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I - INTRODUCTION

The problem of observers has been introduced in the control litterature by
D. LUENBERGER [15]. Let us consider a dynamic system which'is deterministic, but
whose initial state is unknown. An observer is a model which mimics the behaviour of the
physical system, and in particular its state becomes closer and closer as time evolves to the
state of the physical system. There is a great deal of freedom in such a design and it is

important to investigate various kinds of observers.

Since, after all, the observer problem presents analogies with the filtering
problem (estimating the state of a stochastic dynamic system), although there are no
stochastic disturbances, it is natural to exploit the analogy. This idea has been used by
JS. BARAS. PS. KRISHNAPRASAD [4] and leads to an observer which is different
from Luenberger’s observer. It presents several advantages. In particular, it is obtained in

a constructive way and it has robustness properties.

From the very definition it applies identically when there are disturbances,
whereas the Luenberger observer is strictly limited to the deterministic case and is not
obtained in a constructive way. Also it may apply to more general cases, in the sense that
when the Luenberger observer exists, the observer arising from the Kalman filter theory

exists as well.

In this article we consider dynamic systems whose evolution is governed by a
parabolic partial differential equation, or more generally a differential operational
equation in the sense of J.L. LIONS [12].

The Luenberger theory has been extended to infinite dimensional systems (see in
particular M.J. CHAPMAN - AlJ. PRITCHARD [6], A. ICHIKAWA -
AJ. PRITCHARD [10]). We explore here the observer based upon Kalman filter theory.

Let us discuss here an example to present the main results of the paper. Let Q2 be
a smooth domain of R™, Consider the P.D.E.

ay _ .

é—E-Ay—O in Q

.
a1 2

ov r=

y(x,0) = y(x) € H = L%(@)



where T' = 90 denotes the boundary of Q. The state Yo is unknown. If instead of (1) we

would have
ay _ y
e Ay + Ay =0 A>0
gy, _

(2) v |p " 0
v(x,0) =y

0

then the system is stable and y(x,T) — 0 as T — oo. In other words, whatever be Yo the
state becomes closer and closer to 0 as T evolves and thus becomes "more and more known".
An observer could be simply the model (2) itself with an arbitrary value of Yo

independently of the available observation.

Such a stability property is not present in the model (1). Let us assume that we

observe
(y =y
T
i.e. the value of the state on the boundary.

An observer in the spirit of Luenberger would be the following model

am

Eraie Am=0 in}
- om_
G)  Fr=(m)

m(x,0) = mo(x)

where m, is arbitrary. The error n = y - m appears as the solution of

@ T =0

n(x,0) =7 (x)=y -m .



Multiplying (4) by n integrating over 2 yields

1 d fdx+f|Dm2dx+J n2dT = 0

2 dt O Q ) p
But (see SORINE [16])
J [Dnlzdx+Jn2szﬁjn2dx s g >0
0 r 9]

and thus
J nz(x,t)dx <C e 2Pt
9]

which proves the exponential decay of the error.
The theory developed in this paper leads to the following observer

om

’a‘ - Am = f[\ P(X,f,t) (Z(Sat) - m(fst)) d€

dm
S N

m(x,0) = mo(x)

where P(x,¢,t) appears as the solution of a Riccati equation, connected to a filtering
problem, or by duality to a control problem. We study the type of control problems which

may be introduced in order to derive exponential decay for the error.

2 - SETTING OF THE PROBLEM

2.1. Notation - Assumptions

Let V, H be two separable real Hilbert spaces, such that identifying H and its

dual H’, one has

(21) VCH=HCV

each space being dense in the next one with continuous injection
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We denote by (( , ) Il N and (, ) | | the scalar product and norm in V, H
respectively. For another Hilbert space X we shall use the notation (, )X and | ‘X'
We denote by <, > the duality V, V’ ( ).

Let A(t) be a family of operators such that

A () e L™ (0,00, € (V;V?))

(2.2) ) 5
<A()$ 4>+ Xx[d]1" 2 allgll” , VeV,

a>0 , A>0, Vt

We consider a dynamic system whose evolution is governed by the differential

operational equation (see J.L. LIONS [12])

dy -

a—f' + A(t)y =f
(2.3)

y) =y,
where

(2.4) fe L2(o,oo;V’) given
(2.5) Yo eH, Yo unknown

It is well known that for any Yo (2.3) defines the state y(.) in the sense

(0,00, V) dy €L2 (0,00, V).

2
(2.6) yeL - loc

loc
We perform an observation on the state y(.) as follows
2.7)  z(t) = C(t) y(t)

where C() € L (0,00,2(V;F))

where F is a given Hilbert space.

*) More generally < , >_ will represent the duality between a Hilbert space X and its dual X' and
Ax the canonical isomorphism between X and X',
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2.2. Definition of an observer

An observer is a function m(t) measurable with values in H, whose value can be
computed at each time t in terms of-the known data (in particular the observation z(.)) and

such that the error

e(t) = y(t) - m(t)

satisfies le(t) |— 0 ast — oo,

Therefore m(t) will reasonably estimate the state of the system at time t (at t=0
this estimate may be very bad, but it improves more and more as t — oo ; it is of course

nice to get an exponential decay for |e(t)]).

This problem has been extensively studied in the finite dimensional case, starting
with the seminal work of D. LUENBERGER [15]. For infinite dimensional systems, the
Luenberger observer has been extended in a natural fashion, however the research has
mostly concentrated in the design of compensation (i.e. use the possibility of controlling
the system, so that the global system made of the system itself and of the observer be
stable) ) While the control is generally present in such contexts, it is worthwile to
separate the observer problem from the compensation problem, and consider cases as (2.3),
(2.7) when there is no control. In particular nothing can be done to stabilize the system

itself.

We shall thus prefer to introduce observers constructed in a different way,
following ideas introduced by J.S. BARAS, PS. KRISHNAPRASAD [4], and which
consist in artificially randomizing the problem and use Kalman filter theory for infinite

dimensional systems.

2.3. A randomizing system

The theory of linear stochastic infinite dimensional systems has attracted a

considerable interest in the litterature. One of the main objectives has been to develop a

™) for details in this direction see M.J. CHAPMAN - A.J. PRITCHARD {6], A. ICHIKAWA -
A.J. PRITCHARD [10}.
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rigorous theory of the Kalman filter applicable to distributed parameter systems. Among
the main contributions one can refer to A.V. BALAKRISHNAN [I], [2],
A. BENSOUSSAN [5], R.F. CURTAIN [8], R.F. CURTAIN, A.J. PRITCHARD [9].

Let us describe briefly what we need in the present context. Let (Q,B\'J, P) bea
probability space equipped with a filtration :ﬁt, satisfying the usual conditions.

Let E be a Hilbert space, a generalized E Wiener space is a stochastic process

€
indexed by an element e () € leoc (0,00;E’), denoted by ut*(w) satisfying

[
(28) u s a ¥ Wiener, Ve,

€ €4

tas -1
7 = J < e, (), AE e (d) > di,

(2.9) E Beo by
o

e
(2.10) themap e, — Ky * is linear.

\

We assume that such a generalized E Wiener process exists. Similarly we shall

R . . *
assume the existence of a generalized F Wiener process v, and we suppose that

t

4 fy .
(2.11) By and v, are independent.

Let G() € L% (o,oo;&’iE;V’)) ang M() € L (o,oo;,‘é’(F;F)) , we shall consider the

stochastic processes p? Y and viw F indexed respectively by v() € Lizoc(o,oo;V) and

f ()€ leoc(o,oo;F’). They are clearly independent 3‘t processes and one has

G*Vl G*vz tas -1 *
(2.12) E,ut B =Jo <GAE le(A),vz(A)>d)\

Let finally be a family of random variables indexed by h € H denoted by fh such that
(2.13) Vh, fh is a gaussian with mean O, and
h h ~
E¢ ¢ = (Po,h,h) » P E %(H;H)
symmetric, semi positive definite.

fe

e
(2.14) fh is independent from ”t* and v,

Let I'(t,s), t >s be the Green operator corresponding to A(t), i.e.
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(2.15) I(t,s) € (H;H) and oft) = I(t,s)h
is the solution of

da

aT+Aa—O t>s, afs)=h

For simplicity we write I'(t) = I'(t,0).

A stochastic linear system is a process y? indexed by h € H, defined by the

formula

* * ¥
(2.16) ﬁ%wﬂ&M+5Fﬁm+u?r(gm

where y(t) is the solution of
dy =
T Ay =f()  ylo)=y

(2.17)
Yo given in H.

G I‘ (t, o)h

We are to be careful in the mterpretatlon of u In fact consider

s — G (s)I‘ (t,s)h for s < t; it coincides with G (s)B.(s) where B is the solution of
a,e+ A@EB=0 p®=h

* *
and As) € LAO.LY) , %0 s G (O (toh = els) belongs to L(o,5E). Since p,"
€.t

depends only on the restriction of e, on (o,t), the quantity u is well defined for any t.

We now define the observation at time T as follows. Let f, € L2(op,T,F’) and

be the solution of

dt +A n= C fe
(2.18)

7(T)=0

then one sets

f T ’
@19 2= [ <00, CO¥O > de+ €4 u? et
Yo



2.4. Kalman filter

This problem can be stated as follows. Let

*

727 - o(zf ,fe € Lz(o,T;F’))
find

h h T
(220) y4=Elypl Z7]

Without redoing the theory, for which we refer to A. BENSOUSSAN [5], we shall only
recall that it can be obtained by solving a deterministic control problem, related to

maximum likelihood. We assume that M is invertible as well as PO and set

1 1

*_ -
(221) R=M " A_M " € 4FF).

We introduce the control problem

(2.22)
y(0) =y +¢

in which ¢ and e(.) are the decision variables.

We are interested in minimizing the following cost
T -1
(2.23) J¢.e()) = j [< AE ee>+<R (¢ -Cy),¢-Cy >:| dt + (PO £,6)
0

where in the right hand side of (2.23) the function ¢(.) is given in L2(o,T;F).

Define
-1 _*
Dl =G AE G

(2.24)

*
D2=CRC

and consider the pair y(.), p(.) defined by the system of coupled equations
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dy -
Tt Ay + Dl(t)p =f

dp * _ . ¥
-3t A (Hp - D2(t)y =-CR¢

(2.25)
y(o) = Yo~ Py p(o)

p(T)=0
then the optimal control is given by

(2.26)  &(t) = - A’é G*(t) p(t)

£=-P plo)

The decoupling theory leads to the Riccati equation (written formally)

(2.27) Q+AP+PA*+PDP—D
) dt 20 71

P(o) = P0

and the linear equation

dr *
d—t-+Ar=f+PCR(g‘—Cr)

(2.28)
r0) =y,

It can be proven that if ¢,}: € L2(0,T;F’) is defined by

T h _
f <¢le> dt=((T) - ¥Th), V¢
[¢]

_then the quantity (2.20) is given by

h ¢h*
yr=2z  + (D)
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3 - STUDY OF THE OPERATOR P(T)

3.1. Definition of P(T)

Consider the coupled system

dé& . -
-C-R-+ Aa+Dl,8—O

dg . *

-G tAB-Dya=0
(3.1)
&(0) = - P_ Blo)
B(T)=h
then we set

(3.2) P(T)h = -&(T) .

The system (3.1) is related to the following control problem

R %%+ Alha =G e

(33)  «o)=¢

T
nee =5 {@ e o J [lely +<Dyae>] dt} + (ho(m)

o
We deduce easily that

(3.4) ;_(P(T)h,h) = inf J}.} (£.e().

¢.e(.)

We can also characterize this quantity in a different way. Consider the control problem

9B AB=C4 e L¥TF)
(3.5)

A(T)=h
and the cost
T

<R-l¢*,¢*>dt + I

(o)

T

I7 @) = @ p0).50N) + | <D >dt

o
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then one has also

(3.6) (D) = inf 37 ($0)

3.2. Detectability and stabilisability

Definition 3.1. We shall sav that the pair A(.), C(.) is detectable if YVh, 3 qS*T’h such

that

T T
. T,h 2 T,h 2
I B e TR

independent of T, where ﬂT’h represents the solution of (3.5) corresponding to d>;f’h

In the stationary case, i.e. A, C independent of time, it is sufficient to assume the

following.

* ok
Definition 3.2. We say that A , C isstabilisable if V h, 3 qSil € L2(o,oo;F’) such that

the solution 7" of

h

d * h * h
T TA T =Ch
h

7(=h

satisfies 'yh € Lz(o,oo;H).

g

* *
Proposition 3.1. In_the stationary case if A , C is stabilisable, then A, C is

detectable.

Proof.

Define

6l (1) = R (T-1) | BTN = (T,

then clearly ﬁT’h(t) is the solution of (2.5) corresponding to ¢3’h (t), and



et

T T %)

T,h 2 h,2 h,2
[ e S d< | 10017 a
(6] (o] (0]

T T - [o%)
T.h, 2 h 2 h, 2
f xﬂ’sdt=f I'vldt<J 1412 at
6] (0] (0]

and the desired property follows.

)

Theorem 3.I. Assume that A(.), C(.) is detectable, then
(38) 1P| gy <P
Proof.
From (3.5) it follows that

1 2 T 1,2 T *

zlﬁ(o)l +f <A ﬂ,ﬂ>dt=2|hl +J < B,C ¢, > dt

0 )
hence
T T T

*
siso’ va [ umPacsjim®e [ <pcas e [ 1a%a

0 0 )
and the detectability condition implies immediately

T

T,h , T,h, 2 .
RGOS SN I RS TR S <)
o)

therefore from the definition (3.6)

“h T,h

(P(Mhh) < Jp(¢ ™) < Kj

h

This and the fact that P(T) is symmetric positive semi def inite implies the desired result.

o

Theorem 3.2. If there exists a family T'()) € L°°(o,oo;££(F;V’)) such that

(39)  <(A®+ T CW) & ¢> 2o llEl”

then the pair A(.), C(.) is detectable.
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Proof.

Indeed pick the feedback

*

$p=-T B
the corresponding trajectory is given by

2 weCThE=0 B(T) = h

T
and thus - J I Bl 2 dt is bounded by a constant independent of T. The desired result

follows. °

m]

3.3. Invertibility

We turn now to the question of the invertibility of the operator P(T). We shall

need another property. Consider the dynamic system

%;_x + Aa = Ge
(3.10)
a(0) = ¢

Definition 3.3. We shall say that the pair A(), G(.) is controllable if V h, 3 eT’h and
T,h

£ such that
T T
Gan ebh2. J le T2 gt + J 1M dt < L,
(6] o]
and

3.12) o NT)=h

whose aT’h designates the solution of (3.10) corresponding to fT’h and eT’h. The

constant Lh is independent of T.

We can give an example of controllability (probably the only one really

applicable in practice).
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Proposition 3.2. Assume that

(3.13) D1 is invertible

then the pair A(.), G(.) is controliable.

Proof.

dép

2 X7 _
wirn € L%(0,00;V*) and ¢h(o) = h. We set

Let ¢h € Lz(o,oo,V),

Thy=g -t , " =ao) =M
and
T.h -1 * -1 daTh T.h
(3.14) e (O =AL G () D (1) ( F AR e W)
then T a4
€M7 =1, =2 [ <y, > deain?
0
0 d
<|h|2+2j <¢h,—d¢t—h > dt.
0
T T T 00
[ 1M ae= [ om0 a- [ 1ey@0% e [ e
0 (0] 0 (o]
and
T T
T,h.\ 2 T,h.. 2
jo e ar < c [j e uV, dt + jo e on? ar]

oo ¢ (o o]
c [JO 0y . dt + JO g% ar] .

Finally from (3.4) follows

T,h T.h

G(t) el (t)_d + AQY) a LT

and

Th1y=n

The desired result has been established.



L

- 16 -

Remark 3.1. As it is well known (cf. R. LATTES - J.L. LIONS [11]), we cannot

solve a priori the backward problem

(315) $2+Aa=Ge a(T)=h.
The situation is different from ordinary differential equation. The problem
(3.15) (for given e) is a priori ill posed. We refer to J.L. LIONS [14] for a detailed study

of these ill posed problems in the context of control theory.

We shall now consider control problems similar to those described in §. 3.1. The

response is described by

da

a—t—+ Aa = Ge
(3.16)

afo) = ¢

We impose the constraint
(3.17) «{T)=h

and minimize the cost (recall that PO is invertible (cf. §. 2.4)
h -1 T 2
(3.18) KT (¢,e()) = (P0 £0) + JO [ |e]E + < Dza,a >] dt.

Note that (3.17) must be considered as a constraint and not an initial condition.

We can assert

Theorem 3.3. Assume that the pair A(.), G(.) is controlable. Then the control problem

(3.16), (3.17), (3.18) has a unique solution. There exists a unique pair « , g such that

da - =
a—F+Aa+Dlﬂ—0
Bt -
-at-'f'Aﬂ-Dza—o

(3.19)
o(0) = - P _B(0)

a(T) = h
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and the optimal control is

&0 =- 471G 0 Aw
(3.20)
€ =-P_B)

Proof.

We follow the technique introduced by J.L. LIONS [13] to deal with this type of ill posed
problems. It relies on the use of the penalty technique. We shall penalize the constraint
(3.17).

a. Existence and uniqueness of the optimal control

Let I‘h = {e(.), € | a(T) = h} . By the controllability assumption I‘h i1s not
empty. It is a convex closed subset of the Hilbert space Lz(o,T;E) x H and the functional
(3.18) is a coercive quadratic functional. Hence the existence and uniqueness of the

optimal control e(.), € .

b. Necessary and sufficient conditions of optimality

Consider I‘O (i.e. I‘h with h=0). It is obviously a closed subvector space of
L2(o,T;E) x H. Noting that e() + A e(), € + X¢ V e(),f belonging to T, we deduce

easily from the relation
KD (@ + 26,80 + 20 2 K2 @, 60)
h 80+ 2e) > KB €, &

that the following condition must hold

-1 - T - T -
(3.21) (P0 ,£,€)+J <AEe,e>dt+I <D2<x,a>dt=0
o o

vV & e() in Eo’ o being the corresponding solution

of (3.16), and « designates the optimal trajectory

This condition is also sufficient, since V ¢, &() €E,, £-F,80)-¢80)€ E ., hence
hoo - e - T . T _
K- (¢,e()=(P £,£)+J <A_.e,e>dt+ <D,a, o> dt
T o o E o 2
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such implies

K2 (EE0) > KB E.60).

c. Adjoint system. Uniqueness

Assume that we have a solution of (3.19). Then define e(.) and £ by (3.20). Let us
show that it is optimal. Clearly a is the trajectory corresponding to the control e(.), £ and
it is admissible (belongs to I‘h). It is easy to check that it satisfies (3.21). It is thus the
optimal control and therefore e(.), { and a(.) are uniquely defined. It is also the case of

dg

_ *_ -
B(o) and - ==+ A B . This implies that 8 is unique as well.
dt

d. Adjoint system. Existence

It remains to prove the existence of the pair a, 8 solution of (3.19). The penalty

technique is now used. Consider the functional

(322)  KDf(ee()) = KR(eel)) + 1 fa(T) - 0|

Then the control problem (3.16), (3.22) becomes classical, and there exists a pair ae, ,/:?6

solution of

da,
dg, *
_W"'Aﬁe—DZae:O

(3.23)
a(0) = -P 6 (0)

1
BT) = >(a(T) - h)
and the optimal control is
-1 *
e=-Ag G B, £ =Py BL0).

Now from

KM (e < kR ™M MM <,

we deduce
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T

T
2
P O
(3.24) 0
1 2
glozé(T)—h] <Ch

and since @ is the trajectory corresponding to e, and &6

T dae 2 T 2 .
(3.25) J Il il 17 dt + J ||a6 [~ dt < Ch T (this last constant may depend on T).

0 0 ’
Now for any &, e{.) we have (necessary condition of optimality for the problem (3.16),
(3.22)),

. T T I
(3.26) (P o 56, £) + JO < AE e,e> dt + JO < D2 a,a> dt + e_(ae(T) -h,(T))=0

Let us pick ¢ = fT’k , e= eT’k where k is arbitrary in H. We deduce from

(3.26) and the estimates (3.24), (3.25), that

a (T)-h

< =
I( - , k) o< Ch,T,k Ck

since in this context h,T are fixed. From Banach Steinhaus theorem it follows that

]gﬁ(—T—z—il < Ch T" Therefore also using (3.23)
T 45 T
€, 2 2
(3.27) J I 117 dt +J 18117 dt < Cy
) )
With the estimates (3.24), (3.25), (3.27) we can extract a subsequence @ s ﬁe’
converging weakly to da dB ., L2(0,T;V’). We obtain easily that o , § is a solution of

dt ’ dt
(3.19), the proof has been completed.

Theorem 3.4. Under the assumptions of Theorem 3.3 one has

(328) A(M=-QMh

where Q(T) € Y(H;H) symmetric positive semi definite.

Moreover,

(3.29) <C

QTN gy
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Proof.

Consider (3.23). The quantities a ﬁe are linear continuous functions of h, hence we can

write
(330) A(T)=-QMh

where it is easily seen that QG(T) € Y(H:H) symmetric, positive semi definite. Moreover

one easily computes

(331 inf KE© (€e() = QD).
§-e()

Since the left hand side increases as ¢ decreases, it follows that QE(T) 1S an

increasing family of symmetric positive semi definite operators in £(H;H) .

But
K%’e(s,e(.))= K?(g,e(.)) V ée() in T .

Therefore

(332) (QDhhs inf  KN(e()
£ ,e(.)eI‘h

h , T,h T,h
sKT(f , € )sCh

independent of T and e.
Necessarily Qe(T) 1 Q(T) € (H;H)  positive semi definite and
(3.33) |Q(T) @(H:H) < C independent of T.

But

(334)  inf K.l;.’e(f,e(.))—' inf K}% (€.e)) .
€.e() f,e(.)eI‘h

Indeed

-1 T , T : )
(Pofe,fe)+Jo le] dt+Jo <Dy, e >dt+- la (T) - h|
1, 5 T 4 T
S(PO f,f)+J‘ le| dt+I <D2,a,oz>dt
(o] (o}
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and from the weak convergence

T 2 T

. -1
slx_m{(Po fe, §€)+ Jo leél dt + fo < D2 s oz6>dt}

This implies the strong convergence of £ .6, 10 €, e, a and also that

61|a€(T)—h| 2 — 0. ) Therefore (3.34) is demonstrated and thus

(335)  inf K2 (6e()) = (Q(Dhh) .
f,e(.)EI‘h

Moreover since ﬂe(T) — B(T) in H weakly we deduce also the property (3.28).

]
Remark 3.2. Before being used as a useful technique to treat ill posed problems, the
penalty technique which goes back to COURANT [7], has been widely used as an

approximation technique for the control of systems governed by partial differential
equations, see A.V. BALAKRISHNAN [3], J.L. LIONS [13].

We can now compare Q(T) and P(T).

Theorem 3.5. Assume that A(.), C() is detectable and A(), G{) 1is controlable.

Then one has

(3.36) QM KT)=KT) QT) =1

(37) 1QD gy <as 1Pl g <P »

where p, q are constants independent of T.

Proof.

The property (3.37) has already been proved. The property (3.36) follows by comparing
(3.1), (3.2) to (3.19), (3.28). Indeed set in (3.19) h = - P(T) h, then we have a =& and

B = B (by uniqueness) hence

A(T)=h= - QTX-P(T)h) = QT)P(T)h

A similar proof is made to prove that PQ =1.

o (T)-h
&) this follows also directly form the fact that |-%—| is bounded in €.
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4 - OBSERVER BASED UPON KALMAN FILTER

4.1. The model

Motivated by the form of the Kalman filter (see (3.28)), we shall define the

observer by the solution of the equation

*
4.1) gdl?Jr Am = f + PC R(z-Cm)
m(o) = m

where m is arbitrary and z is the observation corresponding to the state (2.3).

The writing (4.1) is somewhat formal, since P is not defined on V. In fact we

shall give a meaning to
(42) y-m=ng

where 7 appears as the solution of

dn
-4+ (A +PD.)n=0
i dt 2
(4.3)
no) =y, - m,

The solution n(t) of (4.3) is defined by duality.

Indeed considering (3.1) we see that the equation

T
dp * T _
——dT' + (A +D2P)ﬁ =0

(4.4)
g1 (T) = h

has a solution in the functional space
2 d¢ _ 12 —.yn 2 -
(4'5) WP(O’T) = {¢ €L (O:T’V) ? a{e L (O,T,V) s P¢ €L (O:T,V)}
Then the value n(T) is defined by
T
(46)  ((T).h)= (8 (0), y,m), Vh

which defines n(T) uniquely in H.
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Our problem amounts to studying the behaviour of n(T)as T — 0.

4.2. Estimates

We shall prove the following (main) result.

Theorem 4.1. Assume A(.), C(.) detectable, and

@7) <D (Mv,y> 2 klv|12_I vvev O

then one has
48 v -m@o <Clyym]e ™ L >0

Proof.
Considering the system (3.1) and the relation (4.6) we know that
T, . T T 1 T
BT = (B g (), 87 @) + | <D810, 81> ds
)

T
S ‘ J < DZP,BT(S), pal(s) > ds
0

where we have written ﬁT(t) instead of B to emphasize the dependence on T. Recall that

PﬂT = -a.

In a similar manner we can write the relation

T
(@s) DM =EOFTO. 0 [ <D 8>
t

T
+ It < DZPﬁT(s), PﬁT(s) > ds

which holds for any t € (o,T). Therefore it follows that

\ L peT .67 = + < D 8T 0>

+ < D(OPOET (OPOF () >

\Proposition 3.2). ~ But (4.7) is weaker.

. . . 2 )
\\ of course if < D_(t)v,v > 2 k Ilvllv , (4.7) holds as well as the controllability property (see
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and from (4.7)
@10) S ews .8 W) > k18 o)
Note that, from Theorem 3.1

O ROV RORTIIROE
therefore (4.10) implies

d, . T, .2 k 3 T, 2
FIPOF O 2 SIP(O 8 (0

hence

K

@11 @ p@.87 ) < (P(Dhh)e P
ko

2
pe P (|

A

Therefore if (P0 £,6) > u0|§] 2,
s we have

--T

TRO M 5—0 e

TR

2
Il

From (4.6) it follows that

k
-==T
X
T < lyym) v e P
0

4.3. Example

Let us turn to the example considered in the introduction. We shall take

H=1%q), v=H(@
E=H, G=1, hence D1=I

F= LZ(I‘) C = 7 = trace operator

The system of optimality (3.1) looks as follows
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