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ABSTRACT 

Title of Thesis: Expert System for Process Selection 
and Operation Optimization 

Amit Kar, Master of Science, 1986 

Thesis directed by: Dr. Ioannis Pandelidis 
Assistant Professor 
Department of Mechanical Engineering 

The working of an Expert System, PRODUCER, conceived as 

part of a CIM system for a plant manufacturing discrete­

parts, is presented. 

PRODUCER starts out by determining if the desired part 

can be produced. Based on part attributes it then decides 

on a specific manufacturing process, e.g., Welding, Casting, 

Forging or Machining. Having selected the process, PRODUCER 

establishes the particular operation. 

With the operation decided, PRODUCER proceeds to find 

all the feasible combinations, of equipment and tools, that 

could produce the desired component. The turning operation 

has been chosen to demonstrate PRODUCER's capabilities. 

PRODUCER then sets about the task of identifying the 

most optimal pair of machine-tool and cutting-tool, which 

will provide the highest Metal Removal Rate, MRR. This is 

accomplished at two levels. At the higher level, PRODUCER 

generates constraints, representing physical limitations of 

the cutting process, for each machine and tool combination. 

These constraints are then passed on to an Optimization 



program. This is a Fortran program, which operates at a 

lower level, and returns the optimum values of the process 

control variables, for each machine-tool and cutting-tool 

combination. PRODUCER finally yields the highest 

maximization of the MRR. In doing so it also identifies the 

particular machine-tool and cutting-tool associated with 

this global optimum. 
PRODUCER, essentially a knowledge-based production 

system, implemented in the First Order Predicate Logic 

language of Prolog, also enables intelligent adaptive 

control. 



FOREWORD 

The age-old problem in manufacturing industry has been 

developing skills of the particular craft among its people, 

improving those skills to maintain competitiveness and at 

the same time trying to prevent the migration of the better 

skilled people -- or the experts -- to rival manufacturers. 

Neither legislation nor lucre has ever been -- or wi11 be -­

able to comp1ete1y eliminate the problem, no matter what the 

industry or where its location. 

Compounded with this problem of cultivation of skills, 

and preventing their polarization, is another recently 

emerging difficulty, brought about by automation. 

Automation has brought with itself high productivity, high 

precision and even good re1iabi1ity, in a restricted sense. 

The problem is a lack of performance and/or ski11s 

compatibility of the human interface to automation at 

various levels. 

Human intellect is supreme, but it is safe to say that 

his performance is not. A human being can never be totally 

relied on for producing the same response to a given prompt 

at all times. For example, if at 1:00 am in the morning, 

the drowsy operator, in the control room of a 5000 MW Power 

Plant, or a 2000 T Continuous Casting Steel Plant, or a 

Transfer Line machining Cylinder Blocks of Chrysler's latest 
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LeBaron engine, sees a flashing red light on the console in 

front of him, how does he react? He must jerk himself out 

of his reverie and determine as quickly as possible the 

cause of the alarm signal, before doing anything so drastic 

as to cut off the main power. He is unable to think of a 

better or safer alternative. Yet, the alarm may have been 

set off by an invalid input from a bad sensor or other 

malfunctioning equipment. To avoid an improper response, 

that could result in damage amounting to millions of 

dollars, all causes must be sorted out and corrected. In 

fact the operator cannot decide by himself and feels the 

need to discuss the matter with experts from the relevant 

disciplines, to find the best course of action in the 

circumstances. 

A strong case, therefore exists in favor of creating 

some sort of "thinking" device, fashioned after a human 

being, yet without his limitations! Thus, in relation to 

the problem discussed in the previous paragraph, this device 

can immediately search through its own specialized 

encyclopaedia -- area of specialty depending on if it were 

the Power Plant, Steel Plant or Automobile Plant -- and come 

up with the correct answer as quickly as possible. 

Thus an automated system, that exhibits some behaviors 

normally attributed to human intelligence is needed. This 

is the essence of artificial intelligence. Today "Expert 

Systems" are being built to not only emulate intelligent 

i i i 
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human behavior but also certain animal-like instincts if the 

particular situation so demands it. A case in point is the 

Autonomous Land Vehicle, being developed by Martin Marietta. 

This completely unmanned vehicle will have the capability to 

travel over the worst possible terrain, negotiate mountains 

and lakes and even avoid the enemy! 
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CHAPTER I 

INTRODUCTION 

A Computer Integrated Manufacturing system, CIM, is 

envisioned for a plant undertaking batch production of 

discrete parts. The plant is assumed to have facilities for 

metal shaping and joining only. 

The CIM is seen to be consisting of several Expert 

Systems, with each such system playing its distinct role. 

Conceptually, these different roles would actually be the 

different department functions contributing to the total 

manufacturing effort of the enterprise. 

The working of one such Expert System, PRODUCER, is 

presented. PRODUCER starts out by determining if the 

desired part can be produced. Based on part attributes it 

then decides on a specific manufacturing process, e.g., 

Welding, Casting, Forging or Machining. Having selected the 

process, PRODUCER establishes the particular operation, 

within the process-technology group, i.e., if a part must be 

machined then should it be turned or milled, say? In the 

case of Casting group, this would be choosing between 

investment-casting, die-casting or sand-casting, say. 

With the operation decided, PRODUCER proceeds to find 

all the feasible combinations, of equipment and tools, that 

l 
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could produce the desired component, by that particular 

operation. Only one operation has been chosen for a 

detailed demonstration of the full extent of PRODUCER 1 s 

capabilities. The turning operation has been chosen for 

this, because it is the oldest and still the most popular of 

all the metal removal operations. Additional frames, 

mimicking PRODUCER's handling of turning, can easily be 

included for other operations and processes, to extend the 

overall range of this Expert System. 

PRODUCER then sets about the task of identifying the 

most optimal pair of machine-tool and cutting-tool, which 

will provide the highest Metal Removal Rate, MRR. This is 

accomplished at two levels. At the outer or higher level, 

PRODUCER generates constraints, representing physical 

limitations of the cutting process, for each machine and 

tool combination. PRODUCER finally parses the entire set of 

local optima, and performs a global optimization to pick out 

the combination that yields the highest maximization of the 

objective function, i.e., the MRR. In doing so, it also 

identifies the particular machine-tool and cutting-tool 

associated with this global optimum. 

PRODUCER, essentially a knowledge-based production 

system, has been implemented in the first order predicate 

logic language of Prolog. 

The virtue of PRODUCER as an element of a CIM system is 

pointed out in its effectiveness at enabling intelligent 
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Adaptive Control, so crucial for maintaining a certain 

performance index of the machining process. Whenever 

PRODUCER succeeds in optimizing the feed and cutting speed 

for turning a given component, a dual purpose is served. 

The optimized parameters become data to the NC part program 

function and reference input, as control variables, for the 

AC system of the machine-tool. 



CHAPTER II 

COMPUTERIZED PROCESS PLANNING 

Process planning has been very aptly defined as the 

subsystem responsible for the conversion of design data to 

work instruction (1). Indeed it is a very involved task, 

requiring much skill and experience on the part of the 

planner. 

It must be clarified beforehand, that the term process 

planning refers only to the production of discrete parts. 

Continuous process industries, e.g., steel, cement, etc., do 

not need process planning, because they work on pretty much 

established processes. For the discrete-parts industry, 

however, each differently designed component needs a 

distinct process plan. 

The good process planner must necessarily have a 

detailed understanding of a large range of manufacturing 

processes, their pros and cons, scope and limitations, as 

well as product design (more particularly the aspects of 

manufacturability) and drafting. Often, a knowledge of the 

desired product's service requirements can help a great deal 

in the process planning effort. Further a process planner 

must have hands-on experience in at least a few related 

4 
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manufacturing processes, i.e., machining, casting or 

forging, etc. 
The process planner studies the component drawing, 

selects the process and lays down a sequence of operations 

for producing the component from a given stock. The stock 

raw-material and geometry are also determined by the 

planner. Then for each operation he decides the machine 

tool and cutting tool, necessary jigs & fixtures, process 

parameters such as feed and cutting speed as well as 

machining and non-machining times (e.g., set-ups, tool 

changing, etc.). Thus, the planner must also have a 

detailed knowledge of the working environment. 

Planning engineers tend to rely heavily on personal 

experience. As such there is no universally accepted theory 

about process planning. Process planners from different 

industrial backgrounds, can create varying process plans for 

the same component. Yet each process plan would be 

feasible. Halevi (2) presents an example, wherein a simple 

circular nut with external threading, M30 x 1.5, and 18 mm 

bore, was planned differently by four planners working 

independently. Two of them made plans needing 7 operations, 

but each with a different sequence. Plans of the third and 

fourth planners indicated 8 and 10 operations respectively. 

Clearly, the divergence of process p l ans, among the 

different planners, would be lot more pronounced for a more 
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complex component. So, the need for standardizing process 

planning methods is appreciable. 

Further, process planning needs to account for so many 

minute details ranging from workpiece material and required 

production quantities, through availability and capability 

of each candidate machine tool, that the work itself gets 

very tedious and time consuming. The human planner, 

therefore, often tends to lose patience and thereby neglects 

to make the necessary detailed analysis, in order to save 

time. 
Computer application in this area has already been 

acknowledged to be very beneficial for industry. The 

computer's handling of the tedious, repetitive tasks makes 

for more consistent process planning, while releasing the 

human process planners for the more creative tasks. 

Computer-aided process planning, CAPP, essentially 

translates the planner's logic into mathematical algorithms. 

This has been the bane of CAPP until very recently. The 

difficulty in finding mathematical relationships for all the 

manufacturing functions proved to be the greatest problem. 

Thus in many cases approximate analyses had to be used. It 

was recognized that automation often proved difficult, 

because either intelligent reasoning or experiential 

knowledge, or both, were required. These were the 

limitations of the first generation CAPP systems (3). 

\ 
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With the advancement of Artificial Intelligence as an 

useful science, new possibilities have begun to open up for 

circumventing the problems of the earlier CAPP systems. 

Nowadays, Expert Systems, which are computer systems working 

with application-specific problem solving knowledge, are 

being developed for process planning. These work in the 

manner of a human; and it is expected that these knowledge­

based Expert Systems will gradually become more popular in 

industry than their algorithmic predecessors. 

CAPP systems can be classified as follows: 

1. Variant. 

2. Generative. 

3. Semi-generative. 

1. Variant Process Planning 

This technique is based on GT or Group Technology 

principles. Application of GT allows one to reorganize the 

job shop into a flexible arrangement of machines which 

manufacture groups of simi l ar components or families of 

parts. 

Thus a representative member of a part family is 

planned in detail and the resulting process plan stored in 

the computer's memory. When a plan is required for another 

member of the family, the representative member's p l an is 

retrieved from the database and modified as needed. 

Modification is very l ittle depend i ng on choice of 

representative member. Some examples are given below: 
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(i) CAPP (4) developed by McDonell Douglas Automation 

and distributed by Computer Aided Manufacturing 

International (CAM-I). 

(ii) AUTOPROS (5) was developed in Norway. It can 

determine the required operations and their 

sequencing, selection of machine tools, clamping 

devices, process routes and time standards. 

(iii) MULTICAPP (6). 

(iv) MiPlan (7). 

2. Generative Process Planning 

This approach synthesizes processing information so as 

to automatically create a process plan for the required 

component. Generative CAPP systems are more complex than 

the variant ones because of their higher level of 

automation. 

Development of widely applicable generative CAPP 

systems has proved difficult, because of the complexity and 

uncertainty of knowledge as well as problem-solving 

techniques required to be represented. In fact algorithmic 

methods have faced the greatest hurdles in this area. The 

algorithmic CAPP systems are generally designed for simple 

elementary surfaces that are easily recognizable by some 

form of algorithm, which then identifies a suitable 

machining process to generate the surface. 

A research group in West Germany has developed a system 

called AUTAP to carry out process planning for rotational as 

' . .. 
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well as sheet metal parts (8). The system has been extended 

to cover the automatic generation of NC tapes as well (9). 

CPPP (10) is a system which does process selection and 

sequencing for rotational parts. To use CPPP, a user 

provides the name of a part family containing the desired 

part, and for each surface to be machined, gives CPPP a code 

describing the surface. The part family name enables 

retrieval of a process model, which is a previously written 

simple computer program. 

Wysk (11) developed a generative system for planning 

prismatic parts. The system, called APPAS, is intended for 

parts that can be made on machining centers and NC drills. 

To use APPAS, the user enters for each surface a code 

describing the surface. The system then uses knowledge of 

the capabilities of various processes to select a process 

for each surface individually. 

Chang and Wysk (12) have proposed an enhancement to the 

basic APPAS system, by coupling it with a CAD system, 

through the design database. The part description is 

retrieved by the system from the database, then detailed 

instructions for its manufacture are automatically 

generated. 

The proposed integration was actually achieved for a 

hole-making operation (13). The system making this possible 

was named TIPPS - Totally Integrated Process Planning 

System. 
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In TIPPS, the engineering part drawing is displayed on 

a CRT screen and surfaces requiring machining are marked 

interactively. The sequence of operations is determined by 

reference to a process knowledge database. TIPPS also 

automatically selects parameters like feed and cutting speed 

( 14) • 

3. Semi-generative Process Planning 

This is like a variant process planning system that 

based on either codes or specification-analysis, retrieves a 

general plan which is then automatically modified to fit 

more correctly the part in question. 

Several such systems exist, but all of them are limited 

in their capabilities, in that they can handle single part 

types, e.g., prismatic objects. Some examples are given 

below (3): 

GENPLAN 

GECAPP 

ACAPS 

developed by Lockheed Corp. 

developed by General Electric. 

(Automatic Coding and Parts Selection) 
developed by Pennsylvania State University. 

A system was developed at Budapest Technical University, 

Hungary (15), on the justification that purely generative 

systems tend to be too large, slow and have a limited range 

of applicability. In fact, creators of the previously 

mentioned CAM-I have concluded that totally generative 

process planning is neither practical nor desirable. 
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A good deal of work has been done in the creation of 

CAPP systems. For a more extensive survey of previous and 

current work in this area, see (19). Recently, CAPP systems 

using A.I. techniques have also been created (16), (17) . 

Reasonably complex parts consisting of over one hundred 

features, i.e., groove, slot, keyway, etc., have had their 

machining plans generated by GARI (17). GARI is a rule­

based system, whose control structure combines fact 

deduction and conflict resolution. It carries out process 

selection and sequencing, but does not choose machine tools 

or fixtures. The authors of GARI recently published their 

subsequent work (18), that attempts to reduce some of its 

earlier limitations. 

Work on integration of CAPP with the NC part 

programming function, that actually carries out the 

machining has also been done (19). There is also evidence 

in the literature, about work involving CAPP, that couples 

CAD with CAM. However, a good deal of work needs to be done 

for effective incorporation of the CAD function into the 

total CIM system. 

The work reported in this thesis can be categorized as 

a generative process planning system. It is a rule-based 

expert system called PRODUCER, that first determines all 

feasible combinations of machine tool and cutting tool, that 

can produce a given part and then proceeds to optimize and 

pick the combination that best satisfies the optimization 
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criterion. In this case the criterion has been chosen as 

the metal removal rate, MRR. 

At this point, however, PRODUCER can handle only turned 

parts. This research indicates PRODUCER's treatment of a 

single featured part, i.e., one cylindrical surface. This 

can be extended to accommodate multiple features. 

Little or no work has been done on optimization in 

process planning. There are two kinds of optimization 

possible in the area of process planning: 

1. Sequence optimization 

2. Parameter optimization 

1. Sequence Optimization 

This essentially involves determining the most 

economical sequence of operations for producing a particular 

component. It must be clarified, however, that all the 

operations transforming the given raw-material to its final 

desired state, cannot be optimized because there are certain 

operations that have to be carried out before the next can 

follow. As an illustration, consider creating a keyway on a 

cylindrical shaft. The proper sequence for this would be 

shaft turning, series of short-depth drillings (up to keyway 

depth) along keyway length and finally the actual milling of 

the keyway slot using an end-mill cutter fed along the rough 

grooving produced by the drillings. Now sound workshop 

practice does not permit any other sequence -- it is 

ridiculous to imagine cutting the keyway before first 

turning the shaft! Many more such instances can be given. 
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However, there are also several situations that the 

manufacturing engineer can visualize, whereby the product 

design, its service requirement or even manufacturing 

convenience is not jeopardized by slightly altering the 

operation sequence. Usually for any component about 20 to 

30% of all the operations required, for producing it can 

tolerate flexibility in sequencing. Thus if 11 k 11 operations 

out of a total of "n" can have variable sequencing, the 

possibility of determining the "least-cost" sequence 

definitely warrants attention. Such a problem can be well 

tackled by A.I. search techniques -- more particularly 

"least-cost search" where each operation is a node of the 

search space and the problem is to visit all the nodes at a 

minimum cost. This is a problem comparable to the 

"Travelling Salesman Problem", discussed by Nilsson (25). 

A.I. search techniques are discussed in Chapter 3. 

Nau is working on a process planning scheme, SIPP (20) 

(Semi Intelligent Process Planner) that accounts for this 

sequencing problem. SIPP uses a least-cost search technique 

to find the most economical sequencing of the operations 

required to generate a given surface. 

The problem of sequence optimization becomes more 

complicated when looked at globally from the point of view 

of all products being manufactured in the factory 

simultaneously. When all, or even some, of these products 

are to be processed on the same machines the sequence 

, .... 
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determination, of any one product, cannot be done 

independent of the rest. Considering availability, or 

otherwise, of necessary machine-tools and fixtures, the 

problem increases in complexity. Indeed, at this point, the 

problem goes into the realms of Scheduling, which calls for 

the application of O.R. methodology and is beyond the scope 

of this research. Work along these lines has been done at 

Carnegie-Mellon University (21). 

2. Parameter Optimization 

This entails finding the 11 best 11 cutting condition (for 

machining), i.e., feed and cutting speed, for a particular 

operation such as turning. This is modeled as a classical 

non-linear constrained optimization problem for some agreed 

objective function, e.g., Metal Removal Rate or Cost of 

Production, etc. The constraints, which maybe equalities or 

inequalities, represent the physical limitations of that 

operation. Typically these may be Tool-tip temperature, 

Cutting force or power, Surface finish, etc. 

The literature does not seem to support evidence of any 

work in this area. Past researchers in the area of CAM in 

general and CAPP in particular have not dwelt on the subject 

of optimum feeds and cutting speeds because for any 

component the feed and speed are quite reliably assigned by 

the part program or CAPP function to the NC system of the 

Machine Control Unit (MCU). For example, the !CAPP system 

(22) computes the feed and cutting speeds by a formula, 
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constructed from a least-squares curve-fitting technique 

applied to recommended feeds and speeds for a wide range of 

workpiece and tool materials. Perhaps for these reasons the 

need for optimizing feeds and cutting speeds was never 

really felt. 

The benefits of such optimization are better 

appreciated when viewed in the greater perspective of an 

integrated manufacturing system. Adaptive Control is one 

such critical element of a CIM system. Typically, Adaptive 

Control seeks to maintain the particular manufacturing 

process at a desired index of performance. Chapter VII 

gives a detailed explanation of the Adaptive Control 

function. In order to maintain performance the AC system 

must monitor critical process variables, in real time, and 

continually compare them to reference values of preferably 

these same parameters or, alternatively, some closely 

related ones. This research has determined that for metal 

cutting, feed and cutting speed are functions of the state 

variables of the process, in terms of the workpiece, cutting 

tool and machine tool. 

In fact the motivation for establishing functional 

relationships between feed and cutting speed and the 

different process variables, arose from a necessity to 

integrate process planning and operation control in a 

suitable manner. Thus operation control is effected by the 

machine's NC and AC functions, working in close co-
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ordination with each other. The NC function generates the 

commands for machine operation, based on the part program. 

The part program in turn is built up from the process plan 

of the particular component. Feed and cutting speed are 

common features in all these different functions. In 

addition, these two variables are also the process "drivers" 

as it were. 

Accordingly, it was considered fit to devise a 

computerized scheme that would decide on an optimum feed and 

cutting speed for meeting a certain objective, subject to 

constraints or limitations of the process itself. Thus, 

whenever optimization is possible a dual purpose is served. 

The optimized parameters become data for the NC function and 

reference input for the AC function. See Figure 7. 

At the same time, conventional methods for selection of 

feeds and cutting speeds, by the particular CAPP system, 

would also be retained. These methods could easily be 

embedded in the system architecture of PRODUCER, the expert­

system presented in this thesis. Either pattern-matching 

from a large relational-database or the computation 

technique could be adopted. This is necessary because 

optimization will not be possible in all circumstances, 

e.g., when certain constraints become over-restrictive for a 

particular workpiece-machine-tool combination. In these 

situations the default case would apply, i.e., feed and 

cutting speed decided in the usual way. 



CHAPTER III 

ARTIFICIAL INTELLIGENCE 

Artificial Intelligence, AI, has been an area of 

r e s earch for about 30 years . Some of the early wo rk is a s 

old as the c oncept of automation itself (23). However, only 

in the beginning of this decade some commercially use ful 

wo r k has been done in this area. 

The main thrust of AI research has been in the compu­

tat i onal simulation of human behavior -- or more correctly 

intelligent human behavior. AI systems are distinguished 

from conventional computer systems in two ways (24): 

1. Processing of symbolic rather than numeric data 

Inference is based on well established logic 

principles. Equipped with suitable semantic notation, it can 

operate on symbols. The obvious advantage of inferencing is 

that it does not require an a priori mathematical theory, 

but instead can be used to manipulate concepts. 

2. Heuristic rather than algorithmic problem solving 

Most of the real world problems have no algorithmic 

solution, per se. Also, there are many problems, classified 

as semi-decideable, i.e., even if their solutions maybe 

attempted algorithmically, the number of steps for arriving 

l 7 
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at the solution is beyond the scope of any computer. A game 

of chess is a good example. 

Heuristic procedures on the other hand, although do not 

guarantee a formal solution, do provide a good approximation 

most of the time and work relatively quickly. They may 

involve trial & error and even guessing. 

SEARCH IN AI 

Much of the early work in AI was concerned with 

searching for solutions to problems. One way of 

representing problem solving in AI is in terms of a 

hierarchical structure called a tree (cf. Figure 1). 

the solution results from a search among alternative 

choices, this 11 tree 11 depicts the entire search space. 

Since 

In Figure 1, the root node is the initial state, the 

"branches" are the operators and the "leaf" nodes are the 

intermediate states between the initial and goal states. It 

shows the different ways of getting from point A to point D. 

Search is a sequence of operators to take a problem from its 

current to the final or goal state. This can also be seen 

as problem-driven search or forward reasoning. The inverse 

case is that of goal-driven search or backward reasoning, as 

depicted in Figure 2. Here the root node is the goal state. 

For a complicated problem this graph becomes very 

involved to be easily understood. So, only the explicit 

tree is usually viewed. The explicit tree are the nodes or 

,.,, 
t 
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states and those branches that lead to the solution. The 

entire tree becomes explicit only in the case of an 

exhaustive search. 

Some of the better known search techniques are: 

1. Blind Search 

2. Heuristic Search 

3. Uniform Cost Search 

4. Depth first Search 

5. Ordered Search 

6. Best First Search 

7. Bi-directional Search 

Blind Search is randomly done in that it does not use 

any knowledge of the problem. For a complex problem, the 

Blind Search technique can easily be overwhelmed by a 

combinatorial explosion of possibilities for arriving at the 

goal state. 

Heuristic Search is a thumb-rule method for guiding the 

search, by using information about the nature and structure 

of the problem domain. A properly designed heuristic can be 

efficient, and capable of avoiding combinatorial explosion. 

The Uniform Cost Search method applies an evaluation 

function to each node generated and then pursues those paths 

that have the least expected cost. Typically, the 

evaluation function calculates the cost from the root to the 

particular node being examined, and using heuristics 

estimates the cost from that node to the goal. Adding the 
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two produces total estimated cost along the path, and thus 

serves as a guide as to whether to proceed along that path 

or continue on another. 

Depth-First Search is a search that proceeds from the 

root node to one of the successor nodes and then to one of 

that node's successor nodes, etc., until a solution is 

reached or the search is forced to backtrack. Backtracking 

is a powerful AI mechanism also used in deductive problem 

solving. It occurs whenever a leaf node, which really is an 

intermediate goal state, fails and the search goes back up 

the branch it had come to the predecessor node in order to 

try an alternative branch to a next level node. 

In Breadth-First Search, the nodes in the search tree 

are generated and examined level by level, starting with the 

root node before proceeding deeper. This approach is 

guaranteed to find an optimal solution if it exists. 

There are some problems, like the 8-puzzle (25) (which 

requires that a jumble of 8 numbered tiles and a blank one 

be sorted out in a 9-slot square, so that the numbered tiles 

are arranged in some desired sequence), which can be solved 

by forward reasoning -- going from the initial state to the 

desired goal state -- or by backward reasoning, which starts 

at the goal state, app l ies inverse moves and work towards 

the initial state. In the backward reasoning scheme, each 

inverse move would produce a sub-goal state from which the 

immediately superior goal state can be reached by one 

. 
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forward move. Backward reasoning merely reverses the roles 

of states and goals and uses rules that correspond to 

inverse moves. 

Bi-di r ectional Search is when a solution to a problem 

is attempted using forward and backward search simul­

taneously. To do this state and goal descriptions are 

incorporated into the global data base. The control system 

must decide at every stage whether to apply an applicable F­

rule or an applicable B-rule. 

An Ordered search algorithm finds the next best 

successor to a node depending on a merit function. 

Search techniques are now relatively mature. Some good 

algorithms, e.g., A*, AO*, B*, etc., have been developed by 

researchers in the field. Search is a very basic AI method 

and is considered very useful where knowledge of the problem 

is minimal or incomplete. 

PRODUCTION SYSTEMS 

The term production system has been used rather loosely 

in AI, although it usually refers to more specialized types 

of computational systems. Production systems derive from a 

computational formalism proposed by Post (26), that was 

based on rule applications in a certain order. In 1976, 

Rychener first proposed production systems as a programming 

method (27). 

. ,. 
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Production systems are very central to AI methodology, 

and have variously been called rule-based systems, black­

board systems and pattern-directed inference systems. The 

major elements of an AI production system are: 

1. Global Database. 

2. Production Rules. 

3. Control Strategy. 

1. The global database is the central data structure used 

by an AI production system. Depending on the 

application this database may be as simple as a small 

array of numbers or as complex as a large relational 

file structure. 

2. The production rules operate on the global database. 

Applicability of each rule is subject to satisfaction 

of one or more preconditions to that rule. Rule 

application changes the database, in that a state 

change or mode change takes place, as during search. 

3. The control strategy essentially chooses which rule to 

apply and ceases computation when some termination 

condition is reached. 



CHAPTER IV 

EXPERT SYSTEMS 

Before the last decade, AI researchers relied on non­

knowledge-guided search techniques in trying to find 

solutions to problems. For elementary problems or well­

structured games, e.g., 4-Queens problem discussed by 

Nilsson (25), these early methods were quite suitable. In 

fact there are always some problems -- particularly of the 

Operations Research or Scheduling nature -- whose solutions 

can only be obtained by search. But for very complex 

problems, the search space tends to expand exponentially 

with the number of parameters involved. When traditional 

search techniques proved inadequate for solving these type 

of problems, knowledge-guided search approaches began to be 

conceived. This led to the field of Knowledge Engineering 

and Expert Systems. 

The ability of the knowledge-based approach to 

minimize, if not eliminate, the combinatorial complexity 

encountered by classical search techniques when applied to 

real world problems, springs from its use of rule-based 

heuristics as opposed to numerical heuristics. Numerical 

heuristics, involve merit or evaluation functions typically 

employed by classical search techniques, discussed in the 

previous chapter. Thus, the rule-based system is able to 

23 
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reason about its own search strategy as well as reasoning 

about the specific problem domain. 

Expert knowledge is generally thought of as knowledge 

accumulated from many years of experience. However, 

knowledge is not necessarily from experience alone. In 

fact, no matter how specialized or restricted the domain, it 

is naive to think that a single individual (or group) can at 

any time claim complete knowledge of it. For one thing, the 

domain 1 s knowledge frontier is always expanding with time, 

while the respective individual 1 s memory span is not. Thus, 

the super-successful lawyer or the brilliant cardiac surgeon 

can never afford to cease the learning effort. They find it 

necessary to continue acquiring their domain knowledge for 

retaining the label of 11 expert 11
• 

Thus, the expert needs to have two kinds of knowledge: 

1. Knowledge of the domain (or a specific sub-set of 

i t) . 

2. Knowledge of where to find more knowledge about 

that domain. 

The expert can analyse a problem, assemble parts, make 

inferences, give advice along with an explanation of his 

reasoning. If giving advice on a specific problem, is the 

expert•s goal he can arrive at that goal either on the 

strength of his experiential knowledge alone or on his 

ability to acquire the knowledge, required to give that 

advice, or both. Further, the expert must determine which 

. ... 
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body of knowledge is applicable to the problem and/or its 

sub-parts rather than merely proceeding step by step, in 

algorithmic fashion. 

An expert system is constructed to emulate the human 

expert as closely as possible. It is a computer program, 

which deals in a specialized field requiring some expertise 

to provide solutions to problems and/or give advice. Since 

expert systems deal with knowledge, they must have the 

ability to handle symbolic representations of data. 

The real justification for an expert system is that it 

has the potential to rise above the limitations of the human 

expert. Several human experts collaborate to help develop 

the expert system, which then becomes a repository of the 

accumulated knowledge of those specialists. Accordingly, it 

is more competent than any single specialist and also has 

much greater objectivity. However, to quote an U.S. 

Department of Commerce report of May '82 (28), prepared for 

NASA, "There are not yet many examples of expert systems 

whose performance consistently surpasses that of an expert". 

Feigenbaum, a pioneer in expert systems (29) states: 

An expert system is an intelligent computer 
program that uses knowledge and inference 
procedures to solve problems that are difficult 
enough to require significant human expertise for 
their solution. The knowledge necessary to 
perform at such a level, plus the inference 
procedures used, can be thought of as a model of 
the expertise of the best practitioners of the 
field ••• The performance level of an expert 
system is primarily a function of the size and 
quality of the knowledge base that it possesses. 



26 

Conventional computer programs differ markedly from 

those functioning as experts. Their main drawbacks in 

respect of expert problem-solving are as follows: 

1. They are usually complex and difficult for anyone but 

their designers to understand. 

2 . For purpose of computational efficiency, the knowledge 

with which these programs work, are inseparably inter ­

twined with its control parts. This makes alteration 

very difficult. 

On the other hand, in an expert system the program is 

only a general reasoning mechanism (30), and the system 

can ideally be changed by adding or taking away rules 

from the database. 

3. They have no means of suggesting to the user, what, if 

any, facts are required to solve the given problem. 

4. They cannot justify their solutions. 

The three basic elements of an expert system are as 

follows: 

1. A Knowledge Base: 

This consists of domain-specific facts and 

heuristics associated with the problem. 

2. An Inference Engine: 

This manipulates the knowledge base as necessary 

for problem-solving. 

r 
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3. A Working Memory, or "global database": 

This maybe thought of as a kind of scratch-pad that 

continually updates solution status of the problem, 

beginning with input data. As such this is trans­

parent to the user, unless the system is commanded 

otherwise. 

Most expert systems are custom-built, i.e., constructed for 

use in a specific domain. However, there are domain­

independent expert systems called "shells". These have 

empty databases and knowledge bases, and so may be used for 

a variety of applications. In practice, however, shells are 

not suitable for some applications. 

Comprehensive reviews of existing expert systems and 

system shells can be found in Hayes-Roth et al. (31), 

Buchanan and Shortliffe (32), Allwood et al. (33) and 

Rychener (34). Some recent commercial expert system shells 

in use are KEE (35) and ART (36). Expert Systems Limited of 

U.K. have developed a shell written in Prolog, that has been 

used to determine building regulations (37). 

Since knowledge is the fundamental feature here, the 

manner in which it is represented in and/or used by the 

expert system is of utmost importance. Indeed, the 

realization that bore the concept of Knowledge Engineering, 

as it is known today, is that the knowledge of the problem 

C:, ... 
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domain is more important than the procedure for arriving at 

its solution. 

KNOWLEDGE ENGINEERING 

Knowledge Engineering focuses on how to bring expert 

knowledge to bear in problem solving. It is concerned with 

the acquisition, representation and manipulation of human 

knowledge in symbolic form. It means more than just a 

capacity to acquire facts -- as a human might from a 

dictionary or handbook. It may be thought of as a process 

that maps the available domain-specific knowledge, onto the 

problem space of the AI system. 

The importance of the representation, which is 

abstracted from the main problem cannot be overemphasized. 

The scheme proposed here simulates the thinking of the 

process-planning and manufacturing engineers. 

The thinking process of the expert and his almost 

intuitive reasoning, implicitly employs such logic tools as 

tautologies, modus ponens (38), Robinson's resolution 

theorem, etc. Mathematical logic likewise works in the same 

pattern -- beginning with certain axioms, making some 

unifications, negations, then deductions leading to the 

final answer. This is the very basis of the predicate 

calculus (39), which is perhaps one of the most effective AI 

tools -- and definitely appropriate for designing expert 

systems. Prolog, a first order predicate logic language 

~ 
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developed from predicate calculus, is therefore ideal. The 

knowledge used by the system can be classified as follows: 

1. Declarative Knowledge. 

2. Procedural Knowledge. 

3. Control Knowledge. 

These are explained below. 

Declarative Knowledge: Object Representation 

This is essentially a database of facts or axioms. For 

the problem of this research it has been referred to as a 

Variable Data Bank (VDB). The VDB has been named thus 

because the information it holds is subject to change, as 

and when necessary. 

The VDB stores every bit of information, pertinent to 

the domain, in the form of facts. Typically these are 

complete specifications of machine tools, cutting tools, 

jigs and fixtures; process information such as possible 

cutting forces for a given geometry and material of a tool 

operating at a certain speed; maximum allowable tool-tip 

temperature for different materials, values of mechanical 

equivalent of heat, hardness to ultimate tensile strength 

relations, etc., are also stored. These constitute the 

declared or factual knowledge collected from experts in the 

area, handbooks and available data bases. 

The relevant objects in a manufacturing environment are 

the workpieces, machine tools, cutting tools, etc. Each 

... 
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object may be described in terms of a frame structure such 

that all relevant information about the particular object is 

stored in one place. Such representation is modular in the 

sense that objects can be added to or omitted from the 

databank easily. As an example, a specific lathe identified 

by the unique qualifier 11 lathe 1 11 is represented in the 

following manner: 

/* machine tool specs*/ 

lathe 1 is a machine tool. 

type(lathe 1,turret). 

max_power(lathe_l,30.0). 

max_torque(lathe_l,20.5). 

Use of the is_a predicate as an infix operator is made here 

purely for clarity purposes. The representation of a 

cutting tool and a workpiece is done in a similar manner as 

above: 

/* Cutting Tool Specs*/ 

ct 1 is_a cutting_tool. 

material(ct 1, carbide). 

back_rake_angle(ct_l,20). 

side_cutting_edge_angle(ct_l,12). 

front_cutting_edge_angle(ct_l,5). 



/*Workpiece Specs*/ 

wpl is_a workpiece 

shape(wpl, cylindrical). 

length(wpl,4.0). 

diameter(wpl,4.0). 

31 

It is not necessary however that all information about 

the 11 world 11 objects reside in the VDB. Shown below is a 

method by which problem-solving will proceed even if the 

required data is not residing in the VDB. This is an useful 

tool, particularly in view of a very complex problem when 

the user may quite easily omit putting in a certain value. 

Also, for an open-ended system, such as PRODUCER, where 

world information can periodically be updated, this provides 

an option to obtain the most current data interactively from 

the user. 

The general-purpose predicate "find" was created to 

retrieve information irrespective of the source. The 

predicate 11 find(S) 11 will instantiate the structure S either 

from the VDB, or interactively from the user, or from 

default values. The structure 11 S11 is of the form attribute 

(object_ name, Value), where Value is the unstantiated 
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var iabl e. As an example, find (back_ra ke_angle(ct_2 ,X)) 

wi ll f ir s t attempt to get a a value for X from the VDB, 

failing which it will request the user for a value. In c as e 

the user is unable to find a value, a default value will be 

us ed . 

Procedural Knowledge 

Knowledge about the problem, represented in the r ul e s 

is often call ed procedural knowledge. For intelligent 

informa t ion re trieval, the procedural knowledge would 

in c lude rules that permit manipulation of the facts in t he 

declarative knowledge base. 

An illustration follows: 

Shear_ angle(CT,Phi): - back_rake_angle(CT,R), 

friction_angle(CT,Theta), 

Phi is 45 + R/2 - Theta*(0.75 + 0.005*R). 

Thus, the back rake angle of the specific cutting tool is 

picked up from the database and the friction angle is 

determined from another production rule. Then the shear 

angle is easily computed. 

The final goal of the A.I. system is to find out how a 

particular workpiece, WP, may be produced. It is stated 

below. 

produce(WP, Process, Process_Params):­

not(material_type(WP, metal)),!, fail. 

produce(WP, Process, Process_ Param s ): 

' 1 



33 

choose_oper(WP, Process) 

selected_optm_equip(WP, Process_Params). 

Thus, if the workpiece is non-metallic it cannot be 

produced, and Prolog does not try to resatisfy the "produce" 

goal alternatively. The left-hand clause of the rules, is 

the head goal, which succeeds by satisfaction of the sub­

goals on the right. Thus, the argument variables of the 

"produce" predicate get instantiated by the satisfaction of 

the conjunction of the "choose_oper" (i.e., choose 

operation) and selected_optm_equip (selected optimum 

equipment) subgoals. 

These two sub-goals decompose into many lower level 

sub-goals. Thus, in order to decide the process, i.e., 

casting, welding, machining, etc., part design attributes 

are retrieved from the database and compared to processing 

limitations. Once, the process is decided, operation 

possibilities are checked out, i.e., if the workpiece is 

established as a machine part, first the particular 

machining operation (turning/milling/boring, etc.) and 

thereafter the equipment and tools are decided. The 

different levels of selection are clear from the decision 

tree shown in Figure 3. A feasible combination is generated 

by a complete path along those nodes actually visited by the 

tree search. As such a feasible combination is an ordered 

list of the form (Workpiece, Process, Operation, Equipment, 

Tool). 
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Control Knowledge 

The control knowledge basically guides the entire A.I. 

problem solving scheme. When a particular inferencing rule 

is to be applied it is directed by the control knowledge. 

Even housekeeping and administrative functions, of the 

system, as it were, are carried out by virtue of this 

control knowledge. Thus opening and closing of files, calls 

made to other programs, sending data to other programs, 

etc., are all within the purview of control knowledge. 

Generation of each feasible combination of machine-tool 

and cutting-tool is done by a depth first search using the 

built-in inference engine of Prolog which includes automatic 

backtracking. The search is done in a top-down backward 

chaining fashion. Pruning of unnecessary branches in the 

search tree is done at each level of selection. Thus, a 

particular lathe will be examined for feasibility only after 

the turning operation has been determined to be appropriate. 

Note that a particular lathe may still not be available or 

suitable for the job. 

The set of feasible combinations is then parsed, and 

for every pair of machine-tool and cutting tool, the 

co nst raints are automatically generated and furnished as a 

subroutine to the Fortran optimization program. The 

optimization program returns the optimum feed and cutting 

s peed to the A.I. module, which is the main driv er of the 

' . . 
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software. The A.I. function then calculates the resulting 

MRR and generates a parameter set of the form (MRR, Fopt, 

Sopt, WP, MT, CT), where, Fopt and Sopt are optimum feed and 

cutting speed for producing the workpiece, WP, on machine 

tool, MT, using cutting tool, CT. In this way, with every 

MRR the associated equipment also get identified. 

Thus, for every machine tool and cutting tool pair, for 

a given workpiece, one such parameter set is obtained. 

Finally, the global optimization is carried out by picking 

the parameter set with the highest MRR. 

The indicated approach prevents a combinatorial 

explosion and accesses the relevant information only as 

needed. 

THE A.I. TOOL FOR SYSTEM EXECUTION 

The choice of Prolog (2) as the language of implemen­

tation was motivated by the following considerations: 

a. Since Prolog is essentially a database coupled with an 

inference mechanism, it is particularly useful for this 

sort of application. 

b. The rule-based production system, used by Prolog, seems 

more appropriate, for this application, rather than 

decision tables because of the farmer's simplicity and 

generality (37). 

. ' 
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c. Once the A.I. scheme has been developed by the domain 

expert, it becomes user friendly even for relative 

novices. 

d. Prolog can be regarded as either a declarative or a 

procedural language. This facilitates choice of coding 

perspective according to convenience. 

e. Prolog data bases of arbitrary complexity may be easily 

constructed without affecting modularity. A direct 

benefit from this is the possibility of getting queries 

answered at any level of the goal tree. 

f. The inference engine of Prolog is implicit in its 

automatic depth-first search. This frees the system 

designer to concentrate more on the knowledge represen­

tation of the system. 

g. Prolog uses a tentative control strategy, rather than 

an irrevocable one, in that after application of a 

selected rule, provision is made to later return to 

this point and apply some other rule if necessary (38). 

This is the very important and useful backtracking 

mechanism, inherent in Prolog. 
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CHAPTER V 

PROCESS SELECTION AND OPTIMIZATION: 

THE HIERARCHICAL APPROACH 

Before proceeding to explain the system architecture of 

PRODUCER and how it works in a hierarchical fashion, it is 

necessary to point out the significance and context in which 

the Process Selection problem has been posed in this 

research. 

Process Selection in the Job Shop 

Process Selection is the work of choosing the 

appropriate basic manufacturing technology for producing a 

certain commodity or material. 

Generally speaking, Process Selection has no relevance 

in continuous process industries, e.g., oil refineries, 

steel, cement, sulfur etc., since the basic technology of 

manufacture of these commodities is essentially set. 

So, Process Selection can be said to apply to discrete­

part manufacturing alone. However, the vast majority of 

products both visible and invisible to the consumer are 

discrete parts, whose methods of manufacture are also well 

established. Thus, the processing technique and operation 

sequencing in the production of say, semi-conductor chips, 
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electric motors, lawn-mowers, transformers, telephone-jacks, 

etc. are not changed from item to item. Only, a major 

design change, duly tested on a proto-type, and approved, 

can cause processing change during volume manufacturing. 

Consequently, the application-domain of Process 

Selection gets restricted to the job-shop. This research 

has precisely attempted to address the problems of a typical 

medium-scale mechanical job-shop. Nonetheless, there should 

be no problem in suitably applying the current work to a 

support department (of a large manufacturer) undertaking 

maintenance work or batch production. 

The typical mechanical job shop definitely has a 

machine shop, with lathes, drills, shapers, mills and other 

metal-cutting machines. Some shops would also have attached 

foundry, welding, press shop and perhaps even a forge. 

Needless to mention, the actual existence of these extra 

facilities would vary widely, depending on the job-shop's 

location, clientele, financial stability and other factors. 

The job shop is expected to be able to produce a wide 

range of items, albeit in small quantities. The fundamental 

requirement that enables the job-shop to live up to such an 

expectation, is a very good command of manufacturing and 

engineering knowledge. The job-shop must, therefore, have 

on its payroll skilled process planners and operators, who 

on receipt of an order can conclusively decide which process 

or processes can best produce a given part that will meet 



39 

the desired geometric, functional and engineering specifi-

cations. Indeed, to be able to do this at a minimum cost to 

the job-shop owners, is highly desirable. The requirement 

of these skills, increase almost exponentially with the 

variety of products handled by the job shop. 

The existence of good job shops is very crucial for the 

subsistence of industry as a whole. Yet, the pace of 

automation introduction in job shops is dismally low, and 

much behind their larger counterparts. Also, big industry 

seems to monopolize the attention of researchers, while the 

job shop is left to struggle along, innovate and fend for 

itself or simply die out. Perhaps, academic institutions 

could take the lead in extending help to the job shop -- by 

standardizing and computerizing its procedures from receipt 

of an enquiry to delivery of final product. In this way job 

shops can maintain their rightful place in the industrial 

infra-structure. 

The job shop is in perpetual difficulty to retain 

skilled personnel. Perhaps its need for "Expert Systems" is 

the greatest. These would be knowledge-based Expert 

Systems, that will contain the accumulated experience of the 

skilled workmen. PRODUCER is one such Expert System, 

intended for use in a job-shop doing metal shaping and 

joining work. 

Process Selection must be distinguished from another 

very similar term, Processing Planning. The two are often 
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used interchangeably. Process Planning involves laying down 

the sequence of operations that transform the raw material 

into the end-product, whereas Process Selection determines 

the processing technique. Indeed, Process Selection maybe 

considered to be a subset of Process Planning. 

PRODUCER does not do any process planning as such. It 

selects a process, and a specific operation, and optimizes 

the variables thereof. This is explained in detail in the 

next section. 

The use of the terms "operation" and "process" must 

also be clarified in the context of this thesis. 11 Process 11 

indicates the major manufacturing technology, while 

"operation" is a member of that group. Thus, if Welding is 

the process then arc - welding, resistance welding, fusion 

welding, etc. are the operations, or if Machining is the 

process then drilling, turning, boring, milling, broaching, 

etc. are the operations. 

Purpose of Producer 

The purpose of this research was to devise an automated 

scheme that will give the 11 best 11 way of making an item. 

In other words, the intent was to come up with a 

computerized system, which can "understand" a given item, in 

terms of its physical features and functional requirements, 

and prescribe the appropriate process and optimum operating 

conditions for its manufacture. 

,. ,, ., . 
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For a computerized system to 11 understand 11 and 11 infer 11
, 

c ognitive capabilities are called for. Having such 

capabilities, imply picking up part attributes from a data ­

ba s e and trying to recognize them in the light of some in­

bu i lt knowledge. 

As a very simple example: if the system 11 knows 11 that 

any 2-legged creature that can fly and has a feathered coa t 

i s a bird; and if this system is asked if an object call ed 

11 tweety 11
, that can fly and has feathers, is 11 bird 11

, 

"airplane" or 11 man 11
, it can reply 11 bird 11

• 

Since the conventional algorithmic computer program 

cannot deal with such type of problems, it was decided to 

adopt A.I. methodology. This led to the development of the 

Expert System, 11 PRODUCER 11
• 

The Hierarchical Approach 

In order for PRODUCER to determine the 11 best 11 way of 

making a certain item, it must deal with the problem in a 

hierarchical fashion, i.e., take the decisions level by 

level. This maybe thought of as a top-down approach to th e 

problem solving. 

The different steps in the decision tree are given 

below, the first step being the root node: 

STEP 1. Can it be made at all? 

If yes go to Step 2 

Else stop. 

.... . . • 
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STEP 2. (a) Find major process-family. 

(b) Is it possible to process the item under given 

shop limitations? 

If yes go to Step 3 

Else stop. 

STEP 3. Choose specific operation. 

STEP 4. (a) Find Equipment and Tools, by which operation 

chosen in Step 3 is feasible. 

This requires: 

Availability of m/c and Tools 

Satisfying certain preconditions for using 

the respective m/c and tools. 

(b) Compile a set of Equipment+ Tool combinations. 

STEP 5. (a) For each member-combination of set obtained in 

Step 4(b) determine the optimum operating 

condition. 

(b) Make a set of local optima and the respective 

associated equipment and tool. 

STEP 6. Find Global maximum and identify the associated 

equipment and tool. 

The hierarchical decision making proceeds stepwise from 

1 through 6, going from the problem-state to the goal-state. 

The particular decision at each step, however, is effected 

by backward reasoning. This is the underlying concept of 
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combined top-down backward-chaining methodology used in this 

Expert System. 

STEP 1. 

PRODUCER is designed to work with machining, casting, 

welding and forging processes. Since it is an A.I. 

system, other processes like drawing or forming can be 

incorporated later without affecting its current 

features. 

So, PRODUCER must find out if the part is metallic. 

See Page 32 for an illustration. 

STEP 2: 

From the attributes of the metallic part, it must 

determine the major process technology group, i.e., casting, 

or welding or machining. Thus, if the part is bulky, has 

complex contours and is not required to be finished on all 

its surfaces, it is a candidate for casting. On the other 

hand, if the part must be well finished on all surfaces, 

have regular geometric features that have close dimensional 

tolerancing, it must be machined. 

Once the major process group is established, PRODUCER 

determines if the existing shop facilities permit manu­

facture by that process. Thus parts above or below a 

certain size, weight, or other feature, cannot be cast, or 

welded, or machined as the case maybe. 

The following lines of code serves to illustrate this: 

' 
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choose_oper(WP, Process):- casting(WP), !, 

Process= casting. 

choose_oper(WP, Process):- machined_pt(WP), !, 

find_machining_opern(WP,Process). 

casting(WP):- casting_design(WP), cast_possibl(WP). 

cast_design(WP) :- (complex_shape(WP); 

all_surfaces_not_finished(WP)). 

cast possibl(WP) :- vol(WP,V), 

0.01 < V, 50 > V. 

vol(WP,V):- leng(WP,L), 

breadth(WP,B), 

height(WP,H), 

STEP 3: 

V is (L*B*H). 

If shop facilities are no bar, the specific operation, 

within the major process family must be pinpointed. Thus, 

if found that a part can be welded, then should it be arc­

welded or resistance welded, or fusion-welded. Or, if the 

part must be cast then should it be sand-cast, gravity die­

cast, or investment-cast, etc. 

For these decisions, PRODUCER must not only be able to 

pick out the respective detailed specifications of the part, 

e.g., surface finish, minimum tolerance, number of pieces 

required, shape, material, etc., but also have the necessary 

domain knowledge for carrying out inferences. 

, 
~ 
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At pr e sent, the machining process has been chosen to 

demonstrate the capability of 11 PRODUCER 11
, because of its 

wide popularity. In this regard, part of PRODUCER maybe 

seen as an Expert System shell, wherein inferencing 

knowledge for other process, can be filled in as desired. 

Accordingly, PRODUCER chooses turning for a cylindrica l 

component such as a piston-rod. 

Prolog rules effecting this are shown below: 

machin e_pt(WP):- (finish_ criterion (WP); 

closely_toleranced_dimensions(WP)). 

finish criterion(WP) :- surface_finish(WP,S), 

S < 0.000300. 

find_machining_opern(WP, Process):- cylindrical(WP), 

turning possibl(WP), ! , 

Process= turning. 

find_ machining_ opern(WP, Process):- cylindrical(WP), 

boring possibl(WP), 

Process= boring. 

turning possibl(WP):- weight(WP,W) 

0.05 < w, 50 > W. 

) 
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STEP 4: 

To find a feasible combination of equipment and tool, 

whereby the chosen operation can be carried out to produce 

the component, PRODUCER must find which machines and tools 

can do the job and then if they are available. 

To determine if a machine is feasible, a match must be 

obtained between the part's features, and the relevant 

features of the machine. For turning this would imply 

finding out if the diameter of the bar-stock can be accom­

modated in the chuck or collet of the lathe, and if the 

particular size of workholder is available. Further, thi s 

machine can only use those cutting-tools whose sizes are 

within the tool-holder capacity of the lathe. Finally, of 

course, both machine and cutting tool must be available for 

use. 

Accordingly, a set of feasible machine and cutting tool 

combinations can be obtained. 

STEP 5: 

This implies finding the local optimum for operation 

with each combination of m/c and tool. 

The objective function was chosen as productivity, 

which is sought to be maximized subject to the physical 

limitations of the particular operation, modeled as 

constraints. For machining, this implies maximizing the 

metal removal rate, MRR. 

' I 
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For metal cutting operations in general, and turning in 

particular, Feed and Cutting Speed are the most critical 

control variables. Thus, it was decided to model the 

constraints with Feed and Cutting Speed as the variables. 

Also, MRR = F.S.D., but modeling has been done leaving 11 D11 

out, since depth of cut remains constant for a single pass 

in machining (as such NC m/cs have 2½-D capability for this 

reason). 

The parameters and constants in each constraint change 

from combination to combination, as these are typically the 

tool back rake angle, m/c's h.p. rating, m/c's spindle 

torque rating, etc. 

The optimization problem is purely mathematical in 

nature, and so more conveniently tackled by the algorithmic­

type programs such as Fortran. 

The constraints, however, are generated in the A.I. 

module, for each m/c + tool combination, and passed on to 

the algorithmic module, which is then made to execute from 

the A.I. module. The optimized F & S values are returned to 

the A.I. module, which then performs a simple calculation to 

find the consequent MRR. This gives the system a hybrid 

character. 

For every combination a local optimum is generated. 

Then, a set of the local optima and the associated equipment 

is compiled. Eventually all these sets are assimilated in 

one single set, to give a set of sets. 
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The rule given below shows how for a certain 

c ombination of workpiece (WP), machine-tool (MT) and 

cutting-tool (CT), constraints are generated, optimized 

values of feed and cutting speed are obtained from the 

Fortran program, metal removal rate (MRR) is calculated and 

the entire information put in a set of the form: 

[ MRR, Fopt, Sopt, WP, MT, CT ] 

optimize( [ WP,MT,CT ] , List):- find constrnts(WP,MT,CT), 

get_optm_varbls(Fopt,Sopt), 

MRR is 12*Fopt*Sopt, 

concatenate ( [ MRR,Fopt,Sopt ] , [W P,MT,CTJ, List). 

Also see Page 65 of this thesis. 

STEP 6: 

Finally, the A.I. module performs a global optimiz­

ation, to pick the set enabling the highest maximization of 

the objective function. Thereby, the associated equipment 

and tool are also identified. 

Since the Expert System essentia l ly deals with metal 

cutting, its theory is briefly discussed. 

Metal Cutting 

Metal cutting also cal l ed machining, is the removal of 

unwanted metal from a workpiece in the form of chips, so as 

to obtain a finis hed product of desired size, shape and 

finish. 

' 
. 
1 
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Over the years a great amount of research and 

experimentation on the process has led to improved 

productivity; but the complexity of it has resisted progress 

in obtaining a complete theory of chip formation. This is 

because most theories have ignored the plastic deformation 

properties of the work material and/or have not been able to 

accurately characterize the interactions at the sliding 

contact surfaces between the tool and the chip. 

Metal cutting is a very large - strain plastic defor­

mation process operating at exceptionally high strain rates, 

which makes it quite unique. The problem is further 

complicated by tool geometry variations, wide variety of 

tool materials used in the process, temperature or heat 

problems, and the great variation in operating conditions of 

the machines performing this process. Basically, the chip 

is formed by a localized shear process which takes place 

over very narrow regions. The shear process itself is 

discontinuous in which a series of shear fronts or narrow 

bands produce what is ca l led a lamellar structure. 

For all metal cutting process it is necessary to 

distinguish between speed, S, feed, F, and depth of cut, d. 

Speed, S, is the primary cutting motion, which relates the 

velocity of the tool relative to the workpiece, given in 

surface feet/min. Feed, F, is the amount of material 

removed per revolution, or per pass of the tool over the 

workpiece, usually given in inches/revolution. For a single 
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pass in turning, the depth of cut remains constant and metal 

removal rate, MRR, is given by: (see Figure 1 and 2 ) . 

MRR = 12 F S sq inches/min 

This is the objective function, which is sought to be 

maximized. F & S cannot be made indefinitely high, since 

that would violate lot of physical laws in machining. 



CHAPTER VI 

OPTIMIZATION 

For a specific machining operation on a workpiece using 

a particular machine tool and cutting tool a realistic goal 

wo u ld be maximization of the metal removal rate. Ass uming a 

c onstant depth of cut for a single pass in turning, the 

me tal r emoval rate is given by, 

MRR = F * S 

Maxim i zation of the metal removal rate, MRR is a 

r ealistic goal in metal cutting. A high MRR translates to a 

low cost of production and is therefore a very desirable 

goal 

Som e alternative process objectives could be: 

- Minimizing cost 

- Maximi z ing profit 

- Maximizing tool life 

The decision on the choice of most appropriate 

objective function depends on the particular processing job 

on hand, and other considerations such as batch size, 

dimensional accuracy, work piece geometry and material, etc. 

For this research problem the choice of objective 

function was made on the productivity criterion, i.e., 

maximization of the MRR. 

51 
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MRR = (Volume of metal removed)/unit time 

= (F.S.0.)/unit time 

In a single machining pass the depth of cut, D, remains 

c onstant. So, 

MRR = 12 F S sq.in/min 

where, 

F = Feed in inch/rev 

S = Cutting Speed in ft/min 

F and S are the design variables of the optimization 

problem. The aim of the local optimization problem will be 

to determine optimum values of F and S in order that their 

product is a maximum, subject to the limitations of the 

process itself, for a particular combination of machine-tool 

and cutting tool. 

The problem would indeed be trivial if F and S could 

made very high so that their product is high. This is not 

possible owing to physical limitations of the machine tool 

and the cutting tool as well as quality restraints on the 

workpiece itself. 

some of these limitations are studied, and an attempt 

made to represent them as suitable predictive models in 

terms of F and S so that a well-posed problem is identified. 

With the objective function chosen as the MRR, the 

local optimization problem may be stated as (41) 

Maximize MRR = J(F,S) = F*S 
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subject to a set of constraints: 

gi(F,S) < 0 i = 1,2, ..... n 

Each constraint represents a specific physical 

limitation of the cutting process. An example is given 

below, with more constraints discussed in the next section. 

Lolaldze found (42) that the tensile stress on the tool 

rake face was found to increase with increase in feed rate. 

a = C*F or F = a IC 

where C is determined experimentally or by numerical 

analysis (43). 

The constraint to avoid tool fracture may thus be 

modeled as, 

C*F - aa < 0 

where aa = 100 x 10-3 psi is the transverse rupture strength 

of the ceramic tool. 

Essentially, the optimization problem in this paper has 

been formulated to construct reasonably close predictive 

models of the different process factors affecting the key 

variables of feed and cutting speed. Indeed, due to 

interplay between all these influential factors, and even 

others; e.g., secondary shear because of interface friction 
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at the base of the chip, which have been accounted for, it 

becomes quite difficult to establish feed and speed charts 

that could apply in all cases. Nevertheless several 

empirical and semi-empirical relationships and tables have 

been developed over the course of several years which may be 

used in conjunction with each other to define a feasible 

region of operation. It would be best, however, to run 

individual machining tests with state-of-the-art on-line 

sensors (44) for monitoring tool condition and part 

measuring on a part that is to be mass produced, together 

with a sensitivity analysis of the optimization problem. 

Optimum production, that is, higher metal removal rates with 

reasonable tool wear can be obtained only by tempering the 

theoretical approach to the limitation of the existing shop 

conditions. 

Keeping in mind the above considerations, the global 

objective function Jmax takes the following form: 

max 
Oper,MT,CT 

{ max 
F,S 

J(F,S;Oper,MT,CT)} 

subject to the appropriate constraints. The above formula 

represents the global optimization of local optima. 

A sequential quadratic algorithm is employed for the 

local optimization of the process variables (45). The 

program is written in Fortran and has the objective function 

l . 
' 
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and constraints in different subroutines. While the main 

program and the objective function subroutines are compiled 

only once, the constraints subroutine changes for each 

different combination of workpiece, machine tool and cutting 

t O O l . 

At first a dry run of the optimization program was made 

with an Augmented Lagrangian algorithm. However, the final 

choice was made in favor of the SQP algorithm (45), due to 

its greater reliability and robustness. The fact that the 

SQP algorithm can handle up to 30 constraints and 30 

variables, also contributed to this decision, thereby 

permitting ample freedom in including more constraints 

and/or variables, as may be found necessary in course of its 

use; when PRODUCER is applied to processes such as casting, 

forging, etc. 

Every set of constraints generated by Prolog is passed 

on to the Fortran program as a subroutine, compiled and 

linked with the object codes of the existing main program 

and objective function subroutines to produce an executable. 

The output is then redirected to a file, which is thereafter 

consulted by Prolog to read off the optimized values of the 

process control variables, feed and cutting speed. 

The intercommunication between Prolog and Fortran is 

quite convenient, in the C-Prolog version 1.5 (46). A 

built-in predicate "system" is provided that calls the 

! . 
' 
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operating system and thereby gains access to the UNIX 

command mode, from within Prolog. 

THE CONSTRAINTS 

Torque Constraint 

91 Tc - Tmax < 0 

The actual cutting torque must be less than the maximum 

torque, Tmax, the machine is capable of . Tc is given as: 

( 4 7) 

where, 

m = 0.7 

n = 1.0 

h1 = 115045922 

Power Constraint 

92 Pc - Pmax < 0 

D = work piece diameter, in ft. 

d = depth of cut, in inches 

The power required in cutting cannot exceed, the power 

available from the machine. Pc is given by (47) 
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where, 

h2 = 6904.28 

and m, D and d as above. 

Power Constraint (by cutting force) 

93 : Pc - Pmax ~ 0 

fc, the primary cutting force, acting in the direction of 

cutting speed, S, is generally the largest force and 

accounts for 99% of the power required by the process. 

so, 

Pc= fc S/33000 

where, value of fc is picked up from the database for the 

particular tool-workpiece combination. 

Pc & Pmax are in h.p. 

Power Constraint (by compounded parametric effect) 

94 Pc - Pmax < 0 

In this case the cutting power is calculated as: 

' • ; 
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Ts dw Cos ( e - a) S 

Sin¢ Cos (¢ + e -a) 

where, a is the cutting tool back rake angle and is 

the friction angle given by, 

e = tan-1µ 

1-l = 
f T + f c tan a 

f c - fr tan a 

Values of cutting and thrust forces, fc and fr, are 

given by conservative empirical estimates for given 

operating ranges, and placed in the VDB of the AI system. 

The force system in orthogonal metal cutting is shown 

in Figure 4. Figure 5 indicates relevant variables and 

parameters involved in turning. 

by: 

As per Kronenberg (48) the Shear angle¢, is given by: 

¢ = 45 + a/2 - 8(0.75 + 0.005*a ) 

The Shear stress along shear plane (Figure 2) is given 

T = 
s 

fc Sin¢ Cos ¢ - fT Sin2cp 

dw 

' ' 
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With the above parameters determined, the power constraint 

as a function of S is of the form: 

KS - Pmax < 0 

where, Pc = KS 

and 

K = 
-rs dw Cos (e - a) 

Sin¢ Cos (¢ + e - a) 

Tool Hardness Constraint 

95 S - Smax < 0 

where, Smax = 500 ft/min 

For a sintered carbide cutting tool, when the tool/chip 

interface temperature rises to 18000 F the hardness falls 

below Re 75 (49). This approximately corresponds to a 

cutting speed of about 900 ft/min. However, at a 

temperature of 1800° F the low-carbon steel workpiece is 

prone to damage, so the cutting speed is actually kept 

limited to 500 ft/min. 
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Temperature Constraint 

96 Tc - Tallowable < 0 

Nearly all (99%) of the energy available at the cutting 

edge of a vibration-free metal cutting process is converted 

into heat (50). The generated heat is directly proportional 

to the product of feed and cutting speed. It was 

experimentally demonstrated by Brackenburg and Meyer (51) as 

early as 1911 that a major portion of this heat (about 70%) 

is carried away by the chip. It was later found that this 

proportion increased with higher metal removal rates. The 

temperature rise in the body of the chip is given by: 

Tc= 
0.88 Qs 

p C s F d 

An average of 88% of Qs, the heat generated in the 

shear plane, is considered reasonable for the higher MRR 

values attainable by ceramic and carbide tools. 

Now, 

Q = Qs - QF 

where, 

Qf = heat due to chip sliding over the tool 

'I 

" 
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As per Boothroyd's method (52) of calculating 

approximate temperature rise in chip from measurement of 

tool forces, 

Qs = S/J (fc - fT tancp) 

thus, 

T = 
C 

0.88 (fc - fT tan</l) 
J p c F d 

Values of the different parameters are retrieved from the 

VDB. 

Tallowable = 1200° F 

1200°F is the suggested maximum temperature, at the cutting 

point, for a carbide tool cutting mild steel. If the 

temperature is permitted to exceed this value, both 

workpiece and tool would be damaged. Since this would in 

turn upset the cutting force balance, it could well lead to 

spindle motor overloading and possible burnout. 

Lower Bounds on Design Variables 

g7 S > 300 ft/min 
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For cutting relatively soft metals, speed should not be 

allowed to drop below a certain minimum in order to avoid 

"built up edges 11 on the tool rake face. Also when the 

cutting speed is low -- the tool is more likely to chatter. 

Another temperature constraint was modeled, on the 

lines of 96, on the basis of shear specific energy with 

reference to other cutting temperature investigators, 

Trigger and Chao (53) and Jaegar (54), where the shear plan e 

temperature is given by 

T = 
s 

where, 

J p C 
1. 33 

[ l + 12S 

T0 = Ambient work piece temperature 

Shear specific energy, 

Tc Cos a 
u = s Sin <I> Cos (¢ a ) -

K = Thermal diffusivity, k/p C 

k = Thermal conductivity 

v 5 = Shear velocity= 
12 S Cos a 

Cos ( ¢ - a) 

+ T 
0 

I 
• 
' 
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However this constraint proved to be over-restrictive, 

for the class of workpiece and cutting tool materials taken 

for this study, and was thus dropped from consideration. 

Work by other temperature investigators like Loewen and 

Shaw (55), Holzer and Wright (56) and many others were 

studied, but not included for the modeling. 

A surface finish constraint that imposes a restriction 

of the desired surface finish (or roughness height) of the 

workpiece, in terms of micro-inches or microns, can easily 

be modeled. Turning operations can typically provide a 

surface finish ranging from about 16 micro-inches to 250 

micro-inches (49). 

When a bar is turned by a single point tool, feed marks 

form on the surface, spiralling around as the tool moves 

axially at a given feed rate. Thus, a predictive model of 

the constraint can be constructed as a function of feed rate 

and tool geometry. The actual form of the model would, 

however, depend on nose-radius (or absence thereof) of the 

t 00 l . 

Thus, hv - hvs < 0 where hvs is say, 120 micro­

inches. For sharp-point tool, hv = F/(cot Yf + tan Ys), and 

Yf = front cutting edge angle, Ys = side cutting edge angle. 

However, for this optimization problem, which seeks to 

maximize the MRR, the surface constraint is considered to be 

overrestrictive. During a dry run of the optimization 

program, independent of the AI module, inclusion of the 
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surface finish constraint, resulted in an empty feasible 

space. In fact, a high grade surface finish requires a very 

low feed, whereas the temperature constraint compliance 

demands a feed on the high side. Generally speaking, the 

temperature constraint is considered more important. As 

such, if a good surface finish is desired, then a final 

grinding operation is more advisable. 

Constraints pertaining to workpiece and/or cutting tool 

size and shape, machine tool workholding, etc., are 

accounted for in the pre-optimization stage when processing 

feasibility is decided. Rules enabling this are built into 

the procedural knowledge base of the A.I. module -- and, as 

such, is identifiable at the higher levels of the decision 

tree. 

Automatic Constraint Generation 

The constraints are automatically generated by the A.I. 

production system. The first part of the program module 

generates the feasible combination of machine tool and 

cutting tool for a certain workpiece. The second module 

retrieves the necessary data, pertaining to the respective 

machine tool and cutting tool from the database, then 

computes and puts together a set of constraints for each 

machine, tool and workpiece combination. These constraints 

are then automatically written into a file, in the syntax 

understood by the Fortran optimization program. 

. 
' 
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A brief excerpt from the A.I. program shows the 

generation of the power constraint based on Bedini and 

Pinotti's work (47). 

find_constraints(WP,MT,CT):-tell (constraints_file), ... , 

printstring("G(l) = 115045922*(X(l)**0.7)* 

(X(2)**(-0.7) )*) ,tab(l), 

product_term(WP,A), write(A), tab(l), 

max_torque_lbft(MT, Tmax), write(-Tmax), ... , told. 

In the above procedure, the file 11 constraint file 11 is opened 

and then closed by the predicate 11 told 11
, after all 

constraints have been generated for the instantiated 

workpiece, machine tool and cutting tool combination. The 

product_term A was calculated using the predicate 

product term(WP,A):- depth of cut(WP,Dcut) - - -

bar dia(WP,D), A is (Dcut/12.0)*D 0.7. 

The contents of the generated file as it was created 

for a cylindrical workpiece of diameter= 1 ft, depth of cut 

= 0.25 11 and Pmax = 17 h.p., Tmax = 203 lbft using a carbide 

tool are given in Figure 6. The optimum process conditions 

were returned as F = 0.82E-3 in/rev, S = 500 ft/min. 



CHAPTER VII 

INTELLIGENT ADAPTIVE CONTROL 

The work presented in this thesis was actually prompted 

by a need to alleviate some of the problems found in 

Adaptive Control systems in the metal cutting industry. 

Even in attempting to do this, hopefully a significant step 

will have been taken towards the greater goal of at least a 

quasi-ideal Computer Integrated Manufacturing system for the 

production of machined components. 

It is therefore considered fit and proper to include in 

this report, some of the impressions and analyses of 

published research work in the area of Adaptive Control in 

machining. These studies led to the idea of and need for 

developing an Expert System, which would perform 

optimization in a global manner, based on a certain 

criterion or objective function. Thereby, constraint 

activity is known before-hand and the A.C. function "knows" 

which parameters are critical. This permits it to be more 

efficient in steady - state conditions. Another advantage 

from this is that AC-capability extension to dynamic 

conditions, to account for tool-wear, for example, becomes 

less problematic. 

Adaptive Control is essentially a computerized system 

that enables a machine tool -- or any plant equipment for 

66 
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that matter -- to perform its functions with no (at least 

ideally speaking) human intervention. To quote Landau (57): 

11 An adaptive system measures a certain index of performance 

(IP) using the inputs, the states, and the outputs of the 

adjustable system. From a comparison of the measured I.P. 

and a set of given ones, the adaptation mechanism modifies 

the parameter of the adjustable system or generates an 

auxiliary input in order to maintain the IP close to the set 

of given ones. 11 Clearly, therefore, the adaptive system 

must have two distinct features: 

1. Closed Loop Control 

2. Optimization in some form 

Accordingly, this presupposes a full theoretical under­

standing of the process to the extent needed to develop the 

mathematical models, that can be programmed into the 

computer of the AC system. The basic elements effecting the 

adaptive control are: 

1. Measurement(s) from process output 

2. Decisions, i.e., optimization within the computer 

3. Modification, i.e., "adjusting" signal to the 

process controller to alter inputs. 

This level of automation has been readily achieved in 

the realm of continuous processes, e.g., oil refineries, 

where theories of fluid mechanics and heat transfer are 

better understood and parameters easily measured. The metal 

cutting process being less well understood and its different 
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parameters (many in number) being less conveniently 

measurable, fully successful implementation of AC has not 

yet been possible (68, 70) in the metal removal or even the 

metal forming industry. 

AC of machine tools can be classed into two groups: 

1. Adaptive Control of Optimization (ACO) 

This uses some I.P. of machining, e.g., minimum cost, 

as a control criterion subject to constraint modeled 

from Taylor's tool life equation (or its modified 

version) for a particular tool-workpiece combination, 

to optimize feed and cutting speed (57-61). 

2. Adaptive Control of Constraints (ACC) 

This attempts to maintain the operation within a 

feasible region, bounded by constraints representing 

the physical limitation of the process (62-67). 

Investigations (68, 69) indicate problems with either 

approach. In the case of ACO, Taylor's tool life equation 

does not suitably represent all the physical realities of 

the cutting process. Besides, a huge database is also 

called for. For the ACC approach, on the other hand, there 

is always a conflict as to which parameters are more 

critical. This is due to an incomplete knowledge of the 

interplay between the various parameters, e.g., cutting 

forces, tool geometry, tool tip temperature, shear angle, 

etc., and their individual or combined influence on the 

cutting process. Thus, work in this area hithertofore has 
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dealt with either machine tool constraints (47) or with 

material constraints, relating to physical realities of 

cutting for a specific tool-workpiece combination (71). 

Thus, a global approach to the Adaptive Control problem 

in metal cutting, is an yet unresolved issue. 

The work in this thesis has attempted to take this 

global approach. Accordingly, an Expert System was 

developed to tackle the problem of optimization. several 

constraints have been modeled to represent different aspects 

of the cutting process. In a few cases, the same 

constraint, e.g., Power consumption, has been modeled from 

more than one approach, in order to be conservative. The 

optimized cutting speed and feed, from this off-line 

optimization scheme, are simultaneously furnished as data 

and reference input respectively to the NC and AC functions 

of the machine tool. The feed and cutting speed are 

included as data for the part-program of the NC function, 

thereby ensuring optimum operation. The AC function, using 

appropriate displacement and speed transducers for feed and 

cutting speed respectively, can compare them with the 

reference feed and cutting speeds to maintain operation at 

or near the optimum point. A schematic showing this 

arrangement can be seen in Figure 7. 

Since the optimization analysis points out the active 

constraints the AC function is not handicapped, as in 

previous ACC approaches. In fact it becomes intelligent, 
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because now it can concentrate only on those process 

parameters that would be most likely to destabilize, i.e., 

those of the active constraint models. 

This implies information passing from the expert system 

11 PRODUCER 11 to the dedicated microcomputer performing the 

A.C. function. The information passed will consist of the 

identity of the active constraints and the limiting value of 

the particular constraint parameters, i.e., Force and Power, 

or Temperature and Power, etc. The on-line A.C. function 

can then do an Adaptive Control of Optimization -- with the 

same objective function, maximizing the MRR. However, this 

A.C. function will be more efficient, since it needs to 

contend with only two constraints -- the active ones! 

Thus, the optimized feed and cutting speed values from 

the off-line optimization, performed by PRODUCER, become 

starting values for controlling the turning operation of the 

particular workpiece, on a given machine tool using a given 

cutting tool. Also, from identification of the active 

constraints and knowledge of limiting values of the critical 

parameters, intelligent real-time adaptive control of 

optimization (ACO) becomes possible. 

A major advantage of the off-line Expert System is its 

open-endedness. Since this is a subject of continuing 

research, additional constraints will doubtless be modeled 

to supplement, or even replace the current ones. There is 

also an implicit learning property in this system. Adding 
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or eliminating constraints would pose no problem at all. 

The system architecture as well as the robustness and 

capacity of the optimization algorithm ensures this. 

Further, the need for a large data base felt by past 

researchers in the ACO approach, is also satisfied by this 

Expert System. 

This present research also presumes that the burden of 

the optimization being with an off-line system, the AC 

function becomes more effective in real-time control of the 

machining process -- its raison d'etre. This presumption 

should be borne out by subsequent research and experimental 

verification. 

Scrutiny of Figure 7 raises an important question. 

What about the effectiveness of the AC for non-steady-state 

situations? The single most critical factor responsible for 

deterioration in the cutting process is tool wear. There 

are some very good commercially available tool wear sensors 

(44). Thus when tool wear is detected, the N.C. function 

should be signaled to effect a tool change. This is more 

advisable than generating an auxiliary input, that reduces 

cutting speed and/or feed to prevent further abuse of the 

same cutting tool, at the cost of productivity. 

For better overall control of the cutting process it 

is, however, prudent to monitor as many parameters/variables 

as possible. Such a data acquisition system would require 

state-of-the-art sensors, with very good signal-to-noise 
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ratio. Finally, another Expert System would have to be 

designed for evaluating sensed signals and directing 

appropriate correctional commands to the machine control 

unit. There is substantial scope for future research in 

this area. 



CHAPTER VIII 

CONCLUSION 

The basic framework of an Expert System, PRODUCER, that 

selects an appropriate process, for producing a discrete 

part, and optimizes that process thereafter, has been 

c onstructed. Its capability with one process -- machining 

-- has been demonstrated from selection of the process­

family, through identification of the specific operation 

turning -- and finally its optimization. 

The optimized process parameters for turning the given 

component, also serve as a useful input for the Adaptive 

Control System, employed by the machine tool actually per­

forming the operation. 

The main features of PRODUCER are given below: 

1. It is a rule-based production system, that uses back­

ward chaining, and is implemented in Prolog. 

2. The system architecture affords easy inclusion of 

additional production rules or other data. 

3. Knowledge representation in this depth-first search 

system, is such that fruitless search is avoided by 

applying restrictions at each level. 

4. It has a hybrid character, in that it combines A.I. and 

algorithmic techniques, in providing the final 

solution. 

73 
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Thus process selection and constraint generation, is 

automatically done by A.I. The actual optimization is 

carried out by a Fortran program, which is 11 run 11 by 

A. I. 

5. Has a robust optimization algorithm that can handle up 

to 30 variables and 30 constraints. 

6. The modular construction allows great convenience in 

deletion or replacement of any "knowledge" or "data" 

that is used by the system, including the constraints. 

This implies an in-built "learning" capability. 

Accordingly, whenever it is determined that a certain 

constraint can be better modeled, or a more important 

one should be included, these changes can easily be 

effected. 

7. Permits information retrieval at any level of the 

hierarchical structure. 

8. Enables intelligent adaptive control. 

The thesis also refers to previous and current research 

in the area of computerized process planning, and points out 

differences between them and the present work. Short 

theoretical backgrounds of A.I. and Expert Systems, in 

general, are also given. 

Subsequent research beyond this thesis may be conducted 

towards extending PRODUCER's capabilities for a wider range 

of machined parts as well as cast, forged or welded items. 



75 

At 
present part attributes are described to PRODUCER, 

by the user as 11
f acts 11 in the VDB. It would be very 

to examine the possibilities of substituting 
interest· 1ng Constructive Solid 
th. lS with a suitable CAD interface. 

whereby any component maybe thought 
Geometry techniques 

of as a combination of primitives could serve as a good 

start. 
Thus, a linear extrusion of a 2-D figure such as a 

circle 
or square, along a direction orthogonal to its plane, 

a cylinder and cubic prism respectivelY· This 
Produces 

approach 
' 

but the 

would, however, be unable to account for anything 

major part features. On the other hand, the 

mac 
roscopic features may help in deciding at ]east the basic 

ons, e.g., turning or boring vs. shaping, planning or 
operati 

broach· 1 ng. 
It should be attempted to integrate PRODUCER with an 

exist· ing CAM system, to determine its effectiveness •
nd 

identify areas of improvement. 
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