Proof by induction on the evaluation derivation.

case [ID] :

[ID]
〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉

Obviously, α = α ∪ ∅, ω = ω ∪ ∅.
case [CALL] :

[CALL]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′, H ′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H ′, v〉

Assuming the lemma holds for the premises, we have:

α1 = α ∪ ε1 (121)
α2 = α1 ∪ ε2 (122)
α′ = α2 ∪ ε3 (123)
ω = ω1 ∪ ε1 (124)

ω1 = ω2 ∪ ε2 (125)
ω2 = ω′ ∪ ε3 (126)

From (123), (122), (121) we have α′ = α2 ∪ ε3 = (α1 ∪ ε2) ∪ ε3 = α ∪ ε1 ∪ ε2 ∪ ε3.
Similarly, from (124), (125), (126) we get: ω = ω′ ∪ ε1 ∪ ε2 ∪ ε3.

case [REF] :

[REF]

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉
r /∈ dom(H ′)

〈α, ω, H, refL e〉 −→ε 〈α′, ω′, (H ′, r 7→ v), rL〉
This case is trivially proven by induction hypothesis for the premise.

case [DEREF] :

[DEREF]

〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H ′, rL〉
r ∈ dom(H ′)

〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉
From induction hypothesis we have:

α′ = α ∪ ε (127)
ω = (ω′ ∪ {L}) ∪ ε (128)
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By adding {L} to both sides of the above equations and parenthesizing for readability, we get

α′ ∪ {L} = α ∪ (ε ∪ {L}) (129)
ω = ω′ ∪ (ε ∪ {L}) (130)

which proves the case.
case [ASSIGN] :

[ASSIGN]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉
From the induction hypothesis we have:

α1 = α ∪ ε1 (131)
α2 = α1 ∪ ε2 (132)
ω = ω1 ∪ ε1 (133)

ω1 = (ω2 ∪ {L}) ∪ ε2 (134)

From the first two we have α2 = α ∪ ε1 ∪ ε2 therefore α2 ∪ {L} = α ∪ ε1 ∪ ε2 ∪ {L}.
From the second two we have ω = ω2 ∪ ε1 ∪ ε2 ∪ {L}.

case [IF-T] :

[IF-T]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, v1〉 v1 = 0
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v〉

〈α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈α2, ω2, H2, v〉
From induction on the premises we have

α1 = α ∪ ε1 (135)
α2 = α1 ∪ ε2 (136)
ω = ω1 ∪ ε1 (137)

ω1 = ω2 ∪ ε2 (138)

The first two give α2 = α ∪ ε1 ∪ ε2

The last two give ω = ω2 ∪ ε1 ∪ ε2

case [IF-F] :
Similar to the above.

case [LET] :
Similar to [CALL].

Lemma A.6 (Substitution). If

Φ; Γ, x : τ ` e : τ ′

Φ∅; Γ ` v : τ

then

Φ; Γ ` e[x 7→ v] : τ ′

Proof. Proof is straightforward by induction on the typing derivation.

Lemma A.7 (Weakening of environment). If Φ; Γ ` e : τ and Γ′ ⊇ Γ then Φ; Γ′ ` e : τ .

Proof. Proof is straightforward by induction on the typing derivation.

Definition A.8 (Canonical typing). We say that a typing derivation is canonical when

1. It ends with [TSub] and the rule above [TSub] is not [TSub] again
2. All sub-derivations of the rule above [TSub] are canonical.

Lemma A.9 (Construct canonical typing). If there exists a typing derivation proving the judgment Φ; Γ ` e : τ then there exists a canonical
typing derivation that proves it as well.

Proof. Trivial.
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Definition A.10 (Substitution). Given Te :: [Φe; Γ, x : τ ` e : τ ′] and a canonical typing derivation Tv :: [Φ∅; Γ ` v : τ ], we define a
substitution algorithm

SUBST ([Te] , [Tv])

that constructs a canonical typing derivation for

Φe; Γ ` e[x 7→ v] : τ ′

based on the substitution lemma.

SUBST ([Φ; Γ, x : τ ` n : int ] , [Φ∅; Γ ` v : τ ]) =

0BBBBBBB@
[TSUB]

[TINT]
Φ∅; Γ ` n : int
Φ∅ ≤ Φ
int ≤ int

Φ; Γ ` n : int

1CCCCCCCA

SUBST

0BBBBB@[Φ; Γ, x : τ ` x : τ ] ,

2666664[TSUB]

T ′
v :: Φ∅; Γ ` v : τ ′

Φ∅ ≤ Φ∅
τ ′ ≤ τ

Tv :: Φ∅; Γ ` v : τ

3777775

1CCCCCA =

0BBBBB@[TSUB]

T ′
v :: Φ∅; Γ ` v : τ ′

Φ∅ ≤ Φ
τ ′ ≤ τ

Φ; Γ ` v : τ

1CCCCCA

SUBST

„»
[TVAR]

(Γ, x : τ)(y) = τ ′

Φ∅; Γ, x : τ ` y : τ ′

–
, [Φ∅; Γ ` v : τ ]

«
where x 6= y =

0BBBBBBBBBB@
[TSUB]

[TVAR]
Γ(y) = τ ′

Φ∅; Γ ` y : τ ′

Φ∅ ≤ Φ∅
τ ′ ≤ τ ′

Φ∅; Γ ` y : τ ′

1CCCCCCCCCCA

SUBST

0BBBBBB@

26666664[TAPP]

T1 :: Φ1; Γ, x : τ ` e1 : τ1 −→Φf τ2

T2 :: Φ2; Γ, x : τ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ, x : τ ` e1 e2 : τ2

37777775 , [Tv :: Φ∅; Γ ` v : τ ]

1CCCCCCA =

0BBBBB@[TAPP]

SUBST ([T1] , [Tv])
SUBST ([T2] , [Tv])

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2[x 7→ v] : τ2

1CCCCCA
The other cases are similar and follow the substitution lemma.

Definition A.11 (Weakening). Similarly to substitution, we define a weakening function, that constructs a weakened typing derivation using
a given Γ′ (following the structure of the proof of the weakening lemma):

WEAKEN
`
[Φ; Γ ` e : τ ] , Γ′´ =

`
Φ; Γ′ ` e : τ

´
Given Γ′ ⊇ Γ, we define:

WEAKEN ([Φ; Γ ` n : int ] , Γ′) =

„
[TINT]

Φ; Γ′ ` n : int

«

WEAKEN

„»
[TVAR]

Γ(x) = τ

Φ; Γ ` x : τ

–
, Γ′

«
=

„
[TVAR]

Γ′(x) = τ

Φ; Γ′ ` x : τ

«

WEAKEN

0BBBBBB@

26666664[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

T2 :: Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

37777775 , Γ′

1CCCCCCA =

0BBBBBB@[TAPP]

WEAKEN ([T1] , Γ
′)

WEAKEN ([T2] , Γ
′)

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ′ ` e1 e2 : τ2

1CCCCCCA
The other cases are similar.
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[ID-A]
〈T, α, ω, H, v〉 −→∅ 〈T ′, α, ω, H, v〉

where

[TSUB]

Φ∅; Γ ` v : τ ′

τ ′ ≤ τ
Φ∅ ≤ Φ

T :: Φ; Γ ` v : τ

and
T ′ :: Φ∅; Γ ` v : τ

Figure 13. Typed operational semantics for values

Soundness proof strategy To prove the soundness of the contextual effect system, we must show that the effect Φ of a term e approximates
the trace α and promise ω of its evaluation. Note, however, that as the program reduces to a value, individual subterms might change through
substitutions. It is therefore not always obvious which Φ in the typing derivation for the original term corresponds to a subterm produced
during evaluation. To make this connection explicit, we define a typed operational semantics that annotates each state in the evaluation with
a typing derivation. Our semantics is “natural,” in the sense that as subterms are modified by substitutions, our semantics “preserves” the Φ
associated with them.

Note that since the terms might change during evaluation, the typing derivations that we use to annotate the evaluation need not be parts of
the original typing—but the Φ’s that show up in the new typings always are. By defining this new semantics, we can easily express soundness
for contextual effects: the Φ assigned to an evaluated term by our semantics always overapproximates the α and ω for the term at runtime.
To show the soundness property is not vacuous, we also need to show that we can always construct such a typed operational semantics
derivation, given any ordinary evaluation derivation and typing derivation.

Typed operational semantics Typed evaluations have the form:

〈T, α, ω, H, e〉 −→∅ 〈T ′, α′, ω′, H ′, v〉
where T is a canonical typing derivation for the expression e that is evaluated:

Φ; Γ ` e : τ

and T ′ is a canonical typing derivation for the result of the evaluation:

Φ∅; Γ
′ ` v : τ

Since T is a canonical derivation, it must end with an application of [TSUB] which follows the “normal” typing of the value v. Since v
is a value, T ′ can always use Φ∅ to type it, which simplifies the rules. The new environment Γ′ is not in general the same as Γ, because it
might contain extra typings for pointers r that are created during the evaluation of e, but we will show that it is always a superset of Γ. The
type of the value is always the same as the type τ of e.

Fig. 13 presents the typed evaluation rule for values. As in the untyped operational semantics, a value v evaluates to itself without changing
the state of the heap, or the trace or promise sets. We have added a typing T in the input state and a typing T ′ in the output state. Note that
we list the constraints on typing derivations T and T ′ after the rule, even though they are actually premises of the rule, to improve readability
and reduce the complexity of the presentation. We follow this practice for the rest of the annotated evaluation rules, writing the constraints
on typing derivations T that annotate states after the rule as side conditions.

A more interesting case is the rule for typed semantics of the evaluation of function calls [CALL-A], shown in Fig. 14. As before, we
annotate the first and last state of each evaluation (both in the conclusion and the premises of the rule) with a typing. For the conclusion, we
require the typing T of the application to be canonical (ending with [TSUB], followed by [TAPP]). We require the typing for the evaluation
of e1 in the first premise to be the same as in the premise of T , this way forcing Φ1 to be the same between the typing of e1 in the premise and
the typing of e1 as a subterm of the conclusion. Note that this constraint is essentially the definition of which Φ in the typing of the superterm
is the “correct” one to use for a subterm. In other words, this constraint specifies that Φ1 in the typing T is the effect of the evaluation of
e1. This way, we assign static effects Φ from the static typing of a term to the evaluations of its sub-terms. We can then prove that this
assignment is indeed sound, i.e. the Φ1 we selected for the evaluation of e1 provides a sound approximation for the actual contextual effect
of the evaluation of e1.

We require the typing T ′
1 of the result of the first premise to be canonical (ending with [TSUB]) followed by [TLAM] since the result is a

lambda-term. The typing T ′
1 uses environment Γ′ which will be a superset of Γ, possibly with extra bindings. We annotate the second premise

of the typed evaluation with a typing T2, constructed by weakening T1 to use Γ′. The partial function WEAKEN ([] , ) is only applicable when
Γ′ ⊇ Γ. We cannot directly use T2 to annotate the initial state of the second premise, because we need to maintain the invariant that the
environment in each state types all the locations of the heap at that state. For that reason we constrain T ′

2 to be a weakened version of T2, and
later prove that Γ′ is always a superset of Γ and therefore the weakening is well defined and T ′

2 is a valid derivation. In any case T2 and T ′
2

share the same Φ2 from the original typing, which we later prove that correctly approximates the contextual effects of the evaluation in the
second premise.

As before, we annotate the resulting state of the second premise with a canonical derivation T ′′
2 , which types the resulting value v2 under

environment Γ2 to produce the same type τ1 as T2. As before, we do not need to constrain Γ2, since we can prove that Γ2 ⊇ Γ1.
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[CALL-A]

〈T1, α, ω, H, e1〉 −→ε1 〈T ′
1, α1, ω1, H1, λx.e〉

〈T ′
2, α1, ω1, H1, e2〉 −→ε2 〈T ′′

2 , α2, ω2, H2, v2〉
〈T3, α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉
〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H ′, v〉

where

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

T2 :: Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

τ2 ≤ τ ′

Φ ≤ Φ′

T :: Φ′; Γ ` e1 e2 : τ ′

and

[TSUB]

[TLAM]
Tf :: Φ′

f ; Γ1, x : τ ′1 ` e : τ ′2

Φ∅; Γ1 ` λx.e : τ ′1 −→Φ′
f τ ′2

τ ′1 −→Φ′
f τ ′2 ≤ τ1 −→Φf τ2

Φ∅ ≤ Φ∅

T ′
1 :: Φ∅; Γ1 ` λx.e : τ1 −→Φf τ2

and
T ′

2 = WEAKEN ([T2] , Γ1)

and

[TSUB]

Tv2 :: Φ∅; Γ2 ` v2 : τ ′′1
τ ′′1 ≤ τ1

Φ∅ ≤ Φ∅

T ′′
2 :: Φ∅; Γ2 ` v2 : τ1

and
T ′

f = WEAKEN
`
[Tf ] , (Γ2, x : τ ′1)

´
and

T3 is SUBST

0BBBBBB@

26666664[TSUB]

T ′
f :: Φ′

f ; Γ2, x : τ ′1 ` e : τ ′2
τ ′2 ≤ τ2 ≤ τ ′

Φ′
f ≤ Φf

Φf ; Γ2, x : τ ′1 ` e : τ ′

37777775 ,

2666664[TSUB]

Tv2 :: Φ∅; Γ2 ` v2 : τ ′′1
τ ′′1 ≤ τ1 ≤ τ ′1

Φ∅ ≤ Φ∅

Φ∅; Γ2 ` v2 : τ ′1

3777775

1CCCCCCA
and

Tv :: Φ∅; Γ3 ` v : τ ′

Figure 14. Typed operational semantics for function call

Interestingly, the third premise of the [CALL] evaluation does not reduce a term that exists in the superterm, but instead the term that
results from substituting x with v in e, where e is the body of the lambda term of the first premise. Therefore, there is no straightforward way
to use an existing typing derivation from the sub-derivations of T to annotate the third evaluation. Instead, we construct the correct typing
derivation from the premises of Tf (the typing of the lambda term) and T ′′

2 (the typing of v2). We define a partial function SUBST ([T ] , [T ′])
that constructs a typing for e[v 7→ x] given appropriate typings for e and v, similarly to the weakening function. We later prove that it can be
applied and will construct a typing for the term under Φf , the effect used to type the body of the function in T ′

1. Note that this is one of the
few cases where we need the typing that annotates the result of a typed evaluation. Finally, we annotate the result of the third premise of the
evaluation with Tv , a typing of v under Φ∅ and Γ3, which we will show is a superset of Γ2, to give the same type τ ′ as T .

Definition A.12 (Consistent type state). A typed operational semantics state

〈T, α, ω, H, e〉
where

T :: Φ; Γ ` e : τ

is consistent, written
` 〈T, α, ω, H, e〉
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[REF-A]

〈T1, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
r /∈ dom(H ′)

〈T, α, ω, H, refL e〉 −→ε 〈Tr, α
′, ω′, (H ′, r 7→ v), rL〉

where

[TSUB]

[TREF]
T1 :: Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L} τ
ref {L} τ ≤ ref ε τ ′

Φ ≤ Φ′

T :: Φ′; Γ ` refL e : ref ε τ ′

and
Tv :: Φ∅; Γ

′ ` v : τ

and

[TSUB]

Φ∅; (Γ1, r 7→ τ) ` rL : ref {L} τ
Φ∅ ≤ Φ∅

ref {L} τ ≤ ref ε τ ′

Tr :: Φ∅; (Γ1, r 7→ τ) ` rL : ref {ε} τ ′

Figure 15. Typed operational semantics for reference

[DEREF-A]

〈T1, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉

r ∈ dom(H ′)

〈T, α, ω, H, ! e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
where

[TSUB]

[TDEREF]

T1 :: Φ1; Γ ` e : ref ε τ ′

Φε
2 = ε

Φ1 B Φ2 ↪→ Φ′

Φ′; Γ ` ! e : τ ′

τ ′ ≤ τ
Φ′ ≤ Φ

T :: Φ; Γ ` ! e : τ

and

[TSUB]

[TLOC]
Γ′(r) = τ

Φ∅; Γ
′ ` rL : ref {L} τ

Φ∅ ≤ Φ∅
ref {L} τ ≤ ref ε τ ′

Tr :: Φ∅; Γ
′ ` rL : ref ε τ ′

and
Tv = Φ∅; Γ

′ ` v : τ

Figure 16. Typed operational semantics for dereference
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[IF-T-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tv1 , α1, ω1, H1, v1〉
v1 = 0

〈T ′
2, α1, ω1, H, e2〉 −→ε1 〈Tv, α2, ω2, H2, v〉

〈T, α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈Tv, α2, ω2, H2, v〉
where

[TIF]

T1 :: Φ1; Γ ` e1 : int
T2 :: Φ2; Γ ` e2 : τ
T3 :: Φ2; Γ ` e3 : τ

Φ1 B Φ2 ↪→ Φ

T :: Φ; Γ ` if0 e1 then e2 else e3 : τ

and
Tv1 :: Φ∅; Γ1 ` v1 : int

and
T ′

2 = WEAKEN ([T2] , Γ1)

and
Tv :: Φ∅; Γ2 ` v : τ

[IF-F-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tv1 , α1, ω1, H1, v1〉
v1 6= 0

〈T ′
2, α1, ω1, H, e3〉 −→ε2 〈Tv, α2, ω2, H2, v〉

〈T, α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈Tv, α2, ω2, H2, v〉
where

[TIF]

T1 :: Φ1; Γ ` e1 : int
T2 :: Φ2; Γ ` e2 : τ
T3 :: Φ2; Γ ` e3 : τ

Φ1 B Φ2 ↪→ Φ

T :: Φ; Γ ` if0 e1 then e2 else e3 : τ

and
Tv1 :: Φ∅; Γ1 ` v1 : int

and
T ′

2 = WEAKEN ([T2] , Γ1)

and
Tv :: Φ∅; Γ2 ` v : τ

Figure 17. Typed operational semantics for conditional

if
Γ ` H

Lemma A.13 (Environment grows, types do not). If

〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
and

T :: Φ; Γ ` e : τ

and
Tv :: Φ′; Γ′ ` v : τ ′

then
Γ′ ⊇ Γ

and
τ = τ ′

Proof. Trivial.
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[LET-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tv1 , α1, ω1, H1, v1〉
〈T ′

2, α1, ω1, H1, e2[x 7→ v1]〉 −→ε2 〈Tv, α′, ω′, H ′, v〉
〈T, α, ω, H, let x = e1 in e2〉 −→ε1∪ε2 〈Tv, α′, ω′, H ′, v〉

where

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1

T2 :: Φ2; Γ, x : τ1 ` e2 : τ2

Φ1 B Φ2 ↪→ Φ′

Φ′; Γ ` let x = e1 in e2 : τ2

τ2 ≤ τ
Φ′ ≤ Φ

T :: Φ; Γ ` let x = e1 in e2 : τ

and
Tv1 :: Φ∅; Γ1 ` v1 : τ1

and
Tv :: Φ∅; Γ2 ` v : τ2

and
T ′

2 = WEAKEN ([T2] , (Γ1, x : τ1))

and
T ′′

2 = SUBST
`ˆ

T ′
2

˜
, [Tv1 ]

´
Figure 18. Typed operational semantics for let

Lemma A.14 (Consistent typed states). If
〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉

and
` 〈T, α, ω, H, e〉

then
` 〈Tv, α′, ω′, H ′, v〉

Proof. case [ID-A] :
Given

〈T, α, ω, H, v〉 −→ε 〈T, α, ω, H, v〉
and

` 〈T, α, ω, H, v〉
then obviously

` 〈T, α, ω, H, v〉
case [CALL-A] :

Given

[CALL-A]

〈T1, α, ω, H, e1〉 −→ε1 〈T ′
1, α1, ω1, H1, λx.e〉

〈T ′
2, α1, ω1, H1, e2〉 −→ε2 〈T ′′

2 , α2, ω2, H2, v2〉
〈T3, α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉
〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H ′, v〉

where

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

T2 :: Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

τ2 ≤ τ ′

Φ ≤ Φ′

T :: Φ′; Γ ` e1 e2 : τ ′

and
` 〈T, α, ω, H, e1 e2〉

we have
Γ ` H
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From that and T1 we have
` 〈T1, α, ω, H, e1〉

Therefore, by induction we get
` 〈T ′

1, α1, ω1, H1, λx.e〉
where

T ′
1 :: Φ∅; Γ1 ` λx.e : τ1 −→Φf τ2

which gives
Γ1 ` H1

and
Tf :: Φ′

f ; Γ, x : τ ′1 ` e : τ ′2
Also, lemma A.13 gives Γ1 ⊇ Γ, therefore

T ′
2 = WEAKEN ([T2] , Γ1)

gives
` 〈T ′

2, α1, ω1, H1, e2〉
By induction we get

` 〈T ′′
2 , α2, ω2, H2, v2〉

where
T ′′

2 :: Φ∅; Γ2 ` v2 : τ1

Γ2 ` H2

and lemma A.13 gives Γ2 ⊇ Γ1, therefore
T ′

f = WEAKEN
`
[Tf ] , Γ2, x : τ ′1

´
is

T ′
f :: Φ′

f ; Γ2, x : τ ′1 ` e : τ ′2
From T ′′

2 and τ1 ≤ τ ′1 we get
T ′′′

2 :: Φ∅; Γ2 ` v2 : τ ′1
Then with

T3 = SUBST
`ˆ

T ′
f

˜
,
ˆ
T ′′′

2

˜´
we have

` 〈T3, α2, ω2, H2, e[x 7→ v2]〉
and by induction

` 〈Tv, α′, ω′, H ′, v〉
case [REF-A] :

Given

[REF-A]

〈T1, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
r /∈ dom(H ′)

〈T, α, ω, H, refL e〉 −→ε 〈Tr, α
′, ω′, (H ′, r 7→ v), rL〉

and
` 〈T, α, ω, H, refL e〉

Similarly to the above, we get
` 〈T1, α, ω, H, e〉

and by induction
` 〈Tv, α′, ω′, H ′, v〉

where Tv :: Φ∅; Γ
′ ` v : τ . Then for Γ′′ = (Γ′, r 7→ τ H ′′ = (H ′, r 7→ v) we have Γ′′ ` H ′′ Also Γ′′ ⊇ Γ′ and from lemma A.13 we

get Γ′ ⊇ Γ, therefore
` 〈Tr, α

′, ω′, H ′′, rL〉
case Other :

The remaining cases are similar.

Lemma A.15 (A typed evaluation derivation exists). If
T :: Φ; Γ ` e : τ

and
D :: 〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉

and
` 〈α, ω, H, e〉

then there exists Tv such that
〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
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Proof. case [ID] :
Given

T :: Φ; Γ ` v : τ

and
D :: 〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉

From [ID-A] we get
〈T, α, ω, H, v〉 −→∅ 〈T, α, ω, H, v〉

case [CALL] :
The assumptions are:

[TSUB]

[TAPP]

T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

T2 :: Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

τ2 ≤ τ ′

Φ ≤ Φ′

T :: Φ′; Γ ` e1 e2 : τ ′

and

[CALL]

D1 :: 〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
D2 :: 〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

D3 :: 〈α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′, H ′, v〉
D :: 〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H ′, v〉

and Γ ` H . From T1, D1 and Γ ` H , by induction we have: E1 :: 〈T1, α, ω, H, e1〉 −→ε1 〈T ′
1, α1, ω1, H1, λx.e〉 where

[TSUB]

[TLAM]
Tf :: Φ′

f ; Γ1, x : τ ′1 ` e : τ ′2

Φ∅; Γ1 ` λx.e : τ ′1 −→Φ′
f τ ′2

τ ′1 −→Φ′
f τ ′2 ≤ τ1 −→Φf τ2

Φ∅ ≤ Φ∅

T ′
1 :: Φ∅; Γ1 ` λx.e : τ1 −→Φf τ2

is a canonical typing, Γ1 ⊇ Γ and Γ1 ` H1.
From T2 and Γ1 ⊇ Γ we get T ′

2 = WEAKEN ([T2] , Γ1).
From T ′

2, D2, and Γ1 ` H1, we get by induction: E2 :: 〈T ′
2, α1, ω1, H1, e2〉 −→ε2 〈Tv2 , α2, ω2, H2, v2〉 where Tv2 :: Φ∅; Γ2 ` v2 : τ1,

Γ2 ⊇ Γ1 and Γ2 ` H2.
From τ ′1 −→Φ′

f τ ′2 ≤ τ1 −→Φf τ2 we get τ1 ≤ τ ′1, τ ′2 ≤ τ2 and Φ′
f ≤ Φf , therefore

[TSUB]

Tv2 :: Φ∅; Γ2 ` v2 : τ1

τ1 ≤ τ ′1
Φ∅ ≤ Φ∅

T ′′
2 :: Φ∅; Γ2 ` v2 : τ ′1

Also, from Γ2 ⊇ Γ1 we get a T ′
f = WEAKEN ([Tf ] , Γ2). Then we construct T ′

3 = SUBST
`ˆ

T ′
f

˜
, [T ′′

2 ]
´

such that T ′
3 :: Φ′

f ; Γ2 ` e[x 7→
v2] : τ ′2. Finally, from τ ′2 ≤ τ2 we construct T3:

[TSUB]

T ′
3 :: Φ′

f ; Γ2 ` e[x 7→ v2] : τ ′2
τ ′2 ≤ τ2

Φ′
f ≤ Φf

T3 :: Φf ; Γ2 ` e[x 7→ v2] : τ2

From the last and induction, we get 〈T3, α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉 where Tv :: Φ∅; Γ3 ` v : τ2, Γ3 ⊇ Γ2 and
Γ3 ` H ′.
So, we can apply [CALL-A] to get

[CALL-A]

〈T1, α, ω, H, e1〉 −→ε1 〈T ′
1, α1, ω1, H1, λx.e〉

〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv2 , α2, ω2, H2, v2〉
〈T3, α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉
〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H ′, v〉

case [REF] :
Given

[TSUB]

[TREF]
T1 :: Φ′; Γ ` e : τ ′

Φ; Γ ` refL e : ref {L} τ ′

Φ′ ≤ Φ

ref {L} τ ′ ≤ ref ε′
τ

T :: Φ; Γ ` refL e : ref ε′
τ
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and

[REF]

D1 :: 〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉
r /∈ dom(H ′)

D :: 〈α, ω, H, refL e〉 −→ε 〈α′, ω′, (H ′, r 7→ v), rL〉
and Γ ` H
By induction, T1 and D1 we have

〈T1, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
where Tv :: Φ∅; Γ

′ ` e : τ ′ is a canonial typing, Γ′ ⊇ Γ and Γ′ ` H ′

We extend Γ′ and H ′ to define Γ′′ = (Γ′, r 7→ τ ′) and H ′′ = (H ′, r 7→ v) respectively. Then clearly Γ′′ ⊇ Γ′ and Γ′′ ` H ′′.
Therefore we can apply [REF-A], 〈T, α, ω, H, e〉 −→ε 〈Tr, α

′, ω′, (H ′, r 7→ v), rL〉 where

[TSUB]

[TLOC]
Γ′′(r) = τ ′

Φ∅; Γ
′′ ` rL : ref {L} τ ′

ref {L} τ ′ ≤ ref ε′
τ

Φ∅ ≤ Φ∅

Tr :: Φ∅; Γ
′′ ` rL : ref {ε} τ

Γ′ ⊇ Γ and Γ′′ ` H ′′

case [DEREF] :
Given

[TSUB]

[TDEREF]

Φ1; Γ ` e : ref ε1 τ ′

Φε
2 = ε1

Φ1 B Φ2 ↪→ Φ′

Φ′; Γ ` ! e : τ ′

τ ′ ≤ τ
Φ′ ≤ Φ

Φ; Γ ` ! e : τ
and

[DEREF]
D1 :: 〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

D :: 〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉
and Γ ` H .
By induction, T1 and D1 we have

〈T1, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉

where

[TSUB]

[TLOC]
Γ′(r) = τ ′

Φ∅; Γ
′ ` rL : ref ε′

τ ′

Φ∅ ≤ Φ∅

ref ε′
τ ′ ≤ ref ε τ

Tr :: Φ∅; Γ
′ ` rL : ref ε τ

and Γ′ ` H ′.
From Γ′ ` H ′ we have r ∈ dom(H ′) = dom(Γ′) and

Tv :: Φ∅; Γ
′ ` H ′(r) : Γ′(r)

Now we can apply [DEREF-A]:

[DEREF-A]

〈T1, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉

r ∈ dom(H ′)

〈T, α, ω, H, ! e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
case [ASSIGN] :

Similar to [DEREF].
case [IF-T] :

Given

[IF-T]

D1 :: 〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, v1〉 v1 = 0
D2 :: 〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v〉

D :: 〈α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈α2, ω2, H2, v〉
and

[TIF]

T1 :: Φ1; Γ ` e1 : int
T2 :: Φ2; Γ ` e2 : τ
T3 :: Φ2; Γ ` e3 : τ

Φ1 B Φ2 ↪→ Φ

T :: Φ; Γ ` if0 e1 then e2 else e3 : τ
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and Γ ` H .
By induction, D1 and T1 we have

〈T1, α, ω, H, e1〉 −→ε1 〈Tv1 , α1, ω1, H1, v1〉
where

[TSUB]

[TINT]
Φ∅; Γ1 ` v1 : int
Φ∅ ≤ Φ∅
int ≤ int

Tv1 :: Φ∅; Γ1 ` v1 : int
and Γ1 ⊇ Γ and Γ1 ` H1.
We have Γ1 ⊇ Γ, so we get T ′

2 = WEAKEN ([T2] , Γ1) :: Φ2; Γ1 ` e2 : τ .
By induction, T ′

2 and D2 we get
〈T ′

2, α1, ω1, H, e1〉 −→ε1 〈Tv, α2, ω2, H2, v〉
where

Tv :: Φ∅; Γ2 ` v : τ

and Γ2 ⊇ Γ1 and Γ2 ` H2.
Then we can apply [IF-T-A] to get

[IF-T-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tv1 , α1, ω1, H1, v1〉
v1 = 0

〈T ′
2, α1, ω1, H, e1〉 −→ε1 〈Tv, α2, ω2, H2, v〉

〈T, α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈Tv, α2, ω2, H2, v〉
case [IF-F] :

Similar to [IF-T].
case [LET] :

Similar to [CALL].

Lemma A.16 (The typed evaluation derivation is complete w.r.t. the evaluation). If

E :: 〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
Then

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉

Proof. Trivial. Sketch: all typed evaluation rules have a corresponding untyped evaluation rule, we can convert each typed evaluation rule to
its corresponding untyped by just removing the annotation T .

Theorem A.17 (Prior and Future Effect Soundness). If

E :: 〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
where

T :: Φ; Γ ` e : τ

and
α ⊆ Φα

and
ω′ ⊆ Φω

then for all sub-derivations Ei of E,
Ei :: 〈Ti, αi, ωi, Hi, ei〉 −→ε 〈Tvi , α

′
i, ω

′
i, H

′
i, vi〉

where
Ti :: Φi; Γi ` ei : τi

it will hold that
αi ⊆ Φα

i

and
ω′

i ⊆ Φω
i

Proof. case [ID-A] :
Given

[ID-A]
E :: 〈T, α, ω, H, v〉 −→∅ 〈T, α, ω, H, v〉

T :: Φ; Γ ` e : τ

α ⊆ Φα

ω′ ⊆ Φω

There are no sub-derivations, therefore the lemma holds vacuously.
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case [CALL-A] :
Given

[CALL-A]

E1 :: 〈T1, α, ω, H, e1〉 −→ε1 〈T ′
1, α1, ω1, H1, λx.e〉

E2 :: 〈T ′
2, α1, ω1, H1, e2〉 −→ε2 〈T ′′

2 , α2, ω2, H2, v2〉
E3 :: 〈T3, α2, ω2, H2, e[x 7→ v2]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉

E :: 〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H ′, v〉
and

T :: Φ; Γ ` e1 e2 : τ ′

α ⊆ Φα

ω′ ⊆ Φω

From [CALL-A] we have:
T1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2

T2 :: Φ2; Γ ` e2 : τ1

T ′
2 = WEAKEN ([T2] , Γ1)

T3 :: Φf ; Γ2 ` e[x 7→ v2] : τ ′

Using Destruction of the typed evaluation (Lemma A.16), we get the corresponding untyped evaluation to E. We can then use Weakening
of evaluations (Lemma A.3) to relax α and ω to 1, we can apply Standard Effect soundness (Theorem A.2) to get

ε1 ⊆ Φε
1

ε2 ⊆ Φε
2

ε3 ⊆ Φε
f

From
Φ1 B Φ2 B Φf ↪→ Φ

we get
Φα

1 = Φα

Φα
2 = Φα ∪ Φε

1

Φα
f = Φα ∪ Φε

1 ∪ Φε
2

and
Φω

1 = Φω ∪ Φε
2 ∪ Φε

f

Φω
2 = Φω ∪ Φε

f

Φω
f = Φω

From Traces and Promises (Lemma A.5) we get
α1 = α ∪ ε1

α2 = α ∪ ε1 ∪ ε2

and
ω1 = ω ∪ ε2 ∪ ε3

ω2 = ω ∪ ε3

Therefore, for E1

α ⊆ Φα = Φα
1

ω1 = ω ∪ ε2 ∪ ε3 ⊆ Φω ∪ Φε
2 ∪ Φε

f = Φω
1

We can now apply the lemma inductively on E1 to get that then for all sub-derivations Ei of E1,

Ei :: 〈Ti, αi, ωi, Hi, ei〉 −→ε 〈Tvi , α
′
i, ω

′
i, H

′
i, vi〉

where
Ti :: Φi; Γi ` ei : τi

it will hold that
αi ⊆ Φα

i

and
ω′

i ⊆ Φω
i

For E2

α1 = α ∪ ε1 ⊆ Φα ∪ Φε
1 = Φα

2

ω2 = ω ∪ ε3 ⊆ Φω ∪ Φε
f = Φω

2

Similarly to E1, we can now apply induction to get the wanted property for all sub-derivations of E2.
For E3

α2 = α ∪ ε1 ∪ ε2 ⊆ Φα ∪ Φε
1 ∪ Φε

2 = Φα
f

ω′ = ω ⊆ Φω = Φω
f

As before, we can now apply induction to get the wanted property for all sub-derivations of E3.
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case [REF-A] :
From [REF-A] we have

[REF-A]

E1 :: 〈T1, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
r /∈ dom(H ′)

E :: 〈T, α, ω, H, refL e〉 −→ε 〈Tr, α
′, ω′, (H ′, r 7→ v), rL〉

T :: Φ; Γ ` refL e : ref ε τ

α ⊆ Φα

ω′ ⊆ Φω

From the premises of [REF-A]
T1 :: Φ′; Γ ` e : τ ′

Φ′ ≤ Φ

Clearly, for E1 we have from the last
α ⊆ Φα ⊆ Φ′α

ω′ ⊆ Φω ⊆ Φ′ω

Similarly to the previous case, we get the wanted property for all sub-derivations by induction.
case [DEREF-A] :

[DEREF-A]

E1 :: 〈T1, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉

r ∈ dom(H ′)

E :: 〈T, α, ω, H, ! e〉 −→ε 〈Tv, α′, ω′, H ′, v〉
T :: Φ; Γ ` ! e : τ

α ⊆ Φα

ω′ ⊆ Φω

From the premises
Φε

2 = ε

Φ1 B Φ2 ↪→ Φ′

Φ′ ≤ Φ

ref {L} τ ≤ ref ε τ ′

Therefore
Φα

1 = Φ′α

Φω
1 = Φ′ω ∪ Φε

2

For E1 we have
α ⊆ Φα ⊆ Φ′α = Φα

1

ω′ ∪ {L} ⊆ Φω ∪ ε ⊆ Φ′ω ∪ Φε
2 = Φω

1

As before, we get the wanted property for all sub-derivations by induction.
case Other :

The other cases are similar.

Theorem A.18 (Contextual Effect Soundness). Given a program ep with no free variables, its typing T and its canonical evaluation D, we
can construct a typed evaluation E such that for every sub-derivation

E :: 〈T, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉

in E , where T :: Φ; Γ ` e : τ , it is always the case that α ⊆ Φα ε ⊆ Φε and ω ⊆ Φω′
.

Proof. Sketch: Follows as a corollary from Lemmas A.17 and A.15, with initial Γp = ∅ and Hp = ∅. SinceD is canonical, it is αp = ω′
p = ∅

for the whole program (base case) and by induction we get the theorem for all sub-derivations.
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B. Proteus-tx Proofs
Lemma B.1 (Weakening). If Φ; Γ ` e : τ and Γ′ ⊇ Γ then Φ; Γ′ ` e : τ .

Proof. By induction on the typing derivation of Φ; Γ ` e : τ .

Lemma B.2 (Flow subtyping). If Φ1 B Φ2 ↪→ Φ then Φ1 ≤ Φ and Φ2 ≤ Φ.

Proof. Follows directly from the definitions.

Lemma B.3 (Subtyping reflexivity). τ ≤ τ for all τ .

Proof. Straightforward, from the definition of subtyping in Figure 2.

Lemma B.4 (Subtyping transitivity). For all τ, τ ′, τ ′′, if τ ≤ τ ′ and τ ′ ≤ τ ′′ then τ ≤ τ ′′.

Proof. By simultaneous induction on τ ≤ τ ′ and τ ′ ≤ τ ′′. Notice that subtyping is syntax-directed, and this forces the final rule of each
derivation to be the same:

case (SINT,SINT) :
From the definition of (SINT), we have int ≤ int , hence τ ≤ τ ′′ follows directly.

case (SREF,SREF) :
We have:

SRef
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

SRef
τ ′ ≤ τ ′′ τ ′′ ≤ τ ′ ε′ ⊆ ε′′

ref ε′
τ ′ ≤ ref ε′′

τ ′′

We know that ε ⊆ ε′∧ε′ ⊆ ε′′ ⇒ ε ⊆ ε′′, and by induction we have that τ ≤ τ ′∧τ ′ ≤ τ ′′ ⇒ τ ≤ τ ′′ and τ ′ ≤ τ∧τ ′′ ≤ τ ′ ⇒ τ ′′ ≤ τ ,
respectively.
We can now apply (SREF):

SRef
τ ≤ τ ′′ τ ′′ ≤ τ ε ⊆ ε′′

ref ε τ ≤ ref ε′′
τ ′′

case (SFUN,SFUN) :
We have:

SFun

τ ′1 ≤ τ1 τ2 ≤ τ ′2
Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′1 −→Φ′
τ ′2

SFun

τ ′′1 ≤ τ ′1 τ ′2 ≤ τ ′′2
Φ′ ≤ Φ′′

τ ′1 −→Φ′
τ ′2 ≤ τ ′′1 −→Φ′′

τ ′′2
We know that Φ ≤ Φ′ ∧ Φ′ ≤ Φ′′ ⇒ Φ ≤ Φ′′, and by induction (see (SREF,SREF) above) we have τ ′′1 ≤ τ1 and τ2 ≤ τ ′′2 .
We can now apply (SFUN):

SFun

τ ′′1 ≤ τ1 τ2 ≤ τ ′′2
Φ ≤ Φ′′

τ1 −→Φ τ2 ≤ τ ′′1 −→Φ′′
τ ′′2

Lemma B.5 (Value typing). If Φ; Γ ` v : τ then Φ′; Γ ` v : τ for all Φ′.

Proof. By induction on the typing derivation of Φ; Γ ` v : τ .

case (TINT) :
Thus v ≡ n and we prove the result as follows:

TSub

TInt
Φ∅; Γ ` n : int int ≤ int

SCtxt
Φ∅ ≡ Φ∅ Φ′ ≡ [α; ε′; ω] ∅ ⊆ ε′

Φ∅ ≤ Φ′

Φ′; Γ ` n : int

case (TGVAR) :
We have

TGvar
Γ(f) = τ

Φ∅; Γ ` f : τ

We prove the result as follows:

TSub

TGvar
Γ(f) = τ

Φ∅; Γ ` f : τ τ ≤ τ
SCtxt

Φ∅ ≡ Φ∅ Φ′ ≡ [α; ε′; ω] ∅ ⊆ ε′

Φ∅ ≤ Φ′

Φ′; Γ ` f : τ

case (TLOC) :
Similar to (TGVAR).
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case (TSUB) :
We have

TSub
Φ′′; Γ ` v : τ ′ τ ′ ≤ τ

SCtxt
Φ′′ ≡ [α; ε′′; ω] Φ ≡ [α; ε; ω] ε′′ ⊆ ε

Φ′′ ≤ Φ

Φ; Γ ` v : τ

The result follows by induction on Φ′′; Γ ` v : τ ′ and by applying [TSUB].

Lemma B.6 (Subtyping Derivations). If Φ; Γ ` e : τ then we can construct a proof derivation of this judgment that ends in one use of
(TSUB) whose premise uses a rule other than (TSUB).

Proof. By induction on Φ; Γ ` e : τ .

case (TSUB) :
We have

TSub
Φ′; Γ ` e : τ ′ τ ′ ≤ τ

SCtxt
Φ′ε ⊆ Φε Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ′ ≤ Φ

Φ; Γ ` e : τ

By induction, we have

TSub
Φ′′; Γ ` e : τ ′′ τ ′′ ≤ τ ′

SCtxt
Φ′′ε ⊆ Φ′ε Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′′ ≤ Φ′

Φ′; Γ ` e : τ ′

where the derivation Φ′′; Γ ` e : τ ′′ does not conclude with (TSUB). By the transitivity of subtyping (Lemma B.4), we have τ ′′ ≤ τ ; we
also have ε′′ ⊆ ε and finally we get the desired result by (TSUB):

TSub
Φ′′; Γ ` e : τ ′′ τ ′′ ≤ τ

SCtxt
Φ′′ε ⊆ Φε Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ′′ ≤ Φ

Φ; Γ ` e : τ

case all others :
Since we have that the last rule in Φ; Γ ` e : τ is not (TSUB), we have the desired result by applying (TSUB) (where τ ≤ τ follows
from the reflexivity of subtyping, Lemma B.3):

TSub
Φ; Γ ` e : τ τ ≤ τ Φ ≤ Φ

Φ; Γ ` e : τ

Lemma B.7 (Flow effect weakening). If Φ; Γ ` e : τ where Φ ≡ [α; ε; ω], then Φ′; Γ ` e : τ where Φ′ ≡ [α′; ε; ω′], α′ ⊆ α, and ω′ ⊆ ω,
and all uses of [TSUB] applying Φ′ ≤ Φ require Φ′ω = Φω and Φ′α = Φα.

Proof. By induction on Φ; Γ ` e : τ .

case (TGVAR),(TINT),(TVAR) :
Trivial.

case (TUPDATE) :
We have

TUpdate
α ⊆ α′′ ω ⊆ ω′′

(Φ∅); Γ ` updateα′′,ω′′
: int

Since α′ ⊆ α and ω′ ⊆ ω we can apply (TUPDATE):

TUpdate
α′ ⊆ α′′ ω′ ⊆ ω′′

([α′; ε; ω′]); Γ ` updateα′,ω′
: int

case (TTRANSACT) :
We have

TTransact

Φ′′; Γ ` e : τ
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx e : τ

Let Φ′ = [α′; ε; ω′]. Since Φ′α ⊆ Φα and Φ′ω ⊆ Φω we can apply (TTRANSACT):

TTransact

Φ′′; Γ ` e : τ
Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′; Γ ` tx e : τ
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case (TINTRANS) :
Similar to (TTRANSACT).

case (TSUB) :
We have

TSub
Φ′; Γ ` e : τ ′ τ ′ ≤ τ

Φ′ε ⊆ Φε Φω ⊆ Φ′ω Φα ⊆ Φ′α

Φ′ ≤ Φ

Φ; Γ ` e : τ

Let Φ′′ = [Φα; Φ′ε; Φω]. Thus we have

TSub
Φ′′; Γ ` e : τ ′ τ ′ ≤ τ

Φ′′ε ⊆ Φε Φω = Φ′′ω Φα = Φ′′α

Φ′′ ≤ Φ

Φ; Γ ` e : τ

where the first premise follows by induction (which we can apply because Φ′′ω ⊆ Φ′ω and Φ′′α ⊆ Φ′α by assumption); the first premise
of Φ′′ ≤ Φ is by assumption, and the latter two premises are by definition of Φ′′.

case (TREF) :
We know that

TRef
Φ; Γ ` e : τ

Φ; Γ ` ref e : ref ε τ

and have Φ′; Γ ` e : τ by induction, hence we get the result by (TREF).
case (TDEREF) :

We know that

TDeref

Φ1; Γ ` e : ref ε τ
Φε

2 = ε Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

We have Φ′ ≡ [α′; Φε
1 ∪ Φε

2; ω
′] where α′ ⊆ Φα and ω′ ⊆ Φω . Choose Φ′

1 ≡ [α′; Φε
1; Φ

ε
2 ∪ ω′] and Φ′

2 ≡ [α′ ∪ Φε
1; Φ

ε
2; ω

′], hence
Φ′

1 −→ Φ′
2, Φ′ε

2 = Φε
2 = ε, and Φ′ ≡ Φ′

1 B Φ′
2. We want to prove that Φ′; Γ ` ! e : τ . Since α′ ⊆ α and Φε

2 ∪ ω′ ⊆ Φε
2 ∪ ω we can

apply induction to get Φ′
1; Γ ` e : ref ε τ and we get the result by applying (TDEREF):

TDeref

Φ′
1; Γ ` e : ref ε τ

Φ′ε
2 = ε Φ′

1 B Φ′
2 ↪→ Φ′

Φ′; Γ ` ! e : τ

case (TRET) :
Similar to [TDEREF].

case (TAPP) :
We know that

TApp

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φ; Γ ` e1 e2 : τ2

We have Φ′ ≡ [α′; Φε
1∪Φε

2∪Φε
3; ω

′] where α′ ⊆ Φα and ω′ ⊆ Φω . Choose Φ′
1 ≡ [α′; Φε

1; Φ
ε
2∪Φε

3∪ω′], Φ′
2 ≡ [α′∪Φε

1; Φ
ε
2; Φ

ε
3∪ω′],

Φ′
3 ≡ [α′ ∪Φε

1 ∪Φε
2; Φ

ε
3; ω

′], hence Φ′ε
3 = Φε

3 = εf , and Φ′
1BΦ′

2BΦ′
3 ↪→ Φ′. We want to prove that Φ′; Γ ` e1 e2 : τ2. Since α′ ⊆ α

and Φε
2 ∪ Φε

3 ∪ ω′ ⊆ Φε
2 ∪ Φε

3 ∪ ω′ we can apply induction to get Φ′
1; Γ ` e1 : τ1 −→Φf τ2. Similarly, since α′ ∪ Φε

1 ⊆ α ∪ Φε
1 and

Φε
3 ∪ ω′ ⊆ Φε

3 ∪ ω, we can apply induction to get Φ′
2; Γ ` e2 : τ1. We get the get the result by applying (TAPP):

TApp

Φ′
1; Γ ` e1 : τ1 −→Φ′

f τ2 Φ′
2; Γ ` e2 : τ1

Φ′
1 B Φ′

2 B Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ′; Γ ` e1 e2 : τ2

case (TASSIGN), (TIF), (TLET) :
Similar to (TAPP).

Definition B.8. If Φ; Γ ` e : τ , JΦ; Γ ` e : τK = R, and Φ; Γ ` e : τ  R′ then R ≡ R′, where JΦ; Γ ` e : τK is defined in Figure 19.

Lemma B.9 (Left subexpression version consistency). If Φ,R; H ` Σ and Φ1 B Φ2 ↪→ Φ then Φ1,R; H ` Σ.

Proof. We know that Φ1 B Φ2 ≡ [α1; ε1 ∪ ε2; ω2]. We have two cases:

R ≡ ·: Thus Σ ≡ (n′, σ) and by assumption we have:

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

[α1; ε1 ∪ ε2; ω2], ·; H ` (n′, σ)
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s
(TINT)

Φ∅; Γ ` n : int

{
= ·

s
(TVAR)

Γ(x) = τ

Φ∅; Γ ` x : τ

{
= ·

s
(TGVAR)

Γ(f) = τ

Φ∅; Γ ` f : τ

{
= ·

u

ww
v(TSUB)

D :: Φ′; Γ ` e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

}

��
~ = R, where JDK = R

t

(TUPDATE)
Φα ⊆ α′ Φω ⊆ ω′

Φ; Γ ` updateα′,ω′
: int

|

= ·

s
(TREF)

D :: Φ; Γ ` e : τ

Φ; Γ ` ref e : ref ε τ

{
= R, where JDK = R

u

w
v(TDEREF)

D1 :: Φ1; Γ ` e : ref ε τ
Φε

2 = ε Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

}

�
~ = R1, where JD1K = R1

u

w
v(TASSIGN)

D1 :: Φ1; Γ ` e1 : ref ε τ D2 :: Φ2; Γ ` e2 : τ
Φε

3 = ε Φ1 B Φ2 B Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

}

�
~ = R1 ./ R2, where

JD1K = R1

JD2K = R2

e1 6≡ v ⇒R2 = ·

u

wwwww
v

(TIF)

D1 :: Φ1; Γ ` e1 : int
D2 :: Φ2; Γ ` e2 : τ D3 :: Φ2; Γ ` e3 : τ

Φ1 B Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ

}

�����
~

= R1, where
JD1K = R1

JD2K = ·
JD3K = ·

u

w
v(TLET)

D1 :: Φ1; Γ ` e1 : τ1 D2 :: Φ2; Γ, x : τ1 ` e2 : τ2

Φ1 B Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2

}

�
~ = R1, where

JD1K = R1

JD2K = ·

u

wwwwww
v

(TAPP)

D1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2 D2 :: Φ2; Γ ` e2 : τ1

Φ1 B Φ2 B Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φ; Γ ` e1 e2 : τ2

}

������
~

= R1 ./ R2, where
JD1K = R1

JD2K = R2

e1 6≡ v ⇒R2 = ·

s
(TTRANSACT)

Φ1; Γ ` e : τ Φα ⊆ Φα
1 Φω ⊆ Φω

1

Φ; Γ ` tx e : τ

{
= ·

s
(TINTRANS)

D1 :: Φ1; Γ ` e : τ Φα ⊆ Φα
1 Φω ⊆ Φω

1

Φ; Γ ` intx e : τ

{
= Φ,R1 where JD1K = R1

· ./ R = R ∧ R ./ · = R

Figure 19. Transaction effect extraction

The result follows from [TC1]:

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

[α1; ε1; ω1], ·; H ` (n′, σ)
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R ≡ Φ′,R′: Thus we must have

TC2

Φ′,R′; H ` Σ′

Φ ≡ [α1; ε1 ∪ ε2; ω2]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

Φ, Φ′,R′; H ` ((n′, σ), Σ′)

where Σ ≡ ((n′, σ), Σ′). The result follows by [TC2]:

TC2

Φ′,R′; H ` Σ′

Φ1 ≡ [α1; ε1; ω1]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

Φ1, Φ
′,R′; H ` ((n′, σ), Σ′)

where the first premise follows by assumption.

Lemma B.10 (Subexpression version consistency). If Φ,R1 ./ R2; H ` Σ and Φ1 B Φ2 ↪→ Φ then

(i) R2 ≡ · implies Φ1,R1; H ` Σ
(ii) R1 ≡ · and Φε

1 ≡ ∅ implies Φ2,R2; H ` Σ

Proof. (i) Since R2 = · by assumption, we have R1 = R1 ./ R2. We have two cases:
R1 ≡ ·: Thus we must have

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

[α1; ε1 ∪ ε2; ω2], ·; H ` (n′, σ)

where Σ ≡ (n′, σ). The result follows from [TC1] :

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

[α1; ε1; ω1], ·; H ` (n′, σ)

R1 ≡ Φ′,R′: Thus we must have

TC2

Φ′,R′; H ` Σ′

Φ ≡ [α1; ε1 ∪ ε2; ω2]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

Φ, Φ′,R′; H ` ((n′, σ), Σ′)

where Σ ≡ ((n′, σ), Σ′). The result follows by [TC2]:

TC2

Φ′,R′; H ` Σ′

Φ1 ≡ [α1; ε1; ω1]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

Φ1, Φ
′,R′; H ` ((n′, σ), Σ′)

where the first premise follows by assumption.
(ii) Since R1 = · by assumption, we have R2 = R1 ./ R2. We have two cases:

R2 ≡ ·: Thus we must have

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

[α1; ε1 ∪ ε2; ω2], ·; H ` (n′, σ)

where Σ ≡ (n′, σ). Since Φε
1 ≡ ∅ and Φα

2 = Φα
1 ∪ Φε

1 we have Φα
2 = Φα

1 and the result follows from [TC1]:

TC1

f ∈ σ ⇒ f ∈ α2

f ∈ ε2 ⇒ n′ ∈ ver(H, f)

[α2; ε2; ω2], ·; H ` (n′, σ)

R2 ≡ Φ′,R′: Thus we must have

TC2

Φ′,R′; H ` Σ′

Φ ≡ [α1; ε1 ∪ ε2; ω2]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

Φ, Φ′,R′; H ` ((n′, σ), Σ′)
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where Σ ≡ ((n′, σ), Σ′). The result follows by [TC2] and Φα
2 = Φα

1 (because Φε
1 ≡ ∅ and Φα

2 = Φα
1 ∪ Φε

1):

TC2

Φ′,R′; H ` Σ′

Φ2 ≡ [α2; ε2; ω2]
f ∈ σ ⇒ f ∈ α2

f ∈ ε2 ⇒ n′ ∈ ver(H, f)

Φ2, Φ
′,R′; H ` ((n′, σ), Σ′)

where the first premise follows by assumption.

Lemma B.11 (Stack Shapes). If 〈n; Σ; H; e〉 −→ε0 〈n; Σ′; H ′; e′〉 then top(Σ) = (n′, σ) and top(Σ′) = (n′′, σ′) where n′ = n′′ and
σ ⊆ σ′.

Proof. By induction on 〈n; Σ; H; e〉 −→ε0 〈n; Σ′; H ′; e′〉.

Lemma B.12 (Update preserves heap safety). If n; Γ ` H and updateOK (upd , H, (α, ω), dir) then n + 1;U [Γ]upd ` U [H]updn+1.

Proof. Let n′ = n+1 and Γ′ ≡ U [Γ]upd and H ′ ≡ U [H]updn′ . From the definition of heap typing (Figure 9), to prove n′; Γ′ ` H ′, we need
to show:

1. dom(Γ′) = dom(H ′)
2. ∀z 7→ (τ, v, ν) ∈ H ′. Φ∅; Γ

′ ` v : τ ∧ Γ′(z) = ref ε τ ∧ z ∈ ε

3. ∀z 7→ (τ −→Φ τ ′, λ(x).e, ν) ∈ H ′. Φ; Γ′, x : τ ` e : τ ′ ∧ Γ′(z) = τ −→Φ τ ′ ∧ z ∈ Φα ∧ z ∈ Φε

4. ∀r 7→ (·, v, ν) ∈ H ′. Φ∅; Γ
′ ` v : τ ∧ Γ′(r) = ref ε τ

5. ∀z 7→ (τ, b, ν) ∈ H ′. n′ ∈ ν

Proof by induction on H .

case H ≡ ∅ :
We have U [∅]updn′ = updadd (modified to have version set {n + 1}), and thus dom(H ′) = dom(updadd). Our assumption dom(H) =

dom(Γ) implies that Γ = ∅, and thus Γ′ = U [∅]upd = types(updadd).

1. dom(Γ′) = dom(types(updadd)) = dom(updadd) = dom(H ′).
2. Since H ′ = updadd , this follows directly from updateOK (upd , H, (α, ω), dir) given the definition of Γ′ = U [∅]upd =

types(updadd).
3. Similar to 2.
4. Vacuously true, since r 6∈ dom(H ′) = dom(updadd) for all r.
5. Holds by the definition of U [∅]updn′ .

case H ≡ (r 7→ (·, b, ∅), H ′′) :
We have H ′ ≡ U [(r 7→ (·, b, ∅), H ′′)]

upd
n′ = (r 7→ (·, b, ∅)),U [H ′′]

upd
n′ . Our assumption dom(H) = dom(Γ) implies Γ ≡ (r : τ, Γ′′)

for some Γ′′, where dom(H ′′) = dom(Γ′′) and Γ′ ≡ U [r : τ, Γ′′]
upd

= r : τ,U [Γ′′]
upd .

1. By induction we know dom(U [Γ′′]
upd

) = dom(U [H ′′]
upd
n′ ). But dom(H ′) = dom(r = (·, b, ∅)),U [H ′′]

upd
n′ ) = {r} ∪

dom(U [H ′′]
upd
n′ ), and dom(Γ′) = dom(r : τ,U [Γ′′]

upd
) = {r} ∪ dom(U [Γ′′]

upd
).

2. Follows by induction, since r 6= z for all z.
3. Same as above.
4. For r, this follows by assumption, since it is clear that H(r) = U [H]updn′ (r) and Γ(r) = U [Γ]upd(r), and for the rest of the heap the

property follows by induction.
5. Follows by induction, since r 6= z for all z.

case H ≡ (z = (τ, b, ν), H ′′) :
We have H ′ ≡ U [(z 7→ (τ, b, ν), H ′′)]

upd
n′ = (z 7→ (τ, b′, ν′)),U [H ′′]

upd
n′ . Our assumption dom(H) = dom(Γ) implies Γ ≡ (z :

heapType(z, τ), Γ′′) for some Γ′′, where dom(H ′′) = dom(Γ′′) and Γ′ ≡ U [z : τ, Γ′′]
upd

= z : heapType(z, τ),U [Γ′′]
upd .

1. Similar to the argument for the H ≡ (r 7→ (...), H ′′) case.
4. This follows by induction, since z 6= r.

Now consider the remaining cases according to z with respect to updchg :
case z 6∈ dom(updchg) :

2. For z, this follows by assumption, since it is clear that H(z) = U [H]updn′ (z) and Γ(z) = U [Γ]upd(z). The rest of the heap follows
by induction.

3. Same as above.
5. We have U [(z 7→ (τ, b, ν), H ′′)]

upd
n′ = (z 7→ (τ, b, ν ∪ {n′}),U [H ′′]

upd
n′ ) where n′ ∈ (ν ∪ {n′}) for z, and the rest follows by

induction.
case z ∈ dom(updchg) :
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2. From the definition of updateOK (upd , H, (α, ω), dir) we know that (i) Φ∅;U [Γ]upd ` v′ : τ . Considering z, from the
definition of heapType(τ, z) we have (ii) heapType(τ, z) = ref ε τ where z ∈ ε. Combining (i) and (ii) yields

Φ∅; Γ
′ ` v : τ ∧ Γ′(z) = ref ε τ ∧ z ∈ ε

The property holds for the rest of the heap by induction.
3. Similar to the previous.
5. We have U [(z 7→ (τ, b, ν), H ′′)]

upd
n′ = (z 7→ (τ, b′, {n′}),U [H ′′]

upd
n′ ) and obviously n′ ∈ {n′} for z, and the rest by induction.

The following lemma states that if we start with a well-typed program and a version-consistent trace and we take an update step, then
afterward we will still have a well-typed program whose trace is version-consistent.

Lemma B.13 (Update preservation).
Suppose we have the following:

1. n ` H, e : τ (such that Φ; Γ ` e : τ  R and n; Γ ` H for some Γ, Φ)
2. Φ,R; H ` Σ
3. traceOK (Σ)
4. 〈n; Σ; H; e〉 −→ µ 〈n + 1;Σ′; H ′; e〉

where H ′ ≡ U [H]updn+1, Γ′ ≡ U [Γ]upd , µ = (upd , dir), Σ′ ≡ U [Σ]upd,dir
n , and top(Σ′) = (n′′, σ′). Then for some Φ′ such that Φ′α = Φα,

Φ′ω = Φω , and Φ′ε ⊆ Φε and some Γ′ ⊇ Γ we have that:

1. n + 1 ` H ′, e : τ where Φ′; Γ′ ` e : τ  R and n + 1; Γ′ ` H ′

2. Φ′,R; H ′ ` Σ′

3. traceOK (Σ′)
4. (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω ⇒ ver(H, f) ⊆ ver(H ′, f))

Proof. Since U [Γ]upd ⊇ Γ, Φ;U [Γ]upd ` e : τ  R follows by weakening (Lemma B.1). Proceed by simultaneous induction on the typing
derivation of e (n ` H, e : τ ) and on the evaluation derivation 〈n; Σ; H; e〉 −→ µ 〈n + 1; Σ′; H ′; e〉. Consider the last rule used in the
evaluation derivation:

case [GVAR-DEREF], [GVAR-ASSIGN], [CALL], [LET], [TX-START], [TX-END], [REF], [DEREF], [ASSIGN], [IF-T], [IF-F], [NO-UPDATE] :
Not possible, as these transitions cannot cause an update to occur.

case [UPDATE] :
This implies that e ≡ updateα,ω and thus

〈n; (n′, σ); H; updateα,ω〉 −→ µ 〈n + 1;U
ˆ
(n′, σ)

˜upd,dir

n+1
;U [H]updn+1; 1〉

where µ ≡ (upd , dir) and updateOK (upd , H, (α, ω), dir). By subtyping derivations (Lemma B.6) we have

TSub

TUpdate
α ⊆ α′′ ω ⊆ ω′′ Φu ≡ [α; ∅; ω]

Φu; Γ ` updateα′′,ω′′
: int  ·

int ≤ int Φu ≤ Φ Φ ≡ [α; ε; ω]

Φ; Γ ` updateα,ω : int  ·
and by flow effect weakening (Lemma B.7) we know that α and ω are unchanged in the use of (TSUB). Let Φ′ = Φu (hence Φ′α = Φα,
Φ′ω = Φω , and ∅ ⊆ Φε as required) and (n′′, σ′) ≡ U [(n′, σ)]

upd,dir
n+1 .

To prove 1., we get n + 1; Γ′ ` H ′ by Lemma B.12 and Φu; Γ′ ` 1 : int  · by [TINT].
To prove 2., we must show Φu, ·; H ′ ` (n′′, σ′). By assumption, we have

TC1

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

[α; ε; ω], ·; H ` (n′, σ)

We need to prove

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ∅ ⇒ n′′ ∈ ver(H ′, f)

[α; ∅; ω], ·; H ′ ` (n′′, σ′)

We have the first premise by assumption (since dom(σ) = dom(σ′) from the definition of U [(n′, σ)]
upd,dir
n+1 ). The second premise holds

vacuously.
To prove 3., we must show traceOK (n′′, σ′). Consider each possible update type:
case dir = bck :

From the definition of U [(n′, σ)]
upd,bck
n+1 , we know that n′′ = n + 1. Consider (f, ν) ∈ σ; it must be the case that f 6∈ dom(updchg).

This is because dir = bck implies α ∩ dom(updchg) = ∅ and by assumption (from the first premise of [TC1] above) f ∈ α.
Therefore, since f 6∈ dom(updchg), its σ′ entry is (f, ν ∪ {n′′}), which is the required result.
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case dir = fwd :
Since U [(n′, σ)]

upd,fwd
n+1 = (n′, σ), the result is true by assumption.

To prove 4., we must show n′′ ≡ n + 1 ∨ (f ∈ ω ⇒ ver(H, f) ⊆ ver(H ′, f)). Consider each possible update type:
case dir = bck :

From the definition of U [(n′, σ)]
upd,bck
n+1 , we know that n′′ = n + 1 so we are done.

case dir = fwd :
We have U [(n′, σ)]

upd,fwd
n+1 = (n′, σ), and from updateOK (upd , H, (α, ω), dir) we know that f ∈ ω ⇒ f 6∈ dom(updchg). From

the definition of U [H]upd
n we know that U [(f 7→ (τ, b, ν), H)]updn+1 = f 7→ (τ, b, ν ∪ {n + 1}) if f 6∈ dom(updchg). This implies that

for f ∈ ω, ver(H, f) = ν and ver(H ′, f) = ν ∪ {n + 1}, and therefore ver(H, f) ⊆ ver(H ′, f).
case [TX-CONG-1] :

We have that 〈n; ((n′, σ), Σ); H; intx e〉 −→ µ 〈n + 1; (U [(n′, σ)]
upd,dir
n+1 , Σ′); H ′; intx e′〉 follows from 〈n; Σ; H; e〉 −→ µ

〈n + 1; Σ′; H ′; e′〉 by [TX-CONG-1], where µ ≡ (upd , dir). Let (n′′, σ′) ≡ U [(n′, σ)]
upd,dir
n+1 . By assumption and subtyping derivations

(Lemma B.6) we have

TSub

TIntrans

Φe; Γ ` e : τ ′  R
α ⊆ Φα

e ω ⊆ Φω
e

[α; ∅; ω]; Γ ` intx e : τ ′  Φe,R τ ′ ≤ τ [α; ∅; ω] ≤ [α; ε; ω]

[α; ε; ω]; Γ ` intx e : τ  Φe,R

and by flow effect weakening (Lemma B.7) we know that α and ω are unchanged in the use of (TSUB). We have Φe ≡ [αe; εe; ωe], so that
ωe ⊇ ω and αe ⊇ α. To apply induction, we must show that Φe,R; H ` Σ (which follows by inversion on Φ, Φe,R; H ` ((n′, σ), Σ));
Φe; Γ ` e : τ ′  R (which follows by assumption); and n; Γ ` H (by assumption).
By induction we have:
(i) Φ′

e; Γ
′ ` e′ : τ ′  R and

(ii) n + 1; Γ′ ` H ′

(iii) Φ′
e,R; H ′ ` Σ′

(iv) traceOK (Σ′)
(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ωe ⇒ ver(H, f) ⊆ ver(H ′, f))
where Φ′

e ≡ [αe; ε
′
e; ωe], ε′e ⊆ εe.

Let Φ′ = [α; ∅; ω] (hence Φ′α = Φα, Φ′ω = Φω , and ∅ ⊆ Φε as required). To prove 1., we can show

TSub

TIntrans

Φ′
e; Γ

′ ` e′ : τ  R
α ⊆ Φ′α

e ω ⊆ Φ′ω
e

Φ′; Γ ` intx e′ : τ  Φ′
e,R τ ′ ≤ τ Φ′ ≤ Φ′

Φ′; Γ ` intx e′ : τ  Φ′
e,R

The first premise of [TINTRANS] follows by (i), and the second since αe ⊇ α and ωe ⊇ ω.
To prove 2., we need to show that

TC2

Φ′
e,R; H ′ ` Σ′

f ∈ σ′ ⇒ f ∈ α
f ∈ ∅ ⇒ n′′ ∈ ver(H ′, f)

[α; ∅; ω], Φ′
e,R; H ′ ` ((n′′, σ′), Σ′)

We have the first premise by (iii), the second by assumption (since dom(σ) = dom(σ′) from the definition of U [(n′, σ)]
upd,dir
n+1 ), and the

last holds vacuously.
To prove 3., we must show traceOK ((n′′, σ′), Σ′), which reduces to proving traceOK (n′′, σ′) since we have traceOK (Σ′) from (iv).
We have traceOK (n′, σ) by assumption. Consider each possible update type:
case dir = bck :

From the definition of U [(n′, σ)]
upd,bck
n+1 , we know that n′′ = n + 1. Consider (f, ν) ∈ σ; it must be the case that f 6∈ dom(updchg).

This is because dir = bck implies αe∩dom(updchg) = ∅ and by assumption we have α ⊆ αe (from (TINTRANS)) and f ∈ α (from
the first premise of [TC1] above). Therefore, since f 6∈ dom(updchg), its σ′ entry is (f, ν ∪ {n′′}), which is the required result.

case dir = fwd :
Since U [(n′, σ)]

upd,fwd
n+1 = (n′, σ), the result is true by assumption.

Part 4. follows directly from (v) and the fact that ωe ⊇ ω.
case [CONG] :

We have that 〈n; Σ; H; E[e]〉 −→ µ 〈n + 1; Σ′; H ′; E[e]〉 follows from 〈n; Σ; H; e〉 −→ µ 〈n + 1; Σ′; H ′; e〉 by [CONG], where
µ ≡ (upd , dir). Consider the shape of E:
case :

The result follows directly by induction.
case E e2 :
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By assumption, we have Φ; Γ ` (E e2)[e1] : τ  R. By subtyping derivations (Lemma B.6) we know we can construct a proof
derivation of this ending in (TSUB):

TSub

TApp

Φ1; Γ ` E[e1] : τ1 −→Φf τ ′2  R1 Φ2; Γ ` e2 : τ1  ·
Φ1 B Φ2 B Φ3 ↪→ Φs

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

E [e1] 6≡ v ⇒R2 = ·
Φs; Γ ` (E e2)[e1] : τ ′2  R1

τ ′2 ≤ τ2
SCtxt

Φ ≡ [α; ε; ω]
Φs ≡ [α; ε1 ∪ ε2 ∪ εf ; ω]

(ε1 ∪ ε2 ∪ εf ) ⊆ ε

Φs ≤ Φ

Φ; Γ ` (E e2)[e1] : τ2  R1

and by flow effect weakening (Lemma B.7) we know that α and ω are unchanged in the use of (TSUB).
By inversion on 〈n; Σ; H; (E e2)[e1]〉 −→ µ 〈n+1; Σ′; H ′; (E e2)[e1]〉 we have 〈n; Σ; H; e1〉 −→ µ 〈n+1; Σ′; H ′; e′1〉, and then
applying [CONG] we have 〈n; Σ; H; E[e1]〉 −→ µ 〈n + 1;Σ′; H ′; E[e′1]〉. From Φ,R1; H ` Σ we know that:

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

where (n′, σ) is the top of Σ. Since Φ ≡ [α; ε; ω] and Φs ≡ [α; εs; ω] and εs = ε1 ∪ ε2 ∪ ε3 (where ε3 = εf ), we have

f ∈ σ ⇒ f ∈ α
f ∈ ε1 ⇒ n′ ∈ ver(H, f)

but since Φ1 ≡ [α; ε1; ω1], we have Φ1,R1; H ` Σ. Hence we can apply induction on Φ1; Γ ` E[e1] : τ1 −→Φf τ ′2  R1,
yielding:
(i) Φ′

1; Γ
′ ` E[e′1] : τ1 −→Φf τ2  R1 and

(ii) n + 1; Γ′ ` H ′

(iii) Φ′
1,R1; H

′ ` Σ′

(iv) traceOK (Σ′)
(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω1 ⇒ ver(H, f) ⊆ ver(H ′, f))
where Φ′

1 ≡ [αs; ε
′
1; ω1] and ε′1 ⊆ ε1. Choose Φ′

2 = [α1 ∪ ε′1; ε2; ω2] and Φ′
3 = [α1 ∪ ε′1 ∪ ε2; εf ; ωs] and thus Φ′

1BΦ′
2BΦ′

3 ↪→ Φ′
s

and Φ′ε
3 = Φε

f . Let Φ′ = [α; ε′1 ∪ ε2 ∪ εf ; ω], where ε′1 ∪ ε2 ∪ εf ⊆ ε, as required.
To prove 1., we have n + 1; Γ′ ` H ′ by (ii), and apply (TAPP):

TApp

Φ′
1; Γ

′ ` E[e′1] : τ1 −→Φf τ ′2  R1 Φ′
2; Γ

′ ` e2 : τ1  ·
Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′
s

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

E[e′1] 6≡ v ⇒R2 = ·
Φ′

s; Γ
′ ` (E e2)[e

′
1] : τ ′2  R1

The first premise follows by (i), the second because we have Φ2; Γ
′ ` e2 : τ1 by weakening (since Γ′ ⊇ Γ) and then Φ′

2; Γ
′ ` e2 : τ1

by flow effect weakening (Lemma B.7) (which we can apply because Φ′ω
2 = Φω

2 , Φ′ε
2 = Φε

2, Φ′α
2 = α1 ∪ ε′1 Φα

2 = α1 ∪ ε1 hence
Φ′α

2 ⊆ Φα
2 ) the third—sixth by choice of Φ′

2, Φ′
3 and Φ′

s, and the last as R2 ≡ · by assumption. We can now apply (TSUB):

TSub

Φ′; Γ ` (E e2)[e
′
1] : τ ′2  R1

τ ′2 ≤ τ2 Φ′ ≤ Φ′

Φ′; Γ ` (E e2)[e
′
1] : τ2  R′

1

To prove part 2., we must show that Φ′,R1; H
′ ` Σ′.

By inversion on Φ,R1; H ` Σ we have Σ ≡ (n′, σ) or Σ ≡ (n′, σ), Σ′′. We have two cases:
Σ ≡ (n′, σ): By (iii) we must have R1 ≡ · such that

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′1 ⇒ n′′ ∈ ver(H ′, f)

[α; ε′1; ω1], ·; H ′ ` (n′′, σ′)

To achieve the desired result we need to prove:

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′1 ∪ ε2 ∪ εf ⇒ n′′ ∈ ver(H ′, f)

[α; ε′1 ∪ ε2 ∪ εf ; ω], ·; H ′ ` (n′′, σ′)

The first premise is by assumption (since dom(σ) = dom(σ′) from the definition of U [(n′, σ)]
upd,dir
n+1 ). For the second premise,

we need to show that for all f ∈ (ε2 ∪ εf ) ⇒ n′′ ∈ ver(H ′, f) (for those f ∈ ε′1 the result is by assumption).
Consider each possible update type:
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case dir = bck :
From the definition of U [(n′, σ)]

upd,bck
n+1 , we know that n′′ = n + 1; from the definition of U [H]upd

n we know that
n + 1 ∈ ver(H ′, f) for all f, hence n′′ ∈ ver(H ′, f) for all f.

case dir = fwd :
From (v) we have that f ∈ ω1 ⇒ ver(H, f) ⊆ ver(H ′, f). Since (ε2 ∪ εf ) ⊆ ω1 (by Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′), we have
f ∈ (ε2 ∪ εf ) ⇒ ver(H, f) ⊆ ver(H ′, f). By inversion on Φ,R1; H ` Σ we have f ∈ (ε1 ∪ ε2 ∪ εf ) ⇒ n′ ∈ ver(H, f),
and thus f ∈ (ε2 ∪ εf ) ⇒ n′ ∈ ver(H ′, f). We have U [(n′, σ)]

upd,fwd
n+1 = (n′, σ) hence n′′ = n′, so finally we have

f ∈ (ε2 ∪ εf ) ⇒ n′′ ∈ ver(H ′, f).
Σ ≡ (n′, σ), Σ′′ By (iii), we must have R1 ≡ Φ′′,R′′ such that

TC2

Φ′′,R′′; H ′ ` Σ′′

Φ′
1 ≡ [α; ε′1; ω1]

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′1 ⇒ n′′ ∈ ver(H ′, f)

Φ′
1, Φ

′′,R′′; H ′ ` ((n′′, σ′), Σ′′)

We wish to show that

TC2

Φ′′,R′′; H ′ ` Σ′′

Φ′ ≡ [α; ε′1 ∪ ε2 ∪ εf ; ω]
f ∈ σ′ ⇒ f ∈ α

f ∈ (ε′1 ∪ ε2 ∪ εf ) ⇒ n′′ ∈ ver(H ′, f)

Φ′, Φ′′,R′′; H ′ ` ((n′′, σ′), Σ′′)

Φ′′,R′′; H ′ ` Σ follows by assumption while the third and fourth premises follow by the same argument as in the Σ ≡ (n′, σ)
case, above.

Part 3. follows directly from (iv).
Part 4. follows directly from (v) and the fact that ω1 ⊇ ω (because ω1 ≡ ε2 ∪ εf ∪ ω).

case v E :
By assumption, we have Φ; Γ ` (v E)[e2] : τ  R. By subtyping derivations (Lemma B.6) we have:

TSub

TApp

Φ1; Γ ` v : τ1 −→Φf τ ′2  · Φ2; Γ ` E[e2] : τ1  R2

Φ1 B Φ2 B Φ3 ↪→ Φs

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

v 6≡ v′ ⇒R2 = ·
Φs; Γ ` (v E)[e2] : τ ′2  R2

τ ′2 ≤ τ2
SCtxt

Φ ≡ [α; ε; ω]
Φs ≡ [α; ε1 ∪ ε2 ∪ εf ; ω]

(ε1 ∪ ε2 ∪ εf ) ⊆ ε

Φs ≤ Φ

Φ; Γ ` (v E)[e2] : τ2  R2

and by flow effect weakening (Lemma B.7) we know that α and ω are unchanged in the use of (TSUB).
By inversion on 〈n; Σ; H; (v E)[e2]〉 −→ µ 〈n + 1; Σ′; H ′; (v E)[e2]〉 we have 〈n; Σ; H; e2〉 −→ µ 〈n + 1; Σ′; H ′; e′2〉, and then
applying [CONG] we have 〈n; Σ; H; E[e2]〉 −→ µ 〈n + 1;Σ′; H ′; E[e2]〉. From Φ,R2; H ` Σ we know that:

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

where (n′, σ) is the top of Σ. We have Φ ≡ [α; ε; ω], Φs ≡ [αs; εs; ωs], εs ⊆ ε, εs = ε1∪ε2∪ε3 (where ε3 = εf ), Φ2 ≡ [α2; ε2; ω2],
α2 ≡ α1 ∪ ε1 = α (since ε1 = ∅; if it’s not ∅ we can construct a derivation for v that has ε1 = ∅ as argued in preservation
(Lemma B.15), (TAPP)-[CONG], case v E). We have

f ∈ σ ⇒ f ∈ α
f ∈ ε2 ⇒ n′ ∈ ver(H, f)

hence Φ2,R2; H ` Σ and we can apply induction on Φ2; Γ ` E[e2] : τ1 −→Φf τ ′2  R2, yielding:
(i) Φ′

2; Γ
′ ` E[e2] : τ1  R2 and

(ii) n + 1; Γ′ ` H ′

(iii) Φ′
2,R2; H

′ ` Σ′

(iv) traceOK (Σ′)
(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω2 ⇒ ver(H, f) ⊆ ver(H ′, f))
where Φ′

2 ≡ [α2; ε
′
2; ω2] and ε′2 ⊆ ε2. Choose Φ′

1 = [α; ∅; ω2 ∪ ε′2] and Φ′
3 = [α ∪ ε′2; εf ; ω] and thus Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′ and
Φ′ε

3 = Φε
f .

Let Φ′ ≡ [α; ε′2 ∪ εf ; ω] and thus ε′2 ∪ εf ⊆ ε as required.
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To prove 1., we have n + 1; Γ′ ` H ′ by (ii), and apply (TAPP):

TApp

Φ′
1; Γ

′ ` v : τ1 −→Φf τ ′2  · Φ′
2; Γ

′ ` E[e2] : τ1  R2

Φ′
1 B Φ′

2 B Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

v 6≡ v′ ⇒R2 = ·
Φ′; Γ′ ` (v E)[e2] : τ ′2  R2

The first premise follows by value typing, the second by (i), the third—sixth by choice of Φ′
1 and Φ′

3, and the last holds vacuously.
We can now apply (TSUB):

TSub

Φ′; Γ ` (v E)[e2] : τ ′2  R2

τ ′2 ≤ τ2 Φ′ ≤ Φ′

Φ′; Γ ` (v E)[e2] : τ2  R2

To prove part 2., we must show that Φ′,R2; H
′ ` Σ′.

By inversion on Φ,R2; H ` Σ we have Σ ≡ (n′, σ) or Σ ≡ (n′, σ), Σ′′. We have two cases:
Σ ≡ (n′, σ): By (iii) we must have R2 ≡ · such that

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′2 ⇒ n′′ ∈ ver(H ′, f)

[α; ε′2; ω2], ·; H ′ ` (n′′, σ′)

To achieve the desired result we need to prove:

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′2 ∪ εf ⇒ n′′ ∈ ver(H ′, f)

[α; ε′2 ∪ εf ; ω], ·; H ′ ` (n′′, σ′)

The first premise follows by assumption (since dom(σ) = dom(σ′) from the definition of U [(n′, σ)]
upd,dir
n+1 ). For the second

premise, we need to show that for all f ∈ εf ⇒ n′′ ∈ ver(H ′, f) (for those f ∈ ε′2 the result is by assumption).
Consider each possible update type:
case dir = bck :

From the definition of U [(n′, σ)]
upd,bck
n+1 , we know that n′′ = n + 1; from the definition of U [H]upd

n we know that
n + 1 ∈ ver(H ′, f) for all f, hence n′′ ∈ ver(H ′, f) for all f.

case dir = fwd :
From (v) we have that f ∈ ω2 ⇒ ver(H, f) ⊆ ver(H ′, f). Thus εf ⊆ ω2 (by Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′) implies
f ∈ εf ⇒ ver(H, f) ⊆ ver(H ′, f). By inversion on Φ,R2; H ` Σ we have f ∈ (ε2 ∪ εf ) ⇒ n′ ∈ ver(H, f),
and thus f ∈ εf ⇒ n′ ∈ ver(H ′, f). We have U [(n′, σ)]

upd,fwd
n+1 = (n′, σ) hence n′′ = n′, so finally we have

f ∈ εf ⇒ n′′ ∈ ver(H ′, f).
Σ ≡ (n′, σ), Σ′′ By (iii), we must have R2 ≡ Φ′′,R′′ such that

TC2

Φ′′,R′′; H ′ ` Σ′′

Φ′
2 ≡ [α; ε′2; ω2]

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′2 ⇒ n′′ ∈ ver(H ′, f)

Φ′
2, Φ

′′,R′′; H ′ ` ((n′′, σ′), Σ′′)

We wish to show that

TC2

Φ′′,R′′; H ′ ` Σ′′

Φ′ ≡ [α; ε′2 ∪ εf ; ω]
f ∈ σ′ ⇒ f ∈ α

f ∈ (ε′2 ∪ εf ) ⇒ n′′ ∈ ver(H ′, f)

Φ′, Φ′′,R′′; H ′ ` ((n′′, σ′), Σ′′)

Φ′′,R′′; H ′ ` Σ follows by assumption while the third and fourth premises follow by the same argument as in the Σ ≡ (n′, σ)
case, above.

Part 3. follows directly from (iv).
Part 4. follows directly from (v) and the fact that ω2 ⊇ ω.

case all others :
Similar to cases above.

This lemma says that if take an evaluation step that is not an update, the version set of any z remains unchanged.

Lemma B.14 (Non-update step version preservation). If 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H ′; e′〉 then for all z ∈ dom(H ′), ver(H ′, z) =
ver(H, z).
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Proof. By inspection of the evaluation rules.

The following lemma states that if we start with a well-typed program and a version-consistent trace and we can take an evaluation step,
then afterward we will still have a well-typed program whose trace is version-consistent.

Lemma B.15 (Preservation).
Suppose we have the following:

1. n ` H, e : τ (such that Φ; Γ ` e : τ  R and n; Γ ` H for some Γ and Φ)
2. Φ,R; H ` Σ
3. traceOK (Σ)
4. 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H ′; e′〉

Then for some Γ′ ⊇ Γ and Φ′ ≡ [Φα ∪ ε0; ε
′; Φω] such that ε′ ∪ ε0 ⊆ Φε, we have:

1. n ` H ′, e′ : τ where Φ′; Γ′ ` e′ : τ  R′ and n; Γ′ ` H ′

2. Φ′,R′; H ′ ` Σ′

3. traceOK (Σ′)

Proof. Induction on the typing derivation n ` H, e : τ . By inversion, we have that Φ; Γ ` e : τ  R; consider each possible rule for the
conclusion of this judgment:

case (TINT-TVAR-TGVAR-TLOC) :
These expressions do not reduce, so the result is vacuously true.

case (TREF) :
We have that:

(TREF)
Φ; Γ ` e : τ  R

Φ; Γ ` ref e : ref ε τ  R
There are two possible reductions:
case [REF] :

We have that e ≡ v, R = ·, and 〈n; (n′, σ); H; ref v〉 −→∅ 〈n; (n′, σ); H ′; r〉 where r /∈ dom(H) and H ′ = H, r 7→ (·, v, ∅).
Let Γ′ = Γ, r : ref ε τ and Φ′ = Φ (which is acceptable since Φ′α = Φα ∪ ∅, ε′ ∪ ∅ ⊆ Φε, and Φ′ω = Φω), and R′ = ·. We have
part 1. as follows:

(TSUB)

(TLOC)
Γ′(r) = ref ε τ

Φ∅; Γ
′ ` r : ref ε τ  · ref ε τ ≤ ref ε τ Φ∅ ≤ Φ

Φ; Γ′ ` r : ref ε τ  ·
Heap well-formedness n; Γ′ ` H, r 7→ (·, v, ∅) holds since Φ∅; Γ

′ ` v : τ follows by value typing (Lemma B.5) from Φ; Γ′ ` v : τ ,
which we have by assumption and weakening; we have n; Γ′ ` H by weakening.
To prove 2., we must show Φ, ·; H ′ ` (n′, σ). This follows by assumption since H ′ only contains an additional location (i.e., not a
global variable) and nothing else has changed. Part 3. follows by assumption since Σ′ = Σ.

case [CONG] :
We have that 〈n; Σ; H; ref E[e′′]〉 −→ε 〈n; Σ′; H ′; ref E[e′′′]〉 from 〈n; Σ; H; e′′〉 −→ε 〈n; Σ′; H ′; e′′′〉. By [CONG], we have
〈n; Σ; H; e〉 −→ε 〈n; Σ′; H ′; e′〉 where e ≡ E[e′′] and e′ ≡ E[e′′′].
By induction we have:
(i) Φ′; Γ′ ` e′ : τ  R′ and

(ii) n; Γ′ ` H ′

(iii) Φ′,R′; H ′ ` Σ′

(iv) traceOK (Σ′)
where Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, and Φ′ω = Φω . We prove 1. using (ii), and applying [TREF] using (i):

(TREF)
Φ′; Γ′ ` e′ : τ  R′

Φ′; Γ′ ` ref e′ : ref ε τ  R′

Part 2. follows directly from (iii), and part 3. follows directly from (iv).
case (TDEREF) :

We know that

(TDEREF)

Φ1; Γ ` e : ref εr τ  R
Φε

2 = εr Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ  R
We can reduce using either [GVAR-DEREF], [DEREF], or [CONG].

case [GVAR-DEREF] :
Thus we have e ≡ z such that

〈n; (n′, σ); (H ′′, z 7→ (τ ′, v, ν)); ! z〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); (H ′′, z 7→ (τ ′, v, ν)); v〉
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(where H ≡ (H ′′, z 7→ (τ ′, v, ν))), by subtyping derivations (Lemma B.6) we have

(TSUB)

(TGVAR)
Γ(z) = ref ε′

r τ ′

Φ∅; Γ ` z : ref ε′
r τ ′  ·

τ ′ ≤ τ τ ≤ τ ′ ε′r ⊆ εr

ref ε′
r τ ′ ≤ ref εr τ Φ∅ ≤ Φ1

Φ1; Γ ` z : ref εr τ  ·
and

(TDEREF)

Φ1; Γ ` z : ref εr τ  ·
Φε

2 = εr Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! z : τ  ·
(where R = ·) and Φ ≡ [Φα

1 ; Φε
1 ∪ εr; Φ

ω
2 ]. Let Γ′ = Γ, Φ′ = [Φα

1 ∪ {z}; ∅; Φω
2 ] and R′ = R = ·. Since z ∈ εr (by n; Γ ` H)

we have ∅ ∪ {z} ⊆ (Φε
1 ∪ εr) hence ε′ ∪ {z} ⊆ Φε. The choice of Φ′ is acceptable since Φ′α = Φα ∪ {z}, ε′ ∪ {z} ⊆ Φε, and

Φ′ω = Φω .
To prove 1., we need to show that Φ′; Γ ` v : τ  · (the rest of the premises follow by assumption of n ` H, ! z : τ ).
H(z) = (τ ′, v, ν) and Γ(z) = ref ε′

r τ ′ implies Φ′; Γ ` v : τ ′  · by n; Γ ` H . The result follows by (TSUB):

(TSUB)
Φ′; Γ ` v : τ ′  · τ ′ ≤ τ Φ′ ≤ Φ′

Φ′; Γ ` v : τ  ·
For part 2., we know Φ, ·; H ` (n′, σ):

(TC1)

f ∈ σ ⇒ f ∈ Φα
1

f ∈ (Φε
1 ∪ εr) ⇒ n′ ∈ ver(H, f)

[Φα
1 ; Φε

1 ∪ εr; Φ
ω
2 ], ·; H ` (n′, σ)

and need to prove Φ′, ·; H ` (n′, σ ∪ (z, ν)), hence:

(TC1)

f ∈ (σ ∪ (z, ν)) ⇒ f ∈ Φα
1 ∪ {z}

f ∈ ∅ ⇒ n′ ∈ ver(H, f)

[Φα
1 ∪ {z}; ∅; Φω

2 ], ·; H ` (n′, σ ∪ (z, ν))

The first premise is true by assumption for all f ∈ σ, and for (z, ν) since z ∈ Φα
1 ∪ {z}. The second premise is vacuously true.

For part 3., we need to prove traceOK (n′, σ ∪ (z, ν)); we have traceOK (n′, σ) by assumption, hence need to prove that n′ ∈ ν.
Since by assumption of version consistency we have that f ∈ Φε

1 ∪ εr ⇒ n′ ∈ ver(H, f) and ver(H, f) = ver(H ′, f) = ν (by
Lemma B.14), and {z} ⊆ εr (by n; Γ ` H), we have n′ ∈ ν.

case [DEREF] :
Follows the same argument as the [GVAR-DEREF] case above for part 1.; parts 2 and 3 follow by assumption since the trace has not
changed.

case [CONG] :
Here 〈n; Σ; H; ! e〉 −→ε 〈n; Σ′; H ′; ! e′〉 follows from 〈n; Σ; H, e〉 −→ε 〈n; Σ′; H ′, e′〉. To apply induction, we must have
Φ1,R; H ` Σ which follows by Lemma B.9 since Φ,R; H ` Σ and Φ1 B Φ2 ↪→ Φ.
Hence we have:
(i) Φ′

1; Γ
′ ` e′ : ref εr τ  R′

(ii) n; Γ′ ` H ′

(iii) Φ′
1,R′; H ′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′

1 ≡ [Φα
1 ∪ ε0; ε

′
1; Φ

ω
1 ] where ε′1 ∪ ε0 ⊆ Φε

1. Let Φ′
2 = [Φα

1 ∪ ε0; εr; Φ
ω
2 ] hence Φ′ε

2 = εr and
Φ′

1 B Φ′
2 ↪→ Φ′, where Φ′ ≡ [Φα

1 ∪ ε0; ε
′
1 ∪ εr; Φ

ω
2 ] and (ε′1 ∪ εr) ∪ ε0 ⊆ (ε1 ∪ εr) hence Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, and

Φ′ω = Φω as required.
We prove 1. by (ii) and by applying [TDEREF]:

(TDEREF)

Φ′
1; Γ

′ ` e′ : ref εr τ  R′

Φ′ε
2 = εr Φ′

1 B Φ′
2 ↪→ Φ′

Φ′; Γ′ ` ! e′ : τ  R′

The first premise follows from (i) and the second and third premises follows by definition of Φ′ and Φ′
2.

To prove part 2., we must show that Φ′,R′; H ′ ` Σ′. We have two cases:
Σ′ ≡ (n′, σ): By (iii) we must have R′ ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H ′, f)

[Φα
1 ∪ ε0; ε

′
1; Φ

ω
1 ], ·; H ′ ` (n′, σ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∪ εr) ⇒ n′ ∈ ver(H ′, f)

[Φα
1 ∪ ε0; ε

′
1 ∪ εr; Φ

ω
1 ], ·; H ′ ` (n′, σ)
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The first premise follows directly from (iii). To prove the second premise, we observe that by Lemma B.11, top(Σ) = (n′, σ′)
where σ′ ⊆ σ, and by inversion on Φ;R; H ` Σ we know (a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b) f ∈ ε1 ∪ εr ⇒ n′ ∈ ver(H, f). The
second premise follows from (iii) and the fact that f ∈ εr ⇒ n′ ∈ ver(H, f) by (b), and for all f, ver(H, f) = ver(H ′, f) by
Lemma B.14.

Σ′ ≡ (n′, σ), Σ′′: By (iii), we must have R′ ≡ Φ′′′,R′′′ such that

(TC2)

Φ′′′,R′′′; H ′ ` Σ′′

Φ′
1 ≡ [Φα

1 ∪ ε0; ε
′
1; Φ

ω
1 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H ′, f)

Φ′
1, Φ

′′′,R′′′; H ′ ` (n′, σ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H ′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε

′
1 ∪ εr; Φ

ω
2 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ∪ εr ⇒ n′ ∈ ver(H ′, f)

Φ′, Φ′′′,R′′′; H ′ ` (n′, σ), Σ′′

The first and third premises follow from (iii), while the fourth premise follows by the same argument as in the Σ′ ≡ (n′, σ) case,
above.

Part 3. follows directly from (iv).

case (TASSIGN) :
We know that:

(TASSIGN)

Φ1; Γ ` e1 : ref εr τ  R1 Φ2; Γ ` e2 : τ  R2

Φε
3 = εr Φ1 B Φ2 B Φ3 ↪→ Φ

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 := e2 : τ  R1 ./ R2

From R1 ./ R2 it follows that either R1 ≡ · or R2 ≡ ·.
We can reduce using [GVAR-ASSIGN], [ASSIGN], or [CONG].
case [GVAR-ASSIGN] :

This implies that e ≡ z := v with

〈n; (n′, σ); (H ′′, z 7→ (τ, v′, ν)); z := v〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); (H ′′, z 7→ (τ, v, ν)); v〉

where H ≡ (H ′′, z 7→ (τ, v′, ν)). R1 ≡ · and R2 ≡ · (thus R1 ./ R2 ≡ ·).
Let Γ′ = Γ,R′ = ·, and Φ′ = [Φα∪{z}; ∅; Φω]. Since z ∈ εr (by n; Γ ` H) we have ∅ ⊆ (ε1∪ε2∪εr), hence ∅∪{z} ⊆ (ε1∪ε2∪εr)
which means ε′ ∪ {z} ⊆ Φε. The choice of Φ′ is acceptable since Φ′α = Φα ∪ {z}, ε′ ∪ {z} ⊆ Φε, and Φ′ω = Φω . We prove 1. as
follows. Since Φ2; Γ ` v : τ  ·, by value typing (Lemma B.5) we have Φ′; Γ ` v : τ  ·. n; Γ ` H ′ follows from n; Γ ` H and
Φ′; Γ ` v : τ  · (since Φε = ∅).
Parts 2. and 3. are similar to the (TDEREF) case.

case [ASSIGN] :
Part 1. is similar to (GVAR-ASSIGN); we have parts 2. and 3. by assumption.

case [CONG] :
Consider the shape of E:
case E := e :

〈n; Σ; H; e1 := e2〉 −→ε 〈n; Σ′; H ′; e′1 := e2〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H ′; e′1〉.
Since e1 6≡ v ⇒R2 = · by assumption, by Lemma B.10 we have Φ1,R1; H ` Σ, hence we can apply induction:
(i) Φ′

1; Γ
′ ` e′1 : ref εr τ  R′

1 and
(ii) n; Γ′ ` H ′

(iii) Φ′
1,R′

1; H
′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′

1 ≡ [Φα
1 ∪ ε0; ε

′
1; Φ

ω
1 ] where ε′1 ∪ ε0 ⊆ ε1 and Φω

1 ≡ Φε
2 ∪ εr ∪ Φω

3 .

Let Φ′
2 ≡ [Φα

1 ∪ ε′1 ∪ ε0; Φ
ε
2; εr ∪ Φω

3 ]
Φ′

3 ≡ [Φα
1 ∪ ε′1 ∪ ε0 ∪ Φε

2; εr; Φ
ω
3 ]

Thus Φ′ε
3 = εr and Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′ such that Φ′ ≡ [Φα
1 ∪ ε0; ε

′
1 ∪ Φε

2 ∪ εr; Φ
ω
3 ] The choice of Φ′ is acceptable since

Φ′α = Φα ∪ ε0, (ε′1 ∪ εr ∪ ε2) ∪ ε0 ⊆ (ε1 ∪ εr ∪ ε2) i.e., ε′ ∪ ε0 ⊆ Φε and Φ′ω = Φω as required).
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To prove 1., we have n; Γ′ ` H ′ by (ii), and apply (TASSIGN):

(TASSIGN)

Φ′
1; Γ

′ ` e′1 : ref εr τ  R′
1

(TSUB)
Φ2; Γ

′ ` e2 : τ  R2 τ ≤ τ

Φα
1 ∪ ε′1 ∪ ε0 ⊆ Φα

1 ∪ Φε
1

Φε
2 ⊆ Φε

2

εr ∪ Φω
3 ⊆ εr ∪ Φω

3

Φ2 ≤ Φ′
2

Φ′
2; Γ

′ ` e2 : τ  R2

Φ′ε
3 = εr Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′

e′1 6≡ v ⇒R2 = ·
Φ′; Γ′ ` e′1 := e2 : τ  R′

1 ./ R2

Note that Φ2; Γ
′ ` e2 : τ follows from Φ2; Γ ` e2 : τ by weakening (Lemma B.1).

To prove part 2., we must show that Φ′,R′
1; H

′ ` Σ′ (sinceR′
1 ./ R2 = R′

1). By inversion on Φ,R; H ` Σ we have Σ ≡ (n′, σ)
or Σ ≡ (n′, σ), Σ′′. We have two cases:
Σ′ ≡ (n′, σ): By (iii) we must have R′

1 ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H ′, f)

[Φα
1 ∪ ε0; ε

′
1; Φ

ω
1 ], ·; H ′ ` (n′, σ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∪ Φε
2 ∪ εr) ⇒ n′ ∈ ver(H ′, f)

[Φα
1 ∪ ε0; ε

′
1 ∪ Φε

2 ∪ εr; Φ
ω
3 ], ·; H ′ ` (n′, σ)

The first premise follows directly from (iii). To prove the second premise, we observe that by Lemma B.11, top(Σ) = (n′, σ′)
where σ′ ⊆ σ, and by inversion on Φ;R; H ` Σ we know (a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b) f ∈ Φε
1∪Φε

2∪εr ⇒ n′ ∈ ver(H, f).
The second premise follows from (iii) and the fact that f ∈ εr ⇒ n′ ∈ ver(H, f) by (b), and for all f, ver(H, f) = ver(H ′, f)
by Lemma B.14.

Σ′ ≡ (n′, σ), Σ′′: By (iii), we must have R′
1 ≡ Φ′′′,R′′′ such that

(TC2)

Φ′′′,R′′′; H ′ ` Σ′′

Φ′
1 ≡ [Φα

1 ∪ ε0; ε
′
1; Φ

ω
1 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H ′, f)

Φ′
1, Φ

′′′,R′′′; H ′ ` (n′, σ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H ′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε

′
1 ∪ Φε

2 ∪ εr; Φ
ω
3 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∪ Φε
2 ∪ εr) ⇒ n′ ∈ ver(H ′, f)

Φ′, Φ′′′,R′′′; H ′ ` (n′, σ), Σ′′

The first and third premises follow from (iii), while the fourth premise follows by the same argument as in the Σ′ ≡ (n′, σ)
case, above.

Part 3. follows directly from (iv).
case r := E :

〈n; Σ; H; r := e2〉 −→ε 〈n; Σ′; H ′; r := e′2〉 follows from 〈n; Σ; H; e2〉 −→ε 〈n; Σ′; H ′; e′2〉.
Since e1 ≡ r, by inversion R1 ≡ ·. By Lemma B.10 (which we can apply because Φε

1 ≡ ∅; if Φε
1 6≡ ∅ we can rewrite the

derivation using value typing to make it so) we have Φ2,R2; H ` Σ, hence we can apply induction to get:
(i) Φ′

2; Γ
′ ` e′2 : τ  R′

2

(ii) n; Γ′ ` H ′

(iii) Φ′
2,R′

2; H
′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′

2 ≡ [Φα
2 ∪ ε0; ε

′
2; Φ

ω
2 ] where (ε′2 ∪ ε0) ⊆ Φε

2; note Φα
2 ≡ Φα

1 (since Φε
1 ≡ ∅) and Φω

2 ≡ ε3 ∪ Φω
3 .

Let Φ′
1 ≡ [Φα

1 ∪ ε0; ∅; ε′2 ∪ εr ∪ Φω
3 ]

Φ′
3 ≡ [Φα

1 ∪ ε0 ∪ ε′2; εr; Φ
ω
3 ]

Thus Φ′ε
3 = εr and Φ′

1 BΦ′
2 BΦ′

3 ↪→ Φ′ such that Φ′ ≡ [Φα
1 ∪ ε0; ε

′
2 ∪ εr; Φ

ω
3 ] and (ε′2 ∪ εr) ∪ ε0 ⊆ (Φε

2 ∪ εr). The choice of
Φ′ is acceptable since Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε and Φ′ω = Φω as required).
To prove 1., we have n; Γ′ ` H ′ by (ii), and we can apply [TASSIGN]:

(TASSIGN)

Φ′
1; Γ

′ ` r : ref εr τ  · Φ′
2; Γ

′ ` e′2 : τ  R′
2

Φ′εr
3 = εr Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′

r 6≡ v ⇒R′
2 = ·

Φ′; Γ′ ` r := e′2 : τ  · ./ R′
2
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Note that we have Φ′
1; Γ

′ ` r : ref εr τ  · from Φ1; Γ ` r : ref εr τ  · by value typing and weakening
To prove part 2., we must show that Φ′,R′

2; H
′ ` Σ′ (sinceR1 ./ R2 = R′

2). By inversion on Φ,R; H ` Σ we have Σ ≡ (n′, σ)
or Σ ≡ (n′, σ), Σ′′. We have two cases:
Σ′ ≡ (n′, σ): By (iii) we must have R′

2 ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
2 ∪ ε0

f ∈ ε′2 ⇒ n′ ∈ ver(H ′, f)

[Φα
2 ∪ ε0; ε

′
2; Φ

ω
2 ], ·; H ′ ` (n′, σ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (εr ∪ ε′2) ⇒ n′ ∈ ver(H ′, f)

[Φα
1 ∪ ε0; ε

′
2 ∪ εr; Φ

ω
3 ], ·; H ′ ` (n′, σ)

The first premise follows from (iii) since Φα
1 = Φα

2 .
To prove the second premise, we observe that by Lemma B.11, top(Σ) = (n′, σ′) where σ′ ⊆ σ, and by inversion on
Φ;R; H ` Σ we know (a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b) f ∈ εr ∪ Φε
2 ⇒ n′ ∈ ver(H, f). The second premise follows from (iii)

and the fact that f ∈ εr ⇒ n′ ∈ ver(H, f) by (b), and for all f, ver(H, f) = ver(H ′, f) by Lemma B.14.
Σ′ ≡ (n′, σ), Σ′′: By (iii), we must have R′

2 ≡ Φ′′′,R′′′ such that:

(TC2)

Φ′′′,R′′′; H ′ ` Σ′′

Φ′
2 ≡ [Φα

2 ∪ ε0; ε
′
2; Φ

ω
2 ]

f ∈ σ ⇒ f ∈ Φα
2 ∪ ε0

f ∈ ε′2 ⇒ n′ ∈ ver(H ′, f)

Φ′
2, Φ

′′′,R′′′; H ′ ` (n′, σ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H ′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε

′
2 ∪ εr; Φ

ω
3 ]

f ∈ σ ⇒ f ∈ α ∪ ε0

f ∈ ε′2 ∪ εr ⇒ n′ ∈ ver(H ′, f)

Φ′, Φ′′′,R′′′; H ′ ` (n′, σ), Σ′′

The first and third premises follow from (iii), while the fourth premise follows by the same argument as in the Σ′ ≡ (n′, σ)
case, above.

Part 3. follows directly from (iv).
case (TUPDATE) :

case [NO-UPDATE] :
Thus we must have

〈n; (n′, σ); H; updateα′′,ω′′
〉 −→ 〈n; (n′, σ); H; 0〉

Let Γ′ = Γ and Φ′ = Φ (and thus ε ∪ ∅ ⊆ Φε, Φ′α = Φα ∪ ∅, and Φ′ω = Φω) as required. For 1., Φ; Γ ` 0 : int  · follows from
(TINT) and value typing and n; Γ ` H is true by assumption. Parts 2. and 3. follow by assumption.

case (TIF) :
We know that:

(TIF)

Φ1; Γ ` e1 : int  R
Φ2; Γ ` e2 : τ  · Φ2; Γ ` e3 : τ  · Φ1 B Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ  R
We can reduce using [IF-T], [IF-F] or [CONG].
case [IF-T] :

This implies that e1 ≡ v hence R = ·. We have

〈n; (n′, σ); H; if0 v then e2 else e3〉 −→ 〈n; (n′, σ); H; e2〉
Let Γ′ = Γ and Φ′ = Φ (and thus ε ∪ ∅ ⊆ Φε, Φ′α = Φα ∪ ∅, and Φ′ω = Φω) as required. To prove 1., we have n; Γ ` H by
assumption, and we have

(TSUB)

Φ2; Γ ` e2 : τ  · τ ≤ τ
Φ2 ≤ Φ

Φ; Γ ` e2 : τ  ·
The first premise holds by assumption, the second by reflexivity of subtyping, and the third by Lemma B.2.

case [IF-F] :
This is similar to [IF-T].

case [CONG] :
〈n; Σ; H; if0 e1 then e2 else e3〉 −→ε 〈n; Σ′; H ′; if0 e′1 then e2 else e3〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H ′; e′1〉. To
apply induction, we must have Φ1,R; H ` Σ which follows by Lemma B.9 since Φ,R; H ` Σ and Φ1 BΦ2 ↪→ Φ. Hence we have:
(i) Φ′

1; Γ
′ ` e′1 : int  R′ and
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(ii) n; Γ′ ` H ′

(iii) Φ′
1,R′; H ′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′

1 ≡ [Φα
1 ∪ ε0; ε

′
1; Φ

ω
1 ] where ε′1 ∪ ε0 ⊆ Φε

1. (Note that Φω
1 ≡ Φε

2 ∪ Φω
2 .)

Let Φ′
2 ≡ [Φα

1 ∪ ε′1 ∪ ε0; Φ
ε
2; Φ

ω
2 ]. Thus Φ′

1 B Φ′
2 ↪→ Φ′ so that Φ′ ≡ [Φα

1 ∪ ε0; ε
′
1 ∪ Φε

2; Φ
ω
2 ] where ε′1 ∪ ε0 ∪ Φε

2 ⊆ Φε
1 ∪ Φε

2 and
Φ′ω = Φω as required.
To prove 1., we have n; Γ′ ` H ′ by (ii), and can apply (TIF): We prove 1. by (ii) and as follows:

(TIF)

(TSUB)

Φ2; Γ
′ ` e2 : τ  · τ ≤ τ

Φ2 ≤ Φ′
2

Φ′
2; Γ

′ ` e2 : τ  ·
(TSUB)

Φ2; Γ
′ ` e2 : τ  · τ ≤ τ

Φ2 ≤ Φ′
2

Φ′
2; Γ

′ ` e3 : τ  ·
Φ′

1; Γ
′ ` e′1 : int  R′

1 Φ′
1 B Φ′

2 ↪→ Φ′

Φ′; Γ′ ` if0 e′1 then e2 else e3 : τ  R′

Note that Φ2; Γ
′ ` e2 : τ  R follows from Φ2; Γ ` e2 : τ  R by weakening (Lemma B.1) and likewise for Φ2; Γ

′ ` e3 : τ  R
.
Parts 2. and 3. follow by an argument similar to (TDEREF)-[CONG] and (TASSIGN)-[CONG].

case (TTRANSACT) :
We know that:

(TTRANSACT)

Φ′′; Γ ` e : τ  ·
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx e : τ  ·
We can reduce using [TX-START]:

〈n; (n′, σ); H; tx e〉 −→ 〈n; (n, ∅), (n′, σ); H; intx e〉
Let Γ′ = Γ and Φ′ ≡ [Φα; ∅; Φω] (and thus ∅ ∪ ∅ ⊆ Φε, Φ′α = Φα ∪ ∅, and Φ′ω = Φω , as required). To prove 1., we have n; Γ ` H by
assumption, and the rest follows by (TINTRANS):

(TINTRANS)

Φ′′; Γ ` e : τ  ·
Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′; Γ ` intx e : τ  Φ′′, ·
The first premise is true by assumption, and the second by choice of Φ′.
We prove 2. as follows:

(TC2)

(TC1)

f ∈ ∅ ⇒ f ∈ Φ′′α

f ∈ Φ′′ε ⇒ n ∈ ver(H, f)

Φ′′, ·; H ` (n, ∅)
f ∈ σ ⇒ f ∈ Φα

f ∈ ∅ ⇒ n′ ∈ ver(H, f)

[Φα; ∅; Φω], Φ′′, ·; H ` (n, ∅), (n′, σ)

First premise of [TC1] is true vacuously, and the second is true by n; Γ ` H , which we have by assumption. For [TC2], the first premise
holds by inversion of Φ, ·; H ` (n′, σ), which we have by assumption, and the second holds vacuously.
Part 3. follows easily: we have traceOK ((n′, σ)) by assumption, traceOK ((n, ∅)) is vacuously true, hence traceOK ((n, ∅), (n′, σ)) is
true.

case (TINTRANS) :
We know that:

(TINTRANS)

Φ′′; Γ ` e : τ  R
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` intx e : τ  Φ′′,R
There are two possible reductions:
case [TX-END] :

We have that e ≡ v and thus R ≡ ·; we reduce as follows:

traceOK (n′′, σ′)

〈n; ((n′, σ′), (n′′, σ′′)); H; intx v〉 −→ 〈n; (n′, σ); H; v〉
Let Φ′ = Φ and Γ′ = Γ (and thus Φ′α = Φα ∪ ∅, ε′ ∪ ∅ ⊆ Φε, and Φ′ω = Φω as required). To prove 1., we know that n; Γ ` H
follows by assumption and Φ; Γ ` v : τ  · by value typing. To prove 2., we must show that Φ, ·; H ` (n′, σ), but this is true by
inversion on Φ, Φ′′, ·; H ` ((n′, σ′), (n′′, σ′′)).
For 3., traceOK ((n′, σ)) follows from traceOK (((n′, σ′), (n′′, σ′′))) (which is true by assumption).

case [TX-CONG-2] :
We know that

〈n; Σ; H; e〉 −→ε 〈n′; Σ′; H ′; e′〉
〈n; Σ; H; intx e〉 −→∅ 〈n′; Σ′; H ′; intx e′〉
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follows from 〈n; Σ; H; e〉 −→η 〈n; Σ′; H ′; e′〉 (because the reduction does not perform an update, hence η ≡ ε0 and we apply
[TX-CONG-2]).
We have Φ′′,R; H ` Σ by inversion on Φ, Φ′′,R; H ` ((n′, σ), Σ), hence by induction:
(i) Φ′′′; Γ′ ` e′ : τ  R′ and

(ii) n; Γ′ ` H ′

(iii) Φ′′′,R′; H ′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′′′ such that Φ′′′α = Φ′′α ∪ ε0, ε′′′ ∪ ε0 ⊆ Φ′′ε, and Φ′′′ω = Φ′′ω .
Let Φ′ = Φ (hence Φ′α = Φ′α ∪ ∅ , ε′ ∪ ∅ ⊆ Φε, and Φ′ω = Φω as required) and Γ′ = Γ.
To prove 1., we have n; Γ′ ` H ′ by (ii), and we can apply [TINTRANS]:

(TINTRANS)

Φ′′′; Γ′ ` e′ : τ  R′

Φ′α ⊆ Φ′′′α Φ′ω ⊆ Φ′′′ω

Φ′; Γ′ ` intx e′ : τ  Φ′′′,R′

The first premise follows from (i), and the second holds because Φα ⊆ Φ′′α and Φω ⊆ Φ′′ω by assumption and we picked Φ′ = Φ
(hence Φ′α ⊆ Φ′′′α Φ′ω ⊆ Φ′′′ω).
Part 2. follows directly from (iii). Part 3. follows directly from (iv).

case (TLET) :
We know that:

(TLET)

Φ1; Γ ` e1 : τ1  R Φ2; Γ, x : τ1 ` e2 : τ2  ·
Φ1 B Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2  R
We can reduce using either [LET] or [CONG].
case [LET] :

This implies that e1 ≡ v hence R ≡ ·. We have:

〈n; (n′, σ); H; let x : τ = v in e〉 −→ 〈n; (n′, σ); H; e[x 7→ v]〉
To prove 1., we have n; Γ ` H by assumption; let Γ′ = Γ and Φ′ = Φ; since ε2 ⊆ (ε1 ∪ ε2), we can apply [TSUB]:

(TSUB)

Φ2; Γ, x : τ1 ` e2 : τ2  · τ2 ≤ τ2

Φ2 ≤ Φ

Φ; Γ, x : τ1 ` e2 : τ2  ·
The first premise holds by assumption, the second by reflexivity of subtyping, and the third by Lemma B.2. By value typing we have
Φ; Γ ` v : τ1  ·, so by substitution (Lemma B.17) we have Φ; Γ ` e2[x 7→ v] : τ2  ·.
Parts 2. and 3. hold by assumption.

case [CONG] :
Similar to (TIF)-[CONG].

case (TAPP) :
We know that:

(TAPP)

Φ1; Γ ` e1 : τ1 −→Φf τ2  R1 Φ2; Γ ` e2 : τ1  R2

Φ1 B Φ2 B Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 e2 : τ2  R1 ./ R2

We can reduce using either [CALL] or [CONG].
case [CALL] :

We have that

〈n; (n′, σ); (H ′′, z 7→ (τ, λ(x).e, ν)); z v〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); (H ′′, z 7→ (τ, λ(x).e, ν)); e[x 7→ v]〉
(where H ≡ (H ′′, z 7→ (τ, λ(x).e, ν))), and

(TAPP)

Φ1; Γ ` z : τ1 −→Φf τ2  · Φ2; Γ ` v : τ1  ·
Φ1 B Φ2 B Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

z 6≡ v ⇒R2 = ·
Φ; Γ ` z v : τ2  ·

where by subtyping derivations (Lemma B.6) we have

(TSUB)

(TGVAR)
Γ(z) = τ ′1 −→Φ′

f τ ′2

Φ∅; Γ ` z : τ ′1 −→Φ′
f τ ′2  ·

τ1 ≤ τ ′1 τ ′2 ≤ τ2 Φ′
f ≤ Φf

τ ′1 −→Φ′
f τ ′2 ≤ τ1 −→Φf τ2 Φ∅ ≤ Φ1

Φ1; Γ ` z : τ1 −→Φf τ2  ·
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Define Φf ≡ [αf ; εf ; ωf ] and Φ′
f ≡ [α′

f ; ε′f ; ω′
f ].

Let Γ′ = Γ, R′ = · and choose Φ′ = [Φα
1 ∪ {z}; εf ; Φω

3 ]. Since z ∈ ε′f (by n; Γ ` H) and ε′f ⊆ εf (by Φ′
f ≤ Φf ) we have

εf ∪ {z} ⊆ (ε1 ∪ ε2 ∪ εf ). The choice of Φ′ is acceptable since Φ′α = Φα ∪ {z}, Φ′ε ∪ {z} ⊆ Φε, and Φ′ω = Φω . For 1., we have
n; Γ ` H ′ by assumption; for the remainder we have to prove Φ′; Γ ` e[x 7→ v] : τ2  ·. First, we must prove that Φ′

f ≤ Φ′. Note
that since {z} ⊆ αf by n; Γ ` H ′, from Φ1 B Φ2 B Φ3 ↪→ Φ and choice of Φ′ we get Φ′α

3 ∪ {z} ⊆ αf . We have:

Φ′ ≡ [Φα
1 ∪ {z}; εf ; Φω

3 ] (by choice of Φ′)
Φf ≡ [αf ; εf ; ωf ]
Φ′

f ≡ [α′
f ; ε′f ; ω′

f ]
ε′f ⊆ εf (by Φ′

f ≤ Φf )
αf ⊆ α′

f (by Φ′
f ≤ Φf )

ωf ⊆ ω′
f (by Φ′

f ≤ Φf )
Φ′α

3 ∪ {z} ⊆ αf (by assumption and choice of Φ′)
Φ′α

3 = Φα
1 ∪ Φε

1 ∪ Φ′ε
2 (by Φ1 B Φ2 B Φ3 ↪→ Φ)

Φ′ω
3 ⊆ ωf (by assumption and choice of Φ′)

Thus we have the result by [TSUB]

Φ′
f ; Γ ` e[x 7→ v] : τ ′2  · τ ′2 ≤ τ2 Φ′

f ≤ Φ′

Φ′; Γ ` e[x 7→ v] : τ2

By assumption, we have Φ2; Γ ` v : τ1  ·. By value typing and τ1 ≤ τ ′1 we have Φ′; Γ ` v : τ ′1  ·.
Finally by substitution we have Φ′; Γ ` e[x 7→ v] : τ2  ·.
For part 2., we need to prove Φ′, ·; H ` (n′′, σ′) where σ′ = σ ∪ (z, ν) and n′′ = n′, hence:

(TC1)

f ∈ (σ ∪ (z, ν)) ⇒ f ∈ Φα ∪ {z}
f ∈ εf ⇒ n′ ∈ ver(H, f)

Φ′, ·; H ` (n′′, σ′)

The first premise is true by assumption and the fact that {z} ⊆ {z}. The second premise is true by assumption.
For part 3., we need to prove traceOK (σ ∪ (z, ν)); we have traceOK (σ) by assumption, hence need to prove that n′ ∈ ν. Since by
assumption we have that f ∈ ε1 ∪ ε2 ∪ εf ⇒ n′ ∈ ver(H, f) and {z} ⊆ εf , we have n′ ∈ ν.

case [CONG] :
case E e :

〈n; Σ; H; e1 e2〉 −→ε 〈n; Σ′; H ′; e′1 e2〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H ′; e′1〉.
Since e1 6≡ v ⇒R2 = · by assumption, by Lemma B.10 we have Φ1,R1; H ` Σ hence we can apply induction:
(i) Φ′

1; Γ
′ ` e′1 : τ1 −→Φf τ2  R′

1 and
(ii) n; Γ′ ` H ′

(iii) Φ′
1,R′

1; H
′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′

1 ≡ [Φα
1 ∪ ε0; ε

′
1; Φ

ω
1 ] where ε′1 ∪ ε0 ⊆ ε1 and Φω

1 ≡ Φε
2 ∪ εf ∪ Φω

3 .

Let Φ′
2 ≡ [Φα

1 ∪ ε′1 ∪ ε0; Φ
ε
2; εf ∪ Φω

3 ]
Φ′

3 ≡ [Φα
1 ∪ ε′1 ∪ ε0 ∪ Φε

2; εf ; Φω
3 ]

Thus Φ′ε
3 = εf , Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′, Φ′α
3 ⊆ Φα

f and Φ′ω
3 ⊆ Φω

f (since Φ′α
3 ∪ ε0 ⊆ Φα

3 and Φ′ω
3 = Φω

3 ). We have
Φ′ ≡ [Φα

1 ∪ ε0; ε
′
1 ∪ Φε

2 ∪ εf ; Φω
3 ]. The choice of Φ′ is acceptable since Φ′α = Φα ∪ ε0, (ε′1 ∪ εf ∪ ε2) ∪ ε0 ⊆ (ε1 ∪ ε2 ∪ εf )

i.e., ε′ ∪ ε0 ⊆ Φε and Φ′ω = Φω as required).
To prove 1., we have n; Γ′ ` H ′ by (ii), and apply (TAPP):

(TAPP)

Φ′
1; Γ

′ ` e′1 : τ1 −→Φf τ2  R′
1

(TSUB)
Φ2; Γ

′ ` e2 : τ1  R2 τ1 ≤ τ1

Φα
1 ∪ ε′1 ∪ ε0 ⊆ Φα

1 ∪ Φε
1

Φε
2 ⊆ Φε

2

εf ∪ Φω
3 ⊆ εf ∪ Φω

3

Φ2 ≤ Φ′
2

Φ′
2; Γ

′ ` e2 : τ1  R2

Φ′
1 B Φ′

2 B Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

e′1 6≡ v ⇒R2 = ·
Φ′; Γ′ ` e′1 e2 : τ2  R′

1 ./ R2

Note that Φ2; Γ
′ ` e2 : τ1  R2 follows from Φ2; Γ ` e2 : τ1  R2 by weakening (Lemma B.1). The last premise holds

vacuously as R2 ≡ · by assumption.
To prove part 2., we must show that Φ′,R′; H ′ ` Σ′. The proof is similar to the (TASSIGN)-[CONG] proof, case E := e but
substituting εf for εr .
Part 3. follows directly from (iv).

case v E :
〈n; Σ; H; v e2〉 −→ε 〈n; Σ′; H ′; v e′2〉 follows from 〈n; Σ; H; e2〉 −→ε 〈n; Σ′; H ′; e′2〉.
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For convenience, we make Φε
1 ≡ ∅; if Φε

1 6≡ ∅, we can always construct a typing derivation of v that uses value typing to make
Φε

1 ≡ ∅. Note that Φ1 B Φ2 B Φ3 ↪→ Φ would still hold since Lemma B.7 allows us to decrease Φα
2 to satisfy Φα

2 = Φα
1 ∪ Φε

1;
similarly, since Φα

3 = Φα
1 ∪Φε

1 ∪Φε
2 we know that Φα

3 ⊆ Φα
f would still hold if Φα

3 was smaller as a result of shrinking Φε
1 to be

∅.
Since e1 ≡ v, by inversion R1 ≡ · and by Lemma B.10 (which we can apply since Φε

1 ≡ ∅), we have Φ2,R2; H ` Σ; hence by
induction:
(i) Φ′

2; Γ
′ ` e′2 : τ1  R′

2

(ii) n; Γ′ ` H ′

(iii) Φ′
2,R′

2; H
′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ and some Φ′

2 ≡ [Φα
2 ∪ ε0; ε

′
2; Φ

ω
2 ] where (ε′2 ∪ ε0) ⊆ Φε

2; note Φα
2 ≡ Φα

1 (since Φε
1 ≡ ∅) and Φω

2 ≡ ε3 ∪ Φω
3 .

Let Φ′
1 ≡ [Φα

1 ∪ ε0; ∅; ε′2 ∪ εf ∪ Φω
3 ]

Φ′
3 ≡ [Φα

1 ∪ ε0 ∪ ε′2; εf ; Φω
3 ]

Thus Φ′ε
3 = εf , Φ′

1 B Φ′
2 B Φ′

3 ↪→ Φ′, Φ′α
3 ⊆ Φα

f and Φ′ω
3 ⊆ Φω

f (since Φ′α
3 ∪ ε0 ⊆ Φα

3 and Φ′ω
3 = Φω

3 ). We have
Φ′ ≡ [Φα

1 ∪ ε0; ε
′
2 ∪ εf ; Φω

3 ] and (ε′2 ∪ εf )∪ ε0 ⊆ (Φε
2 ∪ εf ). The choice of Φ′ is acceptable since Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε

and Φ′ω = Φω as required).
To prove 1., we have n; Γ′ ` H ′ by (ii), and we can apply [TApp]:

(TAPP)

Φ′
1; Γ

′ ` v : τ1 −→Φf τ2  · Φ′
2; Γ

′ ` e′2 : τ1  R′
2

Φ′
1 B Φ′

2 B Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

v 6≡ v′ ⇒R′
2 = ·

Φ′; Γ′ ` v e′2 : τ2  · ./ R′
2

(Note that · ./ R′
2 = R′

2.)
The first premise follows by value typing and weakening; the second by (i); the third—sixth by choice of Φ′, Φ′

1, Φ′
2, Φ′

3; the last
holds vacuously since R1 ≡ · by assumption.
To prove part 2., we must show that Φ′,R′; H ′ ` Σ′. The proof is similar to the (TASSIGN)-[CONG] proof, case r := E but
substituting εf for εr .
Part 3. follows directly from (iv).

case (TSUB) :
We have

(TSUB)

Φ′′; Γ ` e : τ ′′  R
Φ′′ ≡ [α; ε′′; ω] Φ ≡ [α; ε; ω]

τ ′′ ≤ τ ε′′ ⊆ ε

Φ; Γ ` e : τ  R
since by flow effect weakening (Lemma B.7) we know that α and ω are unchanged in the use of (TSUB).
We have 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H ′; e′〉. To apply induction we must show that n; Γ ` H , which we have by assumption,
Φ′′; Γ ` e : τ ′′  R, which we also have by assumption, and Φ′′,R; H ` Σ, which follows easily since ε′′ ⊆ ε.
Hence we have:
(i) Φ′′′; Γ′ ` e′ : τ ′′  R′ and

(ii) n; Γ′ ` H ′

(iii) Φ′′′,R′; H ′ ` Σ′

(iv) traceOK (Σ′)
for some Γ′ ⊇ Γ, Φ′′′ such that Φ′′′α = α ∪ ε0, Φ′′′ε ∪ ε0 ⊆ ε′′ Let Φ′ ≡ Φ′′′, and thus Φ′α = α ∪ ε0, Φ′ε ∪ ε0 ⊆ ε since ε′′ ⊆ ε, and
Φ′ω = ω as required. All results follow by induction.

Lemma B.16 (Progress). If n ` H, e : τ (such that Φ; Γ ` e : τ  R and n; Γ ` H) and for all Σ such that Φ,R; H ` Σ and
traceOK (Σ), then either e is a value, or there exist n′, H ′, Σ′, e′ such that 〈n; Σ; H; e〉 −→η 〈n′; Σ′; H ′; e′〉.

Proof. Induction on the typing derivation n ` H, e : τ ; consider each possible rule for the conclusion of this judgment:

case (TINT-TGVAR-TLOC) :
These are all values.

case (TVAR) :
Can’t occur, since local values are substituted for.

case (TREF) :
We must have that

(TREF)
Φ; Γ ` e′ : τ  R

Φ; Γ ` ref e′ : ref ε τ  R
There are two possible reductions, depending on the shape of e:
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case e′ ≡ v :
By inversion on Φ; Γ ` v : τ  · we know that R ≡ · hence by inversion on Φ,R; H ` Σ we have Σ ≡ (n′, σ). We have that
〈n; (n′, σ); H; ref v〉 −→ n; (n′, σ); H ′; r where r /∈ dom(H) and H ′ = H, r 7→ (·, v, ∅) by (REF).

case e′ 6≡ v :
By induction, 〈n; Σ; H; e′〉 −→η 〈n′; Σ′; H ′; e′′〉 and thus 〈n; Σ; H; (ref )[e′]〉 −→η 〈n′; Σ′; H ′; (ref )[e′′]〉 by [CONG].

case (TDEREF) :
We know that

(TDEREF)

Φ1; Γ ` e : ref εr τ  R
Φε

2 = εr Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e : τ  R
Consider the shape of e:
case e′ ≡ v :

Since v is a value of type ref εr τ , we must have v ≡ z or v ≡ r.
case e′ ≡ z :

We have

(TDEREF)

Φ1; Γ ` z : ref εr τ  ·
Φε

2 = εr Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! z : τ  ·
where by subtyping derivations (Lemma B.6) we have

(TSUB)

(TGVAR)
Γ(z) = ref ε′

r τ ′

Φ∅; Γ ` z : ref ε′
r τ ′  ·

τ ′ ≤ τ τ ≤ τ ′ ε′r ⊆ εr

ref ε′
r τ ′ ≤ ref εr τ Φ∅ ≤ Φ1

Φ1; Γ ` z : ref εr τ  ·
By inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ). By n; Γ ` H we have z ∈ dom(H) (and thus H ≡ H ′′, z 7→
(ref ε′

r τ ′, v, ν))) since Γ(z) = ref ε′
r τ ′. Therefore, we can reduce via [GVAR-DEREF]:

〈n; (n′, σ); (H ′′, z 7→ (ref ε′
r τ ′, v, ν)); !z〉 −→{z} 〈n; (n′, σ ∪ (z, ν)); (H ′′, z 7→ (ref ε′

r τ ′, v, ν)); v〉

case e′ ≡ r :
Similar to the e′ ≡ z case above, but reduce using [DEREF].

case e′ 6≡ v :
Let E ≡ ! so that e ≡ E[e′]. To apply induction, we have Φ1,R; H ` Σ by Lemma B.9. Thus we get 〈n; Σ; H; e′〉 −→η

〈n′; Σ′; H ′; e′′〉, hence we have that 〈n; Σ; H; E[e′]〉 −→η 〈n′; Σ′; H ′; E[e′′]〉 by [CONG].
case (TASSIGN) :

(TASSIGN)

Φ1; Γ ` e1 : ref εr τ  R1 Φ2; Γ ` e2 : τ  R2

Φε
3 = εr Φ1 B Φ2 B Φ3 ↪→ Φ

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 := e2 : τ  R1 ./ R2

Depending on the shape of e, we have:
case e1 ≡ v1, e2 ≡ v2 :

Since v1 is a value of type ref εr τ , we must have v1 ≡ z or v1 ≡ r. The results follow by reasoning quite similar to [TDEREF]
above.

case e1 ≡ v1, e2 6≡ v :
Let E ≡ v1 := so that e ≡ E[e2]. Since e1 is a value, R1 ≡ · hence we have Φ2,R; H ` Σ by Lemma B.10 and we can apply
induction. We have 〈n; Σ; H; e2〉 −→η 〈n′; Σ′; H ′; e′2〉, and thus 〈n; Σ; H; E[e2]〉 −→η 〈n′; Σ′; H ′; E[e′2]〉 by [CONG].

case e1 6≡ v :
Since e1 is a not value, R2 ≡ · hence we have Φ1,R; H ` Σ by Lemma B.10 and we can apply induction. The rest follows by an
argument similar to the above case.

case (TUPDATE) :
By inversion on Φ; Γ ` updateα,ω : int  R we have that R ≡ ·, hence by inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ). If
updateOK (upd , H, (α, ω), dir) = tt, then updateα,ω reduces via [UPDATE], otherwise updateα,ω reduces via [NO-UPDATE].

case (TIF) :

(TIF)

Φ1; Γ ` e1 : int  R
Φ2; Γ ` e2 : τ  · Φ2; Γ ` e3 : τ  ·

Φ1 B Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ  R
Depending on the shape of e, we have:
case e1 ≡ v :

This implies R ≡ · so by inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ). Since the type of v is int , we know v must be an integer n.
Thus we can reduce via either [IF-T] or [IF-F].
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case e1 6≡ v :
Let E ≡ if0 then e2 else e3 so that e ≡ E[e1]. To apply induction, we have Φ1,R; H ` Σ by Lemma B.9. We have
〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H ′; e′1〉 and thus 〈n; Σ; H; E[e1]〉 −→η 〈n′; Σ′; H ′; E[e′1]〉 by [CONG].

case (TTRANSACT) :
We know that:

(TTRANSACT)

Φ′; Γ ` e : τ  ·
Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ; Γ ` tx e : τ  ·
By inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ). Thus we can reduce by [TX-START].

case (TINTRANS) :
We know that:

(TINTRANS)

Φ′; Γ ` e : τ  R
Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ; Γ ` intx e : τ  Φ′,R
Consider the shape of e:
case e ≡ v :

Thus

(TINTRANS)

Φ′; Γ ` v : τ  ·
Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ; Γ ` intx v : τ  Φ′, ·
We have Φ, Φ′, ·; H ` Σ by assumption:

(TC2)

Φ′, ·; H ` Σ
Φ ≡ [α; ε; ω]

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

Φ, Φ′, ·; H ` ((n′, σ′), (n′′, σ′′))

By inversion we have Σ ≡ ((n′, σ′), (n′′, σ′′)); by assumption we have traceOK (n′′, σ′′) so we can reduce via [TX-END].
case e 6≡ v :

We have Φ, Φ′,R; H ` Σ by assumption. By induction we have 〈n; Σ′; H; e′〉 −→η 〈n′; Σ′′; H ′; e′′〉, hence by [TX-CONG-2]:

〈n; Σ′; H; intx e′〉 −→∅ 〈n′; Σ′′; H ′; intx e′′〉

case (TLET) :
We know that:

(TLET)

Φ1; Γ ` e1 : τ1  R Φ2; Γ, x : τ1 ` e2 : τ2  ·
Φ1 B Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2  R
Consider the shape of e:
case e1 ≡ v :

Thus Φ1; Γ ` v : τ  · and by inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ).
We can reduce via [LET].

case e1 6≡ v :
Let E ≡ let x : τ1 = in e2 so that e ≡ E[e1]. To apply induction, we have Φ1,R; H ` Σ by Lemma B.9. We have
〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H ′; e′1〉 and so 〈n; Σ; H; E[e1]〉 −→η 〈n′; Σ′; H ′; E[e′1]〉 by [CONG].

case (TAPP) :

(TAPP)

Φ1; Γ ` e1 : τ1 −→Φf τ2  R1 Φ2; Γ ` e2 : τ1  R2

Φ1 B Φ2 B Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 e2 : τ2  R1 ./ R2

Depending on the shape of e, we have:

case e1 ≡ v1, e2 ≡ v2 :
Since v1 is a value of type τ1 −→Φ τ2, we must have v1 ≡ z, hence

(TAPP)

Φ1; Γ ` z : τ1 −→Φf τ2  · Φ2; Γ ` v : τ1  ·
Φ1 B Φ2 B Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

z 6≡ v ⇒R2 = ·
Φ; Γ ` z v : τ2  ·
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where by subtyping derivations (Lemma B.6) we have

(TSUB)

(TGVAR)
Γ(z) = τ ′1 −→Φ′

f τ ′2

Φ∅; Γ ` z : τ ′1 −→Φ′
f τ ′2  ·

τ1 ≤ τ ′1 τ ′2 ≤ τ2 Φ′
f ≤f Φf

τ ′1 −→Φ′
f τ ′2 ≤ τ1 −→Φf τ2

Φ∅ ≤ Φ1

Φ1; Γ ` z : τ1 −→Φf τ2  ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ). By n; Γ ` H we have z ∈ dom(H) and H ≡ (H ′′, z 7→ (τ ′1 −→Φ′
f

τ ′2, λ(x).e′′, ν)) since Γ(z) = τ ′1 −→Φ′
f τ ′2. By [CALL], we have:

〈n; (n′, σ); (H ′′, z 7→ (τ ′1 −→Φ′
f τ ′2, λ(x).e′′, ν)); z v〉 −→{z} 〈n; (n′, σ∪(z, ν)); (H ′′, z 7→ (τ ′1 −→Φ′

f τ ′2, λ(x).e′′, ν)); e′′[x 7→ v]〉

case e1 6≡ v :
Let E ≡ e2 so that e ≡ E[e1]. Since e1 is a not value, R2 ≡ · hence we have Φ1,R; H ` Σ by Lemma B.10 and we can apply
induction and we have: 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H ′; e′1〉, and thus 〈n; Σ; H; E[e1]〉 −→η 〈n′; Σ′; H ′; E[e′1]〉 by [CONG].

case e1 ≡ v1, e2 6≡ v :
Let E ≡ v1 so that e ≡ E[e2]. Since e1 is a value, R1 ≡ · hence we have Φ2,R; H ` Σ by Lemma B.10 and we can apply
induction. The rest follows similarly to the above case.

case (TSUB) :
We know that:

(TSUB)

Φ1; Γ ` e : τ ′  R τ ′ ≤ τ
Φ1 ≡ [α; ε1; ω] Φ ≡ [α; ε; ω] ε1 ⊆ ε

Φ; Γ ` e : τ  R
If e is a value v we are done. Otherwise, since Φ1,R; H ` Σ follows from Φ,R; H ` Σ (by Φε

1 ⊆ Φε and Φα
1 = Φα); we have

〈n; Σ; H; e〉 −→η 〈n′; Σ′; H ′; e′〉 by induction.

Lemma B.17 (Substitution).
If Φ; Γ, x : τ ′ ` e : τ and Φ; Γ ` v : τ ′ then Φ; Γ ` e[x 7→ v] : τ .

Proof. Induction on the typing derivation of Φ; Γ ` e : τ .

case (TINT) :
Since e ≡ n and n[x 7→ v] ≡ n, the result follows by (TINT).

case (TVAR) :
e is a variable y. We have two cases:
case y = x :

We have τ = τ ′ and y[x 7→ v] ≡ v, hence we need to prove that Φ; Γ ` v : τ which is true by assumption.
case y 6= x :

We have y[x 7→ v] ≡ y and need to prove that Φ; Γ ` y : τ . By assumption, Φ; Γ, x : τ ′ ` y : τ , and thus (Γ, x : τ ′)(y) = τ ; but
since x 6= y this implies Γ(y) = τ and we have to prove Φ; Γ ` y : τ which follows by (TVAR).

case (TGVAR),(TLOC), (TUPDATE) :
Similar to (TINT).

case (TREF) :
We know that Φ; Γ, x : τ ′ ` ref e : ref ε τ and Φ; Γ ` v : τ ′, and need to prove that Φ; Γ ` (ref e)[x 7→ v] : ref ε τ . By inversion on
Φ; Γ, x : τ ′ ` ref e : ref ε τ we have Φ; Γ, x : τ ′ ` e : τ ; applying induction to this, we have Φ; Γ ` e[x 7→ v] : τ . We can now apply
[TRef]:

(TREF)
Φ; Γ ` e[x 7→ v] : τ

Φ; Γ ` ref (e[x 7→ v]) : ref ε τ

The desired result follows since ref (e[x 7→ v]) ≡ (ref e)[x 7→ v].
case (TDEREF) :

We know that Φ; Γ, x : τ ′ ` ! e : τ and Φ; Γ ` v : τ ′ and need to prove that Φ; Γ ` (! e)[x 7→ v] : τ . By inversion on Φ; Γ, x : τ ′ ` ! e : τ
we have Φ1; Γ, x : τ ′ ` e : ref εr τ and Φ2 such that Φ1 B Φ2 ↪→ Φ and Φ ≡ Φ1 B Φ2. By value typing we have Φ1; Γ ` v : τ ′. We
can then apply induction, yielding Φ1; Γ ` e[x 7→ v] : ref εr τ . Finally, we apply (TDEREF)

(TDEREF)

Φ1; Γ ` e[x 7→ v] : ref εr τ
Φε

2 = εr Φ1 B Φ2 ↪→ Φ

Φ; Γ ` ! e[x 7→ v] : τ

Note that the second premise holds by inversion on Φ; Γ, x : τ ′ ` ! e : τ . The desired result follows since ! (e[x 7→ v]) ≡ (! e)[x 7→ v].
case (TSUB) :

We know that Φ; Γ, x : τ ′ ` e : τ and Φ; Γ ` v : τ ′ and need to prove that Φ; Γ ` e[x 7→ v] : τ . By inversion on Φ; Γ, x : τ ′ ` e : τ we
have Φ′; Γ, x : τ ′ ` e : τ ′. By value typing we have Φ′; Γ, x : τ ′ ` v : τ ′. We can then apply induction, yielding Φ′; Γ ` e[x 7→ v] : τ ′.
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Finally, we apply (TSUB)

(TSUB)
Φ′; Γ ` e[x 7→ v] : τ ′ τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e[x 7→ v] : τ

and get the desired result.
case (TTRANSACT),(TINTRANS) :

Similar to (TSUB).
case (TAPP) :

We know that

(TAPP)

Φ1; Γ, x : τ ′ ` e1 : τ1 −→Φf τ2 Φ2; Γ, x : τ ′ ` e2 : τ1

Φ1 B Φ2 B Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φ; Γ, x : τ ′ ` e1 e2 : τ2

where Φ; Γ ` v : τ ′, and need to prove that Φ; Γ ` (e1 e2)[x 7→ v] : τ2. Call the first two premises above (1) and (2), and note that we
have (3) Φ; Γ ` v : τ ′ ⇒ Φ1; Γ ` v : τ ′ and (4) Φ; Γ ` v : τ ′ ⇒ Φ2; Γ ` v : τ ′ by the value typing lemma. By (1), (3) and induction
we have Φ1; Γ ` e1[x 7→ v] : τ1 −→Φf τ2. Similarly, by (2), (4) and induction we have Φ2; Γ ` e2[x 7→ v] : τ1. We can now apply
(TAPP):

(TAPP)

Φ1; Γ ` e1[x 7→ v] : τ1 −→Φf τ2 Φ2; Γ ` e2[x 7→ v] : τ1

Φ1 B Φ2 B Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φ; Γ ` e1[x 7→ v] e2[x 7→ v] : τ2

Since e1[x 7→ v] e2[x 7→ v] ≡ (e1 e2)[x 7→ v] we get the desired result.
case (TASSIGN-TIF-TLET) :

Similar to (TAPP).

Theorem B.18 (Single-step Soundness). If Φ; Γ ` e : τ where JΦ; Γ ` e : τK = R; and n; Γ ` H; and Φ,R; H ` Σ; and traceOK (Σ),
then either e is a value, or there exist n′, H ′, Σ′, Φ′, e′, and η such that 〈n; Σ; H; e〉 −→η 〈n′; Σ′; H ′; e′〉 and Φ′; Γ′ ` e′ : τ where
JΦ′; Γ′ ` e′ : τK = R′; and n′; Γ′ ` H ′; and Φ′,R′; H ′ ` Σ′; and traceOK (Σ′) for some Φ′, Γ′,R′.

Proof. From progress (Lemma B.16), we know that if n ` H, e : τ then either e is a value, or there exist n′, H ′, Σ′, Φ′, e′, η such that
〈n; Σ; H; e〉 −→η 〈n′; Σ′; H ′; e′〉. If e is a value we are done. If e is not a value, then there are two cases. If η = µ then the result follows
from update preservation (Lemma B.13). If η = ε0, then the result follows from preservation (Lemma B.15).
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