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 Efforts to restore the Chesapeake Bay have focused on reducing agricultural 

nutrient losses.  In particular, riparian buffer restoration has been an important component 

of nutrient reduction strategies, and one program used extensively to restore riparian 

vegetation on agricultural land is the Conservation Reserve Enhancement Program 

(CREP).  I evaluated the effect of CREP on water quality on the Delmarva Peninsula by 

measuring groundwater nutrients under restored buffers on two farms, monitoring stream 

baseflow in 30 small watersheds (or subbasins), and monitoring stream stormflow in two 

subbasins.  On the farms, nitrate concentrations were lower in the restored buffers than in 

the non-buffered sites, suggesting that buffer restoration was successful in filtering 

groundwater nitrate.  In groundwater under a 7 year old CREP buffer, dilution by 

infiltration of rainwater accounted for 56% of the total nitrogen reduction, and 

denitrification accounted for 15 to 30%.  At the watershed scale, CREP restored 1 to 30% 

of total streamline in 15 agriculturally-dominated subbasins in the Choptank River.  

However, I did not detect differences in nitrogen concentrations between these subbasins 

based on the amount of buffer restoration.  Nitrogen concentrations actually increased in 

most of the streams since previous monitoring before restoration; therefore, buffers may 



not be extensive enough to have measurable affects on baseflow water quality.  However, 

comparison of stormflow between two subbasins revealed significant nutrient differences.  

Total buffered streamline was greater and more widely distributed in Blockston than in 

Norwich subbasin.  The amount and distribution of CREP may have influenced the 

stormflow nutrient yields, which were 2 times higher in Norwich versus Blockston.  

Lastly, I reviewed 20 years of stream monitoring data from German Branch subbasin in 

the context of all agricultural management practices implemented in the basin.  A decade 

after management, I detected a 33% decrease in phosphorus concentrations in stream 

baseflow, but no significant changes in nitrogen concentrations.  However, the rate of 

increase of 0.14 mg N L-1 yr-1 prior to management did not continue to present-day 

baseflow conditions and may have been suppressed by management practices.  While 

these results are somewhat encouraging, complete understanding of watershed-scale 

effects of riparian buffers will require further interdisciplinary study. 
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Chapter 1 
 

INTRODUCTION 

 

Humans and coastal ecosystems 

Human activity on land has altered downstream coastal ecosystems around the 

world, not only affecting the function of habitats for other species but impairing the 

natural resources vital to our survival.  Nearly half of the land in the contiguous United 

States has been converted to cultivation and livestock grazing, which has contributed to 

the loss of 50 percent of the country’s wetlands and 70 percent of the riparian forests 

(Turner et al. 1998).  Humans have doubled the rate of reactive nitrogen (N) entering the 

N cycle (Vitousek et al. 2002) through the conversion of organic N in fossil fuels to 

nitrogen oxides (NOx) and the production of ammonia (NH3) fertilizer in the Haber-

Bosch process.  More than half the world’s human population consumes food produced 

using N fertilizer from this process (Galloway and Cowling 2002).  The global 

phosphorus (P) cycle has also changed by the mining and redistribution of P rich 

materials, as fertilizer, on the landscape.  Nutrient enrichment of large rivers occurs as 

human populations, and their associated agriculture and human waste, increase in the 

watersheds (Peierls et al. 1991).  Excess N and P inputs to coastal waters is widespread 

(Howarth et al. 1995, Beman et al. 2005, Elmgren 1989) and often affects 

biogeochemical cycles and species composition of the ecosystems (D’Elia 1987, 

Malakoff 1998, Conley et al. 2000).  Reducing the amount of nutrients leaking from 

human activities on land is crucial to the health of our estuaries and coastal bays.  

Eutrophication and the resulting ecosystem degradation is a global problem affecting 
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estuaries and coastal systems such as the Gulf of Mexico (Malakoff 1998), the Baltic Sea 

(Elmgren 1989), and southeast Asia ( ).  

Chesapeake Bay is an estuary with nearly a century of intensive anthropogenic 

disturbance contributing to recent ecosystem degradation.  Chesapeake Bay is the largest 

and one of the most biologically diverse estuaries in North America.  In the early 1600’s 

when Europeans were colonizing the region, they witnessed extensive meadows of 

seagrass, massive oyster reefs that posed a threat to navigation, and an abundance of fish 

and marine life.  These resources of the bay and its tributaries provided high biological 

productivity for European settlers and have defined the tradition and cultures of human 

populations around the bay for over 300 years (CBP 2000).  This productivity has 

contributed to supporting an increasing human population, along with increasing 

agriculture and industry around urban centers.  Unfortunately, this human success often 

fouls the same environment that is supporting the human population.  Point sources, from 

industry and urbanization, contribute approximately thirty percent of the nutrient load to 

the Chesapeake Bay (Boynton et al. 1995).  Non-point sources from plant and animal 

agriculture dominate nutrient inputs at around sixty percent, and atmospheric deposition 

within the airshed contributes another ten percent (Boynton et al. 1995).  Eutrophication 

has resulted in extensive algal blooms, oxygen depletion in bottom waters, increased 

turbidity, loss of submerged aquatic vegetation, and loss of habitat (Carpenter et al. 1969, 

Orth and Moore 1983, Officer et al. 1984, Seliger et al. 1985, Fisher et al. 1988).   

Important to Chesapeake Bay restoration is the widespread concern for the bay’s 

biological health and natural resources.  Early scientific evidence of ecosystem 

degradation and political support led to the formation of the Chesapeake Bay Program in 
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1984 and its current large-scale restoration effort (Malone 1993).  Excess nutrients from 

anthropogenic land use throughout the 167 000 km2 watershed represent the bay’s most 

important pollution problem and a challenge to improving water quality (CBF 2001).  

Restoration of riparian buffers is one of several solutions proposed by the Chesapeake 

Bay Program to trap agricultural nutrients in the landscape before entering streams 

draining into the bay.    This management decision was based on twenty-five years of 

research, which revealed that elevated groundwater nitrate (NO3) is reduced nearly 

completely under riparian buffers (Fig 1-1) and evidence for substantial ability to trap 

sediment-bound P during runoff events (Peterjohn and Correll 1984, Magette et al. 1989).     

  
Figure 1-1. Nitrate concentrations in groundwater under established riparian forests in the 
Coastal Plain region of the US east coast.  In all 5 studies, groundwater nitrate 
concentrations decrease from the agricultural field edge to the stream (represented by a 
triangle).  From Lowrance et al. 1997. 
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Riparian Zones 

Background 

The word “riparian” comes from the Latin rip, meaning bank of a stream.  

Lowrance et al. (1985) defines a riparian ecotone as a complex assemblage of organisms 

and their environment existing adjacent to flowing water.  A term commonly used for this 

unique environment is riparian buffer because of its role at the land-water interface as a 

natural filter of water moving over and through the land into nearby streams.  This 

ecotone’s role is especially important adjacent to land highly impacted by human use and 

disturbance (e.g., agriculture or high density urban land uses); riparian buffers may have 

the potential to minimize human effects before contaminated water enters streams. 

 Riparian buffers serve a variety of different roles and processes in the natural and 

disturbed environment (Lowrance et al. 1985, Osborne and Kovacic 1993, Hill 1996, 

Fennessy and Cronk 1997, Lowrance et al. 1997, Naiman et al. 2005).  Buffers contribute 

to landscape diversity, especially in many coastal plain areas where they provide a break 

in the pattern of row crops, pastures, and upland pine forests.  Riparian ecotones often 

consist of an abundance and high diversity of plants and animals, making them a critical 

wildlife habitat.  This habitat is not restricted to the land; old trees in the riparian forest 

will fall, some into the adjacent stream providing woody debris.  Woody debris is known 

to create important habit for stream life and is important in stream morphology by 

dissipating water flow velocity and creating pools.  Streamside vegetation shades and 

cools the water, which would otherwise be uninhabitable for many organisms at high 

temperatures and low oxygen levels characteristic of summer.  During storm events, 

riparian buffers dissipate runoff energy as overland flow moves over the soils and 
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vegetation.  This serves the process of sediment trapping, which is especially important in 

agricultural areas with the capacity of providing large sediment loads to waterways.   

Sediment can also enter streams, rivers, and estuaries by bank erosion.  The roots and 

cover of established streamside vegetation stabilize the stream bank and reduce erosion 

potential.  

 

Nutrient filtering 

 The filtering role of riparian buffers is often  cited as the basis for its nutrient 

retention and removal capacity.  Riparian buffers have the potential to reduce terrestrial 

export of N and P in four processes: soil trapping during runoff events, denitrification in 

groundwater, plant uptake, and rainwater dilution.  Soil accumulation within the buffer 

traps eroded soil and removes particle-borne phosphorus from surface runoff (Peterjohn 

and Correll 1984, Lowrance et al. 1986, Cooper et al. 1987, Magette et al. 1989, Dillaha 

et al. 1989, Vought et al. 1994).  Nitrate is water-soluble and moves to streams primarily 

via groundwater contribution to base flow but also in overland flow during storms.  For 

example, Magette et al. (1989) found that 9 m grass buffers reduce surface runoff N and 

P up to 50%.  In an established forest buffer, Peterjohn and Correll (1984) measured 

larger nutrient reductions in surface runoff at 75% of N and 70% of P.   

Denitrification in anoxic, carbon rich soils of riparian zones may be a dominant 

process in removing elevated groundwater nitrate (NO3) in agricultural landscapes.  

Measurements of N removal in groundwater are consistent among many studies (e.g., Fig 

1-1), ranging from 60 to nearly 100% (Lowrance et al. 1984, Peterjohn and Correll 1984, 

Correll et al. 1992, Lowrance 1992, Jordan et al. 1993, Jacobs and Gilliam 1985).  In 
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anoxic soils, the microbial process of denitrification can permanently remove nitrate as 

N2 gas: 

 NO3
-  NO2

-  NO  N2O  N2 

In this process, nitrate is used by denitrifying bacteria as an alternate electron acceptor in 

the absence of oxygen.  There have been increasing concerns that in some cases, 

denitrification does not go to completion resulting in N2 gas but may result in the release 

of N2O to the atmosphere (Groffman et al. 2000).  As it rises into the stratosphere N2O 

acts as a greenhouse gas and also contributes to depletion of the ozone layer.  It appears 

that decreasing pH and the presence of some O2 tend to decrease the rate of 

denitrification while increasing N2O production relative to N2, but other factors such as 

differences in the bacterial communities and bacterial enzyme production may also 

contribute to the relative amounts of denitrification end products (Knowles 1982, Zumft 

1997). Ideally, denitrification results in NO3 conversion to N2, which accumulates in 

groundwater and is ultimately returned to the atmosphere.  Microbial denitrification is a 

permanent removal of nitrate from groundwater, but it will only occur if there is a 

sufficient hydrologic connection between the NO3-enriched subsurface groundwater flow 

and the riparian zone.  If the contaminated groundwater does not flow through an anoxic 

zone of riparian soil, denitrification may not take place on a large scale.  However, 

denitrification can take place in anoxic microenvironments and appear to play a 

significant role in soil denitrification overall, even in largely aerobic soils (Russell 1973, 

Knowles 1982).  Typical denitrification rates in riparian buffers range from 30 to 40 kg N 

ha-1 yr-1 and rates as high as 295 kg ha-1 yr-1 have been recorded (Naiman and Decamps 

1997, Naiman et al. 2005). 
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Plant uptake can be an important nutrient reduction process in riparian buffers.  

The deep roots of mature riparian vegetation will take up and assimilate nutrients into 

plant material if intercepting the groundwater flow.  However, if the vegetation is not 

periodically harvested and removed, much of the biomass may return to downstream 

aquatic systems as organic N and P through tissue sloughing, litter production, plant 

senescence, and in the products of decomposition (Fennessy and Cronk 1997).  For 

example, total N uptake by coastal plain riparian forests was estimated at 77 to 84 kg N 

ha-1 yr-1 with only an average of 20% of the N stored in woody tissue, and similarly, only 

30% of total P uptake of 1.7 to 3.8 kg P ha-1 yr-1 uptake remained in woody tissue 

(Peterjohn and Correll 1984, Fail et al. 1986).  In this case, the riparian vegetation is 

transforming the inorganic N and P into organic forms and slowing the fluxes from land 

to water. 

Recharge of low nutrient precipitation through the buffer can also play a 

significant role in reducing groundwater N (Speiran et al. 1998).  Nutrient reduction may 

still occur in buffers with limited ability for trapping soil runoff, denitrification, and plant 

uptake.  Dilution of groundwater may be significant in agricultural landscapes where N-

rich groundwater recharged from fertilized fields moves through wide buffers where low 

N rainwater recharges through unfertilized soils. 

 

Groundwater flow 

Hydraulic connectivity within riparian zones is important for nutrient reduction 

processes, especially denitrification and plant uptake.  Lowrance et al. (1995) conducted 

a detailed review of potential hydrologic connection between riparian buffer systems and 
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groundwater flow in various hydrogeomorphic regions of the Delmarva Peninsula (Fig 1-

2).  The functions of riparian zones in similar regions can be assessed by grouping these 

regions by landforms and hydrologic characteristics.  The three regions applicable to this 

study are well-drained uplands, poorly-drained lowlands, and poorly-drained uplands.   

 

Fig 1-2. Hydrogeomorphic regions of the Delmarva Peninsula (from Hamilton et al. 
1993).  
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In the well-drained uplands, denitrification is possible in the short flow paths of young 

groundwater originating in near-stream recharge areas connected to the riparian zone. 

Denitrification may be an important process in these areas because these shorter flow 

paths are the main source of baseflow to low order streams (Lowrance et al. 1997), and 

low order streams account for most of the total streamlength as a whole.  However, the 

longer flow paths of older groundwater may bypass the riparian zone and discharge 

directly through the stream bottom, or hyporheic zone (Fig 1-3).  In this case, there may 

be no hydrologic connection to anoxic, organic rich areas or roots of vegetation in the 

riparian zone.  Bohlke and Denver (1995) confirmed that in relatively thick surficial 

aquifers of coastal plain watersheds of the Delmarva Peninsula, groundwater can flow  

 

Figure 1-3. Cross section of subsurface groundwater.  Flow paths vary in length and time 
between groundwater recharge and discharge to the stream depending on 
hydrogeomorphic characteristics of the region.  On the Delmarva Peninsula, groundwater 
flow paths in areas with deep aquicludes may bypass the riparian zone located in 
shallower depths. Adapted from Winter et al. 1998. 
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beneath the riparian zone and nitrate discharges upward into streams relatively 

unmodified.  Poorly-drained lowlands in tidally influenced areas also have the potential 

for denitrification if tidal movements are not too strong to restrict discharge from 

groundwater and if groundwater flow paths move through the riparian zone.  The poorly-

drained uplands in this region have the highest potential for denitrification (Lowrance et 

al. 1997).  In these areas, the water table is usually within 3 meters of the surface and is 

often connected to the riparian zones.   

Residence time in the upper several meters of the surficial aquifer is usually less 

than 15-20 years (Dunkel et al. 1993, Bohlke and Denver 1995), and in most cases local 

and recent land use effects may be detected in the groundwater chemistry.  Other research 

has indicated that in the Chesapeake Bay watershed overall, groundwater age varies from 

modern (0-4 years) to 50 years old, and 75% of the groundwater is less than 10 years old 

(Focazio et al. 1998).  Samples from this study were collected from springs, which are 

discharge points for converging groundwater flow paths and can be considered an 

average of the water in an aquifer.  If nutrient removal capabilities of riparian buffers 

throughout the Chesapeake Bay watershed are comparable to past studies (e.g., Fig 1-1), 

reductions in young groundwater entering streams may occur over relatively short time 

spans. These ecotones are the last portion of the landscape the groundwater contacts 

before entering the stream and when restored, may have the potential for immediate 

improvement in water quality. 

 

Contemporary research 

The nutrient removal and retention capacity of riparian buffers has gained much 
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attention in the past fifteen to twenty years.  This attention has paralleled the 

acknowledgement that anthropogenic nutrient loading to fresh waters, estuaries, and the 

coastal ocean has greatly impacted water quality and the organisms inhabiting these 

environments (Howarth et al.1996 and Vitousek et al. 1997).  Scientific research on 

riparian buffers began with this interest in the late 1970’s to mid 1980’s with many 

pivotal studies in agriculturally dominated coastal plain areas (Asmussen et al. 1979, 

Schlosser and Karr 1981, Lowrance et al. 1984, Peterjohn and Correll 1984, Jacobs and 

Gilliam 1985, Cooper et al. 1987).  These studies defined the nutrient retention and 

removal processes that can occur in riparian buffers and stressed the importance of this 

land-water interface, especially in watersheds dominated by agriculture.  But these 

studies focused on individual established, or “naturally occurring”, riparian zones.  Very 

few studies have assessed the impact of riparian buffers at a watershed scale.  Landscape 

models have produced mixed results on the importance of buffer location in the 

watershed, connectivity of buffers along stream corridors, and width of buffers on stream 

water quality (Omernik et al. 1981, Hunsaker and Levine 1995, Weller et al. 1998, Perry 

et al. 1999).  US Department of Agriculture scientists have developed a Riparian 

Ecosystem Management Model (REMM) that predicts nutrient reductions in riparian 

buffers based on empirical data, estimations, or predictions from other models of 

hydrology, sediment and nutrient inputs, and vegetative growth (Stone et al. 2001, Altier 

et al. 2002).  Some empirical studies have sought to assess the effect of established 

riparian forests on nutrient concentrations in streams but without consistent results 

(Johnson et al. 1997 and Norton and Fisher 2000).  In general, the importance of riparian 

zones at the watershed scale is poorly understood. 
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Application of buffers in the Chesapeake watershed 

 Riparian buffers are one of the strategies to reduce agricultural nutrient inputs into 

aquatic ecosystems across the nation.  The US Department of Agriculture established the 

Conservation Reserve Program (CRP) in 1985 in an attempt to encourage farmers to 

restore former riparian forest buffers on highly erodible agricultural land. The program 

provides financial incentives to farmers and ranchers to take land out of agricultural 

production and plant trees, grass, and other vegetation along streams.  Early on in the 

program, the US Department of Agriculture (2001) concluded that areas funded by the 

CRP have experienced less soil erosion, improvements in air and water quality, and the 

addition of millions of acres of wildlife habitat.  

 As a part of its plan to reduce the nutrient load to the bay, the Chesapeake Bay 

Program established a nutrient subcommittee that later published a document reviewing 

the ability of streamside forest buffers to act as natural nutrient filters (Lowrance et al. 

1997).  Many of the principal authors were researchers involved in the early pivotal 

studies defining riparia as nutrient filters, and in their recommendations, these authors 

developed a three zone riparian buffer system consisting of a grassed portion for runoff 

control, a managed forest, and an undisturbed forest (Fig 1-4). This is viewed as the most 

ideal system for management purposes of the Chesapeake Bay Program and has the 

potential to control sediment runoff, decrease nutrient input, decrease stream temperature, 

and create critical wildlife habitat.  Their consensus was that riparian buffers can help to 

remove sufficient amounts of groundwater nitrate from adjacent agricultural fields before 

flowing to streams (Fig 1-1), while acknowledging that this area of research requires 

more study.  This report, along with other studies revealing the potential of riparian  

 12



 

 

Figure 1-4. Example of a three zone managed riparian forest.  Nutrient rich overland flow 
and groundwater from the agricultural landscape flows through a herbaceous filter strip, 
then a managed forest that is selectively harvested, and a permanent forest adjacent to the 
stream.  From Chesapeake Bay Program. 
 

buffers to reduce nutrient loads, may have contributed to expanding the CRP into the 

Conservation Reserve Enhancement Program (CREP) in 1997. In October of 1997, 

Maryland was the first state to establish a CREP.  The program allows up to 100,000 

acres of environmentally sensitive land along streams and rivers to be removed from 

agricultural production and maintained as several kinds of riparian vegetation.  Its 

support came from the hope that riparian buffers will improve the water quality of 

Chesapeake Bay by reducing the nutrient load to its tributaries. 

 There are questions in the scientific community as to whether implementation of 

riparian buffers as a management practice (e.g., CRP and CREP) will be an effective way 

to improve water quality.  Specific sites are not considered on a case-by-case basis, and a 

buffer is added when there is a willing farmer, not when the conditions are especially 
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conducive for a buffer to act as a nutrient filter.  Riparian zones are also one of the last 

areas in the landscape with the potential to filter nutrients before groundwater enters the 

stream.  Some argue more resources should focus on managing nutrients on agricultural 

fields with Best Management Practices, BMPs, such as winter cover crops (Brinsfield and 

Staver 1990).  Nevertheless, much of the environmental management community in the 

Chesapeake Bay support riparian buffers as a management tool, and CREP continues to 

be a popular conservation practice on farms.   

 As of 2004, 6100 km of riparian zones have been restored in the Chesapeake Bay 

watershed (Fig 1-5).  The Chesapeake Executive Council has committed to restore and 

conserve at least 70% of the streams and shoreline in the watershed (CBP 2003).  This 

leaves almost 42 000 km of streamline to be restored and a significant undertaking for 

many years to come.  Incomplete scientific knowledge on the capacity of restored 

riparian buffers to meet nutrient reduction goals in the bay is not a reason to avoid    

 (a) (b) 

 
 
Figure 1-5. (a) Percentage of streamline buffered by riparian forests in the 1990s before 
large restoration effort began in Chesapeake Bay watershed.  Current goal is to restore an 
additional 11% of streamline.  (b) Yearly progress of miles of restored riparian buffers 
and the 2010 goal.  From Chesapeake Bay Program. 
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making management decisions, but monitoring the outcome of the restoration can guide 

continuing efforts to meet nutrient goals.  Scientists in the Chesapeake Bay region have 

the unique opportunity to measure the effects of restored riparian buffers at scales 

directly applicable to estuarine water quality in the natural environment. 

 

Plot-scale research and watershed-scale restoration goals 

 Most research on the ability of riparian zones to buffer the impact of N and P 

inputs from agricultural landscapes has been done on established buffers.  Established 

riparian zones have been preserved in their “naturally occurring” state while the 

surrounding land was converted to agriculture.  Whether restored buffers have the same 

ability to reduce N in groundwater and P in runoff as demonstrated in established buffers 

has not been investigated in detail.  If restored buffers possess connectivity to the flow 

paths of nutrient enriched groundwater and overland flow and acquire sufficient levels of 

soil organic carbon for biological processing of nutrients, the potential for similar 

reductions nay exist.    

 Past research has also focused on nutrient reduction in individual riparian zones at 

the plot scale.  Here I use the term plot scale to describe the defined plots on experimental 

farm fields or transects through one area of riparian buffer.  I define field scale as 

research taking place over an entire farm field and the surrounding buffers and define 

watershed scale as stream water quality research incorporating the processes occurring 

over the entire watershed.  As part of the restoration plan for Chesapeake Bay, 

predictions of N and P reductions in CREP buffers are substantial (USDA 2004) and may 

be based on the large reductions measured in past plot-scale research.  There is no 
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watershed scale data that confirms restoration of riparian buffers improve stream water 

quality.  Nutrient budgets reveal that on average, only 25% of the total N inputs to 

watersheds in northeastern United States are exported in river flow (Boyer et al. 2002).  

Watersheds may already be inherently efficient at reducing N and P through in-stream 

biological processes, denitrification in the soils and stream, and burial of particulates in 

the landscape and in stream sediments (Fig 1-6).  Whether further nutrient reductions are 

possible by restoring riparian buffers has not been investigated sufficiently at the 

watershed scale. 

 My research focuses on two questions: 

(1) Do restored riparian buffers reduce groundwater N at similar levels as established 

buffers? 

(2) Does restoration of riparian buffers reduce stream water N and P at a watershed 

scale? 

I approached the first question by performing plot scale research in buffers at two 

individual farms (Chapter 4).  I monitored groundwater nutrients in transects through four 

types of buffers: a 7 year old CREP buffer, a 20 year old CRP buffer, a >100 year old 

established buffer, and a non-buffered field edge.  This study differs from past studies by 

the addition of restored buffers to the groundwater monitoring.  The other portion of my 

research focuses on stream water monitoring during baseflow and stormflow and 

GIS analysis of restored buffers in 30 sub-watersheds (Chapters 2 and 3).  The 

widespread implementation of CREP in the Choptank watershed (1000 hectares) has 

given me the opportunity to investigate differences in stream water quality between sub-

watersheds with varying amounts of CREP.  The timing of previous monitoring at these  
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Figure 1-6. Nutrient processes at the watershed scale that interact with different land 
uses, soil types, and hydrology.  Nutrients are reduced throughout the watershed by 
denitrification in anoxic soils, retained in riparian vegetation, cycled within the stream 
and hyporheic zone, and buried in the riparian buffers and stream sediments.  Nutrient 
exported in the stream are typically 25% of nutrient inputs to the watershed. 

 17



 

same sites also allows me to compare stream water quality before any buffer restoration 

and current stream water quality after CREP implementation.  More detailed water 

quality monitoring and application of BMPs in German Branch, a subbasin in the 

Choptank watershed, provides a case study of changes in stream water quality over time 

in relation to the restoration effort of recent years (Chapter 5).  I seek to contribute a more 

complete understanding of the function of restored riparian buffers in managed 

agricultural landscapes at spatial scales directly relevant to nutrient reduction goals in 

Chesapeake Bay. 
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Chapter 2 
 

 GROUNDWATER NUTRIENTS UNDER RESTORED AND ESTABLISHED 
FOREST BUFFERS IN THE OUTER COASTAL PLAIN OF MARYLAND 

 
 
 

Abstract 

Agriculture is a significant source of nutrients to Chesapeake Bay, and the effort to 

reduce nutrient runoff and groundwater nitrate has led to restoration of riparian buffers 

throughout the watershed.  The Conservation Reserve Program (CRP) and Conservation 

Reserve Enhancement Program (CREP) subsidize farmers to take stream-side land out of 

agricultural production and plant riparian grasses and trees.  I measured groundwater 

nutrients in a >100 year old established riparian forest buffer, a 20 year old CRP pine 

buffer, and a 7 year old CREP buffer on a farm in the fine-grained lowlands of the 

Delmarva Peninsula.  In general, nitrate (NO3) decreases horizontally in the buffers from 

the farm field to the stream and increases vertically with groundwater depth.  In the 

CREP buffer, dilution by infiltration of low nitrogen rainwater accounts for 56% of the 

nitrate reduction, and denitrification accounts for 10 to 20 % of the nitrate reduction.  

Denitrification was calculated by measuring excess nitrogen gas (N2) in the groundwater 

using the N2/Ar technique, and even though there was excess N2 throughout the buffer, 

the low denitrification rate of 25 to 48 kg N ha-1 yr-1 measured in the CREP buffer may 

due to N2 loss in the groundwater through gas diffusion.  The remaining NO3 reduction 

observed in the CREP buffer may be due to additional denitrification not captured by the 

N2/Ar method or by plant uptake in the riparian forest.  Tidal creek and rainwater dilution 

are substantial in all buffers and low groundwater discharge and long groundwater 

retention times may contribute to the large NO3 reductions.  Comparison of low NO3 
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concentrations in the restored buffers and higher NO3 concentrations in a non-buffered 

control site suggest that restoration of the buffers has been successful in filtering 

groundwater nutrients and that groundwater discharged through the buffers is not 

contributing a significant amount of NO3 to the adjacent tidal creek. 

 

Introduction 

 The restoration effort of Chesapeake Bay habitat and fisheries over the past two 

decades has focused on reducing nutrient enrichment of water flowing into the bay.  

Agriculture is the bay’s largest source of nitrogen and phosphorus (Magnien et al. 1992) 

and is often the center of nutrient reduction strategies and the resulting challenge to 

preserve both farmers’ livelihoods and the environment (Boesch et al. 2001, Staver and 

Brinsfield 2001).  One of the strategies is to provide financial incentives to farmers 

implementing nutrient management and conservation practices.  Progress has been made 

in applying these Best Management Practices (BMPs) throughout the agricultural land in 

the watershed, but the quantitative contribution that these practices will make to nutrient 

reduction goals in Chesapeake Bay is not well understood. 

Agriculture covers approximately one quarter of land use in the bay’s 167 000 

km2 watershed and is more intensive in specific regions, such as diary farms in 

southeastern Pennsylvania and poultry farms on the Delmarva Peninsula.  Excess 

nutrients from fertilizer applications and animal feeding operations have the potential to 

flow from agricultural fields to adjacent streams in runoff during rain events (Beman 

2005) or infiltrate into the surficial aquifer (Weil et al. 1990, Spalding and Exner 1993) 

and gradually enrich streams over a long period of time.   Riparian zones may be the last 
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area of the landscape that runoff and subsurface groundwater flow through before 

entering the streams.  Studies conducted in the early 1980s in agriculturally-dominated 

areas of the Atlantic coastal plain revealed that riparian forests reduced total nitrogen in 

surface runoff and subsurface groundwater by 67 to 89% (Lowrance et al. 1984, 

Peterjohn and Correll 1984, Jacobs and Gilliam 1985).  Since then, numerous studies 

have investigated the nutrient filtering capability of riparian buffers.     

Nutrient reduction occurs in riparian buffers through the following processes: soil 

trapping during overland flow, denitrification in subsurface groundwater, vegetative 

uptake, and rainwater dilution.  Sedimentation occurs in grass and forest riparian buffers 

during runoff events, and sediment-bound nutrients may be reduced by over 50% as 

overland flow moves through the buffers (Peterjohn and Correll 1984, Magette et al. 

1989).  Soil particles deposit in riparian zones when vegetation encourages low-energy, 

sheet flow runoff and discourages the formation of high-energy, channelized flow from 

agricultural fields to adjacent streams (Naiman and Decamps 1997).  The process often 

recognized as the primary mechanism of nitrate removal in riparian zones is 

denitrification, the microbial transformation of nitrate (NO3) to nitrogen gas (N2) in the 

presence of anoxic soils and a sufficient carbon source.  Denitrification can be spatially 

and temporally variable and a standardized method to measure the process does not 

currently exist (Lowrance 1992, Hanson et al. 1994, Addy et al. 2002, Mookherji et al. 

2003).  Therefore, measurements in the literature vary but typically range from 30 to 40 

kg N ha-1 yr-1 (Naiman and Decamps 1997).  Vegetative uptake has been measured at 

similar rates but only 20 to 30% of the nutrient retention is permanently stored in the 

woody tissue of riparian forests (Peterjohn and Correll 1984, Fail et al. 1986).  Finally, in 
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agricultural landscapes where groundwater is enriched in nitrogen, low nutrient rainwater 

that percolates through riparian soil may generate localized dilution within the buffer and 

has been shown to significantly contribute to nitrate reduction (Speiran et al. 1998, 

Spruill 2000, Maitre et al. 2003).  This process is intensified in riparian buffers in the 

summer when evapotranspiration removes high-nutrient groundwater and the 

groundwater is recharged with low-nutrient rainwater.  Considering this relatively short 

time span of intensive research, a large knowledge-base exists on the characteristics and 

function of mature, or established, riparian zones (Naiman et al. 2005). 

 Less understood is how these nutrient reduction processes perform in restored, or 

re-established, riparian buffers.  Interest in restoring riparian zones as a management 

practice on farms gained momentum in the 1990s, and the US Department of Agriculture 

has helped support research in restored agricultural landscapes in Bear Creek watershed 

in central Iowa and in the headwaters of the Suwannee River watershed in southeastern 

Georgia.  Studies in Bear Creek watershed suggest that restored grass buffers trap 

sediment and nutrients from surface runoff at similar amounts as observed in established 

riparian buffers.  Six meter wide grass buffers removed 77% of the sediment in runoff 

and reduced total nitrogen and phosphorus by approximately 50% (Lee et al. 1998).  Soil 

respiration at this site in re-established grass and forest riparian buffers was significantly 

higher than respiration rates in the adjacent agricultural fields, suggesting that these 

restored buffers are areas of high biological activity (Tufekcioglu et al. 2001).  In the 

coastal plain of Georgia, an average denitrification rate of 68 kg N ha-1 yr-1 was measured 

in the subsurface groundwater under a restored riparian forest, which is comparable to 

rates in mature riparian forests (Lowrance et al. 1995).  Research in the Georgia 
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watershed has also revealed that a newly-restored buffer assimilated and removed 

significant amounts of nitrogen and phosphorus (Hubbard et al. 1998, Vellidis et al. 

2003).  The restored riparian forest, from year 1 to 8 after restoration, retained 66% of 

total phosphorus from the adjacent agricultural inputs and 59% of total nitrogen inputs, 

including 78% nitrate reduction attributed mostly to denitrification (Vellidis et al. 2003).  

These studies in demonstrations sites support the use of riparian grass and forest buffers 

as a nutrient management tool on farms. 

 Because of the realization that agriculture is contributing to nutrient enrichment of 

aquatic systems (Spalding and Exner 1993, Hamilton and Helsel 1995), restoration of 

riparian buffers on farms has become widespread in the US due to two conservation 

programs: the Conservation Reserve Program (CRP) and the Conservation Reserve 

Enhancement Program (CREP).  CRP was introduced by the US Department of 

Agriculture in 1985 as a voluntary program that provides financial incentives for farmers 

to establish conservation practices on their agricultural land and originally focused on 

planting trees in highly erodible soils.  In 1997, the program was expanded to the CREP 

and included financial incentives for taking land out of agricultural production and 

planting several kinds of riparian vegetation along ditches, streams, and rivers.  Maryland 

was the first state to adopt a CREP and its specific goal is to protect water quality in 

Chesapeake Bay. 

This chapter addresses the nutrient removal ability of two restored riparian forests 

implemented under the CRP and CREP in the coastal plain of Maryland.  One field on 

the farm is buffered by a >100 year old established (or mature) forest, a 7 year old CREP 

forest buffer, and a 20 year old CRP forest buffer.  I measured nutrients in the subsurface 
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groundwater in these buffers and also in a non-buffered control site on the farm.  

Substantial reductions, accounted for by estimates of denitrification and dilution, were 

observed in the restored buffers in comparison to the non-buffered site and at levels 

comparable to observations in established forests.  This research suggests that nutrient 

reductions measured in established buffers and restoration demonstration sites may be 

applicable to the buffers restored under the CRP and CREP. 

 

Methods 

Study site 

 Radcliffe farm is located in the Maryland coastal plain of the Delmarva Peninsula 

on a tidal creek in the Little Choptank watershed (Fig 2-1).  This low-lying region is 

underlain by the Kent Island Formation, an estuarine deposit of the middle-Wisconsin 

period, and the surficial sediments have the following hydrogeomorphic characteristics: 

fine-grained soils, shallow water table, and poor drainage (Owens and Denny 1979, 

Hamilton et al. 1993, Fig 2-2).  The surficial aquifer in this region is often less than 5 

meters thick (Owens and Denny 1979), and groundwater flow is likely to come into 

contact with the riparian zones near creeks and other discharge areas (Jordan et al. 1993, 

Lowrance et al. 1995).  The upper soil profile of the agricultural fields on Radcliffe farm 

consists of moderately well to well drained soils of Mattapex and Matapeake series.  The 

outer edges of the field where the established and restored riparian buffers are located 

have soils composed primarily of Keyport and Elkton silt loams (Table 2-1).  Keyport silt 

loam is moderately well drained and not considered a hydric soil, whereas Elkton silt  
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Fig 2-1. Location and DOQQ images of study sites, Radcliffe farm and Chesterville 
Branch farm, on Delmarva Peninsula.  Radcliffe farm is approximately 3 km from Horn 
Point Lab and in the watershed of the Little Choptank River.  The large DOQQ shows the 
CREP, CRP, and established forest buffers surrounding the southern farm field.  The 
points are locations of the piezometer transects through each buffer.  In the northwest 
portion of Radcliffe farm is the non-buffered control site.   
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Fig 2-2. Hydrogeomorphic regions of the Delmarva Peninsula (from Hamilton et al. 
1993).  The box in the fine-grained lowland is the location of Radcliffe farm and the 
point is the Chesterville farm as seen in Fig 2-1.  



Table 2-1.  Background information for 4 riparian buffers involved in this study: restored CREP forest, established forest, restored CRP pine forest, and non buffered area of agricultural field used as a control.  
Buffer age and soil type was gathered from farm owner, George Radcliffe, and Dorchester County NRCS office.  Buffer width and piezometer depth below ground were measured in the field and surveying
equipment was used to measure ground elevation at each piezometer.  K was calculated by slug tests in the deeper set of piezometers (see eq. 1).

Background information

Buffer Buffer age, years Soil type Soil drainage Hydric soils Piezometer nest Piezometer location Buffer width, m Depth, m Ground elevation, m K, 10-6 cm sec-1

CREP 7 Keyport silt loam moderately well N field edge 20.4 1.50 1.28 -
shallow mid-buffer 0.86 1.15 -

stream edge 0.91 1.11 -
field edge 1 2.11 1.28 10.1
field edge 2 2.39 1.32 7.3

deep mid-buffer 2.23 1.15 -
stream edge 1 1.93 1.11 147.0
stream edge 2 2.04 1.09 198.0

Established forest >100 Keyport silt loam moderately well N field edge 24.5 0.80 0.91 -
shallow mid-buffer 0.67 0.82 -

stream edge 1.14 0.58 -
field edge 1 2.43 0.91 2.9
field edge 2 2.44 0.97 28.3

deep mid-buffer 1.40 0.82 2.2
stream edge 1 1.14 0.58 1.7
stream edge 2 1.35 0.58 2.0

CRP 20 Elkton silt loam poor Y field edge 50 1.40 1.27 -
(Mattapex silt loam moderately well N shallow mid-buffer 1.35 1.14 -

at field edge) stream edge 1.54 1.11 -
field edge 1 3.72 1.27 5.7
field edge 2 3.68 1.32 66.0

deep mid-buffer 3.52 1.14 5.1
stream edge 1 3.81 1.11 7.8
stream edge 2 3.57 1.11 14.7

Non buffered control Non buffered since Keyport silt loam moderately well N shallow stream edge 6.9 0.99 1.13 -
1800s & Elkton silt loam poor Y deep field edge 1.27 1.23 28.3

stream edge 1.30 1.13 66.0
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loam is classified as poorly drained and hydric.  In the middle of the agricultural field, the 

elevation is 2.5 meters above sea level and gradually decreases towards the edges and 

through the riparian buffers.  Elevation gradients within the buffers are all positive from 

field edge to stream edge and range from practically zero at 0.1 cm m-1 from mid-CRP 

buffer to the CRP stream edge and up to 2 cm m-1 from mid-buffer in the established 

forest to the stream edge (Table 2-2). 

 

Table 2-2. Topographic gradients through the transects in the riparian buffers at 
Radcliffe farm.

Buffer Location in transect Topographic gradient, cm m-1

CREP field edge to mid buffer 1.5
mid buffer to stream edge 0.5

Established forest field edge to mid buffer 1.0
mid buffer to stream edge 1.9

CRP field edge to mid buffer 0.6
mid buffer to stream edge 0.1

Non-buffered control field edge to stream edge 1.5  

 

The 10.6 hectare farm field encircled by the CREP, CRP, and established forest 

buffers (Fig 2-1) is in a corn/soybean crop rotation typical of farmland in this area of the 

Delmarva Peninsula (Staver and Brinsfield 2001).  Small grains are not grown in the 

winter; instead the fields are left undisturbed and used as wintering grounds by geese and 

other water fowl.  Crop residue remains on the fields after harvest, and in the spring seed 

is planted directly into the soil without tillage.  The crop was soybeans in the 2003 

season, corn in 2004, and soybeans in 2005.  Manure fertilizer from nearby poultry farms 

is applied to the fields at Radcliffe farm.  Some seasons this is supplemented with 

inorganic fertilizer when a sufficient amount of manure can not be obtained from the 

nearby poultry farms.  It is important to note here that the Radcliffe farm is a well 
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managed farm unique to this region.  The farm has extensive buffers, practices no tillage 

agriculture, has implemented wildlife conservation practices, and often does not apply 

organic or inorganic fertilizer when soil tests reveal nutrient levels are already high.  The 

minimum recommended fertilizer applications in each year’s Nutrient Management Plan 

is strictly adhered to, whereas in Maryland only approximately a third of farmers file 

Nutrient Management Plans and it is unknown how many actually follow the prescribed 

fertilizer application (Mark Waggoner pers. com.).  As part of the Nutrient Management 

Plan for the farm in 2003, a soil analysis report was prepared by A and L Eastern 

Agricultural Laboratories.  The soil tests revealed a soil pH of 6.0, a medium rating of 

organic matter in the soil and calcium (Ca) in the pore water (102 kg  ha-1 and 23.2 mM, 

respectively), a high rating for potassium (K) at 3.5 mM, and a very high rating for 

phosphorus (P) and magnesium (Mg) (i.e., 3.7 mM and 6.9 mM, repectively).  As a result 

of these tests in 2003, a fertilizer application of 33.6 kg ha-1 of K and 784 kg ha-1 of 

dolomitic lime was recommended in the Nutrient Management Plan.  The agricultural 

field adjacent to the non-buffered control site was last harvested in 2003 and has been 

fallow throughout the study period.  Considering the low hydraulic conductivity (Table 2-

1, to be presented below), the groundwater has the potential to move 15 m year-1, and 

agricultural contaminants are still likely to be present in the subsurface groundwater in 

this fallow field. 

 The original study site was on a farm in the Chesterville Branch watershed 

draining into the Chester River, approximately 80 km northeast of the Radcliffe farm (Fig 

2-1).  I was not able to develop a long term monitoring project at the Chesterville farm 

but did sample groundwater under CRP and CREP buffers twice in the fall of 2003.  
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Similar to Radcliffe farm, the CRP and CREP buffers on the farm in the Chesterville 

Branch watershed surrounded an agricultural field which was in a corn/soybean rotation.  

However, this farm is located in a different hydrogeomorphic region and therefore, has 

different soils and groundwater hydrology.  The Chesterville farm is located in the well-

drained upland of the Delmarva Peninsula (Fig 2-2), which has lower water tables, well-

drained soils in the uplands, and poorly-drained soils and sediments in the stream valleys 

(Owens and Denny 1979, Hamilton et al. 1993).  The depth of the unconfined aquifer is 

thicker in the Chesterville Branch watershed and the confining layer varies from 

approximately 20 to 30 m below the surface (Böhlke  and Denver 1995).  The 

Chesterville farm has more topographic relief, approximately 20 m from farm field to 

stream.  Types of soils range from deep, well-drained Sassafras soils on the farm field 

and the hill slopes where the buffers were located to poorly-drained soils of the Bibb 

series in the stream valley bottoms.  Most of the data in this chapter refers exclusively to 

Radcliffe farm except where additional nitrate data in the subsurface groundwater at the 

Chesterville farm is presented later in Figure 2-15.  

 

Piezometer transects 

 A conceptual diagram of piezometer transects on Radcliffe farm is shown in 

Figure 2-3.  I drilled two piezometer transects in each buffer using a 5.7 cm diameter mud 

auger in the winter of 2003 and the summer of 2004.  In the winter, the shallow 

piezometer transects consisted of one piezometer at the buffer/agricultural field edge, one 

midway through the buffer, and one at the buffer/creek edge, except at the non-buffered 

control site where only one stream edge piezometer was installed in the 7 m wide strip 
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between the field and the ditch.  In the summer of 2004 when the water table was lower, I 

drilled deeper holes.  In most cases, I removed the shallow piezometer and installed two 

nested piezometers at the field edge and the stream edge and one piezometer mid-buffer 

(Fig 2-3).  At the non-buffered control site, only one field edge and stream-edge (ditch in 

this case) piezometers were installed.  Piezometers consisted of schedule 80 5.1 cm inner 

 

Fig 2-3. Conceptual diagram of piezometer installations at Radcliffe farm.  This example 
represents the CREP site as shown by the young tree saplings protected by plastic 
casings.  I installed one shallow piezometer at the field/buffer edge, one mid-buffer, and 
one at the stream/buffer edge.  I monitored groundwater in these piezometers for five 
months in early 2004.  In the spring of 2004, I installed deeper, nested piezometers and 
monitored the groundwater for one year until August 2005.  This installation was the 
same for the CREP, CRP, and established forest buffers.  For the non-buffered control 
site, only one shallow piezometer was installed in early 2004 and the deep piezometer 
installation included only one field edge and one stream (ditch) edge piezometer.  
Piezometer depths are shown in Table 2-1.  
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diameter PVC pipe.  Screens were either 23 or 36 cm long and slotted (0.20 mm) every 

0.3 cm.  Piezometer ends were fitted with a solid PVC point. 

In the fall of 2004, I measured the elevation in the farm field and at each of the 

piezometers.  I used surveying equipment to measure elevation in relation to a benchmark 

from the National Geodetic Survey located on Route 343 next to the farm; estimated 

errors in elevation heights are ±15 cm.  The elevation of the tidal creek adjacent to the 

CRP buffer was measured and compared to tidal heights at two nearby tidal gauges in 

McCready’s Creek and at Cambridge, Maryland.  There was a -15 cm bias in that 

surveying measurement, which could reflect errors in surveying from the benchmark on 

Route 343 or differences in the height of the water in the creek at Radcliffe farm and the 

two tidal gauges in other creeks. 

 

Hydrology 

 I estimated hydraulic characteristics of the subsurface groundwater using 

measurements from the deep piezometer transects (Fig 2-3).  The Hvorslev slug-test 

method was used to determine the hydraulic conductivity (K) of the soils at each 

piezomenter location (Fetter 2001).   I measured hydraulic head before the test, pumped 

the water completely from the piezometer, and measured water level during recharge.  

The following formula was used to calculate K: 
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where K is hydraulic conductivity, r is the inner radius of the piezometer casing, L is the 

length of the piezometer screen, R is the inner radius of the piezometer screen, and T37 is 

the time it takes for the water level to recharge 37% of the initial level (Fetter 2001).  I 
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removed the water from the piezometers using a Solinst Model 410 Peristaltic Pump and 

measured water level at 10 minute intervals with a Solinst automated pressure transducer, 

Model 3001 Levelogger.  Leveloggers were attached with a nylon line to the inside of a 

threaded PVC cap on the top of the piezometer and were lowered and placed on the 

bottom of the well.  One Levelogger remained at Horn Point Laboratory recording 

barometric pressure in order to correct data from the field loggers for small pressure 

changes in the atmosphere.  

 I also used the same automated pressure transducers to measure groundwater 

response to a rain event in most of the deep piezometers.  In this case, I installed 

Leveloggers prior to a storm and left them in the field for one to two weeks after the 

event recording hydraulic head and temperature every 30 minutes.  Finally, water table 

level was measured with a Solinst Model 101 Water Level Meter each time I was in the 

field throughout the sampling period. 

 The application of lime, poultry manure, and inorganic fertilizers on Radcliffe 

farm has the potential to enrich the groundwater with conservative tracers such as 

chloride (Cl-), magnesium (Mg+2), and calcium (Ca+2) (Böhlke and Denver 1995, Böhlke 

2002) and makes it possible to examine whether piezometers are sampling the same 

groundwater flow path through each buffer.  In January 2005, I collected samples from a 

field edge, mid-buffer, and a stream edge piezometer in each buffer and from both 

piezometers in the non-buffered control site.  Samples were filtered and analyzed for 

major cations and anions on a Dionex ICS-2000 Ion Chromatography System.  Samples 

were diluted by 10 or 100 to measure the high ion concentrations in the groundwater.  

Chloride (Cl-) anion was measured with 1 to 100 ppm Cl- standards.  The cations 
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magnesium (Mg+2), sodium (Na+), calcium (Ca+2), and potassium (K+) were analyzed 

from undiluted samples with 1 to 50 ppm Mg+2 and Na+ standards and 0.25 to 10 ppm 

Ca+2 and K+ standards. 

 

Nutrient sampling 

 I measured groundwater nutrient concentrations monthly in the shallow 

piezometers from January to May 2004 (5 samples) and approximately every month in 

the deeper piezometers (Fig 2-3) from August 2004 through August 2005 (11 samples).  I 

pumped water completely from the piezometers and allowed fresh groundwater to 

recharge.  Approximately 24 hours later, I collected a groundwater sample from each 

piezometer, measured temperature and electrical conductivity in the field with a portable 

Yokogawa SC82 conductivity meter (calibrated using a 100 µS cm-1 conductivity 

standard), and brought a sample back to the lab for nutrient analysis.  In the lab, I filtered 

original samples with GFF filters for automated colorimetric analysis of NO3 in a 

Technicon AutoAnalyzer II in Horn Point’s Analytical Services Lab.  On average, nitrite 

(NO2) was typically less than 5% of the NO3+2, and I present the analysis of NO3+2 as 

solely nitrate (NO3).  Filtered samples were also autoclaved with the persulfate reagents 

of Valderama (1981) and subsequently analyzed for dissolved phosphate (PO4) and 

nitrate (NO3) in a Technicon AutoAnalyzer II to determine total dissolved phosphorus 

(TDP) and total dissolved nitrogen (TDN).  I used manual colorimetric methods to 

measure ammonium (NH4) and phosphate (PO4) concentrations in the filtered 

groundwater samples (Strickland and Parsons 1972).  The analytical precision estimated 

from replicates was typically 12% for NH4, 10% for TDP, and 3% for PO4. 
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Denitrification 

 The enrichment of nitrogen gas in groundwater relative to inert argon can be used 

to quantify denitrification (Blicher-Mathiesen et al. 1998, Mookherji et al. 2003).  I 

measured nitrogen (N2), oxygen (O2), and argon (Ar) dissolved gases in groundwater 

samples from the deep piezometers in June and August of 2005.  I pumped the 

piezometers dry and allowed the groundwater to recharge for approximately 24 hours.  A 

plastic fishing float the same diameter of the piezometer inner diameter was placed in the 

piezometer to protect the recharging water from contact with the air.  The following day 

the float was removed and I collected a groundwater sample by lowering a 700 mL, 4.8 

cm outer diameter Norwell bailer to a few centimeters above the bottom of the 

piezometer.  The one-way valves on both ends of the bailer allowed sampling of 

groundwater to the depth which the bailer was lowered and prevented loss of sample as 

the bailer was raised from the piezometer.  The full bailer was then fitted with a stopcock 

to control the flow rate as the groundwater sample was dispensed into glass test tubes (4 

replicates for each piezometer).  The water flowed slowly from the bailer, through a 

Teflon tube, and into the bottom of a glass test tube.  When the test tube as overflowing, I 

removed the Teflon tubing and inserted a glass stopper in the tube to seal the sample 

without trapping any air bubbles (methods adapted from Mookherji et al. 2003).  Due to 

slow recharge in stream edge1 piezometer in the established forest buffer, I was never 

able to collect enough water sample for N2/Ar analysis at this location. 

 Immediately after collecting samples, I analyzed N2, O2, and Ar on a Balzers 420 

quadrupole mass spectrometer modified with a membrane inlet, also called a Dissolved 

Gas Analyzer (DGA, Kana et al. 1994).  The resulting N2 and Ar signals were corrected 
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for oxygen sensitivity (Kana and Weiss 2004), although O2 concentrations measured in 

this study were very low (i.e., an average of 30 µM) and do not greatly affect the signals.  

I applied another correction if argon was lost along the transect by degassing, the process 

in which air bubbles escape and strip dissolved gases from the groundwater.  If Ar 

concentrations decreased in the groundwater along a piezometer transect, I assumed that 

groundwater along the flow path was degassed and used the following correction for the 

amount of N2 lost (Blicher-Mathiesen et al. 1998): 

)ln( 12 AANN cα=Δ        (eq. 2-2) 

where ΔN is the amount of N2 degassed per liter in µM, α is the ratio of partition 

coefficients in water (N2/Ar at 10oC: α = 2.2), Nc is the measured concentration of N2 in 

the piezometer where degassing is occurring in µM, A1 is the measured Ar concentration 

in µM before degassing occurring along the groundwater flow path, and A2 is the 

measured Ar concentration in µM after degassing occurred.  After these corrections, I 

used the measured N2 in the groundwater samples to calculate the amount of NO3 

denitrified in each buffer using the following equation: 

       (eq. 2-3) mequilibriumeasuredexcess NNN −=

where Nexcess is the excess N2-N in the groundwater attributed to the amount of nitrate 

denitrified, Nmeasured is the N2-N concentration in the groundwater measured by analysis 

on the DGA, and Nequilibrium is 577.5 µM.  The N2 concentration of groundwater during 

recharge when in equilibrium with the air was based on the solubility of N2 gas at an 

average annual temperature of 15oC. 
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Results 

Hydrology 

 Soil types, buffer width, ground elevation at each piezometer, depth of 

piezometers, and hydraulic conductivity (K) in the two restored buffers (CREP and CRP), 

the established forest buffer, and the non-buffered control are shown in Table 2-1.  The 

range of piezometer depth varied during the shallow sampling in early 2004 from 0.7 to 

1.5 m below ground and during the 2004 nested piezometer installation depth from 1.1 to 

3.8 m below ground.  The range of hydraulic conductivity measured was 1.7x10-6 to 

2.0x10-4 cm sec-1 and indicated that soils in the buffers are a silty-clay mixture.  This 

measurement is consistent with soil profile observations noted during well drilling.  

Figure 2-4 is an example of the recharge in a piezometer during a slug test.  It took 

approximately 15 hours for the piezometer to recharge to 37% of the original hydraulic  
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Fig 2-4. Example of the hydraulic head response over time during a Hvorslev slug-test.  
The y-axis (h/ho) is the ratio of hydraulic head (h) to initial hydraulic head before 
piezometer was pumped dry (ho) on a logarithmic scale.  The time at 37% of piezometer 
recharge is T37 in equation 2-1. 
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head.  This time, 5.4x104 s, was T37 in equation 2-1 and along with the dimensions of the 

piezometer (r and R of 2.54 cm and L of 23 cm), K was calculated as 5.7x10-6 cm s-1. 

The presence of common agricultural contaminants in the groundwater under the 

CREP buffer is shown in the 2-D diagrams in Figure 2-5.  Nitrate decreased horizontally 

in the groundwater from the agricultural field through the buffer towards the stream and 

vertically within the buffer as groundwater approached the surface.  Chloride 

concentrations were consistent under the buffer (6.2 mM) until the stream edge 
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Fig 2-5. Cross-section of monitored groundwater in the CREP buffer.  The ground 
surface is the solid line and annual average water table is the thin line below.  
Agricultural contaminant concentrations are shown in relation to the depth of 
groundwater sampled in each piezometer and distance from the stream.  Nitrate and 
conductivity concentrations were the annual average of monthly measurements and the 
ions were from IC analysis of samples collected in January 2005.  Note that nitrate (NO3) 
concentrations are in µM, conductivity in mS cm-1, and sodium (Na+), magnesium 
(Mg+2), chloride (Cl-), and calcium (Ca+2) are in mM. 
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piezometer (10.3 mM) where some salt may have intruded from the tidal creek.  Salt ions 

may have also influenced the high average conductivity measurement of 2 mS cm-1 at this 

stream edge piezometer, which was approximately 3 times higher than near the crop 

fields.  Magnesium and calcium concentrations were high in the CREP buffer, but since 

the field edge sample was not analyzed, I can not determine any trend.  The decreasing 

pattern of NO3, salt water intrusion at the stream edge, and high Mg+2 and Ca+2 

concentrations throughout were also consistent in the CRP buffer (Table 2-3).  The 

established buffer however, is the lowest in elevation and had saltwater throughout.  In 

the mid-buffer and stream edge piezometers of the established forest, the salinity was 4 

and 7, respectively, indicating considerable salt intrusion.  There were no patterns in 

agricultural contaminant concentrations between the groundwater at the field edge and 7 

meters away at the edge of the ditch in the non-buffered control site.  

Table 2-3. Concentration of common agricultural contaminants and conductivity measured in groundwater at Radcliffe farm
 in January 2005.  High concentrations of Na+ and Cl- and high conductivity measurements may also indicate saltwater
 intrusion.

[Contaminant], mM      Conductivity, mS cm-1

Buffer Piezometer location NO3
- Na+ Cl- Mg+2 Ca+2

Annual average Standard error
CREP field edge1 171.8 8.8 6.2 n.a. n.a. 0.8 0.1

mid-buffer 123.9 2.2 6.2 0.3 0.3 0.8 0.0
stream edge1 1.2 4.6 10.3 1.2 1.2 2.0 0.8

Established forest field edge1 0.7 25.4 60.0 6.3 7.3 4.7 0.3
mid-buffer 0.1 73.5 107.2 10.0 12.3 10.7 0.4

stream edge2 0.1 108.8 108.9 13.7 7.3 11.6 0.6
CRP field edge1 184.8 2.9 11.7 0.8 0.5 0.4 0.0

mid-buffer 34.6 4.0 9.6 1.2 1.1 0.7 0.1
stream edge1 88.3 33.1 67.9 8.6 7.3 2.1 0.4

Non buffered field field edge 84.0 12.8 14.1 4.1 4.0 1.7 0.2
stream edge 99.3 3.5 13.9 3.1 4.7 1.7 0.1  

 

During the sampling period, from January 2004 to August 2005, rainfall at Horn Point 

Laboratory (3 miles from Radcliffe farm) was 10% less than the historical average (Table 

2-4).  Average monthly air temperature was comparable to historical averages through 

 44



most of the sampling period, although slightly cooler for some months (Table 2-4).  

Average groundwater temperature in the deep piezometer transects through each buffer 

exhibited a dampened seasonal pattern compared to air temperature (Fig 2-6).  At the 

warmest, groundwater temperature was almost as high as air temperature where sampled 

groundwater was closest to the ground surface in the non-buffered control site and 7 oC 

less than air where groundwater was the deepest in the CRP buffer.  During the coolest 

time of year, groundwater temperature was 5.5 oC warmer in the CRP buffer and 4 oC 

warmer in the other buffers where the sampled groundwater was shallower.  The response 

to air temperature was also delayed in groundwater (Fig 2-6).  For example, the coolest 

air temperature was measured in January, but the groundwater temperature was coolest 

two months later in March. 

 

Table 2-4. Total monthly rainfall and average monthly temperature at Horn Point Laboratory in Cambridge, 
MD during the sampling period and the historical averages of each.  During the sampling period, total 
rainfall was 67 cm less and average temperature was 1 oC cooler.

Rainfall, cm Temperature, oC

Month-Year 2004-2005 Historical average Difference 2004-2005 Historical average Difference

Jan-04 6.1 10.4 -4.3 -1 2 -3
Feb-04 5.2 8.0 -2.8 2 4 -2
Mar-04 6.2 11.3 -5.1 8 8 0
Apr-04 18.5 8.2 10.3 13 13 0

May-04 7.0 10.6 -3.6 21 19 2
Jun-04 4.5 8.2 -3.7 22 23 -1
Jul-04 17.5 11.0 6.6 25 26 -1

Aug-04 13.5 11.7 1.8 24 25 -1
Sep-04 7.6 9.8 -2.2 21 22 -1
Oct-04 1.2 7.8 -6.6 14 16 -2
Nov-04 10.8 8.7 2.1 10 10 0
Dec-04 6.6 9.3 -2.7 5 5 0
Jan-05 7.3 10.4 -3.2 2 2 0
Feb-05 5.1 8.0 -2.9 3 4 -1
Mar-05 11.3 11.3 0.0 5 8 -3
Apr-05 7.6 8.2 -0.6 13 13 0

May-05 12.3 10.6 1.8 15 19 -4
Jun-05 6.9 8.2 -1.3 23 23 0
Jul-05 6.6 11.0 -4.4 26 26 0

Aug-05 12.7 11.7 1.1 26 25 1

Total 174.5 194.1 -19.6 14 15 -1  
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Fig 2-6. Air and groundwater temperature (oC) during the study period from August 2004 
through August 2005.  Average monthly air temperature at Horn Point lab is shown by 
the large dotted line.  I measured the groundwater temperature once a month in all 
piezometers and points are average temperature throughout the CREP buffer (closed 
circles), established forest (open circles), CRP (closed triangles), and non-buffered 
control site (open triangles). 
 

I measured hydraulic head once a month and fluctuations over one year in each of 

the deep piezometers, shown in Figure 2-7.  In most of the piezometers, hydraulic head 

did not fluctuate much during the year except in the summer when evapotranspiration 

was high, and in some cases, the water table fell below sea level (Fig 2-7).  

Unfortunately, measurements were lacking between the beginning of June and the end of 

August, and this pattern is dependent on one measurement at the end of August 2005 in 

the middle of a regional drought.  If this pattern is real, the data from the end of 

September 2004 suggest the water table was high again by the fall.  The CRP buffer was 

the one site where the seasonal recharge pattern was more apparent, in which hydraulic 

head was the highest from December through the end of May (Fig 2-7).  The established 

forest was the buffer with the most salt water intrusion (Table 2-3), and hydraulic head 
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Fig 2-7.  Hydraulic head in each of the buffers measured once a month during the study 
period in the deep piezometers (except for August and April 2004 when I did not measure 
water table).  In the CREP, established forest, and CRP buffers, points represent the 
monthly measurement in the field edge1 piezometers (closed circles), field edge2 (open 
circles), mid-buffer (closed triangles), stream edge1 (open triangles), and stream edge2 
(closed squares).  
 

measurements in the streamside piezometers in the spring through summer were lower 

than in the other buffers.  When the water level in the stream edge piezometers was 

below sea level, tidal creek water may inundate the fine-grained sediment at the edge of 

the established forest buffer.  The hydraulic gradient (difference in groundwater height 

divided by distance) between the field edge piezometers and the stream edge piezometers 

in the CREP, CRP, and non-buffered control site did not fluctuate seasonally to a large 

extent, except between June and August 2005 when there was a reversal in gradient from 
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stream edge to field edge (Fig 2-8).  The established forest buffer exhibited a similar 

pattern throughout most of the year, but in March through May 2005, the water table in 

the stream edge piezometers were lower compared to the patterns in the other 

piezometers (Fig 2-7) and resulted in higher hydraulic gradients (Fig 2-8). 
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Fig 2-8. Horizontal hydraulic gradient in all buffers measured once a month during the 
study period in the deep piezometers (except for August and April 2004 when I did not 
measure water table).  Hydraulic gradient was calculated by the average hydraulic head in 
field edge piezometers minus the average hydraulic head in stream edge piezometer and 
dividing by the buffer width (∂h/∂l).  In June, hydraulic head was highest in the mid-
buffer piezometer (see Fig 2-6), so two points were added for that measurement to 
represent the gradient from field edge to mid-buffer (negative) and mid-buffer to stream 
(positive). 
 

Even though groundwater sampled through the transect in the established forest 

buffer was salty, detailed water table measurements from the automated pressure 

transducers show no signs of tidal fluctuations (Fig 2-9a).  This detailed observation 

period in October 2004 was 2 days after a rain event and the mid-buffer and stream edge 

piezometer may have still been responding to rain water recharge, while hydraulic head 

in the field edge piezometers was slowly decreasing after the rain event.  No tidal 

fluctuations were observed in this detailed data set, and the heavy clay soils with low 
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Fig 2-9. Detailed hydraulic head measurements in the field edge1, mid-buffer, and stream 
edge1 piezometers in the (a) established forest buffer and (b) CRP buffer.  Piezometer 
depths were roughly equal within each buffer except field edge1 in the established forest 
was roughly a meter deeper than the mid-buffer and stream-edge piezometers (Table 2-
1).  Measurements were recorded by an automatic pressure transducer every 30 minutes 
from 2 to 3 October 2004 in the established forest buffer and 12 to 14 October 2004 in 
the CRP buffer and were not influenced by any rain events in that time period. 
 

permeability in this buffer may prevent the movement of groundwater at tidal time scales.  

However, tidal fluctuations of 5 to 10 cm were observed in the stream edge of the CRP 

buffer and were dampened further inland where fluctuations were only 2 to 5 cm (Fig 2-

9b).  Even though salt water was not detected in the CRP field edge and mid buffer 

piezometers, the water table still fluctuated on a tidal cycle.  

Groundwater discharge from the buffers is shown in Figure 2-10.  Discharge was 

calculated using Darcy’s Law: 

 ( lhKAQ ∂∂= )        (eq. 2-4) 

where Q is the discharge in m3 m-1 day-1, K is the average hydraulic conductivity in the 
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( )GWSOFETPQag

where Qag is the water available for groundwater discharge from the agricultural field, P 

is annual precipitation, ET is annual potential evapotranspiration, OF is annual overland 

flow, and ∆GWS is the change in groundwater storage (all units in cm).  Annual 

 

These low discharge values are confirmed by a water balance calculation for the 

groundwater flowing into the buffers from the farm field.  I calculated the groundwater 

discharge from the farm field into the buffers using the following equation: 

buffer in m day-1, A is the cross-sectional area of flow in m3 m-2, ∂h is the change in 

hydraulic head between the field edge and stream edge in m, and ∂l is the width of the 

buffer in m.  I calculated cross-sectional area, A, by assuming a porosity typical of silt-

clay soils (50% of the volume of soil per area of aquifer, Dunne and Leopold 1978, 

Novotny and Olem 1994) and assuming the depth of unconfined aquifer typical of fine-

grained lowland of the Delmarva Peninsula (5 meters, Owens and Denny 1979, Lowrance 

et al. 1995).  Therefore the cross-sectional area I used for discharge calculations was 2.5 

m3 m-2 and describes the volume of soil per area of the unconfined aquifer on Radcliffe 

farm.  Hydraulic conductivity, K, was an average of measurements in each transect 

(Table 2-1).  In general, groundwater discharge through the buffers was very low on 

Radcliffe farm (Fig 2-10).  Discharge was highest in the CREP buffer and the non-

buffered control site and fluctuated between 0.0005 and 0.001 m3 m-1 day-1 through most 

of the year.  Discharge was generally lower in the established forest and CRP buffers at 

less than 0.0005 m3 m-1 day-1.  In the established forest, CRP buffer, and non-buffered 

control, groundwater flow was reversed in August (Fig 2-10).  In this case, tidal creek 

water may have been infiltrating the streamside portions of the buffers. 

Δ++−=      (eq. 2-5) 
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Fig 2-10. Groundwater discharge from each buffer during the study period using measurements from the deep piezometers.  The 
discharge calculation (eq. 2-4) uses average K in each buffer (Table 2-1), cross-sectional area of the unconfined aquifer (2.5 m3 m-2), 
and hydraulic gradient (Fig 2-8). 
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precipitation, P, is the total historical monthly precipitation at 115 cm for Horn Point 

Laboratory in Cambridge, Maryland (Table 2-4).  I calculated potential 

evapotranspiration (ET) from the Thornthwaite method that uses monthly air temperature 

as an index of energy available for evapotranspiration (Dunne and Leopold 1978).  

Potential evapotranspiration accounted for 81 cm in the water balance per year.  Overland 

flow was estimated using runoff curve numbers developed by the National Resources and 

Conservation Service (Figure 10-8 in Dunne and Leopold 1978).  The curve number is 

based on the hydrologic conditions on the farm field and used to predict the amount of 

runoff per storm event.  The curve number for Radcliffe farm was approximately 80 

based on the moderately-well drained soils and the practice of straight row-cropping 

(Tables 10-3 to 10-5 in Dunne and Leopold 1978).  T.R. Fisher compiled rainfall data 

from 1979 to 1990 from 9 weather stations on the Delmarva Peninsula and performed a 

frequency distribution on the number of events per year for specified rainfall amounts.  I 

multiplied the runoff curve number for each rainfall amount by the average number of 

events per year from this frequency distribution.  Overland flow, OF, was then the sum of 

the runoff for all the individual rain events, and this total runoff per year accounted for 27 

cm of the water balance.  Precipitation was high in 2003 at 151 cm and near normal in 

2004 at 112 cm as measured at Horn Point Laboratory in Cambridge, Maryland.  I 

assume that this 35% difference in annual precipitation between 2003 and 2004 is also 

the change in groundwater storage, ∆GWS.     

The water remaining in the water balance was available for groundwater recharge 

and eventual discharge into the established and restored buffers surrounding the field.  

This was only 5 cm or 4% of the 115 cm annual precipitation.  Based on the 2.5 m3 m-2 of 
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unconfined aquifer, I estimated that 0.125 m3 m-1 year-1 or an average of 0.0003 m3 m-1 

day-1 of groundwater was discharged from the field to the buffers.  This is comparable to 

the discharge measured out of the riparian buffers at Radcliffe farm (Fig 2-10) and 

suggests discharge into the buffers was roughly equal to discharge out of the buffers.  

Calculated by difference from the farm field discharge into the buffers, average discharge 

from the buffers measured over the sampling period from Figure 2-10 was approximately 

0.0001 m3 m-1 day-1 lower out of the established forest (>100 year old mixed forest) and 

CRP buffers (20 year old pine trees) than the estimated discharge from the field into the 

buffers.  This suggests groundwater moving from the farm field was utilized within the 

buffer by the transpiration from large tree biomass.  However, average discharge from the 

CREP buffer and non-buffered control was more than the groundwater input flowing into 

the buffers from the farm field, by 0.0005 and 0.0002 m3 m-1 day-1 respectively.  This 

suggests that not as much groundwater is being utilized in these two buffers, which have 

less vegetation than the CRP and established forests, and on average, groundwater is 

being recharged within the CREP and non-buffered control.  It is also possible that these 

calculations are affected by groundwater flow paths that were not parallel to the 

piezometers where I measured buffer discharge or by imprecision of the water budget. 

 Finally, I also measured the groundwater response to two rain events in the 

CREP, established forest, and CRP buffers and one rain event in the non-buffered control 

site.  Data was recorded by automated pressure transducers in the fall of 2004, but since 

there was no water table response to the little rainfall during the CRP site monitoring, 

another rain event was monitored in this buffer the following September 2005.  In Table 

2-5, water table increase was the difference in water table depth before the storm to the 
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highest water table measurement during or after the storm.  Time of peak response was 

the time between the largest rainfall recorded at 30 minute time intervals at Horn Point 

Laboratory during each storm to the time when the highest hydraulic head was recorded 

in each piezometer.  Hydraulic head increase and time to peak response varied between 

buffers and among the two rain events in each buffer (Table 2-5).  Water table increase 

was as high as 80 cm during a 1.6 cm rainfall and the peak in hydraulic head occurred 

after 1.5 hours to 19.5 hours after peak rainfall (Table 2-5).  These large increases in 

hydraulic head during a rain event are due to rainwater recharge and contribution from 

vadose zone moisture.  The approximate porosity, or the percentage of soil volume with 

space available for groundwater, in the soils at Radcliffe farm is 50%.  The voids in the 

soil can be filled by water with the potential to be stored (i.e., field capacity) and water  

 

Table 2-5. Water table response to 7 separate rain events.  Two events were measured in all buffers except the 
non buffered control where only 1 event was measured.  Water table increase is the total rise in groundwater height from 
before the storm to the peak level after the storm.  Time of peak response after rain is the amount of time it took for the 
groundwater to fully respond after the rainfall.  

             Rain event 1  ‡               Rain event 2  §
Water table Time of peak response Water table Time of peak response

Buffer Piezometer increase, cm  after rain, hrs:min increase, cm  after rain, hrs:min

CREP field edge1 45.3 9:30 49.5 11:00
field edge2 51.3 5:00 16.1 13:00
mid-buffer 52.0 15:30 10.5 11:00
stream edge1 80.3 4:30 42.6 11:30
stream edge2 79.9 10:00 45.1 11:30

Established forest field edge1 39.7 1:30 4.7 15:00
field edge2 64.0 2:00 4.6 6:30
mid-buffer 51.0 † †
stream edge1 15.2 15:00 23.7 4:30
stream edge2 77.4 1:00 19.2 10:30

CRP field edge1 21.3 19:30 47.9 2:30
mid-buffer 21.5 19:00 9.0 12:00
stream edge1 24.5 15:30 4.4 9:00

Non buffered control field edge 49.2 7:30
stream edge 44.9 7:30

Notes:
† Water table did not peak after rain event 1 in the following week of data records
‡ Rain event 1: The first rain event measured in the CREP buffer was 1.6 cm, 2.9 cm in the Established forest buffer, 
   6.5 cm in the CRP buffer, and 2.6 in the Non buffered control.
§ Rain event 2: The second rain event measured in the CREP buffer was 1.3 cm, 1.0 cm in the Established forest buffer, 
   and 3.0 cm in the CRP buffer.

†
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Fig 2-11. Example of groundwater response to a rain event in the CREP buffer.  The bars 
are hourly rainfall totals and the duration of the 1.6 cm rain event was from the evening 
of September 14 through the morning of September 15.  The points represent 
measurements of hydraulic head recorded by an automatic pressure transducer once every 
30 minutes. 
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with the potential to flush out of the soil (i.e., specific yield).  Silty soils have an 

approximate specific yield of 18% (Fetter 2001) and the remaining 32% of aquifer 

volume can move out of the vadose zone into the subsurface groundwater during a storm 

and contribute to the measured increase in hydraulic head (Table 2-5).   

An example of a full record of water table response to a rainfall is shown in 

Figure 2-11, which is rain event 1 in the CREP buffer (Table 2-5) in September 2004.  

Groundwater in the two stream edge piezometers reached approximately the same levels, 

although stream edge1 reached the maximum level much faster than stream edge2 (Fig 2-

11).  I found no obvious cause for the unusually rapid recharge in the stream edge 1 

piezometer.  I observed a similar pattern in the two field edge piezometers, and the rate of 

decrease in hydraulic head after the storm was also faster in field edge1 in comparison to 

field edge2.  Before the rain event, the hydraulic head was slightly higher in the stream 

edge piezometers than the rest of the buffer and was magnified during the rain event to an 

average of 45 cm difference from stream to field edge (Fig 2-11).  However, the 

hydraulic gradient from field to stream was positive again by the monthly water table 

measurement 5 days later (Fig 2-7). 

 

Nutrients 

 Presented in Table 2-6 are average nutrient concentrations in the shallow 

piezometers from January to May 2004 and in the deep nested piezometers from August 

2004 to 2005.  In August of 2005 I drilled temporary holes in the agricultural field 

upslope of the CREP buffer and, since the CRP and established forest buffer are adjacent 

to each other on the same side of the field, I drilled in an area upslope between these two  



Table 2-6.  Average nutrient concentrations and standard errors in subsurface groundwater in two sampling periods: January to May 2004 in shallow piezometers and August 2004 to August 2005 in 
deeper wells (see Table 2-1 for piezometer depths).  In August 2005, subsurface groundwater was measured in the field and surface water from the stream was also measured.

Average nutrients over sampling period, μM 

Buffer Piezometer nest Piezometer location Monthly sampling period NH4 std error NO3 std error TDN std error PO4 std error TDP std error

CREP in field Aug 2005 1.77 249.5 514 0.170 0.170
field edge Jan - May 2004 1.07 0.35 33.5 9.5 49.4 11.5 0.065 0.021 0.065 0.021

shallow mid-buffer Jan - May 2004 0.69 0.23 1.1 0.4 15.1 6.5 0.024 0.015 0.330 0.172
stream edge Jan - May 2004 2.72 0.45 0.9 0.2 17.1 7.5 0.002 0.002 0.205 0.155
field edge1 Jan - May 2004 1.17 0.20 171.8 32.3 217.8 35.7 0.728 0.476 1.337 1.022
field edge2 Aug 2004-2005 0.91 0.20 267.6 10.4 321.9 12.5 0.169 0.064 0.236 0.075

deep mid-buffer Aug 2004-2005 1.08 0.28 123.9 9.2 147.7 11.0 0.537 0.413 0.906 0.632
stream edge1 Aug 2004-2005 7.49 1.61 1.2 0.3 30.1 4.5 0.217 0.065 0.340 0.098
stream edge2 Aug 2004-2005 4.69 1.13 0.5 0.1 32.8 8.2 0.494 0.339 0.648 0.417

stream Aug 2005 0.54 0.7 21.3 0.350 0.960

Established forest in field Aug 2005 3.64 153.0 185.0 0.110 0.110
field edge Jan - May 2004 2.19 0.14 0.7 0.1 16.0 6.7 0.002 0.002 0.002 0.002

shallow mid-buffer Jan - May 2004 5.59 0.42 0.7 0.1 17.0 7.7 0.000 0.003 0.035 0.031
stream edge Jan - May 2004 32.27 0.51 0.9 0.2 42.4 12.7 0.009 0.010 0.785 0.242
field edge1 Jan - May 2004 16.10 1.19 0.7 0.1 24.6 1.8 0.103 0.018 0.154 0.056
field edge2 Aug 2004-2005 9.48 0.96 1.5 1.0 22.0 3.1 0.063 0.026 0.134 0.074

deep mid-buffer Aug 2004-2005 14.78 1.49 0.6 0.1 73.1 38.6 0.099 0.032 0.170 0.052
stream edge1 Aug 2004-2005 34.02 1.33 0.5 0.1 37.5 5.0 0.094 0.023 0.142 0.045
stream edge2 Aug 2004-2005 16.78 1.21 0.5 0.1 43.2 20.4 0.117 0.026 0.177 0.042

CRP in field Aug 2005 3.07 25.0 28.5 0.050 0.070
field edge Jan - May 2004 0.05 0.05 1.4 0.4 10.2 4.2 0.016 0.018 0.018 0.018

shallow mid-buffer Jan - May 2004 0.28 0.18 3.1 0.8 14.3 6.1 0.002 0.002 0.002 0.002
stream edge Jan - May 2004 0.49 0.31 0.6 0.1 10.6 4.5 0.016 0.018 0.374 0.303
field edge1 Jan - May 2004 2.90 0.37 184.8 29.9 217.0 31.4 1.329 0.930 1.363 0.927
field edge2 Aug 2004-2005 3.78 0.71 218.6 51.0 263.0 59.6 0.125 0.051 1.037 0.912

deep mid-buffer Aug 2004-2005 1.10 0.16 34.6 9.4 51.5 10.0 0.049 0.020 0.111 0.038
stream edge1 Aug 2004-2005 2.47 0.50 88.3 24.5 114.2 25.7 1.240 0.826 2.063 1.019
stream edge2 Aug 2004-2005 0.47 0.23 140.2 32.1 169.9 34.4 1.653 0.741 1.819 0.780

stream Aug 2005 1.59 0.3 20.9 0.240 0.960

Non buffered control shallow stream edge Jan - May 2004 1.05 0.44 131.3 6.2 160.0 13.1 0.057 0.046 0.063 0.043
deep field edge Aug 2004-2005 8.50 2.57 84.0 35.4 158.8 45.6 0.154 0.061 0.166 0.060

stream edge Aug 2004-2005 9.47 2.51 99.3 34.1 116.3 34.1 1.541 0.975 1.560 0.972
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buffers.  I drilled holes to approximately half a meter below the water table, pumped the 

temporary well dry, and retrieved a groundwater sample after allowing the well to 

recharge for approximately 3 hours.  The same day I also collected surface water samples 

from the tidal creek below the CREP and CRP buffers.  Nutrient analyses from these “in-

field” and “tidal creek” samples are also shown in Table 2-6. 

 The measurements suggest that spatial and temporal patterns in nutrient 

concentrations may exist in some buffers.  In the established forest buffer, ammonium 

concentrations were high in the deep nested piezometers throughout the year, ranging 

from 9.5 to 34 µM, but concentrations were approximately 60 to 90% less in the 

shallower piezometers (Table 2-6).  Ammonium, nitrate, and total dissolved nitrogen 

concentrations were consistent throughout the sampling periods in the CREP buffer, 

except for a spike in NH4 concentration in the stream edge piezometers in August 2005.  

However, I did observe seasonal patterns in nitrogen concentrations in the CRP buffer 

and non-buffered control site.  Through most of the CRP transect, NH4, NO3, and total 

dissolved N were lowest in the winter (Fig 2-12a).  The patterns in the non-buffered 

control site were similar (Fig 2-12b).  However, peak NH4 concentrations were 2 to 10 

times higher than concentrations in the CRP buffer, peaked later in the spring, and 

remained high through the last sampling day in August.  Groundwater in the stream edge 

piezometer had the highest NO3 and total dissolved concentrations in the early spring, but 

the high concentrations did not appear in the field edge until late spring to summer (Fig 

2-12b). 
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  Phosphate and total dissolved phosphorus were consistently very low throughout 

the sampling period in most of the piezometers (Table 2-6).  However, eight piezometers 

exhibited high total dissolved P concentrations in the late spring through fall (Table 2-7).  

Total dissolved P was composed entirely of PO4 at low concentrations in the winter to 

early spring, but at warmer times of the year, PO4 does not account for all of the total 

dissolved P (Table 2-7).  In May through October, 0 to 84% of total dissolved P was PO4 

and, in this case, dissolved organic P may account for the remaining total dissolved P.  

Oxygen concentration was also measured in June and August 2005 and was less than 100  

Fig 2-12. Monthly ammonium (NH4), nitrate (NO3), and total dissolved nitrogen (TDN) 
concentrations in the (a) CRP buffer and (b) non-buffered control from August 2004 
through August 2005.  Measurements, in µM, are shown for each piezometer: field edge1 
(closed circles), field edge2 (open circles), mid-buffer (closed triangles), stream edge1 
(open triangles), and stream edge2 (closed squares). 
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Table 2-7.  Total dissolved P in 8 piezometers that showed high concentrations in the summer and fall.  Phosphate accounts for most of the TDP during low 
concentrations, but in the summer, PO4 accounts for less and more organic P could be contributing to high TDP concentrations.  Dashes represent when P was 
less than analytical detection level.

CREP                  CRP Non Buffered 

Piezometer field edge1 mid-buffer stream edge2 field edge1 field edge2 stream edge1 stream edge2 stream edge

[TDP], µM January 0.141 0.089 0.018 0.063 --- --- 0.037 0.089
March 0.025 --- --- 0.174 --- --- --- 0.124
April 0.060 --- --- 0.234 --- --- 0.184 0.234
May 0.500 0.130 4.345 0.230 0.079 0.230 0.030 0.110
June 0.615 0.630 0.530 0.260 0.320 0.170 0.150 5.500

August 10.500 6.500 0.150 0.830 --- 5.860 1.260 8.880
September 0.787 1.123 0.470 9.626 8.316 6.676 5.846 0.292

October 0.476 0.401 0.290 1.353 0.494 7.547 5.109 0.197
November 0.224 0.071 0.607 0.633 0.122 0.148 5.071 0.122
December 0.046 0.117 0.071 0.224 --- --- 0.505 0.046

PO4/TDP, % January 100 100 100 100 --- --- 100 100
March 100 --- --- 100 --- --- --- 100
April 100 --- --- 100 --- --- 100 100
May 100 100 80 100 38 100 100 100
June 100 100 72 31 13 18 13 100

August 47 65 100 81 --- 76 52 100
September 53 4 41 100 4 0 84 83

October 60 27 12 100 72 100 100 30
November 100 100 100 100 100 100 100 100
December 100 61 100 100 --- --- 100 100
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Fig 2-13. Dissolved oxygen concentrations in all piezometer (a) versus hydraulic head 
measurements in June (closed circles) and August (open circles, left panel) and (b) versus 
total dissolved phosphorus (TDP) in August (right panel). 
 

µM in all piezometers (Fig 2-13a).  In August, O2-O concentration increased with height 

of hydraulic head (r2=0.45**), although a rain event prior to the June sampling may have 

mixed the groundwater and obscured the relationship on that date.  Also in August, the 

five piezometers that exhibited total dissolved P concentrations greater than 1 µM had 

O2-O concentrations less than 20 µM (Fig 3-13b).   

 Vertical and horizontal gradients in average nitrate concentrations are shown in 

the cross-sectional diagrams in Figure 2-14.  In the restored riparian buffers, nitrate 

decreases horizontally from the agricultural fields towards the tidal creek and vertically 

from deeper to shallow groundwater.  An exception is the deep mid-buffer piezometer in 

the CRP buffer where nitrate concentration is 2.5 to 4 times lower than in the stream edge 

piezometers.  Upslope of the established buffer nitrate concentration is 153 µM, but in 

the buffer, nitrate is less than 2 µM throughout the transect (Fig 2-14).  The range of 

nitrate concentrations in the non-buffered control site were 84 to 131 µM and no 

reductions occurred from the agricultural field to the ditch.  Using average groundwater 
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discharges from Fig 2-10 and annual average NO3 in stream edge piezometers, I estimate 

that annual NO3 discharges from each buffer are the following: 0.26 µmol NO3-N m-1 yr-1 

in the CREP buffer, 10 µmol NO3-N m-1 yr-1 in the CRP buffer, 0.02 µmol NO3-N m-1  

yr-1 in the established forest buffer, and 19 µmol NO3-N m-1 yr-1 in the non-buffered 

control site.  Here I assumed that annual average NO3 concentrations are low throughout 

the unconfined aquifer at the tidal creek edge.  I sampled groundwater 1 to 4 m below 

ground at the tidal creek edge but am making estimates for the entire 5 m of unconfined 

aquifer.  Future research at this site should include an attempt to install piezometers down 

to the confining layer. 
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Fig 2-14. Cross-section of monitored groundwater in each buffer at Radcliffe farm and 
the vertical and horizontal gradients of nitrate concentrations.  The ground surface is the 
solid line and annual average water table is the thin line below.  Nitrate concentrations, 
µM, are shown in relation to the depth of groundwater sampled in each piezometer and 
distance from the stream. 
 

  The results of the two groundwater samples collected at the other site, 

Chesterville farm, in October 2003 are shown in Figure 2-15.  Piezometer installation 
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was similar to the Radcliffe farm (Fig 2-3) except groundwater was collected from one 

piezometer at the field edge in the CREP and CRP buffer, one piezometer at the stream 

edge in the CREP buffer, two nested piezometers in the middle of both buffers, and three 

nested piezometers at the stream edge of the CRP buffer (Fig 2-15).  I did not survey the 

land surface at this farm but estimated ground elevation from work done by Böhlke and  
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Fig 2-15. Cross-section of monitored groundwater in the CREP and CRP buffer at the 
Chesterville Branch farm and the vertical and horizontal gradients of nitrate 
concentrations.  The estimated ground surface is the solid line and water table in October 
2004 is the thin line below.  Nitrate concentrations, µM, are shown in relation to the 
depth of groundwater sampled in each piezometer and distance from the stream. 
 

Denver (1995) in the same watershed of Chesterville Branch.  The measurements 

included piezometer depth below ground surface, depth below ground to hydraulic head, 

and nitrate concentrations.  Depth to hydraulic head varied from 2 m next to the farm 

field to 20 cm next to the stream (Fig 2-15).  Nitrate concentrations in groundwater 

entering the buffers were approximately 2 to 4.5 times higher than in groundwater 
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entering the CREP and CRP buffers at Radcliffe farm (Fig 2-14, Fig 2-15).  I did detect a 

horizontal gradient in nitrate concentrations, decreasing from field edge through the 

buffers to the stream edge (Fig 2-15).  Nitrate concentrations decreased in the CREP 

buffer from 938 to 398 µM and from 414 to 3 µM in the CRP buffer.  This is a 58 to 99% 

reduction in NO3 in groundwater under the restored buffers at the Chesterville farm, 

although I have to assume that I was sampling along the same groundwater flow path 

since I did not collect detailed hydraulic measurements at this site. 

 

Denitrification 

 Dissolved gas analysis on the Membrane Inlet Mass Spectrometer revealed a 

metabolically active environment in the groundwater at Radcliffe farm.  Oxygen 

concentrations were well below saturation (Fig 2-13), and excess N2 was present in the 

groundwater compared to concentrations expected in water at equilibrium with the 

atmosphere (Table 2-8).  Dissolved gas concentrations in water in equilibrium with the 

atmosphere at average annual temperature (15oC) are the following: 577.5 µM N2-N, 

311.3 µM O2-O, and 15.3 µM Ar.  In contrast, oxygen in groundwater varied from 13.4 

to 94.3 µM in June and 3.4 to 100.2 µM in August (Table 2-8, Fig 2-13), and all 

groundwater samples were suboxic or anoxic (as defined by Böhlke and Denver 1995).  

Air temperature fluctuations over a year causes a variation of ±20% in saturated N2 

concentrations or, if assuming recent and local infiltration, a 18% increase in saturation 

concentration in June (air temperature of 23oC) and an 14% increase in saturation 

concentration in August (air temperature of 25oC).  Average annual temperature has been 

used by Mookherji et al. (2003) to calculate the concentration of nitrogen entering the 



Table 2-8. Nitrogen (N2), oxygen (O2), and argon (Ar) measured in groundwater samples in June and August 2005 using the Dissolved Gas Analyzer of Kana et al. (1994).  Excess N2 is calculated  
assuming initial N2 in water entering the groundwater is equilibrated with the air during recharge at 577.5 µM, based on solubility of N2 gas at an average annual temperature of 15oC.

Jun-05 Aug-05
        measured on DGA, µM calculated, µM         measured on DGA, µM calculated, µM

Buffer Piezometer N2-N O2-O Ar N2-N/Ar O2-O/Ar excess N2 N2-N O2-O Ar N2-N/Ar O2-O/Ar excess N2

CREP field edge1 706.6 31.1 16.5 42.8 1.9 129.1 668.0 15.9 16.0 41.6 1.0 90.5
field edge2 708.0 27.9 16.5 42.9 1.7 130.5 677.9 19.1 16.3 41.5 1.2 100.4
mid-buffer 722.4 37.9 16.1 44.8 2.3 144.9 688.9 8.7 16.4 42.1 0.5 111.4

stream edge1 694.9 14.8 16.1 43.1 0.9 117.4 687.4 5.0 15.6 39.8 0.3 109.9
stream edge2 690.9 34.9 16.1 43.0 2.2 113.4 677.6 3.4 15.6 39.4 0.2 100.1

Established forest field edge1 732.1 13.4 17.0 43.2 0.8 154.6 683.3 8.5 16.3 41.8 0.5 105.8
field edge2 663.7 51.0 16.3 40.7 3.1 86.2 676.5 4.2 16.3 41.6 0.3 99.0
mid-buffer 676.5 48.5 16.5 41.0 2.9 99.0 577.8 100.2 15.0 38.6 6.7 0.3

stream edge1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
stream edge2 712.0 21.8 15.6 45.6 1.4 134.5 530.9 82.6 13.7 38.6 6.0 -46.6

CRP field edge1 765.9 22.4 16.1 47.4 1.4 188.4 753.6 29.6 16.5 45.7 1.8 176.1
field edge2 706.4 14.2 15.7 44.9 0.9 128.9 749.4 12.8 16.7 44.8 0.8 171.9
mid-buffer 667.5 94.3 16.5 40.4 5.7 90.0 741.6 30.0 16.1 43.2 1.9 164.1

stream edge1 693.2 50.7 16.6 41.7 3.1 115.7 726.0 18.9 17.1 42.3 1.1 148.5
stream edge2 751.2 16.3 17.1 44.0 1.0 173.7 762.0 15.4 17.9 42.5 0.9 184.5

Non buffered control field edge 672.5 26.4 16.6 40.5 1.6 95.0 559.2 61.3 14.1 39.5 4.3 -18.3
stream edge 656.7 51.0 16.6 39.6 3.1 79.2 622.3 3.8 14.8 42.1 0.3 44.8
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groundwater at saturation and will also be used in the calculations here; however, it is 

important to note that most groundwater recharge in this area occurs during the winter 

when groundwater temperature is lower (Fig 2-6) and N2 solubility is higher (Staver and 

Brinsfield 1998).  The range of average N2-N/Ar ratios was 39.6 to 47.4 in June and 38.6 

to 45.7 in August (Table 2-8) in contrast to the expected N2-N/Ar ratio of 37.9 based on 

an average groundwater recharge temperature and no denitrification.  Elevated ratios 

suggest denitrification occurred along the groundwater flow path between recharge and 

sampling from the piezometers.  Excess N2 gas was present in all piezometers except two 

piezometers in August, and the excess N2 measured in the field edge piezometers suggest 

that denitrification may be occurring under the farm field prior to entering the buffers 

(Table 2-8).  The range of excess N2 was 79.2 to 188.4 µM N2-N in June and -46.6 to 

184.5 µM in August (Table 2-8).  The excess N2 presented in Table 2-8 was the 

minimum NO3 denitrified from the time of recharge in the agricultural field and along the 

groundwater flow paths before sampled from each piezometer.  The two negative 

concentrations in August from the stream edge piezometer in the established forest buffer 

and the field edge piezometer in the non buffered stream suggest this groundwater may 

have recharged at a higher temperature, with less dissolved gas, than the annual average 

temperature of 15oC during recharge.   

Since salt intrusion was likely in the established forest buffer and the stream 

edges of the CRP and CREP restored buffers (Table 2-3), excess N2 can only be used to 

calculate denitrification of agriculturally-derived groundwater in the restored buffers 

from the field edge to the mid buffer piezometers.  I must also account for degassing 

between the piezometers, the process in which air bubbles escape and strip dissolved 
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gases from the groundwater.  This may occur where hydrostatic pressure decreases 

between piezometers (Mookherji et al. 2003) and where gas escapes from the 

groundwater through spaces between the soil particles or macropores in the soil profile 

(Blicher-Mathiesen et al. 1998).  When this occurs, N2 and Ar are stripped from the 

groundwater at a predictable amount as a function of their partition coefficients (see eq. 

2-2).  In June, 39 µM N2-N was estimated to have degassed between the field edge and 

mid buffer piezometers in the CREP buffer using eq. 2-2, and in August, 45 µM N2-N 

was degassed between the same piezometers in the CRP buffer based on the decrease in 

Ar concentrations.  These corrections were applied to the data presented in Table 2-8.   

In contrast to the pattern in the CREP buffer, N2 in the CRP buffer decreases 

between the field edge and mid-buffer piezometers more than can be accounted for by 

decreases in Ar, even after I applied the correction to the N2 concentrations for degassing 

(see eq. 2-2).  I could not detect denitrification along this transect in the CRP buffer since 

measurements of N2 were not increasing along the groundwater flow path.  However, 

excess N2 was still present and may suggest that (1) denitrification is occurring under the 

crop fields and the excess N2 is lost in the buffer or (2) infiltrating water with similar 

amounts of Ar but less N2 dilutes the excess N2 measurement.   

 However, N2 does increase from the field edge to the middle of the CREP restored 

buffer (Table 2-8).  Excess N2-N along this flow path increases between 11 and 21 µM 

during the two sampling periods.  I used these measurements of N2 and average 

measurements of hydraulic conductivity in the CREP buffer (7.8x10-2 m day-1) and cross 

sectional area (i.e., 5 m unconfined aquifer with 50% porosity) to calculate a 

denitrification rate.  Before accounting for the potential dilution of excess N2 from 
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infiltrating groundwater (to be addressed in the next section), denitrification in the upper 

portion of the CREP buffer removed between 11 and 21 kg N ha-1 yr-1 in June and 

August. 

 

Nitrate reduction processes 

 Measurements of NO3 concentrations, excess N2, Cl- concentrations, and 

hydraulic conductivity (K) allowed me to estimate the relative contributions of 

denitrification and dilution to total nitrate reductions observed in the CREP buffer at 

Radcliffe farm.  Monthly nitrate concentrations decreased from the agricultural field edge 

to the middle of the CREP buffer by 23 to 168 µM between August 2004 and August 

2005 (i.e., based on the raw monthly data used to calculate annual averages in Table 2-6).  

When multiplied by cross-sectional area of the unconfined aquifer (A = 2.5 m3 m-2) and 

the time it takes for groundwater to flow from the field edge to mid buffer (i.e., 10 

m/7.8x10-2 m day-1 = 128 days), this was a total reduction of 23 to 167 kg NO3-N ha-1  

yr-1.  Dilution from low-nitrate rainwater, denitrification in the anoxic groundwater, and 

plant uptake all contribute to this reduction in nitrate concentrations. 

I estimated the relative contribution of dilution in the young restored buffer (CREP) 

by using the difference in Cl- concentrations between the non-buffered control site, where 

no dilution was occurring at the edge of the field, and the CREP site, where rainfall 

filtered through the buffer without contributing any agricultural contaminants to the 

subsurface groundwater (Spruill 2000).  Chloride concentrations were 6.2 mM in the field 

and mid buffer piezometers of the CREP buffer and 14 mM in the non-buffered control 

(Table 2-3, Fig 2-16).  This represented a 56% dilution in the CREP buffer in comparison 
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with the non-buffered control site.  When applied to the Cl- concentrations in the CRP 

buffer (Table 2-3), the comparison revealed a 24% dilution by rainfall from the field edge 

to the middle of this buffer.  These estimates were within the range of previous reports of 

dilution in riparian buffers from 35 to 90% (Speiran 1996, Spruill 2000, Maitre et al. 

2003).  

Denitrification was also estimated using data collected with the N2/Ar method in 

June and August 2005 (calculated in the last section).  However, since dilution of 

rainwater was a dominant process in the CREP buffer that may have reduced 56% of the 

nitrate in the groundwater, the rainwater with no excess N2 also has the potential to 

infiltrate the buffer and dilute 56% of the excess N2 measurements made in June and 

August.  The measurements of 11 and 21 µM (Table 2-8) may reflect excess N2-N 

concentrations of 25 and 48 µM that were actually produced in the CREP buffer; 

therefore, including potential dilution of excess N2, denitrification may have accounted 

for a reduction of at least 25 and 48 kg N ha-1 yr-1 in June and August.  When the NO3-N 

decrease from the field edge to mid-buffer is 23 kg NO3-N ha-1 yr-1, denitrification may 

be the dominant nitrate reduction process in the buffer.  When the NO3-N decrease is the 

greatest, at 167 kg NO3-N ha-1 yr-1, denitrification may only account for 15 to 29% of this 

NO3-N decrease (Table 2-8, Fig 2-16). 

After accounting for dilution and denitrification in the CREP buffer, the 

remaining reduction at the maximum N loss was assumed to be plant uptake.  The 

difference of total reduction (167 kg N ha-1 yr-1) and estimated dilution and denitrification 

was a reduction of up to 13 kg NO3-N ha-1 yr-1 attributed to plant uptake (Fig 2-16).  This 

is in the lower range of removal calculated in other coastal plain forests, 15 to 52 kg N 
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ha-1 yr-1, as net incorporation of N into plant biomass (Peterjohn and Correll 1984, 

Lowrance et a. 1984).   

 

 

Fig 2-16. Conceptual diagram of groundwater cross-section at Radcliffe farm and the 
nutrient processes estimated when the difference in NO3-N concentrations in the CREP 
site was at a maximum during the study. 
 

 

Discussion 

Hydraulic characteristics and connectivity 

The ability of riparian forests to intercept agricultural nutrients depends greatly on 

the hydrogeologic conditions at each individual site (Phillips et al. 1993, Staver and 
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Brinsfield 1996, Burt et al. 2002).  Buffers have a limited ability to reduce groundwater 

nitrate if the biologically active riparian zone is not along the flow path of nitrate 

enriched groundwater.  For this reason, this study on the effectiveness of restored riparian 

buffers to reduce groundwater nitrate included measurements of the hydraulic 

characteristics at Radcliffe farm. 

Characterizing the hydrology on the farm and in the buffers required making 

some assumptions.  First, due to the high water table and lack of equipment for drilling in 

very wet, unconsolidated soils, I was not able to drill down to the confining layer due to 

wall collapse.  The deepest well was in the CRP buffer at 3.8 m below the ground surface 

(approximately 2 m below sea level).  As a result, I was forced to assume that the 

unconfined aquifer at this farm is 5 m deep, similar to other areas in this 

hydrogeomorphic region (Owens and Denny 1979).  Since the soils at Radcliffe farm are 

a mixture of silty clay loams, I assumed a porosity of 50% volume (Dunne and Leopold 

1978, Novotny and Olem 1994); therefore, in calculations of aquifer volume I used a 2.5 

m3 water m-2 aquifer area.  Porosity of the sand/clay mixture of soils at Radcliffe farm 

may vary between 45 to 55% volume.  This 5% volume error would change the discharge 

calculations from eq. 2-4 and results in Figure 2-10 by ±10%.  I also assumed that the 

groundwater flow path is parallel to the buffers along with the decreasing ground 

elevation (Table 2-1 and 2-2) and the positive hydraulic gradient from field edge to 

stream edge throughout most of the year (Fig 2-8).   

Since Radcliffe farm is in a low-lying area next to a tidal creek, salt intrusion into 

the stream-side buffers is common.  This contention is supported by three types of 

measurements during the study.  First, conductivity measurements throughout the year 
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and chloride measurements in January 2005 are high in the stream edge piezometers of 

the CREP and CRP buffers.  This was also observed throughout the entire transect in the 

established forest buffer (Table 2-3), where salinity was as high as 7 and comparable to 

the salinity of local creeks.  Secondly, I observed a reversal in hydraulic gradient in the 

non-buffered control, CRP, and established forest buffers in August (Fig 2-8).  In the 

summer when evapotranspiration is high, the water table lowers in the buffers (Fig 2-7), 

and this may allow salt water from the adjacent tidal creek to inundate the edges of the 

forest buffers.  Lastly, longer records of hydraulic head collected by automated pressure 

transducers show tidal fluctuations throughout the CRP buffer (Fig 2-9b).  The 

fluctuations in hydraulic head were 5 to 10 cm in the stream edge piezometers and 

weakened to less than 5 cm in the field edge piezometers.  I did not detect salt water from 

the tidal creek in the mid-buffer or field edge piezometers, but the tidal cycle in the 

adjacent creek may affect the hydraulic pressure in the groundwater in this buffer.  

However, I detected the highest salt concentrations in the established forest buffer (Table 

2-3) but not any tidal fluctuations (Fig 2-9a).  Hydraulic conductivity, K, is 2 to 7 times 

higher in the CRP buffer than in the established forest (Table 2-1).  This low K in the 

established forest may prevent hydraulic pressure fluctuations in the groundwater at tidal 

time scales, whereas more permeable soils in the CRP buffer may allow faster responses 

to the changing tides. 

Rainfall and tidal creek water have low nitrate concentrations and therefore dilute 

nitrate in the groundwater under the buffers.  Tidal creek water may penetrate the soils in 

the streamside portion of the buffers (or the entire buffer in the case of the established 

forest) during high tides or in the summer when the hydraulic gradient is reversed (Fig. 2-
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8).  This may have influenced the very low annual average nitrate concentrations in the 

CREP stream edge and throughout the established forest buffer (Table 2-6, Fig 2-14).  

Low nitrate precipitation (38 µM, Rochelle-Newall submitted) falling on the buffers and 

infiltrating through the unfertilized soils may also dilute the upper portion of the saturated 

zone (Spruill 2000), which I observed from the lower nitrate concentrations in the 

shallow piezometers (Table 2-6, Fig 2-14).  The lack of these nitrate and chloride patterns 

at the control site suggest dilution is not an important process where buffers do not exist 

and provide a benchmark to measure the importance of the dilution process in the 

established and restored buffers.  Differences in Cl- concentrations between the control 

site and the restored buffers suggest that groundwater is diluted by 56% in the CREP 

buffer and 24% in the CRP buffer.  In these restored buffers, rain water may be 

contributing significantly to the NO3 reductions observed along these flow paths (Fig 2-

14).  It is important to note that the Cl- measurements were made in January, when the 

water table was high (Fig 2-8) at the time of year when evapotranspiration ceases and 

rainwater recharges the groundwater.  Measurements in the summer may also reveal high 

dilution when evapotranspiration in the buffers removes high-nitrate groundwater, lowers 

the water table, and infiltrating rainwater reduces groundwater nitrate concentrations.  

The 57% less dilution estimated in the CRP buffer as opposed to the CREP buffer may be 

due to the 1 to 2 m deeper sampling depth (Table 2-1) or the greater tree biomass and 

more transpiration.  Rainwater is likely to dilute the upper portions of the subsurface 

groundwater the most and have less effect with greater depth.  The difference in dilution 

estimates may also depend on differences in transpiration between sites, where the 20 

year old pine trees have more biomass and utilize more water from the subsurface 
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groundwater than the 7 year old trees in the CREP buffer. 

Low groundwater nitrate concentrations at the stream edge of the buffers and low 

groundwater discharge through the buffers suggests nitrate from Radcliffe farm is not 

enriching the adjacent tidal creek.  I estimate that nitrate discharge is lowest from the 

established forest buffer (0.02 µmol NO3-N m-1 yr-1) and highest from the non-buffered 

control (19 µmol NO3-N m-1 yr-1).  The low hydraulic gradients, low hydraulic 

conductivities, and shallow unconfined aquifer result in very low groundwater discharges 

of less than 0.001 m3 m-1 day-1 (eq. 2-3, Fig. 2-10).  Net groundwater discharge per day 

was measured by Staver and Brinsfield (1996) along the Wye River, another tidal area on 

the Delmarva Peninsula, and they observed groundwater discharge much higher than the 

observations at Radcliffe farm.  Discharge at the Wye River site was less than 0.1 m3 m-1 

day-1 in the summer and greater than 0.2 m3 m-1 day-1 in the winter but fluctuated greatly 

on a daily basis depending on the tide (Staver and Brinsfield 1996).  The discharge 

measurements at Radcliffe farm were based on one hydraulic head measurement per 

month and tidal fluctuations (especially in the CRP buffer, Fig 2-9b) may influence the 

discharge calculations at Radcliffe farm.  The hydraulic conductivities (K) on Radcliffe 

farm (2 to 200x10-6 cm s-1, Table 2-1) are also much lower than the K measured in the 

sandy sediments at the Wye River site of 10,000x10-6 cm s-1 (Staver and Brinsfield 1996), 

and probably accounts for much of the difference between the two sites.  Future studies at 

Radcliffe farm should include piezometers in the creek sediments adjacent to the riparian 

buffers similar to installations at Wye River (Staver and Brinsfield 1996).  This may 

determine whether nitrate rich groundwater is bypassing the piezometers in the buffers 

and discharging into the tidal creek. 
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The low groundwater discharge reported here also may be underestimated due to 

macropores.  Calculations of Darcian flow do not account for the potentially 

heterogeneous hydraulic characteristics of the soils along the groundwater flow paths or 

the potential for enhanced flow in macropores, which may cause an underestimation of 

discharge rates (Hubbard and Sheridan 1989).  However, since a water balance for the 

farm field supported the low discharge measurements, I am confident the low 

groundwater discharge at Radcliffe farm is real.  After accounting for potential 

evapotranspiration (70.5% of precipitation) and overland flow (23.5% of precipitation), 

only 6% of the annual average precipitation remained to infiltrate into the groundwater 

under the farm field (eq. 2-5).  The groundwater input from the farm to the buffers was 

0.0003 m3 m-1 day-1, comparable to the groundwater output from the buffers (Fig. 2-10).  

The slow groundwater discharge from Radcliffe farm into the tidal creek also suggests 

long retention times in the saturated soils and more opportunity for biological processing 

of nutrients in the buffers.   

 

Nutrients and nitrate reductions 

 Nitrate is often the focus of groundwater research in agricultural landscapes.  

However, I observed some interesting patterns in other forms of nitrogen and organic 

forms of phosphorus in the groundwater at Radcliffe farm.  In the established forest 

buffer, ammonium (NH4) was consistently high, 9 to 34 µM, and nitrate (NO3) was less 

than 1 µM in most of the piezometers throughout the year (Table 2-6).  Other studies 

have also measured NH4 concentrations of 10 to 40 µM in groundwater under riparian 

buffers (Jordan et al. 1993, Hedin et al. 1998, Spruill 2000, Maitre et al. 2003).  In 
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general, NH4 is sorbed on soils or assimilated by the biological community in preference 

to NO3, and consequently, NH4 is usually low in groundwater.  Maitre et al. (2003) 

proposes that the microbial process of dissimilatory NO3 reduction to NH4 may occur in 

groundwater, and in extremely reduced conditions of saturated soils, NH4 accumulates 

from nitrogen reduction reactions (McBride 1994).  Phosphorus is also very low in the 

established forest (less than 0.2 µM total dissolved P, Table 2-6) and may be a limiting 

nutrient to the vegetation in this mixed deciduous forest typical of the coastal plain.  The 

plants may not be utilizing all available NH4 as it is regenerated in the organic-rich soils 

and sediment.   

 Seasonal nutrient patterns exist in some of the buffers, but since I only sampled 

through one 4-season cycle, the observations may not be part of a repeating pattern.  The 

peak in dissolved N concentrations in the fall and spring in the CRP buffer (Fig 2-12) and 

in the summer in the non-buffered control (Fig 2-13) may be a result of biological or 

physical processes during these seasons.  Since groundwater movement is slow, spring 

fertilizer applications are not likely to be reflected immediately in the groundwater under 

the CRP buffer.  However, 20 years ago the CRP buffer was planted because this portion 

of the farm had highly erodible soils.  Hydraulic conductivity was low where I was 

sampling, approximately 3.5 m below the ground, but the erodible soils higher in the 

profile may be more sandy and permeable.  If this is true, water moving through these 

soils may reflect spring fertilizer applications and diffuse into the deeper groundwater 

piezometers.  However, it is more likely that the patterns in nitrogen concentrations in the 

CRP and non-buffered control (Fig 2-12) are a result of dilution during the winter and 

spring.  The pattern of higher hydraulic head from December through May is apparent in 

 76



the CRP buffer (Fig 2-7) and may explain the lower nitrogen concentrations during this 

time period (Fig 2-12).  In the winter when evapotranspiration is essentially zero, rainfall 

recharges the groundwater and the higher water tables dilute the nitrate-rich groundwater 

moving from the agricultural fields (Fig 2-17).  Dilution may also be important in the 

summer when high evapotranspiration from warm temperatures and large tree biomass 

removes nitrate-rich water from the ground and is replaced by low-nitrate rainwater 

infiltrating into the soil during rain events (Fig 2-17).  At this farm in particular,  

 

 
 
Fig 2-17. Conceptual diagram of groundwater cross-section at Radcliffe farm during the 
summer/fall and winter/spring.  In the summer and fall when evapotranspiration is high 
and water table and dissolved oxygen concentrations are low, redox potential is high and 
organic phosphorus may be released from the soils.  In the winter and spring when 
groundwater is recharging and water table is high, nitrate-rich groundwater is diluted 
when evapotranspiration shuts down during cold weather and when plants are inactive. 
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rainwater dilution may be more important to nitrate reductions than at other farms where 

the nutrients are not as well-managed.  This farm has low groundwater nitrate 

concentrations in comparison to other farms on the Delmarva Peninsula (Hamilton et al. 

1993), where rainwater may not dilute the high nitrate concentrations as much and 

denitrification may have a larger role in nitrate reductions.  Large spikes in total 

dissolved P concentrations, up to 10.5 µM, were observed in many piezometers during 

the warm months of summer and fall (Table 2-7).  Organic P, which is not detected at 

other times of the year, becomes a large fraction of the total dissolved P during this spike 

(Table 2-7) and may suggest mobilization and leaching of organic P in the warming soils 

(Russell 1973).  In August, O2 concentrations decrease as hydraulic head lowers (Fig 2-

13a).  In groundwater where hydraulic head is low and low O2 concentrations lead to high 

redox potential, organic P may be released from the soils (Fig 2-13b and 2-17).  Reduced 

conditions in riparian zones have been attributed to the desorption of dissolved 

phosphorus from iron and aluminum oxides and from soil particles, which allows 

mobilization in the subsurface groundwater (Mulholland 1992, Carlyle and Hill 2001).  In 

general, NH4 and total dissolved P are minor components of groundwater nutrients in 

most forest buffers and throughout most of the year, but considering the magnitude of 

some of the observed concentrations, these isolated spikes may represent important 

processes in the forest buffers studied here. 

 Groundwater nitrate concentrations measured in the buffers on Radcliffe farm 

were low in comparison to studies in other areas of the Delmarva Peninsula.  Hamilton 

and Heisel (1995) collected groundwater samples from agricultural areas throughout the 

Delmarva Peninsula and found NO3 as high as 48 mg L-1 (3400 µM) and a median of 8.2 
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mg L-1 (590 µM).  In the restored buffers at the Chesterville Branch farm I observed NO3 

concentrations as high as 938 µM at the edge of the farm field (Fig 2-15), comparable to 

those of Hamilton and Heisel (1995).  Shallow groundwater under corn production at the 

Wye Research and Education Center (WREC) in Queenstown, Maryland, also in the fine-

grained lowland of the coastal plain, had NO3 concentrations of 10 to 20 mg L-1, or 715 

to 1430 µM respectively (Staver and Brinsfield 1998).  It is likely that fertilizer 

applications are similar at Radcliffe farm during corn production, but NO3 concentrations 

at two locations in the field were much lower (153 and 250 µM, Table 2-7) than at the 

WREC site.  This suggests that denitrification is occurring in groundwater under the farm 

field or fertilizer input is more closely coupled to crop uptake.  Parkin and Meisinger 

(1989) measured denitrification potential under the crop rooting zone in a corn field at 

WREC.  Denitrification was insignificant and they concluded that the organic matter and 

carbon levels in the soils were too low to support denitrification.  Radcliffe farm does 

have some of the same low organic matter, well-drained Matapeake silt loams as at the 

WREC site.  Although the mixture of other moderately well-drained and poorly drained 

soils (Table 2-1) may have higher organic content and support some denitrification below 

the farm field, which may have influenced the lower observed NO3 concentrations.   

 Excess N2 in the piezometers throughout the riparian buffers suggests that 

denitrification is occurring along the groundwater flow paths at Radcliffe farm (Table 2-

8).  I measured a denitrification rate of 25 to 48 kg N ha-1 yr-1, 15 to 29% of the NO3 

reduction, in the CREP restored buffer using the N2/Ar method (Kana et a. 1994, Blicher-

Mathiesen 1998, Mookherji et al. 2003).  This rate is lower than the 68 kg N ha-1 yr-1 

denitrification rate, or approximately 76% of the NO3 reduction, measured in a restored 
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buffer by Lowrance et al. (1995) using the acetylene inhibition technique (Table 2-9).  

This study in the coastal plain of Georgia took place during the first 2 years of restoration 

of the riparian wetland buffer and liquid manure was being applied to the adjacent field.  

These higher denitrification rates may be the result of the manure application and very 

high NO3 fluxes into the riparian wetland at this site (Lowrance et al. 1995) as opposed to 

potentially lower fertilizer application at Radcliffe farm.  The denitrification rate 

measured at Radcliffe farm is also lower than rates typically measured in other aquatic 

environments (Table 2-9). 

Table 2-9. Denitrification rates measured in riparian zones and various terrestrial and aquatic
ecosystems.  Denitrification rates from Greene 2005 are a compilation of data from a literature review. 
(see Greene, S.E. 2005. Measurements of denitrification in aquatic ecosystems: literature review and 
data report. University of Maryland Center for Environmental Science, Chesapeake Biological 
Laboratory, Solomons, Maryland. 29 p.)

Ecosystem Denitrification rate, kg ha-1 yr-1 Source

Farm fields 2-25 Meisinger pers. com.
Restored riparian zones 68-125 Lowrance et al. 1995, this Ch.
Established riparian zones 1-295 Naiman et al. 2005
Freshwater streams/lakes 5-3500 Greene 2005 
Salt marshes 2-900 Greene 2005 
Estuaries/Coastal ocean 0-2700 Greene 2005 

 

 Low denitrification rates observed in the CREP restored buffer may also be a 

result of the technique used to measure excess N2 production in the groundwater and due 

to the large influence of rainwater dilution at this farm.  Not only did I measure very low 

rates in the CREP buffer, but I did not detect increasing excess N2 along the groundwater 

flow paths in the CRP or established forest buffers (Table 2-8).  The N2/Ar method is 

affected by degassing, which has been corrected for in the results (eq. 2-2), but also by 

gas diffusion.  Degassing will strip N2 and Ar molecules from the groundwater at 

predictable amounts (eq. 2-2, Blicher-Mathiesen 1998).  However, gas diffusion will 

decrease N2 concentrations in the groundwater but not Ar.  Gas diffusion is a very slow 
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process, and Blicher-Mathiesen (1998) did not attribute any N2 losses from this process in 

a Danish riparian wetland.  Considering the slow discharge rates (Fig 2-10), high water 

tables (Fig 2-14), and long groundwater retention times at Radcliffe farm, N2 loss from 

the groundwater by diffusion may be a significant process.  Other methods to account for 

diffusional losses of excess N2 from groundwater should be used at this farm in the 

future.  In addition to N2 diffusion, rainwater dilution which lowers nitrate concentrations 

in the summer (Fig 2-12) may also dilute the N2/Ar signal in the subsurface groundwater.  

The amount that dilution, denitrification, and plant uptake contribute to nitrate reduction 

depends on where these processes occur along the flow path from the farm field and 

through the buffer.  In order to quantify this dilution effect and separate it from the 

measurement of denitrification, vertically stratified sampling for excess N2 could be used 

to separate NO3 reduction from rainwater dilution close to the surface from NO3 

reduction from denitrification throughout the unconfined aquifer. 

 

Conclusion 

 Subsurface groundwater from Radcliffe farm is contributing very little nitrate to 

the adjacent tidal creek which eventually flows into the Little Choptank River and 

Chesapeake Bay.  Groundwater NO3 concentrations entering the buffers from the field 

are low in comparison with other similar crop fields, which suggests that NO3 reductions 

are occurring before entering the buffers on the edge of the farm fields.  Additional 

groundwater NO3 reductions also occur in the extensive system of established and 

restored forest buffers around the farm field, and calculations suggest that rainwater 

dilution and denitrification influence groundwater NO3 concentrations.  These processes 
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are likely to be magnified by the slow groundwater discharge rates from the farm field 

through the riparian buffers.  The non-buffered control site on Radcliffe farm is 

essentially the only area not restored within the last 20 years.  The lack of NO3 reduction 

in this control site provides insight into the higher NO3 input into the tidal creek prior to 

the beginning of restoration at the farm 20 years ago. 

 This research is an example of measured nutrient reductions in restored riparian 

buffers in the coastal plain of Maryland.  Nutrient reduction goals attributed to restoration 

of riparian buffers in programs such as CRP and CREP should consider reductions likely 

in different hydrogeomorphic regions (i.e., Lowrance et al. 1995).  It is likely that the 

very low nitrate fluxes from Radcliffe farm into the adjacent tidal creek are due to low 

hydraulic conductivity of the soils, high water tables, and slow groundwater discharge 

from the farm.  Riparian buffer restoration in saturated, poorly-drained soils may be 

important to mitigation of agricultural supply of nutrients to adjacent waterways by 

providing a constant carbon source to the soils (i.e., decomposing plant material) and 

enhance denitrification potential.  However, nutrient reductions may not be as high in 

other regions with large topographic relief, well-drained soils, and lower water tables.  In 

these areas, nutrient management may be more successful if buffer restoration was 

coupled with BMPs such as cover crops, which reduce nutrient leaching from the field.  

Similar research should be carried out in restored buffers in other hydrogeomorphic 

regions, which would help to set nutrient reduction goals for the extensive CREP effort 

implemented in Chesapeake Bay watershed. 
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Chapter 3 

WATERSHED-SCALE ASSESSMENT OF CREP RIPARIAN BUFFERS AND 
WATER QUALITY 

 
 

Abstract 

Restoration of riparian buffers has been an important component of nutrient reduction 

strategies in the Chesapeake Bay watershed.  Maryland was the first state to adopt a 

Conservation Reserve Enhancement Program (CREP), which provides financial 

incentives to farmers to take agricultural land out of production and plant streamside 

vegetation.  Between 1998 and 2004, 1 to 30% of the streamline, or a total of 1120 ha, 

was restored in 15 small, agriculturally-dominated subbasins in the Choptank River 

watershed.  However, I did not detect differences in nutrient concentrations between the 

subbasins based on the area of restored buffer, the percentage of streamline restored, or 

the percentage of total riparian buffer in the subbasins (p > 0.05).  Even though the CREP 

increased the total buffered streamline in these subbasins from an average of 33% to 

44%, nitrate and total nitrogen concentrations have continued to increase in many streams 

since past monitoring at these sampling sites almost 20 years ago.  I propose that nitrogen 

reductions in these subbasins have not occurred because (1) in addition to the length of 

streamline buffered, buffer age, width, and connectivity between buffers are also 

important to nutrient reductions, (2) agricultural nutrient sources and the 

hydrogeomorphic characteristics within the subbasins dominate the stream water 

chemistry, and (3) riparian buffer restoration is not extensive enough to have measurable 

affects on the stream water quality in these subbasins.   
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Introduction 

 The productivity of agriculture in the US has been a great success, although it has 

come at the expense of impaired water quality in many agriculturally-intensive regions.  

The green revolution in the 1960s led to the control of crops through genetics and 

chemical fertilizers and pesticides, has maximized crop yields, and has been successful in 

feeding a large population while keeping prices low (Evenson and Gollin 2003).  Since 

this time, modern agriculture has been “decoupled” from the ecosystems supporting it 

through subsidies encouraging overproduction, externalization of environmental costs, 

pressure to minimize environmental regulations, and the public’s desire for inexpensive 

food (Robertson and Swinton 2005).  However, the overwhelming evidence is that excess 

nutrients from agricultural sources are contributing to the degradation of downstream 

aquatic ecosystems (Magnien et al. 1992, Malakoff 1998, Beman et al. 2005).  

Recognition of this has led to an effort to manage agricultural landscapes for food 

production and ecosystem health, and quantifying the success of these potential solutions 

on buffering the environmental impacts of agriculture is a critical research need in the 

United States.  This research also has the potential to influence adoption of similar 

agricultural management in developing countries, where projected increases in human 

population may lead to an increase in fertilizer application worldwide by 2 to 3 times, an 

increase in land conversion to agriculture, and the worldwide expansion of eutrophied 

waters (Frink et al. 1999, Tilman 1999, Tilman et al. 2001).  Adoption, monitoring, and 

adjustments of agricultural management practices may improve ecosystem health in the 

US and prevent ecosystem degradation in other areas of the world. 
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 Agricultural nutrient management has been an important part of the goals of 

abating eutrophic and hypoxic waters and restoring ecosystem health in Chesapeake Bay 

(EPA 2000, Staver and Brinsfield 2001, Boesch et al 2001).  Many Best Management 

Practices (BMPs) have been implemented on farmland in the Chesapeake Bay watershed; 

BMPs include conservation tillage, winter cover crops, and grass and forest riparian 

buffers.  In this paper, I focus on one program that has supported the restoration of 

riparian buffers throughout the watershed, especially in Maryland, the Conservation 

Reserve Enhancement Program (CREP).  This program operates under the current 

provisions of a program introduced by the US Department of Agriculture (USDA) in 

1985, the Conservation Reserve Program (CRP), which focused on planting trees in 

highly erodible soils on agricultural fields.  The CREP was introduced in 1998 as a joint 

federal and state program that provides financial incentives to farmers to take stream-side 

agricultural land out of production and plant riparian vegetation.  In addition to buffers 

restored under the CRP, 100 000 more acres (or 40 500 ha) of grass and forest buffers can 

be restored in states where a CREP has been adopted.  The objectives for the program 

differ throughout the US, but in Maryland, the goal is to restore the 40 500 ha of riparian 

buffers to protect the water quality of Chesapeake Bay (Smith 2000, USDA 2004).  The 

Chesapeake Bay Program has embraced the restoration of riparian buffers and has 

expanded its goal of 3230 km of restored streamlines in the watershed by 2010 to the 

current goal of 16 100 km by 2010 (EPA 2000, EPA 2003).  The long term goal is to 

have 70% of the streams in the Chesapeake Bay watershed buffered by riparian forests 

(EPA 2003).   
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 Predictions of restored buffers’ ability to reduce nutrient inputs to Chesapeake 

Bay are based on plot-scale research in established, or mature, forest buffers.  This 

research has shown that riparian forests have the potential to remove 67 to 89% of the 

nitrogen in subsurface groundwater (Lowrance et al. 1984, Peterjohn and Correll 1984, 

Jacobs and Gilliam 1985) and over 50% of the sediment and particulate phosphorus in 

surface runoff (Peterjohn and Correll 1984, Magette et al. 1989).  Riparian buffers reduce 

and remove nitrogen from agriculturally-derived groundwater through denitrification, 

plant uptake, and dilution by rainwater infiltration through unfertilized buffers and trap 

sediment and phosphorus in erosion of agricultural soils during overland flow events 

(Fennessy and Cronk 1997, Naiman and Decamps 1997, Naiman et al. 2005).  

Considering this scientific understanding, the applicability of riparian buffers as a 

management practice in the Chesapeake Bay watershed was addressed by Lowrance et al. 

(1995).   They highlighted the potential for riparian buffers to reduce agricultural 

nutrients in certain hydrogeomorphic regions of the watershed but stressed the 

importance of integrating research at scales appropriate to the restoration efforts.   

However, research on the ability of restored riparian buffers to reduce nutrients at 

a watershed-scale in the agricultural landscape is lacking.  Maryland CREP has ambitious 

goals for nutrient reductions in the restored buffers: 5.2 million kg of nitrogen and 0.5 

million kg of phosphorus (USDA 2004).  This is 31% of the total nitrogen reduction goal 

and 38% of the phosphorus reduction goal for the state of Maryland, which means that 

approximately one-third of the nutrient reductions goals are dependent on one restoration 

initiative.  These goals are reasonable based on the reductions measured in established 

forests, but the degree and processes of nutrient reduction may be different in newly 
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established riparian buffers with young trees.  Furthermore, at the watershed-scale other 

ecosystem processes become important.  For instance, Philips et al. (1993) found that on 

the Delmarva Peninsula, nitrate concentrations at the watershed scale do not depend 

solely on the amount of established forested wetlands but also the hydrogeomorphic 

characteristics within the watershed.  Lee et al. (2001) also found that watershed nitrate 

export decreased as hydric soils in the watershed increased.  There have been watershed-

scale assessments of management practices such as the impact of fertilizer reduction on 

baseflow nitrogen concentrations (Tomer and Burkart 2003) and sediment-control BMPs 

on stormflow phosphorus concentrations (Bishop et al. 2005), but there has been no 

confirmation that restoration of riparian buffers has the ability to improve water quality at 

the watershed scale.   

However, plot-scale studies and modeling of restored riparian buffers are 

emerging research topics.  A few studies have documented nutrient reductions in surface 

runoff and groundwater through individual restored buffers at similar rates as plot-scale 

studies in established forest buffers (Clausen et al. 2000, Vellidis et al. 2003, see Ch. 2).  

Others have focused on gaining insight into effects of restoration efforts at the watershed-

scale by modeling watershed-scale effects on nutrient concentrations based on the 

hydraulic characteristics and extent of restored buffers (i.e., Riparian Ecosystem 

Management Model, REMM, Stone et al. 2001) and by modeling the potential erosion 

control of CRP grass buffers in the western US (Das et al. 2004).  In these cases, 

modeling may be an effective tool where large-scale restoration of buffers does not exist 

or obtaining information on the buffer locations in the watersheds is difficult. 

 92



 The lack of watershed monitoring of restoration efforts is not unique to restored 

riparian buffers or to the Chesapeake Bay region.  Only 6% of river restoration projects in 

the Chesapeake Bay watershed have been monitored, slightly lower than the national 

average of 10% (Bernhardt et al. 2005).  In general, the potential for large restoration 

projects to serve as landscape-scale experiments is underutilized by the academic 

community.  In a literature review, Holl et al. (2003) found that 32% of articles 

mentioning landscape restoration emphasized the importance of large-scale restoration 

but did not offer any specific methodologies to evaluate the restoration.  Furthermore, 

17% of the articles noted the need for restoration but offered no guidance for the effort.  

The Holl et al. (2003) review highlights the disconnect between management efforts 

applied in the field and the evaluation of the resulting effects on the ecosystems.  Without 

this exchange of ideas and recommendations, adapting restoration efforts to take 

advantage of the full potential of water quality benefits is not likely to occur.  

 In this chapter, I discuss the water quality effect of riparian buffer restoration in 

30 subbasins throughout two tributaries of Chesapeake Bay.  I compared differences in 

amounts of restored buffers and stream water nutrient concentrations among the 

subbasins, in a comparative watershed study.  I hypothesize that after correcting for 

differences in amount of agricultural land between subbasins, nitrogen concentrations 

will decrease as CREP increases in the subbasins.  Riparian buffer restoration through the 

CRP and CREP has been substantial, especially in the Choptank watershed, and here I 

evaluate the effects of this restoration on water quality of baseflow in non-tidal streams.   
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Methods 

Study sites 

 The Choptank and Chester River watersheds are located in the Atlantic coastal 

plain on the eastern side of Chesapeake Bay (Fig 3-1).  In general, land use in these 

watersheds is dominated by agriculture (~50 to 55%), mostly a soybean and corn crop 

rotation which is widely used on the Delmarva Peninsula (Staver and Brinsfield 2001).  

Forests are the next most prominent land use, and 42% of the total forest is established 

riparian forest (Norton and Fisher 2000).  Urban and developed areas make up less than 

5% of the land use in this rural area, although there is evidence that urbanization is 

increasing (Benitez and Fisher unpubl).  On average, rainfall is 110 cm per year in the 

Choptank and Chester watersheds, and stream water yields have generally been 35 cm  

yr-1 in the outer coastal plain of the Chesapeake Bay watershed (Jordan et al. 1997). 

 Descriptions of regions by hydrological and geological characteristics are useful 

in characterizing groundwater flow and water quality patterns (Hamilton et al. 1993, 

Philips et al. 1993, Bachman and Philips 1997).  Most of the 30 subbasins sampled in this 

study (Fig 3-1) are located in the well-drained upland of the Delmarva Peninsula.  

Typically, the water table in this region is 3 to 10 m below ground and has well-drained 

soils which provide good soil conditions for agriculture.  However, in the upper portions 

of the Choptank River watershed, some of the subbasins lie in the poorly drained uplands.  

This area has lower topographic relief, shorter groundwater flow paths, and lower-

gradient stream valleys than the well-drained upland.  The soils are permeable but are 

poorly-drained because the water table is generally 0 to 3 m below the ground.   
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Figure 3-1. Location and land use of study sites in the Chesapeake Bay watershed on the 
Atlantic coastal plain.  I sampled 15 subbasins in the Chester River watershed and 15 
subbasins in the Choptank River watershed.   
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This study focused on 15 subbasins in the Choptank and 15 subbasins in the 

Chester River watershed (Fig 3-1), and their individual size, land uses, and soil types are 

shown in Table 3-1.  The sampling point for each subbasin is at or above the head of tide, 

and all non-tidal streams have been sampled in the past (1986 in the Choptank and 1992 

to 1993 in the Chester, Fisher et al. 1998, Norton and Fisher 2000).  Agriculture in these  

Figure 3-2. Location of hydric soils in the 15 Choptank subbasins. 
 

Figure 3-2 shows the extent of hydric, or water-saturated, soils in these Choptank 

subbasins.  The poorly-drained uplands are located in the northeastern portion of the 

study area where there is an increase in hydric soils. 
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Table 3-1. Land area, land use, soil types, and hydric soils in 15 Choptank River and 15 Chester River subbasins.  Fisher et al. (1998) deriverd land use from Digital Orthophoto 
Quarter-Quadrangles (DOQQs) in 1990.  Norton and Fisher (2000) derived soil type and hydric soils from digitized soil maps of the region.

Land use, % of subbasin area Soils, % of subbasin area

Watershed Subbasin ID # (Fig 3-1) Area, km2 Agriculture Developed Feedlots Forest A B C D Hydric

Choptank River Kittys Corner 1 13.5 64.3 2.0 0.9 32.1 46.2 22.1 23.3 2.5 26.0
Cordova 2 26.5 75.1 4.0 1.3 18.4 53.8 22.4 16.9 1.2 14.6

Norwich Creek 3 24.5 69.5 1.8 0.4 23.1 11.7 35.7 21.7 26.5 32.6
Blockston Branch 4 17.0 63.3 0.0 0.3 28.3 2.3 39.5 20.1 38.0 34.3

Piney Branch 5 14.7 78.0 3.6 1.6 16.2 57.9 13.6 23.3 0.8 24.1
Oakland 6 10.0 83.8 4.4 1.3 9.6 74.2 5.9 15.9 0.9 16.8

German Branch 7 51.4 67.8 0.2 0.9 26.8 0.7 36.6 11.7 51.0 45.2
Beaverdam Ditch 8 23.3 62.3 0.8 0.0 32.2 0.7 27.9 5.3 66.1 64.1
Long Marsh Ditch 9 40.5 54.1 0.4 0.5 40.8 13.7 22.3 9.5 54.5 63.7
Broadway Branch 10 16.2 61.5 2.3 0.7 35.1 29.0 12.5 16.9 41.6 58.4
Oldtown Branch 11 11.6 54.3 8.4 1.2 32.3 29.5 9.6 27.5 32.3 59.9
Spring Branch 12 12.2 74.3 0.3 0.3 21.6 59.4 8.3 26.8 5.2 32.0

North Forge Branch 13 25.0 59.6 2.1 0.2 30.7 31.0 16.8 29.8 21.0 51.2
South Forge Branch 14 8.5 62.9 5.3 1.4 28.2 45.7 11.7 34.3 3.9 38.2

Downes 15 23.4 76.8 5.1 1.7 15.6 66.6 11.9 19.0 0.4 19.4

Average 21.2 67.2 2.7 0.8 26.1 34.8 19.8 20.1 23.1 38.7

Chester River Mill Stream Branch 16 35.0 71.0 2.3 0.3 26.0 0.5 50.4 24.2 21.3 20.8
Three Bridges Branch 17 22.2 65.0 1.7 0.3 32.6 0.0 41.6 22.6 30.2 30.1

Island Creek 18 21.1 56.1 3.7 0.3 38.7 0.3 36.7 15.8 41.6 41.0
Granney Finley Branch 19 20.6 64.9 1.1 0.5 31.6 0.2 53.6 4.8 35.3 35.3

Southeast Creek 20 39.3 67.0 1.5 1.6 29.0 0.1 54.5 7.5 34.2 33.4
Browns Branch 21 16.3 58.3 1.4 0.0 39.1 0.7 57.1 5.3 28.9 28.9

East Langford Branch 22 29.1 82.3 1.3 0.3 13.9 0.0 61.3 34.7 1.9 4.4
Morgan 23 31.2 88.9 1.3 0.9 8.2 1.5 35.4 57.0 0.1 1.1

Chesterville Branch 24 17.3 91.9 0.0 1.0 6.7 0.0 78.2 16.0 5.2 8.9
Mills Branch 25 26.3 64.5 0.4 0.3 33.7 0.3 14.3 58.2 26.5 28.6

Wallace 26 12.7 77.4 0.2 1.2 20.5 2.6 57.0 21.7 18.3 16.3
Peters Corners 27 19.7 50.2 0.8 1.7 46.9 4.1 39.7 1.5 53.5 53.5
Unicorn Branch 28 44.3 63.2 1.8 0.3 33.9 3.6 53.3 2.7 39.7 39.6
Dudley Corners 29 42.5 72.4 2.2 0.3 24.3 0.2 49.5 4.5 42.5 42.3
Foreman Branch 30 13.4 64.7 1.7 0.0 33.1 0.9 66.3 0.9 27.7 27.7

Average 26.1 69.2 1.4 0.6 27.9 1.0 49.9 18.5 27.1 27.5
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subbasins varies from 50% to 92% of subbasin area, with 10 to 30% forest, and the 

average land uses are similar between the Choptank and Chester subbasins.  However, 

soils differ between watersheds, and the subbasins in the poorly-drained uplands (i.e., 

German Branch, Beaverdam Ditch, Long Marsh Ditch, Broadway Branch, and Oldtown 

Branch) have more hydric soils and D class (low permeable) soils than the other 

subbasins located in the well-drained uplands (Table 3-1, Fig 3-2).   

 

Location of CREP sites 

 Since riparian buffers provide wildlife habitats, especially for waterfowl, the 

organization Ducks Unlimited provided partial funding for Maryland’s CREP.  They 

compiled location, area, and type (grass, forest, or wetland) of each CREP buffer 

implemented between 1998 and 2001 in Kent, Queen Annes, Talbot, Dorchester and 

Caroline Counties into a geographic information system (GIS) database (Fig 3-3).  I also 

gathered data from the local Farm Service Agency (FSA) office in Kent County, 

Delaware to develop a complete set for the Choptank and Chester watersheds (Fig 3-3).  

However, the 30 subbasins in this study were only located in Kent, Queen Annes, Talbot, 

and Caroline counties in Maryland. 

Since the data set supplied by Ducks Unlimited only provided the locations of 

farms with CREP sites (Fig 3-3) and not actual shape, I estimated the percentage of 

streamline buffered by each CREP site in the 30 subbasins.  At the time of analysis, a 

polygon coverage of CREP location and shape was available for Talbot County.  The 

average width of CREP sites in Talbot County was 47 m, which officials at the local 

USDA county offices agreed was a valid width estimate, and most CREP sites buffered 
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only one side of the stream.  I used this width estimate and the area of each CREP site in 

the 2001 data to estimate total streamlength buffered in each subbasin: 

 100
2
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×
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WAL        (eq. 3-1) 

where % Lb is the percentage of streamline buffered by CREP, A is the area of each 

CREP site, W is the average width of each CREP site (47 m), and Lt is the total 

streamlength in each subbasin, which includes both sides of the streams when multiplied 

by 2. 

 

Figure 3-3. Location of CREP restored buffers which were partially funded by Ducks 
Unlimited and implemented between 1998 and 2001.  Data source: Ducks Unlimited. 
 

In 2004 T.R. Fisher and I began a collaborative project with USDA in the 

Choptank watershed.  Through this cooperative project, we were able to gain more 
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detailed information on CREP buffers from local FSA offices.  At the FSA offices, 

managers marked aerial photographs with outlines of CRP and CREP sites.  I digitized 

these photos using ArcMapV9 and developed a GIS database of the location, size, and 

type of CREP buffers in all 15 subbasins of the Choptank watershed derived from copies 

of these aerial photographs.  This coverage included buffers restored through the 2004 

sign-up period.   

 

Nutrient analyses 

I sampled stream water during baseflow conditions from each of the 30 subbasins 

on a monthly basis from January 2003 through December 2004.  All sampling locations 

were located at road crossings, and a sampling bucket was lowered from a culvert or 

bridge to collect water from the middle of the flowing stream.  I measured temperature 

and electrical conductivity in the field with a portable Yokogawa SC82 conductivity 

meter (calibrated using a 100 µS cm-1 conductivity standard), and brought a sample back 

to the lab for nutrient analysis.  In the lab, unfiltered samples were autoclaved with the 

persulfate reagents of Valderama (1981) and subsequently analyzed for dissolved 

phosphate (PO4) with manual colorimetric methods (Strickland and Parsons 1972) to 

determine total phosphorus (TP).  Nitrate (NO3) in the autoclaved samples was analyzed 

separately in a Technicon AutoAnalyzer II in Horn Point’s Analytical Services Lab to 

determine total nitrogen (TN).  I also filtered original samples with GFF filters for 

automated colorimetric analysis of nitrate + nitrite in the Technicon AutoAnalyzer II.  On 

average, nitrite (NO2) was less than 1% of the nitrate + nitrite, and hereafter I present the 

analysis of nitrate + nitrite as nitrate (NO3).  Finally, I used manual colorimetric methods 
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for analysis of ammonium (NH4) and phosphate (PO4) concentrations in the filtered 

samples (Strickland and Parsons 1972).  The analytical precision estimated from 

replicates was typically 12% for NH4, 10% for TP, and 3% for PO4. 

 

Statistics 

 Statistical tests were performed using SigmaPlotV9 with SigmaStatV3.2 

integration.  The symbols *, **, and *** indicate statistical significance at the p < 0.05, 

0.01, and 0.001 probability levels, respectively; “NS” is used for p > 0.05. 

 

Results 

CREP 

 There are many types of riparian buffers restored under the CREP.  These include 

grass filter strips, forest buffers, permanent wildlife habitat, and wetlands.  Grass filter 

strips are established with permanent herbaceous vegetation including a mixture of 

grasses, legumes, or other forbs.  Forested buffers are planted with a mixture of at least 4 

tree species, and at least 80% of the total planting must be hardwood species.  The 

mixture of grass and/or trees in permanent wildlife habitats and wetlands is situation-

specific depending on the wildlife species of interest or location of the wetland.  Since 

documentation of the types of riparian buffers was not complete or consistent in the data 

sets I compiled for this study, I do not differentiate between grass and forest riparian 

buffers.  Sabater et al. (2003) found that nitrogen removal rates in groundwater flowing 

through herbaceous and forested buffers were similar, 4.4% and 4.2% N removed m-1, 

respectively.  Research from separate studies suggests that nitrogen and phosphorus 
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reductions are also similar in surface runoff through grass (50% N and P, Magette et al. 

1989) and forest buffers (75% N and 70% P, Peterjohn and Correll 1984).  If data sets 

including the types of CREP sites exist in the future, the efficiency of nutrient reduction 

in restored grass versus restored forest buffers can be investigated, but for this study, that 

option was not available. 

The CREP data set compiled by Ducks Unlimited included most buffers restored 

from 1998 through 2001 (Fig 3-3).  During this time period, 394 ha of riparian buffers 

were restored in the 15 Choptank subbasins, and 267 ha were restored in the Chester 

subbasins.  Within individual subbasins, there was from 0 to 105 ha of restored riparian 

grass and forest buffers (Table 3-2).  Of the total streamline, CREP sites buffered an 

estimated 0 to 11%, whereas natural buffers represented 10 to 96%. 

 In 2005, I developed a GIS database of CREP sites in the 15 Choptank subbasins 

implemented from 1998 through 2004.  These included not only location but also shape 

of each restored buffer, enabling more accurate evaluation of the length of stream buffers 

via GIS techniques.  The resulting data set includes both CRP and CREP sites.  When I 

discuss these restored buffers I usually only mention CREP sites because most of the 

restored grass and forest buffers in this region have been implemented under the CREP 

program.  However, the analyses also include CRP sites. 

After digitizing, I placed each buffer into one of the following categories: CREP 

buffering both sides of the stream, CREP buffering one side of the stream, and CREP 

added to an existing riparian buffer (Fig 3-4).  In the calculation of total percentage of 

restored streamline in each subbasin, the length of CREP sites that buffered both sides of 

a stream were doubled to account for the streamline on both sides (Fig 3-4a).  Some  



Table 3-2. Amount of CREP sites in Choptank and Chester River subbasins from 2 different data sets.  The 2001 data set is from Ducks Unlimited and streamline estimate is explained in eq. 1.  The 2004 data set was 
derived from areal photographs marked with location of CREP sites by US Department of Agriculture employees from local Farm Service Agency offices.  Streamline estimate for 2005 data set is shown in more detail
 in Table 3-3.  Established riparian buffer was calculated by Norton and Fisher (2000).  Unbuffered streamline was the remaining streamline after restored and established buffer.

                                             2001 data set                                              2004 data set

                             % streamline                              % streamline

Watershed Subbasin CREP area, ha CREP Established riparian Total buffered Unbuffered CREP area, ha CREP Established riparian Total buffered Unbuffered 

Choptank River Kittys Corner 0.0 0.0 47.7 47.7 52.3 9.5 2.0 47.7 49.7 50.3
Cordova 5.8 0.7 44.1 44.8 55.2 29.5 4.3 44.1 48.4 51.6

Norwich Creek 55.5 6.2 32.4 38.5 61.5 127.8 12.7 32.4 45.1 54.9
Blockston Branch 1.6 0.3 42.0 42.3 57.7 138.4 18.7 42.0 60.7 39.3

Piney Branch 6.1 1.2 27.6 28.7 71.3 8.1 5.0 27.6 32.6 67.4
Oakland 2.8 1.0 10.2 11.2 88.8 2.3 1.4 10.2 11.6 88.4

German Branch 102.4 5.3 61.8 67.2 32.8 218.4 10.3 61.8 72.1 27.9
Beaverdam Ditch 68.9 10.5 16.6 27.1 72.9 108.3 30.3 16.6 46.9 53.1
Long Marsh Ditch 105.0 5.1 24.1 29.2 70.8 168.5 13.5 24.1 37.6 62.4
Broadway Branch 9.9 1.9 26.1 28.0 72.0 5.9 1.1 26.1 27.2 72.8
Oldtown Branch 0.0 0.0 26.3 26.3 73.7 42.5 8.3 26.3 34.5 65.5
Spring Branch 10.8 2.1 37.2 39.3 60.7 42.3 5.9 37.2 43.1 56.9

North Forge Branch 20.7 1.8 26.3 28.1 71.9 185.0 29.4 26.3 55.7 44.3
South Forge Branch 4.5 1.0 40.4 41.4 58.6 18.4 19.0 40.4 59.4 40.6

Downes 0.0 0.0 34.4 34.4 65.6 18.5 3.9 34.4 38.4 61.6

Chester River Mill Stream Branch 9.4 1.8 76.4 78.2 21.8
Three Bridges Branch 6.1 1.4 74.2 75.6 24.4

Island Creek 12.4 3.6 87.6 91.2 8.8
Granney Finley Branch 34.4 8.7 81.4 90.1 9.9

Southeast Creek 26.5 3.2 65.2 68.4 31.6
Browns Branch 18.2 4.3 95.7 100.0 0

East Langford Branch 61.6 10.5 60.2 70.7 29.3
Morgan 3.0 0.4 52.1 52.5 47.5

Chesterville Branch 2.4 1.3 65.6 67.0 33.0
Mills Branch 11.2 1.7 51.1 52.8 47.2

Wallace 9.7 4.6 60.8 65.4 34.6
Peters Corners 7.2 1.2 67.9 69.1 30.9
Unicorn Branch 40.2 3.5 68.0 71.4 28.6
Dudley Corners 18.3 2.3 51.2 53.5 46.5
Foreman Branch 6.1 2.9 78.0 80.9 19.1
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Figure 3-4. Examples of 3 categories of CREP buffers from 1998 through 2004 data set 
in the Choptank subbasins.  (a) Streamline was doubled for CREP sites bordering both 
sides of the stream.  (b) CREP bordering one side of the stream also includes CREP sites 
which I assume are bordering an agricultural ditch which is not included in the stream 
database.  (c) CREP adjacent to an existing riparian buffer was not included in totals 
summarized in Table 3-2.   
 

CREP sites were not adjacent to a blue-line stream on US Geological Survey 7.4 min 

maps (Fig 3-4b).  Our stream file was derived from perennial and intermittent streams 

located on US Geological Survey (USGS) 7.5 min maps, but these maps do not always 

include agricultural ditches. I assumed the CREP sites that did not fall along a stream 

were located on one side of a ditch.  However, maps with locations of ditches in this 

region do not exist and the length of ditches could not be incorporated into estimates of 

total streamline in each subbasin.  There is a current effort at USDA to compile the 

location of ditches and add this information to the stream databases, but it is not yet 

available.  Many CREP buffers were also located adjacent to an established riparian  
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Table 3-3. CREP buffered streamlength in the Choptank River subbasins from the 2004 data set.  All CREP 
included the length of all restored buffer regardless of location.  CREP adjacent to stream only includes CREP sites   
which directly border a stream or which are likely to border a ditch (Fig 3-4b).  CREP adjacent to forest are the CREP  
sites installed adjacent to an established riparian forest (Fig 3-4c) and are not included in CREP streamline in Table 3-2.

% of subbasin streamline                             % of all CREP streamline

Choptank River subbasins all CREP streamline CREP adjacent to stream CREP adjacent to forest

Kittys Corner 8.7 22.4 77.6
Cordova 9.6 44.9 55.1

Norwich Creek 16.6 63.6 33.6
Blockston Branch 37.3 56.0 25.3

Piney Branch 5.0 100.0 0.0
Oakland 2.4 59.8 40.2

German Branch 19.7 52.4 47.6
Beaverdam Ditch 41.9 72.4 27.6
Long Marsh Ditch 16.0 84.2 15.8
Broadway Branch 1.5 73.9 26.1
Oldtown Branch 9.3 88.3 11.7
Spring Branch 10.9 54.5 45.5

North Forge Branch 29.9 98.5 1.5
South Forge Branch 20.1 94.4 5.6

Downes 5.2 75.6 24.4

 

buffer (Fig 3-4c).  This category of buffers made up a large portion of the CREP buffered 

streamline, in some subbasins over 50% (Table 3-3).  Since our focus in this paper is 

streamline buffered and not necessarily buffer width, these CREP sites were excluded 

from the streamline estimates presented in Table 3-2; they were also excluded in 

comparisons of buffered streamline and stream water quality later in the analysis.  

 The total area of riparian buffers restored in the Choptank watershed under CREP 

between 1998 and 2004 was 1123 ha (Table 3-2).  Total subbasin streamline buffered by 

CREP varied from approximately 1% in Oakland and Broadway to 30% in Beaverdam 

Ditch and North Forge Branch.  This is as much as 3 times the total CREP amount from 

the 2001 data set.  Unfortunately, I did not have the updated and more detailed 

information in the Chester as I had in the Choptank watershed.  However, there was a 

consistent increase in CREP area (slope=1.8, r2=0.33*) and buffered streamline 

(slope=1.5, r2=0.58**) in the Choptank subbasins from the 1998 to 2001 data to the 1998 

to 2004 data set (Fig 3-5).  This suggests the CREP sites implemented between 2001 and  

 105



2001 buffered streamline, %

0 5 10 15 20 25 30 35

20
04

 b
uf

fe
re

d 
st

re
am

lin
e,

 %

0

5

10

15

20

25

30

35
2001 area, ha

0 50 100 150 200 250
20

04
 a

re
a,

 h
a

0

50

100

150

200

250

slope=1.5, r2=0.58**

slope=1.8, r2=0.33*

1:1
 lin

e

1:1
 lin

e

 

Figure 3-5. 1998 to 2001 data set versus 1998 to 2004 data set in the Choptank 
watershed.  CREP area and streamline increase 1.5 and 1.8 times, respectively, from 2001 
to 2004. 
 

2004 in the Choptank increased relative to the amount at the beginning of the program, 

and therefore, the 2001 Chester data set may be useful in comparisons of relative 

amounts of CREP between the subbasins.  The CREP coordinates from the Choptank 

2001 data set were recorded on the farms that have a CREP and not necessarily where the 

CREP was located; however, the locations were relatively similar (Fig 3-6).  The change 

apparent in Figure 3-6 for Beaverdam Branch basin was the increase from 69 to 108 ha of 

restored buffers between 2001 and 2004.   
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 The final method to assess the amount of CREP sites in the Choptank and Chester 

watersheds is from the FSA annual summaries of CREP sites implemented within 11-

digit Hydrologic Unit Areas (HUAs).  Unfortunately, these watersheds are larger than the 

30 14-digit HUA subbasins used in this study, but the FSA summaries can be used to 

confirm the accuracy of the 1998 to 2001 data set for the entire Choptank and Chester 

watersheds.  The FSA summaries reported that 1490 ha of buffers in the Choptank 

watershed and 1640 ha in the Chester watershed were restored under the CREP from 

1998 through 2001.  However, the data set compiled by Ducks Unlimited only reported 

856 ha in the Choptank and 808 ha in the Chester watersheds (Fig 3-3).  Ducks Unlimited 

did not contribute financial support to all CREP sites in these watersheds, which may 

account for the under estimates of CREP in the watersheds.  As a result, the 2001 data set 

for the Chester used in this study may be 50% under-reported. 

 

Figure 3-6. Location of CREP sites from the 2001 and 2004 data sets in Beaverdam 
Branch subbasin in the Choptank watershed.  The 2001 data set from Ducks Unlimited 
are the black dots and the 2004 data set are the green polygons. 
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Seasonal nutrient patterns 

In general, nutrient concentrations in baseflow were relatively stable throughout 

the year, except in two subbasins.  For the remaining subbasins, the monthly variation in 

nutrient concentrations were similar to those shown in Figure 3-7a for Spring Branch in 

the Choptank watershed.  Total nitrogen (TN) and nitrate (NO3-N) concentrations 

fluctuated between 2.5 and 7 mg L-1 with no obvious seasonal pattern, and ammonium 

(NH4-N) was always less than 0.15 mg L-1 in Spring Branch (Fig 3-7a).  Total 

phosphorus (TP) and phosphate (PO4-P) showed large variations in early 2003 during 

months of frequent rainfall when baseflow was difficult to sample (2003 was a regional 

record-breaking year for rainfall).  The concentrations during the remainder of the 

sampling were less than 0.05 mg L-1 (Fig 3-7a).  These variations were typical among the 

other 12 similar streams not included in Figure 3-7, and no seasonal patterns were 

apparent. 

However, I observed seasonal patterns in two subbasins, Oakland in the Choptank 

watershed and East Langford in the Chester watershed.  In Oakland subbasin, ammonium 

(NH4) and organic N increased dramatically in the winter of 2003 and 2004 (Fig 3-7b), 

and I also measured organic P and phosphate (PO4) spikes during these time periods.  

Nitrate (NO3) did not fluctuate much during the two year sampling period, although NO3 

concentrations in the stream have almost doubled since prior sampling in 1986 by Norton 

and Fisher (2000) (Fig 3-8, total N increase is similar but not shown).  There should not 

be analytical bias between the two time periods because samples collected in 1986 were 

also analyzed in Horn Point Analytical Services lab.  Even though average NO3 

concentration increased in 11 of the 15 streams, the increase in Oakland was especially  
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Figure 3-7. Three examples of monthly nutrient concentrations over the 2003 to 2004 
sampling period.  Nitrogen concentrations (left panel) and phosphorus concentrations 
(right panel) are in mg L-1.  (a) Example of the typical fluctuations in nutrient 
concentrations over the monitoring period.  Measurements of total nitrogen (TN), nitrate 
(NO3), ammonium (NH4), phosphate (PO4), and total phosphorus (TP) concentrations are 
shown for Spring Branch.  (b) Organic N and organic P spikes during winter sampling in 
Oakland Branch.  (c) Summer minimum in NO3 and TN concentrations in East Langford 
Branch where low stream flow and tidal influences may enhance in-stream processing of 
N.  The dotted line is stream temperature in oC and the summer peak and winter 
minimum temperatures are shown on the figure.  
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Figure 3-8. Nitrate (NO3) concentrations in the 15 Choptank subbasins during this study 
and during a previous monitoring period in 1986. 
 

large.  As part of a collaborative project in the Choptank watershed and an effort to 

update the 1990 land use data set, QuickBird satellite imagery (2 m spatial resolution) 

was taken in the spring of 2005 over some of the Choptank subbasins, including Oakland.  

Previously, 1990 aerial photographs were used by Fisher et al. (1998) to compile 1990 

land use, and these showed only 3 animal feeding operations (AFOs) in Oakland subbasin 

(Fig 3-9; AFOs A, B, and C).  The 2005 land use in A was visually interpreted as a 

developed area and not a feedlot as it was classified in the 1990 land use data set (Fig 3-

9).  This was either digitized incorrectly in 1990 or has changed land uses since then.  

The 2005 satellite imagery also shows another AFO approximately 1 km upstream of the 

sampling point (Fig 3-9, D), and this has been confirmed by ground observation.  This 

AFO may be an additional source of nutrients to Oakland subbasin as suggested by the 

large spikes in NH4, organic N and P, and the large increase in NO3 since 1986.  

However, the AFO’s presence is not evidence for the nutrient increases, since the manure 

may not be spread on local farm fields but transported outside of the watershed. 
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Figure 3-9. Quickbird satellite imagery of Oakland subbasin in April 2005. A, B, and C 
were categorized as animal feeding operations (AFOs) in the 1990 land use database.  B 
and C were still AFOs in 2005 but land use of A may now be a developed area.  D is a 
AFO 1 km upstream of the stream sampling point that was not in the 1990 land use 
database. 
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The other subbasin where nutrient concentrations were not consistent over an 

annual cycle was East Langford in the Chester watershed.  I observed decreases in NO3 

and TN during the low flow months of summer and fall (Fig 3-7c).  Originally, I also 

sampled in West Langford stream, a subbasin adjacent to East Langford, but I 

discontinued sampling there after I observed tidal fluctuations at the stream sampling 

point.  The sampling point at East Langford may also be affected by tides in months of 

low baseflow as tidal influences move further upstream in warmer months due to 

seasonally higher sea levels (approximately 10 cm) in summer resulting from thermal 

expansion of the upper mixed layer of the ocean (Pickard 1979).  In this case, in-stream 

nutrient processing may occur when the stream water is not flowing downstream and has 

longer retention times, which may explain the lower nitrogen concentrations observed 

during these low flow months. 

 

Volume-weighted nutrient concentrations 

The first sampling year, 2003, was a very wet year compared to the historical 

average.  Precipitation at Horn Point Laboratory, located on the Choptank River (Fig 3-

1), was 150 cm in 2003 and 112 cm in 2004.  Total stream discharges at the USGS 

gauging stations in the Choptank and Chester River watersheds were also higher in 2003.  

The USGS station #01491000 in the Choptank River near Greensboro, Maryland has 

been a continuously gauged site since 1948 and drains a 293 km2 subbasin, and the USGS 

station #01493500 in Morgan Creek near Kennedyville, Maryland has been gauged since 

1951 and drains a 31 km2 subbasin (Fig 3-1).  Total discharge at Greensboro in 2003 was 
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2.7x108 m3 and 1.1x108 m3 in 2004.  Difference in annual discharge between years was 

less at Morgan Creek from 1.7x107 m3 in 2003 to 1.4x107 m3 in 2004.   

Even though I sampled during baseflow when there had not been a rain event for 

several days, the volume of baseflow contribution to the stream may differ between 

periods of rainfall and seasonal evapotranspiration (Jordan et al. 1997).  A paired t-test 

revealed average total N concentrations in the Choptank and Chester subbasins were not 

significantly different (p > 0.05) between the two years (Fig 3-10).  The supply of nitrate-

enriched groundwater may not have varied enough between years to exhibit measurable 

differences between the two sampling years.  However, the difference in average total P 

between the two years was significantly different in the Choptank (2003 > 2004, ΔTP = 

0.041, p < 0.001) and was near the statistical level of significance in the Chester (ΔTP = 

0.015, p = 0.06, Fig 3-10).  This suggests that the storms during the wetter year (2003) 

may have supplied more P in overland flow events to enhance the baseflow P that I 

sampled between storm events.   

 Since there were different precipitation amounts between the two 

sampling years, I calculated volume-weighted nutrient concentrations using flow data 

from the USGS stream gauging stations in the Choptank and Chester watersheds.  

Discharge of streams on the Delmarva Peninsula is related to the size of the watershed, 

and Figure 3-11 shows the monthly water yield at Greensboro, Maryland for 3 years 

versus the monthly water yield at 7 smaller watersheds within 30 km of Greensboro.  The 

monthly discharges at the smaller streams were adjusted for their watershed sizes in 

comparison to Greensboro, and the resulting water yields (cm month-1) fell about the 1:1 

ratio (Fig 3-11, r2=0.80***).  The slope was not significantly different from 1  
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(p < 0.001), and the intercept was not significantly different from 0 (p = 0.02).  

Therefore, I estimated the area-weighted monthly discharge from each of the 15 

Choptank subbasins based on the gauged discharge at Greensboro and used the gauged 
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Figure 3-10. Average 2003 and 2004 nutrient concentrations in (a) the15 Choptank 
subbasins and (b) the 15 Chester subbasins. 2003 data are the closed symbols, 2004 data 
are the open circles, the circles are annual average total nitrogen in each subbasin, and the 
triangles are annual average total phosphorus in each subbasin. 
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discharge at Morgan Creek to estimate the area-weighted monthly discharge at the other 

14 Chester subbasins.  I used the following equations to calculate volume-weighted 

nutrient concentrations and standard error for measurements in each basin: 

Figure 3-11. Monthly mean discharges at the continuously gauged USGS station at 
Greensboro, Maryland versus 7 other smaller watersheds (Faulkner, Marshyhope, 
Nanticoke, Unicorn, St. Jones, Murderkill, and Mispillion) on the Delmarva Peninsula in 
1984 to 1986.  The discharges for the 7 smaller watersheds were area-weighted (i.e., 
[subbasin area/Greensboro area]*Q).  Data source: T.R. Fisher. 
 

 

where CVW = volume-weighted mean concentration for 2003 to 2004, Ci = average  
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Table 3-4. Average flow-weighted nutrient concentrations during the study period from January 2003 through December 2004.  Monthly nutrient concentrations were flow-weighted 
for the Choptank subbasins using monthy discharge measurements at Greensboro (USGS gauging station #01491000) and for the Chester subbasins using montly discharge  
measurements at Morgan Creek (USGS gauging station #01493500).

Average volume-weighted [nutrient] 2003 to 2004, mg L-1

Watershed Subbasin NH4-N Std error NO3-N Std error TN Std error PO4-P Std error TP Std error

Choptank River Kittys Corner 0.12 0.03 2.9 0.2 4.4 0.3 0.042 0.007 0.054 0.007
Cordova 0.10 0.02 6.1 0.5 8.1 0.6 0.054 0.014 0.071 0.016

Norwich Creek 0.16 0.07 2.6 0.3 3.7 0.2 0.055 0.009 0.093 0.022
Blockston Branch 0.05 0.01 5.1 0.5 7.7 0.5 0.032 0.007 0.050 0.010

Piney Branch 0.11 0.02 5.8 0.5 10.0 0.8 0.084 0.016 0.113 0.018
Oakland 0.16 0.09 7.8 0.4 10.7 0.8 0.059 0.015 0.069 0.017

German Branch 0.10 0.03 3.6 0.4 5.4 0.3 0.081 0.019 0.093 0.019
Beaverdam Ditch 0.04 0.01 3.0 0.3 4.8 0.3 0.043 0.019 0.058 0.020
Long Marsh Ditch 0.05 0.01 1.6 0.1 2.7 0.2 0.044 0.009 0.061 0.010
Broadway Branch 0.06 0.01 1.4 0.2 2.4 0.3 0.027 0.006 0.049 0.009
Oldtown Branch 0.08 0.03 1.9 0.2 2.8 0.3 0.022 0.004 0.040 0.007
Spring Branch 0.04 0.01 3.9 0.3 5.4 0.4 0.034 0.010 0.046 0.011

North Forge Branch 0.08 0.02 2.3 0.2 3.6 0.3 0.025 0.005 0.046 0.009
South Forge Branch 0.12 0.05 3.8 0.4 5.2 0.4 0.036 0.010 0.049 0.011

Downes 0.04 0.01 6.1 0.4 8.5 0.5 0.031 0.007 0.038 0.008

Chester River Mill Stream Branch 0.12 0.03 2.8 0.2 4.2 0.3 0.044 0.007 0.056 0.007
Three Bridges Branch 0.08 0.02 6.2 0.5 8.3 0.6 0.055 0.014 0.070 0.016

Island Creek 0.16 0.07 2.5 0.3 3.7 0.2 0.055 0.009 0.093 0.022
Granney Finley Branch 0.05 0.01 5.4 0.4 7.7 0.5 0.031 0.007 0.047 0.010

Southeast Creek 0.10 0.02 6.3 0.5 9.9 0.8 0.084 0.016 0.111 0.018
Browns Branch 0.12 0.09 7.6 0.4 10.2 0.8 0.058 0.015 0.065 0.017

East Langford Branch 0.09 0.03 3.9 0.4 5.3 0.3 0.095 0.019 0.105 0.019
Morgan 0.04 0.01 3.1 0.3 4.7 0.3 0.044 0.019 0.058 0.020

Chesterville Branch 0.05 0.01 1.7 0.1 2.6 0.2 0.044 0.009 0.058 0.010
Mills Branch 0.05 0.01 1.2 0.2 2.2 0.3 0.028 0.006 0.049 0.009

Wallace 0.06 0.03 2.1 0.2 3.0 0.3 0.021 0.004 0.040 0.007
Peters Corners 0.03 0.01 4.1 0.3 5.7 0.3 0.032 0.010 0.044 0.011
Unicorn Branch 0.07 0.02 2.3 0.2 3.5 0.3 0.025 0.005 0.044 0.009
Dudley Corners 0.11 0.05 3.6 0.4 4.9 0.4 0.036 0.010 0.048 0.011
Foreman Branch 0.03 0.01 6.1 0.4 8.4 0.5 0.031 0.007 0.039 0.008
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monthly nutrient concentration in month i (observed each month from 2003 to 2004), Qi 

= monthly discharge in month i (estimated from Greensboro and Morgan Creek discharge 

and subbasin area), i = month, SEvw = volume-weighted standard error, and n = number 

of months sampled.  Volume-weighted concentrations and standard errors for the 2 year 

sampling period are shown in Table 3-4.  

 

Nutrients and CREP 

 Nitrogen concentrations in streams in the Choptank watershed are dominated by 

the amount of agriculture in the subbasins (Fisher et al. 1998).  During our 2 year 

sampling period I observed high correlations between agriculture from 1990 land use data 

and volume-weighted NO3 (r2=0.75***) and total N concentrations (r2=0.72***, Fig 3-

12).  I also observed a significant relationship between agriculture and volume-weighted  
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Figure 3-12. Relationship of total nitrogen (TN), nitrate (NO3), and phosphate (PO4) 
concentrations versus percent agriculture in the 15 Choptank subbasins.  Closed circles: 
TN=0.26 * %agriculture - 11.6; open circles: NO3=0.19 * %agriculture - 8.7; closed 
triangles: PO4=0.001 * %agriculture - 0.030. 
 

 117



PO4 concentrations (r2=0.27*, Fig 3-12) but not total P or NH4.  Since stream nutrient 

concentrations were primarily determined by the percentage of subbasin area in cropland, 

I calculated the residual nutrient concentrations and plotted these as a function of  

% CREP buffer (Fig 3-13).  If restoration of riparian buffers reduced nutrient 

concentrations in the subbasins, I would expect that as CREP increased in the subbasins  
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Figure 3-13. Residual total nitrogen (TN) and nitrate (NO3) in the Choptank subbasins 
versus % subbasin are with CREP, % subbasin streamline with CREP, and % subbasin 
streamline with established riparian forest + streamline with CREP buffer.  Residuals are 
predicted [N] based on the equations from Fig 3-12 minus the observed average volume-
weighted concentrations measured from 2003 to 2004.  Closed circles are TN and open 
circles are NO3.  Blockston Branch is highlighted by the gray oval. 
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the observed nutrient concentrations would be lower and the observed values would fall 

below the regression line.  I did not observe any significant relationships between NO3, 

total N, or PO4 concentrations in relation to CREP area, CREP buffered streamline, or 

established plus restored buffered streamline in the Choptank subbasins.   

Figure 3-13 shows the NO3 and total N residual concentrations versus CREP area 

and percent streamline.  Blockston Branch may be an outlier in this data set.  Riparian 

buffers restored under the CREP between 2001 and 2004 were on average an additional 

30 ha in each of the 15 Choptank subbasins (Table 3-2).  However, 137 ha of riparian 

buffers were restored in Blockston Branch, 8% of the total subbasin area.  Considering 

that most of the riparian buffers were restored 1 to 2 years before stream water sampling 

or even during sampling of 2003 to 2004, the nitrate and total N reductions assumed to be 

occurring in these CREP sites may not be reflected in the stream water chemistry over 

this short time period.  North Forge Branch also had a large amount of area restored 

between 2001 and 2004: 164 ha or 6.6% of the subbasin area (Table 3-2).  However, 

nitrate and total N concentrations in this stream were already relatively low, half of the N 

concentrations measured in Blockston Branch (Table 3-4).  If Blockston Branch was in 

fact an outlier, the remaining 14 subbasins may have demonstrated the hypothesized 

relationship, although it is not statistically significant (p > 0.05, Fig 3-13).  This could 

mean that concentrations at Blockston may fall in the future as the effectiveness of the 

newly established CREP sites increases.  Therefore, Blockston may be considered an 

outlier in Figure 3-13, and this figure may be evidence that the other subbasins are 

responding to the amount of riparian buffers restored under the CREP. 

 In the Chester River watershed, it is likely that stream nutrient concentrations 
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were not as clearly dominated by agriculture as in the Choptank watershed.  Norton and 

Fisher (2000) concluded that the hydrologic pathways in the Chester watershed may be 

the variable accounting for the differences in nutrient concentrations.  They observed that 

NO3 and total N increased as the percentage of well-drained, fine-textured soils of types 

A and B increased in the subbasins (Norton and Fisher 2000).  I did not observe this 

pattern in 2003 and 2004, perhaps because I sampled only half as many subbasins as in 

the previous study.  However, I did observe a general increase in total N concentrations 

and a decrease in total P concentrations in most of the subbasins since the previous study 

(Fig 3-14).  I can not however, conclude that implementation of CREP buffers 

significantly contributed to any changes in water quality during this time period. 
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Figure 3-14. Total nitrogen (TN) and total phosphorus (TP) volume-weighted 
concentrations in the Chester subbasins during this study and during a previous 
monitoring period in 1992 and 1993.  Closed circles are TN concentrations and open 
circles are TP concentrations. 
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Discussion 

 Most research on Best Management Practices (BMPs) has been at the plot scale 

on individual farm fields (Staver and Brinsfield 1998, Vellidis et al. 2003) and has been 

extrapolated to the watershed scale by using models (Stone et al. 2001, Das et al. 2004).  

There are many possible explanations for the lack of watershed-scale research on BMPs 

including the following: few restoration projects concentrated at the watershed scale, 

difficulties in applying traditional experimental designs, difficulty in accounting for 

natural variability at large scales, and poor documentation of the restoration effort 

(O’Neill et al. 1997, Holl et al. 2003, Bernhardt et al. 2005).  However, I propose that 

monitoring BMPs at the watershed scale is critical to assessing the impact of BMPs in the 

context of other processes operating beyond the plot scale (e.g., in-stream processing); 

this approach is also important to adaptive management strategies.  The Conservation 

Reserve Enhancement Program (CREP) in Maryland has been a well-funded BMP with 

widespread support throughout the Chesapeake Bay management community, and 

provides a unique opportunity for managers and scientists to monitor the effects of a 

BMP at a watershed scale.   

Restoration of riparian buffers beginning in 1998 through the CREP has been 

widespread in the Chester and Choptank River watersheds (Table 3-2, Fig 3-3).  

However, documentation of CREP was not fully available in the Chester subbasins.  The 

data set I obtained from Ducks Unlimited included only CREP sites implemented 

between 1998 and 2001 that were partially funded by the organization.  This included 

approximately half of the total area of restored CREP buffers in the Chester watershed.  

The data provided to the public by the Farm Service Agency are aggregated by 11-digit 
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HUAs which, in the Chester and Choptank watersheds, have tidal outputs and make it 

difficult to assess water quality effects from the land in those tidal areas.  These 11-digit 

HUAs are much larger than the non-tidal subbasins I focused on in this study and the 

CREP statistics from them are too broad to use in the water-quality assessment.  Since I 

had problems accessing information on CREP relevant to water quality monitoring in the 

Chester River, the ability to investigate restoration effects in this watershed is limited and 

highlights the importance of comprehensive data collection and sharing to monitoring 

successes and failures of restoration projects. 

The processes controlling water quality in the Chester River watershed are also 

not as well understood as in the Choptank River watershed.  Nitrogen concentrations are 

highly correlated with agricultural land use in the Choptank subbasins (Fig 3-12), 

however, water quality during two monitoring periods in 1992 to 1993 (Norton and 

Fisher 2000) and in 2003 to 2004 was not significantly correlated to land use, soil type, or 

amount of riparian buffers in the Chester subbasins.  The Chester and Choptank 

watersheds have some different characteristics which may affect the relationships to 

water quality.  Farmers in the Chester watershed use less organic fertilizer since transport 

of poultry manure is farther than to the farms in the Choptank watershed.  Farmers in the 

Chester watershed also have slightly different management practices including the use of 

more conservation tillage than in the Choptank.  There is greater topographic relief and 

depth to the water table is greater in the Chester as opposed to the Choptank watershed.  

The thinner, shallower unconfined aquifer in the Choptank may transport more nitrate-

rich groundwater directly into the streams and lead to the correlation in agricultural land 

use and stream nitrogen concentrations.  However, flow paths of nitrate-rich groundwater 
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in the Chester may be deeper and not be transported efficiently to the streams.  These 

differences are important if considering extrapolating results from the Choptank 

watershed to the Chester watershed. 

 Participation on a larger project in the Choptank watershed has made it possible to 

obtain more complete data including all CRP and CREP sites implemented from 1998 to 

2004 and each buffer’s shape and size within the landscape (e.g. Fig 3-6).  This, along 

with stream water monitoring, provided the ability to evaluate the effect of CREP on 

stream nutrient concentrations in this watershed.  There was a strong effect of cropland in 

this data set (Fig 3-12), but I did not detect any effects of CREP on nutrient 

concentrations between the streams based on the amount of CREP buffers in the 

subbasins (e.g. Fig 3-13).  Even if I assume that Blockston was an outlier in this data set 

due to the large and recent establishment of CREP sites, the effect is suggested but still 

not significant. 

The focus in this portion of research was on baseflow nutrient concentrations.  

Even though I measured a significant relationship between baseflow phosphate 

concentration and % agriculture, particulate-bound phosphorus also moves to streams 

during short-term runoff events; therefore, the data reported here is not a complete 

representation of phosphorus loads to the Choptank streams.  In Chapter 4 I present P 

concentrations during storm events sampled in Blockston Branch and Norwich Creek and 

can more accurately characterize P loads from these subbasins.  In that research, 

stormflow P yields from Blockston and Norwich were correlated with the amount of 

streamline buffered in the two subbasins.  Since baseflow is supplied by nitrogen-rich 

groundwater in these agriculturally-dominated watersheds, I also expected that 
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substantial restoration of riparian buffers, as much as 30% of streamline in the 15 

subbasins, would reduce baseflow N concentrations in the stream.  However, CREP 

implementation did not have any significant effects on nutrient concentrations, and I am 

forced to reject my hypothesis.  I propose that no significant reductions in nitrogen 

concentrations were detected in the streams because (1) in addition to streamlength, 

riparian buffer age, width, and buffer connectivity are important to nutrient reductions, 

(2) agriculture and hydrogeomorphic characteristics dominate the water chemistry in this 

region, and (3) riparian buffer restoration is not extensive enough. 

 Many studies suggest that nitrate is rapidly retained and removed from subsurface 

groundwater under riparian buffers (Peterjohn and Correll 1984, Jacobs and Gilliam 

1985, Lowrance et al. 1992, Jordan et al. 1993).  The Chesapeake Bay Program has set 

their riparian buffer goals in terms of length of streamline restoration (i.e., goal of 70% 

riparian forests buffering streams in the Chesapeake Bay watershed, EPA 2003).  

Therefore, in this analysis I focused on the relationship between nitrogen concentrations 

and buffered streamline in each subbasin.  For the 1998 to 2004 Choptank data set, I did 

not include in the % streamline analysis the CREP buffers that are located behind an 

existing riparian buffer, which is essentially increasing the width of the riparian buffer.  If 

the existing riparian buffers are efficient in reducing nutrients in groundwater and 

overland flow, buffer restoration to widen the riparian zone may not be the most efficient 

use of resources.  However, assuming additional width does not effect groundwater 

nitrogen reductions in buffers may not be valid for buffers with less than average nutrient 

reduction abilities (Weller et al. 1997).  Studies have shown that most of the groundwater 

nitrogen reduction occurs within the first 20 to 30 meters of the buffer, but in buffers with 
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insufficient denitrification and plant uptake for all nitrate removal, rainwater dilution in 

wide buffers may be important to reducing groundwater nitrate concentrations.  Weller et 

al. (1997) also found it is likely that connectivity within riparian corridors is important to 

nutrient discharge.  Small gaps in the corridor potentially allow surface runoff and 

groundwater to bypass the highly retentive riparian zone and discharge into the stream.  

Detailed analyses of CREP streamlength, width, and connectivity within each subbasin 

may help determine the parameters important for comparison at a watershed scale. 

 Research on the Delmarva Peninsula has shown that agriculture and 

hydrogeomorphic characteristics drive groundwater and stream water nutrient 

concentrations (Hamilton et al. 1993, Bachman and Philips 1996, Jordan et al. 1997, 

Norton and Fisher 2000, Lee et al. 2000).  These factors are often related to one another 

since well-drained soils are likely to support more productive agricultural land.  This is 

observed in the 15 Choptank subbasins, where agriculture increases as hydric, or water-

saturated, soils decrease (r2=0.73***, Fig 3-15).  The characteristics of soils in the well-

drained upland support more agriculture than other areas, yet may not have the anoxic, 

slower moving groundwater that supports denitrification as in poorly-drained soils.   
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Figure 3-15. Percent agriculture versus percent hydric soils in the 15 Choptank subbasins.  
Data from Table 3-1. 
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As a result, the subsurface groundwater and streams in the well-drained upland, where 

most of the Choptank subbasins are located, tend to be enriched in nitrogen (Hamilton et 

al. 1993, Bachman and Philips 1996). 

Considering that differences in agriculture between the subbasins explain 72 to 

75% of the variance in baseflow nitrogen concentrations (Fig 3-12), determining the 

effects other factors have on the concentrations is likely to be difficult.  These factors 

may include: weather variability, in-stream nutrient processing, nutrient retentive areas in 

the landscape (e.g., hydric soils and CREP buffers), and nutrient sources in the landscape 

that contribute an uneven amount of nutrients to the stream.  For example, in Oakland, 

Piney Branch, and Blockston Branch, observed nitrogen concentrations are greater than 

the predicted nitrogen concentrations based on percent agriculture in the subbasin (Fig 3-

8).  These three subbasins also have animal feeding operations within 1 km of the stream 

sampling point, and the position of large nutrient sources in the landscape may contribute 

to the higher concentrations (e.g., feedlot D in Fig. 3-9).  In these cases, nutrients have a 

shorter path from input to the sampling point and may have fewer opportunities for 

nutrient processing in the streams.  Also, watersheds are inherently efficient in retaining 

nutrient inputs and only export from 25 to 50% of N in the stream flow (Peterson et al. 

2001, Boyer et al. 2002, Ch. 5).  Most of the N sink can not be accounted for by direct 

measurements and is assumed to be lost through denitrification within the landscape (Van 

Breemen et al. 2002).  These other factors may explain the other 25% variance in 

nitrogen concentrations in the Choptank subbasins (Fig 3-12), but considering the 
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possible variability of these factors, determining the relative importance of each in such a 

narrow range may be difficult. 

I assumed that the amount of buffers restored under the CREP was enough to 

detect nutrient reductions in the Choptank watershed streams.  However, there may not 

be enough restored buffers to detect any changes above the other processes in the 

subbasins that may be reducing N inputs by 50 to 75%.  Detailed monitoring in German 

Branch between 1991 and 1995 (Primrose et al. 1997, Jordan et al. 1997) allowed me to 

develop a nutrient budget for that subbasin (see Ch. 5) and test whether CREP restored 

buffers have the potential to reduce baseflow N concentrations (Table 3-5).  I used 

average annual N inputs into the subbasin from 1991 to 1995, average annual baseflow 

discharge in German Branch from 1991 to 1995, and nitrogen reduction rates in riparian 

buffers to determine the relative impact CREP may have on water quality.  I developed 

three scenarios: current CREP implementation as of 2004 (218 ha), an additional 3000 ha 

of CREP with 45 m width to restore all remaining unbuffered streams, and an additional 

1330 ha of CREP with 20 m widths to restore all remaining unbuffered streams.  In each 

scenario I calculated the N reduction based on a low removal rate from the literature (26 

kg N ha-1 yr-1, Lowrance et al. 1984) and based on the high removal rate observed in the 

groundwater of a CREP site in the Little Choptank watershed (124 kg N ha-1 yr-1, Ch. 2).  

In applying these rates, I assumed that the groundwater from the upland farm fields will 

flow through the riparian zone of these buffers where the N-enriched water has the 

opportunity to be diluted, assimilated by vegetation, and denitrified.   

At the current level of implementation, these estimates indicate that the restored 

riparian buffers in German Branch may have reduced the total N concentrations in 



Table 3-5. Estimates of total nitrogen reductions in German Branch made by the current CREP sites and by potential CREP sites if all unbuffered streams were
restored.  I used a low riparian removal rate of 26 kg N ha-1 yr-1 from Lowrance et al. (1984) and high removal rate of 124 kg N ha-1 yr-1 from Chapter 5.  Total input 
was the average yearly input into German Branch from 1991 to 1995 (3.6x105 kg yr-1, Ch. 5).  Average yearly baseflow was calculated from discharge measured by  
Jordan et al. (1997) from 1991 to 1995 (7.4x106 m3 yr-1).  I estimated reductions by restored buffers for the current CREP sites (2004 CREP) and for the potential 
CREP sites if all unbuffered streamline was restored in German Branch (with 45 m and 20 m widths).  

                  2004 CREP 100% buffered streamline, 45 m width 100% buffered streamline, 20 m width
Total N reduction by CREP Low removal rate High removal rate Low removal rate High removal rate Low removal rate High removal rate

kg N yr-1 5.7E+03 2.7E+04 7.8E+04 3.7E+05 3.5E+04 1.6E+05

% of total inputs 1.6% 7.5% 21.7% 103.3% 9.6% 45.8%

Reduction in baseflow [TN], mg L-1 0.8 3.7 10.5 50.3 4.7 22.3
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baseflow by 0.8 to 3.7 mg L-1; depending on the rate of N loss assumed (Table 3-5).  In 

general, nitrate and total N are increasing in the Chester and Choptank watersheds (e.g., 

Figs 3-8 and 3-15), and even though total N concentration in German Branch is 1.5 mg L-

1 higher than 20 years ago, it is realistic that restoration of riparian buffers may have 

reduced baseflow total N by 0.8 mg L-1.  However, it is not likely that restored buffers in 

German Branch have a high removal rate since a reduction in baseflow total N of 3.7 mg 

L-1 is unlikely.  As of 2004 with the addition of CREP restored buffers, German Branch 

had over 70% of the streamline buffered (Table 3-2).  This is the long term goal for the 

Chesapeake Bay watershed as a whole (EPA 2003), yet in this small, agriculturally-

dominated subbasin, total nitrogen is still high with 72% riparian buffer.  Also, the 

implementation of riparian buffers through the CREP is nearly finished in Maryland.  As 

of June 2005, 70% of the 40 500 ha goal for the CREP in Maryland was achieved and 

unless the CREP is renewed, riparian buffer restoration under this program will end.  This 

will leave, on average, 56% of the streams unbuffered in the 15 Choptank subbasins, 

which is still far from the Chesapeake Bay Program’s goal. 

Since 72% riparian buffer in German Branch has not significantly reduced total N 

concentrations, I can make some predictions for N reduction if the remaining 28% of the 

streams were restored (Table 3-5).  Based on both N removal rates and assuming all 

restored buffers have a hydrologic connection with the subsurface groundwater, restoring 

the remaining streams with 45 m wide riparian buffer has the potential to remove all the 

nitrogen from the streams (Table 3-5), except for the background N concentration driven 

by natural sources in the forests and streams.  Restoring the remaining streams with 20 m 

wide buffers has the potential to reduce baseflow N concentrations close to background 
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levels as well but requires the conversion of less farmland and may be a more efficient 

use of resources.  However, these are estimates based on broad assumptions as to the 

nutrient removal efficiencies of restored buffers and are not management 

recommendations.  They are meant to highlight the fact that detectable nutrient 

reductions in German Branch and other Choptank subbasins are not likely at the current 

level of CREP implementation, and considerably more restoration may be needed to 

achieve reductions based on this one best management practice. 

 

Conclusion 

 There has been a large effort to restore riparian buffers in the agriculturally-

dominated Choptank and Chester River watersheds.  However, at the current level of 

restoration, these buffers have not had a detectable effect on stream nutrient 

concentrations in baseflow.  Watershed-scale research introduces variability within the 

landscape including the uneven contribution of nutrient sources (e.g., locations of animal 

feeding operations and variations in nutrient management between farms and in seasons 

of extreme weather conditions) and nutrient retentive areas (e.g., denitrification in hydric 

soils) that are difficult to quantify.  In this case, I also assume that restored riparian 

buffers have similar nutrient reduction abilities throughout the broad areas of the Chester 

and Choptank watersheds.  Watershed-scale research is needed that quantifies some of 

the variability observed in nutrient inputs and exports (Boyer et al. 2002, Van Breman et 

al. 2002) and that quantifies the nutrient reduction ability of riparian buffers in basins 

with varying hydrologic conditions.  This may help gain a better understanding of how 
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riparian buffer restoration can improve stream water quality and reduce nutrient inputs 

into Chesapeake Bay and other eutrophied waters. 

However, nutrient reduction goals based on restoration of riparian buffers are 

based on the current level of knowledge.  This research suggests that 6 years after the 

beginning of restoration under the Conservation Reserve Enhancement Program, restored 

riparian buffers have not had significant effects on stream nutrient concentrations.  Over 

the past 15 to 20 years, nitrogen concentrations have continued to increase in many of the 

streams within the Chester and Choptank watersheds, suggesting that nitrogen-rich 

groundwater is still flowing into the streams or that more Best Management Practices are 

needed to have a measurable effect on stream nutrients.  Phosphorus concentrations in the 

baseflow of streams in this time period have decreased and will be assessed further in 

Chapter 4. 
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Chapter 4 
 

STREAM NUTRIENTS DURING STORM EVENTS IN WATERSHEDS WITH 
RESTORED BUFFERS 

 

 

Abstract 

The effort to improve water quality in Chesapeake Bay has focused on several nutrient 

sources, including agricultural runoff within the 167 000 km2 watershed.  Agricultural 

nitrogen and phosphorus are supplied to the bay through nitrate-rich groundwater and 

sediment and particulate-bound phosphorus in overland flow during storm events.  In this 

study, I measured the nutrient concentrations during stormflow in two agriculturally-

dominated subbasins, Blockston Branch and Norwich Creek, in the Choptank River 

watershed on the eastern side of Chesapeake Bay.  Over the last 7 years, riparian buffer 

restoration through the Conservation Reserve Enhancement Program (CREP) has been 

significant, especially along Blockston Branch.  In this subbasin, implementation of 

CREP sites has increased the buffered streamline from 42 to 61%, and the restored 

buffers are distributed evenly throughout the subbasin.  In Blockston Branch, the 

concentrations of nutrients that were the highest during stormflow (i.e., ammonium and 

all forms of phosphorus) had lower peak concentrations than in the less buffered Norwich 

Creek.  Ammonium, phosphate, and total phosphorus yields during stormflow in 2004 

were approximately 2 times higher from Norwich Creek than from Blockston Branch.  

This research suggests that differences in nutrient export during stormflow may be a 

result of different levels of riparian buffer restoration within the subbasins.  Water quality 

improvement in agricultural runoff may not be dependent on the total area of restored 
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riparian buffers but instead on the amount of continuous streamline buffered and the 

location of buffers in the subbasin. 

 

Introduction 

Export of nutrients from rivers have increased as anthropogenic land uses within 

watersheds have intensified.  As human population increases around the world, so do the 

nitrogen concentrations in the adjacent rivers (Peierls et al. 1990).  Increased nutrient 

inputs are particularly a problem where watersheds are intensively farmed such as in the 

basins of the Mississippi River and Chesapeake Bay (Turner and Rabalais 1991, Boynton 

et al. 1995).  Excess nutrients in the Gulf of Mexico have resulted in extensive hypoxic 

waters (Malakoff 1998) and have also resulted in extensive algal blooms and loss of 

habitat throughout Chesapeake Bay (Carpenter et al. 1969, Orth and Moore 1983, Officer 

et al. 1984, Seliger et al. 1985, Fisher et al. 1988).  Understanding the mechanisms of 

nutrient inputs into these eutrophied coastal waters is critical for the efforts to reduce 

nutrient loading from agricultural sources. 

  Rain falling on watersheds generates baseflow of streams via infiltration to 

groundwater and produces stormflow via overland flow.  Phosphorus has a large 

particulate fraction and tends to move from the land into streams during overland flow 

events which transport soils and sediments from erosion.  Jordan et al. (1997) found that 

total phosphorus concentrations correlated with the amount of suspended solids in 27 

streams throughout the Chesapeake watershed.  In another subbasin, Fisher et al. (1998) 

observed peaks in total phosphorus concentrations during rain events that follow the same 

patterns as stream discharge in the storm hydrographs.  However, the same research in 
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these streams has shown that nitrogen concentrations are higher in baseflow than in 

stormflow during rain events (Jordan et al 1997, Fisher et al. 1998).  Nitrate, largely 

derived from fertilizers in these agriculturally-dominated subbasins, is soluble and 

leaches from the croplands into the groundwater in high concentrations (Hamilton et al. 

1993, Staver and Brinsfield 1998).  Baseflow is the water supplied to the stream from 

groundwater flow in the watershed and is often enriched in nitrate in agricultural areas 

(Spalding and Exner 1993).  This nitrate-rich baseflow is the main source of nitrogen to 

streams and is diluted during rain events (Jordan et al. 1997, Fisher et al. 1998). 

Capturing the variability in nutrient export from anthropogenically-disturbed 

subbasins during large, rapid discharge events is challenging (Beaulac and Reckhow 

1982).  The contributions from stormflow vary with the duration and amount of rainfall 

and the conditions prior to rainfall such as the length of time since the last rainfall, soil 

moisture in the subbasin, and the season (Evans and Davies 1998, Chanat et al. 2002).  

Stream flows are also likely to differ between subbasins with various hydrologic and 

geomorphic conditions (Jordan et al. 1997).  In addition to the land use in the subbasin, 

contribution of sediment-bound nutrients in overland flow is likely to depend on the 

geology of the soils (Grobler and Silberbauer 1985).  Rainfall not only mobilizes 

suspended solids in overland flow but may contribute to the flushing of water out of the 

vadose zone beneath the ground surface.  This may release nutrients stored in the 

unsaturated soils into the subsurface groundwater (Creed and Band 1998) and either 

percolate into deeper groundwater moving slowly to the stream or move more rapidly to 

surface waters in shallow subsurface flow.  Nitrogen constituents available for transport 

in the vadose zone may include organic nitrogen, ammonium, and nitrate (Jordan et al. 
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1997).  Since overland flow is a major pathway of phosphorus transport to streams, most 

research has focused on sediment-bound phosphorus.  However, dissolved phosphorus 

from surface runoff and shallow subsurface flow may be important to total phosphorus 

export from streams.  In groundwater, reduced conditions have been attributed to the 

desorption of dissolved phosphorus from soil and sediment particles and mobilization in 

the subsurface groundwater (Richardson 1985, Carlyle and Hill 2001).  More research is 

needed to understand nutrient fluxes from agriculturally-dominated watersheds into 

downstream waters such as Chesapeake Bay. 

Limited scientific understanding of the mechanisms of nutrient input into 

Chesapeake Bay has not prevented the application of nutrient reduction strategies.  One 

of the Best Management Practices (BMPs) applied on farmland in the Chesapeake Bay 

watershed is restoration of streamside vegetation.  The Conservation Reserve Program 

(CRP) was established by the US Department of Agriculture in 1985 and was expanded 

in 1998 as the Conservation Reserve Enhancement Program (CREP).  These programs 

provide financial incentives to farmers who take streamside land out of agricultural 

production and plant trees or grasses.  Previous studies have shown that riparian buffers 

reduce groundwater nitrogen through denitrification, rainwater dilution, and plant uptake 

(Peterjohn and Correll 1984, Lowrance et al. 1992, Speiran et al. 1998).  However, the 

initial interest in this BMP was in preventing erosion and trapping sediments (i.e., CRP).  

Early studies confirmed that grass and forested riparian buffers trap eroded soil and 

remove particle-bound phosphorus from surface runoff (Peterjohn and Correll 1984, 

Lowrance et al. 1984, Cooper et al. 1987, Magette et al. 1989, Dillaha et al. 1988).  The 

low elevation gradients in flood plains where riparian zones are located and the riparian 
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vegetation tend to dissipate the energy of surface flows.  This allows suspended particles 

and sediment-bound contaminants to deposit in the buffers prior to entering ditches or 

streams.  Percentages of phosphorus removal in overland flow through grass and forest 

buffers have varied from approximately 50 to 70% of the upland input (Peterjohn and 

Correll 1984, Cooper et al. 1987, Dillaha et al. 1988).  Studies also suggest that riparian 

buffers may have a capacity for long-term sediment removal since eroded soils and 

sediments were deposited only within the first few meters of the buffers (Peterjohn and 

Correll 1984, Lowrance et al. 1986).   

All the measurements in the studies mentioned above were taken at the scale of 

individual buffers, yet not many measurements have been made at the watershed scale 

where nutrient reduction goals are set.  Bishop et al. (2005) measured phosphorus 

reductions in a small watershed where extensive sediment-control BMPs were 

implemented, including a manure storage lagoon, grass buffers, fencing to exclude 

livestock from the streams, and contour strip cropping.  After BMP implementation, total 

dissolved phosphorus loads during rain events decreased by 43% and particulate 

phosphorus decreased by 29% from initial loads pre-BMP implementation (Bishop et al. 

2005).  However, Owens et al. (1991) found no differences in baseflow and stormflow 

nutrient export between watersheds dominated by pasture and forested land as opposed to 

a watershed dominated by fertilized agricultural land.  They did not take into account the 

extensive riparian buffers in the agricultural watershed and concluded that more work 

needed to be done in this area. 

In this chapter, I assess the nutrient concentrations in two streams in the 

Chesapeake Bay watershed, Blockston Branch and Norwich Creek on the Delmarva 
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Peninsula, during several rain events in the context of riparian buffer restoration in the 

watersheds.  Both baseflow and stormflow in these agriculturally-dominated streams are 

important to nitrogen and phosphorus fluxes.  In Chapter 3, I compared the baseflow 

nitrogen concentrations between subbasins with varying amounts of restored riparian 

buffers.  However, phosphorus transport in this coastal plain region tends to be correlated 

with suspended sediment fluxes (Jordan et al. 1997) and stream discharge (Fisher et al. 

1998).   Therefore, baseflow does not capture most of the phosphorus flux, and in this 

chapter I discuss stormflow sampling in order to evaluate the amount of phosphorus 

exported from these two subbasins.  Both subbasins have similar land uses but varying 

amounts of riparian buffers, and I hypothesize that total phosphorus fluxes will be lower 

in the subbasin with more restored riparian buffers.   

 

Methods 

Study site 

 Blockston Branch and Norwich Creek are located in the Choptank River 

watershed on the eastern side of Chesapeake Bay (Fig 4-1).  They were chosen as study 

sites because of their close proximity and the large differences in CREP sites between the 

two watersheds.  The initial CREP data set collected in 2001 showed a larger restoration 

effort in Norwich Branch of 55.5 ha of CREP area than in Blockston Branch with only 

1.6 ha.  However, based on 1990 land use data, both subbasins were similar in size, land 

use, and soil types (Table 4-1).  However, Norwich (24 km2) is 31% larger than 

Blockston (17 km2) and has some low-density housing developments which Blockston 

lacks.  Percentages of agriculture and forest vary by only 5 to 6% between basins, and  
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Fig 4-1. Location of the sampling sites, Blockston Branch and Norwich Creek, in the 
Choptank River watershed.  Land use and riparian buffer restoration (CREP) is also 
shown for the two subbasins.  Stream discharges measured in German Branch and 
Greensboro were used to estimate baseflow and stormflow in Blockston and Norwich. 
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Table 4-1. Land area, land use, soil types, and hydric soils in Blockston, Norwich, and the watershed draining to the USGS gauging station 
(#01491000) at Greensboro, Maryland.  Fisher et al. (1998) derived land use from Digital Orthophoto Quarter-Quadrangles (DOQQs) in 
1990.  Norton and Fisher (2000) derived soil type and hydric soils from digitized soil maps of the region.

               Land use, % of subbasin area Soils, % of subbasin area

Subbasin Area, km2 Agriculture Developed Feedlots Forest A B C D Hydric

Blockston Branch 17.0 63.3 0.0 0.3 28.3 2.3 39.5 20.1 38.0 34.3
Norwich Creek 24.5 69.5 1.8 0.4 23.1 11.7 35.7 21.7 26.5 32.6

Greensboro 293.0 45.7 4.6 0.4 45.7 15.4 12.4 13.0 59.2 63.2

 

 

both subbasins have two animal feeding operations each.  Soils vary more substantially; 

Norwich had more permeable soils (i.e., A drainage class), and Blockston has more 

poorly drained soils (i.e., D drainage class), although the percentages of hydric soils were 

similar (Table 4-1).  Volume-weighted baseflow concentrations of nutrients at Blockston 

Branch and Norwich Creek in 2004 are shown in Table 4-2 (see Ch. 3).  In general, 

phosphate (PO4-P) and total phosphorus (TP) concentrations were slightly higher in 

Norwich baseflow, and nitrate (NO3-N) and total nitrogen (TN) were 2 to 2.5 times 

higher in Blockston baseflow during the monitoring period in 2004.   

 

Table 4-2. Flow-weighted nutrient concentrations from baseflow sampling January 2004  
through December 2004.  Monthly nutrient concentrations were flow-weighted for 
Blockston and Norwich using monthy water yields at Greensboro, Maryland (USGS 
gauging station #01491000, see Ch. 3)

Volume-weighted nutrient, mg L-1          Blockston        Norwich

[NH4-N] 0.06 ±0.01 0.07 ±0.01

[NO3-N] 5.9 ±0.4 2.7 ±0.2

[TN] 8.6 ±0.4 3.4 ±0.2

[PO4-P] 0.023 ±0.004 0.037 ±0.005

[TP] 0.042 ±0.004 0.051 ±0.005
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CREP sites 

Location of CRP and CREP restored buffers were recorded by Farm Service 

Agency (FSA) or Natural Resources Conservation Service (NRCS) personnel on printed 

aerial photographs in local county FSA offices.  Copies of these photographs were 

obtained from the FSA, and I digitized each CREP site in Blockston and Norwich to 

create GIS databases using ArcGISV9.  The resulting shapefile included buffers restored 

through the 2004 sign-up period.  There is a current effort at the US Department of 

Agriculture’s research laboratories in Beltsville, Maryland to add updated land use, 

including cropland, established forest, animal feeding operations, and developed areas, to 

these GIS databases with the digitized CRP and CREP buffers.  In this chapter, when I 

discuss these restored buffers I usually only mention CREP sites because most of the 

restored grass and forest buffers in this region have been implemented under the CREP 

program.  However, the analyses also include CRP sites.   

 

Stormflow sampling 

 Both stream sampling sites (Fig 4-1) were equipped for automated recording of 

stream stage (water depth) and automated sampling of stream water.  A cinderblock was 

installed in each stream to protect an automated pressure transducer, Solinst Model 3001 

Levelogger, that was attached to the block with wire ties.  At Norwich, I attached the 

cinderblock to a cement bridge pillar with chain to ensure that the block would not move 

during high stormflows.  At Blockston, the cinderblock was attached to an earth-anchor 

driven approximately 1 meter into the streambank.  I removed the Levelogger after each 

storm to download the stream stage data, and an additional Levelogger remained at Horn 
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Point Laboratory recording barometric pressure in order to correct data from the field 

loggers for atmospheric pressure changes.  Hourly rain totals are also collected at Horn 

Point Laboratory, approximately 40 km southwest of Norwich subbasin, and I used rain 

data to characterize the sampled storm events. 

 Stream samples were collected automatically every hour during a storm event by 

ISCO 3700 portable samplers that remained in the field at each site from April through 

November 2004.  In the field, we chained the samplers to an earth anchor and ran Tygon 

suction line from the samplers, underground, and into the stream where we attached the 

tube to the top of the cinderblock housing the stage loggers.   Prior to a rain event, the 

samplers were programmed to purge air and water from the suction line and take a 500 

mL sample every hour throughout the rain event and at least a day following the event.  

Every 24 hours, I replaced the full bottles with empty ones and brought the samples back 

to the lab for analysis.   

 

Nutrient analyses 

In the lab, I filtered the samples with GFF filters for automated colorimetric 

analysis of nitrite plus nitrate (hereafter, nitrate or NO3) in the Technicon AutoAnalyzer 

II.  I also used manual colorimetric methods to measure ammonium (NH4) and phosphate 

(PO4) concentrations in the filtered samples (Strickland and Parsons 1972).  Filtered 

samples were also autoclaved with the persulfate reagents of Valderama (1981) and 

subsequently analyzed for dissolved phosphate (PO4) using manual colorimetric methods 

(Strickland and Parsons 1972) to determine total dissolved phosphorus (TDP) and 

analyzed for nitrate (NO3) in a Technicon AutoAnalyzer II in Horn Point’s Analytical 
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Services Lab to determine total dissolved nitrogen (TDN).  The analytical precision 

estimated from replicates during the manual techniques was typically 12% for NH4, 10% 

for TDP, and 3% for PO4. 

Prior to filtering the samples for the nutrient analyses above, I pre-weighed GFF 

filters.  I filtered a known volume of samples through 2 filters, and saved the filters for 

duplicate weighed measurements of total suspended solids.  One of these filters was 

subsequently used for particulate carbon and nitrogen analyses, and the other for 

particulate phosphorus analysis.  I measured total suspended solids (TSS) by weighing 

dry filters on the pre-weighed GFF filters and calculating the difference.  Particulate 

carbon (POC) and nitrogen (PN) were measured in an elemental analyzer and particulate 

phosphorus (PP) was measured using the Andersen ignition method (Andersen 1976).  In 

the PP method, the filter was ashed in a muffle furnace, boiled in HCl, and 

orthophosphate was determined by the molybdate-ascorbic acid method of Strickland and 

Parsons (1972).  During filtering of the original samples, I recorded the volume of each 

sample filtered to calculate TSS and particulate nutrient concentrations. 

 

Statistics 

 Statistical tests were performed using SigmaPlotV9 with SigmaStatV3.2 

integration.  The symbols *, **, and *** indicate statistical significance at the 0.05, 0.01, 

and 0.001 probability levels, respectively; “NS” is used for p>0.05. 
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Results 

CREP 

 Riparian buffers have been partially restored under the Conservation Reserve 

Enhancement Program (CREP) in Blockston and Norwich subbasins (Fig 4-1).  The total 

area of CREP sites in each subbasin is approximately the same (i.e., 1.4 km2 or 140 

hectares); however, since Blockston is a smaller subbasin, the percentage of total 

subbasin area restored is greater than in Norwich (Table 4-3).  Since this stormflow study  

 

Table 4-3. Total area of all CREP in each subbasin and the average length and width of CREP sites adjacent to streams that 
already had established riparian forest and CREP sites directly adjacent to streams (1 in Fig 4-2) and ditches that were  
previously unbuffered (2 in Fig 4-2).  

CREP adjacent to establ. riparian forest  CREP directly adjacent to stream/ditch

Total area of all CREP       Length, m      Width, m      Length, m      Width, m

Subbasin km2 % Subbasin mean se mean se mean se mean se

Blockston 1.4 8.1 669.2 103.6 55.5 9.5 851.2 27.1 164.2 23.1

Norwich 1.3 5.2 400.3 75.8 95.0 31.6 690.6 55.7 188.0 25.8

 

 

included only 2 subbasins, I evaluated the size and location of CREP sites in more detail  

than in Chapter 3 where I was evaluating CREP sites in 30 separate subbasins.  I divided 

the CREP sites into two classes: (1) CREP sites adjacent to an established riparian forest 

and (2) CREP sites directly adjacent to a stream or ditch (Fig 4-2).  The amount of land 

restored between an existing riparian buffer and an agricultural field (1 in Fig 4-2) was 

less than the amount of unbuffered streamline restored (2 in Fig 4-2), but this widening of 

existing riparian buffers was still a large fraction of the CREP buffered streamline (i.e., 

25% in Blockston and 34% in Norwich, calculated in Ch. 3).  The width of CREP sites 

that were added to an existing buffer was an average of 100 m less than the width of 

CREP sites on previously unbuffered streams (Table 4-3).  In 1990, 32% of the total 
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streamline in Norwich had established riparian buffers and in 2004 the buffered 

streamline had increased to 45% as a result of the CREP (Table 4-4).  A slightly larger 

increase was observed in Blockston subbasin, from 42% in 1990 to 61% in 2004 (Table 

4-4). 

 

Fig 4-2. Example of CREP length measurement for (1) a CREP site implemented behind 
an established riparian buffer and (2) a CREP site implemented directly adjacent to a 
stream or ditch.  The space between the CREP sites and the established forest or stream is 
the result of digitizing the 1990 land use at different scales compared to the 2005 CREP 
digitizing.  Current land use in these subbasins is being added to the 2005 CREP 
shapefile and will correct these errors. 
 
 
Table 4-4. Total streamline with riparian buffers in Blockston and Norwich watersheds before and after 
restoration.  Streamline calculation includes both sides of the streams.

Buffered streams before CREP  Buffered streams after CREP

Subbasin Total streamline, km Streamline, km % streamline Streamline, km % streamline

Blockston 51.9 21.8 42.0 31.5 60.7

Norwich 81.6 26.4 32.4 36.8 45.1
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 I also evaluated the location of CREP sites in the subbasins according to stream 

order (Fig 4-3).  An intermittent stream (zero order) is a stream that does not flow year-

round.  Most of the streams in these small subbasins are intermittent, headwater (or 1st 

order), and 2nd order streams (Fig 4-3).  In Blockston, 73% of the intermittent streams 

were buffered by established forest, whereas only 48% of the intermittent streams in 

Norwich had established riparian buffers (Fig 4-3).  In both subbasins, half the headwater 

streams were unbuffered, and the remainder was buffered by equal amounts of CREP 

sites and established forest (Fig 4-3).  Restored buffers were distributed most differently 

along the 2nd order streams in the two subbasins.  Thirty-eight percent of the 2nd order 

streams in Blockston were restored, whereas only 4% were restored and most remained 

unbuffered in Norwich (Fig 4-3).  And lastly, the majority of 3rd order streams had 

established riparian forests in both subbasins. 
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Fig 4-3. Type and total length of riparian buffers around the intermittent, 1st order, 2nd 
order, and 3rd order streams in Blockston and Norwich subbasins.  Black bars are total 
established forest streamlength, light gray bars are total CREP streamlength, and white 
bars are total unbuffered streamlength.  The percentage of buffer types in the different 
stream orders is shown beside the bars. 
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Storm hydrographs and nutrients 

 In order to characterize nutrient export as a result of overland flow from storm 

events, I measured the response to 4 rainfalls in Blockston Branch and Norwich Creek, 2 

in spring 2004 and 2 in fall 2004.  The first sampled rain event lasted 6 hours during the 

evening of April 26 for a total of approximately 2 cm, after 11 days of no rainfall (top 

panels in Fig 4-4).  The next storm event in the spring was over a 24-hour period, from 

the night of May 2nd throughout the next day.  This 2 cm rainfall did not have a 

distinctive peak period of rain, as the previous 6 hour rainfall, but was a prolonged rain 

with several periods of varying rainfall intensities.  As a result, there were several peaks 

in stream stage, and stream samples were not collected throughout the full storm 

hydrograph since the streams did not lower to baseflow levels until 4 days after the storm 

began.  The first sampled rainfall in the fall totaled almost 3 cm, most of the rain was 

over an 8 hour period on the night of September 28, and there had been no rainfall for 10 

days prior (top panels in Fig 4-5).  The last rain event was sampled the 4th of November 

after over 2 weeks of no rain.  This rain event lasted approximately 6 hours during the 

afternoon and totaled 2.6 cm.  I performed nutrient analyses on the stream samples 

collected during the rain events in April, September, and November, and I will present 

the data from these three storms throughout the rest of the chapter. 

 Hydrographs can be used to evaluate some of the relationships in nutrients and 

stormflow between the two subbasins.  All nutrient concentrations are presented for a 

spring example (26 April rain, Fig 4-4) and a fall example (28 September rain, Fig 4-5).  

In Norwich, peak total phosphorus and phosphate concentrations occurred at peak stream 

stage and total nitrogen and nitrate concentrations either did not change (Fig 4-4b) or  
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Fig 4-4. Rainfall, stream stage, total suspended solids (TSS), particulate carbon, nitrogen 
and phosphorus (PC, PN, and PP), total nitrogen (TN), nitrate (NO3), ammonium (NH4), 
total phosphorus (TP), and phosphate (PO4) concentrations as response to the 26 April 
2004 storm in (a) Blockston and (b) Norwich.  The x and y axes are the same in (a) and 
(b) in order to compare nutrient response between subbasins. 
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Fig 4-5. Rainfall, stream stage, total suspended solids (TSS), particulate carbon, nitrogen 
and phosphorus (PC, PN, and PP), total nitrogen (TN), nitrate (NO3), ammonium (NH4), 
total phosphorus (TP), and phosphate (PO4) concentrations as response to the 28 
September 2004 storm in (a) Blockston and (b) Norwich.  The x and y axes are the same 
in (a) and (b) in order to compare nutrient response between subbasins. 
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increased slightly at the beginning of the storm and then became diluted by the time the 

rain was ending (Fig 4-5b).  In Blockston, however, the peak in PO4 concentrations and 

time of the most diluted total N and NO3 concentrations were approximately 12 hours 

after peak stream stage during most of the storms.  In the fall Blockston had a double 

peak in total P concentrations (Fig 4-5a).  There was an initial peak in particulate P (PP) 

that followed the rise in stream stage and caused the initial increase in total P.  As the 

stage was declining 12 hours after the rain event, there was a second peak in dissolved P.  

This is not as pronounced in Norwich Creek where there was a peak in concentrations for 

all forms of P at peak stream stage, and then a slow recovery to baseflow concentrations 

as the stream height came down after the storm (Fig 4-5b).  The exception was during the 

September storm when there was a small second peak in PO4 as the stream stage was 

declining (Fig 4-5b).  In both storms, peak TP and PO4 concentrations in Norwich were 

twice as high as peak concentrations in Blockston; furthermore, NO3 dilution was 1.5 to 2 

times more pronounced in Blockston compared to dilution in Norwich.  The total 

suspended solids and particulate nutrients did not lag behind the stream stage in either 

subbasin (2nd set of panels in Fig 4-4 and 4-5).  The concentrations of total suspended 

solids, particulate C, particulate N, and particulate P increase rapidly along with the 

stage, were highest when stream stage peaked, and decreased slowly as the height of the 

stream declined (Fig 4-4 and 4-5).   

 There were some differences in the stream responses between spring (Fig 4-4) and 

fall storms (Fig 4-5).  Ammonium concentrations were higher during the April storm as 

opposed to the September storm.  I measured a large spike in NH4 concentration of 0.18 

mg L-1 in Norwich Creek during the spring rain (Fig 4-4b), which was 2.5 times the 
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highest concentrations measured in the September event (Fig 4-5b).  In Blockston, NH4 

concentrations in the spring were only 0.01 mg L-1 higher than in the fall.  Phosphorus 

exhibited the opposite pattern: higher concentrations during the fall rain events as 

opposed to the spring event (Fig 4-6).  Peak total P concentrations in Norwich during the 

two fall events were 2.5 to 7 times higher than in the spring, whereas in Blockston total P 

concentrations were only 3 to 4 times higher.  Total P and total suspended solid 

concentrations were the highest during the September rain event (Fig 4-5).  In Norwich   
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Branch, TSS concentrations during the September event were 9 times the concentrations 

during the spring, and concentrations in Blockston Branch were 6 times higher in 

September than in the spring. 

A summary of the nutrient responses in Blockston Branch and Norwich Creek to 

the 3 storm events in 2004 is shown in Table 4-5.  Presented are the stream stage, total 

suspended solids (TSS), and particulate and dissolved nutrients before the storm and at 

the peak response to each rain event.  The peak response was not necessarily when the  

 

Table 4-5. Summary of stream stage and nutrient response to three rain events in Blockston and Norwich subbasins.  Presented are 
the pre-storm values, peak values during or after the storm, and the difference (Δ = peak minus pre-storm values).  Peak is either the 
largest value, or in the case of nutrient dilution, the lowest value.

                  Blockston                    Norwich

Storm Parameter Pre-storm Peak response Δ Pre-storm Peak response Δ

26-Apr-04 Stage, cm 56.0 59.6 3.6 46.9 57.5 10.6
1.8 cm rain TSS, mg L-1 6.7 34.3 27.6 5.3 40.8 35.5

particulate C mg L-1 1.3 3.1 1.8 0.6 2.7 2.1
particulate N, mg L-1 0.14 0.37 0.23 0.08 0.33 0.25
particulate P, mg L-1 0.029 0.103 0.074 0.017 0.102 0.085
NH4-N, mg L-1 0.02 0.05 0.03 0.02 0.18 0.16
NO3-N, mg L-1 5.3 1.9 -3.4 2.4 0.7 -1.7
TDN, mg L-1 6.0 2.8 -3.2 2.9 1.7 -1.2
PO4-P, mg L-1 0.007 0.039 0.032 0.027 0.083 0.056
TDP, mg L-1 0.021 0.050 0.029 0.035 0.086 0.051

28-Sep-04 Stage, cm 38.7 47.9 9.2 30.1 77.6 47.5
2.6 cm rain TSS, mg L-1 163.1 200.4 37.3 2.5 381.7 379.2

particulate C mg L-1 1.8 15.9 14.1 0.7 22.9 22.2
particulate N, mg L-1 0.22 1.53 1.31 3.80 6.20 2.40
particulate P, mg L-1 0.057 0.400 0.343 0.028 0.542 0.514
NH4-N, mg L-1 0.02 0.04 0.02 0.04 0.07 0.03
NO3-N, mg L-1 3.4 1.6 -1.8 3.0 0.7 -2.3
TDN, mg L-1 5.6 3.1 -2.5 3.6 2.2 -1.4
PO4-P, mg L-1 0.006 0.383 0.377 0.019 0.818 0.799
TDP, mg L-1 0.029 0.437 0.408 0.022 0.896 0.874

4-Nov-04 Stage, cm 39.2 43.0 3.8 46.7 70.2 23.5
2.6 cm rain TSS, mg L-1 15.2 27.1 11.9 11.9 30.9 19.0

particulate C mg L-1 2.3 3.1 0.8 2.5 4.2 1.7
particulate N, mg L-1 0.34 0.42 0.08 0.36 0.64 0.28
particulate P, mg L-1 0.065 0.076 0.011 0.100 0.178 0.078
NH4-N, mg L-1 0.04 0.01 -0.03 0.04 0.01 -0.03
NO3-N, mg L-1 3.7 1.3 -2.4 1.1 0.7 -0.4
TDN, mg L-1 5.1 3.1 -2.0 2.1 2.1 0.0
PO4-P, mg L-1 0.012 0.345 0.333 0.064 0.298 0.234
TDP, mg L-1 0.016 0.347 0.331 0.090 0.298 0.208
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stream was at the highest stage, but when the nutrient was at the highest (or lowest if 

stormflow diluted the nutrient, as in NO3).  In some cases this occurred during the peak 

stormflow (e.g., TP in Norwich, Fig 4-5b) and in some cases this occurred after a slight 

lag behind the peak stormflow (e.g., TP in Blockston, Fig 4-5a).  During all 3 rain events, 

the response in stream stage was higher in Norwich Creek than Blockston Branch (Table 

4-5).  Norwich subbasin is only 31% larger in area, yet increases in stream stage were 3 

to 6 times the stage increase in Blockston.  In general, TSS, particulates, NH4, and 

dissolved P concentrations all increased during the storm events; in contrast, NO3 and 

total dissolved nitrogen concentrations were diluted (Table 4-5).  Nitrate and total 

dissolved N tended to be higher in Blockston, and NH4 and dissolved P tended to be 

higher in Norwich, both in stormflow during the 3 storm events in 2004 (Table 4-5) as 

well as in baseflow during the 2004 sampling (Table 4-2).   

 

Stormflow discharge and nutrient yields  

 Annual volume-weighted nutrient concentrations in baseflow were calculated 

using the monthly flow data from Greensboro (Table 4-2, see Ch. 3).  The relationship 

between area-weighted discharges at Greensboro (water yields) compared to other 

subbasins on the Delmarva Peninsula becomes less significant at time scales less than a 

month; therefore, this approach can not be used for hourly stormflow measurements.  In 

lieu of actual discharge measurements during low and high flows currently being 

collected at Blockston and Norwich, I used an adjusted rating curve from the subbasin 

north of Blockston, German Branch (Fig 4-1), which was calibrated by Jordan et al. 

(1997).  Baseflow discharge was measured in Blockston and Norwich in June 2005 and 
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related to the stage data collected by the automated pressure transducers that were 

installed in the streams prior to the 2004 stormflow sampling.  The rating curve for 

German Branch was adjusted for stage datum and area differences assuming that 

rectangular bridge structures at these sites will result in similarly shaped rating curves for 

German Branch, Blockston, and Norwich (e.g., Blockston in Fig 4-7).  I used the 

resulting relationships between stage depth and discharge to predict the stormflow from 

the stage measurements during the storm events: 

)978.0(74.005.1 d
B eQ ×+−=       (eq 4-1) 

)699.0(91.128.2 d
N eQ ×+−=       (eq 4-2) 

where QB was discharge in Blockston (m3 s-1), QN was discharge in Norwich (m3 s-1), and 

d was the stream stage data measured by the loggers.   
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Fig 4-7. The area-corrected rating curve for Blockston Branch.  The depth versus 
discharge relationship for German Branch (Jordan et al. 1997) was adjusted for the 
smaller area of Blockston and adjusted to fit the calibration point of measured baseflow 
in June 2005.  The same procedure was used for Norwich Creek and the resulting 
relationships are shown in eq. 4-1 and 4-2. QB is the stormflow discharge in Blockston 
(m3 s-1) and d is the stream depth (m) throughout the storm. 
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I used the resulting stormflow discharges to evaluate the relationships between 

nutrient concentrations and discharge.  Examples of these C-Q plots during the April and 

September 2004 rain events are shown in Fig 4-8.  An example of a positive relationship 

with discharge was the concentration of total suspended solids in both subbasins during 

the two storms (Fig 4-8a&b, and the only significant negative relationship during the 

storms was total dissolved N in April (Fig 4-8a).  Total dissolved nitrogen concentrations 
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Fig 4-8. Examples of C-Q plots for Blockston Branch and Norwich Creek during the (a) 
26 April and (b) 28 September storms.  Total suspended solids (TSS) are the top panels 
and total dissolved nitrogen (TDN) on the bottom.  The lines are significant linear 
regressions between discharge (Q) and nutrient concentrations, and formulas are shown.  
Dotted lines show hysteresis during the rising and falling stream stage, and the arrows 
show the time sequence of increasing TSS during the storms and decreasing TDN during 
the storms.  Note the slight difference in x axes between the two storms and the order of 
magnitude difference between TSS from the spring to the fall storm.  The results for all 
nutrients during the April and September events are shown in Table 4-6. 
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Table 4-6. A spring and fall example in each subbasin of concentration-discharge relationships during the
storms.  Discharge (Q) during the storms was calculated using equations 4-1 and 4-2 and is in m3 s-1.  
If the y-intercept was not significantly different from zero (p>0.05), it was removed from the equations
below.  NS is not significant.

            Blockston              Norwich

Storm Parameter equation r2 equation r2

26-Apr-04 TSS, mg L-1 [TSS]=471*Q-144 0.80*** [TSS]=138*Q-65 0.88***
1.8 cm rain particulate C mg L-1 [PC]=29.9*Q-8.4 0.71*** [PC]=7.6*Q-3.1 0.89***

particulate N, mg L-1 [PN]=3.0*Q-0.8 0.53*** [PN]=1.0*Q-0.4 0.91***
particulate P, mg L-1 [PP]=0.72*Q-0.21 0.30* [PP]=0.33*Q-0.16 0.88***
NH4-N, mg L-1 NS [NH4]=0.39*Q 0.29*
NO3-N, mg L-1 NS NS
TDN, mg L-1 [TDN]=-31.8*Q+1.5 0.30* NS
PO4-P, mg L-1 NS [PO4]=0.19*Q-0.08 0.48***
TDP, mg L-1 NS [TDP]=0.15*Q 0.37**

28-Sep-04 TSS, mg L-1 [TSS]=888*Q 0.66*** [TSS]=210*Q 0.68***
2.6 cm rain particulate C mg L-1 [PC]=66.4*Q 0.62*** [PC]=12.1*Q 0.67***

particulate N, mg L-1 [PN]=6.3*Q 0.63*** [PN]=1.40*Q 0.73***
particulate P, mg L-1 [PP]=1.69*Q 0.73*** [PP]=0.39*Q 0.88***
NH4-N, mg L-1 [NH4]=0.78*Q+0.015 0.43** [NH4]=0.39*Q 0.29*
NO3-N, mg L-1 NS NS
TDN, mg L-1 NS NS
PO4-P, mg L-1 [PO4]=0.34*Q-1.37 0.35** [PO4]=0.29*Q+0.14 0.37**
TDP, mg L-1 [TDP]=0.37*Q-1.32 0.30* [TDP]=0.36*Q+0.15 0.45**

 

in Norwich during the April storm and in both subbasins during the fall storm were not 

significantly related to discharge (Fig 4-8).  These relationships also show signs of 

hystersis.  During the rising limb of the hydrograph, total suspended solids concentrations 

were higher than the concentrations during the falling limb of the hydrograph.  This is 

similar for total dissolved nitrogen; however, total suspended solid concentrations peaked 

when stream discharge was the highest and total dissolved N concentrations peaked when 

stream discharge was the lowest.  Nitrate was not significantly related to stormflow 

discharge during the April or September events (Fig 4-8c and Table 4-6).  Comparison 

between subbasins shows that TSS concentrations in Blockston Branch respond more 

rapidly to stream discharge; however, TSS concentrations reach higher levels in 
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Norwich (Fig 4-8).   Total dissolved nitrogen concentrations in Blockston Branch also 

respond more rapidly to stream discharge than in Norwich Creek (Fig 4-8).  Table 4-6 is 

a summary of C-Q relationships during the April and September events.  In general, TSS, 

particulate nutrients, NH4, and phosphorus were positively correlated to stormflow 

discharge.  The exception to this is during the spring storm in Blockston where NH4, total 

dissolved P, and PO4 were not significant (Table 4-6).  The slopes of the equations, or 

rate of concentration increase as discharge increased, presented in Table 4-6 tended to be 

higher in Blockston compared to Norwich and during the September storm compared to 

the April storm. 

Stormflow discharges were also used to calculate volume-weighted nutrient 

concentrations during the 3 measured storms in 2004: 
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where CVW was the volume-weighted mean concentration during the storm, Ci was the 

nutrient concentration at time i during the storm, and Qi was the estimated discharge at 

time i during the storm.  The resulting average volume-weighted nutrient concentrations 

during each storm are shown in Table 4-7.  In general, TSS, particulate nutrients, NH4, 

and P volume-weighted concentrations are significantly higher in Norwich, and NO3 and 

total dissolved N are significantly higher in Blockston (Table 4-7). 

I also calculated the nutrient export from Blockston and Norwich from 2004 data.  

In order to calculate nutrient fluxes in baseflow and stormflow throughout the year, 
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measurements of volume-weighted nutrient concentrations and estimates of flow were 

needed.  I evaluated baseflow nutrient concentrations in Blockston Branch and Norwich 

Creek in Chapter 3.  To estimate annual stormflow nutrients, I am assuming the April 

storm is representative of storms during half the year and an average of the fall storms is 

representative of the storms during the other half of the year.  Stream discharge in 

Blockston and Norwich has not been measured in the past; therefore, I used monthly 

water yields from the US Geological Survey stream gauging site (#01491000) in the 

Choptank River at Greensboro, Maryland (Fig 4-1) and basin areas of Blockston and  

 

Table 4-7. Average volume-weighted (V-W) nutrient concentrations and standard errors during the three rain events in 
Blockston Branch and Norwich Creek (from equations 4-3 and 4-4).  Also shown are the differences in the subbasins 
(Δ = Norwich minus Blockston) and whether the volume-weighted concentrations are significantly different between 
the subbasins.

           Blockston           Norwich       Norwich-Blockston

Storm Parameter V-W mean se V-W mean se Δ Significance

26-Apr-04 TSS, mg L-1 18.8 0.608 19.8 0.576 1.0 NS
1.8 cm rain particulate C mg L-1 2.0 0.041 1.6 0.031 -0.4 ***

particulate N, mg L-1 0.22 0.004 0.20 0.004 -0.02 ***
particulate P, mg L-1 0.042 0.001 0.047 0.001 0.005 *
NH4-N, mg L-1 0.03 0.004 0.08 0.003 0.05 ***
NO3-N, mg L-1 3.2 0.086 1.8 0.032 -1.4 ***
TDN, mg L-1 4.3 0.108 2.4 0.019 -1.9 ***
PO4-P, mg L-1 0.016 0.002 0.039 0.001 0.023 ***
TDP, mg L-1 0.034 0.002 0.057 0.002 0.023 ***

28-Sep-04 TSS, mg L-1 107.7 3.743 146.2 5.920 38.6 ***
2.6 cm rain particulate C mg L-1 8.8 0.300 9.6 0.342 0.8 NS

particulate N, mg L-1 0.93 0.027 1.22 0.038 0.29 ***
particulate P, mg L-1 0.230 0.007 0.333 0.010 0.103 ***
NH4-N, mg L-1 0.03 0.000 0.04 0.001 0.02 ***
NO3-N, mg L-1 3.3 0.055 1.7 0.038 -1.5 ***
TDN, mg L-1 4.5 0.048 3.0 0.031 -1.5 ***
PO4-P, mg L-1 0.132 0.008 0.387 0.010 0.255 ***
TDP, mg L-1 0.174 0.008 0.464 0.012 0.290 ***

4-Nov-04 TSS, mg L-1 14.3 0.438 18.1 0.349 3.8 ***
2.6 cm rain particulate C mg L-1 2.2 0.029 2.9 0.040 0.7 ***

particulate N, mg L-1 0.35 0.004 0.47 0.006 0.12 ***
particulate P, mg L-1 0.067 0.001 0.135 0.002 0.068 ***
NH4-N, mg L-1 0.02 0.001 0.01 0.000 0.00 ***
NO3-N, mg L-1 3.5 0.087 1.8 0.022 -1.7 ***
TDN, mg L-1 4.8 0.076 2.9 0.040 -1.9 ***
PO4-P, mg L-1 0.088 0.011 0.137 0.003 0.049 ***
TDP, mg L-1 0.096 0.011 0.147 0.003 0.051 ***
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Norwich to calculate total streamflow from these basins in 2004.  Stream water yields 

have generally been 35 cm yr-1 in the outer coastal plain of the Chesapeake Bay 

watershed (Jordan et al. 1997), and when adjusted for subbasin area, discharges between 

watersheds on the Delmarva Peninsula over a 2-year period were also correlated 

(r2=0.80***, see Ch. 3).  I used annual discharge data from Greensboro to calculate total 

discharge from Blockston and Norwich in 2004: 

 )(
G

x
Gx A

A
QQ ×=        (eq 4-5) 

where Qx is the total 2004 discharge in Norwich or Blockston in m3 yr-1, QG is the sum of 

the monthly mean discharge in 2004 at Greensboro in m3 yr-1, Ax is the area of Norwich 

or Blockston, and AG is the area of Greensboro.  Based on this approach, 2004 discharges 

from Norwich Creek and Blockston were 9.3x106 m3 yr-1 and 6.5x106 m3 yr-1, 

respectively.   

Finally, the last estimate needed to calculate total nutrient fluxes during the 

different flows was the relative importance of baseflow and stormflow to the total 2004 

flows (i.e., 6.5x106 m3 yr-1 in Blockston and 9.3x106 m3 yr-1 in Norwich).  Lee et al. 

(2000) calculated the relative contribution of baseflow and stormflow over a 10-year 

period at Greensboro using USGS PART software.  The decadal average baseflow 

contribution was 71% of total annual flow, and stormflow was 29% of total annual flow.  

I am assuming here that the relative contributions of baseflow and stormflow are similar 

between the long-term mean for Greensboro and the two subbasins in this study.   

Since I only sampled storms in the spring and fall, I must assume that stormflow nutrient 

concentrations during half the year was similar to the measured April event and the 
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baseflowVWbaseflowbaseflow QCF ×=

( )

 In order to compare nutrient fluxes between Blockston and Norwich, I normalized 

the fluxes (described above in eq. 4-6 and 4-7) by the area of each subbasin.  This 

converts nutrient fluxes (kg y-1) into nutrient yields (kg ha-1 yr-1) which can be used to 

contrast baseflow and stormflow nutrients in the two basins (Table 4-8).  In general, 

nitrogen moved primarily with baseflow (i.e., 70 to 85%), whereas phosphorus moved 

primarily during short periods of stormflow (i.e., 55 to 70%, Table 4-8).  In comparisons 

between subbasins, total N yield from Blockston during baseflow (22.8 kg N ha-1 yr-1)  

where Fbaseflow was the nutrient flux during baseflow in kg yr-1, CVWbaseflow was the annual 

volume-weighted nutrient concentration during baseflow in kg m-3 (Table 4-2), Qbaseflow 

was the baseflow discharge in m3 yr-1 (71% of estimated annual flow), Fstormflow was the 

nutrient flux during stormflow in kg yr-1, CVWAprstorm was the average volume-weighted 

nutrient concentration during the April storm in kg m-3 (Table 4-7), Qstormflow was the 

stormflow discharge in m3 yr-1 (29% of estimated annual flow), CVWSepstorm was the 

average volume-weighted nutrient concentration during the September storm in kg m-3 

(Table 4-7), and CVWNovstorm was the average volume-weighted nutrient concentration 

during the November storm in kg m-3 (Table 4-7).   

concentrations during the other half of the year was an average of the measured 

September and November events.  I calculated nutrient flux in baseflow and stormflow in 

2004 using the following equations for each subbasin: 

 

          (eq 4-7) 

       (eq 4-6) 
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Table 4-8. Nutrient yields from Blockston and Norwich subbasins during baseflow and stormflow in 2004.  Since discharge has not been measured yet at Blockston and Norwich, 
estimates of total baseflow and stormflow were based on the area-weighted relationship in discharge to the USGS gauging station at Greensboro, Maryland (see Ch. 3).  Along 
with these flow estimates, I used average volume-weighted nutrient concentrations (Tables 4-2 and 4-6) to calculate total flux during baseflow and stormflow.  Also presented
is the % total flux in baseflow and stormflow within each subbasin.

                      Blockston                      Norwich

      Baseflow, 4.9x106 m3 year-1      Stormflow, 1.5x106 m3 year-1       Baseflow, 7.1x106 m3 year-1      Stormflow, 2.2x106 m3 year-1

Nutrient Yield, kg ha-1 year-1 % of 2004 yield Yield, kg ha-1 year-1 % of 2004 yield Yield, kg ha-1 year-1 % of 2004 yield Yield, kg ha-1 year-1 % of 2004 yield

NH4 0.17 85% 0.03 15% 0.19 75% 0.06 25%
NO3 15.6 81% 3.7 19% 7.3 79% 2.0 21%
TN 22.8 81% 5.5 19% 9.2 72% 3.6 28%
PO4 0.06 46% 0.07 54% 0.10 38% 0.17 62%
TP 0.11 36% 0.20 64% 0.14 28% 0.35 72%

164 



was 2.5 times higher than from Norwich during baseflow (9.2 kg N ha-1 yr-1), and total P 

yield from Norwich during stormflow (0.35 kg P ha-1 yr-1) was almost 2 times higher than 

the total P yield from Blockston during stormflow (0.20 ha-1 yr-1).  This is consistent with 

the patterns in peak nutrient responses (Table 4-5) and volume-weighted nutrient 

concentrations integrated throughout each storm (Table 4-7). 

 

Discussion 

CREP and nutrients 

 Riparian buffer restoration in Blockston and Norwich subbasins may explain 

some of the differences in the streams’ nutrient responses during the monitored rain 

events.  Both subbasins have the same area that has been restored through CREP (Table 

4-3), yet the restored sites in Blockston subbasin buffer more streamline and are more 

evenly distributed throughout the subbasin than in Norwich (Fig 4-1).  The lengths of 

restored buffers along the streams and ditches tend to be longer in Blockston (Table 4-3), 

and as a result, more of the streamline is buffered than in Norwich.  Only 45% of the 

streams in Norwich are buffered, including both established forests and restored grass 

and forest buffers, and the remaining streams flow through agricultural land without any 

grass or forest buffer (Table 4-4).  However, 61% of the streams in Blockston subbasin 

have riparian buffers, either established or CREP.  The Chesapeake Bay Program has a 

goal of restoring 70% of the streamline in the entire Chesapeake Bay watershed (EPA 

2003), and monitoring the water quality in streams such as Blockston Branch which are 

approaching this goal may be a valuable case study to predict how other basins will 

respond to the 70% goal. 
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 Buffers have also been restored along a greater variety of streams in Blockston 

Branch.  CREP sites in Norwich are almost exclusively around headwater streams (Fig 4-

1 and 4-3).  Headwater, or 1st order, streams have been shown to control a 

disproportionately large amount of the nitrogen uptake and transformation as compared 

to higher order streams (Peterson et al. 2001).  These streams may be important areas to 

target riparian buffer restoration to enhance nitrogen uptake by denitrification, plant 

uptake, and dilution in the buffers.  Therefore, the headwater streams buffered in 

Norwich may be areas of large nutrient reductions.  However, just as much of the 

headwater streams in Blockston are buffered by CREP sites, and in addition, 38% of the 

2nd order streams are restored, as well as a small amount of intermittent and 3rd order 

streams (Fig 4-1 and 4-3).  Other than the CREP sites along headwater streams, Norwich 

does not have much more buffer restoration in the subbasin.  In general, Blockston 

Branch has 15% more streamline buffered by established and restored buffers, and the 

buffers are distributed along mostly 1st and 2nd order streams throughout the subbasin. 

 The more extensive riparian buffer network in Blockston may be the cause of the 

nutrient differences among the two subbasins.  There is approximately a 12 hour lag time 

from peak stream height to peak response of all nutrients, except particulate-bound 

nutrients, in Blockston Branch (Fig 4-4a and 4-5a).  CREP sites are evenly distributed 

throughout the subbasin, including the lower portion of the stream network (Fig 4-1 and 

4-3).  Riparian buffers may trap much of the nutrients during runoff events, and nutrient 

sources from unbuffered portions of the upper subbasin may take longer to flow 

downstream after the rain event.  The particulate-bound nutrients that respond 

immediately to the stream hydrograph may primarily be material from the stream bottom 
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or banks that is resuspended or eroded during high stormflows.   In Norwich there are 

more unbuffered streams, especially higher order streams further downstream (Fig 4-3), 

which may be a rapid source of nutrients during runoff events. 

 Ammonium and all forms of phosphorus tend to reach the highest concentrations 

during storm events in Blockston and Norwich as compared to baseflow concentrations 

measured in 2004 (Tables 4-2 and 4-7).  These stormflow nutrient concentrations are 

consistently higher in Norwich, even when the concentrations are volume-weighted to 

take into consideration the larger subbasin and greater flow from Norwich Creek (Table 

4-7).  These lower stormflow concentrations of NH4, PO4, and total P in Blockston 

Branch may be another result of the extensive buffered streamline, where more areas in 

the landscape potentially trap sediments and nutrients.  However, slight differences in 

land use between the two subbasins may also drive the nutrient differences.  Norwich has 

0.4 km2 of low-density housing developments that may contribute extra nutrient sources 

to the creek.  CREP sites are implemented on agricultural land and not on developed 

land, but the housing developments in Norwich are mostly located in established forests 

which may already buffer their effects from the nearby streams.  The two animal feeding 

operations in each subbasins (Fig 4-1) may also supply an uneven amount of nutrients 

during storm events depending on the nutrient management at the farms (i.e., manure 

storage, timing of manure applications, and runoff control practices).  This would be 

difficult to evaluate without access to the Nutrient Management Plans or stream sampling 

directly downstream of the farms.   Even though the effect of these other factors on 

stormflow nutrients is not fully understood, this research suggests that the lower 

concentrations of sediment and phosphorus during stormflows in Blockston Branch 
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compared to Norwich Creek may be a result of the more extensive system of riparian 

buffers created by the significant addition of CREP sites in Blockston subbasin.  In 

addition to the spring and fall storms measured in Blockston and Norwich during this 

study, stormflow sampling is currently being conducted through all 4 seasons in 4 

subbasins (including Blockston and Norwich) in the Choptank watershed.  This ongoing 

research will continue to investigate the relationships observed in Blockston and Norwich 

during this study. 

 

Nutrient characteristics during stormflow 

 Regardless of the effects of CREP sites in Blockston and Norwich, this study has 

revealed some important characteristics of stormflow from these subbasins and has 

implications for future research in the Choptank watershed.  In general, Norwich has 

flashier storm hydrographs, which may be a result of more runoff in the watershed versus 

infiltration into the subsurface groundwater.  However, the stream stages did not rise and 

fall as fast in Blockston Branch and suggests there is more infiltration of rainwater into 

the soils and less overland flow during storm events.  Storm runoff is likely to be lower in 

nitrate and higher in phosphorus than the baseflow stream concentrations.  This may 

explain why Norwich had higher phosphorus concentrations during the storms and 

Blockson had higher nitrogen concentrations during baseflow and stormflow (Figs 4-4 

and 4-5). 

Another difference between the storm responses in the two streams was the 

immediate nutrient response as stream stage rises in Norwich Creek versus the lag time in 

nutrient response in Blockston Branch.  This may be a result of a greater buffering effect 
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of riparian vegetation in Blockston subbasin.  However, this difference could partly be 

caused by hydrologic differences in overland flow versus subsurface groundwater flow 

between the two subbasins.  The movement of sediment and particulate-bound nutrients 

to streams in overland flow was expected, but I also measured high dissolved nutrient 

concentrations during the storms.  Considerable nutrient concentrations have been found 

in the vadose zone of cropland and riparian buffers.  Staver and Brinsfield (1998) 

measured high nitrate concentrations under the root zone in agricultural fields near the 

two subbasins sampled in this study.  This nitrate may flush into the shallow groundwater 

during rainwater infiltration and move to the stream quickly in unbuffered areas.  High 

phosphorus concentrations have also been measured in the shallow groundwater in 

riparian zones (Carlyle and Hill 2001), which may also be a potential source to streams 

when rainwater infiltration speeds the flux of shallow groundwater into streams, 

especially in riparian buffers where groundwater moves relatively short distances to the 

streams.   

 I also observed large differences in stream responses to rain events between the 

two seasons of monitoring.  The large ammonium concentrations in Norwich Creek 

during the storm at the end of April 2004 (Fig 4-4b) may be an indication of runoff from 

agricultural fields with recent fertilizer or manure applications or runoff from the animal 

feeding operations.  This may be a process specific to Norwich, since spring NH4 

concentrations were only elevated 0.01 mg L-1 during the stream response in Blockston.  

In the fall, all forms of phosphorus were higher in concentration than during the spring 

event.  The source of phosphorus may be from the decomposition of plant material 

remaining on recently harvested fields and leaching of soluble P into overland flow 
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and/or the shallow groundwater (Staver and Brinsfield 1994).  This may occur after the 

fall harvest on agricultural fields where conservation tillage is practiced and plant residue 

is left on the field surface.  The release of dissolved P from the plant material in the fall 

may explain the increase in total dissolved P concentrations of 3 to 12 times during the 

fall storms over the spring storm (Table 4-6).  This may be validation at the watershed 

scale of phosphate leaching from individual fields in the fall measured by Staver and 

Brinsfield (1994).    

Finally, nutrient yield calculations are important to understanding the nutrient 

export from these agriculturally-dominated subbasins into downstream rivers and 

estuaries.  Unfortunately, intensive discharge monitoring such as the gauge at 

Greensboro, Maryland maintained by the US Geological Survey is not a widespread 

practice.  Stage data can help predict the stream response during a rain event, but 

discharge data takes into account the flow based on the morphology of the streambed and 

the velocity of the water movement.  There is currently an effort to monitor the discharge 

at 15 subbasins in the Choptank watershed, including Blockston and Norwich, and stage 

data is being collected at each stream.  However, a stage-discharge relationship has only 

been completed in German Branch (Jordan et al. 1997).  At the present time, the 

remaining streams have only one baseflow discharge measurement which was used to 

estimate discharge at higher flows based on the rating curve at German Branch (Fig 4-7), 

as described above.  Blockston and Norwich may not respond to higher flows in the same 

way as German Branch, but I used the flow estimates here to make reasonable 

calculations of nutrient flux.  Rating curves for both basins will be available in 2006 and 

will be used when this chapter is published in the formal scientific literature. 
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 Calculations based on these discharge estimates suggest that nutrient export from 

Blockston and Norwich is dominated by baseflow nitrogen and stormflow phosphorus; 

however, nitrogen export is 2.5 times higher from Blockston and phosphorus export is 

almost 2 times higher from Norwich.  The difference in phosphorus yields may be 

explained by the differences in riparian buffered streamline in the two subbasins as 

described in this study, but the higher baseflow nitrogen yields and concentrations from 

Blockston were not expected.  The small differences in land use between the basins 

would not be expected to cause the large nitrogen differences, and the more D class and 

hydric soils in Blockston suggest this subbasin should have more sites supporting 

denitrification, which would decrease nitrogen concentrations relative to Norwich (Table 

4-1).  The same variance in volume-weighted nitrogen concentrations between the 

subbasins was also observed during previous monitoring in 1985 to 1986 (Norton and 

Fisher 2000); therefore, this may be a consistent pattern in Blockston and Norwich.      

Measuring discharge and nutrient fluxes from streams in the Choptank watershed 

will help scientists better understand the effect that best management practices, including 

CREP, may have on water quality downstream in Chesapeake Bay.  Characterizing these 

relationships could also contribute to the adoption of nutrient management practices at 

the subbasin level.  Examples from this study may include (1) encouraging the 

implementation of cover crops in Blockston subbasin to prevent nitrate from leaching 

into the groundwater and elevating baseflow concentrations and (2) encouraging the 

implementation of buffers on 1st and 2nd order streams in Norwich subbasin to decrease 

sediment and particulate-bound phosphorus in runoff. 
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Conclusion 

 Between 1998 and 2004, 20 km of riparian buffers were restored under the 

Conservation Reserve Enhancement Program (CREP) in Blockston Branch and Norwich 

Creek basins.  This restoration may have affected nutrient fluxes from the agricultural 

land in these watersheds during runoff events.  The subbasin draining into Blockston 

Branch has 15% more total streamline buffered, and the riparian buffers are more evenly 

distributed throughout Blockston compared to Norwich.  This extensive system of buffers 

appears to have resulted in lower phosphorus yields from Blockston and may represent a 

success of buffer restoration through CREP.  However, the unexpectedly high N yields of 

Blockston indicate that better N controls are needed in this basin. 

 This research suggests that the distribution of CREP sites may also be important, 

in addition to the total buffer area and streamlength buffered.  Long, continuous restored 

buffers along streamlines throughout the subbasin may be more effective in reducing 

nutrient runoff than taking entire farm fields out of production.  The CREP is a voluntary 

program on private lands, and specific land can not easily be targeted for buffer 

restoration.  However, managers may take information such as this and encourage 

farmers to restore more continuous buffers along streams and ditches.  This may be 

particularly important for trapping sediment in runoff and reducing the flux of 

particulate-bound nutrients, ammonium, and phosphorus which tend to move rapidly 

downstream during stormflows.   
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Chapter 5 
 

TWENTY YEARS OF NUTRIENT MANAGEMENT AND WATER QUALITY 
MONITORING IN AN AGRICULTURAL WATERSHED 

 
 
 

Abstract 

One of the strategies to improve Chesapeake Bay’s degraded biological health focuses on 

reducing losses of sediments and nutrients from agricultural areas.  At the plot scale, a 

series of studies suggested that Best Management Practices (BMPs) reduce nutrients and 

sediment losses, and managers have been supporting farmers to use a variety of BMPs 

throughout the bay’s watershed.  In particular, German Branch, also known as Jarmin 

Branch, is a site in the bay watershed that had BMPs on all farms in the early 1990s, 

including Nutrient Management Plans, conservation tillage, riparian buffers, and cover 

crops; stream water quality was monitored before, during, and after implementation.  In 

the 1990s, managers estimated that the sediment and erosion control BMPs reduced soil 

erosion in the watershed by 33%.  In fact, at the watershed level there was a 33% 

decrease in total phosphorus concentrations in baseflow of the stream after BMP 

implementation, from an average of 0.13 mg L-1 in the 1990s to 0.090 mg L-1 during the 

2003 to 2005 sampling, but there was insufficient data to evaluate stormflow conditions.  

There were no significant changes in nitrate or total nitrogen concentrations from the 

1990s to current sampling; however, the significant rate of increase at approximately 0.14 

mg N L-1 yr-1 from 1986 to the 1990s did not continue to present day baseflow 

conditions.  The results suggest that BMPs may have suppressed the rate of increase in 

nitrogen which was observed earlier in German Branch and documented in other 

agriculturally dominated watersheds in this region.  A nutrient budget for German Branch 
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revealed that only 50% of the nitrogen input and 10% of the phosphorus input was 

exported from the watershed in crop harvest and streamflow between 1991 and 1995. 

This suggests that in addition to phosphorus retention by sediment control practices 

during this time period, German Branch is inherently efficient at retaining nutrients 

within the watershed.  Increases in fertilizer applications due to double-cropping and 

natural processes such as denitrification and in-stream processing at the watershed scale 

may obscure nitrogen reductions made by BMPs.  While these results are somewhat 

encouraging, future research on water quality effects of BMPs must be long-term and 

focus on ecological interactions at the watershed scale in areas dominated by agriculture. 

 

Introduction 

Nutrient enrichment of coastal ecosystems is a global phenomenon.  The amount 

of nutrients in coastal rivers are increased by dense human populations and agriculture 

associated with supporting these populations (Peirls 1991, Jordan and Weller 1996, 

Vitousek et al. 1997, Beman et al. 2005).  Nutrient enrichment and eutrophication, an 

increase in the rate of supply of organic matter (Nixon 1995), have received much 

attention in Chesapeake Bay due to the resulting extensive algal blooms, oxygen 

depletion in bottom waters, increased turbidity, loss of submerged aquatic vegetation, and 

loss of habitat (Carpenter et al. 1969, Orth and Moore 1983, Officer et al. 1984, Seliger et 

al. 1985, Fisher et al. 1988).  Concerns for the bay’s biological health and protection of 

the productive natural resources led to the formation of the Chesapeake Bay Program and 

its current large-scale restoration effort (CBP 2000). 
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Chesapeake Bay is the largest estuary in the United States, and its 167 000 km2 

watershed is home to nearly 16 million people (Fig 5-1).  This shallow aquatic system is 

weakly flushed by tides and has a ratio of watershed area to water volume which is on 

average 5 times larger than other coastal water bodies; therefore, water quality in 

Chesapeake Bay is particularly susceptible to intensive land uses which leak nitrogen and 

phosphorus into waterways (Horton 2003).  Agriculture covers 30% of the watershed and 

is the dominant source of nitrogen (N) and phosphorus (P) to the bay 

(www.chesapeakebay.net).  The Chesapeake Bay Program considers reducing N and P 

loads to be the most critical element in improving water quality and restoration of natural 

resources, and substantial reduction goals were described in the Chesapeake Bay 

Agreement 2000.  Because of the importance of agriculture as a source of nutrients, much 

of the resulting management strategies have focused on reducing agricultural nutrient 

losses. 

The bay management community has embraced many different Best Management 

Practices (BMPs) as tools to reduce agricultural nutrient loads.  In this paper, I will focus 

on some BMPs determined in a recent analysis of nutrient reduction strategies for the bay 

to be the most cost effective and widely applicable for the Chesapeake Bay region (CBC 

2004).  These practices include, but are not limited to: conservation tillage, riparian 

buffers, cover crops, and the Nutrient Management Plans that include practices to prevent 

fertilizer loss from agricultural fields.  Many farmers in the Chesapeake Bay region are 

now required to file Nutrient Management Plans with local Maryland Department of 

Agriculture (MDA) offices.  The plans involve managing the amount, timing, and 

placement of fertilizer to minimize nutrient loss to surface and groundwater while  
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Figure 5-1. Schematic of Chesapeake Bay watershed in the Mid-Atlantic region of the 
United States and location of the Choptank River.  Located in the Choptank watershed is 
the study site, German Branch, and the US Geological Survey gauging station 
(#01491000) at Greensboro, Maryland.  The enlarged version of German Branch shows 
the sampling site for all monitoring periods and land use in the watershed, including 
agriculture, low-density development, animal feeding operations, and forests. 
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maintaining desired crop yields.  Throughout the watershed most farmers also use 

conservation tillage, which is a broad range of soil tillage practices that leave at least 30 

percent of soil surface covered with plant residue after planting to reduce erosion and 

increase soil organic matter.  Continuous no-till, in which crop residue is maintained on 

the soil surface year round, is the most common in Chesapeake Bay (CBC 2004).  On 

many farms, land is under production up to the edge of streams and ditches.  However, 

farmers and managers are restoring streamside, or riparian, grass and forest buffers to 

create shade and lower stream water temperature, provide large woody debris essential 

for healthy aquatic habitats, intercept nutrients and sediment in overland flow and 

subsurface groundwater, and provide wildlife habitat.  Finally, instead of fertilizing and 

harvesting winter grain crops, USDA local offices have programs encouraging farmers to 

plant an unfertilized cover crop and till it into the soil in the spring.  One of the goals is to 

prevent residual nitrate from leaching into the groundwater in the winter during 

groundwater recharge (Staver and Brinsfield 1998).  More detailed BMP information can 

be found at the NRCS Technical References web page: 

http://www.nrcs.usda.gov/technical. 

Scientists in the bay region have evaluated the effects of several conservation 

practices on stream and groundwater quality at field-plot scales.  Among these are 

conservation tillage (Staver and Brinsfield 1994, Butler and Coale 2005), grass and forest 

riparian buffers (Phillips et al. 1993, Jordan et al. 1997, Lowrance et al. 1997), and cover 

crops (Clark et al. 1997, Staver and Brinsfield 1998).  These practices have been shown 

to reduce losses of agricultural nutrients at the field or plot scale, and are currently being 

implemented throughout the bay watershed at varying levels.  Because implementation of 
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some BMPs has occurred at relatively low rates, the management community proposes to 

increase application of the practices in the future (CBC 2004).  For example, the 

Chesapeake Bay Program’s goal for restoring 3230 km (2010 miles) of riparian buffers 

by the year 2010 was met by 1996, and their current goal is now 16 100 km.  Scientists 

and local stakeholders are also involved in long term programs monitoring water quality 

which track the successes and failures in meeting nutrient reduction goals.  These 

monitoring programs in streams and the estuary include: Maryland Department of 

Natural Resources [MD DNR] Stream Corridor Assessment Survey 

(http://www.dnr.state.md.us/streams/stream_corridor.html), Creekwatchers 

(http://www.talbotrivers.org/creekwatchers.html), and MD DNR Chesapeake Bay 

Monitoring Program (http://www.dnr.state.md.us/bay/monitoring/water/index.html).   

In 1989, German Branch (also referred to as Jarmin Branch) was selected by the 

State of Maryland as an agricultural watershed to initiate BMPs on all farms and monitor 

the resulting stream water quality as part of a Targeted Watershed Project.  Previous 

monitoring in this watershed indicated relatively high nutrient loads compared to other 

subbasins in the upper Choptank watershed on the Delmarva Peninsula and was therefore 

targeted for large-scale restoration (Primrose et al. 1997).  Due to the scale and 

complexity of activities during this project, MD DNR and many other federal, state, and 

local agencies worked together in order to manage the restoration and monitoring 

program and to assist farmers in BMP implementation.  The goal of the Targeted 

Watershed Project was to implement nutrient management and BMPs throughout the 

entire watershed and monitor the effect on nutrient loading to German Branch.  Managers 

hoped this assessment of BMPs at a large scale would support widespread use of these 
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practices in other agriculturally dominated watersheds and help achieve the nutrient 

reduction goals stated in Chesapeake Bay Agreement 2000.   

In this paper I discuss water quality in German Branch watershed over the last 

two decades in relation to implementation of BMPs throughout this time period.  Because 

German Branch has a rich monitoring history and has been the focus of intensive BMP 

implementation through the Targeted Watershed Project, it is an ideal case study to 

evaluate the effects of watershed management.  Below I show that BMP implementation 

in German Branch watershed was effective at reducing P but not N concentrations in 

baseflow of this non-tidal stream.  Insufficient data were available to assess N and P 

concentrations in stormflow. 

 

Methods 

Study site 

 German Branch is a third order stream located in the Choptank River watershed 

on the Delmarva Peninsula (Fig 5-1).  Two associations of soil groups dominate cropland 

in this coastal plain region: well drained Sassafras-Woodstown soils and poorly drained 

Elkton-Othello soils.  Soil classes C and D with slow infiltration rates dominate the 

watershed (A = 0.6%, B = 33.0%, C = 13.3%, D = 53.1%) and a large proportion (45.2%) 

is hydric (Norton and Fisher 2000).  Lee et al. (2001) have shown that the low oxygen 

conditions in hydric soils result in low transfer of groundwater nitrate to baseflow of 

streams, presumably due to denitrification. 

With a total watershed area of 52 km2 and a human population in year 2000 of 

approximately 680, land use in German Branch watershed is 72% agriculture, 27% forest, 
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and 1% low-density development and animal feeding operations.  Almost 50% of the 

streams have riparian forests that have regrown since channelization in the 1930s and 

1940s (Primrose et al. 1997).  Of the agricultural land, intensive row crops of grains, 

soybeans, and corn predominate.  Much of the row crops on Delmarva, including those of 

German Branch, support the large poultry industry centered in the lower region of the 

peninsula (Staver and Brinsfield 2001). 

 

Monitoring 

 Many investigators were involved in measuring water quality in German Branch 

during three time periods of the past twenty years (1985-1986, 1991-1995, 2003-2005). 

Data collected during these three time periods were obtained using somewhat different 

approaches, and below I characterize the methods of each time period in order to provide 

information that enables us to separate the effects of different methods from true 

temporal changes.  

 In 1985 to 1986 Norton and Fisher (2000) obtained grab samples from German 

Branch 5-6 times per month for 15 months, largely under baseflow conditions. 

Temperature and electrical conductivity were measured in the field with portable meters, 

and samples were kept cold until nutrient analyses, usually within a few days. In the lab, 

unfiltered samples were autoclaved with the persulfate reagents of Valderama (1981) and 

subsequently analyzed for dissolved phosphate (PO4) and nitrate (NO3) in a Technicon 

AutoAnalyzer II to determine Total P (TP) and Total N (TN). Aliquots of the original 

samples were also filtered with GFF filters for automated colorimetric analysis of NO3 in 

a Technicon AutoAnalyzer II.  
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During the Targeted Watershed Project of 1991 through 1995, Jordan et al. (1997) 

collected weekly composited samples. Automated samplers continuously monitored 

stream flow and pumped a fixed volume of sample from the stream after a specified 

volume of flow had passed (i.e., samples were pumped more frequently at higher flow 

rates). Samples were composited in a single sample bottle on a weekly basis and include 

both base and storm flows. Jordan et al. (1997) describe the flow-weighting method in 

more detail. Sample bottles initially contained sulfuric acid as a preservative and were 

collected ~monthly for nutrient analyses. Jordan et al. (1997) used perchloric acid 

digestion and colorimetric analysis of PO4 to measure TP.  Total N was measured by 

Kjeldahl N digestion followed by Nesslerization of the NH4 in the digestate, and NO3 

was reduced to nitrite and measured by colormetric analysis with sulfanilamide (see 

Jordan et al. 1997 for details).  Previous comparisons of TN measured using Kjeldahl N 

digestion + nitrate (US Geological Survey, USGS) and TN measured using persulfate 

digestion (Fisher et al. 1998) revealed similar TN concentrations using these different 

methods.  Samples from Greensboro, MD, a USGS gauging station (#01491000), taken 

on the same day by USGS and Fisher et al. (1998) resulted in TN values with differences 

<10%. 

 From January 2003 through December 2004, I collected monthly baseflow grab 

samples from German Branch, and continuation of sampling in 2005 is currently being 

carried out as part of a project in the Choptank watershed with the US Department of 

Agriculture Environmental Quality Lab (USDA EQL). These samples were largely 

processed as described above for 1985 to 1986. Samples were exclusively collected at 

baseflow, when there had been no rain for 3 days. In the lab, TN, TP, and NO3+2 were 
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processed as described above.  On average, nitrite (NO2) was 80% of the NO3+2, and I 

present the analysis of NO3+2 as solely nitrate (NO3).The two analytical services labs 

involved in water chemistry analyses between 1985 and 2005 (HPL, SERC, and USDA 

EQL) follow strict QA/QC procedures and have repeatedly analyzed split samples to 

correct interlab bias. 

Statistics 

 Statistical tests were performed using SigmaPlot v9 with SigmaStat v3.2 

integration.  The symbols *, **, and *** indicate statistical significance at the p < 0.05, 

0.01, and 0.001 probability levels, respectively; “NS” is used for p > 0.05. 

 

Results 

Over the past two decades, German Branch has undergone many changes in 

nutrient management practices (Table 5-1).  Before the Targeted Watershed Project, 

conservation tillage was the only BMP implemented at a wide scale, applied on 

approximately 50% of the cropland in the watershed (Mark Waggoner pers. com.).  

During the Targeted Watershed Project between 1990 and 1995, various federal and state 

agencies supported implementation of several BMPs for all of the farms in the watershed.  

There were Soil Conservation and Water Quality Plans on 99% of the watershed (Table 

5-1), and the plans contained various combinations of the following BMPs: conservation 

crop rotation, grassed and lined waterways, roof runoff management, grade stabilization 

structures, various animal waste management practices, and pest management (USDA 

1996).  Most of the conservation efforts focused on soil erosion and include the following 

BMPs implemented within the entire watershed from 1991 through 1995: a total of 8 
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Table 5-1.  Best management practices in German Branch watershed during three water quality monitoring periods.

Soil Conservation and Water Quality Plans/
Nutrient Management Plans Conservation Tillage Riparian Buffers Cover Crops Source

Year % watershed % agricultural land % streamlength buffered % agricultural land
1985-1989 25 † 50 62 0 M. Waggoner pers. com.
1990-1995 99 65 62 4.2 USDA 1996
1996-2005 100 60-90 ‡ 72 § 2 ¶ various, see notes

Notes:
† USDA 1996
‡ estimate from Natural Resources Conservation Service 1999
§ USDA Environmental Quality Lab data 2005
¶ MD DNR data 2005  

 

stabilization structures (installed where structures were needed for stabilizing the grade 

and preventing gullies and erosion), 1.4 hectares of grassed waterways (perennial grasses 

established in concentrated runoff areas), and 378 meters of lined waterways (concrete or 

riprap waterway where a grass waterway is not sufficient or can not be established) 

(USDA 1996).  Managers estimated that these erosion control practices prevented the 

loss of 1.4x107 kg of soil in German Branch during the Targeted Watershed Project 

(USDA 1996).  All farms had a Nutrient Management Plan included in the more 

substantial Soil Conservation and Water Quality Plan.  Also included were two other 

BMPs that I discuss in this paper: conservation tillage and winter cover crops.  Farmers 

used conservation tillage on the majority of agricultural land (65%); however, cover 

crops were implemented only on small portions of the watershed (4% of agricultural land, 

Table 5-1).   

After 1995, all farms in the basin have continued to file Nutrient Management 

Plans, and in 1998 a new program began funding the restoration of grass and forest 

buffers, the Conseration Reserve Enhancement Program (CREP).  This program has 

supported farmers to restore 102 hectares and 175 km of streamlines with riparian buffers 

(each km of stream has 2 km of streamlines or edges), bringing the total streamlines 

buffered in the watershed to 72% (including established forest buffers, Table 5-1).  The 
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cover crop program has not been well funded, and this is reflected by the decrease of 

cover crops planted in the 1990s during the Targeted Watershed Project from 155 

hectares to 85 hectares during the 2004 to 2005 winter season (2% of agricultural land, 

Table 5-1).  New funding (i.e., Chesapeake Bay Recovery Act of 2005) may support 

more cover crops in German Branch in the future. 

The goal of this study was to measure the effect of the implementation of these 

BMPs on water quality in German Branch over the last 20 years.  I assembled the three 

monitoring data sets described above, but sampling techniques differed among the 

projects, particularly with regard to stream flow.  Therefore, I needed to transform the 

data to enable comparisons between monitoring periods.  Nutrient concentrations are 

often influenced by variations in stream flow, and this was accounted for in comparisons 

between years with varying rainfall.  German Branch is not a continuously gauged 

stream, but flow was measured during the Targeted Watershed Project.  To expand the 

flow data to other years, I compared monthly discharge measured by Jordan et al. (1997) 

from 1991 to 1995 in German Branch to monthly discharge at Greensboro, MD, a USGS 

station gauging station (#01491000) in the Choptank watershed that has been monitored 

continuously for flow since 1948 (Fig 5-1).   Although the magnitude of flow at 

Greensboro was about five times larger than German Branch due to differences in basin 

size (293 vs. 52 km2, respectively), there was a strong relationship between monthly 

water yields (flow normalized to basin area) measured by Jordan et al. (1997) at German 

Branch and monthly water yields at Greensboro measured by USGS (Fig 5-2, 

r2=0.84***).  The slope of the line is not significantly different from 1, and the intercept 

is not significantly different from 0.  Without adjusting for watershed area, the slope of 
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Figure 5-2. Monthly stream water yield from 1991 to 1995 in German Branch and 
Greensboro.  The y intercept was not significantly different from zero and was forced 
through zero for the resulting 1:1 relationship (r2=0.84*).  This allows the development of 
an equation to predict German Branch discharge: QGB = QGR*0.19 (eq. 5-1), where QGB is 
monthly discharge in German Branch and QGR is monthly discharge at Greensboro. 
 

German Branch discharge versus Greensboro discharge was 0.19, indicating that German 

Branch discharge is 19% of Greensboro discharge.  I used the resulting relationship 

between the two subbasins, in which German Branch monthly discharge (QGB) is 

approximately one fifth of Greensboro monthly discharge (QGR), to estimate monthly 

German Branch discharge for 1986 and 2003 to 2005 using the Greensboro record from 

those time periods: 

19.0×= GRGB QQ        (eq. 5-1) 

where QGB is the monthly discharge for German Branch and QGR is the discharge for 

Greensboro (m3 month-1). 
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I then calculated annual volume-weighted mean concentrations and standard 

errors for German Branch.  The monthly averaged nutrient concentrations reported in the 

three studies described above and the estimated monthly discharges (Fig 5-2) were used 

in the following formulas:  
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where CVW = annual volume-weighted mean concentration, Ci = average monthly nutrient 

concentration in month i, Qi = monthly discharge in month i, i = month, SEvw = volume-

weighted standard error, and n = sample size (number of months).  Comparison of the 

annual average concentrations and the annual volume-weighted concentrations suggests 

that differences in general were small, <20%, even though the range of annual rainfall 

between years was 67 to 151 cm (Table 5-2).  Annual volume-weighted concentrations 

appear in the remainder of Results and Discussion. 

Table 5-2. Annual average concentrations of three nutrients in baseflow at German Branch.  Standard errors (s.e.) 
are monthly fluctuations from annual means.  Annual volume-weighted concentrations are adjusted for variations in 
discharge as described by eq. 1.  Rainfall is an average of data from three surrounding stations: Royal Oak MD,
Horn Point Lab in Cambridge MD, and Dover DE, except 2003 to 2005 which only from Horn Point.

Rainfall         Annual average concentration, mg L-1       Annual volume-weighted concentration, mg L-1

Year cm [NO3-N] s.e. [TN] s.e. [TP] s.e. [NO3-N] s.e. [TN] s.e. [TP] s.e.
1986 97 3.4 0.6 4.4 0.2 0.14 0.03 3.1 0.2 3.9 0.4 0.07 0.05
1991 120 3.5 0.1 4.4 0.1 0.20 0.02 3.5 0.1 4.4 0.1 0.20 0.02
1992 81 4.1 0.1 5.1 0.1 0.24 0.02 3.8 0.2 4.7 0.3 0.20 0.05
1993 67 4.2 0.2 5.0 0.2 0.20 0.02 3.5 0.3 4.5 0.3 0.19 0.05
1994 72 3.9 0.1 4.7 0.1 0.19 0.02 3.7 0.2 4.5 0.3 0.18 0.05
1995 85 4.3 0.2 5.2 0.2 0.20 0.02 3.9 0.4 4.7 0.4 0.17 0.04
2003 151 3.6 0.3 5.4 0.3 0.12 0.02 3.4 0.3 4.7 0.4 0.12 0.02
2004 112 4.4 0.4 5.7 0.4 0.08 0.01 3.7 0.4 5.9 0.3 0.06 0.02

2005 † 50 4.1 0.3 4.5 0.7 0.09 0.02 4.3 0.3 4.4 0.7 0.08 0.02

Notes:

† Monitoring year 2005 is only 6 months of data: January through June  
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In addition to annual rainfall and discharge variations, comparison of nutrient 

concentrations between the three monitoring periods is also affected by sampling during 

baseflow or stormflow conditions.  The weekly, flow composited data collected from 

1991 to 1995 by Jordan et al. (1997) includes analysis of stream water during rain events, 

whereas baseflow data collected in 1986 and 2003 to 2005 does not.  In agriculturally 

dominated watersheds, N concentrations are inversely correlated and P concentrations are 

positively correlated with discharge during rain events (e.g., Fisher et al. 1998, Fisher et 

al. in press).   Nitrogen concentrations are highest during baseflow when stream flow is 

mostly supplied by groundwater enriched with agricultural nitrate.  During a rain event, 

the fraction of stream flow supplied by groundwater is diluted as low N overland flow 

contributes to the total flow.  In contrast, a large fraction of P is particle-bound and 

supplied to streams as particulate P in overland flow during rain events.  In a nearby 

Choptank watershed dominated by agriculture, both total P and total N increased as the 

stream responded to a 3 cm rain event (Fig 5-3).  As stream stage increased in response to 

a rain event on 28 to 29 September 2004, total P concentration (r2=0.70) and total N 

concentration (r2=0.35) increased.  This behavior of N and P demonstrates changes in 

stream chemistry between baseflow and stormflow and highlights the importance of 

comparing data only between periods of similar sampling regimes.  The data of Jordan et 

al. (1997) composited at weekly intervals includes these effects, but do not enable ready 

separation of stormflow effects on concentrations.   

I separated the weekly baseflow and stormflow measurements in the 1991 to 1995 

data of Jordan et al. (1997) using their reported discharge data (Fig 5-4).  Weekly 

discharge varied during the five year monitoring period from 3.4x104 m3 to a maximum 
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Figure 5-3.  Stream stage and nutrient concentrations in Blockston Branch in the 
Choptank watershed during a rain event in September 2004 (rainfall = bars; stage = 
dotted line; [TN] = closed circles; [TP] = open circles).  Panel (a) shows stream and 
nutrient response over time and (b) shows the relationship between stream stage and total 
N and total P concentrations.  Rainfall was measured every 30 minutes by the Horn Point 
Laboratory weather station, and stream stage was measured every 30 minutes using a 
Solnist pressure gauge attached to the stream bottom.  An ISCO automated sampler 
collected stream water every hour as stream height increased to peak discharge and 
through the next 24 hours as stream stage declined.  Nutrient analyses were the same as 
baseflow sampling in 2003 to 2005 (see Methods).  Blockston Branch is close in 
geographical location to German Branch, has a smaller watershed (17 km2), but similar 
land use (71% agriculture, 28% forest, and 1% low-density development and animal 
feeding operations). 
 

of 2.9x106 m3 (Fig 5-4).  The equation 

 )2sin( c
b

xayy o ++=
π       (eq. 5-4) 

where x is the monitoring date, y is the weekly flow, and yo is the weekly flow at the 

initial starting date in July 1990, represents the annual baseflow fluctuations and was fit 

to the lower discharge data in each month with r2 = 0.52***.  This annual sinusoidal 

pattern in baseflow is the result from the seasonal variations in groundwater levels.  

Although long-term average rainfall is relatively constant throughout the year in the Mid- 

Atlantic region, there are large seasonal variations in evapotranspiration caused by  
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Figure 5-4. Weekly streamflow in German Branch during the Targeted Watershed Project 

from July 1990 to July 1995.  The equation )2sin( c
b

xayy o ++=
π  represents the annual 

baseflow fluctuations and was fit to the baseflow data with r2 = 0.52***, where y is the 
weekly streamflow, x is the monitoring date, y0=2.2x105, a=1.5x105, b=3.7x102, and  
c=-6.3.  Baseflow data (±1x105 m3 of predicted weekly baseflow based on sinusoidal 
equation) are represented by closed circles and stormflow data (>1x105 m3 predicted 
weekly baseflow based on sinusoidal equation) are open circles.   
 

temperature and vegetative growth.  This results in low groundwater and baseflow at the 

end of summer, and high groundwater, baseflow, and stormflow at the end of winter, 

compounded by random variations in rainfall due to weather patterns.  Most groundwater 

recharge occurs in late fall through spring.  High evapotranspiration rates in summer limit 

groundwater recharge, but low temperatures and plant harvest or estivation result in high 

infiltration in fall through spring (Staver 2001).  Weekly composited samples of Jordan et 

al. (1997) were classified as baseflow if the discharge was within 1x105 m3 from the 

predicted sinusoidal line (Fig 5-4).  Using these well-described hydrologic patterns, 
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weekly discharges greater than this departure from the predicted value were assumed to 

be influenced by rain events during those weeks. 

This weekly classification of base and storm flows in Fig 5-4 was used to estimate 

volume-weighted nutrient concentrations.  Average total N concentration over the five-

year monitoring period was 5.1 mg L-1 in baseflow and 4.3 mg L-1 in stormflow, and 

average total P concentration was 0.13 mg L-1 in baseflow and 0.28 mg L-1 in stormflow.  

Because of these differences between N and P concentrations and the large range in 

weekly flows from a low of 3.4x104 m3 during baseflow and 2.9x106 m3 during the 

largest stormflow (Fig 5-4), I included only baseflow nutrient concentrations from the 

1991 to 1995 for comparison to baseflow sampling during the other monitoring periods.  

Insufficient stormflow data are available to test for interannual changes in concentrations 

during 1986 to 2005. 

The annual volume-weighted nutrient concentrations revealed significant 

interannual trends in baseflow over the last two decades in German Branch.  Nitrate and 

total N increased from 1986 to 1995 by 0.15 and 0.13 mg N L-1 yr-1, respectively 

(r2=0.76* for both, Fig 5-5, Table 5-3).  This increasing trend did not continue through 

2005, suggesting N concentrations are not changing or have stabilized after peak 

concentrations in the 1990s.  The increasing trend in N observed earlier in German 

Branch has also been observed in the longer water quality records at Greensboro, the 

USGS gauging station in the Choptank watershed (Fig 5-1).  Greensboro is a larger 

watershed (293 km2) with less agriculture (49%) than German Branch, and NO3 

concentrations are lower but were increasing at a rate of 0.01 mg NO3-N L-1 yr-1 from 

1964 to 2003 (r2 = 0.35***, Fig 5-6).  This increasing trend in N observed continuously 
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through four decades at Greensboro and from 1986 through 1995 in German Branch 

contrasts with the current monitoring data (2003 to 2005) at German Branch, which 

shows no significant changes after the 1990s.   
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Figure 5-5. Annual volume-weighted nitrogen and phosphorus concentrations in German 
Branch during monitoring years ([TN] = closed circles; [NO3] = open circles; [TP] = 
triangles).  Solid lines are significant linear regressions; the slope of the dotted lines are 
not significant. 
 

Table 5-3. Rate of change of annual volume-weighted
nutrient concentrations in German Branch during the
monitoring periods over 20 years.  If symbol representing
level of significance (*) is missing, rate of change is not 
significant. 

    Rate of change, mg L-1 yr-1

Sampling periods TN NO3-N TP

1986 to 1990s 0.13* 0.15* 0.005 

1990s to 2000s 0.03 -0.04 -0.004*
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In contrast to N concentrations, total P concentrations significantly decreased 

after the Targeted Watershed Project in the 1990s (Fig 5-5).  After an average of 0.134 

mg TP L-1 during 1991 to 1995, I measured an average of 0.090 mg L-1 during 2003 to 

2005, a decreasing trend of 0.004 mg P L-1 yr-1 (r2 = 0.51*, Fig 5-5, Table 5-3).  This 

trend again contrasts with nearby Greensboro basin where total P has increased by 0.001 

mg P L-1 yr-1 from 1970 to 2003 (r2 = 0.14*, Fig 5-6).  Both the significant decrease in P 

observed at German Branch and the lack of change in N (Fig 5-5) may be viewed as a 

result of the BMPs implemented during the Targeted Watershed Project.  
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Figure 5-6. Annual volume-weighted nitrate and total phosphorus concentrations in the 
Choptank River at Greensboro from 1964 to 2003 ([NO3-N] = open circles; [TP] = 
triangles).  (Data sources: USGS, Fisher et al. 1998) 
 

 

Discussion 

 Comparing long-term monitoring data collected under differing sampling regimes 

(described above in Methods) usually requires some data manipulation.  Such 

comparisons are more complicated but unavoidable when long-term monitoring is 
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difficult for one university or agency to sustain.  Although sampling techniques differed 

between monitoring regimes, I am confident in the resulting N and P trends in baseflow 

at German Branch.  Seasonal and annual rainfall variability can create small 

discrepancies in comparisons of annual average nutrient concentrations (Table 5-2).  

Volume-weighting the monthly data takes discharge variability into account and allows 

us to compare nutrient data between monitoring years.  The P trend however, is more 

susceptible to the different sampling techniques due to the higher P concentrations during 

rain events (Fig 5-3).  Since baseflow grab samples were collected in 1986, 2003, and 

2004, I excluded the composited samples of Jordan et al. (1997) from the trend analysis if 

collected during weeks of high flow in 1991 to 1995 (Fig 5-4).  This removes data from 

large rain events which are likely to contribute high P concentrations in rainwater runoff 

to the weekly composited samples.  Yet smaller storms may have occurred during weeks 

of low flow and may be included in the comparison with 1986 and 2003 to 2005 data, 

which do not include any storm events.  It is possible that the potential inclusion of 

smaller storm events in the 1990s data of Jordan et al. (1997) contributes to the 

decreasing trend observed between the 1990s and 2003 to 2005 sampling (Fig 5-4); 

however, I have attempted to exclude this as much as possible.  Note that I have focused 

only on trends in baseflow conditions; there are insufficient data available to estimate the 

impacts of BMPs on storm flows.  However, baseflow typically represents 71% of total 

annual stormflow on Delmarva (Lee et al. 2000).  Focusing on baseflow measurements 

also ignores most of the particulate-bound P that dominates P transport through the 

watershed and is not the ideal approach to monitoring P loads to the stream.  Current 
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efforts to evaluate the P loads in German Branch during storm events will help in 

comparisons with the 1991 to 1995 data.   

Even after considering the sampling differences between monitoring periods, the 

extensive erosion and sediment control BMPs implemented in German Branch from 1991 

to 1995 may explain the decreasing trend in P concentration.  The Targeted Watershed 

Project estimated that the sediment BMPs reduced soil erosion in the watershed by 33% 

(USDA 1996), and the analysis of the P data in Fig 5-5 in fact, shows a 33% reduction in 

stream P concentrations, from 0.134 mg L-1 in the 1990s to 0.090 mg L-1 during the 

current monitoring period at a rate of change of -0.004 mg L-1 yr-1 (Table 5-3).  This 

suggests that the soil erosion BMPs may be responsible for the decrease. Although there 

is a possibility that sampling differences between the two time periods may be driving 

some of that reduction, reductions have not been observed at the USGS gauging station at 

Greensboro where extensive BMPs have not been implemented and total P has increased 

at a rate of 0.001 mg P L-1 yr-1 since 1970 (Fig 5-6).   

In addition to erosion control practices, organic nutrient sources applied to 

cropland in the watershed also changed during the monitoring period.  According to 

Primrose et al. (1997), sewage sludge was introduced in German Branch as an organic 

nutrient source to cropland in the 1980s and peaked in 1990 at applications on 12% of the 

cropland.  Poultry manure also increased during this time period from 4% of the P 

imported into the watershed in 1986 to 13% in 1995 (Primrose et al. 1997).  These 

agricultural and management actions may explain the increase in stream P concentrations 

between 1986 and the 1990s, and the implementation of erosion and sediment control 

BMPs may have contributed to the reduction in stream concentrations by 2003 to 2005.  
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Unlike nitrogen, phosphorus concentrations in streams are likely to respond faster to 

BMP implementation since a large fraction of P is particulate-bound and supplied to the 

stream by overland flow events.    Furthermore, extensive use of no-till agricultural 

practices tends to concentrate P rich plant material at the soil surface, increasing the 

leaching of soluble PO4 from plant tissues (Staver and Brinsfield 1994), especially in the 

fall after plant harvest (e.g., Fig 5-3).  The many erosion and sediment control practices 

may also have reduced P losses during rain events and may be another success of the 

Targeted Watershed Project; however, this hypothesis should be tested in future research. 

Unlike total P, which decreased significantly 10 to 15 years after extensive BMP 

implementation, my assessment of monitoring data in German Branch did not detect 

significant decreases in total N.  However, the data suggest that concentrations in the 

stream may be beginning to respond to agricultural nutrient management in the watershed 

(Fig 5-5).  There was also an increase in German Branch from 1986 to the 1990s at a rate 

of 0.15 mg NO3-N L-1 yr-1 and 0.13 mg TN L-1 yr-1 (Table 5-4), followed by no 

significant changes after 1995.  In contrast, nitrate has been steadily increasing by 0.01 

mg L-1 yr-1 at the Greensboro gauging station since 1964 (Fig 5-6).  German Branch is a 

smaller watershed (17% of the size of Greensboro watershed) with 24% more watershed 

area of agricultural land use, which may explain the order of magnitude difference in the 

rate of increase.  Regardless, this increasing N trend observed continuously at Greensboro 

and early in the monitoring period in German Branch did not continue at German Branch 

into 2003 to 2005 (Fig 5-5, Table 5-3).  This suggests that the trend of increasing 

concentrations of nitrate and total N in the stream has disappeared, and that 

concentrations may be maintaining 1990s levels or potentially beginning to decrease.  
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There are three possible explanations for no significant decreases in N during 

1990 to 2005.  First, long retention times for groundwater in the surface unconfined 

aquifer may delay observation of reduced N in baseflow; (2) there may have been 

changes in farming practices which counterbalanced impacts of the BMPs, and (3) the 

BMPs may have been ineffective in significantly reducing N concentrations.  With 

regards to the first possible explanation, K.W. Staver (pers. com.) has estimated 

groundwater retention time in German Branch watershed by calculating groundwater 

volume and recharge rate using a digital elevation model, field measurements of 

groundwater volumes in the unconfined surface aquifer, and groundwater recharge (Fig 

5-7).  The cumulative frequency distribution in Fig 5-7 is hyperbolic in form (r2=0.99), 

with the oldest groundwater less than 80 years old and a median groundwater residence 

time of 10.7 years.  Using these data, I estimate that during the Targeted Watershed 

Project from 1991-1995, <25% of groundwater was replaced under BMPs in the 

watershed, and it was not likely that decreases in baseflow N would be observed during 

this short time period.  I did, however, expect N decreases by the 2003 to 2005 

monitoring when almost 65% of the groundwater had been replaced in the watershed 

following the extensive BMP implementation in the 1990s.  The data in Fig 5-5 show a 

small decrease in nitrate between the peak in 1994 and 2003 to 2005, but there are small, 

continuing increases in total N.  This suggests that the groundwater retention time in the 

unconfined aquifer suppressed the nitrate response for several years, that the changes in 

nitrate were small, and that organic N or ammonium continued to increase.    

Changes in farming practices during 1990 to 2005 may be a second possible 

explanation for the lack of a decreasing trend in N concentrations.  For example, while  
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Figure 5-7. Groundwater residence time in German Branch represented by percentage of 
cumulative groundwater entering baseflow over time.  A grid of groundwater residence 
times for German Branch watershed obtained from K.W. Staver (pers. com.) was used to 
generate the cumulative frequency distribution shown here.  Groundwater residence time 
was estimated using recharge rates collected in the field and groundwater volume, which 
was calculated using a digital elevation model and field measurements of depth to 
aquiclude and water table. 
 

areas in agricultural production stayed the same, the total area of harvested crops steadily 

increased from 4250 to over 4860 hectares (Fig 5-8) during the Targeted Watershed 

Project due to an increase in wheat and barley production and more soybean crop cycles 

on the same cropland per season (Primrose et al. 1997).  Fertilizer applications are likely 

to have increased as well, as it was applied to more crops during this time period.  

Nutrient management on farms is voluntary, and changes in farming practices driven by 

economic and weather-related pressures may overwhelm any current nutrient reductions 

from BMPs. Changes in federal subsidies, crop prices, and technology (e.g. in this case, 

double-crop soybean production) can all lead to changes in amounts of fertilizer 

application (Primrose et al. 1997).  Other external forces can also affect BMP 

implementation.  For instance, the goal for area of farmland in winter cover crops was not 
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met during the Targeted Watershed Project due to a national shortage of seed in the early 

1990s (USDA 1996).  This variability in farming practices makes long term monitoring 

essential to assessing the water quality effect of BMPs functioning in realistic farming 

scenarios. 
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Figure 5-8. Amount of harvested cropland in German Branch from 1986 through 1995.  
(Data source: Fig 5 in Primrose et al. 1997) 
 

The third and final reason for the lack of N reductions may be that at the current 

level of implementation, BMPs are ineffective at a large scale.  The effects of 

conservation tillage, riparian buffers, and cover crops on nutrient concentrations have 

been measured primarialy at the plot scale, but not at the watershed scale.  Watershed-

scale processes such as denitrification and in-stream nutrient processing may dominate 

and obscure smaller nutrient reductions by BMPs, even when the practices are widely 

implemented.  In order to assess how much nutrients are being retained in the watershed, 

I developed a nutrient budget for German Branch from 1991 to 1995 with estimates of N 

and P inputs (atmospheric deposition, fertilizer, soybean N fixation, and human waste) 
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and compared these inputs to the amount of nutrients exported in the stream and grain 

harvests during this monitoring period (Table 5-4).  Inputs and grain harvests were 

calculated from a variety of sources (see Table legend), and N and P export in baseflow 

and stormflow were calculated using discharge and nutrient data collected during the 

1991 to 1995 monitoring period by Jordan et al. (1997).  Fertilizer application was the 

largest nutrient input (87% of N inputs and 99% of P inputs), but crop removal accounts 

for only 27% of fertilizer N inputs and 8 % of P inputs.   The unused fertilizer may have 

remained in the root zone of agricultural fields (primarily P), it may be flushed to the 

groundwater (primarily N) during infiltration events, or may be removed in overland flow 

moving towards the stream.  However, the net nutrient export in stream flow was only 

26% of the N inputs and 3% of the P inputs to the watershed (Table 5-4), which together 

with crop removal accounted for only ~50% of N inputs and 10% of P inputs.  Therefore, 

50% of N and 90% of P inputs were retained within German Branch watershed.  

Although N may be stored in groundwater for several decades (Fig 5-7), it is likely that 

denitrification and in-stream processing accounted for a large portion of the nutrient sink.  

The percentage of N exported as stream flow from German Branch (i.e., 26%) is similar 

to N export in other watersheds in the northeast US; Boyer et al. (2002) reported that 10 

to 40% of N inputs were exported in stream flow in 16 watersheds.  Much of the P in 

German Branch was likely sorbed to soil particles and contributed to reported increases 

in soil P levels on Delmarva (Sims et al. 1998).  Erosion of P-enriched soil from German 

Branch may have been trapped by sediment control BMPs. The nitrogen not removed 

from the basin was probably consumed by non-crop vegetation, denitrified, or 

transformed within the stream corridors.  These large natural sinks for N and P at the  
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Table 5-4. Nutrient budget for German Branch watershed 1990-1995.  Atmospheric 
deposition was measured by Rochelle-Newall et al. (8 kg N ha-1 yr-1 and 0.1 kg P ha-1 yr-1, 
unpubl.).  Fertilizer application rates for soybean, corn, and grains were estimated by MD 
Cooperative Extension Service (Jim Newcomb, NRCS, pers. com.), and land area in each 
crop was obtained from Primrose et al. (1997).  Soybean N fixation was derived from 
1.11 kg N ha-1 yr-1 * harvested area (Meisinger and Randall 1991).  Human population was 
based on 2000 census data, and waste production was estimated at 4.0 kg N person-1 yr-1 

and 1.2 kg P person-1 yr-1 (Lee et al. 2001).  We calculated baseflow and stormflow 
exports using nutrient data and discharge measurements as shown in Fig. 5-4.  Removal 
of N and P in grain harvest was obtained from Primrose et al. (1997).

            Nutrient totals (kg)
Parameters Nitrogen % of total input Phosphorus % of total input

Inputs:
Atmospheric deposition 2.1E+05 11.5 2.6E+03 0.3

Fertilizer application 1.6E+06 87.3 8.4E+05 99.2
Soybean nitrogen fixation 7.8E+03 0.4 ------- -------
Human waste production 1.4E+04 0.8 4.1E+03 0.5

Total input 1.8E+06 100.0 8.5E+05 100.0

Outputs:
Export in baseflow 1.9E+05 10.5% 6.7E+03 0.8%
Export in stormflow 2.8E+05 15.5% 1.8E+04 2.2%

Crop removal/harvest 4.3E+05 23.8% 6.3E+04 7.4%

Inputs accounted for in streamflow & harvest 9.0E+05 49.8% 8.8E+04 10.4%  

 

watershed scale (i.e., 50% of N inputs, 90% of P inputs) could easily obscure the effects 

of small improvements due to applications of agricultural BMPs. 

Of the nutrients that were exported from the watershed, 60% of N and 73% of P 

was exported during weeks of high flows associated with storm events.  Only using 

baseflow concentrations in the nutrient analysis for German Branch may neglect the 

contributions of these nutrients from stormflow but does capture the changes in nutrient-

rich groundwater and baseflow movement of nitrogen and phosphorus over long periods 

of time.  Regardless, BMPs may reduce nutrients at a field plot scale (Staver and 

Brinsfield 1994, Butler and Coale 2005, Phillips et al. 1993, Jordan et al. 1997, Lowrance 

et al. 1997, Clark et al. 1997, Staver and Brinsfield 1998), but a nutrient budget reveals 

that when applied in watersheds with inherently efficient retention of nutrients (i.e., 
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retention of 50% of N and 90% of P), BMPs may not always cause detectable changes in 

nutrient concentrations. 

Many challenges exist facing the future of BMP implementation and meeting 

nutrient reduction goals in Chesapeake Bay.  Farmers’ economic concerns for the 

possibility of decreasing crop yields make it difficult to promote Nutrient Management 

Plans.  In the Chesapeake Bay region in general, matching fertilizer application to crop 

needs is likely to require more transportation of manure from areas of animal feeding 

operations to areas without a nearby source of manure, proper storage facilities to allow 

spreading of manure only during growing seasons, more industrial processing of animal 

wastes, and widespread use of precision agricultural technologies.  All these measures 

require substantial funds to implement because farmers gain little or nothing 

economically from these practices, and applying them represents a potentially large 

expense.  Matching fertilizer applications with crop needs has the potential to reduce 

nutrient loads to Chesapeake Bay, but only when followed on farms throughout the 

watershed (CBC 2004).  In Maryland, farmers are required to file Nutrient Management 

Plans, but in general only a third do, and the amount of farmers who actually follow the 

prescribed fertilizer application is unknown (Mark Waggoner pers. com.).  Most 

managers agree that no more than 60% of Nutrient Management Plans are fully 

implemented (CBC 2004).   

The reason conservation tillage is the most widely implemented BMP in German 

Branch (Table 5-1) may be because it is potentially cost efficient for farmers.  

Conservation tillage not only reduces erosion rates (Staver and Brinsfield 1994) but also 

directly benefits farmers by requiring fewer passes over fields to plant crops, which saves 
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time, fuel, and the use of different types of equipment.  However, the effect of leaching 

plant residue left on the field during conservation tillage can increase P loading to 

streams (Staver and Brinsfield 1994).  Plant residue remaining on the soil surface 

potentially provides a large amount of P to streams during fall rain events, in some cases 

several orders of magnitude above background P levels (e.g., Fig 5-3 and Fisher et al. in 

press). 

The management community embraced riparian buffers early in the Chesapeake 

Bay restoration effort as an effective tool to reduce agricultural nutrient loading 

(Lowrance et al. 1997).  Managers expect restored riparian buffers, mostly through 

CREP, to be responsible for approximately one-third of the total nitrogen and phosphorus 

reduction goals in Maryland waters (USDA 2004).  Funding for new CREP contracts is 

coming to an end, and almost all buffers that can be restored under this widely used 

program have been implemented (Mark Waggoner pers. com.).  The challenge now is for 

scientists to evaluate the actual water quality effects that young buffers have made and 

the effects as they mature, as long as farmers do not return CREP sites to cropland after 

initial contracts expire.  

Finally, cover crops have been shown to be successful at reducing nitrate leaching 

to groundwater (Staver and Brinsfield 1998) but have not been widely implemented (e.g., 

Table 5-1).  New monetary sources may fund more farmers to use cover crops, but this 

effort must be long term in order to evaluate potential nutrient reductions.  In watersheds 

similar to German Branch, the effects of management actions on nitrate concentrations in 

streams are unlikely to be observed for five to ten years (Fig 5-5 and 5-7, Bohlke and 

Denver 1995) after groundwater nitrate reductions occur under cropland with consecutive 
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plantings of cover crops.  If managers, politicians, scientists, and stakeholders are fully 

committed to Chesapeake Bay restoration through reducing agricultural nutrient loading, 

they must be prepared for long-term funding, more extensive BMP implementation, 

continuous water quality monitoring, and flexibility resulting from both successes and 

failures. 

 

Conclusion 

 The outcome of only six percent of river and stream restoration projects are 

monitored or assessed in Chesapeake Bay watershed (Bernhardt et al. 2005).  This makes 

past studies as well as ongoing research at watersheds such as German Branch critical to 

the understanding of the effectiveness of BMPs.  The wide application of BMPs and a 

long history of water quality monitoring make German Branch a good example of a 

managed agricultural watershed.  Although BMPs may have contributed to the 33% 

reduction in TP concentrations, the lack of significant N reductions in the stream was not 

the outcome predicted by the management community involved in the restoration in 

German Branch watershed.  More monitoring data in German Branch will be needed to 

determine whether N concentrations have leveled off or are beginning to decrease. 

However, I believe that the experience in German Branch has been a valuable 

exercise in guiding future scientific research and management options in Chesapeake 

Bay.  This evaluation of historical data in German Branch suggests that at a watershed 

scale, other factors such as denitrification and in-stream processing may compete with 

detecting measurable nitrogen reductions.  Furthermore, the current level of BMP 

applications such as CREP and winter cover crops in the watershed is likely to be 
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insufficient to reduce nitrogen concentration.  Best Management Practices will affect 

water quality only if sufficiently implemented to be at least equivalent to other watershed 

processes influencing nutrient reductions (e.g., denitrification and in-stream processing).   

Managers have assumed that BMP nutrient reductions throughout the Chesapeake Bay 

watershed would be similar to those measured in plot scale studies but are now 

recognizing that at the current level of implementation, BMPs are not successful at the 

bay-wide scale.  Scientists must shift their research focus to a larger scale in order to 

assess BMPs embedded with other processes in the environment to determine the level of 

implementation needed to improve Chesapeake Bay water quality.  The health of the bay 

depends on a more complete understanding of ecological interactions in agricultural 

landscapes, nutrient management programs, and BMPs that also include consideration of 

the inherent variability in socioeconomic factors affecting farming practices.   
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Chapter 6 
 

SYNTHESIS 

 

 My research interests have been on how human activities on land affect 

downstream aquatic ecosystems.  The scientific community’s level of involvement in 

ecosystem restoration in Chesapeake Bay and the integration of applied and basic science 

provided the motivation to do my Ph.D. research in this region.  The response to 

increasing nutrient loads to Chesapeake Bay has been extensive; however, there are some 

signs that improvements in ecosystem health have resulted from nutrient reductions (e.g., 

Potomac River, Kemp et al. 2005).  My research focused on the effect of restored riparian 

buffers on nutrient reductions from agricultural land draining into Chesapeake Bay, one 

of the primary sources of N and P.  

 Past research on the nutrient reduction capabilities of riparian buffers has mostly 

been on established forest buffers and at a plot, or individual farm, scale.  My research 

goals were to investigate the mechanisms of nutrient reductions in restored riparian 

buffers on two individual farms and also at the watershed scale in 30 subbasins of the 

Choptank and Chester River watersheds.  An important component was to make these 

assessments where riparian buffers had been restored as part of the nutrient management 

strategies in the Chesapeake Bay watershed.  I chose to study restored riparian buffers 

through the Conservation Reserve Enhancement Program (CREP) because of the 

widespread implementation on the outer coastal plain of Maryland and the program’s 

goal to reduce nutrient inputs to the bay.  I investigated nutrient reductions in 

groundwater under a CREP restored buffer and in baseflow and stormflow in 30 streams 
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in the Chester and Choptank River watershed.  My hypotheses were (1) that nutrient 

reductions occur in young, CREP restored buffers, though not at the high levels observed 

in established riparian forests and (2) that baseflow and stormflow nutrient concentrations 

would be negatively correlated with the amount of CREP restored buffers in the 30 

subbasins.  Lastly, due to my interest in other Best Management Practices (BMPs) I 

assessed the nutrient reductions in German Branch, a subbasin in the Choptank 

watershed, after significant nutrient management strategies were implemented on the 

farmland in that basin.   

 At the Radcliffe farm in the Little Choptank River watershed and another farm in 

the Chester River watershed, I measured groundwater nutrient concentrations in young 

(<7 years old) restored buffers, older (~20 years old) restored buffers, an established 

forest buffer, and a non-buffered control site.  The groundwater nitrate reductions were 

large in all forest buffers and resulted in very small groundwater nitrate contributions 

through these buffers into adjacent creeks.  At the Radcliffe farm, where more detailed 

data were available, these reductions were dominated by the dilution of nitrate-rich 

groundwater from low-nitrate rainwater percolating through the riparian soils.  I also 

detected nitrate reduction through the process of denitrification in all of the buffers; 

however, the method used to measure denitrification may not be the most ideal for this 

particular farm.  Even though the three forest buffers surrounded the same field, the 

groundwater hydrology was different in all buffers.  This makes it difficult to compare 

nutrient reductions between the buffers since creek water intrusion, transpiration through 

the riparian vegetation, and groundwater recharge varied between the buffers.  However, 

it is apparent that the 7 year old CREP restored buffer on this farm has developed the 

 213



characteristics necessary to filter nutrients as efficiently as many established riparian 

forests.   

I suspect that young CREP buffers in the coastal plain rapidly develop the 

abilities to reduce nitrate concentrations in groundwater.  Vellidis et al. (2003) measured 

large nitrogen reductions in groundwater, mostly through denitrification of nitrate, 

immediately after a buffer was restored.  At the Radcliffe farm, the nitrate reductions 

were mostly from taking that creek-side land out of agricultural production and no longer 

applying fertilizer in that area.  Rainwater now infiltrates through the soil profile without 

any fertilizer-derived nitrogen leaching from the soil profile into the subsurface 

groundwater, diluting the upslope, high nitrate groundwater from the crop fields.  This 

process may be important in other CREP sites on the outer coastal plain of the 

Chesapeake Bay watershed where there is low topographic relief and groundwater flow is 

slow through soils with low hydraulic conductivity.  The nutrient reduction capabilities in 

restored buffers may not be developed as rapidly at CREP sites in other regions of the 

Chesapeake Bay watershed, and in order to characterize this, research on restored buffers 

should expand outside of the coastal plain. 

 Since I detected large nitrate reductions in a buffer restored through the CREP, I 

expected to detect reductions in baseflow nitrate concentrations at the watershed scale in 

this region.  I put a considerable amount of effort into compiling the location of CREP 

sites in the Chester and Choptank River watersheds.  Unfortunately, I was not successful 

in gathering a complete set of data on CREP areas and locations from the beginning of 

the CREP in 1998 through 2004 in the Chester watershed; therefore, my ability to 

evaluate water quality in relation to CREP implementation there is limited.  The effects 
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of land use on nutrient inputs into the Chester River is not as well understood as in the 

Choptank River, and not as many working relationships between scientists and the 

farming community exist.  Collaborative research is needed in the Chester River 

watershed.  However, the CREP data I compiled for the 15 subbasins in the Choptank 

watershed is complete and reveals that the restored stream length varied from 1 to 30% of 

total subbasin stream length.  This was not correlated with baseflow nitrate or total 

nitrogen concentrations in the subbasins, and in fact, nitrogen concentrations have largely 

increased since the last monitoring period in 1986, before any buffer restoration through 

the CREP.  A nutrient budget for one of the subbasins, German Branch, revealed that it is 

not likely that the restored buffers have the high nitrogen reduction capabilities observed 

in the 7 year old CREP during the groundwater study (i.e., 124 kg N ha-1 yr-1).  The 

budget revealed that when this large nitrogen reduction was projected for all the CREP 

sites in the subbasin, the stream nitrogen concentrations would have decreased 

significantly to be detectable.  It is more likely that, on average, the restored buffers in 

the 15 subbasins may exhibit lower reduction rates than those measured on the farm near 

Horn Point.  If this is the case, at the current level of buffer restoration it may not be 

possible to detect measurable nutrient reductions in baseflow above other factors 

affecting the nutrient budgets such as variations in cropland between basins, changes in 

farming practices, seasonal weather variability, and large nitrogen reduction processes 

spread throughout the subbasin (i.e., denitrification in hydric soils and in-stream nutrient 

processing).  More research on these nutrient processes in watersheds may be needed 

before BMP reductions at the watershed scale can be assessed. 
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As opposed to baseflow, stormflow phosphorus yields were related to buffer 

restoration in one of the Choptank subbasins.  I performed a detailed comparison of size 

and location of CREP sites and measured stormflow nutrient concentrations in two of the 

subbasins, Blockston Branch and Norwich Creek.  The restored buffers were widely 

distributed throughout Blockston, and the CREP sites increased the total buffered 

streamline from 42% in established forested buffers to a total of 61% buffered streamline 

in 2004, compared to a total of  only 45% in Norwich.  During the rain events, 

ammonium, total suspended solids, particulate nutrients, and phosphorus concentrations 

increased with stream discharge, and in most cases, the integrated volume-weighted 

concentrations of these nutrients were significantly higher in Norwich as opposed to 

Blockston.  Calculations of streamflow in 2004 revealed that nutrients mainly supplied in 

stormflow (i.e., ammonium and phosphorus) had higher yields from Norwich, and 

nutrients mainly supplied in stormflow (i.e., nitrate) had higher yields from Blockston.  

Baseflow nitrate concentrations and nitrate yields were over 2 times higher in Blockston 

compared to Norwich, even though the two basins have similar land use and Blockston 

has more soils that can support denitrification (i.e., hydric and D class soils). 

Measurements such as this may have important implications for the design of 

nutrient management practices at the watershed scale.  The nutrient management in 

watersheds dominated by nitrate export may need to focus on implementing cover crops, 

while the focus may need to be on buffer restoration in watersheds dominated by 

sediment and phosphorus export.  This study has started to define the nutrient responses 

in the two streams during storm events, but I can not be certain that restored buffers are 
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driving the differences among the subbasins until the sample size of storms and subbasins 

sampled is increased and stream discharge measurements are complete. 

 Finally, the detailed history of nutrient management in German Branch and the 

resulting water quality changes 10 years after BMP implementation demonstrate a 

possible success of nutrient reduction strategies.  During the early 1990s, when extensive 

soil and erosion control BMPs were implemented within the watershed, phosphorus 

reductions were not observed in the stream.  However, by the 2003 to 2004 monitoring 

reported here, phosphorus concentrations in baseflow had decreased 33%, which was the 

same percentage of reduction that managers had expected from these BMPs.  Even 

though I did not measure significant decreases in nitrogen concentrations, the significant 

rate of increase observed from the mid 1980s to the 1990s in German Branch and 

observed at other streams in this region was not detected from the 1990s to the current 

monitoring, indicating that the BMPs may have halted the nitrogen increases, but not 

reversed them.  Also, a nutrient budget for German Branch from data collected in the 

early 1990s revealed that this subbasin exported only 50% of the nitrogen inputs and 10% 

of the phosphorus inputs.  This has been observed in headwater streams throughout the 

US (Peterson et al. 2001), large watersheds in the northeastern US (Boyer et al. 2002), 

and from continents draining into the Atlantic Ocean (Howarth et al. 1996).  This process 

is characteristic of ecosystems at many scales, but many of the processes taking place 

between nutrient input on land and nutrient export in streams, rivers, and oceans are not 

well understood.  Quantifying denitrification of nitrate and soils sorption of phosphate at 

the watershed scale is much needed to understand these types of nutrient budgets.  In 

landscapes that retain much of the nutrient inputs, presumably through denitrification, 
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plant growth, and soils sorption, detecting BMP nutrient reductions above other nutrient 

reduction processes may be difficult at these scales.   

There are many obstacles to a complete understanding of agricultural nutrient 

loading and possible reductions to Chesapeake Bay.  The challenge of basic science is to 

understand the nutrient processes occurring between cropland and downstream aquatic 

systems within the agricultural landscape.  One of the main challenges to applied science 

is to integrate this basic knowledge into studying the management efforts.  It is difficult 

to balance farmer and science-based environmentalism, especially when farmers are 

balancing the quality of the environment and economic stability (Paolisso and Maloney 

2000).  However, the more scientists can quantify how these strategies are affecting the 

bay and the more these practices are implemented to maximize nutrient practices and 

crop yields, the closer we may get to striking that balance. 
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