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With the rapid development of information technology, computer-based tests 

have become more and more popular in large-scale assessments. Among all the 

auxiliary data collected during the test-taking process, response times (RTs) seem to 

be one of the most important and commonly utilized sources of information. A 

commonly adopted assumption in joint modeling of RTs and item responses is that 

item responses and RTs are conditionally independent given a person’s speed and 

ability, and a person has constant speed and ability throughout the test (e.g., Thissen, 

1983; van der Linden, 2007).  

However, researchers have been investigating more complex scenarios where 

the conditional independence assumption between item responses and RTs is likely to 

be violated in various ways (e.g., De Boeck, Chen, & Davison, 2017; Meng, Tao, & 

Chang, 2015; Ranger & Ortner, 2012b). Empirical evidence suggests that the 



  

direction of conditional dependence differs among items in a systematic way 

(Bolsinova, Tijmstra, & Molenaar, 2017). For difficult items, correct responses are 

associated with longer RTs; for easier items, however, correct responses are usually 

associated with shorter RTs (Bolsinova, De Boeck, & Tijmstra, 2017; Goldhammer, 

Naumann, & Greiff, 2015; Partchev & De Boeck, 2012). This phenomenon reflects a 

clear pattern that item difficulty affects the direction of conditional dependence 

between item responses and RTs. However, such an interaction has not been 

explicitly explored in jointly modeling of RT and response accuracy. 

 In the present study, various approaches for joint modeling of RT and 

response accuracy are proposed to account for the conditional dependence between 

responses and RTs due to the interaction among speed, accuracy, and item difficulty. 

Three simulation studies are carried out to compare the proposed models with van der 

Linden’s (2007) hierarchical model that does not take into account the conditional 

dependence with respect to model fit and parameter recovery. The consequences of 

ignoring the conditional dependence between RT and item responses on parameter 

estimation is explored. Further, empirical data analyses are conducted to investigate 

the potential violations of the conditional independence assumption between item 

responses and RTs and obtain a more fundamental understanding of examinees’ test-

taking behaviors.  
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Chapter 1:   Introduction 

 With the rapid development of information technology, computer-based tests 

have gained increasing popularity in large-scale assessments. Among all the auxiliary 

data collected during the test-taking process, response times (RTs) is one of the most 

important and commonly utilized sources of information. To better understand 

examinees’ test-taking behaviors, various modeling frameworks have been proposed 

to analyze RT and its relationship with response accuracy (RA). Most existing 

research has focused on the relationship between RT and RA assuming all examinees 

respond to items in the same manner. However, increasing empirical research 

suggests that examinees undertake different response styles or switch problem-

solving strategies for items with different characteristics. The present study 

investigates the relationship among RT, RA, and one of the most important 

psychometric item characteristics, item difficulty, by proposing a series of modeling 

approaches. The potential impact of accounting for or ignoring the interaction among 

speed, accuracy and item difficulty is explored. 

1.1 Statement of the Problem 

RT has been playing a crucial role in experimental cognitive psychology since 

the 1950s (Luce, 1986). It is believed that RTs reflect the time needed for basic 

thinking processes, including interpreting a stimulus, retrieving information, 

processing information to respond to a stimulus, and synthesizing information from 

multiple sources in both psychological and educational tests. Depending on the 

characteristics of the items on the test and allotted time for the test, there are mainly 
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two types of tests, namely speed tests and power tests, as Gulliksen (1950) first 

pointed out. In a pure speed test, examinees are asked to work on as many items as 

possible in limited time. Items on a speed test are relatively easy, and the total count 

of items completed with correct answers directly reflects how fast an examinee can 

respond to similar items. On the other hand, in a pure power test, the accuracy of an 

examinee’s response is measured instead. Compared to those on a speed test, items on 

a power test vary in difficulty or complexity in problem-solving process. Another 

important feature of power tests is that examinees respond to items without a time 

constraint. Therefore, their abilities may be measured more accurately as they are 

given enough time to attempt all items. 

However, most educational tests fall in the category of neither pure speed tests 

nor pure power tests. Items on educational tests are usually selected to cover a 

spectrum of item difficulty, so that the ability parameters could be estimated with 

adequate precision along the whole scale. Due to practical concerns in cost- and time-

effectiveness, examinees are required to respond to items within a certain time frame, 

regardless of whether they can reach all items or not. Thereby, most educational tests 

are in fact power tests administered under time constraints. As such, Hambleton and 

Swaminathan (1985) asserted that latency should be studied in addition to 

correctness. Thissen (1983) also argued that RA and RT are two dimensions involved 

in analyzing data from timed tests, and that modeling either dimension and ignoring 

another may yield biased or misleading results.  

In fact, the relationship between speed and accuracy has been of interest to 

psychologists for over a century. A choice behavior was found ubiquitous across 
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multiple species – a subject tends to respond to a stimulus less accurately for faster 

responses and more accurately for slower responses. This is often referred to as the 

“speed-accuracy tradeoff” (e.g., Garrett, 1922; Henmon, 1911; Luce, 1986). In the 

cognitive psychology field, it is usually considered a within-subject phenomenon that 

reflects how speed fluctuates for a certain examinee with a certain ability level (van 

der Linden, 2009). On the other hand, psychometric researchers have been interested 

in both within-subject and between-subject variabilities between speed and accuracy. 

For instance, researchers have asked whether examinees respond to different items 

with different speed and ability? Do examinees with higher ability level tend to 

respond faster or slower? Is spending more time on the items associated with higher 

probabilities of correct responses?  

The nature of educational tests necessitates the study of RT and RA, and the 

availability of RTs alongside with response data renders the possibility of modeling 

RT and RA simultaneously. Psychometric researchers have proposed various 

approaches to modeling both RT and RA, including the drift diffusion model (e.g., 

Ratcliff, 1978; Tuerlinckx & De Boeck, 2005) and the hierarchical modeling for 

speed and accuracy (van der Linden, 2007).  

A common assumption in joint modeling of RT and RA is the conditional 

independence assumption, which is important from both substantive and statistical 

aspects (van der Linden, 2009). It is assumed that item responses depend solely on the 

latent ability and RTs depend only on the latent speed. In other words, item responses 

and RTs are conditionally independent given a person’s speed and ability. However, 

researchers have uncovered more complex real-world scenarios where the conditional 
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independence assumption between item responses and RTs is likely to be violated. 

Further, an interesting scenario has been found in real data from multiple testing 

programs that the direction of conditional dependence differs among items depending 

on item difficulty in a systematic way (e.g., Bolsinova, Tijmstra, & Molenaar, 2017; 

Goldhammer, Naumann, & Greiff, 2015). To further improve estimation accuracy 

and to better understand examinees’ test-taking behaviors at a fundamental level, it 

may be of practical and theoretical importance to investigate the relationship among 

speed, accuracy, and item characteristics. 

1.2 Purpose of the Study 

 The purpose of the present study is to explore the relationship among speed, 

accuracy and item difficulty, one of the most important item characteristics. This 

study is motivated by examining empirical data from multiple testing programs and 

the results from recent studies on speed and accuracy. In particular, there seems to be 

a consistent pattern regarding the conditional dependence between speed and 

accuracy, and its interaction with item difficulty. For difficult items, correct responses 

are associated with longer RTs, which appears to follow the speed-accuracy tradeoff; 

for easier items, however, correct responses are usually associated with shorter RTs, 

indicating an opposite pattern of the speed-accuracy tradeoff (Bolsinova, De Boeck, 

& Tijmstra, 2017; Goldhammer et al., 2015; Goldhammer, Naumann, Stelter, Tóth, & 

Rölke, 2014; Partchev & De Boeck, 2012).  
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Figure 1. Logarithm of RT distributions for correct and incorrect responses of a 
difficult item with difficulty of 1.337. 

 

Figure 2. Logarithm of RT distributions for correct and incorrect responses of an easy 
item with difficulty of -.546. 

 To illustrate the relationship among speed, accuracy and item difficulty, 

Figures 1 and 2 demonstrate the phenomenon that the relationship between speed and 

accuracy tends to interact with item difficulty using response data and RTs from a 

large-scale credentialing testing program (Cizek & Wollack, 2017). The logarithm 

transformation is applied as a common approach to normalize RTs, denoted as logRT. 
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In both figures, the dashed density in blue indicates the distribution of logRT for 

correct responses, whereas the solid density in red indicates the distribution of logRT 

for incorrect responses. The dashed and solid vertical lines represent the mean logRT 

for correct and incorrect responses, respectively. Figure 1 shows the logRT 

distributions for correct and incorrect responses from a difficult item with a difficulty 

parameter of 1.337. The mean of logRT distribution for correct responses, as 

indicated by the dashed line on the right, is larger than that for incorrect responses. In 

Figure 2, for an easier item, the locations of the two distributions are reversed: 

incorrect responses are associated with longer RTs on average, whereas correct 

responses tend to be faster. On the untransformed scale, the difference between the 

means of RT is centered around 20 seconds, but could be larger than 40 seconds in 

the most extreme cases (see the left panel of Figure 3), which is not negligible given 

that the average RT among all examinees and items is about 65 seconds.  

 

Figure 3. Histogram of the mean RT difference (left panel) and the scatterplot for the 

mean logRT difference and item difficulty (right panel). 
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 Based on scenarios presented in Figures 1 and 2, some statistical tests and 

modeling approaches have been proposed to examine RT distributions conditioning 

on observed responses (e.g., Bolsinova & Maris, 2016; van der Linden & Glas, 2010). 

Findings from other studies also suggest that speed and accuracy interface in opposite 

directions for items with different difficulty levels (e.g., Bolsinova, De Boeck, & 

Tijmstra, 2017; Goldhammer et al., 2014; Partchev & De Boeck, 2012). Yet the 

relationship between the magnitude of location shift in logRT and item difficulty has 

not been explicitly studied. A closer examination of the interaction reveals that the 

location shift of logRT between correct and incorrect responses for each item is 

strongly correlated with the item difficulty, as shown in the right panel of Figure 3. 

Patterns presented in Figures 1 to 3 have been cross-validated with data from testing 

programs in different fields. 

 Motivated by this phenomenon observed in empirical data and reported in 

previous studies (e.g., Bolsinova, De Boeck, & Tijmstra, 2017; Goldhammer et al., 

2014; Partchev & De Boeck, 2012), the present study aims at exploring the 

conditional dependence between responses and RTs due to the interaction among 

speed, accuracy, and item difficulty. Specifically, this study addresses the following 

questions:  

1. What are the possible approaches to modeling RT and responses for speed-

accuracy-difficulty interaction? 

2. How are the item and person parameter estimates in the proposed models 

affected by manipulated factors in simulation studies, including sample size, the 



 

 

8 

 

number of items, the correlation between speed and ability, and the correlation 

between shift in time intensity parameter and item difficulty? 

3. How do the proposed models perform compared to existing models for joint 

modeling of RT and RA, in simulation studies and real data analysis?  

4. What is the impact of ignoring conditional dependence on parameter 

recovery? 

5. Which model fit indices perform better on identifying the proposed models as 

the best fitting models under different simulation conditions when the proposed 

models are used for data generation? 

These questions are answered in light of the findings from various simulation 

conditions and analyses of empirical data from several computer-based large-scale 

assessment programs. 

1.3 Significance of the Study 

 There are three outcomes expected from this study. First, this study is 

motivated by a phenomenon that is common across different testing programs. 

Although previous studies have suggested that the direction of conditional 

dependence between RT and RA seems to be associated with item difficulty, the 

relationship between the magnitude of conditional dependence and item difficulty has 

not been explored in sufficient detail. In the present study, the interaction among 

speed, accuracy and item difficulty is investigated in detail by proposing a series of 

modeling approaches. In the proposed models, examinees could be classified by 

observed responses or latent variables, and the magnitude of conditional dependence 

is allowed to covary with item difficulty in different ways. By comparing the 
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proposed models to existing models that either take into account or ignore the 

conditional dependence between RT and RA (van der Linden, 2007; van der Linden 

& Glas, 2010), a more fundamental understanding is obtained regarding the 

mechanisms of examinees’ test-taking behaviors.  

 Second, the impact of ignoring conditional dependence between RT and RA is 

evaluated in the present study. The assumption of conditional independence has been 

frequently adopted as it facilitates the development of joint modeling of RT and RA 

based on separate modeling frameworks. However, investigation of empirical datasets 

indicates that this assumption does not usually hold under certain scenarios (e.g., 

Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016). As a result, parametric and 

non-parametric statistical tests have been developed to detect violations of this 

assumption (e.g., Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016; van der 

Linden & Glas, 2010). In the present study, a detailed exploration is conducted for the 

potential impact on item and person parameter recovery under various simulation 

conditions when such dependence is ignored. 

 Third, accounting for the relationship among speed, accuracy and item 

difficulty may potentially improve the accuracy of item and person parameter 

estimates. On the one hand, classifying examinees by latent variables may be more 

accurate than observed responses, which may contain more undefined errors such as 

guessing and slipping. On the other hand, incorporating covariates in modeling RT 

could also contribute to higher precision in parameter estimation, as more information 

is utilized in the estimation process. As such, the proposed modeling approaches may 

yield more accurate parameter estimates.  
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1.4 Overview of the Chapters 

 In the following chapters, different approaches to modeling the interaction 

among speed, accuracy and difficulty are described and evaluated from both practical 

and theoretical perspectives.  

 In Chapter 2, the background and rationale for the study is established through 

a comprehensive literature review of existing methods related to modeling responses 

and RTs. First, common unidimensional IRT models and IRT models that incorporate 

RT as a covariate are reviewed. Second, various approaches and distributions for 

modeling RT are summarized, along with RT models that utilize information from 

RA-related latent variables. Moreover, findings are outlined based on the explorations 

of the relationship between RT and item characteristics, as well as the relationship 

between RT and the correctness of responses. Driven by the increasing need for 

measuring speed and accuracy simultaneously in timed tests, frameworks for joint 

modeling of RT and RA are elaborated. While most joint modeling methods are built 

on the assumption of conditional independence for simplicity and interpretability, it is 

often found that this assumption is violated in practice. Thus, recent development of 

different approaches to accounting for different types of violations are then surveyed. 

Lastly, the technical details of commonly used estimation methods are elaborated. 

 Chapter 3 describes the methods utilized in the present study in detail. The 

first section of this chapter elaborates the proposed models for speed-accuracy-

difficulty interaction, which are extensions based on the current joint modeling 

framework that assumes conditional independence between RT and RA. In the second 

section, Bayesian estimation of model parameters via Markov chain Monte Carlo 
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(MCMC) is demonstrated. Technical details are provided regarding prior distribution, 

posterior distribution, and convergence criteria. The third section focuses on three 

simulation studies that evaluate the performance of the proposed models and existing 

models as well as the impact of ignoring conditional dependence under various 

conditions. Empirical data from two large-scale assessment programs are analyzed to 

demonstrate the application and utility of the proposed models in real testing 

scenarios.  

 Results from the simulation study and real data analysis are presented in 

Chapter 4. The recovery of model parameters and the impact of manipulated factors 

are reported for the simulation study. Several model fit indices are compared with 

respect to the detection rate of the data generating model. Moreover, different 

approaches to modeling the speed-accuracy-difficulty interaction are compared based 

on parameter recovery and model fit in empirical data. 

 Lastly, findings from the present study are summarized in Chapter 5. 

Interpretations and implications of the results are discussed regarding large-scale 

computer-based assessment where both responses and RTs are recorded. In addition, 

limitations of the study shed light on some future research directions for further 

understanding of test-taking behaviors and improving parameter estimation accuracy. 
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Chapter 2:   Literature Review 

 This chapter reviews modeling approaches and estimation methods related to 

RT and RA in four sections, which serve as theoretical foundation for the proposed 

models in Chapter 3. In particular, the first two sections introduce IRT models and 

RT models for measuring latent ability and speed in separate frameworks. Building 

upon the two separate frameworks, researchers have proposed methods for joint 

modeling of RT and RA. In the following sections, the theoretical and practical 

implication of the conditional independence assumption is detailed, and then the 

reviewed methods are classified into three categories and summarized respectively: 

(a) joint modeling of RT and RA assuming conditional independence between RT and 

responses; (b) joint modeling of RT and RA distinguishing fast and slow responses; 

(c) joint modeling of RT and RA distinguishing correct and incorrect responses. 

Models that belong to the last two categories explicitly tackle with two types of 

violations of the conditional independence assumption. The estimation methods used 

for the proposal models are elaborated in the last section of this chapter. 

2.1 Item Response Modeling 

2.1.1 Standard IRT Models 

 IRT, also referred to as modern measurement theory, is a theory that concerns 

with latent ability on a psychological continuum and its relationship with item 

characteristics. The probability of a correct response for a specific item and a certain 

person is associated with the latent ability of the person and characteristics of the item 

via a logistic or probit link. Rather than estimating the true ability using summed 
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score as in classical test theory, IRT focuses on modeling item-level responses that 

compose the total score. A major advantage of IRT is that it provides a more flexible 

framework for test users to put student ability and the attributes of the items (i.e., 

difficulty) on a common scale. Therefore, comparison among scores from different 

test forms is meaningful. Due to practical and theoretical advantages, IRT has 

received considerable attention in education, psychology (Embretson & Reise, 2000) 

and other fields, such as clinical research (e.g., Tractenberg, 2010), economics (e.g., 

Monica, 2008), political science (e.g., Clinton, Jackman, & Rivers, 2004; Matin & 

Quinn, 2002), and medical research (e.g., Cella et al., 2007).  

 The substantial benefits of IRT are built on a set of rigorous assumptions. Two 

most important fundamental assumptions are unidimensionality and local 

independence (Reckase, 2009). The unidimensionality assumption requires that the 

parameter that describes examinees only captures variance in one latent dimension 

(Lord & Novick, 1968; Rasch, 1960). However, this assumption is often violated in 

real testing scenarios, especially when tests have increasingly been developed for 

assessing skills from more than one dimensions. Extensive research has been 

conducted to determine the consequences of violating this assumption (e.g., Bolt, 

1999; Camilli, Wang, & Fesq, 1995; Champlain, 1996; Jang & Roussos, 2007). To 

accommodate the multidimensional nature of more recent tests, researchers have 

proposed theory and estimation methods for multidimensional IRT models for simple 

and complex, compensatory and noncompensatory structures (e.g., Mulaik, 1972; 

Reckase, 1972, 2009; Sympson, 1978).  
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 On the other hand, the local independence assumption entails two facets, local 

item independence and local person independence. That is, the probability of 

answering one item correctly does not increase or reduce the probability of a correct 

response to another item, and one person's probability of answering an item correctly 

does not influence another person's probability of a correct response. Possible causes 

of local item dependence (LID) might be related to additional factors that consistently 

affect the performance of some students on some items, such as speededness, 

practice, testlet dependence, item chaining etc (Yen, 1984, 1993). Such LID has been 

accounted for to improve estimation accuracy as random effects or interaction effects 

in modeling conditional distributions or log odds of possible response patterns (e.g., 

Bradlow, Wainer, & Wang, 1999; Hoskens & De Boeck, 1997; Ip, 2000; Wang & 

Wilson, 2005). 

 Since the present study aims at investigating the relationship between latent 

speed and ability as well as its interaction with item difficulty, only three common 

unidimensional IRT models for dichotomous items are reviewed in this section, 

including the Rasch (Rasch, 1960), the two-parameter logistic (2PL; Birnbaum, 

1968), and the three-parameter logistic (3PL; Birnbaum, 1968) models.  

 The Rasch model is the most basic IRT model that characterizes the 

probability of a correct response with a person’s latent ability and an item difficulty 

parameter. It places ability and difficulty on the same scale, and assumes that higher 

latent ability or lower item difficulty leads to higher probability of obtaining a correct 

answer to the item. Such a monotonic relationship is described via a logistic function: 
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 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑏𝑖) =
1

1 + exp[−(𝜃𝑗 − 𝑏𝑖)]
, (2.1) 

where 𝑦𝑖𝑗 denotes the observed response for person j on item i, 𝜃𝑗 represents the  

latent ability for person j, and 𝑏𝑖 indicates the difficulty parameter for item i, which is 

defined as the level on the latent continuum that yields a probability of .5 for a correct 

response.  

 This model assumes that all items discriminate among examinees equally, 

which means that any increase of the same distance from item difficulty would result 

in the same increase in the probability of a correct response for all items, and vice 

versa. Based on the Rasch model, the 2PL model was developed to allow differential 

discrimination parameters across items: 

 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖 , 𝑏𝑖) =
1

1 + exp[−𝑎𝑖(𝜃𝑗 − 𝑏𝑖)]
. (2.2) 

Compared to (2.1), an additional parameter 𝑎𝑖 is included in the formulation, 

reflecting the discrimination power specific for item i. 𝑎𝑖 is constrained to be a 

positive value in most cases, which indicates that the monotonic increasing 

assumption between the latent ability and the probability of a correct response is 

maintained. Items that are more discriminating tend to have higher 𝑎𝑖 values, where 

the probability of a correct response increases faster as the ability level increases. 

 The most generalized IRT model among the three is the 3PL model. This 

model accommodates a common testing scenario where examinees choose to make a 

guess on an item when they do not have the time or ability to solve the item. Thus a 

lower asymptote 𝑐𝑖 is involved to tease out the effect of guessing or pseudo-guessing: 
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 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) = 𝑐𝑖 +
1 − 𝑐𝑖

1 + exp[−𝑎𝑖(𝜃𝑗 − 𝑏𝑖)]
. (2.3) 

In this model, the probability of a correct response no longer ranges from 0 to 1, but 

has 𝑐𝑖 as the lower asymptote. The item difficulty 𝑏𝑖 now represents the point where 

the probability of a correct response reaches 
1+𝑐𝑖

2
. 

2.1.2 Incorporating RT for Modeling RA  

 Section 2.1.1 introduces three most common IRT models for measuring latent 

ability, the Rasch, the 2PL, and the 3PL IRT models. Built upon the standard IRT 

models, this section summarizes the models that incorporate RT as collateral 

information in the IRT models (Roskam, 1987, 1997; Verhelst et al., 1997; Wang & 

Hanson, 2005). A research question of interest in the studies reviewed in this section 

is how to model the speed-accuracy tradeoff with regard to the probability of a correct 

response. In all three studies, this relationship is modeled as linear combinations of 

latent ability, speed, and/or RT, reflecting the relative impact of speed and ability on 

the probability of a correct response. The specific assumptions and formulations in 

each study are elaborated respectively. 

 One of the first attempts to include RT information in IRT models is 

Roskam’s Rasch response time model (Roskam, 1987, 1997): 

 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝑡𝑖𝑗 , 𝑏𝑖) =
𝜃𝑗𝑡𝑖𝑗

𝜃𝑗𝑡𝑖𝑗 + 𝑏𝑖
=

exp(𝜃𝑗
∗ + 𝑡𝑖𝑗

∗ − 𝑏𝑖
∗)

1 + exp(𝜃𝑗
∗ + 𝑡𝑖𝑗

∗ − 𝑏𝑖
∗)
. (2.4) 

In his model, 𝜃𝑗 is called mental speed, 𝑡𝑖𝑗 represents the RT that person j spends on 

item i, and 𝑏𝑖 is the item difficulty, of which 𝜃𝑗
∗, 𝑡𝑖𝑗

∗ , and 𝑏𝑖
∗ are the population 

logarithm analogues. The ability parameter in the standard Rasch model is replaced 
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by an “effective ability parameter”, denoted by 𝜃𝑗𝑡𝑖𝑗 , or equivalently, 𝜃𝑗
∗ + 𝑡𝑖𝑗

∗  on the 

logarithm scale. A speed-accuracy tradeoff is captured in this model as the probability 

of a correct response increases when 𝑡𝑖𝑗 increases for a given item. In a pure power 

test where in theory 𝑡𝑖𝑗 can increase to infinity, the probability of a correct response 

for any item is one.  

 Rather than including actual RT as a covariate, Verhelst et al. (1997) proposed 

a similar model that incorporates the effect of speed in a Rasch-like model. Moreover, 

the inclusion of a shape parameter for item i permits more flexible RT distributions: 

 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝜏𝑗 , 𝑏𝑖) = {
1

1 + exp[−(𝜃𝑗 − 𝜏𝑗 − 𝑏𝑖)]
}

𝜋𝑖

, (2.5) 

where 𝜃𝑗 and 𝜏𝑗 are the latent ability and speed parameters for person j, 𝑏𝑖 is the item 

difficulty, and 𝜋𝑖  is an item-specific parameter that allows the shapes of the RT 

distribution to be different across items. Their model is derived from the product of 

two distributions, a generalized extreme-value distribution for the latent ability 

conditioning on RT, and a gamma distribution for the marginal RT distribution. 

Similar to Roskam (1987, 1997), Verhelst et al. (1997) also assumed that faster 

responses are associated with lower probability of a correct response.    

 Both Roskam’s (1987, 1997) and Verhelst et al.’s (1997) models can be 

viewed as variations of the Rasch model. Wang and Hanson (2005), on the other 

hand, proposed a four-parameter logistic (4PL) model based on the 3PL model. Its 

formulation is expressed as follows: 

 𝑃(𝑦𝑖𝑗 = 1|𝜃𝑗 , 𝜌𝑗 , 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 , 𝑑𝑖) = 𝑐𝑖 +
(1 − 𝑐𝑖)

1 + exp[−𝑎𝑖(𝜃𝑗 − 𝜌𝑗𝑑𝑖/𝑡𝑖𝑗 − 𝑏𝑖)]
, (2.6) 
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where all parameters are defined in the same manner as those for the 3PL model in 

(2.3), except one term in the logit function 𝜌𝑗𝑑𝑖/𝑡𝑖𝑗. In this term, 𝜌𝑗 and 𝑑𝑖 are 

referred to as the slowness parameters of person j and item i. With this term 

incorporated, the authors assume that item and person slowness parameters have the 

same effect on the probability of a correct response. Moreover, a speed-accuracy 

tradeoff is imposed in that as 𝑡𝑖𝑗 increases, the probability of a correct response also 

increases and the effect of 𝑡𝑖𝑗 gradually fades out. As 𝑡𝑖𝑗 approaches infinity, the 

𝜌𝑗𝑑𝑖/𝑡𝑖𝑗 term drops out and the functional form in (2.6) approximates the probability 

of the 3PL model. In other words, an examinee who spends more time on an item is 

more likely to respond correctly to it, but the effect of RT on RA becomes negligible 

when the examinee is allowed to use as much time as needed on the item. Such a 

formulation may be more realistic than the assumption applied in Roskam’s (1987, 

1997) and Verhelst et al.’s (1997) models, that the probability of a correct response 

approaches one as RT approximates infinity or an examinee responds extremely 

slowly to an item, regardless of item and person characteristics.  

2.2 RT Modeling 

 RTs on test items are a reliable and potentially valuable source of information 

for modeling speed as well as serving as collateral information for modeling latent 

ability. It has been shown that incorporating RT can improve ability estimation 

accuracy (e.g., Ferrando & Lorenzo-Seva, 2007; Meng et al., 2015), detect aberrant 

response behaviors (e.g., Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014; van 

der Linden & Guo, 2008), control for differential speededness in computerized 
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adaptive testing (e.g., van der Linden, Scrams, & Schnipke, 1999; van der Linden & 

Xiong, 2013). This section introduces some models and the distributions that are 

frequently utilized in RT modeling. 

2.2.1 Standard RT Models 

 In most testing scenarios, RT distributions are non-negative and positively 

skewed, which motivates the choice of log-normal distributions for RT modeling. In 

fact, several studies have reported good fit in modeling actual RTs using log-normal 

distributions (e.g., Schnipke & Scarms, 1999; Thissen, 1983; van der Linden, Scrams, 

& Schnipke, 1999). Moreover, the use of the nice statistical properties of a normal 

model is permitted by adopting the log-normal transformation (Klein Entink, van der 

Linden, & Fox, 2009). van der Linden (2006) proposed a log-normal model for RT 

analogous to the 2PL IRT model, which is specified as follows: 

 log(𝑡𝑖𝑗) = 𝛽𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗 ,     𝜀𝑖𝑗 ∼ 𝑁(0, 𝛼𝑖
−2), (2.7) 

where 𝛽𝑖 is the item time intensity parameter for item i, 𝜏𝑗 is the speed parameter for 

person j, and the error term 𝜀𝑖𝑗 is assumed to be normally distributed with mean of 0 

and inverse variance of 𝛼𝑖. 𝛼𝑖 is also referred to as the item-specific time 

discrimination parameter, which quantifies the variability of the logRT distribution. 

As one can see, 𝛼𝑖 and 𝛽𝑖 are the counterparts of 𝑎𝑖 and 𝑏𝑖 in the 2PL IRT model. 

Similar formulations are used for controlling differential speededness (e.g., van der 

Linden et al, 1999) and detecting aberrant response behaviors (e.g., van der Linden & 

van Krimpen-Stoop, 2003). Fox, Klein Entink, and van der Linden (2007) and Klein 

Entink, Fox, and van der Linden (2009) also included a slope parameter for the 

person speed parameter to characterize differential effects of items on the examinees. 
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 Finding that the log transformation cannot always remove the skewness of the 

RT distributions, Klein Entink, van der Linden, and Fox (2009) developed the Box-

Cox normal model. While the log-normal model (van der Linden, 2006) only works 

for normalizing positively skewed distributions, the Box-Cox transformation (Box & 

Cox, 1964) is widely applied to convert symmetric or (positively or negatively) 

skewed distributions into normal distributions:    

 𝑇(𝑣) = {
𝑇𝑣 − 1

𝑣
,      𝑣 ≠ 0

log 𝑇,           𝑣 = 0,
 (2.8) 

where 𝑣 ∈ ℝ is a parameter that controls the degree to which the untransformed 

distribution is compressed. As one can see, the log transformation is included as a 

special case when 𝑣 = 0. When 𝑣 ≠ 0, a different nonlinear transformation is applied 

to the variable with smaller 𝑣s yielding higher degrees of compression. Applying 

such a transformation, a Box-Cox normal model for RT can be expressed as follows 

(Klein Entink, van der Linden, & Fox, 2009): 

 𝑡𝑖𝑗
(𝑣)
= 𝛽𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗 ,        𝜀𝑖𝑗 ∼ 𝑁(0, 𝛼𝑖

−2). (2.9) 

The mathematical form of this model is quite similar to the log-normal model in (2.7), 

except that the left-hand side of the model is replaced by RT, 𝑡𝑖𝑗 after the Box-Cox 

transformation. The other parameters, 𝛽𝑖, 𝜏𝑗, 𝜀𝑖𝑗, and 𝛼𝑖, are also interpreted in a 

similar way but on the transformed scale.  

 There are two ways to apply the Box-Cox normal model in practice. One can 

estimate either a single 𝑣 for all items or item-specific 𝑣 for each item. It is expected 

that the item-specific 𝑣s would fit the data better than the single 𝑣, although both of 

them can improve model fit from the log-normal model. However, applying item-
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specific 𝑣s to the data results in different scales among items, thus the item and 

person parameters may not be directly comparable. Another drawback of the Box-

Cox normal model is that it may not be appropriate for distributions with unusual 

shapes, such as bimodal or mixture distributions.  

 The semiparametric Cox proportional hazards (PH) model (Ranger & Ortner, 

2012a; Wang, Fan, Chang, & Douglas, 2013) is an appealing alternative that avoids 

both drawbacks of the Box-Cox normal model. The Cox PH model is a widely-used 

modeling approach in survival analysis that concerns with the change in hazard rate 

over time. A specific time point of interest, named “time-to-event”, refers to the time 

“until an event occurs”. In the Cox PH model, hazard rate of a specific time point is 

modeled as the product of two components, a baseline hazard function, and an 

exponential function of the effect parameters that reflect how hazard rate varies with 

explanatory variables. In RT modeling, responding to an item is usually the event of 

interest, and RT is considered as the “time-to-event”. Hazard rate represents the 

probability of responding to an item in the next moment, which can also be conceived 

as the rate at which an examinee works at a specific time point. Therefore, an 

examinee works more intensively when his or her hazard rate is higher (Ranger & 

Ortner, 2012a; Wenger & Gibson, 2004). Mathematically, the Cox PH model can be 

expressed as follows: 

 ℎ𝑖𝑗(𝑡𝑖𝑗|𝜏𝑗) = ℎ0𝑗(𝑡𝑖𝑗) exp(𝛾𝑖𝜏𝑗), (2.10) 

where 𝑡𝑖𝑗 denotes RT, ℎ0𝑗(∙) is the baseline hazard function, 𝜏𝑗 is the speed parameter 

for person j, 𝛾𝑖  is an item-specific slope parameter that determines the increase in 
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hazard rate. A larger 𝛾𝑖  indicates faster increase in hazard rate due to increase in 

speed. 

 There are at least two reasons why one would prefer the Cox PH model over 

the Box-Cox normal model. First, the Cox PH model is able to fit a wider variety of 

RT distributions due to its semiparametric nature. Second, because it employs 

nonparametric transformations, comparison across items is possible in the Cox PH 

model even though item-specific transformations are applied.  

 An even more generalized and flexible RT model that unifies the log-normal 

model, the Box-Cox model, and the Cox PH model is the linear transformation model 

(Ranger & Kuhn, 2013; Wang, Chang, Douglas, 2013). No specific transformation or 

specific error distribution is assumed in this model; instead, it only requires the 

transformation to be order-preserving, and the transformed RT is modeled by the 

weighted sum of covariates and a random error term. Assuming that the latent speed 

is the only covariate, this model can be expressed as follows: 

 𝐻𝑖(𝑡𝑖𝑗) = 𝛾𝑖𝜏𝑗 + 𝜀𝑖𝑗 , (2.11) 

where 𝛾𝑖  and 𝜏𝑗 are defined the same as in (2.10), 𝐻𝑖(∙) is an order-preserving 

transformation of RT distribution for item i, and 𝜀𝑖𝑗 denotes the errors. Under this 

model, it can be algebraically proven that applying the Box-Cox transformation and 

with normal errors would yield the Box-Cox normal model. Similarly, substituting 

𝐻𝑖(∙) by a nonparametric transformation and a Gumbel (Gumbel, 1935, 1941) 

distribution for the errors results in the Cox PH model. 

 In addition to the Cox PH model, researchers have adopted several common 

parametric survival time distributions for RT modeling, including exponential, 
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gamma, and Weibull distributions. Specifically, Scheiblechner (1979) developed an 

exponential distribution that models RT density using a linear combination of item 

and person effects: 

 𝑓(𝑡𝑖𝑗) = (𝜏𝑗 + 𝛾𝑖) exp[−(𝜏𝑗 + 𝛾𝑖)𝑡𝑖𝑗], (2.12) 

where 𝜏𝑗 and 𝛾𝑖  are the person and item speed parameters, respectively. Note that 

these two parameters are defined differently from those in (2.10) and (2.11). The item 

speed parameter can be decomposed into a weighted sum of the time intensity 

required by each component process. A comparable formulation with a gamma 

distribution is presented by Maris (1993), which is a two-parameter generalization of 

the exponential distribution. Verhelst, Verstralen, and Jansen’s (1997) also suggested 

modeling RT with a gamma distribution, where speed and accuracy are considered as 

two complementary aspects that compose a more basic concept called mental power.  

 Another survival time distribution that is commonly used for RT modeling is 

the Weibull distribution. Roskam (1997) applied a one-parameter Weibull distribution 

for the marginal distribution of RT: 

 𝑓(𝑡) = 𝜆𝑡 exp (−
𝜆

2
𝑡2) , (2.13) 

where 𝜆 =
𝜃𝑗

𝑏𝑖𝛿𝑗
, 𝜃𝑗 and 𝛿𝑗 are interpreted as the mental speed and persistence of 

person j, and 𝑏𝑖 is the item difficulty for item i. The definition of 𝛿𝑗 indicates that the 

probability of a correct response increases as an examinee’s persistence to answer the 

item increases. One big difference between the Roskam’s (1997) approach and the 

other approaches reviewed in this section is that it models the test completion time, 

rather than individual item RTs. Rouder, Sun, Speckman, Lu, and Zhou (2003) also 
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introduced a model utilizing a three-parameter Weibull distribution, which is mainly 

applicable to the experimental paradigm (Rouder et al., 2003). In this type of test, 

almost the same cognitive process is required by the stimuli in each item, thus it is 

reasonable to assume that item characteristics do not affect the time spent on items.  

 To summarize, researchers have tried various distributions and models to 

improve model fit of the RT distributions, including normal and log-normal 

distributions (e.g., Thissen, 1983, van der Linden, 2006), Box-Cox normal model 

(Klein Entink, van der Linden, & Fox, 2009), the Cox PH model (Ranger & Ortner, 

2012a; Wang, Fan, et al., 2013), linear transformation model (Ranger & Kuhn, 2013; 

Wang, Chang, et al., 2013), exponential (Scheiblechner, 1979), gamma (Maris, 1993; 

Verhelst et al., 1997), and Weibull (Roskam, 1997; Rouder et al., 2003; Tatsuoka & 

Tatsuoka, 1980) distributions. Comparing normal, log-normal, gamma, and Weibull 

distributions, Schnipke and Scrams (1999, 2002) concluded that log-normal model 

provides the best fit of RT distributions from both exploratory and confirmatory 

samples. Nonetheless, all models reviewed in this section provide meaningful 

interpretations of the data, though they may vary in terms of model assumptions, 

interpretability and flexibility. Readers are referred to Schnipke and Scrams (2002) 

for a more comprehensive review of other alternatives. 

2.2.2 Incorporating RA for modeling RT 

 Similar to section 2.1.2, this section introduces models that incorporate RA-

related variables for RT modeling. The relationship between speed and accuracy is 

still one of the most important research questions; however, instead of estimating the 

probability of a correct response, models in this section focus on modeling RT 
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distributions. A recent example of this type of models is developed by Gaviria (2005), 

where the author specifies a double log-normal distribution for a rescaled time for a 

correct response: 

 ln [
𝑡𝑖𝑗 − 𝑇0
𝐴

] = −𝑎𝑖(𝜃𝑗 − 𝑏𝑖) + 𝜀𝑖𝑗 , (2.14) 

where A is a scaling constant, 𝑇0 represents the time required to answer an extremely 

easy item, and the 𝑎𝑖(𝜃𝑗 − 𝑏𝑖) follows the structure of the 2PL IRT model. A log-

normal distribution is chosen to model the residuals with a mean of zero and item-

dependent variance 𝜎𝑖
2. 

 Another popular model of this type is proposed by Thissen (1983). His model 

introduces person and item effects on RTs in a similar way as in analysis of variance: 

 log(𝑡𝑖𝑗) = 𝜇 + 𝜏𝑗 + 𝛽𝑖 − 𝜌(𝑎𝑖𝜃𝑗 − 𝑏𝑖) + 𝜀𝑖𝑗 , 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎
2). (2.15) 

In Thissen’s (1983) model, 𝜇 indicates the average level of the population and item 

domain, 𝜏𝑗 and 𝛽𝑖 are the slowness parameters for person j and item i respectively. 

Notice that although the item and person slowness parameters are termed the same as 

Wang and Hanson’s (2005) 4PL RT model in (2.6), the interpretations are quite 

different. The item and person slowness parameters in (2.6) reflect how the item- and 

person-specific coefficients of RT affect the probability of a correct response, 

whereas in (2.15) they are interpreted as the main effects on log(𝑡𝑖𝑗). The fourth term 

on the right-hand side of the equation regresses the log odds of a correct response on 

log(𝑡𝑖𝑗) following the 2PL model, where a coefficient 𝜌 controls the magnitude of 

association between the two. Essentially, this modeling approach incorporates the 

impact of IRT model parameters on the RT modeling. 
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 Ferrando and Lorenzo-Seva (2007) extend this model to a different response 

parameter structure, where 𝑎𝑖𝜃𝑗 − 𝑏𝑖  is replaced by √𝑎𝑖
2(𝜃𝑗 − 𝑏𝑖)

2
. Both Thissen’s 

(1983) and Ferrando and Lorenzo-Seva’s (2007) models imply that when 𝜌 > 0, 

examinees with higher ability tend to work fast than lower ability examinees, while 

the opposite relationship is implied when 𝜌 < 0. Therefore, these two models are 

more flexible than Wang and Hanson’s (2005) in that the association between ability 

and speed could be either positive or negative. Ranger and Kuhn (2012) proposed an 

extension of Ferrando and Lorenzo-Seva’s (2007) study with the absolute distance 

between ability and difficulty, denoted by |𝜃𝑗 − 𝑏𝑖|. 

2.3 Joint Modeling of RT and RA 

 In the first two sections of this chapter, the theoretical foundations of joint 

modeling of RT and RA are reviewed, in terms of IRT models and their variations to 

include RT as collateral information, as well as standard and extended RT models 

incorporating parameters from IRT models. This section describes several modeling 

frameworks for joint modeling of RT and RA that have been commonly utilized to 

analyze test data with a time limit.  

 Before detailed introduction to each framework, it is worth noticing that some 

researchers from the cognitive psychology field have adopted a different strategy for 

separate analysis of RT and RA (Klein Entink, Kuhn, Hornke, & Fox, 2009). For 

instance, researchers have examined the impact of item characteristics on item 

difficulty and RT separately (e.g., Embretson, 1998; Gorin, 2005; Primi, 2001). 

Although such strategy provides insights about how RT and RA vary independently, 
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it does not permit modeling the relationship between them. On the contrary, joint 

modeling of RT and RA facilitates the simultaneous estimation of IRT and RT model 

parameters, as well as the investigation of the relationship between RT and RA. 

Therefore, this section focuses on reviewing methods for joint modeling of RT and 

RA.  

 Studies reviewed in this section mainly aim at modeling two sources of 

variabilities that cause examinees to respond in different manners: between-subject 

and within-subject differences. Between-subject differences are of interest to a lot of 

models introduced in section 2.3.1, where the conditional independence between RT 

and RA is assumed. In these models, differences in examinees’ response behaviors 

are attributed to differences in their ability and speed, as well as item parameters. It is 

assumed that examinees respond to the items with a constant ability and a constant 

speed across the test (e.g., Goldhammer & Kroehne, 2014; Meng et al., 2015; van der 

Linden, 2009). In other words, there is no within-subject difference as of how an 

examinee interacts with the items. While the assumption of a constant ability is more 

widely acceptable, assuming a constant speed might be less viable in real testing 

scenarios where examinees can switch problem-solving strategies between items. As 

such, studying within-subject differences provides the opportunity to analyze 

underlying psychological processes of an examinee’s test-taking behaviors. For 

instance, examinees may use different cognitive strategies to solve the items (van der 

Maas & Jansen, 2003), fake on some items (Holden & Kroner, 1992), or demonstrate 

item pre-knowledge (McLeod, Lewis, & Thissen, 2003). Other effects, including 

learning and practice (Carpenter, Just, & Shell, 1990), fatigue and motivation 



 

 

28 

 

(Mollenkopf, 1950), can also be examined by modeling within-subject differences. 

Most approaches to modeling conditional dependence between RT and RA in 

sections 2.3.2 and 2.3.3 are proposed to analyze within-subject differences explicitly.  

 In the following sections, methods for joint modeling of RT and RA are 

categorized by different assumptions of conditional dependence between responses 

and RTs, as suggested in Ranger and Ortner (2012b). Mathematically, the joint 

distribution of RT and RA can be expressed as follows:  

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖), (2.16) 

where 𝑦𝑖𝑗 represents an item response from person j to item i, 𝑡𝑖𝑗 is the RT associated 

with response 𝑦𝑖𝑗, 𝜃𝑗 and 𝜏𝑗 denote the latent ability and speed parameters for person 

j, 𝛿𝑖 and 𝛾𝑖  indicate the item parameters for item i in IRT and RT models respectively. 

Based on this expression, one can choose to model the joint distribution of RT and 

RA directly if they are assumed to covary following a certain functional form. Along 

these lines, models have been developed with specific scoring rules that reward or 

penalize certain responses made within certain time (e.g., Dennis & Evans, 1996; 

Maris & van der Maas, 2012; van der Maas & Wagenmakers, 2005). These models 

present another distinctive line of research, therefore are not reviewed in detail in this 

literature review.  

 Other than applying the scoring rules for modeling the joint distribution of 

responses and RTs directly, one can choose among three different approaches to 

modeling the joint distribution of RT and RA. First, equation (2.16) can be 

decomposed into two marginal distributions for RT and RA, assuming that responses 
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and RTs are conditionally independent given the two latent traits and respective item 

parameters: 

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖)𝑓(𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛾𝑖). (2.17) 

Further simplifications have been advocated by Thissen (1983) and van der Linden 

(2007): 

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝛿𝑖)𝑓(𝑡𝑖𝑗|𝜏𝑗 , 𝛾𝑖), (2.18) 

which is the common definition of conditional independence assumption. 

Specifically, the conditional independence assumption states that responses solely 

depend on the latent ability and IRT model parameters whereas RTs solely depend on 

the latent speed and RT model parameters, and 𝑦𝑖𝑗 and 𝑡𝑖𝑗 are conditionally 

independent of each other given the associated parameters. Such an assumption is 

often applied when modeling item responses and RTs (e.g., Klein Entink, van der 

Linden, & Fox, 2009; Thissen, 1983; van der Linden, 2007; Wang, Fan, et al., 2013), 

which is also supported by empirical evidence in psychological research (e.g., 

Kennedy, 1930; Tate, 1948). In the present study, this definition of conditional 

independence assumption is adopted due to its popularity in this line of research, 

despite the existence of other possible alternative definitions.  

 Second, the joint distribution of RT and RA can be factored as a conditional 

distribution for one source of information and a marginal distribution for another 

(Bloxom, 1985), when the conditional independence assumption is violated. Note that 

the conditional dependence of interest in the present study can be considered as 

within-item dependence that exists between the item response and RT for the same 

item. This should be distinguished from other types of dependence, such as the 



 

 

30 

 

conditional dependence between item responses or between RTs for different items, 

which are indeed between-item dependence. In particular, the following factorization 

has been advocated in some studies (e.g., Bolsinova, De Boeck, & Tijmstra, 2017; 

Bolsinova, Tijmstra, & Molenaar, 2017; Goldhammer, Steinwascher, Kroehne, & 

Naumann, 2017; Ingrisone, 2008): 

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖) = 𝑓(𝑦𝑖𝑗|𝑡𝑖𝑗 , 𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖)𝑓(𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖). (2.19) 

This formulation implies that an observed response to an item relies on the RT spent 

on this specific item. (2.19) can also be simplified as follows assuming responses and 

RTs are dependent on different latent traits only: 

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖) = 𝑓(𝑦𝑖𝑗|𝑡𝑖𝑗 , 𝜃𝑗 , 𝛿𝑖)𝑓(𝑡𝑖𝑗|𝜏𝑗 , 𝛾𝑖). (2.20) 

 Alternatively, one can factor (2.16) into the marginal distribution of responses 

and the conditional distribution of RTs given the associated responses (e.g., 

Bolsinova & Tijmstra, 2016; van der Linden & Glas, 2010). This approach has an 

opposite assumption that the RT on an item depends on the response made to this 

item:  

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖)𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖), (2.21) 

which, again, can be simplified as 

 𝑓(𝑦𝑖𝑗 , 𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝛿𝑖 , 𝛾𝑖) = 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝛿𝑖)𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜏𝑗 , 𝛾𝑖). (2.22) 

 Based on the three approaches described above, models that jointly harness 

the benefits from RTs and responses are classified and elaborated for each approach 

respectively with respect to model structure, parameter estimation, and how the 

speed-accuracy tradeoff is represented in the framework. 
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2.3.1 Conditionally Independent RTs and responses 

 One straightforward factorization of the joint distribution of RT and RA is 

realized via the conditional independence assumption as demonstrated in (2.18). A 

model that adopts the conditional independence assumption is the drift diffusion 

model (Ratcliff, 1978). This model focuses on the underlying response processes 

based on a diffusion process. It is assumed that when two alternative options are 

presented to a subject, the evidence of both options accumulates over time by a 

Wiener process. A decision is made when the information accumulates to a certain 

boundary. In this model, responses and RTs are conditionally independent given the 

latent ability and speed. Although such a model has mostly been applied in 

experimental psychology for within-individual data, it has been employed for 

analyzing cross-sectional data composed of responses and RTs (Molenaar, 

Tuerlinckx, & van der Maas, 2015c; Tuerlinckx & De Boeck, 2005; van der Maas, 

Molenaar, Maris, Kievit, & Borsboom, 2011; Vandekerckhove, 2009; Wagenmakers, 

2009).  

 In addition to the drift diffusion model, researchers have developed some 

other approaches that also advocate the conditional independence assumption 

between RTs and responses (e.g., Ranger & Kuhn, 2014a; Van Breukelen, 2005; van 

der Linden, 2007), with van der Linden’s (2007) hierarchical framework as the most 

prominent framework (Ranger & Kuhn, 2014b). His model describes two sources of 

information in a two-level model, where an IRT model and a RT model are specified 

for responses and RTs respectively on the first level. On the second level, rather than 

imposing a direct mathematical function between RT and RA, the item and person 
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parameters for two models on the first level are assumed to covary. For item 

responses, van der Linden (2007) employed the 3PL model as presented in (2.3); in 

fact, any IRT model can be used in modeling item responses. For the RT model, van 

der Linden’s (2006) log-normal model as shown in (2.7) is employed. Again, this 

framework is flexible for other RT models reviewed in section 2.2 as well. On top of 

the two first-level models for RT and RA, two second-level multivariate normal 

distributions are further specified for item and person parameters respectively. 

Assuming a 3PL model for item response modeling, the mean vector and covariance 

matrix for item parameters are  

 𝝁𝐼 = (𝜇𝑎, 𝜇𝑏 , 𝜇𝑐, 𝜇𝛼 , 𝜇𝛽), (2.23) 

and 

 𝚺𝐼 =

(

 
 
 
 

𝜎𝑎
2 𝜎𝑎𝑏 𝜎𝑎𝑐 𝜎𝑎𝛼 𝜎𝑎𝛽

𝜎𝑏𝑎 𝜎𝑏
2 𝜎𝑏𝑐 𝜎𝑏𝛼 𝜎𝑏𝛽

𝜎𝑐𝑎 𝜎𝑐𝑏 𝜎𝑐
2 𝜎𝑐𝛼 𝜎𝑐𝛽

𝜎𝛼𝑎 𝜎𝛼𝑏 𝜎𝛼𝑐 𝜎𝛼
2 𝜎𝛼𝛽

𝜎𝛽𝑎 𝜎𝛽𝑏 𝜎𝛽𝑐 𝜎𝛽𝛼 𝜎𝛽
2
)

 
 
 
 

. (2.24) 

Similarly, the mean vector for person parameters is defined as  

 𝝁𝑃 = (𝜇𝜃 , 𝜇𝜏), (2.25) 

and the covariance matrix is 

 𝚺𝑃 = (
𝜎𝜃
2 𝜎𝜃𝜏

𝜎𝜏𝜃 𝜎𝜏
2 ). (2.26) 

In the above mean vectors and covariance matrices, the subscript I refers to item-

related parameters and subscript P refers to person-related parameters. 

 This hierarchical modeling framework is similar to Thissen’s (1983) model in 

(2.15) because they both assume RTs follow a log-normal distribution and focus on 
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modeling RT with item and person effects. Yet they are different from at least four 

aspects. First, as indicated by the name, time intensity parameter 𝛽𝑖 in (2.7) is an 

estimate of the average time used on the item, whereas the item slowness parameter 

𝛽𝑖 in (2.15) represents a deviation on the average RT of a specific item from 𝜇, the 

overall average RT of the population and item domain. Second, the person effect 𝜏𝑗 in 

(2.7) is termed a person speed parameter rather than person slowness parameter as the 

symbol precedes it changes from positive to negative. Third, no direct functional 

relationship is imposed between the log odds of a correct response and the logRT in 

the RT model. Rather, the relationship between speed and accuracy is taken care of at 

the second level. Lastly, the error term in (2.7) follows a normal distribution with 

item-specific variance term, instead of a constant variance across all items. 

 van der Linden’s (2007) hierarchical framework provides a flexible and 

readily interpretable modeling framework for joint modeling of speed and accuracy. 

Built on this framework, IRT and RT models introduced in sections 2.1 and 2.2 can 

be utilized for more modeling options. For instance, Klein Entink, van der Linden, 

and Fox (2009) proposed a straightforward extension with the Box-Cox normal 

model for RT modeling. Some other RT models have also been embedded as a first 

level model in the hierarchical framework, such as the Cox PH model (Ranger & 

Kuhn, 2014a; Wang, Fan, et al., 2013) and the linear transformation model (Wang, 

Chang, et al., 2013). Other approaches assume a more complex underlying 

responding mechanism, such as the race model (Ranger, Kuhn, & Gaviria, 2015), 

where actual responses are determined by competing stochastic processes for possible 

response options. 
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 In addition to the modifications of the RT model, extensions have been made 

to accommodate more effects from covariates, examinee clustering, multiple sources 

of responses and RTs, as well as non-normal logRT distribution. Specifically, 

covariates, such as item characteristics, are included to model variability in item 

parameters (Klein Entink, Kuhn, et al., 2009; Loeys, Rosseel, & Baten, 2011). 

Another study from Klein Entink, Fox, and van der Linden (2009) incorporated a 

multilevel structure for groups of examinees and included covariates at both person 

and group levels. To model examinees’ test performance as well as feedback 

behaviors, a multivariate hierarchical model was developed to model four latent traits 

from both sources (Fox, Klein Entink, & Timmers, 2014). When the normal 

assumption of logRT distribution is violated, Molenaar and Bolsinova (2017) 

proposed a model for non-normal logRT distribution to distinguish non-normality due 

to heteroscedastic residual variances and skewed latent speed. Moreover, a 

generalized linear factor model (Molenaar, Tuerlinckx, & van der Maas, 2015b) was 

proposed to unify several common modeling approaches for responses and RTs, 

including van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), 

Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010). 

The only mild restriction is that the item model at the second level is omitted. 

 Most studies introduced in this section focus on modeling test data from 

multiple sources to analyze the relationship between speed and accuracy via 

simulation studies and empirical data analyses. In particular, simulation studies have 

been conducted to evaluate the sensitivity of parameter recovery to various 

manipulated factors, such as sample size (Fox et al., 2014; Kang, 2016; Ranger & 
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Kuhn, 2014b; Suh, 2010; Wang, Fan, et al., 2013), test length (Fox et al., 2014; Kang, 

2016; Molenaar et al., 2015b; Suh, 2010; Wang, Fan, et al., 2013), the correlation 

between latent speed and ability (Klein Entink, 2009; Patton, 2015; Suh, 2010), the 

distribution for modeling RT (Kang, 2016; Patton, 2015; Molenaar & Bolsinova, 

2017; Wang, Fan, et al., 2013). Common evaluation criteria include bias, empirical 

standard error (SE), mean square error (MSE), root mean square error (RMSE), 

correlation and 95% confidence interval or credible interval.  

 In general, increasing sample size and test length both yield more accurate 

item and person parameter estimates since more information can be borrowed from 

RTs as expected (e.g., Kang, 2016; Marianti, 2015; Suh, 2010; Wang, Fan, et al., 

2013). Similarly, higher correlation between latent ability and speed also results in 

higher recovery accuracy for both person and item parameters. With respect to person 

parameters, the precision of ability parameter estimates increases as the correlation 

between RTs and responses increases (Klein Entink, 2009; Patton, 2015), though the 

improvement may not be practically meaningful for correlation less than .5 (Ranger, 

2013; van der Linden, Klein Entink, & Fox, 2010). In other words, the more collateral 

information contained in RTs, the more accurate the ability estimates. Further, the 

effect of incorporating RTs on ability estimates seems to vary systematically along 

the ability scale. That is, although the effect of incorporating RTs is relatively small 

for examinees located near the population mean, the estimation accuracy of ability 

estimates improves considerably for examinees near the two ends of the latent 

continuum, especially when correlation is high (Klein Entink, 2009; Molenaar & 

Bolsinova, 2017; Patton, 2015).  
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 On the other hand, more accurate item parameters from IRT model can be 

obtained by joint modeling of RT and RA within the hierarchical framework (Ranger 

& Kuhn, 2012; van der Linden et al., 2010). Kang (2016) found that increasing 

sample size and the correlation between ability and speed reduces the bias and MSE 

of item parameters. Klein Entink (2009) specifically analyzed the impact of 

incorporating RT on item discrimination parameter and concluded that the MSE of 

item discrimination decreases as the correlation between RTs and responses 

increases, and, interestingly, as item discrimination increases.  

 In addition to test length, sample size, and the correlation between speed and 

ability, researchers have also compare different RT models in terms of the sensitivity 

of item and person parameters to RT model misspecification. Patton (2015) compared 

the log-normal, the Weibull and the Box-Cox normal model and found that ability, 

speed, and correlation estimates are robust to misspecification of the RT model under 

the hierarchical modeling framework. Utilizing the Cox PH model for RT modeling, 

Wang, Fan, et al., (2013) examined parameter recovery for exponential, Weibull, and 

nonmonotone baseline hazard function, and concluded that the model can always be 

accurately recovered. When comparing different modeling frameworks, van der 

Linden’s (2009) hierarchical framework outperforms Thissen’s (1983) and Wang and 

Hanson’s (2005) models (Suh, 2010), but the speed-accuracy response model 

(SARM; Maris & van der Maas, 2012) seems to provide higher model-based 

reliability than the hierarchical framework (van Rijn & Ali, 2017). 

 Simulation studies offer a means to examine model parameter recovery under 

certain conditions, whereas analyzing empirical datasets enables researchers to 



 

 

37 

 

explore true model parameters in real testing scenarios. One parameter of particular 

interest in joint modeling of RT and RA is the correlation between speed and ability. 

Surprisingly, researcher have reported both strong and weak correlations in both 

positive and negative directions. For instance, Klein Entink, Fox, and van der Linden 

(2009) analyzed data from National World Assessment Test (NAW-8) and found a 

correlation of -.76. Similarly, Klein Entink, Kuhn, et al. (2009) used data from a 

large-scale figural reasoning ability test and reported a strongly negative (-.61) 

correlation. Other examples of negative correlations include Roberts and Stankov 

(1999) and van der Linden and Fox (2015). On the contrary, researchers have also 

found a correlation of .65 from Amsterdam Chess Test Data (Fox & Marianti, 

2016), .3 from American Institute of Certified Public Accountants (AICPA) 

certification program (van der Linden, 2007), among others (e.g., Klein Entink, 2009; 

Marianti, 2015; Wang & Xu, 2015). van der Linden et al. (1999) even reported .035 

correlation using data from Arithmetic Reasoning Test in the Armed Services 

Vocational Aptitude Battery (ASVAB) item bank.  

 In fact, these seemingly contradictory findings often inform the nature of the 

tests. A negative correlation between speed and ability usually indicates that the test 

is non-speeded, such that high ability examinees have better time management during 

the test (Klein Entink, Fox, & van der Linden, 2009), whereas a positive correlation 

may suggest a speeded test. With respect to the correlations between time intensity 

and other item parameters, the correlations are generally negative for the 

discrimination parameter in both IRT and RT models (e.g., Fox & Marianti, 2016; 

Klein Entink, Kuhn, et al., 2009), and positive for item difficulty (e.g., Fox & 
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Marianti, 2016; Klein Entink, Kuhn, et al., 2009; Marianti, 2015; van der Linden, 

2007). 

 Thus far, models that are based on van der Linden’s (2007) hierarchical 

framework have focused on modeling between-subject differences. That is, 

examinees are assumed to adopt the same ability and the same speed for answering all 

items on the test. Moreover, van der Linden and Glas (2010) noted that the 

conditional independence assumption between responses and RTs only holds when 

the speed and ability of an examinee keep constant throughout the entire test. As a 

result, any fluctuations on speed, and therefore fluctuations on ability, would lead to 

violations of conditional independence assumption between the response and RT for a 

specific item. To identify sources of misfit and capture within-subject variations, 

methods have been proposed for evaluating model fit (Marianti, 2015; Ranger & 

Kuhn, 2014b; Ranger, Kuhn, & Szardenings, 2017), person fit (Fox & Marianti, 

2017; Marianti et al., 2014), as well as conditional independence assumption (van der 

Linden & Glas, 2010; Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016). 

Potential misfit due to within-subject fluctuations can be modeled using methods 

introduced in sections 2.3.2 and 2.3.3 by relaxing the assumption of conditional 

independence between responses and RTs. 

2.3.2 Distinguishing Fast and Slow Responses 

 Conditional independence between responses and RTs can be violated in 

different ways. A most straightforward way to account for this dependence is to add 

residual correlations between responses and the associated RTs as in Ranger and 

Ortner (2012b) and Meng et al. (2015). However, violations of conditional 
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independence between responses and RTs may not always appear as residual 

correlations among all examinees. In fact, the residual correlation between responses 

and RTs for an item may cancel out at the population level if a negative residual 

correlation exists between RTs and responses for one group of examinees and a 

positive one for another group depending on their ability level (Bolsinova & Tijmstra, 

2016). Moreover, this violation might not only arise from different ability levels, but 

also heterogeneous response processes. Such response processes may be due to 

variable ability and speed (e.g., Partchev & De Boeck, 2012), as well as different item 

characteristics (e.g., Bolsinova, De Boeck, & Tijmstra, 2017).   

 One specific type of violation that researchers have been interested in is how 

an individual examinee’s pace can be different on items throughout the test. These 

differences may reflect different test-taking behaviors, such as rapid-guessing 

behaviors (Wang & Xu, 2015), item pre-knowledge (Lee & Wollack, 2017), or dual 

response processes (Goldhammer et al., 2014, 2015, 2017). One modeling option is to 

utilize an IRT model with a binomial tree structure to distinguish fast and slow 

responses, namely the IRTree model (De Boeck & Partchev, 2012; DiTrapani, Jeon, 

De Boeck, & Partchev, 2016; Partchev & De Boeck, 2012). This approach 

disentangles the fast and slow classes by splitting RTs based on median of RTs 

within-person or within-item, and models RA depending on which class a specific 

response falls into. As such, class sizes are arbitrarily chosen by researchers for two 

classes. Moreover, dichotomizing continuous RTs reduces the information that could 

have been used in joint modeling of responses and RTs.  
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 An appealing alternative to the IRTree model is mixture modeling with 

different latent classes representing item and person properties for different speed 

(Lee & Wollack, 2017; Marianti, 2015; Molenaar, Bolsinova, Rozsa, & De Boeck, 

2016; Molenaar, Bolsinova, & Vermunt, 2016; Molenaar, Oberski, Vermunt & De 

Boeck, 2016; Wang & Xu, 2015). Moreover, within-subject differences are accounted 

for by incorporating a person- and item-specific class membership, such that 

examinees’ speed varies from item to item. Researchers have proposed several 

parametric mixture modeling approaches for differential latent ability in fast and slow 

modes (Molenaar, Bolsinova, Rozsa, & De Boeck, 2016), rapid guessing behavior 

(Wang & Xu, 2015), and examinees with item pre-knowledge (Lee & Wollack, 

2017). Specifically, Molenaar, Bolsinova, Rozsa, and De Boeck (2016) model 

examinees in different modes with the same functional forms for responses and RTs, 

but the item and person parameters are different for fast and slow modes. Whereas in 

Wang and Xu’s (2015) and Lee and Wollack’s (2017) studies, examinees are 

assumed to follow different IRT and RT models in different classes. Marianti (2015) 

further developed a generalized mixture dynamic speed model for examinees with 

stationary and non-stationary speed, accounting for both between-subject and within-

subject differences by dividing a test into blocks of items. To reduce parameter 

estimation bias and avoid detecting spurious classes when RT distributions are not 

correctly specified, a semi-parametric remedy was proposed where RTs are 

categorized into an arbitrary number of categories (Molenaar, Bolsinova, & Vermunt, 

2016). Rather than allowing latent ability to be modeled separately for different 

modes or classes, Molenaar, Oberski, et al. (2016) employed a hidden Markov 
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modeling framework for modeling variations in speed and ability. It also assumes 

item parameters to be different across states, but a constant speed and a constant 

ability are assumed throughout the test.   

 Both IRTree modeling and mixture modeling classify examinees into discrete 

latent classes based on information from responses and RTs. However, some 

researchers argued that the impact of RTs on the measurement properties of the IRT 

model is likely to be continuous (e.g., Bolsinova, De Boeck, & Tijmstra, 2017; 

Bolsinova, Tijmstra, & Molenaar, 2016; Fox & Marianti, 2016). Following this logic, 

researchers have proposed models that include RT effects into IRT modeling and 

decompose the joint distribution of responses and RTs as demonstrated in (2.18) 

(Bolsinova, De Boeck, & Tijmstra, 2017; Bolsinova, Tijmstra, & Molenaar, 2017; De 

Boeck, Chen, & Davison, 2017; Goldhammer et al., 2017; Ingrisone, 2008; Wang, 

2006).  

 Most of these models are based on IRT and RT models introduced in the 

previous sections of this chapter. For instance, Wang (2006) proposed a joint model 

of responses and RTs by employing an IRT model similar to Wang and Hanson’s 

(2005) 4PL-RT model and one-parameter Weibull distribution as shown in (2.13). 

Wang’s (2006) formulation reflects a pacing strategy discussed in Wang and Zhang 

(2006), that examinees tend to spend more time on items with similar difficulty levels 

as their ability levels. Based on Wang’s (2006) model, Ingrisone (2008) applied a 

two-parameter Weibull distribution for RT modeling, allowing not only the scale, but 

also the shape of the RT distribution to vary. Employing a log-normal RT model (van 

der Linden, 2006), De Boeck et al. (2017) incorporated logRT into response modeling 
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explored the effects of spontaneous speed vs. imposed speed in a test with item-

specific time constraints.  

 In addition to incorporating RT or logRT directly, the effects of standardized 

residual RT have also been investigated thoroughly on the item difficulty and 

discrimination parameters (Bolsinova, De Boeck, & Tijmstra, 2017), and to be item-

specific, person-specific, or both (Bolsinova, Tijmstra, & Molenaar, 2017). More 

generalized linear modeling frameworks have been developed to incorporate random 

and fixed effects (Goldhammer et al., 2017; Klein Entink, 2009) and flexible cross-

relation function that specifies the relationship between speed and ability (Molenaar, 

Tuerlinckx, & van der Maas, 2015a).  

 Results from these studies suggest that the conditional independence 

assumption between responses and RTs is often violated (e.g., Bolsinova & Tijmstra, 

2016; Goldhammer et al., 2017; Molenaar, Bolsinova, Rozsa, & De Boeck, 2016), 

which indicates the lack of measurement invariance of latent ability and speed (De 

Boeck et al., 2017). The residual correlations between responses and RTs are found to 

be negative for most easy items, less negative or positive for difficult items 

(Bolsinova, De Boeck, & Tijmstra, 2017; Goldhammer et al., 2014; Molenaar, 

Bolsinova, Rozsa, & De Boeck, 2016; Partchev & De Boeck, 2012). In other words, 

for difficult items, spending more time increases the probability of a correct response, 

while for easy items the probability of a correct response decreases.  

 Most studies conclude that incorporating RT effects in IRT models or 

employing mixture models for distinguishing response processes with variable speed 

improves model fit (e.g., Bolsinova, De Boeck, & Tijmstra, 2017; Molenaar, Oberski, 



 

 

43 

 

et al., 2016), yet the choice of best-fitting model is subject to the source of conditional 

dependence (Bolsinova, Tijmstra, & Molenaar, 2017). For the mixture modeling 

approach with fast and slow classes, researchers have reported the percentage of fast 

latent class of 38%-44% based on the semiparametric mixture model (Molenaar, 

Bolsinova, & Vermunt, 2016), and 23% at the initial state in the hidden Markov 

model (Molenaar, Oberski, et al., 2016), indicating that most examinees only produce 

fast responses on less than half of the items.  

2.3.3 Distinguishing Correct and Incorrect Responses  

 The relationship between RTs and RA has long been of interest to researchers 

in both psychometrics and cognitive psychology fields. Descriptive studies of RTs 

generally found that examinees tend to spend more time on items they miss than those 

they answer correctly (e.g., Bergstrom, Gershon, & Lunz, 1994; Chang, 2007; 

Hornke, 2000; Lee, 2007; Swanson, Featherman, Case, Luecht, & Nungester, 1999), 

and RTs for correct and incorrect responses do not seem to follow the same 

distribution (Lee, 2007).  

 A few studies have been proposed recently to detect the violations of 

conditional independence between responses and RTs due to different RT 

distributions for correct and incorrect responses (Bolsinova & Maris, 2016; Bolsinova 

& Tijmstra, 2016; Glas & van der Linden, 2010; van der Linden & Glas, 2010). 

Specifically, Glas and van der Linden (2010) and van der Linden and Glas (2010) 

proposed a Lagrange multiplier test by including a location shift parameter 𝜆𝑖 for item 

i, where all other parameters are defined the same as in (2.7): 
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 log(𝑡𝑖𝑗) = 𝛽𝑖 + 𝑦𝑖𝑗𝜆𝑖 − 𝜏𝑗 + 𝜀𝑖𝑗 ,     𝜀𝑖𝑗 ∼ 𝑁(0, 𝛼𝑖
−2), (2.27) 

By testing the null hypothesis of 𝜆𝑖 = 0, the conditional independence assumption 

can be examined. However, the statistical properties of this test are dependent on 

whether the same conditional independence assumption holds for all other items. 

Moreover, this test is appropriate when the conditional dependence only arises from 

the difference in the location of the logRT distributions. Bolsinova and Maris (2016) 

noticed these drawbacks and developed non-parametric Kolmogorov-Smirnov tests 

that are applicable when the summed score of items on the test is a sufficient statistic 

for latent ability. They mainly considered three types of violations, the mean of the 

logRT distribution varies for correct and incorrect responses and for different ability 

levels, and the variance of the logRT distribution varies for correct and incorrect 

responses. The first two types of violations can be expressed by replacing 𝑦𝑖𝑗𝜆𝑖 in 

(2.27) by 
𝑦𝑖𝑗𝜆𝑖

𝛼𝑖
 and 

𝜅𝜃𝑗(2𝑦𝑖𝑗−1)

𝛼𝑖
: 

 log(𝑡𝑖𝑗) = 𝛽𝑖 +
𝑦𝑖𝑗𝜆𝑖
𝛼𝑖

− 𝜏𝑗 + 𝜀𝑖𝑗 ,     𝜀𝑖𝑗 ∼ 𝑁(0, 𝛼𝑖
−2), (2.28) 

and 

 log(𝑡𝑖𝑗) = 𝛽𝑖 +
𝜅𝜃𝑗(2𝑦𝑖𝑗 − 1)

𝛼𝑖
− 𝜏𝑗 + 𝜀𝑖𝑗 ,     𝜀𝑖𝑗 ∼ 𝑁(0, 𝛼𝑖

−2), (2.29) 

where 𝜅 reflects how the location of the logRT distribution shifts between correct and 

incorrect responses for examinees with different ability levels. For instance, 𝜅 > 0 

indicates that correct responses are faster for high-ability students, whereas incorrect 

responses are faster for low-ability students. Relaxing the assumption of a sufficient 

statistic, Bolsinova and Tijmstra (2016) proposed three posterior predictive checks for 
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the same two types of violations as shown in (2.28) and (2.29), and further considered 

variations of the logRT distributions which are item-dependent and person-dependent. 

van Rijn and Ali (2017) also mentioned a possible extension of (2.27) where both 

time intensity and time discrimination parameters vary depending on item responses. 

It is concluded, however, that most items only demonstrate location shift between 

response correctness in the illustration examples (Bolsinova & Maris, 2016; 

Bolsinova & Tijmstra, 2016; van der Linden & Glas, 2010).  

 Moreover, Bolsinova and Tijmstra (2017) extended van der Linden’s (2007) 

hierarchical model to contain cross-loadings between ability and RTs, which enables 

one to utilize more collateral information from ability for RT modeling. The authors 

manipulated test length, the correlation between speed and ability, and standard 

deviation (SD) of the cross-loadings and compared the performance of the two-

parameter normal ogive model, van der Linden’s (2007) simple structure hierarchical 

model, and the proposed model. Findings from this study suggest that adding cross-

loadings between ability and RTs further improves the estimation of ability based on 

the simple structure hierarchical model, and that the cross-loadings indicate the 

differences among examinees with different ability levels with respect to their speed. 

Magnus, Willoughby, Blair, and Kuhn (2017) also conducted a study to analyze 

empirical data with similar model structures. They concluded that the inclusion of RT 

information improved measurement precision of the ability estimates, particularly at 

the extreme levels. Bolsinova and Tijmstra (2017) further put forward a future 

research question to investigate specific item characteristics as a substantive 

explanation for different patterns between ability and speed. 



 

 

46 

 

 In the next section, possible model estimation methods are summarized for 

joint modeling of RT and RA, with a focus on the technical details of Bayesian 

estimation used in the present study. 

2.4 Model Estimation 

 There are two main model estimation frameworks in statistics, namely the 

frequentist inference and the Bayesian inference. From a frequentist point of view, 

data are a random sample that can be replicated with unknown but fixed parameters. 

In other words, the parameters remain constant in the repeatable data generation 

process. On the other hand, the Bayesians tend to think that the observed data are 

fixed and considered a realized sample of an underlying population. Parameters are 

random, instead of fixed, and are described probabilistically. Another major 

difference between the two is that Bayesian statisticians use a prior distribution to 

express the probability of the model parameters, reflecting the belief or hypothesis of 

the distribution of model parameters before collecting any data. Frequentists, 

however, do not rely on a prior distribution and only use probability to describe 

observed and unobserved data. With respect to estimation, Bayesian inference may be 

more computationally intensive compared to frequentist inference due to complex 

posterior distributions.  

 Most studies reviewed in this chapter apply the two estimation frameworks for 

model parameter estimation. Several popular software packages have been used for 

maximum likelihood estimation, a common method from the frequentist perspective, 

including Mplus (Muthén & Muthén, 2007) and LatentGOLD (Vermunt & Magidson, 

2013). Whereas for the Bayesians, researchers have employed Markov chain Monte 
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Carlo (MCMC) methods implemented in JAGS (Plummer, 2015), WinBUGS 

(Spiegelhalter, Thomas, Best, & Lunn, 2003), OpenBUGS (Lunn, Spiegelhalter, 

Thomas, & Best, 2009), and Stan (Gelman, Lee, & Guo, 2015).  

 In the proposed study, the Bayesian inference is chosen for four reasons. First, 

Bayesian inference via MCMC methods is more flexible than the frequentist 

estimation methods implemented in the currently available software packages in 

terms of model structure (e.g., Bustamante, Nielsen, & Hartl, 2003). Second, when 

dealing with low-information data, the Bayesian approach seems to be able to achieve 

better accuracy and coverage compared to the maximum likelihood approach (e.g., 

Beerli, 2006). Third, the maximum likelihood estimation method is subject to 

different types of convergence issues, such as singularity of the information matrix 

and local maxima, which can be avoided in Bayesian estimation by using different 

priors and drawing samples from the posterior distributions. Fourth, even if diffuse 

priors are used, the Bayesian inference has practical advantages in that the person and 

item parameter estimates in the IRT model are restricted to a reasonable range (e.g., 

Lord, 1986). In the following sections, common sampling methods and model 

convergence diagnosis in Bayesian estimation are summarized.  

2.4.1 Introduction to Bayesian Inference  

 Bayesian statistical inference uses Bayes’ theorem to update the prior belief 

about parameters when more data becomes available. The Bayes’ theorem is 

expressed as follows: 

 𝑃(𝜽|𝑿) =
𝑃(𝑿|𝜽)𝑃(𝜽)

𝑃(𝑿)
, (2.30) 
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where 𝜽 represents the parameters of interest and 𝑿 indicates the data. On the right-

hand side of (2.30), 𝑃(𝑿|𝜽) in the numerator is defined as the likelihood of observing 

the available data given the parameters, 𝑃(𝜽) is the prior probability distribution of 

the parameters, and 𝑃(𝑿) is the marginal probability of the data. The Bayes’ theorem 

states that some mathematical operations of the three terms yield the posterior 

distribution of the parameters given currently available data and prior distributions, as 

shown on the left-hand side of (2.30). As Bayesians treat data as fixed, 𝑃(𝑿) is in fact 

a constant. Another nice property of any probability density function is that it 

integrates to one over the entire space. Taking these two properties into account, the 

Bayes’ theorem can be simplified as follows: 

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑃𝑟𝑖𝑜𝑟. (2.31) 

Therefore, the posterior distribution of the parameters given the data are proportional 

to the product of likelihood function and the prior distribution of the parameters. 

2.4.2 Markov Chain Monte Carlo Methods 

 The key object of Bayesian inference is the posterior distribution of the model 

parameters. For simple statistical models where a closed form solution exists for the 

posterior distribution, parameter estimates can be solved analytically. However, for 

complex models with non-closed form solution and high-dimensional parameter 

space, sampling based estimation procedures can be applied to obtain parameter 

estimates. A class of common sampling based estimation procedures is the MCMC 

methods, which is quite flexible in terms of the shape of the posterior distributions as 

well as the number of parameters.  



 

 

49 

 

 The MCMC methods construct a Markov chain based on samples from a 

probability distribution and approximate the target posterior distribution better as the 

number of iterations increases (Gelman, Carlin, Stern, & Rubin, 2003). This 

stochastic process converges to an equilibrium distribution, which is considered 

approximately equal to the target posterior distribution. In fact, it has been 

demonstrated that the target distribution can be approximated with any accuracy as 

the number of iterations approaches infinity (Robert & Casella, 1999). The Markov 

property ensures that the parameter estimates at the next iteration are independent of 

any previous iterations and only dependent on the current iteration. 

 There are several common MCMC sampling methods, including the Gibbs 

sampler (Geman & Geman, 1984), the Metropolis sampler (Metropolis, Rosenbluth, 

Rosenbluth, Teller, & Teller, 1953), and the Metropolis-Hastings (M-H) sampler 

(Hastings, 1970). The Gibbs sampler is the simplest MCMC method that requires 

conditionally conjugate models, while the Metropolis sampler is applicable to models 

that are not conditionally conjugate, which is further generalized to the M-H sampler 

for asymmetric proposal distribution.  

 An important assumption of the Gibbs sampling algorithm is that the 

conditional distributions of all parameters can be specified. Based on this assumption, 

a complex multivariate posterior distribution from which it is hard to draw samples 

can then be decomposed into simpler univariate distributions, conditioning on other 

model parameters, which is easier to sample from. Assuming three parameters of 

interest 𝜽 = (𝜃1, 𝜃2, 𝜃3), the full conditional distributions can be specified as 

𝑝(𝜃1|𝜃2, 𝜃3, 𝑿), 𝑝(𝜃2|𝜃1, 𝜃3, 𝑿), 𝑝(𝜃3|𝜃1, 𝜃2, 𝑿). After providing the algorithm with 
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some arbitrary starting values 𝜽𝟎 = (𝜃1
0, 𝜃2

0, 𝜃3
0), the Gibbs sampler proceeds with 

drawing samples from each full conditional distribution at every iteration i (𝑖 ≥ 1) as 

follows: 

(1) Sample 𝜃1
𝑖  from 𝑝(𝜃1|𝜃2

𝑖−1, 𝜃3
𝑖−1, 𝑿). 

(2) Sample 𝜃2
𝑖  from 𝑝(𝜃2|𝜃1

𝑖 , 𝜃3
𝑖−1, 𝑿). 

(3) Sample 𝜃3
𝑖  from 𝑝(𝜃3|𝜃1

𝑖 , 𝜃2
𝑖 , 𝑿).  

Steps (1) to (3) are repeated until the chains converge. While the Gibbs sampler 

requires that all parameters have closed form full conditional distributions, this is not 

always the case. A more generalized MCMC algorithm is needed when one or more 

parameters do not have closed form full conditional distributions, such as the M-H 

sampler. Rather than drawing samples from the full conditional distributions 

sequentially, the M-H algorithm utilizes a proposal distribution of the parameters to 

determine whether to accept or reject the proposed new state. Suppose that there are 

three parameters as before, the following steps are carried out at every iteration i (𝑖 ≥

1): 

(1) Sample a proposal draw 𝜃1
∗ from a proposal distribution 𝑔(𝜃1

∗|𝜃1
𝑖−1). 

(2) Substitute 𝜃1
∗ in 𝜽∗ = (𝜃1

∗, 𝜃2
𝑖−1, 𝜃3

𝑖−1) and calculate the ratio   

𝑟 =
𝑝(𝜽∗|𝑿)𝑔(𝜽∗|𝜽𝒊−𝟏)

𝑝(𝜽𝒊−𝟏|𝑿)𝑔(𝜽𝒊−𝟏|𝜽∗)
. 

(3) Accept the proposal draw 𝜃1
∗ with probability of min(r, 1) and update 𝜽𝒊 =

(𝜃1
∗, 𝜃2

𝑖−1, 𝜃3
𝑖−1), otherwise reject and retain 𝜽𝒊 = (𝜃1

𝑖−1, 𝜃2
𝑖−1, 𝜃3

𝑖−1). 

(4) Repeat steps (1) to (3) for 𝜃2 and 𝜃3. 
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 As a special case of the M-H algorithm, the Metropolis algorithm essentially 

applies the same sampling algorithm to symmetrical proposal distributions, so that the 

ratio could be simplified as 𝑟 =
𝑝(𝜽∗|𝑿)

𝑝(𝜽𝒊−𝟏|𝑿)
. However, the use of asymmetric proposal 

distributions usually speeds up model convergence and thus the M-H algorithm 

outperforms the Metropolis algorithm in terms of computation efficiency (Gelman et 

al., 2003).  

2.4.3 Convergence Diagnosis  

 Evaluating chain convergence in monitoring the simulated states of the 

Markov chains is a critical issue in model estimation. The Markov chain should 

theoretically converge to a stationary distribution from which the samples from the 

posterior distribution are drawn. There are several factors that can impact the 

convergence rate (Kim & Bolt, 2007). First, high autocorrelations in the Markov 

chains result in a slow convergence rate where the samples cannot be considered as 

independent draws from the posterior distribution. Therefore, a large number of 

iterations are needed before a valid sample from the posterior distribution can be 

obtained. Second, the choice of sampling algorithms can affect the convergence rate. 

For instance, as stated earlier, the M-H algorithm is more efficient than the 

Metropolis algorithm due to asymmetric proposal distributions (Gelman et al., 2003). 

Lastly, non-convergence issue could also relate to model identification problems. In 

such cases, the model identification constraints are not sufficient to estimate the 

parameters of interest. 
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  Lack of convergence can be detected from two aspects, visual inspection of 

plots of the Markov chains as well as diagnostic indices. The first aspect includes 

plots for history, running mean, density, quantiles of the chains, among others. Figure 

4 shows two examples of history plots demonstrating convergent and non-convergent 

evidence. As one can see, the convergent chain on the upper panel is rather stable 

across iterations, whereas the non-convergent chain on the lower panel demonstrates 

much more variability at different phases of the chain. Similarly, stable running mean 

and quantiles indicate the convergence of a chain. In addition, the density plot of the 

samples should be smooth and unimodal when a chain is converged. 

 

Figure 4. Examples of sampling history plots displaying evidence of (a) convergence 

and (b) non-convergence (Adapted from Kim and Bolt, 2007, p. 43). 

 Non-convergence in the Markov chains is sometimes apparent through visual 

inspections. However, there are other scenarios where it is not as easy to detect non-

convergence through examining the plots, for example when the number of 

parameters is large. In such cases, diagnostic indices can be calculated to provide a 
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numerical gauge of model convergence. Two commonly utilized diagnostic indices 

among them are Geweke’s (1992) z-score and Gelman and Rubin’s (1992) potential 

scale reduction factor, also called 𝑅̂. Based on Geweke’s (1992) approach, a z-score 

is computed as the standardized difference between the first 10% and last 50% of the 

chain for each model parameter. The significance of this z-score is tested against zero 

as it is assumed to follow the standard normal distribution. Falling in the non-

significance range (i.e., −1.96 ≤ 𝑧 ≤ 1.96) is considered as evidence of 

convergence. Another approach to evaluating convergence numerically when 

multiple chains are simulated is Gelman and Rubin’s (1992) 𝑅̂. The idea of this 

statistic is to compare the between-chain variance and within-chain variance for each 

parameter. Convergence is achieved for a parameter when 𝑅̂ approximates 1.0 

(Gelman & Rubin, 1992). In the proposed study, a combination of diagnostic plots 

and indices are applied to examine the convergence of the model parameters.  
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Chapter 3:   Methods 

 The first chapter introduces the motivation of the joint modeling of RT and 

RA accounting for the interaction among speed, accuracy, and item difficulty in the 

context of timed tests and the potential contributions of the present study. In the 

second chapter, the theoretical foundations of the joint modeling approach are 

summarized for modeling item responses and RTs respectively, as well as several 

joint modeling frameworks, allowing RT and RA to be conditionally independent or 

dependent. The estimation methods utilized to obtain model parameter estimates are 

also reviewed in the second chapter, with a focus on the Bayesian inference. Built on 

the first two chapters, this chapter first illustrates the proposed models for violations 

of conditional independence due to interactions among speed, accuracy, and item 

difficulty, and then demonstrates the implementation of estimation methods in the 

Bayesian framework. The proposed models are evaluated via simulation studies and 

empirical data analyses, as presented in the last two sections of this chapter.  

3.1 Joint Modeling for the Speed-Accuracy-Difficulty Interaction 

 In this section, models for the conditional dependence between responses and 

RTs are proposed to account for the speed-accuracy-difficulty interaction based on 

van der Linden’s (2007) hierarchical modeling framework. Such a modeling 

framework is chosen for three reasons. First, it has been shown that the log-normal 

distribution fits RT distributions better than other alternative distributions, such as 

Weibull and gamma distributions (e.g., Schnipke & Scrams, 1999). Second, even 

though models such as the Box-Cox normal model (Klein Entink, van der Linden, & 
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Fox, 2009) and the linear transformation model (Ranger & Kuhn, 2013; Wang, 

Chang, et al., 2013) can accommodate more generalized RT distributions and less 

stringent assumptions, the log-normal model is more parsimonious with acceptable 

model fit and easily interpretable model parameters. Third, rather than imposing a 

functional relationship between speed and accuracy, the hierarchical modeling 

framework offers an appealing approach to describe the relationship between speed 

and accuracy by allowing them to covary.  

 As discussed in section 2.3, violations of the conditional independence 

assumption have mainly been investigated from two aspects. On the one hand, 

researchers have wondered whether fast and slow responses are associated with 

distinguishable latent traits or different test-taking processes. On the other hand, a less 

explored approach is to assume that correct and incorrect responses give rise to 

different RT distributions. A number of studies suggest that item difficulty seems to 

interact with the relationship between speed and accuracy systematically (Bolsinova, 

De Boeck, & Tijmstra, 2017; Goldhammer et al., 2014, 2015; Partchev & De Boeck, 

2012) and advocate the investigation of specific item characteristics (Bolsinova & 

Tijmstra, 2017). The present study follows the second approach of modeling different 

RT distributions for correct and incorrect responses because the variable speed 

assumption may be more viable than the variable ability assumption. 

In the present study, different approaches are developed to explore the 

relationship between item difficulty and time intensity parameters depending on 

correct and incorrect responses based on van der Linden and Glas’ (2010) model as 

demonstrated in (2.27). In such an approach, the shift in time intensity parameter can 
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be considered a direct measure of the conditional dependence between responses and 

RTs (van der Linden & Glas, 2010).  

The present study only focuses on the shift in time intensity parameter for the 

following three reasons. First, explorations of data from various testing programs 

indicate a linear relationship between item difficulty and the difference between the 

average logRT for correct and incorrect responses. However, it remains unclear how 

the variance of the logRT for correct and incorrect responses changes in relation to 

item difficulty. Second, though this interaction may also affect the variance of the RT 

distributions, empirical research has shown that in real testing scenarios more items 

demonstrate shift in the location of the RT distribution rather than the variance when 

conditional dependence between responses and RTs is present (Bolsinova & Maris, 

2016; Bolsinova & Tijmstra, 2016). Third, the effects of shift in both time intensity 

and time discrimination parameters could be confounded with each other, thus the 

impact on parameter estimates may be less evident.  

 Mathematically, a general form of the probability density function for the 

proposed models can be expressed as follows: 

𝑓(𝑡𝑖𝑗|𝑢𝑖𝑗 , 𝜏𝑗 , 𝛼𝑖, 𝛽𝑖, 𝜆𝑖) =
𝛼𝑖

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝛼𝑖[ln 𝑡𝑖𝑗 − (𝛽𝑖 + 𝑢𝑖𝑗𝜆𝑖 − 𝜏𝑗)]]

2

}, (3.1) 

where 𝑢𝑖𝑗 represents a binary indicator that classifies person j’s RT to item i into one 

of the two RT distributions, and 𝜆𝑖 indicates the shift in time intensity parameter 

triggered by 𝑢𝑖𝑗 = 1. Notice that the sign proceeding 𝑢𝑖𝑗𝜆𝑖 is changed from negative 

as in van der Linden and Glas’ (2010) to positive for easier interpretations. In the 

proposed model, a positive 𝜆𝑖 indicates that item responses with 𝑢𝑖𝑗 = 1 are more 
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time-intensive than those with 𝑢𝑖𝑗 = 0, whereas in van der Linden and Glas’ (2010) 

model representation, a positive 𝜆𝑖 represents a decrease in time intensity for 𝑢𝑖𝑗 = 1. 

The binary indicator can be based on observed item responses or latent response 

processes.  

 Given the strong linear correlation between item difficulty and the shift 

magnitude 𝜆𝑖 demonstrated in Figure 3, 𝜆𝑖 can be modeled with a linear link to item 

difficulty: 

 𝜆𝑖 = 𝜔0 + 𝜔1𝑏𝑖 + 𝜙𝑖 , (3.2) 

where 𝜔0 and 𝜔1 are the intercept and slope parameters that determine the linear 

association between the shift in time intensity parameter and item difficulty, and 𝜙𝑖 is 

an item-specific random effect that follows a normal distribution with mean of zero 

and variance of 𝜎𝜙
2. Substituting (3.2) in (3.1), the probability density function of the 

joint model of responses and RTs conditioning on item difficulty and observed item 

responses can be expressed as: 

 

𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜏𝑗 , 𝑏𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝜙𝑖 , 𝜔0, 𝜔1) 

=
𝛼𝑖

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝛼𝑖[ln 𝑡𝑖𝑗 − (𝛽𝑖 + 𝑦𝑖𝑗(𝜔0 + 𝜔1𝑏𝑖 + 𝜙𝑖) − 𝜏𝑗)]]

2
}. 

(3.3) 

van der Linden and Glas (2010) treated 𝜆𝑖 as a fixed effect in RT modeling, 

whereas in the present study, 𝜆𝑖 is decomposed into fixed effects associated with item 

difficulty, and a random effect for each specific item. Compared to van der Linden 

and Glas’ (2010) model, (3.3) allows one to examine the magnitude of the 

relationship between item difficulty and the shift in parameters for RT distribution, 

indicated by 𝜔1. 𝜔0 represents the shift in time intensity parameter when item 



 

 

58 

 

difficulty is zero. When 𝑦𝑖𝑗 = 0, the time intensity parameter of item i is 𝛽𝑖, which 

can be viewed as the baseline time intensity for a specific item. When 𝑦𝑖𝑗 = 1, the 

item time intensity parameter of item i shifts to 𝛽𝑖 + (𝜔0 + 𝜔1𝑏𝑖 + 𝜙𝑖). If 𝜔1 is 

positive, item difficulty is positively associated with 𝜆𝑖, and vice versa. Based on the 

results from previous studies that correct responses are often less time-intensive than 

incorrect responses for easier items, whereas correct responses are more time-

intensive than incorrect responses for difficult items (Bolsinova, De Boeck, & 

Tijmstra, 2017; Goldhammer et al., 2014, 2015; Partchev & De Boeck, 2012), it is 

therefore expected that 𝜔1 would be greater than zero. Solving 𝜆𝑖 = 0 yields 

−𝜔0/𝜔1, which represents the item difficulty or ability level at which a correct 

response and an incorrect response are equally time-intensive.  

The full linear model as demonstrated in (3.2) allows the shift 𝜆𝑖 to be fully 

explained by a linear transformation of the item difficulty and a random effect. 

However, one might adopt different assumptions and choose among the constrained 

models. One option is to assume perfect correlation between item difficulty and the 

shift and drop the random effect as follows:  

 𝜆𝑖 = 𝜔0 +𝜔1𝑏𝑖 . (3.4) 

Moreover, one may ignore the relationship between item difficulty and the shift and 

assume 𝜔1 = 0: 

 𝜆𝑖 = 𝜔0 + 𝜙𝑖 , (3.5) 

then the model is similar to van der Linden and Glas’ (2010) model, except that 𝜆𝑖 is 

considered random and the sign preceding 𝜆𝑖 is reversed.  
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 In addition to the observed item responses, the pattern of RT distribution shift 

based on observed responses may also reflect a switch in latent response process, 

such as problem-solving strategy. A different problem-solving strategy may be 

provoked when an examinee’s ability is greater than the item difficulty. The indicator 

𝑢𝑖𝑗 that triggers the shift in RT location can thus be determined by 𝐼(𝜃𝑗 − 𝑏𝑖 > 0), 

where 𝐼(∙) is an indicator function that equals 1 if the condition in parenthesis holds 

and 0 otherwise. Combining the indicator function and (3.2), the joint model of 

responses and RTs conditioning on the item-person distance and item difficulty can 

be expressed as follows: 

𝑓(𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝑏𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝜙𝑖 , 𝜔0, 𝜔1) 

=
𝛼𝑖

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝛼𝑖[ln 𝑡𝑖𝑗 − (𝛽𝑖 +  𝐼(𝜃𝑗 − 𝑏𝑖 > 0)(𝜔0 + 𝜔1𝑏𝑖 + 𝜙𝑖) − 𝜏𝑗)]]

2
}. 

(3.6) 

This model shares the same idea as Bolsinova and Tijmstra (2017), which 

incorporates the cross-loadings between ability and RTs. It is expected that more 

information from RTs could be “borrowed” to improve the estimation accuracy of 

ability and item difficulty parameters, even though the item-person distance is 

dichotomized in the proposed model.  

 Another reason why the indicator function might be preferred over the 

observed item responses in modeling different RT distributions is that guessing and 

slipping effects are inevitable in most real testing scenarios with multiple-choice 

questions. Assuming that the RT for an item reflects the response processes 

associated with an item response, low-ability examinees who make a lucky guess may 

not have gone through the processes required for a correct response, whereas highly 

competent examinees may mistakenly choose the wrong answers with all required 
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response processes. Therefore, the responses in such scenarios are inconsistent with 

the information provided in RTs. Compared to item responses, it is expected that 

classifying examinees’ RTs based on the indicator function would yield more refined 

RT distributions that reflect the actual response processes taken. A possible 

alternative to address the slipping and guessing effects is to replace the indicator 

function 𝐼(𝜃𝑗 − 𝑏𝑖 > 0) by the probability of the IRT model, thus shift in RT 

distributions is gradual depending on the IRT probability rather than being triggered 

by a binary indicator. This perspective is not included in the present study since it 

does not perform better than the proposed models in pilot simulations. 

 The proposed models and the alternative models are summarized in Table 1 

with respect to the model structure of the shift on RT distribution. Specifically, the 

two full proposed models (see (3.3) and (3.6)) and their constrained versions are 

compared. Of the six proposed models, four take into account the effect of item 

difficulty on the location shift between the two RT distributions. Another alternative 

model is the original hierarchical model (van der Linden, 2007) assuming conditional 

independence between responses and RTs. All models in Table 1 utilize the Rasch 

model for modeling item responses and a log-normal model for RT modeling, but 

they differ in how the conditional dependence between responses and RTs is 

modeled.  

 The Rasch model is chosen for modeling item responses for several reasons. 

On the one hand, Rasch model is the simplest IRT model, which is widely used in 

licensure and certification tests (e.g., O'neill, Marks, & Reynolds, 2005; Swanson, 

Case, Ripkey, Clauser, & Holtman, 2001), as well as some large-scale educational 
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assessments (e.g., Adams & Wu, 2002). On the other hand, if the 2PL or the 3PL IRT 

model is used, the estimation error in the discrimination and guessing parameter 

estimates may be absorbed in the item difficulty or ability estimates, which is likely 

to introduce more error to RT parameter estimates. In the following sections of this 

chapter, the estimation procedure of the proposed model within the Bayesian 

framework is demonstrated, and the research plan to evaluate the proposed model 

through simulation studies and empirical data analyses is described.  

Table 1. The proposed and the alternative models. 

Model Abbreviation 
Shift Indicator 

𝑢𝑖𝑗 
Shift Magnitude 

𝜆𝑖 

Joint model conditioning on 

item response and difficulty 

with random effects 

JM-RD1 𝑦𝑖𝑗 𝜔0 + 𝜔1𝑏𝑖 + 𝜙𝑖 

Joint model conditioning on 

item response and difficulty 

without random effects 

JM-RD2 𝑦𝑖𝑗 𝜔0 + 𝜔1𝑏𝑖 

Joint model conditioning on 

item response 
JM-R 𝑦𝑖𝑗 𝜔0 + 𝜙𝑖 

Joint model conditioning on 

item-person distance and 

difficulty with random effects 

JM-DD1 𝐼(𝜃𝑗 − 𝑏𝑖 > 0) 𝜔0 + 𝜔1𝑏𝑖 + 𝜙𝑖 

Joint model conditioning on 

item-person distance and 

difficulty without random 

effects 

JM-DD2 𝐼(𝜃𝑗 − 𝑏𝑖 > 0) 𝜔0 + 𝜔1𝑏𝑖 

Joint model conditioning on 

item-person distance 
JM-D 𝐼(𝜃𝑗 − 𝑏𝑖 > 0) 𝜔0 + 𝜙𝑖 

Hierarchical model (van der 

Linden, 2007) 
HM NA NA 

 

3.2 Model Parameter Estimation 

 In the present study, Bayesian estimation of model parameters is carried out in 

R2jags package (Su & Yajima, 2015) in R to interface with JAGS (Version 4.2.0; 

Plummer, 2015). Parameters of interest include item difficulty, time intensity and 
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time discrimination, parameters related to the magnitude of the shift, ability and 

speed, as well as the correlation between ability and speed. Following van der 

Linden’s (2007) hierarchical modeling framework for RT and RA, the posterior 

distribution of the parameters for the proposed models can be generally expressed as 

follows: 

𝑓(𝜽, 𝝉, 𝒃, 𝜶, 𝜷,𝝓, 𝜔0, 𝜔1, 𝜎𝜙
2 , 𝝁𝑃 , 𝝁𝐼, 𝜮𝑃 , 𝜮𝐼|𝒚, 𝒕)

∝ 𝑓(𝒚, 𝒕|𝜽, 𝝉, 𝒃, 𝜶, 𝜷, 𝝓,𝜔0, 𝜔1)𝑓(𝜽, 𝝉|𝝁𝑃 , 𝜮𝑃)𝑓(𝒃, 𝜶, 𝜷|𝝁𝐼, 𝜮𝐼)𝑓(𝝓|𝜎𝜙
2)

× 𝑓(𝜔0)𝑓(𝜔1)𝑓(𝜎𝜙
2)𝑓(𝝁𝑃 , 𝜮𝑃)𝑓(𝝁𝐼, 𝜮𝐼), 

(3.7) 

where parameters in bold represent the vectors of item and person parameters or 

matrices of observed data. In this expression, the likelihood of observed item 

responses and RTs can be expanded into the following for JM-RD1: 

 

𝑓(𝒚, 𝒕|𝜽, 𝝉, 𝒃,𝜶, 𝜷,𝝓,𝜔0, 𝜔1)

=∏∏𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝑏𝑖)𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜏𝑗 , 𝑏𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝜙𝑖 , 𝜔0, 𝜔1)

𝐼

𝑖=1

𝐽

𝑗=1

, 
(3.8) 

where I and J represent the test length and sample size respectively. Employing the 

Rasch model for item responses, the probability density function of an observed item 

response is expressed as 

 𝑓(𝑦𝑖𝑗|𝜃𝑗 , 𝑏𝑖) = {
1

1 + exp[−(𝜃𝑗 − 𝑏𝑖)]
}

𝑦𝑖𝑗

{
1

1 + exp[(𝜃𝑗 − 𝑏𝑖)]
}

1−𝑦𝑖𝑗

, (3.9) 

which is the same for all proposed and alternative models presented in Table 1. For 

JM-RD1, the probability density function of RT is presented in (3.3). For JM-RD2 

and JM-R, the probability density functions of RT are constrained versions of the full 

model expressed as 
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𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜏𝑗 , 𝑏𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝜔0, 𝜔1) 

=
𝛼𝑖

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝛼𝑖[ln 𝑡𝑖𝑗 − (𝛽𝑖 + 𝑦𝑖𝑗(𝜔0 + 𝜔1𝑏𝑖) − 𝜏𝑗)]]

2
}, 

(3.10) 

and 

 

 

𝑓(𝑡𝑖𝑗|𝑦𝑖𝑗 , 𝜏𝑗 , 𝛼𝑖 , 𝛽𝑖 , 𝜙𝑖 , 𝜔0) 

=
𝛼𝑖

𝑡𝑖𝑗√2𝜋
exp {−

1

2
[𝛼𝑖[ln 𝑡𝑖𝑗 − (𝛽𝑖 + 𝑦𝑖𝑗(𝜔0 + 𝜙𝑖) − 𝜏𝑗)]]

2
}, 

(3.11) 

respectively. Similarly, for the three models that classify examinees based on item-

person distance, the probability density functions of RT are replaced by 

𝑓(𝑡𝑖𝑗|𝜃𝑗 , 𝜏𝑗 , 𝑏𝑖 , 𝛼𝑖 , 𝛽𝑖 , 𝜙𝑖 , 𝜔0, 𝜔1) as presented in (3.6) and its constrained versions.  

 Further, 𝑓(𝜽, 𝝉|𝝁𝑃 , 𝜮𝑃) and 𝑓(𝒃, 𝜶, 𝜷|𝝁𝐼, 𝜮𝐼) represent the multivariate 

normal distributions of person parameters and item parameters given the mean and 

covariance matrix for person and item respectively. The random effects 𝝓 are 

assumed to be drawn from a normal distribution with mean of 0 and variance of 𝜎𝜙
2. 

In addition, 𝑓(𝜔0) and 𝑓(𝜔1) are the distributions of the intercept and slope for the 

effect of item difficulty on RT location shift. The last three terms, 𝑓(𝜎𝜙
2), 𝑓(𝝁𝑃 , 𝜮𝑃), 

and 𝑓(𝝁𝐼, 𝜮𝐼) denote the distributions of the variance of random effect, mean and 

covariance of person and item parameters. Finally, the posterior distribution of the 

parameter space is obtained by multiplying the likelihood and all the prior 

distributions on the right-hand side of (3.7). 

 The posterior distribution is derived by drawing samples from the prior 

distributions and updating the likelihood of the observed responses and RTs 
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sequentially. As such, setting appropriate prior distributions is important for 

facilitating model convergence. In the present study, the prior distributions are chosen 

based on Meng et al.’s (2015) study. Specifically, the following prior distributions are 

adopted for person and item parameters: 

(
𝜃𝑗
𝜏𝑗
) ∼ 𝑁((

𝜇𝜃
𝜇𝜏
) , (

𝜎𝜃
2 𝜎𝜃𝜏

𝜎𝜃𝜏 𝜎𝜏
2 )) , (

𝑏𝑖
𝛽𝑖
) ∼ 𝑁 ((

𝜇𝑏
𝜇𝛽
) , (

𝜎𝑏
2 𝜎𝑏𝛽

𝜎𝑏𝛽 𝜎𝛽
2 )). (3.12) 

For model identification purposes, 𝜇𝜃 and 𝜇𝜏 are set to be zero. Notice that only the 

item difficulty parameters and the time intensity parameters are drawn from a 

bivariate normal distribution, which are independent of the time discrimination 

parameters. Since the inverse of squared time discrimination is the variance of the RT 

distribution, the following prior distribution is chosen for the time discrimination 

parameters:  

 
1

𝛼𝑖
2 ∼ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 1).  (3.13) 

This is different from the prior for item parameters used in van der Linden’s (2007) 

study, where all item parameters are assumed to follow a multivariate normal 

distribution. There are two reasons why the bivariate normal distribution and the 

inverse-gamma distribution are utilized in the present study. First, van der Linden 

(2007) demonstrated that among all the correlations between item parameters (see 

(2.24)), only the correlation between item difficulty and time intensity is significantly 

different from zero. Second, pilot simulation runs show that both prior settings yield 

accurate parameter estimates, yet using the bivariate normal and the inverse-gamma 

priors is much more computationally efficient than using the multivariate normal 

prior. Using the multivariate normal distribution in van der Linden (2007), 10 
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iterations take 10 seconds for item response and RT data from 500 examinees and 20 

items in JAGS, whereas the bivariate normal and inverse-gamma priors only take 1 

second to finish 10 iterations for the same dataset. This finding is consistent with the 

study by Molenaar, Tuerlinckx, and van der Maas (2015b) that ignoring the 

covariances among item parameters does not negatively affect the parameter 

recovery. Therefore, to expedite the simulation studies with similar parameter 

recovery accuracy, the bivariate normal and the inverse-gamma priors are chosen for 

the item parameters.  

 The additional parameters that link the effect of item difficulty to the location 

shift are drawn from the following prior distributions: 

 𝜔0 ∼ 𝑁(0, 1),𝜔1 ∼ 𝑁(0, 1), 𝜙𝑖 ∼ 𝑁(0, 𝜎𝜙
2),  (3.14) 

where the constraint ∑ 𝜙𝑖
𝐼
𝑖=1 = 0 is applied for model identification as well. 

Specifically, 𝜔0 and 𝜔1 are assumed to follow a standard normal distribution. The 

random effects, 𝜙𝑖s, are normally distributed with a mean of 0 and unknown variance. 

Further, hyper priors are an extra set of priors from which the hyper-parameters are 

drawn, which are the parameters of the prior distributions specified above. 

Specifically, the hyper priors for 𝝁𝐼, 𝜮𝐼, 𝜮𝑃, and 𝜎𝜙
2 are specified as follows: 

 

𝜇𝑏 ∼ 𝑁(0, 2), 𝜇𝛽 ∼ 𝑁(4, 2), 

𝜮𝐼 ∼ 𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑰2, 2), 𝜮𝑃 ∼ 𝐼𝑛𝑣𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑰2, 2), 

𝜎𝜙
2 ∼ 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1, 1), 

(3.15) 

where 𝑰2 is the 2-dimensional identity matrix. The shapes of the priors and hyper 

priors are chosen based on the literature (e.g., Klein Entink, Fox, & van der Linden, 

2009; Klein Entink, van der Linden, & Fox, 2009; Meng et al., 2015; van der Linden, 
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2007) and preliminary analysis of empirical data. For the item difficulty parameter, 

the mean of the hyper prior is fixed at 0 such that the range of latent ability and item 

difficulty are approximately the same. For the time intensity parameter, the mean of 

the hyper prior is set at 4 to resemble the mean logRT in the first empirical dataset 

used in the present study (i.e., 3.98). Further, the inverse-Wishart distribution is often 

chosen as a hyper prior for the multivariate normal distribution due to its conjugacy to 

the multivariate normal distribution. Similarly, the inverse-gamma family is 

conditionally conjugate for the variance of random effects in that if the variance 

follows an inverse-gamma prior distribution, the conditional posterior distribution of 

the variance is also inverse-gamma (Gelman, 2006).     

 Bayesian estimation requires the starting values for each parameter be 

provided as the first state of each Markov chain (Gelman et al., 2003). In the present 

study, JAGS randomly generates the starting values for all parameters. After 

generating starting values, two chains of 30,000 iterations are run for each dataset and 

the first 20,000 are discarded as burn-in iterations. The numbers of total and burn-in 

iterations are determined by Gelman and Rubin’s (1992) 𝑅̂ and visual examination of 

the history, density, and quantile plots. In the pilot simulation runs with 30,000 

iterations, the proposed and alternative models all have 𝑅̂ < 1.1 for all parameters, 

and the plots also demonstrate evidence that the two chains are stable and well-mixed. 

Then a thinning of 2 is applied to reduce the autocorrelation in the Markov chains, 

yielding a total of 10,000 for the final sample. Parameter estimates are summarized 

based on the 10,000 final sample. 
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3.3 Simulation Design 

 The proposed modeling framework and the methods for model parameter 

estimation are introduced in the previous two sections. To examine the performance 

of the proposed models, three simulation studies are carried out. Simulation studies 1 

and 2 have the same simulation design but different data generating models and 

fitting models. Simulation study 3 compares the performance of the seven models 

summarized in Table 1 under two simulation conditions with small sample size and 

weakest correlations among parameters. The fixed and manipulated factors in the 

simulation studies are illustrated first, then the criteria for evaluating parameter 

recovery and overall model fit are demonstrated.  

3.3.1 Manipulated Factors 

 The manipulated factors in simulation studies 1 and 2 include sample size 

(500, 1,000), test length (20, 40), the correlation between speed and ability (.2, .5, .8), 

and the correlation between item difficulty and location shift in RT distribution 

(.3, .7). Difference between simulation studies 1 and 2 lies in the data generating 

models and fitting models. Simulation study 1 generates data based on the JM-RD1 as 

demonstrated in (3.3) and fit the data to the three models conditioning on responses 

and the HM, whereas simulation study 2 utilizes the JM-DD1 in (3.6) as the data 

generating model and fits the data to the three models conditioning on item-person 

distance and the HM. Specific levels of manipulated factors are summarized in Table 

2. Fully crossing the four manipulated factors results in a total of 24 simulation 

conditions in simulation studies 1 and 2, as displayed in Table 3. In simulation study 

3, data generated from JM-RD1 and JM-DD1 are fit to all seven models summarized 
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in Table 1 under conditions 1 and 7, where sample size is 500, test length is 20 and 

40, and the last two factors are at the lowest correlation levels. These two conditions 

are chosen to evaluate the recovery of model parameters and the performance of 

model fit indices under less favorable circumstances.  

Table 2. Summary of manipulated factors. 

 Manipulated Factors 

Levels Sample Size Test Length 𝜌𝜃𝜏 𝜌𝑏𝜆 

1 500 20 .2 .3 

2 1,000 40 .5 .7 

3   .8  

 

Table 3. Summary of simulation conditions. 

 Manipulated Factors 

Condition No. Sample Size Test Length 𝜌𝜃𝜏 𝜌𝑏𝜆 

1 500 20 .2 .3 

2 500 20 .2 .7 

3 500 20 .5 .3 

4 500 20 .5 .7 

5 500 20 .8 .3 

6 500 20 .8 .7 

7 500 40 .2 .3 

8 500 40 .2 .7 

9 500 40 .5 .3 

10 500 40 .5 .7 

11 500 40 .8 .3 

12 500 40 .8 .7 

13 1,000 20 .2 .3 

14 1,000 20 .2 .7 

15 1,000 20 .5 .3 

16 1,000 20 .5 .7 

17 1,000 20 .8 .3 

18 1,000 20 .8 .7 

19 1,000 40 .2 .3 

20 1,000 40 .2 .7 

21 1,000 40 .5 .3 

22 1,000 40 .5 .7 

23 1,000 40 .8 .3 

24 1,000 40 .8 .7 
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 The four manipulated factors and their levels were chosen based on previous 

literature in this line of research and pilot simulation runs. The first three factors have 

been frequently manipulated in recent studies. In terms of sample size, for example, 

Fox et al. (2014) and Marianti (2015) found good model parameter recovery when 

sample size is 300 and 500. Also with two levels, Lee (2007) and Molenaar, Oberski, 

et al. (2016) used 500 and 1,000 to represent smaller and larger sample sizes. Ranger 

and Kuhn (2014b) manipulated three levels, 250, 500, and 1,000, to evaluate the Type 

I error rate and power of the proposed model fit index. Suh (2010) chose four sample 

sizes, 100, 500, 1,000, and 2,000 in comparing Thissen’s (1983), Wang and Hanson’s 

(2005) and van der Linden’s (2007) models. Most studies that manipulated sample 

size concluded that increasing sample size improves ability estimates. When sample 

size is treated as a fixed factor, researchers often simulate 500 (Fox & Marianti, 2017; 

Molenaar & Bolsinova, 2017; Molenaar, Bolsinova, & Vermunt, 2016) or 1,000 

examinees (Fox & Marianti, 2016; Klein Entink, 2009; Klein Entink, Fox, & van der 

Linden, 2009; Patton, 2015; Wang & Xu, 2015) in simulation studies. Therefore, 500 

and 1,000 are selected as they are common levels when sample size is treated as both 

manipulated and fixed factors.  

 Similarly, model parameter estimates are more accurate with longer test 

length since more information can be borrowed from RTs (e.g., Kang, 2016; 

Marianti, 2015; Suh, 2010; Wang, Fan, et al., 2013). Specifically, Suh (2010) set the 

number of items as 30 and 60, whereas Bolsinova, De Boeck, and Tijmstra (2017) 

considered test length at two levels, 25 and 49. Kang (2016) chose test length to be 20 

and 30 to examine the recovery of item parameters from the proposed likelihood-



 

 

70 

 

based methods.  A number of other studies also manipulated 20 and 40 as two levels 

of sample size (Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016; Fox & 

Marianti, 2016; Ingrisone, 2008; Lee, 2007; Molenaar et al., 2014; Wang, Fan, et al., 

2013). As most studies choose to manipulate sample size as 20 and 40, these two 

levels are adopted in the present study as well. 

 With respect to the correlation between ability and speed, researchers have 

been interested in exploring the impact of different levels of correlation on parameter 

estimation, ranging from -1 to 1. Kang (2016) chose person parameters to be 0, .3, 

and .6 because van der Linden (2009) revealed that empirical estimates of the 

correlation were found to fall between -.65 and .30. Klein Entink (2009) compared 

person and item estimates for correlations of 0, .25, .75, 1 and concluded that higher 

correlation between ability and speed yielded more accurate parameter estimates. 

Patton (2015) considered a wider range of correlations from 0, .3, .6, to .9. Suh (2010) 

used correlations with the same magnitude as Patton (2015) but with both positive 

and negative relations. A few studies only manipulated two levels of correlations, 0 

and .5 (Bolsinova & Maris, 2016; Bolsinova & Tijmstra, 2016; Bolsinova & Tijmstra, 

2017). Further, when correlation is treated as fixed, levels such as -.3 (Ranger & 

Kuhn, 2012), .37 (Molenaar & Bolsinova, 2017), .4 (Molenaar, Bolsinova, & 

Vermunt, 2016), .5 (Klein Entink, Fox, & van der Linden, 2009; Klein Entink, van 

der Linden, & Fox, 2009; Molenaar et al., 2014), and .75 (Fox & Marianti, 2017) 

have been used. As such, .2, .5 and .8 are chosen to represent weak, moderate, and 

strong correlation between ability and speed in the present study. Only positive 
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correlations are considered since the sign of correlation does not affect the amount of 

information shared between the two latent traits.  

 The last manipulated factor in the present study is the correlation between 

item difficulty and location shift on the RT distribution, which has not been explicitly 

explored in the literature. Based on preliminary results of empirical data from several 

large-scale assessment programs, a strong positive linear relationship between item 

difficulty and location shift is found with correlation around .6 to .7. Thus, .7 is 

selected to mimic patterns found in real testing scenarios. .3 represents a situation 

where the correlation between item difficulty and location shift is rather weak. 

3.3.2 Fixed Factors 

 In addition to the manipulated factors, certain factors are fixed in the current 

simulation design, including the distributions of the latent ability and speed, the 

distributions of item difficulty and time intensity, and a number of fixed parameters. 

The data generation models for item responses and RT are also fixed to the Rasch 

model and the log-normal model respectively. Table 4 details the fixed factors and 

their corresponding levels in the present study. 

Table 4. Summary of fixed factors. 

Factor Fixed Value 

Distribution of ability N(0, 1) 

Distribution of speed N(0, .25) 

Distribution of item difficulty N(0, 1) 

Distribution of time intensity N(4, .25) 

Correlation between item difficulty and time intensity .30 

Time discrimination 2 

SD of the location shift .20 

𝜔0 -.30 

IRT model Rasch 

RT model log-normal model 
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 Both latent ability and item difficulty are generated from the standard normal 

distribution, following the convention of numerous studies in IRT literature. The 

latent speed is also drawn from a normal distribution with mean of 0 and variance 

of .25, which is chosen based on the estimated variance of speed from empirical data 

analyses (Klein Entink, Fox, & van der Linden, 2009; Molenaar & Bolsinova, 2017). 

Varying the correlation between ability and speed at .20, .50, .80 results in the 

covariance of .10, .25, and .40 between the two latent traits respectively. The 

distribution of time intensity mimics the actual RT distribution in real testing 

scenarios where items require 1-2 minutes to finish, and the individual RT differences 

could be large (Lee, 2007).  

 Moreover, the correlation between item difficulty and time intensity is fixed 

at .30, indicating that more difficult items are also more time consuming. Researchers 

have chosen to fix the time discrimination parameters (e.g., Molenaar, Bolsinova, 

Rozsa, & De Boeck, 2016; Molenaar, Bolsinova, & Vermunt, 2016; Molenaar et al., 

2015b), or sample the time discrimination or error variance from a normal (e.g., Fox 

et al., 2014) log-normal distribution (e.g., Bolsinova & Maris, 2016; Bolsinova & 

Tijmstra, 2016). In the present study, the time discrimination parameter is fixed at 2, 

so that the logRT distributions are generated with a variance of .25. This is carried out 

to mimic the variance of the logRT distributions in the first empirical dataset, which 

has a mean of .272 and a variance of .005.   

 Additionally, the SD of the location shift and the intercept for regressing the 

item difficulty on the time intensity are set as .20 and -.30 respectively. These values 

are chosen based on preliminary results from the empirical data. With the SDs of 
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location shift and item difficulty fixed at .20 and 1 respectively, manipulating the 

correlation between the location shift and the item difficulty at .30 and .70 in fact 

yields a slope 𝜔1 of .06 and .14. This indicates that for one unit increase in item 

difficulty, 𝑢𝑖𝑗 = 1 is associated with .06 and .14 units increase in location shift on the 

logRT scale compared to 𝑢𝑖𝑗 = 0. The intercept -.30, on the other hand, means that 

𝑢𝑖𝑗 = 1 is .30 units faster than 𝑢𝑖𝑗 = 0 on the logRT scale when the item difficulty is 

zero. Further, variance of the random effects, denoted as 𝜎𝜙
2, varies depending on the 

correlation between item difficulty and location shift, the SD of location shift, and the 

proposed models. For JM-RD1 and JM-DD1, 𝜎𝜙
2 is manipulated at .04 and .02 when 

the correlation between item difficulty and location shift is .30 and .70 respectively 

and the SD of location shift is .20. For JM-R and JM-D, 𝜎𝜙
2 is .04 under all conditions 

as the relationship between item difficulty and location shift is not taken into account. 

Finally, the Rasch model and the log-normal RT model are used for modeling item 

responses and RTs. 

 The number of replications in this line of research varies from 10, 50, 100, 

1,000, to 2,000 (e.g., Bolsinova & Maris, 2016; Fox & Marianti, 2016; Ingrisone, 

2008; Molenaar, Oberski, et al., 2016; Patton, 2015). For Monte Carlo studies in IRT-

based research, 25 has been justified as the minimum number of replications 

(Harwell, Stone, Hsu, & Kirisci, 1996). Harwell et al. (1996) carried out analysis of 

variance (ANOVA) for the RMSE of item parameters in the 2PL model and did not 

find significant change in RMSE after 25 replications. For more complex model 

structures, Li (2014) also adopted 25 replications for mixture Rasch model with 

covariates since there is little fluctuation in the bias and SE of both item and person 
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parameters. Xie (2014) conducted a post hoc checking for item parameters in cross-

classified IRT models and concluded that the SEs flattened out after 30 replications.  

 Further, 100 preliminary simulation runs are conducted for fitting JM-RD1 to 

data generated from the same model for 500 examinees and 20 items. The correlation 

between latent ability and speed is set as .5, and the correlation between item 

difficulty and location shift is specified as .7. All fixed parameters are simulated as 

specified in Table 4. As shown in Figures 5 and 6, the mean bias, SE, and RMSE for 

item parameters and the mean SE and RMSE for person parameters stabilize after 25 

replications. The mean biases of person parameters are constrained to be zero for 

scale identification purpose, thus are not included in Figure 6. Similar patterns in the 

three error indices are also found when examining individual item and person 

parameters and other parameters, such as the mean vector and covariance matrix for 

item parameters, covariance matrix for person parameters, variance of random effect, 

and so on. Therefore, 30 replications are considered sufficient for evaluating item and 

person parameter recovery in the proposed and alternative models in the present 

study.  

 A total of 2 × 2 × 3 × 2 = 24 simulation conditions are included in 

simulation studies 1 and 2. Generating 30 datasets under each condition in each 

simulation study results in 1440 datasets in total. In simulation study 1 where JM-

RD1 is the data generating model, the three joint models conditioning on observed 

item response (i.e., JM-RD1, JM-RD2, and JM-R) and the HM are fit to each dataset. 

In simulation study 2 where JM-DD1 is used to generate data, the three joint models 

conditioning on item-person distance (i.e., JM-DD1, JM-DD2, and JM-D) and the 
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HM are fit to each dataset. In simulation study 3, JM-DD1, JM-DD2, and JM-D are 

fit to data generated from JM-RD1, whereas JM-RD1, JM-RD2, and JM-R are fit to 

data generated from JM-DD1 under two simulation conditions. As such, there are a 

total of 4 × 2 × 24 + 3 × 2 × 2 = 204 simulation cells with 204 × 30 = 6120 

replications. R version 3.3.3 (R Core Team, 2017) is used to generate data, interface 

with JAGS using R2jags package, and evaluate model performance. 

 

Figure 5. The mean bias, SE, and RMSE of the item parameters by the number of 

replications. 

 

Figure 6. The mean SE and RMSE of the person parameters by the number of 

replications. 

3.3.3 Evaluation Criteria 

 The proposed and the alternative models are compared under various 

conditions in the three simulation studies regarding the evaluation criteria 

summarized in this section. The evaluation criteria mainly aim at examining the 
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recovery of model parameters and the fit of the models. In terms of model parameter 

recovery, the parameter estimates are compared to their corresponding true values 

with respect to bias, SE, and RMSE. The three error indices are chosen because they 

have been utilized in the large body of this line of research to represent different 

sources of error. They are compared descriptively first and then using ANOVA to test 

the significance of the manipulated factors. Specifically, the three error indices are 

defined as follows: 

 𝐵𝑖𝑎𝑠(𝜼̂) =
∑ (𝜂̂𝑟 − 𝜂)
𝑅
𝑟=1

𝑅
, (3.16) 

 𝑆𝐸(𝜼̂) = √
1

𝑅
∑(𝜂̂𝑟 −

∑ 𝜂̂𝑟
𝑅
𝑟=1

𝑅
)

2𝑅

𝑟=1

, (3.17) 

 𝑅𝑀𝑆𝐸(𝜼̂) = √
1

𝑅
∑(𝜂̂𝑟 − 𝜂)2
𝑅

𝑟=1

, (3.18) 

where 𝜂 is a true parameter of interest, 𝜂̂𝑟 represents the parameter estimate of 𝜂 at 

the rth iteration, R is the total number of iterations within each simulation cell, and 𝜼̂ 

is a R-dimensional vector of parameter estimates. 

 The bias reflects the systematic errors in the estimation as it is calculated as 

the deviation from the true parameter averaged across iterations. The SE represents 

the random errors in that it quantifies the variability among the parameter estimates. 

The RMSE can be regarded as a measure of total error as the following equation 

holds for a specific parameter: 

 𝑅𝑀𝑆𝐸2 = 𝐵𝑖𝑎𝑠2 + 𝑆𝐸2. (3.19) 
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However, this relation does not hold if bias, SE, and RMSE are averaged across 

multiple parameters. In the present study, the average bias of latent ability and latent 

speed across all examinees is zero because 𝜇𝜃 and 𝜇𝜏 are constrained to be zero to 

identify the latent scale.  

 Additionally, four model fit indices are used for assessing model fit and 

identifying the best fitting model under different simulation conditions, including 

Akaike’s information criterion (AIC; Akaike, 1987), a modified version of AIC for 

adjusting small sample sizes (AICc; Sugiura, 1978), Bayesian information criterion 

(BIC; Schwarz, 1978), and deviance information criterion (DIC; Spiegelhalter, Best, 

Carlin, & van der Linde, 2002). The four model fit indices are specified as follows: 

 𝐴𝐼𝐶 = 𝐷(𝒮)̅̅ ̅̅ ̅̅ ̅ + 2𝑝, (3.20) 

 𝐴𝐼𝐶𝑐 = 𝐷(𝒮)̅̅ ̅̅ ̅̅ ̅ +
2𝑁𝑝

𝑁 − 𝑝 − 1
, (3.21) 

 𝐵𝐼𝐶 = 𝐷(𝒮)̅̅ ̅̅ ̅̅ ̅ + 𝑝 log𝑁, (3.22) 

 𝐷𝐼𝐶 = 𝐷(𝒮)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷, (3.23) 

where 𝒮 denotes sample space of all model parameters, 𝐷(𝒮)̅̅ ̅̅ ̅̅ ̅ is the posterior mean of 

the deviance, 𝑝 represents the number of parameters, 𝑁 is the sample size, and 𝑝𝐷 is 

calculated as the posterior mean of the deviance given parameters at each iteration 

minus the deviance evaluated at the posterior means of the parameters. Among these 

information-based model fit indices, AIC only penalizes for the number of 

parameters. AICc is a correction for small sample size based on AIC, which increases 

the penalty for small sample sizes. When the ratio of sample size to the number of 

parameters is smaller than 40, AICc is preferred to be used (Burnham & Anderson, 
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2002). BIC also considers the impact of sample size and prefer more parsimonious 

model since it penalizes model complexity more heavily than AIC when sample size 

exceeds 7. Lastly, DIC is a generalization of AIC and BIC for hierarchical modeling 

and Bayesian model selection when MCMC is used to obtain the posterior 

distribution.  

 In summary, the three error indices along with the four model fit indices are 

selected to provide different perspectives of model fit evaluation for joint modeling of 

RT and RA. The impact of ignoring the conditional dependence between speed and 

accuracy on parameter estimation and model fit is explored comprehensively. The 

effectiveness of these indices is also examined by whether they can identify the true 

data generating model as the best fitting model.  

3.4 Empirical Data Analyses 

 The application of the proposed models in real testing scenarios is 

demonstrated with datasets from two large-scale tests that utilize the Rasch model for 

estimating examinees’ ability, a large-scale credentialing exam program (Cizek & 

Wollack, 2017) and the 2012 Programme for International Student Assessment 

(PISA; Organisation for Economic Co-operation and Development [OECD], 2014).   

 The first dataset contains complete item responses and RTs from 1,644 

examinees and 200 dichotomous items. Of the 200 items, 170 are operational items 

and 30 are pretest items with 10 items in three pretest sets. Examinees answer a total 

of 180 items, consisting of the 170 operational items and 10 items in one of the three 

pretest sets. Item responses are coded as 0 or 1, and the RT for each item response is 
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also available in seconds. Such a dataset is used for the example presented in Figures 

1 to 3 in Chapter 1, which motivates the present study.  

 Two steps were followed in the process of selecting items from the 

credentialing exam. Item response data from 1,644 examinees and 170 operational 

items were first explored to ensure item quality. Item statistics based on classical test 

theory, such as proportion correct and point biserial correlation, were computed to 

perform initial checking of item difficulty and item discrimination. Cut values of .95 

and .05 were used for proportion correct, whereas .10 was used for point biserial to 

remove items that are too difficult, too easy, or those that do not discriminate well 

across examinees. 156 items met these criteria, thus were kept in the present study. 

Second, 40 items were randomly selected from the 156 items to demonstrate the 

application of the proposed models. Item responses and RTs from 1,644 examinees 

and the 40 operational items in this dataset are used to explore the conditional 

dependence between ability and speed, as well as their relationship with item 

difficulty. 

 For 2012 PISA, OECD released scored responses and log files for 30 items 

from three domains, with about 10 items in each domain. Log files record examinees’ 

actions during the test-taking process and time stamps for each action in a 

chronological order. The present study focuses on the 10 items from computer-based 

mathematics domain in 2012 PISA, which contains three polytomous items with three 

categories and seven dichotomous items. The polytomous items were recoded into 

dichotomous items by collapsing partial scores and full scores, since there are only 

around 10% examinees who had full scores. RT information was extracted from the 
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log files by taking the difference in time stamps for the events “START_ITEM” and 

“END_ITEM” for each examinee on each item. After extracting RTs from log files, 

they were merged with item responses for the 10 math items, resulting in a total 

sample size of 7,617. To remove potential impact from multiple countries, Australia 

was selected as it has the largest sample size among all 30 countries. Therefore, the 

second dataset contains item responses and RTs from 795 examinees and 10 items. 

 The six proposed models and van der Linden’s (2007) HM are applied to the 

two empirical datasets. Parameter estimates are presented to understand the test-

taking behaviors in real testing programs. Further, the model fit indices summarized 

in section 3.3.3 are utilized to examine the performance of the proposed and 

alternative models.  
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Chapter 4:   Results 

 Joint modeling of responses and RTs is not a new topic, yet the conditional 

dependence between responses and RTs and its relationship with item difficulty has 

not been thoroughly explored. As elaborated in Chapter 3, three simulation studies 

were conducted to evaluate the performance of the six proposed models compared 

with van der Linden’s (2007) HM as a baseline model. The six proposed models 

accounted for different mechanisms initiating the shift in RT distributions and 

different approaches to explaining the relationship between item difficulty and the 

shift. In section 4.1, the results of the three simulation studies were reported in terms 

of the error indices for parameter recovery and overall model fit indices. In section 

4.2, the application of the proposed models was demonstrated using two datasets from 

large-scale assessment programs.  

4.1 Results of the Simulation Studies 

 For all three simulation studies, the recovery of 17 model parameters was 

examined as listed in Table 5. The estimates of the covariance between item difficulty 

and time intensity and the covariance between ability and speed were converted to 

correlations using the estimated variances of the associated parameters as the 

correlation was manipulated in simulating different study conditions. Convergence 

was not an issue as all parameter estimates under all conditions and replications had 

an 𝑅̂ smaller than 1.1. Diagnostic plots, including history, quantile, and density plots, 

were also examined to ensure model convergence.  
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Table 5. Summary of parameters of interest. 

No. Symbol Variable Description Level Model 

1 𝑏𝑖 Item difficulty 1 IRT 

2 𝛼𝑖 Time discrimination 1 RT 

3 𝛽𝑖 Time intensity 1 RT 

4 𝜃𝑗 Ability 1 IRT 

5 𝜏𝑗 Speed 1 RT 

6 𝜔0 Intercept of RT distribution shift 1 RT 

7 𝜔1 Slope of RT distribution shift 1 RT 

8 𝜌𝑏𝜆 Correlation between item difficulty and the shift 1 RT 

9 𝜎𝜙
2 Variance of the random effects 2 RT 

10 𝜇𝑏  Mean of item difficulty 2 IRT 

11 𝜇𝛽  Mean of time intensity 2 RT 

12 𝜎𝑏
2 Variance of item difficulty 2 IRT 

13 𝜌𝑏𝛽  
Correlation between item difficulty and time 

intensity 

2 Both 

14 𝜎𝛽
2 Variance of time intensity 2 RT 

15 𝜎𝜃
2 Variance of item difficulty 2 IRT 

16 
𝜌𝜃𝜏 

Correlation between item difficulty and time 

intensity 

2 Both 

17 𝜎𝜏
2 Variance of time intensity 2 RT 

 

 Bias, SE, and RMSE were calculated based on the estimates from 30 

replications for each parameter. Following the sequence listed in Table 5, the detailed 

bias, SE, and RMSE for each parameter under each simulation condition are reported 

in Appendices A to C for the three simulation studies respectively. For the first-level 

item and person parameters (i.e., item difficulty, time discrimination, time intensity, 

ability and speed), repeated measures ANOVA was performed in SPSS Statistics 

(version 25.0; IBM Corp, 2017) by specifying each of the three error indices as the 

dependent variable and the four manipulated variables and the estimation model as 

factors. Specifically, the four manipulated variables were treated as between-

condition factors whereas the estimation model was used as a within-condition factor. 

The abbreviations for the estimation model, sample size and test length in Table 6 

were used in tables and figures in this chapter for clear presentation of the results. 
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Among the three error indices, bias was treated slightly differently than the other two. 

Since the sign of bias was indefinite, ANOVA was conducted to test the differences 

among the absolute values of mean bias for different conditions. 

Table 6. Abbreviations of manipulated factors. 

Abbreviation Description 

Model Estimation model 

J Sample size 

I Test length 

 

 The assumptions of repeated measures ANOVA were checked before 

conducting the analyses. Although it is assumed that the dependent variable should be 

normally distributed at each level of the within-condition factor, ANOVA is known to 

be robust to moderate deviations from normality (e.g., Glass, Peckham, & Sanders, 

1972). Inspections of P-P plots and Q-Q plots of the dependent variables showed that 

there was no severe violation of the normality assumption, thus normality was not 

considered an issue here. The sphericity assumption assumes the variances of the 

differences in the outcome measure between all pairs of the within-condition factor 

are equal. Based on Mauchly’s sphericity test (Mauchly, 1940), this assumption was 

violated for ANOVA conducted with all error indices of all variables in the present 

study. As such, the Huynh-Feldt correction (Huynh & Feldt, 1976) was applied to 

adjust the degrees of freedom, which resulted in larger critical values and less 

inflation of Type I error due to violations of the sphericity assumption.  

 In addition, the effect size for significant main effects and interactions was 

computed as a measure of practical importance. In the present study, Cohen’s f 

(Cohen, 1988) was used: 
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 𝑓 = √
𝜂2

1 − 𝜂2
 , (4.1) 

where 𝜂2 is defined as the proportion of total variance in the dependent variable 

explained by a certain manipulated factor alone. Cohen (1988) also recommended 

using .10, .25, and .40 as the cut values for small, medium, and large effect sizes 

respectively. In the following sections, only those significant effects with at least 

small effect sizes (𝑓 > .10) were presented and discussed. For such effects with more 

than two levels, a post-hoc pairwise comparison was carried out to explore which 

levels of the effects were significantly different. Dunn-Sidak test (Šidák, 1967) was 

used to control familywise Type I error rate (Tukey, 1953), which is more powerful 

than the Bonferroni test (Bonferroni, 1936). For bias, the post-hoc comparisons were 

performed for comparing the absolute values of mean bias across different levels of a 

significant effect. All decimals in this chapter were rounded to three places; those 

with absolute values smaller than .001 were denoted as <.001, followed by (+) or (-) 

to indicate their signs if significant.  

 In the following sections, the results from the three simulation studies are 

summarized and presented. In particular, simulation study 1 compares the three 

models conditioning on item responses with the HM, where the parameter recovery 

and model selection results are discussed in detail in section 4.1.1. For simulation 

study 2, the three models with item-person distance as the shift indicator are 

evaluated with the HM. Given that most findings from simulation studies 1 and 2 are 

similar, section 4.1.2 mainly highlights the differences between them. Lastly, section 
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4.1.3 summarizes the conclusions from simulation study 3, focusing on the 

consequences of fitting models with misspecified shift indicator. 

4.1.1 Simulation Study 1 

 In simulation study 1, the performance of the three models conditioning on 

item responses (i.e., the JM-RD1, the JM-RD2, and the JM-R) was compared with the 

HM. A total of 24 conditions were simulated for comparing the four models under 

scenarios mimicking real testing situations. This section mainly demonstrates the 

impact of main effects and the interaction effects of the manipulated factors with 

respect to the error measures and model selection criteria. The bias, SE, and RMSE of 

all parameters under the 24 conditions were detailed in Appendix A. 

 Item difficulty. Based on the results from four-way repeated measures 

ANOVA, none of the factors or interactions was significant on the bias of item 

difficulty estimates with at least a small effect size. However, both the estimation 

model and sample size had significant impacts on SE and RMSE. The estimation 

model had a small effect size (f=.165) on SE and a medium effect size (f=.364) on 

RMSE; sample size had large effect sizes on both SE (f=.546) and RMSE (f=.453).  

 Figure 7 presents the main effects of the estimation model and sample size on 

item difficulty estimates, where bars with different colors indicate different levels of 

the manipulated factors. To explore the differences among the four estimation 

models, Dunn-Sidak test was performed (see Table 7). Although differences among 

the SE of the estimation models did not seem large in Figure 7, all pairwise 

comparisons were significant except the difference between the JM-R and the HM. In 

terms of RMSE, the results summarized in Table 7 were more consistent with visual 
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inspection, where only the JM-RD2 performed worse than the other estimation 

models. This finding suggests that ignoring the conditional dependence did not lead 

to significantly worse item difficulty estimates, but modeling the conditional 

dependence between responses and RTs without random effects would reduce the 

estimation accuracy of item difficulty. Both graphical and numerical representations 

show that increasing sample size resulted in significantly smaller SE and RMSE.  

 
Figure 7. Significant main effects on the SE and RMSE of the item difficulty 

estimates. 

Table 7. Post-hoc pairwise comparison results of the estimation model on the SE and 

RMSE in item difficulty estimation in simulation study 1. 

  Mean Difference 

Model (m) Model (n) SE RMSE 

JM-RD1 JM-RD2 .002* -.024* 

 JM-R <.001*(-) <.001 

 HM <.001*(-) <.001 

JM-RD2 JM-R -.002* .024* 

 HM -.002* .024* 

JM-R HM <.001 <.001 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 

 Time discrimination. Figure 8 and Table 8 present the results for the 

significant main effects and post-hoc pairwise comparison for the time discrimination 

parameters. The estimation model was a significant factor with large effect sizes on 
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bias (f=.599) and RMSE (f=.436), and with a medium effect size on SE (f=.219). 

Sample size was significant with a large effect size on SE (f=.736) and a small effect 

size on RMSE (f=.140).  

 The mean bias depicted in Figure 8 reflects that all four estimation models 

consistently underestimated the time discrimination parameters. While there was no 

significant difference between the JM-RD1 and the JM-R, the two models with 

random effects produced smaller systematic and total errors than the JM-RD2. The 

HM yielded significantly smaller random error than the other estimation models, yet 

it performed the worst in terms of bias and RMSE. This finding is expected as the 

underspecified models usually have less uncertainty in the estimation process and 

thus smaller SE; but are generally more biased because some important effects or 

model parameters are omitted. Similar to the item difficulty parameters, a sample size 

of 1,000 yielded significantly lower SE and RMSE than a sample size of 500 for all 

four models. Detailed error indices under each condition are reported in Tables A2a 

to A2c.   

 
Figure 8. Significant main effects on the bias, SE, and RMSE of the time 

discrimination estimates. 
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Table 8. Post-hoc pairwise comparison results of the estimation model on the bias, 

SE, and RMSE in time discrimination estimation in simulation study 1. 

  Mean Difference 

Model (m) Model (n) Bias SE RMSE 

JM-RD1 JM-RD2 -.019* <.001*(+) -.009* 

 JM-R <.001 <.001 <.001 

 HM -.087* .003* -.058* 

JM-RD2 JM-R .019* <.001*(-) .009* 

 HM -.067* .002* -.049* 

JM-R HM -.087* .003* -.058* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 

 Time intensity. In terms of the time intensity parameters, the estimation model 

was a significant factor on all three indices with large effect sizes (f=.527, .679, .579 

respectively). Sample size was only significant on SE with a large effect size (f=.463). 

The main effects of the estimation model and sample size on bias, SE, and RMSE are 

depicted in Figure 9. Overall, the findings were similar to the time discrimination 

parameters. The two models with random effects, the JM-RD1 and the JM-R, 

outperformed the other estimation models on bias and RMSE, even though they 

produced significantly larger SE (see Table 9). In contrast with the three proposed 

models, the HM provided significantly smaller SE but much larger bias and RMSE in 

the time intensity estimates. The other significant factor, sample size, resulted in 

smaller SE when sample size increased from 500 to 1,000.  

 The time intensity estimates were negatively biased in the HM because the 

interpretation of the time intensity parameters in the proposed models has changed. In 

the HM, the time intensity parameters reflect the average time required to finish an 

item for the whole population. On the contrary, in the proposed models, the time 

intensity parameters represent the extent to which an item is time consuming for 

examinees who answer incorrectly to the item, or for those whose ability levels are 
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lower than the difficulty level of the item. As a result, when data were generated from 

the JM-RD1, the HM would underestimate the time intensity parameters if incorrect 

responses were more time consuming than correct responses. In the present study, 𝜔0 

was set at -.30, which meant that on average incorrect responses are .30 unit slower 

than correct responses on the logRT scale. As such, there is no surprise that the HM 

consistently underestimated the time intensity under all conditions (see Table A3a).  

 

 
Figure 9. Significant main effects on the bias, SE, and RMSE of the time intensity 

estimates. 

 

Table 9. Post-hoc pairwise comparison results of the estimation model on the bias, 

SE, and RMSE in time intensity estimation in simulation study 1. 

  Mean Difference 

Model (m) Model (n) Bias SE RMSE 

JM-RD1 JM-RD2 -.004 .007* -.039* 

 JM-R -.001 <.001*(-) <.001 

 HM -.168* .008* -.145* 

JM-RD2 JM-R .003 -.007* .039* 

 HM -.164* .001* -.107* 

JM-R HM -.167* .008* -.145* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 

 Ability parameters. While the item parameter estimates were mainly 

influenced by the estimation model and sample size, the results for the ability 
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estimates were more complicated. Since the mean bias of the ability estimates was 

centered at zero for scale identification, ANOVA was only conducted for SE and 

RMSE. For the random error in the ability estimates, the estimation model was 

significant with a large effect size (f=.659), whereas the interaction between the 

estimation model and the correlation between ability and speed had a medium effect 

size (f=.346). The main effects of test length and the correlation between ability and 

speed were also significant on SE with medium effect sizes (f=.310 and .285 

respectively). Only test length was significant with a small effect size (f=.202) on the 

total error of the ability estimates.  

 The significant interaction between the estimation model and the correlation 

between ability and speed is presented in the left panel of Figure 10, where the 

estimation models are marked with different line types. Overall, the SE of the ability 

estimates for all estimation models followed a similar pattern. As the correlation 

between ability and speed became stronger, the mean SE of the ability estimates from 

all estimation models consistently reduced. As such, the main effect of the correlation 

between the two latent traits was interpretable, and all three levels of correlation were 

significantly different (see Table 10). The HM yielded significantly smaller random 

error in the ability estimates than the proposed models across all levels of 

correlations, while the proposed models with random effects produced significantly 

larger SEs as expected (see Table 11 and the left panel of Figure 11). Yet, the 

interaction manifested itself as the discrepancy between the proposed models and the 

HM magnified with stronger correlation. This is an intriguing finding because studies 
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have shown that the precision of the ability estimates increases as more information is 

shared between the two latent traits (Klein Entink, 2009; Patton, 2015). 

 Further examinations on the SD of bias showed that the SD of bias for the HM 

was always the largest among the four estimation models, despite that the mean bias 

was all constrained to zero. Moreover, the discrepancy between the HM and the other 

three models tended to increase when the correlation between ability and speed 

increased (see the right panel of Figure 10). This observation reflected that the 

stronger the correlation between ability and speed, the higher the variability in the 

bias of the ability estimates obtained from the HM. Therefore, the ability estimates 

from the HM for some examinees might be more biased than the three proposed 

models. This may also be the reason why the HM had significantly smaller SE, but 

the four estimation models did not differ much on RMSE of the ability estimates.  

Table 10. Post-hoc pairwise comparison results of the correlation between ability and 

speed on SE in ability estimation in simulation study 1. 

𝜌𝜃𝜏 (m) 𝜌𝜃𝜏 (n) Mean Difference in SE 

.2 .5 .016* 

 .8 .069* 

.5 .8 .053* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of 𝜌𝜃𝜏 (n) from that of 𝜌𝜃𝜏 (m). 

 

Table 11. Post-hoc pairwise comparison results of the estimation model on SE in 

ability estimation in simulation study 1. 

Model (m) Model (n) Mean Difference in SE 

JM-RD1 JM-RD2 .001* 

 JM-R <.001*(-) 

 HM .005* 

JM-RD2 JM-R -.001* 

 HM .004* 

JM-R HM .005* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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Figure 10. Two-way interaction between the estimation model and the correlation between ability and speed on the SE of the ability 

estimates (left panel), and on the SD of bias of the ability estimates (right panel). 

 

Figure 11. Significant main effects on the SE and RMSE of the ability estimates. 
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 Speed parameters. Both the estimation model and test length had significant 

impacts on the SE and RMSE of the speed estimates with large effect sizes. The 

estimation model had large effect sizes on the random error and total error (f=.460 

and .688 respectively), so did test length (f=.490 and .655 respectively). The two 

models with random effects, the JM-RD1 and the JM-R, performed similarly and 

significantly better than the model without random effects, the JM-RD2 (see Table 

12). The HM produced the largest SE and RMSE than the proposed models, 

indicating that the accuracy of the speed parameters was negatively affected if the 

conditional dependence was not taken into account (see Figure 12).  Similar to the 

ability estimates, longer test length was associated with smaller SE and RMSE. 

 
Figure 12. Significant main effects on the SE and RMSE of the speed estimates. 

 

Table 12. Post-hoc pairwise comparison results of the estimation model on the SE 

and RMSE in speed estimation in simulation study 1. 

  Mean Difference 

Model (m) Model (n) SE RMSE 

JM-RD1 JM-RD2 -.001* -.001* 

 JM-R <.001 <.001 

 HM -.005* -.017* 

JM-RD2 JM-R .001* .001* 

 HM -.004* -.016* 

JM-R HM -.005* -.017* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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 Parameters on RT distribution shift. Regarding the parameters related to the 

shift in RT distributions, the recovery of the intercept 𝜔0, the slope 𝜔1, and the 

variance of the random effects 𝜎𝜙
2 was examined. The three parameters are only 

involved in the proposed models. Specifically, all proposed models have the intercept, 

the JM-RD1 and the JM-RD2 estimate the relationship between item difficulty and 

the shift, and the JM-RD1 and the JM-R incorporate the random effects. As such, the 

JM-RD1 has one unique parameter, the correlation between item difficulty and the 

shift 𝜌𝑏𝜆, which is a manipulated factor in the present study. This parameter was not 

directly estimated in the JM-RD1; but it can be resolved from the estimates of 

variance of item difficulty, the slope, and the variance of the random effects.  

 In general, the intercept and the variance of the random effects were better 

recovered than the intercept and the correlation between item difficulty and the shift.  

Increasing sample size and test length resulted in smaller bias, SE, and RMSE of the 

parameters on RT distribution shift with a few exceptions. For instance, it was found 

that the bias of the slope and of the variance of random effects from the JM-RD1 was 

not affected by sample size. Interestingly, the bias and RMSE of the correlation 

between item difficulty and the shift increased with larger sample size. On the other 

hand, the correlation between ability and speed and the correlation between item 

difficulty and the shift did not have a consistent impact on the error indices.  

 Figure 13 demonstrates the main effect of the estimation model on the error 

indices of the parameters on RT distribution shift. The random error of the intercept 

estimates from all three models was not remarkably different across the three 

estimation models, yet the two models with random effects (i.e., JM-RD1 and JM-R) 
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yielded smaller bias and RMSE. Given that the true value of the slope was .06 and .14 

when the correlation between item difficulty and the shift was .3 and .7 respectively, 

the bias of the slope under some conditions was not satisfactory, especially conditions 

with smaller correlation between item difficulty and the shift. Regardless, the JM-

RD1 yielded smaller bias, SE, and RMSE than the JM-RD2. This may be because the 

ignored random effects in the JM-RD2 were absorbed in the slope estimates, 

producing larger slope estimates with higher variability.  

 The variance of the random effects was less biased than the slope of RT 

distribution shift. In general, variance estimates from the JM-R contained more 

systematic, random and total errors than those from the JM-RD1. Since incorporating 

item difficulty in modeling the shift explained a certain amount of total variance, the 

variance of the random effects was recovered with higher precision in the JM-RD1.  

 As a manipulated factor, the correlation between item difficulty and the shift 

from the JM-RD1 was negatively biased across all conditions. Further, the three 

sources of errors were greater as the true correlation between item difficulty and the 

shift became stronger (see Table 13). The estimated correlation between item 

difficulty and the shift was about 40% downward biased for both levels of true 

correlation, with 𝜌𝑏𝜆 = .3 yielding larger bias. The large estimation error of 𝜌𝑏𝜆 could 

be attributed to the estimation errors of the variance of item difficulty, the slope, and 

the variance of the random effects. Additionally, the empirical correlation between 

the true item difficulty and the true RT shift would not be equal to the true correlation 

due to the randomness in the data generation process. Therefore, it is expected that 

𝜌𝑏𝜆 would not be recovered as well as the intercept 𝜔0.
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Figure 13. Main effect of the estimation model on the bias, SE, and RMSE of the parameter estimates of RT distribution shift. 

 

Table 13. Bias, SE, and RMSE of 𝜌𝑏𝜆 from the JM-RD1 at different levels of 𝜌𝑏𝜆. 

   𝜌𝑏𝜆  

𝜌𝑏𝜆 Bias SE RMSE 

.3 -.125 .026 .142 

.7 -.259 .034 .262 
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 Item mean vector and item covariance matrix. The estimation accuracy of 

five parameters was evaluated, including the mean and variance of item difficulty, the 

mean and variance of time intensity, and the correlation between item difficulty and 

time intensity. The variances of item difficulty and time intensity were consistently 

overestimated regardless of the estimation model, whereas the correlation was 

underestimated with the JM-RD1, the JM-RD2, the JM-R but overestimated with the 

HM. For all five parameters, increasing sample size and test length resulted in smaller 

bias, SE and RMSE with a few exceptions. In general, the two manipulated 

correlations did not noticeably influence the error indices. The detailed bias, SE, and 

RMSE for the second-level item parameters under each simulation condition are 

presented in Tables A10 to A14. 

 The impact of the estimation model demonstrated an interesting pattern on the 

recovery of the item mean vector and item covariance matrix (see Figures 14 and 15). 

No big difference was found between the HM and the proposed models with respect 

to the two parameters solely related to the IRT model, the mean and the variance of 

item difficulty. However, for the mean and the variance of time intensity, and the 

correlation between item difficulty and time intensity, the estimates from the HM 

contained large systematic and total errors compared to the proposed models. In 

particular, the mean of time intensity from the HM was remarkably negatively biased, 

which may also be due to the change in the definition of time intensity parameters. 

The correlation between item difficulty and time intensity and the variance of time 

intensity were inflated in the HM, where the conditional dependence between 

responses and RTs may have been absorbed.  
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 The recovery of the mean of time intensity and the correlation between item 

difficulty and time intensity was even worse when the correlation between item 

difficulty and the shift was strong. Table 14 reports the bias of the mean of time 

intensity, and the bias and RMSE of the correlation between item difficulty and time 

intensity. The HM consistently produced less accurate mean of time intensity and 

correlation between item difficulty and time intensity when a stronger correlation 

between item difficulty and the shift was ignored. This finding aligns with the 

expectation that the stronger the correlation between item difficulty and the shift, the 

more important it is to account for it.  

 

Figure 14. Main effect of the estimation model on the bias, SE, and RMSE of the 

item mean vector. 
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Figure 15. Main effect of the estimation model on the bias, SE, and RMSE of the item covariance matrix. 

 

Table 14. Bias and RMSE of 𝜇̂𝛽  and 𝜌𝑏𝛽  from the HM at different levels of 𝜌𝑏𝜆. 

 𝜇̂𝛽 𝜌𝑏𝛽  

𝜌𝑏𝜆 Bias Bias RMSE 

.3 -.161 .104 .105 

.7 -.174 .150 .150 
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 Person covariance matrix. As the ability and speed parameters were both 

constrained to have a mean of zero, only the variances of ability and speed, and the 

correlation between ability and speed were included as second-level person 

parameters. Similar to the findings from the item covariance matrix, the four 

estimation models performed similarly in terms of the ability variance, but the HM 

produced large bias and RMSE regarding the correlation between the two latent traits 

and the speed variance (see Figure 16). All four models overestimated the speed 

variance, yet the bias of the estimates from the HM was much larger than the other 

three. The RT model-related second-level person parameters may be inflated due to 

the conditional dependence between responses and RTs as well. 

 Sample size and test length often affected the error indices for the variances of 

ability and speed, and the correlation between ability and speed, except for a few 

cases. The correlation between speed and ability did not influence the variance 

estimates much, despite that the bias of speed variance from the HM increased 

from .015, .031 to .047 when the correlation between the two latent traits was varied 

at .2, .5, .8. This finding implies that when a stronger correlation between ability and 

speed is present, ignoring the conditional dependence would have a greater impact on 

the speed variance estimates.  

 Regarding the correlation between the two latent traits, the bias in the 

estimated correlation between ability and speed from the HM reduced when the true 

values increased (see the left panel in Figure 17). Only the bias from the HM was 

presented as the correlation between ability and speed did not affect the bias from 

other estimation models consistently. Additionally, the random error and the total 



 

 

101 

 

error in the correlation between ability and speed also shrank as the true values 

became stronger for all four estimation models. As demonstrated in Figure 17, the 

estimation accuracy of the correlation between the two latent traits was lower when 

its magnitude was small. The last manipulated factor, the correlation between item 

difficulty and the shift, did not present a manifest main effect or interaction effect on 

the error indices of the person covariance matrix.  
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Figure 16. Main effect of the estimation model on the bias, SE, and RMSE of the person covariance matrix. 

 

 
Figure 17. Two-way interaction between the estimation model and the correlation between ability and speed on the bias, SE, and 

RMSE of the estimated correlation between ability and speed. 
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 Model fit indices. Table 15 reports the frequency of identifying each of the 

four estimation models as the best fitting model in 30 replications under each 

simulation condition based on deviance, AIC, AICc, BIC and DIC respectively. None 

of the model fit indices identified the JM-RD2 and the HM as the best fitting model 

under any conditions. With respect to the two selected estimation models, although 

the JM-RD1 offered significant improvement on some parameter estimates than the 

JM-R, the model fit indices generally preferred the JM-R over the JM-RD1. 

Deviance, as a goodness-of-fit measure without any penalty on the number of 

parameters, favored the JM-RD1 and the JM-R approximately equally under most 

conditions. There was also a general trend that when the correlation between item 

difficulty and the shift was stronger, the JM-RD1 was preferred by deviance more 

than the JM-R because it modeled the shift as a function of item difficulty.  

 Since AIC added a penalty term of the number of parameters to the deviance 

function, the JM-R was chosen as the best fitting model in more replications than 

deviance. With increasing penalties of the number of parameters, AICc and BIC 

gradually moved towards favoring the JM-R. As the model fit index with the largest 

penalty term in the present study, BIC chose the JM-R 100% of the replications under 

all conditions. DIC performed similarly to deviance, which did not distinguish the 

two models with random effects well.  

 In general, model fit indices discussed in the present study did not perform 

well in terms of identifying the true data generating model. Yet, they always identify 

one of the models that considered the conditional dependence between responses and 

RTs with random effects as the best fitting model. Comparing the four estimation 
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models in each replication, the model fit indices of the JM-RD1 and the JM-R were 

usually close. The JM-RD2 had larger model fit indices than the two models with 

random effects, but it still outperformed the HM on all fit indices. This finding 

reflects that ignoring the conditional dependence between responses and RTs results 

in a remarkable drop in the overall model goodness-of-fit.  
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Table 15. Frequency of identifying each model as the best fitting model in simulation study 1. 

    Deviance AIC AICc BIC DIC 

J I 𝜌𝜃𝜏 𝜌𝜃𝜏 
JM-

RD1 

JM-

RD2 

JM-

R 
HM 

JM-

RD1 

JM-

RD2 

JM-

R 
HM 

JM-

RD1 

JM-

RD2 

JM-

R 
HM 

JM-

RD1 

JM-

RD2 

JM-

R 
HM 

JM-

RD1 

JM-

RD2 

JM-

R 
HM 

500 20 .2 .3 15 0 15 0 3 0 27 0 0 0 30 0 0 0 30 0 12 0 18 0 

   .7 18 0 12 0 7 0 23 0 4 0 26 0 0 0 30 0 16 0 14 0 

  .5 .3 14 0 16 0 3 0 27 0 0 0 30 0 0 0 30 0 11 0 19 0 

   .7 18 0 12 0 2 0 28 0 0 0 30 0 0 0 30 0 15 0 15 0 

  .8 .3 16 0 14 0 1 0 29 0 1 0 29 0 0 0 30 0 16 0 14 0 

   .7 15 0 15 0 5 0 25 0 0 0 30 0 0 0 30 0 16 0 14 0 

 40 .2 .3 14 0 16 0 5 0 25 0 0 0 30 0 0 0 30 0 19 0 11 0 

   .7 19 0 11 0 6 0 24 0 0 0 30 0 0 0 30 0 16 0 14 0 

  .5 .3 14 0 16 0 5 0 25 0 1 0 29 0 0 0 30 0 14 0 16 0 

   .7 16 0 14 0 4 0 26 0 1 0 29 0 0 0 30 0 20 0 10 0 

  .8 .3 14 0 16 0 2 0 28 0 0 0 30 0 0 0 30 0 12 0 18 0 

   .7 16 0 14 0 3 0 27 0 1 0 29 0 0 0 30 0 14 0 16 0 

1000 20 .2 .3 17 0 13 0 4 0 26 0 4 0 26 0 0 0 30 0 13 0 17 0 

   .7 19 0 11 0 8 0 22 0 4 0 26 0 0 0 30 0 15 0 15 0 

  .5 .3 20 0 10 0 8 0 22 0 6 0 24 0 0 0 30 0 17 0 13 0 

   .7 15 0 15 0 5 0 25 0 2 0 28 0 0 0 30 0 16 0 14 0 

  .8 .3 18 0 12 0 10 0 20 0 8 0 22 0 0 0 30 0 14 0 16 0 

   .7 19 0 11 0 10 0 20 0 8 0 22 0 0 0 30 0 19 0 11 0 

 40 .2 .3 10 0 20 0 2 0 28 0 1 0 29 0 0 0 30 0 11 0 19 0 

   .7 15 0 15 0 7 0 23 0 5 0 25 0 0 0 30 0 20 0 10 0 

  .5 .3 9 0 21 0 2 0 28 0 2 0 28 0 0 0 30 0 17 0 13 0 

   .7 11 0 19 0 5 0 25 0 2 0 28 0 0 0 30 0 14 0 16 0 

  .8 .3 14 0 16 0 6 0 24 0 2 0 28 0 0 0 30 0 12 0 18 0 

   .7 15 0 15 0 7 0 23 0 6 0 24 0 0 0 30 0 14 0 16 0 
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 To summarize, the first-level item parameters were significantly affected by 

sample size, whereas test length was a significant factor on the first-level person 

parameters. Table 16 presents a summary of the effect sizes of the significant effects. 

Although the correlation between item difficulty and the shift was varied in 

simulation study 1, it did not have a significant impact on the recovery of the five 

first-level parameters, hence was not listed in the Table 16. Regarding other 

parameters for which ANOVA was not performed, sample size and test length 

generally resulted in smaller estimation errors, while the two manipulated factors 

mainly affected the accuracy of parameter estimates from the HM. Except the slope 

on RT distribution shift and the correlation between item difficulty and the shift, the 

parameters of interest could be well recovered with the proposed models. 

 Comparing the four estimation models, the JM-RD1 and the JM-R performed 

in a similar fashion as they both considered the random effects on the shift of the RT 

distributions. The JM-RD2 often yielded less random error but more systematic error 

in the parameter estimates than the JM-RD1 and the JM-R. The HM, even though 

usually produced the most stable estimates, had the largest systematic and total errors 

especially for RT model-related parameters. Parameters such as time discrimination, 

time intensity, speed, the mean and variance of time intensity, the speed variance, the 

correlation between item difficulty and time intensity, and the correlation between 

ability and speed, were largely biased if the conditional dependence was omitted.  

 In terms of model selection criteria, deviance and DIC were preferred over 

AIC, AICc, and BIC with regard to identifying the data generating model. Even so, 

deviance and DIC were still not able to distinguish the JM-RD1 and the JM-R. 
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Table 16. Summary of the effect sizes of the significant effects in simulation study 1. 

  Significant Effects 

Parameters Error Indices Model J I 𝜌𝜃𝜏 Model*𝜌𝜃𝜏 
𝑏𝑖 Bias      

 SE small large    

 RMSE medium large    

𝛼𝑖 Bias large     

 SE small large    

 RMSE large small    

𝛽𝑖 Bias large     

 SE large large    

 RMSE large     

𝜃𝑗 SE large  medium medium medium 

 RMSE   small   

𝜏𝑗 SE large  large   

 RMSE large  large   
 

4.1.2 Simulation Study 2 

 In simulation study 2, the performance of the three models conditioning on 

item-person distance (i.e., the JM-DD1, the JM-DD2, and the JM-D) was evaluated 

with the HM. The 24 simulation conditions were the same as in simulation study 1, 

but data were simulated from the JM-DD1 rather than the JM-RD1. Overall, the 

findings from simulation study 2 were similar to simulation study 1, especially for the 

RT model-related parameters. Yet, some major inconsistencies were found in the 

results for the IRT model-related parameters. In this section, the results for all 

parameters are displayed in tables and figures as in simulation study 1, and the 

important discrepancies between simulation studies 1 and 2 were highlighted 

regarding the IRT model-related parameters. The bias, SE, and RMSE under each 

simulation condition are presented in Appendix B in detail.  

 Item difficulty. Same as in simulation study 1, none of the factors had a 

significant impact on the systematic errors of the item difficulty estimates. For the 



 

 

108 

 

random error, the estimation model and sample size were both significant with 

medium effect sizes (f=.255 and .387 respectively). The same two factors were 

significant for the total error with a small effect size (f=.177) and a medium effect 

size (f=.368) respectively. As depicted in Figure 18, the random error and total error 

in the item difficulty estimates shrank significantly with increasing sample size. 

 In contrast to simulation study 1 where only the JM-RD2 performed worse 

than the other three estimation model, the results presented in Table 17 revealed that 

the true data generating model, the JM-DD1, was significantly better than the other 

three estimation models in terms of both SE and RMSE. Although performed slightly 

worse than the JM-DD1, the JM-D still yielded significantly smaller random and total 

errors than the JM-DD2 and the HM. The JM-DD2 provided significantly lower 

random error than the HM; but did not outperform the HM in terms of the total error. 

In other words, while ignoring the conditional dependence between responses and 

RTs did not negatively affect the item difficulty parameters in simulation study 1, 

employing the HM as the estimation model led to significantly larger SE and RMSE 

when data were generated from the JM-DD1. A possible explanation is that more 

information from the RTs could be utilized in estimating the item difficulty 

parameters when the shift indicator is based on the ability and item difficulty, thus 

providing higher estimation precision. 
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Figure 18. Significant main effects on the SE and RMSE of the item difficulty 

estimates. 

 

Table 17. Post-hoc pairwise comparison results of the estimation model on the SE 

and RMSE in item difficulty estimation in simulation study 2. 

  Mean Difference 

Model (m) Model (n) SE RMSE 

JM-DD1 JM-DD2 -.002* -.012* 

 JM-D <.001*(-) <.001*(-) 

 HM -.012* -.012* 

JM-DD2 JM-D .002* .011* 

 HM -.010* <.001 

JM-D HM -.012* -.012* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 

 Time discrimination. The estimation model was a significant factor on bias, 

SE, and RMSE with large (f=.591), small (f=.245), and medium (f=.316) effect sizes 

respectively. Sample size was also a significant factor with a large effect size (f=.776) 

on SE and a small effect size (f=.249) on RMSE. While the random errors from the 

four estimation models were rather equivalent, the JM-DD1 and the JM-D produced 

significantly smaller bias and RMSE than the JM-DD2 and the HM (see Figure 19 

and Table 18). As expected, the HM yielded the most biased time discrimination 

estimates with the largest total error.  
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Figure 19. Significant main effects on the bias, SE, and RMSE of the time 

discrimination estimates. 

 

Table 18. Post-hoc pairwise comparison results of the estimation model on the bias, 

SE, and RMSE in time discrimination estimation in simulation study 2. 

  Mean Difference 

Model (m) Model (n) Bias SE RMSE 

JM-DD1 JM-DD2 -.015* .001* -.007* 

 JM-D <.001 <.001 <.001 

 HM -.049* .002* -.026* 

JM-DD2 JM-D .014* -.001* .007* 

 HM -.034* .002* -.018* 

JM-D HM -.049* .002* -.026* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 

 Time intensity. Again, the estimation model had large effect sizes on bias, SE, 

and RMSE (f=.434, .415, and .474, respectively). As shown in Figure 20, sample size 

was associated with significantly lower SE with a small effect size (f=.128). As 

expected, even though the HM had the lowest mean SE, it had the most biased 

estimates for time intensity, which also led to the largest total error in time intensity 

estimates among the four estimation models (see Figure 20 and Table 19). The main 

difference between simulation studies 1 and 2 was that the bias in time intensity 

estimates from the JM-RD1 and the JM-D did not differ significantly, while the JM-

DD1 provided significantly smaller bias than the JM-D.  
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Figure 20. Significant main effects on the bias, SE, and RMSE of the time intensity 

estimates. 

 

Table 19. Post-hoc pairwise comparison results of the estimation model on the bias, 

SE, and RMSE in time intensity estimation in simulation study 2. 

  Mean Difference 

Model (m) Model (n) Bias SE RMSE 

JM-DD1 JM-DD2 -.006 .009* -.033* 

 JM-D -.008* .001* -.001 

 HM -.178* .018* -.143* 

JM-DD2 JM-D -.001 -.009* .032* 

 HM -.172* .009* -.110* 

JM-D HM -.170* .017* -.142* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 

 Ability parameters. Same as in simulation study 1, the mean of the ability 

estimates was constrained to be zero under each replication for scale identification. 

The SE of the ability estimates was significantly affected by the estimation model, 

test length, and the correlation between ability and speed with medium effect sizes 

(f=.356, .352, and .325, respectively). The interaction effect between the estimation 

model and the correlation between the two latent traits was significant in simulation 

study 1, but not in simulation study 2. Although none of the manipulated factors had 

an impact on the RMSE of the ability estimates in simulation study 1, in simulation 
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study 2 the estimation model and test length were significant factors on RMSE with a 

large effect size (f=.547) and a small effect size (f=.199) respectively.  

 While the HM provided the smallest SE among the four estimation models in 

simulation study 1, the HM yielded the largest SE and RMSE when the JM-DD1 was 

the data generating model. As presented in Figure 21 and Table 20, the JM-DD1 

outperformed the three underspecified models on both SE and RMSE significantly. 

These findings may also result from the specification of the shift indicator in the JM-

DD1. Similar to item difficulty, the information from RTs directly contributed to the 

estimation of the ability parameters in the models conditioning on item-person 

distance. Since the HM only utilized RT information indirectly to estimate IRT 

model-related parameters, it is expected that the HM would perform worse than the 

proposed models on these parameters as well. Nonetheless, the SE of the ability 

estimates gradually decreased as the correlation increased from .2, .5, to .8, which 

was consistent with simulation study 1 (see Figure 21 and Table 21).  

Table 20. Post-hoc pairwise comparison results of the estimation model on the SE 

and RMSE in ability estimation in simulation study 2. 

  Mean Difference 

Model (m) Model (n) SE RMSE 

JM-DD1 JM-DD2 -.007* -.011* 

 JM-D <.001*(-) <.001*(-) 

 HM -.031* -.043* 

JM-DD2 JM-D .007* .010* 

 HM -.024* -.032* 

JM-D HM -.030* -.043* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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Table 21. Post-hoc pairwise comparison results of the correlation between ability and speed on the SE in ability estimation in 

simulation study 2. 

𝜌𝜃𝜏 (m) 𝜌𝜃𝜏 (n) Mean Difference in SE 

.2 .5 .022* 

 .8 .074* 

.5 .8 .053* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting each error index of 𝜌𝜃𝜏 (n) from that of 𝜌𝜃𝜏 (m). 

 

 

 
Figure 21. Significant main effects on the SE and RMSE of the ability estimates. 
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 Speed parameters. Regarding the random error, the interaction between the 

estimation model and the correlation between ability and speed was a significant 

factor with a small effect size (f=.208), and test length was significant with a large 

effect size (f=.625). This is different from the ANOVA results for speed estimates in 

simulation study 1, where the main effects of the estimation model and test length 

were significant on SE. For the total error, both the estimation model and test length 

had large effect sizes (f=.490 and .476 respectively). The HM yielded the largest total 

error compared to the proposed models (see Figure 22). While the JM-RD1 and the 

JM-R performed similarly on RMSE in simulation study 1, the JM-DD1 had 

significantly smaller total error than the JM-D (see Table 22).  

 As the correlation between ability and speed became stronger, the random 

error of speed estimates consistently decreased for all four models (see Figure 23). In 

addition, the three models that considered the conditional dependence between 

responses and RTs (i.e., the JM-DD1, the JM-DD2, and the JM-D) performed in a 

similar way under each level of manipulated correlation. When the correlation was .2 

and .5, the HM yielded smaller SE in speed estimates than the proposed models. 

When the correlation was .8, however, the three proposed models produced smaller 

random errors in the speed estimates than the HM. This finding suggests that the 

impact of ignoring the conditional dependence is not consistent across all levels of 

correlations. Accounting for conditional dependence in the joint modeling of 

responses and RTs is more likely to reduce the SE in the speed estimates when the 

correlation between ability and speed is larger than .5.  
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Figure 22. Significant main effects on the SE and RMSE of the speed estimates. 

 

 
Figure 23. Significant two-way interaction between the estimation model and the 

correlation between ability and speed on the SE of speed estimates. 

Table 22. Post-hoc pairwise comparison results of the estimation model on the RMSE 

in speed estimation in simulation study 2. 

Model (m) Model (n) Mean Difference in RMSE 

JM-DD1 JM-DD2 <.001*(-) 

 JM-D <.001*(-) 

 HM -.029* 

JM-DD2 JM-D <.001*(+) 

 HM -.028* 

JM-D HM -.029* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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 Parameters on RT distribution shift. Similar to simulation study 1, the 

intercept and the variance of the random effects were recovered better than the slope 

and the correlation between item difficulty and the shift. Compared to the 

underspecified models, the JM-DD1 yielded estimates with the least estimation error 

for all parameters on RT distribution shift (see Figure 24). Overall, larger sample size 

and longer test length led to smaller errors in the estimates. The two manipulated 

correlations did not have an evident impact on the estimates, except that the bias and 

RMSE in the estimated correlation between item difficulty and the shift increased 

proportionally with the true correlation between item difficulty and the shift (see 

Table 23).   

Table 23. Bias and RMSE of 𝜌𝑏𝜆 from the JM-DD1 at different levels of 𝜌𝑏𝜆. 

 𝜌𝑏𝜆 

𝜌𝑏𝜆 Bias RMSE 

.3 -.118 .157 

.7 -.268 .277 
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Figure 24. Main effect of the estimation model on the bias, SE, and RMSE of the parameter estimates on RT distribution shift.
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 Mean vector and covariance matrices. Generally speaking, the findings on 

the elements in item mean vector and the covariance matrices were similar to 

simulation study 1. The unique findings from simulation study 2 were discussed in 

three aspects, mainly regarding IRT model-related parameters.  

 First, the estimated mean of item difficulty from the HM contained more 

estimation error than the proposed model (see Figure 25). While the mean of item 

difficulty in simulation study 1 was not affected by the choice of estimation model, 

the JM-DD1 outperformed the HM in terms of systematic, random, and total errors. 

This is consistent with the findings from item difficulty parameters. The JM-DD1 

utilized information from RT directly with the correctly specified model structure, 

thus yielding more accurate item difficulty estimates than other estimation models.  

 Second, even though the JM-RD2 had the smallest bias and RMSE of the 

estimated variance of item difficulty, the results indicated the opposite for the JM-

DD2. In simulation study 2, the JM-DD2 in fact produced the largest systematic and 

total errors in the variance of item difficulty, despite similar random errors from all 

estimation models (see Figure 26). Likewise, the JM-DD2 also resulted in the largest 

bias and RMSE in the ability variance (see Figure 27). Therefore, omitting the 

random effects on RT distribution shift had opposite impact on the recovery of item 

difficulty variance and ability variance, depending on which shift indicator was 

employed in the model. 

 Third, the influence of the correlation between ability and speed and the 

correlation between item difficulty and the shift was different. The bias and RMSE in 

the mean of item difficulty, the correlation between item difficulty and time intensity, 
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and the speed variance from the HM were consistently affected by the manipulated 

correlations (see Table 24). In simulation study 1, however, only the error indices 

with an asterisk were affected. The interaction effect between the estimation model 

and the correlation between the two latent traits was also manifested differently. 

Rather than decreasing uniformly in simulation study 1, the SE of the four models 

reduced slightly as the correlation between ability and speed increased from .2 to .5, 

but a bigger drop was found when the correlation further increased to .8 (see Figure 

28). Additionally, the three proposed models did not perform as similar as in 

simulation study 1. The JM-DD2 yielded consistently larger SE than the JM-DD1 and 

the JM-D. 

 
Figure 25. Main effect of the estimation model on the bias, SE, and RMSE of the 

item mean vector. 

 

Table 24. Bias and RMSE of 𝜇̂𝛽 , 𝜌𝑏𝛽 , 𝜎̂𝜏
2 from the HM at different levels of 

manipulated correlations. 

 𝜇̂𝛽 𝜌𝑏𝛽  𝜎𝜏
2  𝜎𝜏

2 

𝜌𝑏𝜆 Bias* RMSE Bias* RMSE* Bias RMSE 𝜌𝜃𝜏 Bias* RMSE 

.3 -.166 .166 .142 .143 .052 .052 .2 .027 .027 

.7 -.188 .188 .186 .186 .054 .054 .5 .053 .053 

       .8 .078 .079 

Note. Error indices with an asterisk were also affected in simulation study 1. 

 



 

 

120 

 

 
Figure 26. Main effect of the estimation model on the bias, SE, and RMSE of the item covariance matrix. 

 

 
Figure 27. Main effect of the estimation model on the bias, SE, and RMSE of the person covariance matrix. 

 



 

 

121 

 

 
Figure 28. Two-way interaction between the estimation model and the correlation between ability and speed on the bias, SE, and 

RMSE of the estimated correlation between ability and speed.
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 Model fit indices. The frequencies of identifying each estimation model as the 

best fitting model based on different model fit indices are presented in Table 25. 

Deviance, AIC, AICc, and BIC demonstrated similar pattern as in simulation study 1, 

where none of them chose the JM-DD2 and the HM as the best fitting model. 

Specifically, deviance identified the data generating model as the best fitting model 

over 50% of the replications under most conditions. Compared to data generated from 

the JM-RD1, deviance performed better in terms of identifying the true data 

generating model on data generated from the JM-DD1. As such, AIC, AICc and BIC 

also outperformed their counterparts in simulation study 1 even though they still 

gradually leaned towards the underspecified JM-D as the penalty of the number of 

parameters became heavier. With the largest penalty term, BIC rarely selected the 

JM-DD1 as the best fitting model.  

 The performance of DIC was quite different from simulation study 1. In 

simulation study 2, the effectiveness of DIC was affected by the interaction between 

the estimation model and test length. When test length was 40, DIC mainly identified 

either the JM-DD1 and the JM-D as the best fitting model about 50% of the 

replications across conditions, which was similar to deviance. However, when test 

length was 20, DIC tended to favor the HM under most conditions, the simplest 

model among the four. One reason for this finding is that the three proposed models 

in the present simulation study employed a binary indicator based on the distance 

between ability and item difficulty, as opposed to the observed correct and incorrect 

responses in simulation study 1. This may add an extra layer of complexity into the 

proposed models, and DIC was known to prefer simpler models. While AIC, AICc 
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and BIC required the specification of the number of parameters, the effective number 

of parameters was estimated by DIC (Spiegelhalter et al., 2002). Therefore, it is 

possible that DIC estimated more effective number of parameters in the JM-DD1, the 

JM-DD2, and the JM-D than the specified number of parameters when test length was 

small, thus penalizing these three models more. In summary, for shorter tests, 

deviance, AIC and AICc are recommended over BIC and DIC; when test length is 

long, deviance, AIC, AICc and DIC outperform BIC, which favors the underspecified 

model with random effects. 
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Table 25. Frequency of identifying each model as the best fitting model in simulation study 2. 

    Deviance AIC AICc BIC DIC 

J I 𝜌𝜃𝜏 𝜌𝜃𝜏 
JM-

DD1 

JM-

DD2 

JM-

D 
HM 

JM-

DD1 

JM-

DD2 

JM-

D 
HM 

JM-

DD1 

JM-

DD2 

JM-

D 
HM 

JM-

DD1 

JM-

DD2 

JM-

D 
HM 

JM-

DD1 

JM-

DD2 

JM-

D 
HM 

500 20 .2 .3 14 0 16 0 12 0 18 0 10 0 20 0 0 0 30 0 3 0 1 26 

   .7 23 0 7 0 18 0 12 0 16 0 14 0 1 0 29 0 7 0 6 17 

  .5 .3 13 0 17 0 6 0 24 0 4 0 26 0 0 0 30 0 6 0 3 21 

   .7 18 0 12 0 9 0 21 0 9 0 21 0 0 0 30 0 6 3 4 17 

  .8 .3 19 0 11 0 16 0 14 0 9 0 21 0 0 0 30 0 13 1 13 3 

   .7 21 0 9 0 18 0 12 0 13 0 17 0 1 0 29 0 2 0 3 25 

 40 .2 .3 20 0 10 0 14 0 16 0 9 0 21 0 0 0 30 0 15 0 15 0 

   .7 22 0 8 0 16 0 14 0 11 0 19 0 0 0 30 0 15 1 14 0 

  .5 .3 25 0 5 0 21 0 9 0 12 0 18 0 0 0 30 0 16 0 14 0 

   .7 17 0 13 0 13 0 17 0 9 0 21 0 0 0 30 0 19 0 11 0 

  .8 .3 17 0 13 0 10 0 20 0 6 0 24 0 0 0 30 0 20 0 10 0 

   .7 27 0 3 0 18 0 12 0 14 0 16 0 0 0 30 0 18 0 12 0 

1000 20 .2 .3 17 0 13 0 16 0 14 0 14 0 16 0 0 0 30 0 11 0 7 12 

   .7 16 0 14 0 11 0 19 0 11 0 19 0 0 0 30 0 1 1 1 27 

  .5 .3 14 0 16 0 11 0 19 0 11 0 19 0 0 0 30 0 7 0 7 16 

   .7 16 0 14 0 13 0 17 0 13 0 17 0 0 0 30 0 10 1 6 13 

  .8 .3 15 0 15 0 9 0 21 0 7 0 23 0 1 0 29 0 13 0 12 5 

   .7 20 0 10 0 13 0 17 0 13 0 17 0 0 0 30 0 7 0 4 19 

 40 .2 .3 15 0 15 0 10 0 20 0 8 0 22 0 0 0 30 0 15 0 15 0 

   .7 26 0 4 0 24 0 6 0 20 0 10 0 2 0 28 0 11 0 19 0 

  .5 .3 21 0 9 0 13 0 17 0 13 0 17 0 0 0 30 0 15 0 15 0 

   .7 28 0 2 0 23 0 7 0 20 0 10 0 1 0 29 0 15 0 15 0 

  .8 .3 17 0 13 0 10 0 20 0 8 0 22 0 0 0 30 0 14 0 16 0 

   .7 14 0 16 0 8 0 22 0 7 0 23 0 0 0 30 0 21 0 9 0 
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 In a nutshell, the conclusions from simulation study 2 were quite similar to 

simulation study 1 regarding the RT model-related parameters. The differences in the 

recovery of IRT model-related parameters were mainly attributed to the shift 

indicator based on item-person distance. Introducing the item-person distance into the 

RT model enabled the direct use of RT information for improving the estimation 

accuracy of IRT model-related parameters. As a result, the JM-DD1 performed better 

than the underspecified models on most parameters. While using the HM as the 

estimation model did not affect the IRT model-related parameters for data generated 

from the JM-RD1, ignoring the conditional dependence would result in larger 

estimation error in all parameters involved in the joint modeling of responses and 

RTs.  

 Other than the estimation model, the manipulated factors also influenced the 

parameter estimates in a similar way to simulation study 1, despite some changes in 

the magnitude of effect sizes (see Table 26). The interaction between the estimation 

model and the correlation between the two latent traits was a significant factor on the 

SE of the ability parameters in simulation study 1, but in simulation study 2 it 

affected the SE of the speed parameters significantly. 

 Lastly, the sensitivity of the model selection criteria was comparable to 

simulation study 1 except DIC. DIC tended to favor the HM over the proposed 

models when test length was small. Therefore, caution should be advised when 

selecting model fit indices to identify the best fitting model for different test lengths. 
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Table 26. Summary of the effect sizes of the significant effects in simulation study 2. 

  Significant effects 

Parameters Error Indices Model J I 𝜌𝜃𝜏 Model*𝜌𝜃𝜏 
𝑏𝑖 Bias      

 SE medium medium    

 RMSE small medium    

𝛼𝑖 Bias large     

 SE small large    

 RMSE medium small    

𝛽𝑖 Bias large     

 SE large small    

 RMSE large     

𝜃𝑗 SE medium  medium medium  

 RMSE large  small   

𝜏𝑗 SE   large  small 

 RMSE large  large   

 

4.1.3 Simulation Study 3 

 Simulation study 1 compared the three models conditioning on observed item 

responses and the baseline HM, whereas simulation study 2 evaluated the three 

models conditioning on the item-person distance with the HM. The purpose of 

simulation study 3 is to compare the performance of the six proposed models and the 

HM when data were generated from two different mechanisms of test-taking 

behaviors. Since the proposed models with each shift indicator have been compared 

in simulation studies 1 and 2, this section focuses on exploring the consequences of 

fitting models with misspecified shift indicator.  

 Two conditions generated in simulation studies 1 and 2 were used in the 

present simulation study. Both conditions included responses and RTs from 500 

examinees, assuming weak correlation between ability and speed and weak 

correlation between item difficulty and the shift. Test length was varied at 20 and 40. 

Thus, repeated measures ANOVA was conducted with one between-condition factor, 



 

 

127 

 

test length, and one within-condition factor, the estimation model. The bias, SE, and 

RMSE under the two conditions were reported in Appendix C.  

 First-level item parameters. In terms of the item difficulty parameters, the 

estimation model was a significant factor with a medium effect size (f=.353) on 

RMSE when the data generating model was the JM-RD1. Interestingly, the seven 

estimation models performed similarly, except that the JM-RD2 (see Figure 29 and 

Table 27). The JM-RD2 appeared to have the largest RMSE among all seven 

estimation models, indicating that ignoring the random effects resulted in 

significantly larger total error in the item difficulty estimates than the misspecified 

models, even if the shift indicator was specified correctly.  

 When the JM-DD1 was the data generating model, the estimation model had a 

medium effect size (f=.387) on SE and a small effect size (f=.211) on RMSE. Except 

for the JM-DD2, models with correctly specified shift indicator significantly 

outperformed the models conditioning on item responses for both SE and RMSE. No 

significant difference was found among the three models conditioning observed item 

responses (i.e., the JM-RD1, the JM-RD2, and the JM-R) and the HM for both SE and 

RMSE. These results reflect that fitting models with misspecified shift indicator 

would not reduce the estimation precision of the item difficulty estimates when data 

were generated from the JM-RD1, but fitting the models conditioning on item 

responses to data generated from the JM-DD1 resulted in significantly worse 

estimates. 

 For both time discrimination and time intensity parameters, the error indices 

were only affected by the estimation model with a practically meaningful effect size. 
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In terms of the time discrimination parameters (see Figure 30 and Table 28), the 

estimation model had a big effect size (f=.518) on the systematic error, a small effect 

size (f=.104) on the random error, and a medium effect size (f=.381) on the total error 

when data were simulated from the JM-RD1. If the underlying data structure 

followed the JM-DD1, the estimation model was significant with a large effect size 

(f=.601) on bias, and medium effect sizes on SE and RMSE (f=.259 and .340, 

respectively).  

 Regarding the time intensity parameters, the estimation model was significant 

with large effect sizes on bias, SE, and RMSE (f=.453, .427, and .494, respectively) 

for data generated from the JM-RD1. When the JM-DD1 was the data generating 

model, the estimation model also had a significant large effect with a size (f=.435) on 

bias, a medium effect size (f=.391) on SE, and a large effect size (f=.440) on RMSE. 

 Findings on both time discrimination and time intensity parameters were 

similar. Applying estimation models with incorrectly specified shift indicator led to 

large negative bias and large RMSE, even though the seven models did not differ 

much on SE. For the time intensity parameters, the discrepancy between the HM and 

the models conditioning on item-person distance on bias and RMSE was larger when 

data were simulated from the JM-RD1 (see Figure 31 and Table 29). However, the 

HM only performed slightly worse than models with a shift mechanism different from 

the data generating model for data generated from the JM-DD1. This finding suggests 

that the underlying structure specified in the JM-DD1 is more sensitive to the 

specification of the shift indicator in terms of the recovery of time intensity 

parameters. 
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Figure 29. Significant main effects on the SE and RMSE of the item difficulty 

estimates. 

 

Table 27. Post-hoc pairwise comparison results of the estimation model on the SE 

and RMSE in item difficulty estimation in simulation study 3. 

  Mean Difference 

  JM-RD1 JM-DD1 

Model (m) Model (n) RMSE SE RMSE 

JM-RD1 JM-RD2 -.030* <.001 <.001 

 JM-R <.001 <.001 <.001 

 JM-DD1 -.002* .014* .015* 

 JM-DD2 -.001 .013* .004 

 JM-D -.002 .014* .014* 

 HM <.001 <.001 <.001 

JM-RD2 JM-R .030* <.001 <.001 

 JM-DD1 .028* .015* .015* 

 JM-DD2 .029* .013* .005 

 JM-D .028* .014* .014* 

 HM .030* <.001 <.001 

JM-R JM-DD1 -.002 .014* .014* 

 JM-DD2 -.001 .013* .004 

 JM-D -.002* .014* .014* 

 HM <.001 <.001 <.001 

JM-DD1 JM-DD2 .001 -.001 -.010* 

 JM-D <.001 -.001 -.001 

 HM .002 -.014* -.014* 

JM-DD2 JM-D -.001 .001 .010 

 HM .001 -.013* -.004 

JM-D HM .002 -.014* -.014* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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Figure 30. Significant main effects on the bias, SE, and RMSE of the time 

discrimination estimates. 

 

Table 28. Post-hoc pairwise comparison results of the estimation model on the bias, 

SE, and RMSE in time discrimination estimation in simulation study 3. 

  Mean Difference 

  JM-RD1 JM-DD1 

Model 

(m)  

Model 

(n)  
Bias SE RMSE Bias SE RMSE 

JM-RD1 JM-RD2 -.022* .001 -.010* -.003* <.001 -.002* 

 JM-R <.001 <.001 <.001 <.001 <.001 <.001 

 JM-DD1 -.077* .001 -.050* .047* -.003* .024* 

 JM-DD2 -.083* .002* -.054* .029* -.002* .016* 

 JM-D -.077* .001 -.051* .046* -.003* .024* 

 HM -.086* .002* -.057* -.003* <.001 -.002* 

JM-RD2 JM-R .022* -.001 .010* .002* <.001 .002* 

 JM-DD1 -.055* .001 -.041* .049* -.003* .026* 

 JM-DD2 -.061* .001 -.045* .032* -.002* .018* 

 JM-D -.055* .001 -.041* .049* -.003* .026* 

 HM -.065* .002 -.047* <.001 <.001 <.001 

JM-R JM-DD1 -.077* .001 -.050* .047* -.003* .024* 

 JM-DD2 -.083* .002* -.054* .029* -.002* .016* 

 JM-D -.077* .001 -.051* .047* -.003* .024* 

 HM -.086* .002* -.057* -.003* <.001 -.002* 

JM-DD1 JM-DD2 -.006* .001* -.004* -.017* .001 -.008* 

 JM-D <.001 <.001 <.001 <.001 <.001 <.001 

 HM -.010* .001* -.006* -.049* .003* -.026* 

JM-DD2 JM-D .006* -.001* .003* .017* -.001 .008* 

 HM -.003* <.001 -.003* -.032* .002* -.018* 

JM-D HM -.009* .001* -.006* -.049* .003* -.026* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m).  

 

  



 

 

131 

 

 
Figure 31. Significant main effects on the bias, SE, and RMSE of the time intensity 

estimates. 

 

Table 29. Post-hoc pairwise comparison results of the estimation model on the bias, 

SE, and RMSE in time intensity estimation in simulation study 3. 

  Mean Difference 

  JM-RD1 JM-DD1 

Model (m) Model (n) Bias SE RMSE Bias SE RMSE 

JM-RD1 JM-RD2 -.003 .008* -.042* .001 .004* <.001 

 JM-R -.001 <.001*(-) <.001 -.002 <.001 -.002 

 JM-DD1 -.104* -.006* -.082* .172* -.016* .126* 

 JM-DD2 -.114* .005* -.096* .168* -.005* .087* 

 JM-D -.117* -.007* -.093* .161* -.016* .126* 

 HM -.170* .010* -.143* -.009 .006* -.009 

JM-RD2 JM-R .002 -.008* .042* -.003 -.004* -.002 

 JM-DD1 -.101* -.014* -.040* .171* -.021* .127* 

 JM-DD2 -.111* -.003* -.053* .167* -.010* .087* 

 JM-D -.114* -.015* -.051* .161* -.020* .127* 

 HM -.167* .002* -.100* -.009* .002* -.009* 

JM-R JM-DD1 -.103* -.006* -.082* .173* -.016* .128* 

 JM-DD2 -.113* .005* -.095* .169* -.005* .088* 

 JM-D -.116* -.007* -.093* .163* -.016* .128* 

 HM -.169* .010* -.143* -.007 .006* -.007 

JM-DD1 JM-DD2 -.010 .011* -.014 -.004 .011* -.040* 

 JM-D -.013 -.001 -.011* -.010 <.001 <.001 

 HM -.066* .016* -.061* -.180* .022* -.135* 

JM-DD2 JM-D -.003 -.012* .003 -.006 -.011* .040* 

 HM -.056* .005* -.047* -.176* .011* -.096* 

JM-D HM -.053* .017* -.050* -.170* .022* -.135* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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 First-level person parameters. Unlike item parameters, the first-level person 

parameters were affected by both the estimation model and test length. With regard to 

the ability parameters, for data generated from the JM-RD1, the estimation model and 

test length were significant with a small effect size (f=.184) and a medium effect size 

(f=.383) on the random error, and with a small effect size (f=.148) and a medium 

effect size (f=.266) on the total error. For data generated from the JM-DD1, both the 

estimation model and test length had significant impacts on the SE of ability 

estimates with large effect sizes (f=.574 and .503 respectively). The interaction term 

between the estimation model and test length also significantly affected the random 

error in the ability estimates with a small effect size (f=.132). Regarding RMSE, the 

estimation model and test length were significant with a large effect size (f=.716) and 

a medium effect size (f=.330) respectively.  

 If the latent structure followed the JM-RD1, models conditioning on item-

person distance yielded significantly larger SE and RMSE than the models 

conditioning on item responses, but the discrepancies were rather small (see Figure 

32 and Table 30). In contrast, if the shift indictor was determined by item-person 

distance, models with the correct shift indicator yielded much smaller SE and RMSE 

than other misspecified models. Models conditioning on the observed responses 

produced SE and RMSE comparable to the HM, indicating that it is more important 

to specify the correct shift indicator for data generated from the JM-DD1. Similar to 

the item difficulty parameters, this finding may also be because RTs directly take part 

in the estimation of ability parameters. Thus, the ability estimates from other models 
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that utilize RT information through the correlation between ability and speed are 

expected to be less accurate.  

 The significant interaction effect on the SE of the ability estimates is depicted 

in Figure 33. The JM-RD1, the JM-RD2, the JM-R, and the HM performed similarly 

on the random error of the ability estimates when data were simulated from the JM-

DD1. The three models conditioning on item-person distance, however, produced 

smaller random errors. This pattern was the same for both levels of test length, 

despite that the differences in the SEs between the three models conditioning on item-

person distance and the other four models was more evident when test length was 40.  

 Regarding the speed parameters, when the shift indicator was determined by 

item responses, the estimation model and test length were significant factors with a 

medium effect size (f=.314) and a large effect size (f=.772) on the random error, and 

large effect sizes (f=.439 and .671 respectively) on the total error. Similarly, when the 

JM-DD1 was the data generating model, the estimation model had a medium effect 

size (f=.233) on SE and a large effect size (f=.450) on RMSE, whereas test length had 

a large effect size (f=.712) on SE and a medium effect size (f=.229) on RMSE.  

 For both data generating models, fitting models with correctly specified shift 

indicator resulted in significantly smaller RMSE, even though the differences in SE 

was small (see Figure 34 and Table 31). Similar to the time intensity parameters, 

applying models conditioning on the item responses to data generated from the JM-

DD1 resulted in the speed estimates containing approximately the same amount of 

error as the HM. This finding aligns with the results from the first-level item 

parameters, that the JM-DD1 is more sensitive to misspecified shift indicator.  
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Figure 32. Significant main effects on the SE and RMSE of the ability estimates. 

 

 
Figure 33. Significant two-way interaction between the estimation model and test 

length on the SE of the ability estimates for data generated from the JM-DD1. 
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Table 30. Post-hoc pairwise comparison results of the estimation model on the SE 

and RMSE in ability estimation in simulation study 3. 

  Mean Difference 

  JM-RD1 JM-DD1 

Model (m) Model (n) SE RMSE SE RMSE 

JM-RD1 JM-RD2 .001* <.001 <.001 <.001 

 JM-R <.001 <.001 <.001 <.001 

 JM-DD1 -.008* -.009* .042* .051* 

 JM-DD2 -.003* -.004* .031* .038* 

 JM-D -.008* -.008* .042* .051* 

 HM .001* -.001 <.001 <.001 

JM-RD2 JM-R -.001* <.001 <.001 <.001 

 JM-DD1 -.009* -.009* .042* .051* 

 JM-DD2 -.003* -.004* .031* .038* 

 JM-D -.009* -.008* .042* .051* 

 HM .001* -.001 <.001 <.001 

JM-R JM-DD1 -.008* -.008* .043* .051* 

 JM-DD2 -.003* -.004* .031* .038* 

 JM-D -.008* -.008* .042* .051* 

 HM .001* -.001 <.001 <.001 

JM-DD1 JM-DD2 .005* .005* -.011* -.014* 

 JM-D <.001 .001* <.001 <.001 

 HM .009* .008* -.042* -.051* 

JM-DD2 JM-D -.005* -.004* .011* .014* 

 HM .004* .003* -.031* -.038* 

JM-D HM .009* .007* -.042* -.051* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 
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Figure 34. Significant main effects on the SE and RMSE of the speed estimates. 
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Table 31. Post-hoc pairwise comparison results of the estimation model on the SE 

and RMSE in speed estimation in simulation study 3. 

  Mean Difference 

  JM-RD1 JM-DD1 

Model (m) Model (n) SE RMSE SE RMSE 

JM-RD1 JM-RD2 -.001* -.001* <.001 <.001*(+) 

 JM-R <.001 <.001 <.001 <.001 

 JM-DD1 -.003* -.009* -.003* .024* 

 JM-DD2 -.003* -.010* -.003* .024* 

 JM-D -.003* -.009* -.003* .024* 

 HM -.004* -.016* <.001 -.001* 

JM-RD2 JM-R .001* .001* <.001 <.001*(-) 

 JM-DD1 -.002* -.009* -.003* .024* 

 JM-DD2 -.002* -.009* -.003* .023* 

 JM-D -.002* -.008* -.003* .024* 

 HM -.003* -.016* <.001 -.001* 

JM-R JM-DD1 -.003* -.009* -.003* .024* 

 JM-DD2 -.003* -.010* -.003* .024* 

 JM-D -.003* -.009* -.003* .024* 

 HM -.004* -.016* <.001 -.001* 

JM-DD1 JM-DD2 <.001*(-) <.001*(-) <.001*(-) <.001*(-) 

 JM-D <.001*(+) <.001*(+) <.001 <.001 

 HM -.001* -.007* .003* -.025* 

JM-DD2 JM-D <.001*(+) .001* <.001*(+) <.001*(+) 

 HM -.001* -.007* .003* -.025* 

JM-D HM -.001* -.007* .003* -.025* 

Note. *p<.05. The mean difference in the error indices is calculated by subtracting 

each error index of Model (n) from that of Model (m). 

 



 

 

138 

 

 Parameters on RT distribution shift, mean vector and covariance matrices. 

Figures 35 to 38 show the impact of the estimation model on the error indices of the 

parameters on RT distribution shift, item mean vector, item covariance matrix, and 

person covariance matrix, respectively. In general, fitting data generated from a 

model with one shift indicator to models with another shift indicator resulted in much 

larger bias and RMSE, despite that the SE from the models conditioning on item-

person distance was always larger.  

 One exception was the slope parameter on RT distribution shift. For both data 

generating models, the estimated slope from models with misspecified shift indicator 

always had smaller bias, SE, and RMSE (see Figure 35). However, if the slope 

estimates were converted to the correlation between item difficulty and the shift, the 

model with the correct shift indicator always yielded smaller bias, SE, and RMSE. 

Given that the slope parameter was not well recovered, this finding indicates that the 

estimation error in the slope estimates may be influenced by other estimates, such as 

the variance of random effects and the variance of item difficulty parameters.  

 As with the first-level parameters, models with incorrectly specified shift 

indicator did not substantially reduce the estimation accuracy of IRT model-related 

parameters when the JM-RD1 reflected the true latent structure. For the mean and 

variance of item difficulty, the models conditioning on item-person distance even 

provided slightly smaller bias and RMSE than the JM-RD1 and the JM-R. However, 

fitting models conditioning on item responses to data simulated from the JM-DD1 

usually led to errors as large as the HM. As such, the latent structure of the data 

should be carefully examined prior to choosing the estimation models.   
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Figure 35. Main effect of the estimation model on the bias, SE, and RMSE of the 

parameter estimates on RT distribution shift.  
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Figure 36. Main effect of the estimation model on the bias, SE, and RMSE of the 

item mean vector. 
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Figure 37. Main effect of the estimation model on the bias, SE, and RMSE of the 

item covariance matrix. 
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Figure 38. Main effect of the estimation model on the bias, SE, and RMSE of the 

person covariance matrix. 
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 Model fit indices. Table 32 presents the frequency of each model fit index 

selecting each estimation model as the best fitting model. If the underlying structure 

followed the JM-RD1, the performance of the model selection criteria was similar to 

simulation study 1. Deviance and DIC chose the JM-RD1 and the JM-R about 50% of 

the replications, which outperformed the other model fit indices. When the JM-DD1 

was the data generating model, deviance, AIC, and AICc performed better than their 

counterparts on data generated from the JM-RD1 under both conditions. BIC still 

selected the JM-D in all replications.  

 DIC was the second best model fit index when test length was 40 as it selected 

the JM-DD1 in about 50% of the replications. However, for a test with 20 items, DIC 

tended to favor models conditioning on observed responses more than the other four 

estimation models. Among the three models conditioning on item-person distance, 

only the JM-D was chosen as the best fitting model in one of the 30 replications, 

whereas the HM was selected in only three of the replications. On the contrary, the 

JM-R was the most frequently selected model, despite that the JM-DD1 was in fact 

the data generating model. Given that DIC tended to favor the HM in simulation 

study 2 when test length was small, this finding is not unexpected. Similar to the HM, 

the effective number of parameters for the models with item responses as the shift 

indicator estimated by DIC was also smaller than the JM-DD1. As such, DIC was not 

able to identify the true model when test length was small. Results from the other 

model fit indices may be more trustworthy for shorter tests. 
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Table 32. Frequency of identifying each model as the best fitting model in simulation study 3. 

     JM-RD1 JM-DD1 

J I 𝜌𝜃𝜏 𝜌𝜃𝜏 
Model Fit 

Indices 

JM-

RD1 

JM-

RD2 

JM-

R 

JM-

DD1 

JM-

DD2 

JM-

D 
HM 

JM-

RD1 

JM-

RD2 

JM-

R 

JM-

DD1 

JM-

DD2 

JM-

D 
HM 

500 20 .2 .3 Deviance 15 0 15 0 0 0 0 0 0 0 14 0 16 0 

    AIC 3 0 27 0 0 0 0 0 0 0 12 0 18 0 

    AICc 0 0 30 0 0 0 0 0 0 0 10 0 20 0 

    BIC 0 0 30 0 0 0 0 0 0 0 0 0 30 0 

    DIC 12 0 18 0 0 0 0 8 5 13 0 0 1 3 

500 40 .2 .3 Deviance 14 0 16 0 0 0 0 0 0 0 20 0 10 0 

    AIC 5 0 25 0 0 0 0 0 0 0 14 0 16 0 

    AICc 0 0 30 0 0 0 0 0 0 0 9 0 21 0 

    BIC 0 0 30 0 0 0 0 0 0 0 0 0 30 0 

    DIC 19 0 11 0 0 0 0 0 0 0 15 0 15 0 
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 To summarize, most parameters were affected by the choice of the estimation 

model, while only first-level person parameters were significantly influenced by test 

length (see Table 33). Applying models with the same shift indicator as the data 

generating model in general resulted in more accurate model parameter estimates, 

regardless of the data generating model. The consequences of employing estimation 

models with misspecified shift indicator were manifested on RT model-related 

parameters. If the true latent structure followed the JM-RD1, fitting models 

conditioning on item-person distance was not as harmful as the HM. However, if the 

JM-DD1 reflected the true model structure, models conditioning on item responses 

produced similar estimation error as the HM. As such, the underlying model structure 

should be identified before interpreting the parameter estimates. Even though the 

model fit indices considered in this study did not perform well in recognizing the data 

generating models, they were able to identify models with the correctly specified shift 

indicator, especially for longer tests.    

Table 33. Summary of the effect sizes of the significant effects in simulation study 3. 

  Significant effects 

  JM-RD1 JM-DD1 

Parameters Error Indices Model I Model I Model*I 

𝑏𝑖 Bias      

 SE   medium   

 RMSE medium  small   

𝛼𝑖 Bias large  large   

 SE small  medium   

 RMSE medium  medium   

𝛽𝑖 Bias large  large   

 SE large  medium   

 RMSE large  large   

𝜃𝑗 SE small medium large large small 

 RMSE small medium large medium  

𝜏𝑗 SE medium large small large  

 RMSE large large large small  
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4.2 Empirical Data Analyses 

 In addition to the simulation studies, the performance of different approaches 

to modeling or ignoring the speed-accuracy-difficulty interaction was evaluated with 

empirical data analyses as well. Datasets from two large-scale assessment programs 

that both used the Rasch model as the operational scoring model were utilized to 

demonstrate the application of the proposed models. The first dataset came from a 

large-scale credentialing exam program (Cizek & Wollack, 2017), and the second one 

was extracted from the math domain in 2012 PISA (OECD, 2014). After carrying out 

the data cleaning procedures described in section 3.4, the first dataset included item 

responses and RTs from 1,644 examinees and 40 items, whereas the second dataset 

contained item responses and RTs from 795 examinees and 10 items. The six 

proposed models and the baseline HM (van der Linden, 2007) were applied to both 

datasets. Model fit indices and parameter estimates based on the best fitting models 

for the two datasets were discussed in the sections 4.2.1 and 4.2.2 respectively. 

4.2.1 Dataset 1 

 The model fit indices and parameter estimates for dataset 1 were reported in 

Tables 34 and 35. Convergence criteria were satisfied as all parameter estimates had a 

𝑅̂ smaller than 1.1, and no convergence issue was found through the examination of 

diagnostic plots.  

 Model fit indices summarized in Table 34 provided information from at least 

three aspects. First, the HM consistently yielded the largest values on all model fit 

indices, indicating that models accounting for the conditional dependence between 

responses and RTs provided much better overall model fit, regardless of the shift 
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mechanisms. Second, for both shift mechanisms, the model that took into account 

conditional dependence but ignored the random effects usually produced larger model 

fit indices than the models with random effects. In particular, the JM-RD2 performed 

worse than the JM-RD1 and the JM-R, whereas the JM-DD2 performed worse than 

the JM-DD1 and the JM-D. Even so, all models with conditional dependence had 

better overall model fit than the HM.  

 Third, the three models conditioning on the observed responses yielded 

smaller model fit indices than the three models conditioning on item-person distance, 

implying that the underlying shift may more likely be dependent on the observed 

responses. Given that the model fit indices evaluated in the present study did not 

distinguish well between the two models with random effects in the simulation 

studies, both the JM-RD1 and the JM-R might be the better fitting underlying model. 

Therefore, the posterior mean and SD of the key parameters from both the JM-RD1 

and the JM-R were presented in Table 35 and discussed.  

 For dataset 1, the estimated mean of item difficulty was -.912, indicating that 

items were in general easy for the examinee population. The correlation between item 

difficulty and time intensity was estimated to be .100 and .114 from the JM-RD1 and 

the JM-R respectively, reflecting a weak association between item difficulty and time 

intensity. Additionally, the examinees in dataset 1 were rather homogeneous in terms 

of ability and test-taking speed as the variances of ability and speed estimates were 

small. The correlation between ability and speed was also weak. The mean of time 
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discrimination parameters was approximately 2, which is similar to the simulation 

setting of the present study. 

 In terms of the intercept of RT distribution shift, the estimate from the JM-

RD1 was -.128, indicating that for an item with difficulty of 0, a correct response 

was .128 unit faster than an incorrect response. The interpretation of the estimated 𝜔0 

from the JM-R was different from the JM-RD1. An estimated intercept of -.255 in the 

JM-R reflected that on average correct responses were .255 unit faster than incorrect 

responses for all items in dataset 1. Given that the item difficulty was positively 

related to the shift, this indicates that most items in dataset 1 had an item difficulty 

smaller than 0, which also aligned with the estimated mean of item difficulty. The 

estimate of 𝜔1 was .139, meaning that one unit increase in item difficulty led to .139 

unit increase in the RT shift. This is consistent with the motivating example of this 

study (see Figures 1 and 2) as item difficulty was positively associated with RT 

distribution shift.  

 Taking the estimates of 𝜔0, 𝜎𝜙
2, and 𝜎𝑏

2, the correlation between item 

difficulty and shift and the variance of the shift could also be derived from the 

parameter estimates. The correlation between item difficulty and shift was .727, and 

the variance of the shift was .028. Notice that the variance of the shift resolved from 

the estimates obtained from the JM-RD1 was equal to the estimated variance of the 

random effects from the JM-R. This is because in the JM-R where no predictor of RT 

distribution shift was included, the variance of random effects was theoretically equal 

to the variance of shift. Although the variance of shift may seem small, it was 

approximately the same as the estimated variance of speed parameters, and about one 
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fourth of the estimated variance of time intensity. Adding item difficulty as a 

predictor of the shift explained half of the total variance of the shift.  

Table 34. Model fit indices for dataset 1. 

Model Deviance AIC AICc BIC DIC 

JM-RD1 163441.2 163703.2 163743.1 165251.1 166975.6 

JM-RD2 164038.0 164298.0 164337.2 165834.1 167617.4 

JM-R 163443.0 163703.0 163742.2 165239.0 167003.8 

JM-DD1 166320.5 166582.5 166622.3 168130.3 170872.3 

JM-DD2 166717.4 166977.4 167016.6 168513.4 170868.5 

JM-D 166325.0 166585.0 166624.2 168121.0 170695.9 

HM 167074.1 167330.1 167368.0 168842.5 170518.5 

 

Table 35. Parameter estimates for the dataset 1. 

 JM-RD1 JM-R 

Parameters Mean SD Mean SD 

Model parameters     

𝜇𝑏  -.912 .138 -.909 .138 

𝜇𝛽  4.166 .051 4.165 .052 

𝜎𝑏
2 .754 .179 .757 .180 

𝜎𝑏𝛽 .028 .046 .032 .047 

𝜎𝛽
2 .104 .025 .104 .025 

𝜎𝜃
2 .272 .015 .272 .015 

𝜎𝜃𝜏 .015 .003 .015 .003 

𝜎𝜏
2 .029 .001 .029 .001 

𝜔0 -.128 .021 -.255 .005 

𝜔1 .139 .023 NA NA 

𝜎𝜙
2 .013 .004 .028 .007 

Derived parameters     

mean(𝛼𝑖) 2.067  2.067  

𝜌𝑏𝛽  .100  .114  

𝜌𝜃𝜏 .170  .169  

𝜌𝑏𝜆 .727  NA  

𝜎𝜆
2 .028  .028  
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4.2.2 Dataset 2 

 Dataset 2 told a different story than dataset 1. Tables 36 and 37 summarize the 

model fit indices and posterior mean and SD for dataset 2. Convergence of all 

parameter estimates was checked through numerical and graphical diagnostics before 

interpreting the results.  

 Similar to dataset 1, the HM still yielded the largest model fit indices based on 

deviance, AIC, AICc and BIC. Yet, the HM produced smaller DIC than the JM-DD2 

and the JM-D. This is not unexpected because both simulation studies 2 and 3 show 

that DIC tended to over-penalize models conditioning on item-person distance when 

data were generated from the JM-DD1 and test length was small. Yet, models with 

random effects still performed better than models with the same shift mechanism but 

without random effects, regardless of which model selection criteria was used.  

 Unlike dataset 1, models assuming one shift mechanism were not consistently 

better than models assuming the other shift mechanism. Nonetheless, the JM-DD1 

and the JM-D were identified as the best fitting model by deviance, AIC, AICc, and 

BIC, indicating that the sample in dataset 2 was more likely to follow the second shift 

mechanism based on item-person distance. DIC was not considered as a model 

selection criteria for dataset 2 as it was not able to identify the data generating model 

when true underlying model followed the JM-DD1 and test length was small. 

Therefore, parameter estimates from the JM-DD1 and the JM-D were illustrated. 

 Regarding the item mean vector and covariance matrices, the JM-DD1 and the 

JM-D provided similar parameter estimates with differences in the third decimal 

place. Specifically, the estimated mean of item difficulty was .517 and .518 from the 
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JM-DD1 and the JM-D respectively. As such, items in dataset 2 were on average 

more difficult than items in dataset 1, even though they had similar time intensity and 

time discrimination parameter estimates as items in dataset 1. The estimated 

correlation between item difficulty and time intensity parameters was both .440, 

indicating a moderate positive association between item difficulty and time intensity.  

 The variance of time intensity was estimated to be larger than dataset 1. This 

shows that items in dataset 2 were more diverse regarding the time intensiveness. 

Along the same lines, examinees in dataset 2 had greater variabilities in terms of their 

ability and speed. Further, the latent ability and speed was strongly negatively 

correlated. In other words, examinees with higher ability tended to respond to the 

items in dataset 2 at a slower pace, whereas low-ability examinees were likely to 

spend less time on the items. As PISA was generally considered a low-stakes 

assessment, examinees seemed less motivated to work on the items.  

 Considering the intercept estimate from the JM-D, it is expected that the mean 

of item difficulty in dataset 2 should be above 0 given the positive correlation 

between item difficulty and the shift. While the correlation between item difficulty 

and the shift in dataset 1 was strong, the correlation for dataset 2 was weak. This may 

be due to unstable estimation with 10 items. Moreover, this parameter was on average 

about 40% underestimated in both simulation studies 1 and 2. As a result, the true 

correlation between item difficulty and the shift is expected to be stronger.  

 Nevertheless, the estimated variance of random effects was close to the 

estimated variance of speed parameters for both models. Consistent with the results 

from simulation studies and dataset 1, this finding suggests that the random effects 
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are non-negligible given the magnitude of the variance. Except for the person 

covariance matrix, the SDs of all parameter estimates were quite large compared to 

dataset 1, indicating that model estimation was not as stable due to limited number of 

items. 

Table 36. Model fit indices for dataset 2. 

Model Deviance AIC AICc BIC DIC 

JM-RD1 20618.8 20700.8 20705.4 21166.4 22420.6 

JM-RD2 20725.3 20805.3 20809.7 21259.6 22498.7 

JM-R 20622.1 20702.1 20706.5 21156.4 22435.5 

JM-DD1 20500.4 20582.4 20587.0 21048.0 22599.6 

JM-DD2 20663.6 20743.6 20748.0 21197.9 23099.5 

JM-D 20507.3 20587.3 20591.7 21041.6 22750.6 

HM 20828.5 20904.5 20908.4 21336.1 22612.0 

 

Table 37. Parameter estimates for the dataset 2. 

 JM-DD1 JM-D 

Parameters Mean SD Mean SD 

Model parameters     

𝜇𝑏  .517 .338 .518 .340 

𝜇𝛽  4.115 .178 4.112 .180 

𝜎𝑏
2 1.222 .692 1.216 .685 

𝜎𝑏𝛽 .278 .267 .278 .272 

𝜎𝛽
2 .327 .190 .329 .195 

𝜎𝜃
2 .961 .085 .950 .086 

𝜎𝜃𝜏 -.306 .026 -.304 .026 

𝜎𝜏
2 .208 .013 .207 .013 

𝜔0 -.052 .062 -.009 .047 

𝜔1 .102 .090 NA NA 

𝜎𝜙
2 .257 .179 .204 .133 

Derived parameters     

mean(𝛼𝑖) 1.959  1.958  

𝜌𝑏𝛽  .440  .440  

𝜌𝜃𝜏 -.684  -.686  

𝜌𝑏𝜆 .217  NA  

𝜎𝜆
2 .270  .204  
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Chapter 5:   Discussion 

 The conditional independence assumption between responses and RTs has 

been widely adopted in the joint modeling framework, yet the consequences of 

violating this assumption has not been thoroughly explored until recently (e.g., 

Bolsinova & Tijmstra, 2017; Meng et al., 2015; Ranger & Ortner, 2012). The present 

study focused on a phenomenon where the direction of the conditional dependence 

between responses and RTs appeared to have a systematic association with item 

difficulty. Different approaches to modeling the interaction among speed, accuracy, 

and difficulty were proposed. Their performance was evaluated with the HM that did 

not account for conditional dependence in simulation studies and empirical data 

analyses. In the first two sections of this chapter, findings from the three simulation 

studies and the empirical data analyses were summarized, and the implications of the 

findings in research and practical settings were addressed. In the last section of this 

chapter, limitations and future research directions were discussed in detail. 

5.1 Discussion of the Simulation Results 

 In this section, findings from the three simulation studies were discussed in 

terms of the recovery of model parameters, impact of manipulated factors, 

performance of the proposed and alternative modeling approaches as well as model 

selection criteria. Generally speaking, all parameters were well recovered except the 

slope of the shift in RT distributions and the correlation between item difficulty and 

the shift. Repeated measures ANOVA was conducted for item difficulty, time 

discrimination, time intensity, ability, and speed parameter estimates, where only 
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statistically significant and practically meaningful effects were reported. Other 

parameters were summarized in terms of bias, SE, and RMSE for each parameter 

under each condition.  

5.1.1 Impact of the Manipulated Factors 

 Regarding item difficulty, time discrimination, time intensity, ability, and 

speed parameter estimates, conclusions were rather consistent for both simulation 

studies 1 and 2. Sample size was often significant with at least small effect sizes for 

item difficulty, time discrimination, and time intensity parameter estimates. On the 

other hand, test length was significant for person-related parameter estimates, ability 

and speed. Although test length was the only manipulated between-condition factor in 

simulation study 3, the same pattern was found where test length was a significant 

and practically important factor for both ability and speed estimates. Other than the 

five parameters, increasing sample size and test length were also in general associated 

with more accurate parameter estimates. 

 The conclusion that increasing sample size and test length both led to smaller 

errors in the parameter estimates was consistent with the literature (e.g., Kang, 2016; 

Marianti, 2015; Suh, 2010; Wang, Fan, et al., 2013). However, the finding that 

sample size only affected item-related parameters and test length only influenced 

person-related parameters was not commonly reported in this line of research. Several 

reasons may lead to this inconsistency. One possibility was that only a few studies 

manipulated sample size and/or test length in the context of modeling conditional 

dependence (e.g., Bolsinova, De Boeck, & Tijmstra, 2017; Bolsinova, Tijmstra, & 

Molenaar, 2017; Fox & Marianti, 2016; Meng et al., 2015; Ranger & Kuhn, 2012). 
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Among them, even fewer conducted ANOVA for the error indices and screened the 

significant factors with an effect size measure. It was also possible that the findings 

were different due to different data generating models. 

 Another manipulated factor, the correlation between ability and speed, only 

had a significant impact on the random error of the ability estimates. The SE of the 

ability parameters consistently increased as the correlation between ability and speed 

became stronger, which aligned with the findings from Klein Entink (2009) and 

Patton (2015). As more information was shared between the two latent traits, the 

ability estimates were more stable, regardless of the estimation model. On the other 

hand, the speed estimates were not significantly affected by this factor due to 

asymmetrical share of information. Other than the ability parameters, the correlation 

between ability and speed overall did not noticeably affect the parameter estimates, 

but it did lead to consistently decreasing bias from the HM and decreasing random 

and total errors from all estimation models of the estimated correlation between 

ability and speed. This finding implies that the estimation precision of the correlation 

between ability and speed was improved when the true person correlation was 

stronger. On the contrary, the estimated speed variance from the HM was more biased 

when the correlation between ability and speed increased.  

 The correlation between item difficulty and the shift, however, did not appear 

as a significant factor for any of the ANOVAs. This may result from the fact that the 

correlation between item difficulty and the shift operated on a rather small scale, thus 

did not lead to remarkable changes in the parameter estimates overall. However, the 

bias of estimates of the mean of time intensity, the correlation between item difficulty 
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and time intensity, and the speed variance from the HM tended to increase as the 

correlation between item difficulty and the shift became stronger.  

5.1.2 Different Approaches to Modeling the Speed-Accuracy-Difficulty Interaction 

 In the present study, six models were proposed with two different shift 

mechanisms and three different approaches to modeling the speed-accuracy-difficulty 

interaction. Three simulation studies were designed to evaluate the performance of 

the six proposed models as opposed to the baseline HM (van der Linden, 2007). In 

general, the proposed models yielded smaller bias and RMSE in the parameter 

estimates than the HM. The two models with random effects (i.e., the JM-RD1 and 

the JM-D, the JM-DD1 and the JM-D) tended to perform in a similar fashion for both 

shift mechanisms, which outperformed the models without random effects on bias 

and RMSE. Regarding random errors, the rank ordering was the opposite in most 

cases. For both simulation studies 1 and 2, the HM usually produced the smallest 

random errors, the model without random effects had the second smallest SEs, and 

the two models with random effects yielded the largest random errors. This is 

expected since when the complexity of the estimation model increases, the systematic 

error usually goes down, but the random error would be magnified. However, as the 

discrepancies among random errors from different estimation models was small 

compared to systematic errors, it was often found that the pattern of bias dominated 

the pattern of RMSE.  

 The consequences of ignoring the conditional dependence could be concluded 

through comparing parameter recovery under the HM and the proposed models. If the 

JM-RD1 reflected the true latent structure, ignoring the conditional dependence 



 

 

157 

 

would not lead to significantly worse parameter estimates related to the IRT model, 

including item difficulty, ability, the mean and variance of item difficulty, and the 

ability variance. However, when data were simulated from the JM-DD1, estimates of 

the five IRT model-related parameters mentioned above from the HM were subject to 

more estimation errors. As the item-person distance was introduced into the RT 

model, the information from RT could contribute to improving the estimation 

accuracy of IRT model-related parameters both directly and indirectly. Further, the 

JM-DD1 performed significantly better than the JM-D on item difficulty and ability 

parameters, as opposed to rather equivalent performance of the JM-RD1 and the JM-

R. As such, model parameter recovery of the JM-DD1 relied on correct model 

specification more than the JM-RD1. 

 Meanwhile, for both data generating model, parameter estimation related to 

the RT model would be negatively affected if conditional independence was assumed. 

Parameters such as time discrimination, time intensity, speed, the mean and variance 

of time intensity, the correlation between item difficulty and time intensity, the 

correlation between ability and speed, and the speed variance, would contain large 

systematic and total errors. In particular, time discrimination, time intensity, the mean 

of time intensity were underestimated, whereas the correlation between item 

difficulty and time intensity, the variance of time intensity, the correlation between 

two latent traits, and the variance of speed were overestimated to a larger extent 

compared to other estimation models. Even though the bias of the speed estimates 

was fixed at zero, the SDs of bias in the speed estimates were inflated, which led to 

the largest total errors in the speed estimates from the HM as well.  
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 A closer examination of the SDs of bias in the ability estimates reflected that 

the proposed models produced smaller SDs of bias than the HM for both data 

generating models, despite that the mean bias of ability estimates was also 

constrained to zero. Further, the stronger the correlation between the two latent traits, 

the larger the discrepancy between the SD of bias in the ability estimates from the 

proposed models and the HM. Meng et al. (2015) had a similar conclusion that 

modeling the conditional dependence yielded less biased estimates, but the 

improvements were not noticeable when the correlation between latent traits was low. 

Bolsinova and Tijmstra (2017) also showed that accounting for the conditional 

dependence between responses and RTs resulted in a decrease of MSE in ability 

estimates only when the correlation between latent traits was non-zero. 

 In simulation study 3, the consequences of applying estimation models with 

misspecified shift indicator were also explored thoroughly. Overall, fitting data 

generated from one shift mechanism with models assuming the same shift mechanism 

yielded smaller bias and RMSE than models assuming the misspecified shift 

indicator. Additionally, the impact of employing models with misspecified shift 

indicator was more remarkable on the RT model-related parameters, rather than the 

IRT model-related parameters. One important difference between the two data 

generating models was that when the shift indicator was determined by item-person 

distance, estimates from the models conditioning on item responses were as biased as 

the HM. Therefore, accounting for the conditional dependence between responses and 

RTs does not guarantee the improvement of the parameter estimation accuracy, 

especially when the shift indicator is misspecified. 
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5.1.3 Model Selection Criteria  

 Sensitivity of several information-based relative model fit indices was also 

examined in the present study. Researchers have adopted different information 

criteria for model selection. For example, Bolsinova, De Boeck, and Tijmstra (2017) 

and Bolsinova and Tijmstra (2017) both used DIC, Ranger and Ortner’s (2012) study 

was based on AIC, and Bolsinova, Tijmstra, and Molenaar (2017) compared AIC and 

BIC. Nevertheless, a comprehensive comparison has not been conducted among AIC, 

AICc, BIC, and DIC in simulated settings when the conditional independence 

assumption is violated. As such, results from this study regarding model selection 

criteria provided unique information about the effectiveness of these information-

based model fit indices in the joint modeling framework assuming conditional 

dependence between responses and RTs. Note that because each simulation condition 

was only replicated 30 times, the percentage of correctly-identified model may be 

subject to larger random variations. Yet, the comparison among model fit indices 

across conditions provided some general conclusions. 

 In the present study, findings based on deviance, AIC, AICc, and BIC were 

similar for data generated from both models. For both data generating models, 

deviance, AIC, AICc, and BIC all chose one of the two models with the correctly 

specified shift indicator and random effects as the best fitting model. Surprisingly, as 

a goodness-of-fit statistic without penalty of number of parameters, deviance 

outperformed AIC, AICc, and BIC in terms of identifying the best fitting model. Even 

so, deviance only favored the true data generating model in around 50% of the 

replications when data were generated from the JM-RD1, and slightly higher when 
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data were generated from the JM-DD1. As the penalty of number of parameters got 

stronger, AIC, AICc, and BIC were inclined to favoring the simpler model with the 

correctly specified shift indicator and random effects. The model fit index with the 

largest penalty of number of parameters, BIC, almost always yielded the smallest 

values for the JM-R or the JM-D. This contradicted with the findings from Bolsinova, 

Tijmstra, and Molenaar (2017), where BIC was recommended over AIC for model 

selection regarding models accounting for conditional dependence. 

 The performance of DIC, however, varied depending on the data generating 

model. For data generated from the JM-RD1, DIC performed as good as deviance, 

which identified the true data generating model in about 50% of the replications. For 

data generated from the JM-DD1, DIC also operated equivalently to deviance when 

test length was 40. Yet, when test length was 20, DIC tended to favor the HM and the 

models conditioning on observed responses more than the models with the correctly 

specified shift indicator. As illustrated before, DIC may over-penalize the models 

conditioning on item-person distance because the shift indicator was determined by 

two latent variables. Fox and Marianti (2016) also pointed out that a straightforward 

implementation of DIC would not produce reliable results since the estimation of the 

number of effective parameters would be very complex when the model contained 

many random effects, outcomes of different types (categorical and continuous), and 

multiple link functions (linear and nonlinear). To simplify the computation of the 

penalty term, a modified version of DIC based on the integrated likelihood (e.g., 

Berger, Brunero, & Wolpert, 1999) could be considered as an alternative (Fox, 2010; 

Klein Entink, Fox, & van der Linden, 2009).  
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 In summary, the model selection criteria considered in the present study did 

not perform well in term of distinguishing models with the same shift indicator and 

random effects. This is not unforeseen because such models often performed similarly 

in the simulation studies regarding parameter recovery. However, they were generally 

able to identify models with the correctly specified shift indicator. When the true data 

generating model was unknown and test length was small, models selected based on 

deviance, AIC, AICc, and BIC were more likely to reflect the true latent structure 

than DIC.  

5.2 Applications of the Speed-Accuracy-Difficulty Interaction 

 In the present study, the results from simulation studies showed that the 

parameter estimates would be biased when the conditional dependence between 

responses and RTs was ignored, especially for the RT model-related parameters. 

Additionally, the application of the proposed models was demonstrated through two 

datasets in the empirical data analyses section.  

 The six proposed models included three models for each of the two shift 

indicators, representing different shift mechanisms. The first shift indicator depended 

on the observed item responses, where the locations of RT distributions for correct 

and incorrect responses were different. Models employed this shift indicator were 

inspired by the phenomenon depicted in Figures 1 and 2. In fact, this observation 

reflected different pacing strategies in examinees’ responding behaviors.  

 For an easier item, those who were able to provide a correct answer to this 

item tended to respond fast and correctly, while others responded slowly and 

incorrectly. This may relate to two common concepts in cognitive psychology, simple 
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RT task and choice RT task (e.g., Fowler, Brown, Sabadini, & Weihing, 2003; Logan, 

Cowan, & Davis, 1984). A simple RT task only has one stimulus and a choice RT 

task has multiple stimuli which the examinees need to respond to. According to 

Hick’s law, the more stimuli there are, the slower the responses (Hyman, 1953). 

Based on this theory, an easier item may perform like a simple RT task or appear to 

have fewer stimuli for examinees who answered correctly. However, it may resemble 

a choice RT task with more stimuli for those who answered incorrectly, which led to 

the differences in RT distributions. Examinees who solved the item correctly with 

fewer stimuli were likely to have higher ability levels than those who failed to 

provide a correct answer even with longer RTs.  

 For a relatively difficult item, examinees who answered correctly were likely 

to be slow and correct, whereas those who were not able to answer correctly respond 

fast and incorrectly. Same logic also applies to difficult items that an item may 

function differently for different groups of examinees regarding the number of 

stimuli. Yet another important consideration in timed tests is time allocation. For 

difficult items, examinees may intentionally skip them or randomly select an answer 

to save time on items that they were able to respond correctly to, resulting in incorrect 

answers with short RTs. This aligns with the pacing strategy discussed in Wang and 

Zhang (2006) that examinees tend to spend more time on items with similar difficulty 

levels as their ability levels. As such, examinees’ ability levels often appear to be 

associated with the number of stimuli of an item, as well as the choice of time 

allocation. A shift indicator based on the distance between ability and item difficulty 

was therefore proposed.  
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 In the present study, two datasets from large-scale assessment programs 

provided different perspectives in exploring the conditional independence assumption 

in real testing scenarios. Considering the effectiveness of the model fit indices, 

assuming conditional dependence existed between responses and RTs was more 

realistic than conditional independence. Yet, the two datasets demonstrated different 

latent structures underlying the data. Ability and speed was weakly positively 

correlated for dataset 1, but strongly negatively correlated for dataset 2. This may be 

due to the fact that dataset 1 came from a high-stakes exam, whereas dataset 2 was 

low-stakes in nature. As such, examinees in dataset 2 might be less motivated to 

spend time and do well on the assessment.  

 Additionally, models with item responses as the shift indicator performed 

better on dataset 1, and models with item-person distance as the shift indicator was 

selected on dataset 2. While tem difficulty and the shift in RT distributions was 

positively strongly correlated in dataset 1, they were only weakly related in dataset 2. 

Since the correlation between item difficulty and the shift was found to be negatively 

biased in the simulation studies, the true correlation between item difficulty and the 

shift was expected to be stronger than the estimates. Another possible reason was that 

the estimation accuracy was lower with only 10 items in dataset 2. Nonetheless, the 

choice of pacing strategies existed in both high-stakes and low-stakes assessment, 

even though the correlation between ability and speed might vary. Lastly, the 

variance of random effects was estimated to be about the same magnitude as the 

speed variance or even larger, indicating that this effect may not be negligible.  



 

 

164 

 

5.3 Limitations and Future Directions 

 Despite the findings in the present study, there are a number of limitations that 

need to be addressed in future explorations, especially regarding model extensions, 

simulation design, and the choice of priors. In terms of model extensions, the present 

study only explored a few modeling options limited by the scope of the study. Yet, 

there are much more possible modeling approaches to be further investigated. First, 

this study adopted a shift indicator based on the relative distance between ability and 

item difficulty, where the threshold was fixed at zero. It might be more reasonable to 

estimate the threshold to be item-specific or the same across items. Previous studies 

have shown that low-ability students tend to benefit more from extended RT (Clauser, 

Margolis, & von Davier, 2017; Harik, 2017), embedding a variable threshold could 

provide detailed examination regarding which examinees may need more time on 

each item. 

 Second, the current study only considered item difficulty as a predictor of the 

shift magnitude. Although item difficulty alone explained up to 50% of the total 

variance in the shift, the models with random effects that are conditioned on the same 

shift indicator could not be well distinguished in neither the simulation studies nor the 

empirical data analyses. In the future studies, more item features could be included to 

explore what features are associated with differences in RT distributions for different 

examinee groups, which may provide more predictive power to further differentiate 

the models with random effects. For instance, Mulholland, Pellegrino, and Glaser 

(1980) conducted ANOVA to investigate the relationship between item features and 

RT distributions. In the joint modeling framework, the linear logistic test model 
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(LLTM; Fischer, 1973) could be utilized to incorporate other item features, such as 

word count, dichotomous or polytomous items, with or without figures, content 

domain, etc.   

 Third, changes in the variance of RT distributions could be modeled to 

provide additional information to the changes in location depending on different 

examinee groups, similar to what van Rijn and Ali (2017) mentioned in their study. 

Fourth, the models used for item responses and RTs at the first level could easily be 

substituted by other IRT models, cognitive diagnostic models (e.g., Rupp, Templin, & 

Henson, 2010), and RT models. Lastly, given that the examinee sample was selected 

from a larger population, sampling effects also could be incorporated to ensure the 

generalizability of the results.  

 In terms of the design of simulation studies, the present study put constraints 

on some factors to ensure that the study can be completed in a reasonable time frame. 

Nonetheless, other levels of manipulated factors could be taken into account, and the 

factors fixed in this study could be varied as well. In particular, the variance of speed 

parameters and the variance of random effects was fixed at .25 and .04 in the present 

study. However, it was found in real data examples that the variance of random 

effects were almost as large as or even larger than the variance of speed parameters. 

This may explain why the manipulated correlation between item difficulty and the 

shift did not significantly affect parameter recovery. Even so, models with random 

effects outperformed those without random effects in most simulated scenarios. 

Future studies may consider the relative magnitude of these variances in conducting 

simulation studies. Moreover, this study only compared the effectiveness of several 
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relative model fit indices. Assessing the performance of available absolute model fit 

indices in the context of joint modeling of responses and RTs might be another 

interesting direction, such as the posterior predictive checks (e.g., Gelman, Meng, & 

Stern, 1996; Rubin, 1984).  

 In the present study, the time discrimination parameters were assumed to be 

independent of the time intensity and item difficulty parameters. In other words, the 

correlation between time discrimination and time intensity and the correlation 

between time discrimination and item difficulty were not modeled; only the bivariate 

relationship between time intensity and item difficulty was taken into account in the 

prior for item parameters. Such a prior was chosen based on the empirical evidence 

from van der Linden (2007) and Molenaar, Tuerlinckx, and van der Maas (2015b). It 

was also much more computationally efficient than modeling the trivariate 

relationship among the item parameters. However, these benefits were obtained at the 

cost of neglecting other associations among the item parameters. If these associations 

are of interest in the future studies, a fully specified prior proposed in van der Linden 

(2007) could be used instead.   

 Despite the limitations, this study contributes to the literature about joint 

modeling of responses and RTs with a focus on the conditional dependence between 

responses and RTs. As computer-based assessment becomes increasingly popular, 

more information should be extracted from examinees’ RTs and carefully interpreted. 

This study provides important evidence about how different groups of examinees 

allocate test time, depending on the observed responses or the distance between their 

ability levels and the item difficulty level. Further, this study explores how 
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examinees’ pacing strategies are related to item difficulty, the most important 

psychometric feature of an item. Models with two different mechanisms that might 

lead to the speed-accuracy-difficulty interaction have been evaluated with simulation 

studies. Empirical data analyses also show evidence that advocates the use of the 

proposed models. Nevertheless, the consequences of ignoring the conditional 

dependence between responses and RTs have been summarized to provide inference 

on modeling choices to practitioners. In sum, this study complements existing 

literature and builds a good foundation for further explorations.   
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Appendix A 

Table A1a. Mean and SD of bias in item difficulty estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 -.003 -.009 -.002 -.003 .023 .108 .021 .021 

   .7 .005 .005 .005 .005 .022 .090 .020 .021 

  .5 .3 -.004 -.003 -.004 -.004 .018 .082 .016 .016 

   .7 -.008 -.004 -.009 -.008 .020 .098 .018 .018 

  .8 .3 -.001 .004 -.001 -.001 .020 .064 .020 .019 

   .7 -.003 -.002 -.003 -.003 .020 .071 .022 .023 

 40 .2 .3 -.001 .002 -.002 -.002 .025 .094 .024 .025 

   .7 -.001 -.003 -.001 -.001 .035 .108 .031 .031 

  .5 .3 .001 .003 .001 .001 .020 .103 .019 .020 

   .7 -.005 -.003 -.005 -.005 .029 .079 .027 .027 

  .8 .3 .000 .001 .000 .000 .026 .071 .025 .025 

   .7 -.001 -.002 -.001 -.001 .023 .092 .023 .023 

1000 20 .2 .3 -.010 -.009 -.010 -.010 .014 .062 .014 .014 

   .7 .002 .004 .002 .002 .016 .086 .015 .016 

  .5 .3 .002 .002 .002 .002 .018 .026 .018 .018 

   .7 .000 .000 .000 .000 .021 .110 .020 .020 

  .8 .3 -.002 -.001 -.002 -.002 .017 .089 .016 .016 

   .7 .000 .002 .000 .000 .015 .085 .014 .014 

 40 .2 .3 .002 .002 .002 .002 .015 .032 .015 .015 

   .7 -.001 -.001 -.001 -.001 .013 .065 .012 .013 

  .5 .3 .001 .002 .001 .001 .017 .064 .017 .017 

   .7 -.005 -.002 -.005 -.005 .016 .087 .014 .014 

  .8 .3 -.002 -.003 -.002 -.002 .014 .082 .014 .014 

   .7 .003 .005 .003 .004 .017 .087 .015 .015 
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Table A1b. Mean and SD of SE in item difficulty estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .101 .098 .101 .102 .016 .017 .016 .016 

   .7 .102 .099 .103 .102 .020 .020 .020 .020 

  .5 .3 .102 .101 .102 .102 .020 .020 .020 .019 

   .7 .098 .094 .099 .099 .015 .016 .015 .015 

  .8 .3 .103 .103 .103 .103 .016 .015 .016 .016 

   .7 .106 .102 .106 .106 .022 .023 .022 .022 

 40 .2 .3 .103 .103 .103 .103 .015 .015 .015 .015 

   .7 .101 .097 .101 .101 .018 .017 .018 .018 

  .5 .3 .102 .100 .103 .103 .017 .018 .017 .017 

   .7 .100 .098 .101 .101 .013 .013 .013 .013 

  .8 .3 .107 .106 .108 .108 .017 .017 .017 .017 

   .7 .108 .102 .108 .108 .016 .017 .015 .015 

1000 20 .2 .3 .073 .074 .073 .073 .016 .016 .015 .015 

   .7 .074 .070 .074 .074 .010 .010 .010 .010 

  .5 .3 .071 .072 .071 .071 .016 .016 .016 .017 

   .7 .069 .065 .069 .069 .010 .010 .010 .010 

  .8 .3 .074 .074 .073 .073 .021 .020 .021 .021 

   .7 .075 .074 .075 .075 .015 .016 .015 .015 

 40 .2 .3 .072 .072 .072 .072 .012 .013 .012 .012 

   .7 .073 .071 .073 .073 .014 .013 .014 .013 

  .5 .3 .071 .071 .072 .071 .010 .010 .010 .010 

   .7 .073 .071 .073 .073 .013 .012 .013 .013 

  .8 .3 .071 .070 .071 .071 .012 .012 .012 .012 

   .7 .071 .068 .072 .072 .014 .012 .014 .014 
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Table A1c. Mean and SD of RMSE in item difficulty estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .103 .135 .103 .104 .016 .054 .016 .016 

   .7 .104 .129 .105 .105 .020 .038 .020 .020 

  .5 .3 .103 .126 .103 .103 .020 .034 .020 .020 

   .7 .101 .128 .101 .101 .015 .044 .016 .016 

  .8 .3 .105 .119 .104 .104 .015 .023 .016 .015 

   .7 .108 .121 .109 .109 .021 .036 .022 .022 

 40 .2 .3 .106 .134 .105 .106 .016 .039 .016 .016 

   .7 .106 .138 .105 .105 .021 .045 .020 .020 

  .5 .3 .104 .136 .104 .104 .018 .048 .017 .017 

   .7 .104 .123 .104 .104 .014 .027 .014 .015 

  .8 .3 .110 .126 .110 .110 .019 .025 .019 .019 

   .7 .110 .132 .111 .111 .016 .041 .016 .016 

1000 20 .2 .3 .075 .094 .075 .075 .016 .026 .016 .016 

   .7 .075 .104 .075 .075 .009 .037 .009 .009 

  .5 .3 .073 .076 .073 .073 .019 .018 .018 .019 

   .7 .071 .116 .072 .071 .013 .048 .012 .012 

  .8 .3 .075 .110 .075 .075 .022 .035 .022 .022 

   .7 .076 .107 .077 .077 .015 .035 .015 .015 

 40 .2 .3 .073 .079 .073 .073 .014 .015 .013 .013 

   .7 .074 .092 .074 .074 .014 .031 .014 .014 

  .5 .3 .073 .091 .073 .073 .012 .029 .012 .012 

   .7 .074 .107 .074 .074 .014 .033 .014 .014 

  .8 .3 .072 .102 .072 .072 .012 .034 .012 .012 

   .7 .073 .103 .073 .073 .014 .040 .015 .015 
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Table A2a. Mean and SD of bias in time discrimination estimation in simulation study 

1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 -.009 -.028 -.009 -.092 .013 .028 .013 .084 

   .7 -.008 -.022 -.008 -.092 .011 .021 .011 .080 

  .5 .3 -.011 -.036 -.011 -.099 .009 .029 .009 .067 

   .7 -.009 -.021 -.009 -.100 .012 .021 .012 .066 

  .8 .3 -.010 -.036 -.010 -.103 .013 .038 .013 .083 

   .7 -.010 -.023 -.010 -.092 .014 .023 .014 .055 

 40 .2 .3 -.009 -.034 -.009 -.099 .013 .035 .013 .083 

   .7 -.011 -.025 -.011 -.099 .010 .017 .010 .069 

  .5 .3 -.008 -.032 -.008 -.099 .009 .037 .009 .090 

   .7 -.008 -.021 -.008 -.090 .012 .025 .012 .071 

  .8 .3 -.007 -.033 -.007 -.093 .012 .032 .012 .068 

   .7 -.008 -.022 -.008 -.095 .012 .023 .012 .080 

1000 20 .2 .3 -.003 -.031 -.003 -.095 .008 .035 .008 .073 

   .7 -.007 -.020 -.007 -.096 .007 .018 .007 .060 

  .5 .3 -.006 -.033 -.006 -.088 .009 .037 .009 .087 

   .7 -.005 -.015 -.005 -.100 .011 .018 .011 .073 

  .8 .3 -.006 -.033 -.006 -.091 .007 .033 .007 .079 

   .7 -.006 -.021 -.006 -.093 .010 .019 .010 .077 

 40 .2 .3 -.004 -.033 -.004 -.089 .010 .035 .010 .073 

   .7 -.005 -.019 -.005 -.083 .009 .025 .009 .062 

  .5 .3 -.005 -.031 -.005 -.089 .008 .038 .008 .083 

   .7 -.005 -.019 -.005 -.090 .007 .017 .007 .063 

  .8 .3 -.005 -.032 -.005 -.090 .010 .035 .010 .099 

   .7 -.005 -.019 -.005 -.093 .010 .022 .010 .067 
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Table A2b. Mean and SD of SE in time discrimination estimation in simulation study 

1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .064 .063 .064 .062 .010 .010 .010 .010 

   .7 .065 .065 .065 .062 .007 .007 .007 .007 

  .5 .3 .061 .061 .061 .058 .007 .007 .007 .006 

   .7 .062 .062 .062 .059 .008 .008 .008 .009 

  .8 .3 .063 .062 .063 .059 .007 .007 .007 .008 

   .7 .064 .065 .064 .061 .008 .008 .008 .009 

 40 .2 .3 .063 .062 .063 .060 .008 .008 .008 .009 

   .7 .061 .061 .061 .058 .008 .008 .008 .008 

  .5 .3 .063 .062 .063 .060 .007 .007 .007 .007 

   .7 .063 .062 .063 .059 .010 .010 .010 .009 

  .8 .3 .060 .060 .060 .058 .008 .008 .008 .007 

   .7 .061 .061 .061 .058 .008 .008 .008 .007 

1000 20 .2 .3 .048 .048 .048 .047 .006 .007 .006 .007 

   .7 .044 .043 .044 .042 .007 .007 .007 .008 

  .5 .3 .046 .045 .046 .043 .007 .007 .007 .007 

   .7 .048 .048 .048 .046 .007 .007 .007 .006 

  .8 .3 .046 .044 .046 .044 .007 .008 .007 .007 

   .7 .046 .046 .046 .044 .007 .007 .007 .008 

 40 .2 .3 .044 .043 .044 .042 .005 .005 .005 .005 

   .7 .044 .044 .044 .042 .006 .005 .006 .006 

  .5 .3 .043 .043 .043 .041 .006 .006 .006 .006 

   .7 .044 .044 .044 .042 .006 .006 .006 .006 

  .8 .3 .044 .043 .044 .041 .006 .005 .006 .006 

   .7 .045 .045 .045 .043 .006 .006 .006 .006 
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Table A2c. Mean and SD of RMSE in time discrimination estimation in simulation 

study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .066 .074 .066 .119 .009 .015 .009 .071 

   .7 .066 .071 .066 .120 .007 .012 .007 .065 

  .5 .3 .063 .075 .063 .120 .007 .018 .007 .056 

   .7 .063 .067 .063 .122 .009 .013 .009 .054 

  .8 .3 .065 .078 .065 .125 .007 .023 .007 .073 

   .7 .067 .071 .067 .115 .008 .014 .008 .045 

 40 .2 .3 .065 .076 .065 .125 .008 .022 .008 .069 

   .7 .063 .068 .063 .120 .007 .010 .007 .058 

  .5 .3 .064 .076 .064 .123 .007 .025 .007 .078 

   .7 .064 .069 .064 .116 .010 .016 .010 .058 

  .8 .3 .061 .073 .061 .116 .008 .019 .008 .056 

   .7 .063 .068 .063 .119 .008 .015 .008 .068 

1000 20 .2 .3 .049 .063 .049 .111 .006 .023 .006 .064 

   .7 .045 .050 .045 .109 .007 .010 .007 .053 

  .5 .3 .047 .061 .047 .105 .007 .028 .007 .079 

   .7 .050 .052 .050 .115 .006 .009 .006 .064 

  .8 .3 .046 .060 .046 .106 .006 .022 .006 .071 

   .7 .048 .053 .048 .109 .007 .012 .007 .068 

 40 .2 .3 .045 .060 .045 .105 .005 .023 .005 .064 

   .7 .045 .052 .045 .098 .006 .015 .006 .054 

  .5 .3 .044 .059 .044 .104 .006 .028 .006 .076 

   .7 .045 .050 .045 .104 .006 .009 .006 .055 

  .8 .3 .045 .059 .045 .107 .005 .026 .005 .090 

   .7 .046 .052 .046 .108 .006 .014 .006 .058 
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Table A3a. Mean and SD of bias in time intensity estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .000 -.002 -.001 -.173 .009 .096 .009 .181 

   .7 -.003 .000 -.005 -.176 .010 .067 .011 .146 

  .5 .3 .001 .010 .000 -.160 .013 .108 .010 .129 

   .7 -.001 .004 -.003 -.181 .010 .063 .010 .147 

  .8 .3 .002 .012 .001 -.161 .010 .090 .008 .097 

   .7 .000 .003 -.002 -.171 .010 .059 .011 .134 

 40 .2 .3 .000 .008 -.001 -.167 .010 .094 .008 .128 

   .7 .001 .003 .000 -.176 .010 .064 .010 .146 

  .5 .3 .000 .005 -.002 -.171 .009 .090 .008 .147 

   .7 .002 .007 .000 -.169 .012 .076 .010 .123 

  .8 .3 .000 .004 -.001 -.161 .010 .088 .008 .125 

   .7 .001 .003 .000 -.176 .011 .072 .010 .151 

1000 20 .2 .3 -.001 .004 -.001 -.163 .005 .091 .005 .112 

   .7 .000 .003 -.001 -.177 .005 .058 .005 .132 

  .5 .3 .000 -.004 .000 -.146 .006 .089 .006 .101 

   .7 .000 .003 -.001 -.185 .007 .053 .004 .169 

  .8 .3 .002 .007 .000 -.159 .009 .103 .006 .148 

   .7 .001 .004 .000 -.173 .006 .076 .005 .132 

 40 .2 .3 .000 .002 .000 -.153 .005 .091 .005 .116 

   .7 .000 .002 -.001 -.167 .006 .064 .007 .133 

  .5 .3 -.001 .001 -.001 -.162 .006 .103 .006 .139 

   .7 .000 .005 -.001 -.173 .007 .072 .007 .138 

  .8 .3 .000 .002 -.001 -.164 .006 .104 .006 .146 

   .7 .000 .004 -.001 -.175 .006 .072 .006 .132 
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Table A3b. Mean and SD of SE in time intensity estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .033 .026 .033 .022 .008 .006 .008 .004 

   .7 .033 .025 .033 .023 .008 .005 .008 .004 

  .5 .3 .032 .025 .031 .023 .008 .006 .007 .002 

   .7 .033 .025 .033 .022 .008 .005 .008 .002 

  .8 .3 .034 .024 .034 .023 .009 .006 .009 .002 

   .7 .032 .025 .032 .024 .009 .005 .009 .003 

 40 .2 .3 .033 .025 .033 .024 .007 .004 .007 .003 

   .7 .032 .025 .033 .023 .007 .004 .008 .003 

  .5 .3 .031 .024 .031 .024 .008 .004 .008 .003 

   .7 .030 .023 .031 .023 .006 .003 .006 .003 

  .8 .3 .033 .024 .033 .024 .009 .004 .009 .002 

   .7 .032 .025 .033 .023 .008 .004 .008 .003 

1000 20 .2 .3 .024 .017 .024 .017 .006 .002 .006 .002 

   .7 .023 .017 .023 .015 .006 .003 .006 .002 

  .5 .3 .024 .018 .023 .017 .007 .005 .006 .002 

   .7 .024 .018 .024 .016 .007 .003 .008 .002 

  .8 .3 .024 .020 .024 .016 .008 .009 .007 .002 

   .7 .023 .017 .023 .016 .006 .002 .006 .002 

 40 .2 .3 .024 .018 .023 .017 .007 .003 .007 .002 

   .7 .023 .017 .023 .016 .006 .003 .006 .002 

  .5 .3 .023 .016 .023 .016 .007 .003 .007 .002 

   .7 .022 .017 .023 .016 .005 .003 .006 .002 

  .8 .3 .023 .016 .023 .016 .007 .002 .007 .002 

   .7 .023 .016 .023 .015 .005 .003 .005 .002 
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Table A3c. Mean and SD of RMSE in time intensity estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .034 .074 .034 .177 .009 .065 .009 .178 

   .7 .034 .060 .035 .181 .009 .038 .010 .141 

  .5 .3 .033 .085 .033 .167 .011 .068 .009 .121 

   .7 .034 .054 .034 .189 .008 .040 .009 .138 

  .8 .3 .035 .076 .035 .169 .011 .054 .010 .086 

   .7 .033 .056 .033 .179 .010 .028 .011 .125 

 40 .2 .3 .034 .078 .034 .175 .009 .058 .008 .118 

   .7 .033 .058 .034 .182 .008 .037 .009 .139 

  .5 .3 .032 .073 .032 .180 .008 .058 .008 .138 

   .7 .032 .064 .032 .174 .008 .048 .007 .119 

  .8 .3 .034 .079 .034 .168 .010 .045 .010 .117 

   .7 .034 .062 .034 .183 .009 .043 .009 .145 

1000 20 .2 .3 .024 .076 .024 .169 .006 .050 .006 .104 

   .7 .023 .050 .024 .184 .006 .032 .006 .122 

  .5 .3 .024 .078 .024 .149 .007 .045 .006 .098 

   .7 .025 .047 .025 .192 .008 .028 .008 .162 

  .8 .3 .025 .084 .025 .165 .009 .061 .007 .142 

   .7 .024 .060 .024 .177 .006 .048 .006 .128 

 40 .2 .3 .024 .077 .024 .159 .007 .050 .007 .109 

   .7 .023 .054 .023 .170 .007 .037 .007 .129 

  .5 .3 .023 .076 .024 .165 .007 .070 .007 .136 

   .7 .023 .060 .023 .179 .006 .042 .007 .131 

  .8 .3 .024 .083 .024 .166 .007 .064 .007 .145 

   .7 .023 .054 .023 .178 .005 .050 .006 .128 
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Table A4a. Mean and SD of bias in ability estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .000 .000 .000 .000 .239 .241 .239 .245 

   .7 .000 .000 .000 .000 .239 .241 .239 .244 

  .5 .3 .000 .000 .000 .000 .250 .251 .250 .262 

   .7 .000 .000 .000 .000 .246 .248 .246 .259 

  .8 .3 .000 .000 .000 .000 .254 .254 .254 .268 

   .7 .000 .000 .000 .000 .259 .260 .259 .272 

 40 .2 .3 .000 .000 .000 .000 .146 .147 .146 .148 

   .7 .000 .000 .000 .000 .133 .134 .133 .136 

  .5 .3 .000 .000 .000 .000 .161 .163 .161 .168 

   .7 .000 .000 .000 .000 .164 .164 .163 .170 

  .8 .3 .000 .000 .000 .000 .172 .172 .172 .183 

   .7 .000 .000 .000 .000 .171 .172 .171 .181 

1000 20 .2 .3 .000 .000 .000 .000 .243 .243 .243 .249 

   .7 .000 .000 .000 .000 .239 .240 .239 .245 

  .5 .3 .000 .000 .000 .000 .238 .239 .238 .249 

   .7 .000 .000 .000 .000 .243 .245 .243 .254 

  .8 .3 .000 .000 .000 .000 .253 .254 .253 .269 

   .7 .000 .000 .000 .000 .254 .255 .254 .270 

 40 .2 .3 .000 .000 .000 .000 .150 .150 .150 .152 

   .7 .000 .000 .000 .000 .147 .147 .146 .148 

  .5 .3 .000 .000 .000 .000 .154 .155 .154 .161 

   .7 .000 .000 .000 .000 .156 .157 .156 .162 

  .8 .3 .000 .000 .000 .000 .174 .175 .174 .185 

   .7 .000 .000 .000 .000 .173 .174 .173 .186 
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Table A4b. Mean and SD of SE in ability estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .392 .391 .392 .390 .054 .054 .054 .054 

   .7 .398 .397 .398 .396 .056 .056 .056 .056 

  .5 .3 .378 .377 .378 .372 .050 .050 .050 .049 

   .7 .375 .374 .375 .369 .051 .051 .051 .051 

  .8 .3 .315 .315 .315 .304 .042 .043 .042 .042 

   .7 .309 .308 .309 .298 .041 .041 .041 .040 

 40 .2 .3 .318 .318 .318 .317 .046 .046 .046 .045 

   .7 .316 .315 .316 .315 .042 .042 .042 .042 

  .5 .3 .308 .307 .308 .306 .044 .044 .044 .044 

   .7 .306 .305 .306 .303 .042 .042 .042 .042 

  .8 .3 .265 .265 .265 .259 .037 .037 .037 .036 

   .7 .268 .268 .269 .262 .037 .037 .037 .036 

1000 20 .2 .3 .394 .394 .394 .392 .055 .055 .055 .055 

   .7 .398 .397 .398 .396 .055 .055 .055 .055 

  .5 .3 .373 .373 .373 .367 .052 .052 .052 .051 

   .7 .376 .375 .376 .370 .050 .050 .050 .049 

  .8 .3 .309 .308 .309 .298 .044 .044 .044 .043 

   .7 .311 .310 .311 .299 .041 .041 .041 .040 

 40 .2 .3 .319 .319 .319 .318 .044 .044 .044 .044 

   .7 .318 .318 .319 .318 .043 .043 .043 .043 

  .5 .3 .307 .307 .307 .305 .043 .043 .043 .042 

   .7 .306 .306 .306 .303 .042 .042 .042 .042 

  .8 .3 .270 .269 .270 .263 .036 .035 .036 .034 

   .7 .267 .267 .267 .260 .035 .035 .036 .034 
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Table A4c. Mean and SD of RMSE in ability estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .450 .450 .450 .451 .104 .106 .104 .107 

   .7 .457 .457 .457 .457 .099 .100 .099 .101 

  .5 .3 .443 .443 .443 .443 .108 .108 .108 .112 

   .7 .439 .439 .439 .440 .104 .105 .104 .110 

  .8 .3 .392 .392 .392 .391 .108 .108 .108 .114 

   .7 .389 .390 .390 .388 .111 .111 .111 .119 

 40 .2 .3 .346 .346 .346 .346 .070 .071 .070 .070 

   .7 .339 .339 .340 .340 .061 .062 .061 .061 

  .5 .3 .341 .341 .341 .341 .083 .083 .083 .084 

   .7 .337 .337 .337 .337 .091 .092 .091 .092 

  .8 .3 .310 .310 .310 .310 .072 .072 .072 .076 

   .7 .312 .312 .312 .312 .072 .072 .071 .075 

1000 20 .2 .3 .453 .453 .453 .454 .109 .109 .109 .111 

   .7 .455 .455 .455 .456 .105 .106 .105 .108 

  .5 .3 .434 .434 .434 .434 .101 .102 .101 .105 

   .7 .440 .440 .440 .440 .098 .099 .097 .101 

  .8 .3 .388 .388 .388 .387 .104 .105 .104 .113 

   .7 .390 .390 .390 .389 .102 .103 .102 .112 

 40 .2 .3 .347 .347 .347 .347 .073 .073 .073 .072 

   .7 .345 .345 .345 .345 .074 .075 .074 .074 

  .5 .3 .340 .340 .340 .340 .069 .069 .069 .070 

   .7 .338 .338 .338 .338 .073 .074 .074 .075 

  .8 .3 .316 .315 .316 .315 .069 .069 .069 .073 

   .7 .312 .312 .312 .312 .072 .073 .073 .078 
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Table A5a. Mean and SD of bias in speed estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .000 .000 .000 .000 .032 .033 .032 .061 

   .7 .000 .000 .000 .000 .031 .032 .031 .060 

  .5 .3 .000 .000 .000 .000 .032 .033 .032 .059 

   .7 .000 .000 .000 .000 .032 .032 .032 .062 

  .8 .3 .000 .000 .000 .000 .035 .036 .035 .059 

   .7 .000 .000 .000 .000 .033 .034 .033 .057 

 40 .2 .3 .000 .000 .000 .000 .019 .019 .019 .057 

   .7 .000 .000 .000 .000 .019 .019 .019 .058 

  .5 .3 .000 .000 .000 .000 .019 .019 .019 .055 

   .7 .000 .000 .000 .000 .019 .020 .019 .057 

  .8 .3 .000 .000 .000 .000 .021 .022 .021 .054 

   .7 .000 .000 .000 .000 .021 .021 .021 .054 

1000 20 .2 .3 .000 .000 .000 .000 .031 .032 .031 .064 

   .7 .000 .000 .000 .000 .031 .031 .031 .063 

  .5 .3 .000 .000 .000 .000 .032 .033 .032 .061 

   .7 .000 .000 .000 .000 .032 .032 .032 .062 

  .8 .3 .000 .000 .000 .000 .035 .036 .035 .056 

   .7 .000 .000 .000 .000 .034 .034 .034 .058 

 40 .2 .3 .000 .000 .000 .000 .019 .019 .019 .055 

   .7 .000 .000 .000 .000 .019 .019 .019 .056 

  .5 .3 .000 .000 .000 .000 .020 .020 .020 .055 

   .7 .000 .000 .000 .000 .020 .020 .020 .058 

  .8 .3 .000 .000 .000 .000 .022 .022 .022 .053 

   .7 .000 .000 .000 .000 .021 .021 .021 .057 
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Table A5b. Mean and SD of SE in speed estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .104 .105 .104 .108 .013 .013 .013 .014 

   .7 .104 .104 .104 .108 .014 .014 .014 .014 

  .5 .3 .103 .104 .103 .109 .013 .014 .013 .014 

   .7 .103 .104 .103 .109 .013 .013 .013 .014 

  .8 .3 .101 .102 .101 .110 .013 .013 .013 .014 

   .7 .100 .100 .100 .108 .013 .013 .013 .014 

 40 .2 .3 .074 .075 .074 .078 .010 .010 .010 .011 

   .7 .075 .075 .075 .078 .010 .010 .010 .011 

  .5 .3 .074 .075 .074 .078 .010 .010 .010 .010 

   .7 .075 .075 .075 .079 .010 .010 .010 .010 

  .8 .3 .074 .075 .074 .079 .010 .010 .010 .011 

   .7 .073 .074 .073 .078 .010 .010 .010 .010 

1000 20 .2 .3 .103 .104 .103 .108 .014 .014 .014 .014 

   .7 .104 .105 .104 .109 .014 .014 .014 .014 

  .5 .3 .103 .104 .103 .108 .013 .013 .013 .014 

   .7 .104 .104 .104 .110 .014 .014 .014 .015 

  .8 .3 .100 .101 .100 .108 .013 .013 .013 .015 

   .7 .100 .100 .100 .108 .013 .013 .013 .014 

 40 .2 .3 .076 .077 .076 .079 .010 .010 .010 .011 

   .7 .075 .075 .075 .078 .010 .010 .010 .010 

  .5 .3 .075 .076 .075 .079 .010 .010 .010 .011 

   .7 .075 .075 .075 .078 .010 .010 .010 .010 

  .8 .3 .073 .074 .073 .078 .010 .010 .010 .010 

   .7 .073 .073 .073 .078 .010 .010 .010 .010 
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Table A5c. Mean and SD of RMSE in speed estimation in simulation study 1. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

JM- 

RD1 

JM- 

RD2 

JM- 

R 
HM 

500 20 .2 .3 .109 .110 .109 .123 .014 .014 .014 .022 

   .7 .108 .109 .108 .122 .014 .015 .014 .022 

  .5 .3 .108 .109 .108 .123 .015 .015 .015 .022 

   .7 .108 .109 .108 .125 .014 .014 .014 .022 

  .8 .3 .107 .108 .107 .124 .015 .015 .014 .021 

   .7 .105 .106 .105 .121 .014 .014 .014 .020 

 40 .2 .3 .077 .078 .077 .095 .010 .010 .010 .020 

   .7 .077 .078 .077 .096 .010 .010 .010 .020 

  .5 .3 .077 .077 .077 .094 .010 .010 .010 .019 

   .7 .078 .078 .078 .095 .010 .010 .010 .020 

  .8 .3 .077 .078 .077 .095 .011 .011 .011 .020 

   .7 .076 .077 .076 .093 .010 .010 .010 .019 

1000 20 .2 .3 .108 .109 .108 .124 .015 .015 .015 .023 

   .7 .108 .109 .109 .125 .015 .015 .015 .021 

  .5 .3 .107 .108 .107 .123 .014 .015 .015 .020 

   .7 .108 .109 .108 .125 .015 .014 .015 .022 

  .8 .3 .106 .107 .106 .121 .015 .015 .015 .020 

   .7 .105 .106 .105 .122 .015 .015 .015 .020 

 40 .2 .3 .078 .079 .078 .095 .011 .011 .011 .019 

   .7 .077 .077 .077 .094 .010 .010 .010 .019 

  .5 .3 .077 .078 .077 .095 .010 .011 .010 .020 

   .7 .077 .078 .077 .096 .010 .010 .010 .020 

  .8 .3 .076 .077 .076 .093 .010 .010 .010 .018 

   .7 .076 .076 .076 .095 .010 .010 .010 .020 
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Table A6. Bias, SE, and RMSE of 𝜔0 in simulation study 1. 
    Bias  SE  RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

R 

JM- 

RD1 

JM- 

RD2 

JM- 

R 

JM- 

RD1 

JM- 

RD2 

JM- 

R 

500 20 .2 .3 .001 .012 .000 .009 .009 .010 .009 .015 .010 

   .7 .002 .003 .003 .012 .012 .012 .012 .013 .012 

  .5 .3 .001 -.006 .001 .013 .012 .013 .013 .014 .013 

   .7 .002 -.004 .001 .012 .012 .011 .012 .013 .011 

  .8 .3 -.003 -.021 -.003 .011 .010 .011 .012 .023 .012 

   .7 .001 -.001 .001 .011 .011 .011 .011 .011 .011 

 40 .2 .3 .000 -.008 .000 .009 .009 .008 .009 .012 .008 

   .7 -.002 .001 -.004 .010 .011 .010 .011 .011 .011 

  .5 .3 -.001 -.005 -.001 .009 .009 .009 .009 .010 .009 

   .7 -.002 -.007 -.002 .008 .009 .008 .008 .011 .008 

  .8 .3 .001 -.003 .001 .008 .007 .008 .008 .008 .008 

   .7 -.001 .000 -.002 .008 .009 .008 .008 .009 .008 

1000 20 .2 .3 .001 -.004 .000 .006 .006 .006 .006 .008 .006 

   .7 .001 -.004 .001 .008 .008 .008 .008 .009 .008 

  .5 .3 .001 .005 .001 .009 .009 .009 .009 .010 .009 

   .7 .001 .001 .001 .008 .007 .008 .008 .007 .008 

  .8 .3 -.002 -.005 -.001 .008 .009 .007 .008 .010 .008 

   .7 .000 -.004 .000 .009 .009 .009 .009 .010 .009 

 40 .2 .3 .000 .000 .000 .007 .006 .007 .007 .006 .007 

   .7 -.001 -.001 .000 .006 .006 .006 .006 .006 .006 

  .5 .3 .000 .001 .001 .005 .004 .004 .005 .005 .004 

   .7 .002 -.005 .001 .005 .005 .005 .005 .007 .006 

  .8 .3 .001 .005 .001 .005 .005 .005 .005 .007 .005 

   .7 -.002 -.005 -.001 .006 .006 .006 .006 .007 .006 
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Table A7. Bias, SE, and RMSE of 𝜔1 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

RD2 

JM- 

RD1 

JM- 

RD2 

JM- 

RD1 

JM- 

RD2 

500 20 .2 .3 .078 .088 .016 .019 .079 .090 

   .7 .006 .018 .017 .019 .018 .026 

  .5 .3 -.001 .038 .013 .015 .013 .040 

   .7 .026 .043 .016 .017 .030 .046 

  .8 .3 -.014 .018 .015 .020 .021 .027 

   .7 -.014 -.006 .015 .015 .021 .016 

 40 .2 .3 .033 .059 .012 .014 .035 .061 

   .7 .012 .028 .012 .013 .016 .031 

  .5 .3 .049 .082 .008 .009 .050 .082 

   .7 -.036 -.018 .008 .008 .037 .020 

  .8 .3 .004 .019 .007 .010 .008 .022 

   .7 .003 .022 .010 .012 .011 .025 

1000 20 .2 .3 .001 .013 .009 .011 .009 .017 

   .7 .007 .010 .012 .013 .014 .017 

  .5 .3 -.074 -.081 .010 .013 .074 .082 

   .7 .067 .090 .009 .012 .068 .091 

  .8 .3 .016 .047 .010 .015 .019 .050 

   .7 -.007 .002 .009 .010 .011 .010 

 40 .2 .3 -.032 -.023 .007 .009 .032 .025 

   .7 -.040 -.027 .006 .008 .040 .028 

  .5 .3 .005 .017 .007 .008 .009 .019 

   .7 -.005 .003 .008 .009 .009 .009 

  .8 .3 .014 .043 .006 .007 .015 .043 

   .7 -.012 .004 .009 .010 .015 .011 
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Table A8. Bias, SE, and RMSE of 𝜌𝑏𝜆 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD1 JM-RD1 

500 20 .2 .3 .076 .041 .086 

   .7 -.241 .058 .248 

  .5 .3 -.150 .034 .154 

   .7 -.200 .045 .205 

  .8 .3 -.180 .039 .184 

   .7 -.299 .056 .304 

 40 .2 .3 -.056 .031 .064 

   .7 -.227 .032 .229 

  .5 .3 -.013 .021 .025 

   .7 -.344 .030 .345 

  .8 .3 -.131 .017 .132 

   .7 -.257 .037 .260 

1000 20 .2 .3 -.147 .025 .149 

   .7 -.247 .033 .249 

  .5 .3 -.338 .027 .339 

   .7 -.088 .025 .091 

  .8 .3 -.108 .025 .110 

   .7 -.292 .022 .293 

 40 .2 .3 -.225 .017 .226 

   .7 -.361 .023 .362 

  .5 .3 -.131 .019 .132 

   .7 -.265 .025 .267 

  .8 .3 -.097 .018 .099 

   .7 -.292 .025 .293 
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Table A9. Bias, SE, and RMSE of 𝜎𝜙
2 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

RD1 

JM- 

R 

JM- 

RD1 

JM- 

R 

JM- 

RD1 

JM- 

R 

500 20 .2 .3 .001 .018 .005 .007 .005 .019 

   .7 .005 .009 .005 .007 .007 .011 

  .5 .3 .012 .009 .006 .006 .013 .011 

   .7 .006 .017 .004 .008 .007 .019 

  .8 .3 .009 .005 .006 .006 .011 .008 

   .7 .006 .002 .005 .006 .008 .006 

 40 .2 .3 .002 .006 .003 .004 .004 .007 

   .7 .002 .004 .002 .005 .003 .006 

  .5 .3 .001 .008 .003 .003 .003 .009 

   .7 .001 -.008 .002 .003 .002 .009 

  .8 .3 .003 .003 .004 .004 .005 .005 

   .7 .004 .005 .003 .004 .004 .006 

1000 20 .2 .3 .013 .011 .004 .004 .014 .012 

   .7 .007 .012 .002 .005 .007 .013 

  .5 .3 .006 .000 .004 .003 .007 .003 

   .7 .002 .029 .003 .005 .004 .030 

  .8 .3 .012 .012 .004 .004 .012 .012 

   .7 .008 .007 .003 .004 .009 .008 

 40 .2 .3 .004 .000 .001 .001 .004 .001 

   .7 .002 -.008 .002 .002 .003 .008 

  .5 .3 .004 .004 .003 .003 .005 .005 

   .7 .002 .001 .002 .003 .002 .003 

  .8 .3 .000 .001 .003 .003 .003 .003 

   .7 .003 .000 .002 .003 .003 .003 
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Table A10. Bias, SE, and RMSE of 𝜇𝑏  in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 -.003 -.009 -.002 -.002 .018 .019 .019 .018 .018 .021 .019 .018 

   .7 .006 .004 .005 .006 .025 .025 .026 .025 .026 .026 .026 .025 

  .5 .3 -.004 -.003 -.004 -.003 .026 .027 .026 .026 .027 .027 .026 .026 

   .7 -.009 -.005 -.009 -.006 .019 .020 .020 .019 .021 .020 .022 .021 

  .8 .3 -.001 .004 -.001 .001 .025 .026 .026 .025 .025 .027 .026 .025 

   .7 -.003 -.002 -.003 -.001 .024 .023 .024 .024 .024 .024 .024 .024 

 40 .2 .3 -.002 .002 -.002 -.001 .018 .017 .018 .018 .018 .018 .019 .018 

   .7 -.001 -.003 -.001 .000 .016 .016 .015 .015 .016 .016 .015 .015 

  .5 .3 .002 .004 .001 .002 .017 .018 .018 .018 .017 .018 .018 .018 

   .7 -.005 -.003 -.005 -.005 .014 .013 .013 .014 .015 .013 .014 .015 

  .8 .3 .000 .001 .000 .001 .017 .018 .018 .017 .017 .018 .018 .017 

   .7 -.001 -.002 -.001 .000 .020 .019 .020 .019 .020 .019 .020 .019 

1000 20 .2 .3 -.009 -.009 -.010 -.009 .021 .021 .021 .021 .023 .023 .023 .023 

   .7 .001 .004 .002 .004 .017 .016 .016 .016 .017 .016 .016 .016 

  .5 .3 .002 .002 .001 .003 .015 .016 .016 .016 .015 .016 .016 .016 

   .7 .000 .000 .000 .001 .012 .014 .012 .013 .012 .014 .012 .013 

  .8 .3 -.002 -.001 -.002 .000 .014 .014 .013 .013 .014 .014 .014 .013 

   .7 .000 .002 .000 .002 .017 .018 .017 .017 .017 .018 .017 .017 

 40 .2 .3 .002 .002 .001 .002 .013 .013 .013 .013 .013 .013 .013 .013 

   .7 -.001 -.001 -.002 -.001 .011 .011 .010 .011 .011 .011 .010 .011 

  .5 .3 .001 .002 .002 .001 .014 .014 .014 .014 .014 .014 .014 .014 

   .7 -.004 -.001 -.005 -.004 .011 .011 .012 .010 .012 .011 .013 .011 

  .8 .3 -.002 -.003 -.002 -.001 .013 .012 .013 .013 .014 .013 .013 .013 

   .7 .003 .004 .003 .004 .010 .010 .010 .010 .010 .011 .010 .011 
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Table A11. Bias, SE, and RMSE of 𝜇𝛽  in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 .000 -.002 -.001 -.171 .008 .008 .008 .006 .008 .008 .008 .171 

   .7 -.003 .000 -.005 -.174 .007 .007 .007 .005 .008 .007 .008 .174 

  .5 .3 .001 .010 .000 -.158 .009 .009 .008 .006 .009 .013 .008 .158 

   .7 -.001 .004 -.003 -.179 .009 .008 .008 .005 .009 .009 .008 .179 

  .8 .3 .002 .012 .001 -.160 .008 .008 .008 .005 .008 .014 .008 .160 

   .7 .000 .003 -.002 -.170 .009 .009 .009 .006 .009 .010 .009 .170 

 40 .2 .3 .000 .008 -.001 -.166 .005 .005 .005 .003 .005 .009 .005 .166 

   .7 .001 .003 .000 -.175 .006 .006 .006 .004 .006 .007 .006 .175 

  .5 .3 .000 .005 -.002 -.170 .004 .005 .004 .004 .005 .007 .005 .171 

   .7 .002 .007 .000 -.169 .006 .006 .005 .004 .006 .009 .005 .169 

  .8 .3 .000 .004 -.001 -.160 .006 .006 .006 .004 .006 .007 .006 .160 

   .7 .001 .003 .000 -.175 .005 .005 .005 .003 .005 .006 .005 .175 

1000 20 .2 .3 -.001 .004 -.001 -.162 .005 .005 .005 .004 .005 .007 .005 .162 

   .7 .000 .003 -.001 -.176 .005 .006 .005 .004 .005 .006 .005 .176 

  .5 .3 .000 -.004 .001 -.144 .006 .006 .006 .004 .006 .007 .007 .144 

   .7 .000 .003 -.001 -.182 .004 .004 .005 .004 .005 .005 .005 .182 

  .8 .3 .002 .007 .001 -.157 .006 .006 .005 .005 .006 .009 .005 .157 

   .7 .001 .004 .000 -.172 .005 .006 .005 .003 .005 .007 .005 .172 

 40 .2 .3 .000 .002 .000 -.153 .004 .005 .005 .003 .004 .005 .005 .153 

   .7 .001 .002 -.001 -.166 .004 .003 .003 .003 .004 .004 .004 .166 

  .5 .3 -.001 .001 -.001 -.161 .003 .003 .003 .003 .003 .003 .003 .161 

   .7 .000 .005 -.001 -.172 .004 .004 .004 .003 .004 .006 .004 .172 

  .8 .3 .000 .002 .000 -.163 .004 .004 .004 .003 .004 .005 .004 .163 

   .7 .000 .004 -.001 -.174 .004 .004 .004 .003 .004 .005 .004 .174 
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Table A12. Bias, SE, and RMSE of 𝜎𝑏
2 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 .116 .109 .118 .117 .048 .049 .047 .047 .125 .119 .127 .126 

   .7 .116 .098 .118 .116 .057 .058 .056 .056 .129 .114 .131 .129 

  .5 .3 .106 .085 .110 .109 .070 .069 .069 .068 .127 .110 .130 .129 

   .7 .123 .112 .124 .125 .058 .060 .058 .059 .136 .127 .138 .138 

  .8 .3 .119 .115 .120 .123 .061 .060 .060 .061 .134 .130 .134 .137 

   .7 .120 .115 .122 .123 .056 .057 .054 .056 .133 .129 .134 .136 

 40 .2 .3 .054 .037 .057 .055 .043 .042 .043 .042 .069 .056 .071 .069 

   .7 .030 .015 .033 .033 .037 .038 .036 .036 .048 .041 .049 .049 

  .5 .3 .066 .046 .066 .066 .042 .042 .042 .041 .078 .062 .078 .078 

   .7 .038 .027 .038 .040 .044 .044 .043 .043 .058 .052 .058 .059 

  .8 .3 .056 .049 .057 .057 .044 .043 .043 .043 .071 .066 .071 .072 

   .7 .052 .040 .053 .054 .040 .040 .041 .040 .066 .056 .067 .067 

1000 20 .2 .3 .122 .116 .122 .123 .043 .042 .041 .042 .130 .123 .129 .130 

   .7 .114 .118 .114 .114 .039 .041 .040 .040 .121 .124 .121 .121 

  .5 .3 .095 .092 .098 .095 .053 .054 .054 .053 .109 .106 .112 .108 

   .7 .095 .072 .096 .096 .041 .045 .044 .043 .104 .085 .105 .105 

  .8 .3 .105 .086 .106 .109 .053 .051 .052 .051 .118 .100 .118 .120 

   .7 .112 .110 .112 .113 .052 .054 .051 .052 .123 .122 .123 .124 

 40 .2 .3 .049 .046 .049 .049 .027 .027 .028 .027 .056 .054 .056 .056 

   .7 .056 .053 .057 .057 .037 .037 .037 .037 .067 .064 .068 .068 

  .5 .3 .048 .046 .048 .048 .027 .028 .028 .028 .055 .054 .056 .056 

   .7 .052 .048 .052 .053 .028 .028 .029 .029 .059 .056 .060 .060 

  .8 .3 .062 .047 .062 .063 .028 .028 .028 .029 .068 .055 .068 .069 

   .7 .055 .046 .055 .056 .031 .030 .030 .031 .063 .055 .063 .064 
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Table A13. Bias, SE, and RMSE of 𝜌𝑏𝛽  in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 -.036 -.007 -.032 .149 .027 .025 .026 .021 .044 .026 .041 .150 

   .7 -.032 -.055 -.022 .158 .024 .026 .023 .017 .040 .061 .032 .159 

  .5 .3 -.042 -.074 -.037 .080 .029 .029 .029 .025 .051 .080 .047 .083 

   .7 -.032 -.040 -.026 .145 .022 .018 .022 .015 .039 .043 .034 .145 

  .8 .3 -.047 -.085 -.045 .040 .025 .021 .025 .019 .054 .088 .051 .044 

   .7 -.031 -.049 -.019 .158 .028 .029 .027 .022 .042 .057 .033 .160 

 40 .2 .3 -.023 -.072 -.015 .135 .018 .023 .018 .014 .029 .076 .023 .135 

   .7 -.017 -.018 -.010 .164 .023 .023 .023 .017 .029 .029 .025 .165 

  .5 .3 -.018 -.044 -.011 .161 .020 .022 .020 .016 .027 .049 .023 .162 

   .7 -.025 -.052 -.014 .142 .020 .020 .020 .015 .032 .056 .024 .143 

  .8 .3 -.020 -.032 -.016 .117 .015 .016 .016 .012 .025 .036 .022 .118 

   .7 -.020 -.038 -.010 .183 .020 .020 .020 .014 .028 .043 .022 .184 

1000 20 .2 .3 -.040 -.060 -.038 .068 .015 .016 .016 .012 .043 .062 .042 .069 

   .7 -.035 -.025 -.034 .120 .020 .017 .019 .015 .040 .030 .039 .121 

  .5 .3 -.027 .003 -.029 .060 .020 .019 .020 .015 .034 .019 .035 .062 

   .7 -.039 -.044 -.036 .163 .014 .011 .016 .012 .041 .045 .040 .163 

  .8 .3 -.044 -.055 -.038 .093 .020 .020 .020 .012 .049 .059 .043 .094 

   .7 -.040 -.053 -.037 .108 .017 .016 .017 .011 .044 .055 .041 .108 

 40 .2 .3 -.021 -.025 -.020 .090 .014 .012 .014 .010 .025 .027 .025 .090 

   .7 -.020 -.026 -.014 .155 .014 .013 .014 .010 .024 .029 .020 .155 

  .5 .3 -.018 -.025 -.016 .125 .013 .014 .012 .009 .022 .028 .020 .126 

   .7 -.018 -.034 -.013 .157 .014 .013 .014 .010 .023 .037 .019 .158 

  .8 .3 -.017 -.022 -.015 .126 .014 .013 .013 .011 .022 .026 .020 .127 

   .7 -.020 -.035 -.016 .143 .012 .013 .013 .009 .023 .038 .021 .143 
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Table A14. Bias, SE, and RMSE of 𝜎𝛽
2 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 .072 .085 .073 .157 .006 .006 .006 .006 .072 .086 .073 .157 

   .7 .069 .055 .071 .110 .007 .007 .007 .007 .069 .055 .071 .110 

  .5 .3 .067 .066 .068 .106 .005 .006 .005 .006 .067 .066 .068 .106 

   .7 .070 .082 .071 .149 .007 .005 .007 .006 .071 .082 .072 .149 

  .8 .3 .070 .100 .070 .128 .009 .007 .008 .007 .070 .100 .071 .128 

   .7 .066 .051 .068 .099 .008 .005 .008 .006 .066 .051 .068 .099 

 40 .2 .3 .032 .017 .033 .061 .005 .004 .006 .005 .032 .017 .034 .061 

   .7 .032 .034 .033 .078 .005 .004 .005 .004 .032 .034 .033 .078 

  .5 .3 .034 .021 .035 .074 .005 .004 .005 .004 .034 .021 .035 .074 

   .7 .031 .023 .032 .066 .005 .003 .005 .004 .031 .023 .033 .066 

  .8 .3 .032 .042 .033 .081 .005 .005 .005 .004 .033 .042 .033 .082 

   .7 .032 .021 .034 .071 .005 .004 .005 .004 .032 .021 .034 .071 

1000 20 .2 .3 .067 .063 .067 .096 .007 .004 .007 .004 .067 .063 .067 .096 

   .7 .071 .089 .071 .143 .006 .004 .006 .004 .071 .089 .071 .143 

  .5 .3 .071 .052 .072 .072 .005 .004 .004 .003 .072 .052 .072 .072 

   .7 .068 .067 .070 .165 .008 .006 .008 .004 .069 .067 .070 .165 

  .8 .3 .070 .109 .071 .163 .006 .006 .005 .005 .070 .109 .071 .163 

   .7 .069 .080 .070 .134 .008 .006 .008 .005 .069 .080 .070 .134 

 40 .2 .3 .032 .040 .033 .070 .005 .004 .005 .003 .033 .040 .033 .070 

   .7 .033 .031 .034 .081 .002 .002 .002 .003 .033 .031 .034 .081 

  .5 .3 .032 .026 .033 .064 .004 .003 .003 .003 .032 .026 .033 .064 

   .7 .034 .036 .034 .084 .004 .003 .003 .003 .034 .036 .035 .084 

  .8 .3 .034 .038 .034 .086 .005 .003 .005 .003 .034 .038 .035 .086 

   .7 .033 .041 .033 .082 .004 .003 .004 .003 .033 .041 .033 .082 
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Table A15. Bias, SE, and RMSE of 𝜎𝜃
2 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 .004 -.002 .004 .004 .066 .066 .067 .067 .067 .066 .067 .067 

   .7 -.001 -.005 .000 -.002 .061 .062 .063 .063 .061 .062 .063 .063 

  .5 .3 .004 .001 .005 .004 .050 .051 .051 .051 .051 .051 .052 .051 

   .7 .016 .011 .017 .016 .055 .054 .055 .054 .057 .055 .057 .056 

  .8 .3 .011 .007 .010 .013 .059 .057 .058 .057 .060 .057 .059 .059 

   .7 .002 -.001 .001 .006 .055 .054 .054 .054 .055 .054 .054 .054 

 40 .2 .3 .000 -.003 .001 .000 .044 .044 .044 .045 .044 .045 .044 .045 

   .7 .017 .013 .018 .018 .040 .040 .040 .040 .043 .042 .044 .044 

  .5 .3 -.008 -.013 -.008 -.008 .036 .036 .037 .036 .037 .038 .037 .037 

   .7 -.002 -.004 -.002 -.002 .041 .042 .041 .041 .041 .042 .041 .041 

  .8 .3 .002 .000 .001 .002 .049 .048 .048 .048 .049 .048 .048 .048 

   .7 .002 -.001 .003 .002 .043 .043 .044 .043 .044 .043 .044 .043 

1000 20 .2 .3 -.006 -.007 -.005 -.006 .047 .047 .047 .047 .047 .048 .047 .048 

   .7 .004 .000 .004 .003 .048 .048 .048 .048 .048 .048 .048 .048 

  .5 .3 .009 .009 .009 .009 .042 .042 .042 .041 .043 .043 .043 .042 

   .7 .005 -.001 .005 .005 .045 .045 .045 .046 .046 .045 .045 .046 

  .8 .3 .016 .012 .016 .018 .032 .032 .032 .031 .036 .034 .036 .035 

   .7 .008 .005 .008 .010 .047 .047 .048 .048 .048 .047 .048 .049 

 40 .2 .3 -.007 -.007 -.007 -.007 .022 .022 .022 .022 .023 .023 .023 .023 

   .7 .002 .001 .003 .003 .028 .028 .028 .028 .028 .028 .028 .028 

  .5 .3 -.002 -.004 -.002 -.003 .021 .021 .021 .021 .021 .021 .021 .021 

   .7 -.007 -.011 -.007 -.007 .035 .035 .035 .035 .036 .036 .035 .036 

  .8 .3 .002 .000 .003 .002 .031 .031 .030 .030 .031 .031 .031 .030 

   .7 -.001 -.004 -.001 -.002 .023 .023 .023 .023 .023 .023 .023 .023 
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Table A16. Bias, SE, and RMSE of 𝜌𝜃𝜏 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 .010 .010 .009 .128 .028 .028 .028 .026 .030 .030 .030 .131 

   .7 -.010 -.009 -.010 .113 .028 .028 .028 .026 .029 .029 .030 .116 

  .5 .3 -.002 -.003 -.002 .098 .015 .015 .015 .013 .015 .015 .015 .099 

   .7 .004 .004 .004 .106 .020 .020 .020 .018 .020 .020 .020 .107 

  .8 .3 -.010 -.011 -.011 .049 .014 .014 .014 .011 .017 .018 .017 .050 

   .7 -.008 -.008 -.008 .050 .011 .011 .011 .008 .014 .013 .014 .050 

 40 .2 .3 -.003 -.003 -.002 .109 .020 .020 .020 .020 .021 .020 .021 .111 

   .7 -.004 -.004 -.004 .112 .017 .017 .017 .015 .017 .017 .017 .113 

  .5 .3 -.001 -.001 -.001 .084 .014 .015 .014 .013 .014 .015 .014 .085 

   .7 -.002 -.002 -.002 .086 .019 .019 .019 .016 .019 .019 .019 .088 

  .8 .3 -.004 -.004 -.004 .042 .012 .012 .012 .010 .012 .012 .012 .043 

   .7 -.010 -.010 -.010 .037 .011 .012 .012 .009 .015 .015 .015 .038 

1000 20 .2 .3 .005 .005 .005 .134 .021 .021 .020 .019 .021 .021 .021 .135 

   .7 .004 .004 .004 .133 .016 .016 .016 .015 .017 .017 .017 .134 

  .5 .3 -.007 -.006 -.007 .093 .014 .015 .015 .012 .016 .016 .016 .094 

   .7 -.003 -.003 -.002 .098 .015 .014 .015 .012 .015 .015 .015 .099 

  .8 .3 -.003 -.003 -.003 .054 .014 .014 .014 .011 .014 .014 .014 .055 

   .7 -.005 -.005 -.005 .055 .012 .012 .012 .009 .013 .013 .013 .056 

 40 .2 .3 -.003 -.003 -.003 .107 .011 .011 .011 .010 .012 .012 .012 .107 

   .7 -.007 -.007 -.007 .104 .010 .011 .010 .010 .013 .013 .013 .105 

  .5 .3 .000 .000 .000 .085 .010 .011 .010 .010 .010 .011 .010 .086 

   .7 -.002 -.002 -.002 .087 .011 .010 .010 .009 .011 .010 .010 .087 

  .8 .3 -.002 -.002 -.002 .043 .007 .007 .007 .006 .007 .007 .007 .043 

   .7 -.004 -.004 -.004 .044 .006 .006 .006 .005 .007 .007 .007 .045 
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Table A17. Bias, SE, and RMSE of 𝜎𝜏
2 in simulation study 1. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 
HM 

500 20 .2 .3 .002 .002 .003 .015 .005 .005 .005 .006 .006 .006 .006 .016 

   .7 .003 .003 .003 .015 .007 .006 .007 .007 .007 .007 .007 .017 

  .5 .3 .002 .002 .002 .032 .005 .005 .005 .005 .006 .006 .006 .032 

   .7 .002 .002 .002 .033 .006 .006 .006 .007 .006 .006 .006 .034 

  .8 .3 .003 .002 .003 .050 .005 .005 .005 .006 .006 .006 .006 .051 

   .7 .003 .003 .004 .049 .005 .005 .005 .005 .006 .006 .006 .049 

 40 .2 .3 .003 .003 .003 .016 .003 .003 .003 .004 .004 .004 .004 .017 

   .7 .002 .002 .002 .016 .003 .004 .003 .004 .004 .004 .004 .016 

  .5 .3 .003 .003 .003 .031 .003 .004 .003 .004 .004 .004 .004 .031 

   .7 .003 .002 .003 .032 .004 .004 .004 .004 .005 .005 .005 .033 

  .8 .3 .003 .003 .003 .047 .003 .004 .003 .004 .005 .005 .005 .047 

   .7 .002 .002 .002 .047 .003 .003 .003 .004 .004 .004 .004 .047 

1000 20 .2 .3 .001 .001 .001 .015 .003 .003 .003 .004 .003 .003 .003 .016 

   .7 .002 .002 .002 .016 .004 .004 .004 .004 .005 .005 .005 .017 

  .5 .3 .002 .002 .001 .030 .004 .004 .004 .004 .004 .004 .004 .031 

   .7 .002 .002 .002 .031 .003 .003 .003 .004 .004 .004 .004 .031 

  .8 .3 .001 .001 .001 .045 .005 .005 .005 .005 .005 .005 .005 .045 

   .7 .001 .001 .001 .047 .005 .005 .005 .005 .005 .005 .005 .047 

 40 .2 .3 .001 .001 .001 .014 .003 .003 .003 .003 .003 .003 .003 .014 

   .7 .001 .001 .001 .013 .003 .003 .003 .003 .003 .003 .003 .014 

  .5 .3 .001 .001 .001 .030 .002 .002 .002 .003 .003 .003 .003 .030 

   .7 .002 .002 .002 .031 .002 .002 .002 .002 .002 .003 .002 .031 

  .8 .3 .001 .001 .001 .043 .002 .002 .002 .003 .002 .002 .002 .044 

   .7 .002 .002 .002 .048 .003 .003 .003 .003 .003 .003 .003 .048 
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Appendix B 

Table B1a. Mean and SD of bias in item difficulty estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .008 .007 .013 .004 .020 .030 .018 .020 

   .7 -.003 -.005 .005 .003 .025 .043 .024 .028 

  .5 .3 -.003 -.003 .001 -.005 .021 .044 .017 .018 

   .7 -.007 -.008 .002 -.004 .027 .043 .030 .030 

  .8 .3 .000 .010 .002 .001 .026 .052 .027 .030 

   .7 .005 .005 .010 .006 .017 .041 .015 .022 

 40 .2 .3 -.002 -.002 .002 .002 .019 .064 .020 .022 

   .7 .000 .000 .004 -.002 .025 .047 .026 .025 

  .5 .3 .000 .001 .004 .001 .024 .070 .024 .023 

   .7 .001 -.005 .007 .000 .021 .041 .021 .025 

  .8 .3 .006 .012 .009 .008 .019 .055 .019 .020 

   .7 .003 .003 .009 .005 .020 .045 .019 .021 

1000 20 .2 .3 -.008 -.007 -.006 -.005 .012 .044 .011 .012 

   .7 .001 .003 .006 .004 .015 .025 .014 .015 

  .5 .3 -.004 -.002 -.005 -.004 .018 .042 .017 .019 

   .7 .003 .005 .007 .002 .016 .072 .014 .015 

  .8 .3 -.006 -.002 -.005 -.004 .016 .045 .017 .017 

   .7 .003 .003 .006 .006 .012 .041 .012 .013 

 40 .2 .3 -.001 .003 -.001 -.001 .015 .053 .015 .013 

   .7 .002 .004 .005 .003 .013 .045 .013 .012 

  .5 .3 -.001 -.002 .001 .000 .014 .045 .014 .015 

   .7 -.003 -.002 .001 -.002 .016 .041 .016 .017 

  .8 .3 .001 .000 .003 .003 .013 .051 .013 .015 

   .7 -.004 -.007 -.001 -.003 .017 .053 .017 .017 
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Table B1b. Mean and SD of SE in item difficulty estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .093 .095 .094 .103 .020 .022 .020 .020 

   .7 .093 .093 .093 .099 .021 .023 .021 .017 

  .5 .3 .095 .100 .094 .106 .021 .027 .021 .017 

   .7 .085 .086 .086 .097 .019 .022 .019 .016 

  .8 .3 .089 .087 .089 .102 .021 .018 .020 .013 

   .7 .093 .093 .093 .102 .020 .019 .021 .018 

 40 .2 .3 .088 .088 .088 .107 .027 .026 .027 .017 

   .7 .085 .086 .086 .105 .022 .024 .022 .018 

  .5 .3 .086 .091 .086 .104 .028 .036 .028 .017 

   .7 .086 .089 .087 .104 .022 .031 .022 .017 

  .8 .3 .084 .087 .084 .101 .020 .025 .021 .016 

   .7 .085 .087 .085 .102 .023 .026 .023 .018 

1000 20 .2 .3 .069 .074 .069 .077 .019 .019 .019 .016 

   .7 .064 .065 .064 .071 .012 .012 .013 .009 

  .5 .3 .063 .066 .063 .070 .015 .014 .015 .013 

   .7 .060 .059 .061 .069 .015 .014 .015 .012 

  .8 .3 .062 .069 .062 .070 .021 .031 .020 .019 

   .7 .063 .064 .063 .072 .013 .013 .013 .010 

 40 .2 .3 .061 .066 .061 .072 .018 .023 .017 .012 

   .7 .060 .060 .060 .070 .015 .016 .015 .012 

  .5 .3 .061 .063 .061 .073 .015 .017 .016 .011 

   .7 .059 .059 .059 .071 .013 .014 .013 .011 

  .8 .3 .059 .063 .059 .072 .019 .017 .019 .015 

   .7 .061 .062 .061 .074 .017 .019 .017 .013 
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Table B1c. Mean and SD of RMSE in item difficulty estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .095 .099 .096 .105 .021 .024 .021 .020 

   .7 .096 .101 .096 .103 .022 .027 .021 .017 

  .5 .3 .097 .109 .096 .108 .020 .029 .020 .017 

   .7 .089 .095 .090 .101 .020 .025 .022 .017 

  .8 .3 .092 .098 .093 .106 .022 .032 .022 .017 

   .7 .095 .100 .095 .105 .020 .024 .020 .018 

 40 .2 .3 .090 .106 .090 .109 .027 .036 .027 .017 

   .7 .088 .096 .089 .108 .024 .029 .024 .021 

  .5 .3 .090 .111 .090 .106 .027 .046 .027 .017 

   .7 .089 .097 .089 .107 .022 .033 .022 .018 

  .8 .3 .087 .102 .087 .104 .020 .031 .021 .016 

   .7 .087 .097 .088 .104 .023 .028 .023 .018 

1000 20 .2 .3 .071 .085 .070 .078 .018 .024 .018 .016 

   .7 .066 .070 .066 .072 .013 .013 .013 .009 

  .5 .3 .065 .076 .065 .072 .015 .021 .015 .014 

   .7 .062 .084 .063 .071 .016 .040 .016 .013 

  .8 .3 .064 .082 .064 .072 .022 .032 .022 .021 

   .7 .064 .074 .064 .073 .013 .018 .014 .010 

 40 .2 .3 .063 .081 .063 .073 .017 .032 .017 .012 

   .7 .061 .071 .061 .071 .016 .028 .016 .012 

  .5 .3 .063 .075 .063 .074 .016 .024 .016 .012 

   .7 .061 .070 .061 .073 .014 .024 .014 .011 

  .8 .3 .061 .078 .061 .073 .019 .027 .019 .015 

   .7 .064 .077 .063 .075 .018 .034 .018 .014 
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Table B2a. Mean and SD of bias in time discrimination estimation in simulation study 

2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 -.011 -.026 -.011 -.052 .011 .026 .011 .042 

   .7 -.010 -.021 -.011 -.061 .013 .036 .014 .053 

  .5 .3 -.016 -.034 -.016 -.067 .012 .017 .012 .029 

   .7 -.011 -.019 -.011 -.059 .012 .024 .011 .033 

  .8 .3 -.013 -.026 -.013 -.071 .009 .042 .009 .060 

   .7 -.006 -.017 -.007 -.052 .014 .031 .014 .043 

 40 .2 .3 -.013 -.032 -.013 -.070 .013 .032 .013 .051 

   .7 -.011 -.023 -.011 -.055 .013 .025 .013 .034 

  .5 .3 -.011 -.033 -.011 -.065 .011 .044 .011 .062 

   .7 -.009 -.018 -.009 -.057 .013 .023 .013 .042 

  .8 .3 -.011 -.028 -.011 -.059 .011 .024 .011 .037 

   .7 -.012 -.023 -.012 -.057 .013 .029 .013 .041 

1000 20 .2 .3 -.007 -.023 -.007 -.060 .012 .040 .012 .049 

   .7 -.004 -.015 -.004 -.051 .010 .025 .010 .037 

  .5 .3 -.006 -.030 -.006 -.058 .008 .046 .008 .060 

   .7 -.002 -.012 -.003 -.052 .011 .023 .011 .038 

  .8 .3 -.006 -.028 -.006 -.053 .009 .036 .009 .045 

   .7 -.009 -.020 -.009 -.056 .007 .021 .007 .037 

 40 .2 .3 -.004 -.027 -.004 -.055 .010 .035 .010 .045 

   .7 -.006 -.016 -.006 -.047 .007 .021 .007 .030 

  .5 .3 -.006 -.022 -.006 -.051 .009 .038 .009 .051 

   .7 -.006 -.015 -.006 -.052 .010 .018 .010 .033 

  .8 .3 -.007 -.030 -.007 -.059 .011 .044 .011 .070 

   .7 -.006 -.016 -.006 -.054 .011 .019 .011 .033 
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Table B2b. Mean and SD of SE in time discrimination estimation in simulation study 

2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .064 .063 .064 .061 .009 .009 .009 .009 

   .7 .067 .067 .067 .063 .009 .009 .009 .009 

  .5 .3 .062 .062 .062 .061 .007 .008 .007 .008 

   .7 .066 .064 .066 .062 .007 .007 .007 .008 

  .8 .3 .064 .063 .064 .060 .008 .007 .008 .006 

   .7 .066 .065 .066 .062 .011 .010 .011 .010 

 40 .2 .3 .063 .062 .063 .060 .007 .008 .007 .007 

   .7 .061 .060 .061 .058 .009 .009 .009 .009 

  .5 .3 .064 .064 .064 .062 .008 .008 .008 .008 

   .7 .064 .063 .064 .061 .007 .006 .007 .006 

  .8 .3 .063 .062 .063 .060 .009 .008 .009 .007 

   .7 .062 .062 .062 .060 .008 .009 .008 .007 

1000 20 .2 .3 .046 .045 .047 .043 .005 .005 .005 .006 

   .7 .046 .046 .046 .044 .007 .006 .007 .006 

  .5 .3 .047 .047 .047 .045 .005 .006 .005 .006 

   .7 .046 .046 .046 .044 .006 .006 .006 .006 

  .8 .3 .047 .046 .047 .045 .008 .006 .008 .005 

   .7 .046 .046 .046 .044 .005 .006 .005 .006 

 40 .2 .3 .046 .045 .046 .043 .006 .007 .006 .007 

   .7 .044 .044 .044 .043 .006 .006 .006 .006 

  .5 .3 .045 .045 .045 .043 .006 .006 .006 .005 

   .7 .043 .043 .043 .041 .006 .006 .006 .006 

  .8 .3 .044 .043 .044 .042 .005 .005 .005 .005 

   .7 .045 .045 .045 .043 .006 .006 .006 .005 
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Table B2c. Mean and SD of RMSE in time discrimination estimation in simulation 

study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .066 .072 .066 .085 .009 .018 .009 .031 

   .7 .069 .077 .070 .094 .009 .019 .009 .041 

  .5 .3 .065 .073 .065 .093 .008 .011 .008 .021 

   .7 .068 .071 .068 .089 .007 .011 .007 .023 

  .8 .3 .066 .074 .066 .098 .008 .031 .008 .051 

   .7 .068 .074 .068 .087 .010 .014 .011 .029 

 40 .2 .3 .065 .074 .065 .097 .008 .019 .008 .041 

   .7 .064 .068 .064 .085 .008 .014 .008 .022 

  .5 .3 .066 .079 .066 .096 .008 .030 .008 .052 

   .7 .066 .070 .066 .088 .007 .011 .007 .031 

  .8 .3 .065 .071 .065 .089 .008 .012 .009 .026 

   .7 .065 .069 .065 .086 .009 .021 .009 .034 

1000 20 .2 .3 .048 .057 .048 .078 .006 .030 .006 .043 

   .7 .047 .053 .047 .071 .007 .013 .007 .029 

  .5 .3 .048 .064 .049 .080 .005 .033 .005 .051 

   .7 .048 .051 .048 .072 .006 .013 .006 .030 

  .8 .3 .048 .061 .048 .074 .008 .022 .008 .037 

   .7 .048 .053 .048 .075 .005 .010 .005 .029 

 40 .2 .3 .047 .058 .047 .074 .006 .023 .006 .038 

   .7 .045 .050 .045 .066 .006 .013 .006 .025 

  .5 .3 .046 .056 .046 .072 .006 .028 .006 .044 

   .7 .045 .048 .045 .070 .006 .010 .006 .026 

  .8 .3 .045 .059 .045 .079 .005 .035 .005 .061 

   .7 .047 .051 .047 .072 .005 .010 .005 .027 
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Table B3a. Mean and SD of bias in time intensity estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 -.014 -.023 -.022 -.187 .056 .130 .076 .222 

   .7 .003 .020 -.013 -.189 .017 .083 .049 .176 

  .5 .3 .013 .013 .000 -.168 .084 .123 .043 .158 

   .7 .002 .009 -.011 -.200 .022 .074 .026 .175 

  .8 .3 .009 .023 .005 -.165 .026 .071 .016 .105 

   .7 .000 .002 -.013 -.181 .023 .063 .049 .162 

 40 .2 .3 .012 .033 .000 -.174 .036 .117 .016 .154 

   .7 -.003 -.003 -.012 -.190 .018 .078 .035 .178 

  .5 .3 -.005 .012 -.017 -.180 .019 .099 .040 .173 

   .7 .004 .024 -.007 -.182 .024 .101 .026 .153 

  .8 .3 .003 .008 -.005 -.162 .024 .093 .020 .155 

   .7 -.004 -.002 -.014 -.194 .027 .089 .041 .189 

1000 20 .2 .3 .003 .021 .001 -.176 .012 .104 .010 .132 

   .7 .001 -.002 -.004 -.195 .008 .068 .016 .165 

  .5 .3 -.019 -.015 -.009 -.142 .078 .101 .036 .118 

   .7 .004 .006 -.008 -.203 .027 .062 .024 .203 

  .8 .3 .000 -.014 -.012 -.157 .024 .119 .038 .175 

   .7 .001 .006 -.003 -.188 .014 .092 .013 .167 

 40 .2 .3 .003 .008 -.001 -.153 .020 .093 .020 .139 

   .7 -.004 .001 -.015 -.174 .023 .067 .047 .159 

  .5 .3 -.002 .000 -.006 -.167 .017 .122 .029 .172 

   .7 -.001 .010 -.010 -.186 .018 .084 .047 .163 

  .8 .3 -.002 .007 -.006 -.174 .020 .126 .026 .179 

   .7 -.001 .013 -.005 -.192 .012 .093 .018 .163 
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Table B3b. Mean and SD of SE in time intensity estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .046 .035 .046 .022 .028 .014 .028 .003 

   .7 .043 .035 .042 .021 .024 .016 .021 .002 

  .5 .3 .043 .035 .042 .022 .019 .016 .016 .003 

   .7 .045 .034 .046 .021 .026 .012 .025 .003 

  .8 .3 .044 .035 .042 .022 .029 .018 .023 .003 

   .7 .041 .031 .040 .021 .025 .013 .021 .003 

 40 .2 .3 .043 .032 .042 .022 .026 .012 .024 .003 

   .7 .039 .028 .040 .021 .018 .008 .019 .003 

  .5 .3 .044 .033 .043 .022 .029 .013 .027 .003 

   .7 .041 .029 .040 .022 .022 .008 .019 .003 

  .8 .3 .041 .029 .040 .022 .021 .009 .019 .003 

   .7 .037 .028 .038 .021 .018 .008 .018 .003 

1000 20 .2 .3 .031 .024 .031 .016 .013 .008 .012 .002 

   .7 .031 .023 .031 .015 .016 .007 .016 .002 

  .5 .3 .035 .024 .030 .016 .033 .013 .014 .002 

   .7 .030 .023 .033 .016 .015 .010 .023 .002 

  .8 .3 .030 .027 .028 .016 .021 .025 .015 .002 

   .7 .032 .022 .031 .015 .019 .006 .019 .002 

 40 .2 .3 .030 .023 .029 .015 .020 .012 .017 .002 

   .7 .029 .020 .029 .015 .017 .007 .017 .002 

  .5 .3 .029 .020 .029 .015 .018 .006 .017 .002 

   .7 .030 .021 .030 .015 .014 .006 .015 .002 

  .8 .3 .030 .021 .030 .015 .019 .005 .019 .002 

   .7 .029 .020 .029 .015 .013 .005 .013 .002 
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Table B3c. Mean and SD of RMSE in time intensity estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .055 .092 .060 .193 .056 .100 .074 .218 

   .7 .046 .075 .052 .194 .025 .053 .045 .170 

  .5 .3 .059 .092 .050 .174 .076 .090 .036 .153 

   .7 .048 .062 .050 .206 .029 .054 .031 .169 

  .8 .3 .047 .068 .043 .170 .036 .047 .025 .099 

   .7 .045 .061 .049 .188 .028 .035 .046 .156 

 40 .2 .3 .048 .091 .044 .181 .040 .087 .026 .147 

   .7 .042 .065 .047 .195 .020 .053 .035 .174 

  .5 .3 .047 .080 .051 .188 .032 .068 .043 .165 

   .7 .045 .076 .045 .186 .027 .076 .027 .150 

  .8 .3 .044 .076 .043 .168 .027 .061 .023 .150 

   .7 .042 .071 .047 .200 .026 .059 .037 .184 

1000 20 .2 .3 .033 .084 .032 .181 .014 .067 .012 .126 

   .7 .032 .055 .034 .198 .016 .045 .019 .161 

  .5 .3 .047 .085 .036 .146 .081 .060 .034 .114 

   .7 .034 .053 .036 .208 .026 .040 .031 .198 

  .8 .3 .033 .083 .036 .162 .029 .092 .036 .171 

   .7 .034 .067 .033 .191 .021 .066 .020 .163 

 40 .2 .3 .032 .075 .032 .158 .025 .061 .023 .134 

   .7 .032 .054 .038 .177 .025 .043 .046 .156 

  .5 .3 .031 .080 .033 .170 .022 .093 .029 .170 

   .7 .032 .064 .037 .189 .019 .059 .045 .159 

  .8 .3 .033 .093 .034 .177 .024 .086 .029 .177 

   .7 .030 .060 .032 .195 .015 .075 .019 .160 
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Table B4a. Mean and SD of bias in ability estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .000 .000 .000 .000 .205 .211 .206 .239 

   .7 .000 .000 .000 .000 .213 .226 .211 .236 

  .5 .3 .000 .000 .000 .000 .224 .232 .223 .263 

   .7 .000 .000 .000 .000 .214 .221 .216 .251 

  .8 .3 .000 .000 .000 .000 .232 .251 .232 .260 

   .7 .000 .000 .000 .000 .223 .229 .223 .255 

 40 .2 .3 .000 .000 .000 .000 .122 .135 .121 .143 

   .7 .000 .000 .000 .000 .113 .117 .113 .137 

  .5 .3 .000 .000 .000 .000 .148 .152 .148 .169 

   .7 .000 .000 .000 .000 .151 .162 .151 .174 

  .8 .3 .000 .000 .000 .000 .139 .152 .139 .176 

   .7 .000 .000 .000 .000 .146 .152 .147 .176 

1000 20 .2 .3 .000 .000 .000 .000 .215 .237 .215 .244 

   .7 .000 .000 .000 .000 .218 .224 .219 .250 

  .5 .3 .000 .000 .000 .000 .216 .232 .215 .251 

   .7 .000 .000 .000 .000 .213 .219 .213 .249 

  .8 .3 .000 .000 .000 .000 .221 .233 .221 .254 

   .7 .000 .000 .000 .000 .214 .223 .215 .256 

 40 .2 .3 .000 .000 .000 .000 .128 .135 .128 .151 

   .7 .000 .000 .000 .000 .133 .137 .133 .151 

  .5 .3 .000 .000 .000 .000 .133 .141 .133 .162 

   .7 .000 .000 .000 .000 .130 .142 .130 .162 

  .8 .3 .000 .000 .000 .000 .147 .156 .147 .179 

   .7 .000 .000 .000 .000 .148 .159 .148 .183 
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Table B4b. Mean and SD of SE in ability estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .364 .374 .364 .390 .057 .056 .056 .054 

   .7 .359 .362 .361 .392 .056 .056 .056 .052 

  .5 .3 .332 .341 .332 .357 .050 .050 .050 .048 

   .7 .333 .336 .333 .357 .052 .053 .052 .045 

  .8 .3 .261 .257 .261 .278 .040 .039 .040 .036 

   .7 .274 .276 .275 .285 .041 .041 .041 .039 

 40 .2 .3 .261 .273 .262 .319 .050 .049 .050 .042 

   .7 .273 .281 .273 .315 .052 .050 .052 .043 

  .5 .3 .252 .267 .253 .298 .050 .047 .051 .042 

   .7 .258 .261 .258 .296 .050 .050 .050 .040 

  .8 .3 .220 .228 .221 .250 .037 .037 .037 .034 

   .7 .224 .231 .225 .253 .039 .039 .039 .034 

1000 20 .2 .3 .358 .363 .358 .390 .059 .058 .059 .053 

   .7 .355 .362 .355 .385 .057 .057 .057 .054 

  .5 .3 .330 .341 .330 .358 .052 .051 .052 .048 

   .7 .332 .336 .332 .356 .053 .053 .053 .048 

  .8 .3 .265 .274 .266 .278 .042 .042 .042 .039 

   .7 .271 .273 .271 .281 .041 .041 .041 .037 

 40 .2 .3 .264 .282 .264 .311 .049 .047 .049 .043 

   .7 .275 .283 .275 .314 .049 .049 .050 .043 

  .5 .3 .255 .268 .255 .298 .046 .046 .046 .041 

   .7 .258 .261 .258 .295 .049 .049 .049 .040 

  .8 .3 .221 .232 .221 .251 .042 .041 .042 .033 

   .7 .221 .224 .221 .247 .041 .042 .041 .034 
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Table B4c. Mean and SD of RMSE in ability estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .410 .422 .410 .450 .096 .097 .096 .100 

   .7 .408 .417 .409 .450 .104 .108 .103 .097 

  .5 .3 .388 .400 .388 .430 .112 .112 .111 .115 

   .7 .385 .391 .386 .424 .105 .107 .105 .111 

  .8 .3 .332 .338 .332 .365 .115 .127 .114 .115 

   .7 .339 .344 .339 .367 .107 .108 .107 .114 

 40 .2 .3 .282 .297 .282 .345 .079 .082 .077 .069 

   .7 .292 .301 .292 .340 .067 .066 .067 .062 

  .5 .3 .284 .298 .285 .335 .086 .086 .086 .083 

   .7 .286 .293 .287 .333 .100 .104 .099 .093 

  .8 .3 .254 .266 .255 .298 .068 .073 .068 .073 

   .7 .261 .269 .262 .301 .072 .073 .072 .073 

1000 20 .2 .3 .405 .419 .405 .450 .118 .125 .117 .111 

   .7 .406 .415 .406 .449 .111 .111 .111 .111 

  .5 .3 .383 .401 .383 .428 .106 .108 .106 .104 

   .7 .385 .392 .386 .425 .098 .099 .098 .099 

  .8 .3 .332 .346 .333 .362 .103 .106 .103 .111 

   .7 .334 .340 .334 .367 .097 .101 .097 .106 

 40 .2 .3 .288 .307 .288 .342 .075 .076 .075 .071 

   .7 .299 .307 .299 .342 .080 .081 .081 .076 

  .5 .3 .283 .298 .283 .334 .067 .072 .068 .070 

   .7 .283 .290 .283 .331 .075 .080 .075 .071 

  .8 .3 .258 .272 .258 .302 .074 .075 .074 .073 

   .7 .257 .264 .258 .299 .079 .085 .079 .081 
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Table B5a. Mean and SD of bias in speed estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .000 .000 .000 .000 .038 .039 .038 .082 

   .7 .000 .000 .000 .000 .039 .040 .039 .093 

  .5 .3 .000 .000 .000 .000 .045 .045 .045 .093 

   .7 .000 .000 .000 .000 .041 .041 .041 .095 

  .8 .3 .000 .000 .000 .000 .046 .049 .046 .098 

   .7 .000 .000 .000 .000 .047 .047 .047 .089 

 40 .2 .3 .000 .000 .000 .000 .023 .023 .023 .092 

   .7 .000 .000 .000 .000 .024 .024 .024 .094 

  .5 .3 .000 .000 .000 .000 .025 .026 .025 .090 

   .7 .000 .000 .000 .000 .024 .025 .024 .090 

  .8 .3 .000 .000 .000 .000 .029 .030 .029 .083 

   .7 .000 .000 .000 .000 .030 .030 .030 .087 

1000 20 .2 .3 .000 .000 .000 .000 .040 .042 .040 .102 

   .7 .000 .000 .000 .000 .041 .041 .041 .097 

  .5 .3 .000 .000 .000 .000 .042 .044 .042 .091 

   .7 .000 .000 .000 .000 .044 .044 .044 .095 

  .8 .3 .000 .000 .000 .000 .047 .049 .047 .088 

   .7 .000 .000 .000 .000 .046 .047 .046 .090 

 40 .2 .3 .000 .000 .000 .000 .022 .023 .022 .088 

   .7 .000 .000 .000 .000 .024 .025 .024 .091 

  .5 .3 .000 .000 .000 .000 .024 .025 .024 .085 

   .7 .000 .000 .000 .000 .025 .027 .025 .097 

  .8 .3 .000 .000 .000 .000 .027 .029 .027 .082 

   .7 .000 .000 .000 .000 .029 .029 .029 .092 
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Table B5b. Mean and SD of SE in speed estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .106 .106 .106 .104 .014 .014 .014 .014 

   .7 .106 .106 .106 .103 .015 .015 .015 .014 

  .5 .3 .103 .103 .103 .103 .014 .014 .014 .014 

   .7 .105 .105 .105 .104 .014 .014 .014 .013 

  .8 .3 .095 .094 .095 .100 .013 .013 .013 .013 

   .7 .095 .095 .095 .101 .013 .013 .013 .013 

 40 .2 .3 .078 .078 .078 .075 .011 .011 .011 .010 

   .7 .079 .079 .079 .075 .011 .011 .011 .010 

  .5 .3 .077 .077 .077 .075 .010 .010 .010 .009 

   .7 .077 .077 .077 .075 .011 .011 .011 .010 

  .8 .3 .073 .073 .073 .074 .009 .009 .009 .010 

   .7 .071 .071 .071 .073 .009 .009 .009 .009 

1000 20 .2 .3 .108 .108 .108 .104 .014 .014 .014 .013 

   .7 .107 .107 .107 .104 .014 .014 .014 .014 

  .5 .3 .103 .103 .103 .103 .014 .014 .014 .014 

   .7 .103 .103 .103 .103 .014 .014 .014 .014 

  .8 .3 .095 .095 .095 .101 .013 .013 .013 .013 

   .7 .095 .095 .095 .101 .013 .013 .013 .014 

 40 .2 .3 .078 .079 .078 .075 .010 .010 .010 .010 

   .7 .078 .078 .078 .075 .011 .011 .011 .010 

  .5 .3 .077 .077 .077 .075 .010 .010 .010 .010 

   .7 .077 .077 .077 .074 .010 .011 .010 .010 

  .8 .3 .072 .072 .072 .074 .009 .009 .009 .009 

   .7 .073 .072 .073 .074 .009 .009 .009 .009 
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Table B5c. Mean and SD of RMSE in speed estimation in simulation study 2. 

    Mean SD 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

JM- 

DD1 

JM- 

DD2 

JM- 

D 
HM 

500 20 .2 .3 .113 .113 .113 .129 .016 .017 .016 .031 

   .7 .112 .113 .112 .135 .017 .017 .017 .031 

  .5 .3 .112 .112 .112 .135 .018 .018 .018 .032 

   .7 .112 .112 .112 .137 .016 .016 .016 .035 

  .8 .3 .105 .105 .105 .138 .016 .016 .016 .031 

   .7 .105 .105 .105 .132 .018 .018 .018 .028 

 40 .2 .3 .081 .081 .081 .114 .012 .012 .012 .032 

   .7 .082 .083 .082 .115 .011 .011 .011 .036 

  .5 .3 .081 .081 .081 .114 .011 .011 .011 .028 

   .7 .080 .081 .080 .112 .012 .012 .012 .034 

  .8 .3 .078 .078 .078 .107 .011 .011 .011 .032 

   .7 .077 .077 .077 .109 .011 .012 .012 .034 

1000 20 .2 .3 .115 .116 .115 .142 .017 .017 .017 .035 

   .7 .114 .115 .114 .138 .017 .017 .017 .034 

  .5 .3 .111 .112 .111 .135 .017 .017 .017 .030 

   .7 .112 .112 .112 .137 .018 .018 .018 .033 

  .8 .3 .106 .106 .106 .131 .017 .018 .017 .029 

   .7 .105 .105 .105 .132 .018 .018 .018 .033 

 40 .2 .3 .081 .082 .081 .113 .011 .011 .011 .028 

   .7 .082 .082 .082 .115 .012 .012 .012 .027 

  .5 .3 .080 .081 .080 .109 .011 .011 .011 .031 

   .7 .081 .081 .081 .118 .011 .012 .011 .032 

  .8 .3 .077 .078 .077 .106 .011 .011 .011 .029 

   .7 .078 .078 .078 .113 .012 .012 .012 .036 
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Table B6. Bias, SE, and RMSE of 𝜔0 in simulation study 2. 
    Bias  SE  RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

D 

JM- 

DD1 

JM- 

DD2 

JM- 

D 

JM- 

DD1 

JM- 

DD2 

JM- 

D 

500 20 .2 .3 .024 .041 .018 .036 .036 .036 .043 .054 .040 

   .7 .002 -.019 .000 .024 .025 .025 .024 .032 .025 

  .5 .3 -.004 -.002 -.002 .034 .029 .033 .034 .029 .033 

   .7 -.007 -.015 -.016 .029 .027 .031 .030 .031 .035 

  .8 .3 -.021 -.080 -.020 .025 .021 .023 .033 .083 .031 

   .7 -.009 -.009 -.005 .027 .024 .027 .028 .026 .027 

 40 .2 .3 -.014 -.032 -.012 .016 .016 .016 .022 .036 .020 

   .7 .012 .011 -.002 .020 .020 .019 .024 .023 .019 

  .5 .3 .005 -.010 .011 .018 .012 .017 .019 .016 .020 

   .7 -.005 -.029 -.007 .020 .019 .019 .021 .034 .021 

  .8 .3 -.004 -.017 .001 .020 .018 .020 .021 .025 .020 

   .7 .004 .003 -.003 .014 .013 .014 .014 .014 .014 

1000 20 .2 .3 .009 -.037 -.003 .018 .021 .018 .020 .043 .018 

   .7 -.008 -.015 -.015 .019 .021 .019 .020 .026 .024 

  .5 .3 .018 .008 .009 .019 .016 .017 .026 .018 .019 

   .7 -.004 .003 -.014 .017 .019 .019 .018 .019 .023 

  .8 .3 .000 .013 .011 .017 .017 .017 .017 .021 .020 

   .7 -.006 -.013 -.014 .018 .016 .018 .019 .021 .023 

 40 .2 .3 -.003 -.003 -.001 .010 .013 .011 .011 .013 .011 

   .7 .003 -.005 .009 .012 .010 .012 .012 .011 .015 

  .5 .3 .000 -.002 .001 .013 .012 .014 .013 .012 .014 

   .7 -.004 -.030 -.006 .015 .014 .014 .015 .033 .016 

  .8 .3 .005 .014 .005 .014 .013 .015 .015 .019 .016 

   .7 -.003 -.016 -.012 .013 .012 .012 .013 .020 .017 
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Table B7. Bias, SE, and RMSE of 𝜔1 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

DD2 

JM- 

DD1 

JM- 

DD2 

JM- 

DD1 

JM- 

DD2 

500 20 .2 .3 .072 .060 .034 .030 .080 .067 

   .7 .017 .029 .033 .037 .037 .047 

  .5 .3 .049 .055 .033 .042 .059 .069 

   .7 .022 .031 .024 .025 .032 .040 

  .8 .3 -.018 -.063 .034 .040 .038 .075 

   .7 -.035 -.031 .030 .028 .046 .042 

 40 .2 .3 .044 .090 .023 .026 .049 .094 

   .7 .023 .015 .018 .019 .030 .024 

  .5 .3 .043 .085 .022 .028 .048 .089 

   .7 -.034 -.007 .018 .016 .039 .017 

  .8 .3 .006 .000 .021 .023 .022 .023 

   .7 .002 .009 .020 .020 .020 .022 

1000 20 .2 .3 .027 -.003 .028 .037 .039 .037 

   .7 -.006 -.032 .021 .024 .022 .040 

  .5 .3 -.131 -.116 .039 .027 .136 .119 

   .7 .074 .103 .022 .025 .077 .106 

  .8 .3 .018 -.020 .025 .036 .031 .041 

   .7 -.022 -.022 .024 .019 .032 .029 

 40 .2 .3 -.028 -.005 .015 .024 .032 .025 

   .7 -.046 -.041 .015 .014 .048 .043 

  .5 .3 -.001 .003 .017 .015 .017 .015 

   .7 -.018 -.034 .012 .013 .021 .036 

  .8 .3 .015 .076 .013 .013 .020 .077 

   .7 -.020 .005 .015 .012 .025 .014 

 

 



 

 

212 

 

Table B8. Bias, SE, and RMSE of 𝜌𝑏𝜆 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-DD1 JM-DD1 JM-DD1 

500 20 .2 .3 .097 .100 .139 

   .7 -.240 .077 .252 

  .5 .3 -.010 .087 .088 

   .7 -.176 .102 .203 

  .8 .3 -.188 .090 .208 

   .7 -.353 .095 .366 

 40 .2 .3 -.040 .055 .068 

   .7 -.205 .054 .212 

  .5 .3 -.043 .048 .064 

   .7 -.348 .067 .355 

  .8 .3 -.127 .052 .137 

   .7 -.257 .057 .263 

1000 20 .2 .3 -.071 .068 .098 

   .7 -.257 .065 .265 

  .5 .3 -.482 .097 .492 

   .7 -.090 .049 .102 

  .8 .3 -.098 .063 .117 

   .7 -.326 .063 .332 

 40 .2 .3 -.219 .039 .222 

   .7 -.370 .047 .373 

  .5 .3 -.140 .045 .147 

   .7 -.278 .041 .281 

  .8 .3 -.097 .034 .103 

   .7 -.316 .052 .320 
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Table B9. Bias, SE, and RMSE of 𝜎𝜙
2 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM- 

DD1 

JM- 

D 

JM- 

DD1 

JM- 

D 

JM- 

DD1 

JM- 

D 

500 20 .2 .3 -.005 .005 .008 .010 .009 .011 

   .7 .009 .005 .006 .011 .011 .012 

  .5 .3 .003 .006 .006 .007 .007 .009 

   .7 .003 .001 .010 .011 .010 .011 

  .8 .3 .008 .003 .010 .010 .013 .010 

   .7 .005 -.009 .006 .006 .008 .011 

 40 .2 .3 .005 .008 .006 .007 .007 .011 

   .7 .003 -.002 .004 .005 .005 .006 

  .5 .3 .006 .008 .004 .005 .007 .010 

   .7 .002 -.010 .004 .004 .005 .010 

  .8 .3 .003 .002 .005 .006 .006 .006 

   .7 .003 -.003 .003 .005 .004 .006 

1000 20 .2 .3 .007 .006 .005 .007 .009 .009 

   .7 .004 -.001 .006 .009 .007 .009 

  .5 .3 .009 .004 .004 .004 .010 .005 

   .7 .003 .012 .004 .009 .005 .015 

  .8 .3 .010 .008 .005 .006 .011 .009 

   .7 .007 -.004 .004 .007 .008 .008 

 40 .2 .3 .006 .002 .004 .004 .007 .004 

   .7 .000 -.015 .002 .003 .002 .015 

  .5 .3 .002 .000 .004 .004 .005 .004 

   .7 -.001 -.012 .002 .003 .002 .012 

  .8 .3 .001 .001 .003 .003 .003 .003 

   .7 .003 -.006 .002 .002 .004 .007 
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Table B10. Bias, SE, and RMSE of 𝜇𝑏  in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 .007 .006 .012 .005 .024 .024 .023 .025 .025 .025 .026 .025 

   .7 -.003 -.005 .005 .003 .024 .025 .024 .025 .025 .026 .024 .025 

  .5 .3 -.003 -.003 .001 -.004 .018 .022 .018 .021 .018 .022 .018 .021 

   .7 -.007 -.008 .002 -.002 .017 .017 .017 .019 .018 .019 .017 .019 

  .8 .3 .000 .010 .002 .002 .017 .016 .017 .019 .017 .019 .017 .019 

   .7 .005 .005 .010 .007 .025 .025 .024 .027 .025 .026 .026 .028 

 40 .2 .3 -.002 -.002 .003 .002 .013 .014 .013 .017 .013 .014 .013 .017 

   .7 .000 .000 .004 -.001 .013 .014 .013 .014 .013 .014 .014 .014 

  .5 .3 .000 .000 .004 .001 .015 .015 .014 .016 .015 .015 .015 .016 

   .7 .001 -.005 .008 .000 .013 .013 .014 .015 .013 .014 .016 .015 

  .8 .3 .007 .012 .009 .008 .013 .013 .013 .016 .015 .017 .016 .018 

   .7 .003 .004 .009 .006 .016 .018 .017 .019 .016 .018 .019 .020 

1000 20 .2 .3 -.007 -.007 -.005 -.003 .020 .022 .020 .022 .021 .023 .020 .022 

   .7 .000 .004 .006 .006 .015 .014 .015 .014 .015 .015 .016 .015 

  .5 .3 -.004 -.002 -.004 -.003 .012 .013 .011 .012 .012 .013 .012 .013 

   .7 .003 .005 .007 .003 .014 .015 .015 .016 .015 .015 .017 .016 

  .8 .3 -.005 -.002 -.005 -.003 .015 .015 .016 .016 .016 .015 .016 .016 

   .7 .003 .003 .007 .007 .016 .015 .014 .014 .016 .015 .016 .016 

 40 .2 .3 -.001 .002 .000 -.001 .011 .012 .012 .012 .011 .012 .012 .012 

   .7 .002 .004 .005 .004 .009 .008 .009 .009 .009 .009 .010 .009 

  .5 .3 -.001 -.003 .000 .000 .011 .011 .010 .012 .011 .011 .010 .012 

   .7 -.003 -.001 .001 -.002 .010 .011 .010 .010 .010 .011 .010 .010 

  .8 .3 .001 .000 .003 .003 .011 .012 .011 .014 .011 .012 .012 .014 

   .7 -.004 -.008 .000 -.003 .012 .012 .013 .012 .012 .014 .013 .013 
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Table B11. Bias, SE, and RMSE of 𝜇𝛽  in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 -.014 -.023 -.022 -.185 .021 .020 .021 .006 .025 .031 .030 .185 

   .7 .003 .019 -.013 -.187 .017 .017 .016 .005 .017 .025 .021 .187 

  .5 .3 .013 .013 .000 -.166 .018 .015 .016 .006 .022 .020 .016 .166 

   .7 .002 .008 -.011 -.198 .016 .015 .016 .004 .016 .017 .019 .198 

  .8 .3 .009 .023 .005 -.164 .017 .016 .014 .004 .019 .027 .015 .164 

   .7 .000 .001 -.012 -.180 .015 .015 .014 .006 .015 .015 .019 .180 

 40 .2 .3 .012 .033 .000 -.174 .012 .012 .010 .004 .018 .035 .010 .174 

   .7 -.004 -.003 -.012 -.189 .009 .010 .010 .004 .010 .010 .015 .189 

  .5 .3 -.005 .012 -.017 -.179 .013 .011 .012 .003 .014 .016 .020 .179 

   .7 .004 .024 -.007 -.181 .013 .010 .012 .003 .014 .026 .014 .181 

  .8 .3 .003 .007 -.005 -.161 .011 .010 .010 .003 .011 .013 .011 .161 

   .7 -.004 -.001 -.014 -.193 .009 .010 .009 .005 .010 .010 .016 .194 

1000 20 .2 .3 .002 .021 .001 -.174 .011 .011 .010 .004 .011 .024 .010 .174 

   .7 .001 -.002 -.004 -.192 .011 .011 .010 .004 .011 .011 .011 .192 

  .5 .3 -.019 -.015 -.008 -.140 .015 .012 .011 .003 .024 .020 .014 .140 

   .7 .004 .007 -.008 -.201 .010 .010 .011 .004 .011 .012 .014 .201 

  .8 .3 .001 -.013 -.012 -.155 .012 .014 .010 .003 .012 .019 .015 .155 

   .7 .001 .006 -.003 -.186 .011 .010 .011 .003 .011 .012 .011 .186 

 40 .2 .3 .003 .008 -.001 -.153 .008 .010 .007 .003 .008 .012 .007 .153 

   .7 -.004 .001 -.015 -.173 .007 .006 .007 .003 .008 .006 .016 .173 

  .5 .3 -.002 .000 -.006 -.166 .007 .007 .007 .002 .007 .007 .009 .166 

   .7 -.001 .010 -.010 -.185 .008 .008 .008 .003 .008 .013 .013 .185 

  .8 .3 -.002 .007 -.006 -.173 .009 .008 .009 .003 .009 .010 .011 .173 

   .7 -.001 .013 -.005 -.191 .006 .007 .007 .003 .007 .014 .008 .191 
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Table B12. Bias, SE, and RMSE of 𝜎𝑏
2 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 .107 .103 .108 .113 .053 .052 .052 .053 .120 .115 .120 .125 

   .7 .107 .117 .103 .097 .068 .068 .063 .068 .126 .135 .121 .118 

  .5 .3 .112 .109 .109 .108 .071 .069 .069 .070 .132 .129 .129 .129 

   .7 .106 .105 .105 .103 .049 .047 .050 .052 .117 .115 .116 .115 

  .8 .3 .103 .140 .103 .096 .058 .053 .056 .055 .118 .150 .117 .110 

   .7 .124 .126 .126 .123 .060 .060 .059 .061 .138 .139 .139 .138 

 40 .2 .3 .065 .074 .061 .054 .041 .041 .040 .040 .077 .084 .073 .067 

   .7 .043 .042 .042 .044 .048 .047 .046 .047 .064 .063 .062 .064 

  .5 .3 .061 .063 .059 .058 .045 .042 .043 .046 .075 .075 .073 .074 

   .7 .066 .083 .064 .058 .040 .039 .040 .042 .077 .091 .075 .071 

  .8 .3 .068 .078 .067 .064 .040 .040 .041 .042 .079 .088 .079 .077 

   .7 .053 .054 .052 .050 .040 .038 .039 .044 .066 .066 .065 .066 

1000 20 .2 .3 .125 .146 .124 .121 .042 .044 .041 .042 .132 .152 .131 .129 

   .7 .106 .106 .107 .105 .032 .034 .032 .033 .111 .111 .111 .110 

  .5 .3 .100 .107 .102 .098 .046 .045 .043 .045 .110 .116 .111 .108 

   .7 .113 .109 .112 .114 .038 .039 .040 .040 .120 .116 .119 .121 

  .8 .3 .103 .096 .102 .098 .058 .057 .059 .057 .118 .111 .118 .113 

   .7 .120 .125 .123 .117 .035 .036 .035 .036 .125 .130 .128 .123 

 40 .2 .3 .056 .052 .055 .055 .032 .033 .032 .034 .065 .062 .064 .065 

   .7 .051 .055 .051 .052 .031 .030 .031 .032 .060 .063 .059 .061 

  .5 .3 .042 .047 .044 .043 .025 .024 .026 .026 .049 .053 .051 .051 

   .7 .052 .068 .051 .051 .029 .031 .028 .028 .060 .075 .059 .058 

  .8 .3 .047 .047 .048 .044 .031 .031 .031 .033 .056 .056 .057 .055 

   .7 .044 .058 .047 .046 .025 .025 .026 .024 .051 .063 .054 .052 
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Table B13. Bias, SE, and RMSE of 𝜌𝑏𝛽  in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 -.005 .016 .018 .190 .033 .030 .034 .021 .034 .034 .038 .191 

   .7 -.044 -.078 .010 .192 .044 .044 .037 .018 .062 .089 .039 .193 

  .5 .3 -.105 -.098 -.054 .119 .040 .036 .034 .019 .112 .105 .064 .120 

   .7 -.048 -.068 -.007 .182 .032 .029 .030 .019 .058 .074 .031 .183 

  .8 .3 -.062 -.087 -.049 .076 .052 .046 .040 .020 .081 .098 .063 .079 

   .7 -.029 -.044 .015 .186 .041 .040 .033 .015 .050 .059 .036 .186 

 40 .2 .3 -.050 -.147 -.009 .161 .034 .034 .025 .017 .061 .151 .027 .162 

   .7 -.018 -.018 .010 .200 .021 .021 .020 .012 .027 .028 .022 .200 

  .5 .3 -.003 -.048 .035 .199 .035 .032 .027 .012 .035 .058 .044 .199 

   .7 -.034 -.092 .004 .181 .032 .025 .025 .016 .047 .096 .026 .182 

  .8 .3 -.027 -.028 .000 .168 .028 .029 .021 .014 .039 .041 .021 .169 

   .7 -.009 -.023 .025 .220 .023 .025 .020 .012 .025 .034 .032 .220 

1000 20 .2 .3 -.042 -.087 -.037 .097 .020 .018 .021 .015 .047 .089 .043 .099 

   .7 -.037 -.038 -.021 .160 .026 .026 .026 .017 .046 .046 .034 .161 

  .5 .3 .065 .034 .013 .097 .046 .025 .022 .016 .079 .043 .025 .098 

   .7 -.053 -.057 -.013 .196 .023 .023 .028 .012 .058 .061 .031 .196 

  .8 .3 -.050 -.008 .012 .121 .037 .032 .023 .015 .063 .033 .026 .122 

   .7 -.035 -.062 -.022 .149 .018 .019 .016 .013 .039 .065 .027 .150 

 40 .2 .3 -.032 -.042 -.018 .134 .023 .024 .019 .012 .039 .049 .026 .134 

   .7 -.011 -.010 .034 .189 .024 .021 .019 .010 .027 .023 .039 .190 

  .5 .3 -.012 -.019 .007 .171 .023 .019 .019 .011 .026 .027 .020 .171 

   .7 -.015 -.037 .021 .193 .020 .018 .018 .010 .025 .041 .028 .193 

  .8 .3 -.015 -.055 -.003 .166 .021 .015 .019 .010 .025 .057 .020 .166 

   .7 -.017 -.082 -.001 .178 .020 .019 .017 .009 .026 .084 .017 .178 
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Table B14. Bias, SE, and RMSE of 𝜎𝛽
2 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 .087 .105 .097 .190 .017 .011 .017 .006 .089 .105 .099 .190 

   .7 .070 .051 .079 .129 .011 .007 .011 .005 .070 .052 .080 .129 

  .5 .3 .054 .063 .065 .117 .009 .009 .009 .007 .054 .064 .066 .117 

   .7 .074 .084 .081 .166 .011 .008 .013 .006 .075 .084 .082 .167 

  .8 .3 .070 .091 .070 .127 .010 .006 .010 .006 .071 .091 .071 .127 

   .7 .067 .057 .075 .115 .009 .006 .008 .005 .068 .058 .075 .115 

 40 .2 .3 .024 .023 .032 .085 .009 .004 .010 .003 .026 .023 .034 .085 

   .7 .034 .038 .039 .091 .006 .004 .007 .004 .035 .038 .040 .091 

  .5 .3 .036 .015 .045 .088 .008 .007 .008 .004 .037 .017 .045 .088 

   .7 .031 .021 .036 .084 .007 .005 .007 .004 .032 .022 .037 .084 

  .8 .3 .032 .040 .037 .096 .010 .006 .010 .004 .034 .041 .039 .096 

   .7 .036 .030 .040 .094 .006 .003 .006 .004 .037 .030 .041 .095 

1000 20 .2 .3 .067 .068 .068 .117 .008 .009 .008 .004 .067 .069 .068 .117 

   .7 .072 .098 .076 .162 .007 .007 .007 .005 .072 .098 .076 .162 

  .5 .3 .066 .057 .065 .090 .007 .005 .006 .005 .067 .057 .065 .091 

   .7 .060 .061 .083 .191 .011 .008 .016 .005 .061 .061 .084 .191 

  .8 .3 .078 .135 .086 .185 .008 .014 .007 .004 .078 .135 .086 .185 

   .7 .071 .091 .073 .161 .010 .005 .010 .005 .071 .091 .073 .161 

 40 .2 .3 .031 .033 .036 .081 .008 .008 .007 .003 .032 .034 .036 .081 

   .7 .036 .031 .045 .098 .005 .004 .005 .003 .037 .031 .045 .098 

  .5 .3 .033 .030 .036 .083 .005 .004 .005 .003 .034 .031 .036 .084 

   .7 .037 .038 .046 .095 .006 .003 .007 .003 .038 .038 .047 .095 

  .8 .3 .035 .036 .039 .108 .007 .005 .007 .003 .035 .037 .040 .108 

   .7 .033 .051 .033 .103 .005 .004 .005 .003 .034 .051 .033 .103 
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Table B15. Bias, SE, and RMSE of 𝜎𝜃
2 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 .019 .024 .019 .011 .053 .053 .053 .053 .056 .058 .056 .054 

   .7 .009 -.021 .017 .020 .060 .061 .062 .061 .061 .065 .064 .065 

  .5 .3 -.004 -.002 -.002 -.004 .068 .071 .068 .072 .068 .071 .068 .073 

   .7 .009 .001 .009 .006 .052 .051 .054 .056 .053 .051 .055 .056 

  .8 .3 -.002 -.058 .001 .006 .049 .055 .049 .050 .050 .080 .049 .050 

   .7 .015 .012 .018 .017 .060 .062 .060 .063 .062 .063 .063 .065 

 40 .2 .3 .010 -.013 .014 .023 .041 .040 .041 .048 .042 .042 .044 .053 

   .7 .030 .027 .032 .026 .033 .034 .035 .036 .045 .043 .047 .045 

  .5 .3 -.008 -.024 -.004 -.003 .042 .041 .042 .041 .043 .047 .042 .041 

   .7 -.009 -.039 -.007 -.002 .042 .043 .043 .041 .043 .058 .044 .041 

  .8 .3 -.002 -.021 .000 .002 .036 .039 .036 .041 .036 .045 .036 .041 

   .7 -.003 -.008 -.002 -.002 .045 .042 .045 .045 .045 .043 .045 .045 

1000 20 .2 .3 .009 -.032 .008 .009 .053 .054 .054 .054 .054 .063 .054 .055 

   .7 -.015 -.014 -.016 -.013 .033 .035 .033 .035 .036 .038 .037 .038 

  .5 .3 .002 -.013 .003 .001 .031 .033 .031 .035 .031 .036 .031 .035 

   .7 .012 .009 .015 .011 .044 .044 .044 .043 .045 .045 .046 .045 

  .8 .3 .006 .008 .007 .002 .044 .046 .045 .044 .044 .046 .045 .044 

   .7 .012 .004 .011 .007 .043 .041 .043 .043 .045 .041 .044 .044 

 40 .2 .3 -.009 -.015 -.009 -.008 .025 .024 .025 .025 .027 .029 .027 .026 

   .7 -.001 -.013 .001 -.001 .029 .029 .029 .031 .029 .032 .029 .031 

  .5 .3 -.006 -.015 -.005 -.008 .029 .030 .030 .030 .030 .033 .031 .030 

   .7 -.001 -.029 .000 -.005 .030 .030 .030 .031 .030 .042 .030 .031 

  .8 .3 .001 -.010 .001 .003 .031 .031 .031 .031 .031 .032 .031 .031 

   .7 -.005 -.030 -.006 -.009 .028 .030 .028 .028 .028 .042 .028 .030 
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Table B16. Bias, SE, and RMSE of 𝜌𝜃𝜏 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 .004 .003 .002 .138 .030 .029 .029 .024 .030 .029 .029 .140 

   .7 -.002 -.008 -.002 .153 .025 .024 .025 .028 .025 .025 .026 .155 

  .5 .3 .004 .000 .003 .119 .022 .026 .023 .022 .023 .026 .023 .121 

   .7 -.006 -.008 -.007 .111 .028 .028 .027 .020 .028 .030 .028 .113 

  .8 .3 -.008 -.013 -.008 .045 .017 .018 .017 .014 .018 .023 .019 .047 

   .7 -.010 -.010 -.010 .044 .015 .015 .015 .014 .018 .018 .018 .046 

 40 .2 .3 -.008 -.011 -.008 .155 .020 .020 .020 .019 .021 .023 .022 .156 

   .7 .011 .010 .010 .162 .019 .019 .019 .014 .022 .021 .021 .163 

  .5 .3 .005 -.001 .005 .113 .013 .015 .013 .014 .014 .015 .014 .114 

   .7 .001 -.001 .001 .115 .020 .020 .020 .016 .020 .020 .020 .116 

  .8 .3 -.007 -.010 -.007 .042 .011 .011 .011 .010 .013 .015 .014 .043 

   .7 -.006 -.007 -.007 .040 .008 .009 .008 .008 .010 .011 .010 .041 

1000 20 .2 .3 .004 -.006 .004 .168 .016 .017 .016 .015 .017 .018 .017 .168 

   .7 .001 -.003 -.001 .156 .019 .019 .018 .014 .019 .019 .018 .157 

  .5 .3 -.002 -.002 -.002 .111 .017 .018 .017 .015 .017 .018 .017 .112 

   .7 -.001 -.002 -.003 .116 .019 .020 .019 .015 .020 .020 .020 .117 

  .8 .3 -.005 -.006 -.005 .046 .010 .012 .010 .010 .012 .014 .012 .047 

   .7 -.009 -.008 -.009 .048 .010 .012 .010 .010 .013 .014 .014 .049 

 40 .2 .3 -.001 -.006 -.001 .149 .012 .012 .012 .010 .012 .014 .012 .150 

   .7 -.006 -.007 -.006 .149 .013 .014 .013 .013 .014 .016 .014 .149 

  .5 .3 -.002 -.004 -.002 .107 .013 .013 .013 .011 .013 .014 .013 .107 

   .7 -.001 -.004 -.002 .119 .010 .011 .011 .008 .010 .012 .011 .119 

  .8 .3 -.003 -.004 -.003 .044 .008 .009 .008 .007 .009 .010 .009 .045 

   .7 -.002 -.003 -.002 .048 .008 .008 .008 .006 .008 .009 .008 .049 
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Table B17. Bias, SE, and RMSE of 𝜎𝜏
2 in simulation study 2. 

    Bias SE RMSE 

J I 𝜌𝜃𝜏 𝜌𝑏𝜆 
JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

500 20 .2 .3 .004 .003 .003 .023 .007 .007 .007 .006 .008 .007 .007 .024 

   .7 .002 .002 .002 .027 .006 .006 .006 .005 .006 .006 .006 .028 

  .5 .3 .002 .002 .002 .052 .007 .007 .007 .006 .008 .007 .007 .052 

   .7 .005 .004 .004 .058 .006 .006 .006 .006 .008 .007 .007 .058 

  .8 .3 .001 -.003 .001 .091 .006 .006 .006 .005 .006 .007 .006 .091 

   .7 .003 .002 .003 .080 .007 .006 .007 .006 .007 .006 .007 .080 

 40 .2 .3 .001 .001 .001 .026 .004 .004 .004 .004 .004 .004 .004 .027 

   .7 .003 .003 .003 .029 .004 .004 .004 .004 .005 .005 .005 .030 

  .5 .3 .004 .003 .003 .052 .004 .004 .005 .004 .006 .005 .006 .053 

   .7 .003 .002 .003 .054 .005 .005 .005 .005 .006 .005 .006 .054 

  .8 .3 .004 .002 .004 .073 .006 .006 .006 .004 .007 .006 .007 .074 

   .7 .002 .001 .001 .076 .006 .005 .006 .004 .006 .006 .006 .076 

1000 20 .2 .3 .002 .001 .002 .031 .003 .003 .003 .003 .004 .003 .004 .031 

   .7 .001 .001 .001 .028 .005 .005 .005 .004 .005 .005 .005 .028 

  .5 .3 .001 .000 .001 .050 .004 .004 .004 .004 .004 .004 .004 .051 

   .7 .001 .000 .000 .052 .004 .004 .004 .004 .004 .004 .004 .052 

  .8 .3 .001 .000 .001 .076 .005 .004 .005 .004 .005 .004 .005 .076 

   .7 .002 .000 .001 .079 .004 .004 .004 .003 .004 .004 .004 .080 

 40 .2 .3 .001 .001 .001 .025 .003 .003 .003 .003 .003 .003 .003 .025 

   .7 .002 .001 .002 .025 .002 .002 .002 .002 .003 .003 .003 .025 

  .5 .3 .001 .000 .001 .049 .004 .004 .004 .003 .004 .004 .004 .049 

   .7 .001 -.001 .001 .055 .004 .004 .004 .003 .004 .004 .004 .055 

  .8 .3 .002 .003 .002 .070 .004 .004 .004 .003 .004 .005 .004 .071 

   .7 .001 .000 .001 .081 .003 .003 .003 .002 .003 .003 .003 .081 
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Appendix C 

Table C1. Mean and SD of bias, SE, and RMSE in item difficulty estimation in simulation study 3. 

         Mean       SD    

Data 

Generating 

Model 

Fit 

Indices 
J I 𝜌𝜃𝜏 𝜌𝑏𝜆 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-RD1 Bias 500 20 .2 .3 -.003 -.009 -.002 .005 .002 .006 -.003 .023 .108 .021 .031 .027 .030 .021 

  500 40 .2 .3 -.001 .002 -.002 -.003 -.002 -.001 -.002 .025 .094 .024 .024 .026 .024 .025 

 SE 500 20 .2 .3 .101 .098 .101 .103 .102 .103 .102 .016 .017 .016 .015 .017 .014 .016 

  500 40 .2 .3 .103 .103 .103 .103 .103 .104 .103 .015 .015 .015 .015 .015 .015 .015 

 RMSE 500 20 .2 .3 .103 .135 .103 .107 .105 .106 .104 .016 .054 .016 .018 .018 .018 .016 

  500 40 .2 .3 .106 .134 .105 .106 .106 .106 .106 .016 .039 .016 .016 .016 .016 .016 

JM-DD1 Bias 500 20 .2 .3 .004 .005 .004 .008 .007 .013 .004 .021 .023 .020 .020 .030 .018 .020 

  500 40 .2 .3 .002 .002 .002 -.002 -.002 .002 .002 .022 .023 .022 .019 .064 .020 .022 

 SE 500 20 .2 .3 .103 .103 .103 .093 .095 .094 .103 .020 .020 .020 .020 .022 .020 .020 

  500 40 .2 .3 .106 .107 .107 .088 .088 .088 .107 .016 .016 .016 .027 .026 .027 .017 

 RMSE 500 20 .2 .3 .106 .106 .105 .095 .099 .096 .105 .020 .021 .020 .021 .024 .021 .020 

  500 40 .2 .3 .109 .109 .109 .090 .106 .090 .109 .017 .017 .017 .027 .036 .027 .017 
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Table C2. Mean and SD of bias, SE, and RMSE in time discrimination estimation in simulation study 3. 

         Mean       SD    

Data 

Generating 

Model 

Fit 

Indices 
J I 𝜌𝜃𝜏 𝜌𝑏𝜆 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-RD1 Bias 500 20 .2 .3 -.009 -.028 -.009 -.081 -.088 -.081 -.092 .013 .028 .013 .077 .081 .079 .084 

  500 40 .2 .3 -.009 -.034 -.009 -.091 -.096 -.091 -.099 .013 .035 .013 .079 .081 .079 .083 

 SE 500 20 .2 .3 .064 .063 .064 .064 .062 .064 .062 .010 .010 .010 .010 .010 .010 .010 

  500 40 .2 .3 .063 .062 .063 .061 .060 .061 .060 .008 .008 .008 .009 .009 .009 .009 

 RMSE 500 20 .2 .3 .066 .074 .066 .112 .117 .113 .119 .009 .015 .009 .063 .068 .064 .071 

  500 40 .2 .3 .065 .076 .065 .119 .122 .119 .125 .008 .022 .008 .063 .067 .063 .069 

JM-DD1 Bias 500 20 .2 .3 -.050 -.052 -.050 -.011 -.026 -.011 -.052 .040 .041 .040 .011 .026 .011 .042 

  500 40 .2 .3 -.067 -.070 -.067 -.013 -.032 -.013 -.070 .049 .051 .049 .013 .032 .013 .051 

 SE 500 20 .2 .3 .061 .061 .061 .064 .063 .064 .061 .009 .009 .009 .009 .009 .009 .009 

  500 40 .2 .3 .060 .060 .061 .063 .062 .063 .060 .007 .007 .007 .007 .008 .007 .007 

 RMSE 500 20 .2 .3 .084 .085 .084 .066 .072 .066 .085 .029 .030 .029 .009 .018 .009 .031 

  500 40 .2 .3 .095 .097 .095 .065 .074 .065 .097 .039 .041 .039 .008 .019 .008 .041 
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Table C3. Mean and SD of bias, SE, and RMSE in time intensity estimation in simulation study 3. 

         Mean       SD    

Data 

Generating 

Model 

Fit 

Indices 
J I 𝜌𝜃𝜏 𝜌𝑏𝜆 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-RD1 Bias 500 20 .2 .3 .000 -.002 -.001 -.105 -.123 -.116 -.173 .009 .096 .009 .070 .133 .090 .181 

  500 40 .2 .3 .000 .008 -.001 -.103 -.105 -.117 -.167 .010 .094 .008 .074 .098 .078 .128 

 SE 500 20 .2 .3 .033 .026 .033 .042 .029 .044 .022 .008 .006 .008 .023 .008 .028 .004 

  500 40 .2 .3 .033 .025 .033 .036 .027 .036 .024 .007 .004 .007 .014 .008 .013 .003 

 RMSE 500 20 .2 .3 .034 .074 .034 .115 .138 .126 .177 .009 .065 .009 .071 .120 .093 .178 

  500 40 .2 .3 .034 .078 .034 .117 .121 .128 .175 .009 .058 .008 .063 .083 .070 .118 

JM-DD1 Bias 500 20 .2 .3 -.178 -.178 -.181 -.014 -.023 -.022 -.187 .204 .207 .211 .056 .130 .076 .222 

  500 40 .2 .3 -.167 -.165 -.167 .012 .033 .000 -.174 .140 .146 .142 .036 .117 .016 .154 

 SE 500 20 .2 .3 .028 .024 .028 .046 .035 .046 .022 .006 .004 .005 .028 .014 .028 .003 

  500 40 .2 .3 .029 .023 .028 .043 .032 .042 .022 .006 .004 .006 .026 .012 .024 .003 

 RMSE 500 20 .2 .3 .184 .185 .186 .055 .092 .060 .193 .201 .203 .208 .056 .100 .074 .218 

  500 40 .2 .3 .172 .172 .173 .048 .091 .044 .181 .136 .140 .138 .040 .087 .026 .147 
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Table C4. Mean and SD of bias, SE, and RMSE in ability estimation in simulation study 3. 

         Mean       SD    

Data 

Generating 

Model 

Fit 

Indices 
J I 𝜌𝜃𝜏 𝜌𝑏𝜆 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-RD1 Bias 500 20 .2 .3 .000 .000 .000 .000 .000 .000 .000 .239 .241 .239 .241 .243 .240 .245 

  500 40 .2 .3 .000 .000 .000 .000 .000 .000 .000 .146 .147 .146 .150 .149 .149 .148 

 SE 500 20 .2 .3 .392 .391 .392 .402 .395 .402 .390 .054 .054 .054 .056 .056 .055 .054 

  500 40 .2 .3 .318 .318 .318 .325 .321 .324 .317 .046 .046 .046 .046 .046 .045 .045 

 RMSE 500 20 .2 .3 .450 .450 .450 .460 .454 .459 .451 .104 .106 .104 .106 .107 .105 .107 

  500 40 .2 .3 .346 .346 .346 .354 .350 .353 .346 .070 .071 .070 .071 .071 .070 .070 

JM-DD1 Bias 500 20 .2 .3 .000 .000 .000 .000 .000 .000 .000 .238 .238 .238 .205 .211 .206 .239 

  500 40 .2 .3 .000 .000 .000 .000 .000 .000 .000 .143 .143 .143 .122 .135 .121 .143 

 SE 500 20 .2 .3 .390 .390 .391 .364 .374 .364 .390 .054 .054 .054 .057 .056 .056 .054 

  500 40 .2 .3 .319 .319 .319 .261 .273 .262 .319 .042 .042 .042 .050 .049 .050 .042 

 RMSE 500 20 .2 .3 .450 .450 .450 .410 .422 .410 .450 .100 .100 .100 .096 .097 .096 .100 

  500 40 .2 .3 .345 .345 .345 .282 .297 .282 .345 .069 .069 .069 .079 .082 .077 .069 
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Table C5. Mean and SD of bias, SE, and RMSE in speed estimation in simulation study 3. 

         Mean       SD    

Data 

Generating 

Model 

Fit 

Indices 
J I 𝜌𝜃𝜏 𝜌𝑏𝜆 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-

RD1 

JM-

RD2 

JM- 

R 

JM-

DD1 

JM-

DD2 

JM- 

D 
HM 

JM-RD1 Bias 500 20 .2 .3 .000 .000 .000 .000 .000 .000 .000 .032 .033 .032 .052 .054 .051 .061 

  500 40 .2 .3 .000 .000 .000 .000 .000 .000 .000 .019 .019 .019 .040 .040 .039 .057 

 SE 500 20 .2 .3 .104 .105 .104 .107 .107 .107 .108 .013 .013 .013 .014 .014 .014 .014 

  500 40 .2 .3 .074 .075 .074 .077 .077 .077 .078 .010 .010 .010 .011 .011 .011 .011 

 RMSE 500 20 .2 .3 .109 .110 .109 .118 .119 .118 .123 .014 .014 .014 .019 .020 .019 .022 

  500 40 .2 .3 .077 .078 .077 .086 .086 .086 .095 .010 .010 .010 .015 .015 .014 .020 

JM-DD1 Bias 500 20 .2 .3 .000 .000 .000 .000 .000 .000 .000 .081 .081 .081 .038 .039 .038 .082 

  500 40 .2 .3 .000 .000 .000 .000 .000 .000 .000 .090 .090 .090 .023 .023 .023 .092 

 SE 500 20 .2 .3 .104 .104 .104 .106 .106 .106 .104 .014 .014 .014 .014 .014 .014 .014 

  500 40 .2 .3 .075 .075 .075 .078 .078 .078 .075 .010 .010 .010 .011 .011 .011 .010 

 RMSE 500 20 .2 .3 .129 .128 .129 .113 .113 .113 .129 .030 .031 .031 .016 .017 .016 .031 

  500 40 .2 .3 .113 .113 .113 .081 .081 .081 .114 .031 .031 .031 .012 .012 .012 .032 
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Table C6. Bias, SE, and RMSE of 𝜔0 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D 

JM-RD1 Bias 500 20 .2 .3 .001 .012 .000 .226 .256 .220 

  500 40 .2 .3 .000 -.008 .000 .216 .219 .218 

 SE 500 20 .2 .3 .009 .009 .010 .031 .028 .030 

  500 40 .2 .3 .009 .009 .008 .019 .017 .019 

 RMSE 500 20 .2 .3 .009 .015 .010 .228 .257 .222 

  500 40 .2 .3 .009 .012 .008 .217 .220 .219 

JM-DD1 Bias 500 20 .2 .3 .292 .292 .292 .024 .041 .018 

  500 40 .2 .3 .289 .287 .289 -.014 -.032 -.012 

 SE 500 20 .2 .3 .013 .013 .013 .036 .036 .036 

  500 40 .2 .3 .008 .008 .008 .016 .016 .016 

 RMSE 500 20 .2 .3 .292 .292 .292 .043 .054 .040 

  500 40 .2 .3 .289 .287 .289 .022 .036 .020 
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Table C7. Bias, SE, and RMSE of 𝜔1 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-DD1 JM-DD2 

JM-RD1 Bias 500 20 .2 .3 .078 .088 .055 .035 

  500 40 .2 .3 .033 .059 .018 .018 

 SE 500 20 .2 .3 .016 .019 .024 .023 

  500 40 .2 .3 .012 .014 .020 .022 

 RMSE 500 20 .2 .3 .079 .090 .060 .042 

  500 40 .2 .3 .035 .061 .027 .029 

JM-DD1 Bias 500 20 .2 .3 -.030 -.031 .072 .060 

  500 40 .2 .3 -.047 -.045 .044 .090 

 SE 500 20 .2 .3 .014 .013 .034 .030 

  500 40 .2 .3 .010 .010 .023 .026 

 RMSE 500 20 .2 .3 .033 .033 .080 .067 

  500 40 .2 .3 .048 .046 .049 .094 
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Table C8. Bias, SE, and RMSE of 𝜌𝑏𝜆 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-DD1 

JM-RD1 Bias 500 20 .2 .3 .076 .155 

  500 40 .2 .3 -.056 .059 

 SE 500 20 .2 .3 .041 .093 

  500 40 .2 .3 .031 .089 

 RMSE 500 20 .2 .3 .086 .181 

  500 40 .2 .3 .064 .107 

JM-DD1 Bias 500 20 .2 .3 .038 .097 

  500 40 .2 .3 -.199 -.040 

 SE 500 20 .2 .3 .158 .100 

  500 40 .2 .3 .078 .055 

 RMSE 500 20 .2 .3 .163 .139 

  500 40 .2 .3 .214 .068 
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Table C9. Bias, SE, and RMSE of 𝜎𝜙
2 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-R JM-DD1 JM-D 

JM-RD1 Bias 500 20 .2 .3 .001 .018 -.017 -.013 

  500 40 .2 .3 .002 .006 -.025 -.026 

 SE 500 20 .2 .3 .005 .007 .009 .012 

  500 40 .2 .3 .003 .004 .003 .004 

 RMSE 500 20 .2 .3 .005 .019 .019 .017 

  500 40 .2 .3 .004 .007 .025 .026 

JM-DD1 Bias 500 20 .2 .3 -.033 -.036 -.005 .005 

  500 40 .2 .3 -.031 -.035 .005 .008 

 SE 500 20 .2 .3 .001 .002 .008 .010 

  500 40 .2 .3 .001 .001 .006 .007 

 RMSE 500 20 .2 .3 .033 .036 .009 .011 

  500 40 .2 .3 .031 .035 .007 .011 
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Table C10. Bias, SE, and RMSE of 𝜇𝑏  in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 -.003 -.009 -.002 .005 .002 .005 -.002 

  500 40 .2 .3 -.002 .002 -.002 -.003 -.001 -.001 -.001 

 SE 500 20 .2 .3 .018 .019 .019 .018 .018 .017 .018 

  500 40 .2 .3 .018 .017 .018 .018 .018 .019 .018 

 RMSE 500 20 .2 .3 .018 .021 .019 .018 .018 .018 .018 

  500 40 .2 .3 .018 .018 .019 .019 .018 .019 .018 

JM-DD1 Bias 500 20 .2 .3 .006 .006 .006 .007 .006 .012 .005 

  500 40 .2 .3 .002 .003 .002 -.002 -.002 .003 .002 

 SE 500 20 .2 .3 .025 .026 .026 .024 .024 .023 .025 

  500 40 .2 .3 .016 .016 .017 .013 .014 .013 .017 

 RMSE 500 20 .2 .3 .026 .026 .026 .025 .025 .026 .025 

  500 40 .2 .3 .017 .017 .017 .013 .014 .013 .017 
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Table C11. Bias, SE, and RMSE of 𝜇𝛽  in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 .000 -.002 -.001 -.104 -.123 -.116 -.171 

  500 40 .2 .3 .000 .008 -.001 -.103 -.105 -.117 -.166 

 SE 500 20 .2 .3 .008 .008 .008 .017 .016 .017 .006 

  500 40 .2 .3 .005 .005 .005 .011 .010 .010 .003 

 RMSE 500 20 .2 .3 .008 .008 .008 .105 .124 .117 .171 

  500 40 .2 .3 .005 .009 .005 .103 .105 .117 .166 

JM-DD1 Bias 500 20 .2 .3 -.176 -.176 -.179 -.014 -.023 -.022 -.185 

  500 40 .2 .3 -.166 -.164 -.167 .012 .033 .000 -.174 

 SE 500 20 .2 .3 .010 .010 .009 .021 .020 .021 .006 

  500 40 .2 .3 .006 .005 .005 .012 .012 .010 .004 

 RMSE 500 20 .2 .3 .177 .177 .179 .025 .031 .030 .185 

  500 40 .2 .3 .166 .164 .167 .018 .035 .010 .174 
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Table C12. Bias, SE, and RMSE of 𝜎𝑏
2 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 .116 .109 .118 .100 .106 .101 .117 

  500 40 .2 .3 .054 .037 .057 .051 .054 .052 .055 

 SE 500 20 .2 .3 .048 .049 .047 .047 .047 .048 .047 

  500 40 .2 .3 .043 .042 .043 .042 .043 .042 .042 

 RMSE 500 20 .2 .3 .125 .119 .127 .110 .116 .112 .126 

  500 40 .2 .3 .069 .056 .071 .067 .069 .067 .069 

JM-DD1 Bias 500 20 .2 .3 .110 .112 .113 .107 .103 .108 .113 

  500 40 .2 .3 .053 .051 .054 .065 .074 .061 .054 

 SE 500 20 .2 .3 .054 .054 .053 .053 .052 .052 .053 

  500 40 .2 .3 .041 .040 .040 .041 .041 .040 .040 

 RMSE 500 20 .2 .3 .123 .124 .125 .120 .115 .120 .125 

  500 40 .2 .3 .067 .065 .067 .077 .084 .073 .067 
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Table C13. Bias, SE, and RMSE of 𝜌𝑏𝛽  in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 -.036 -.007 -.032 .037 .070 .067 .149 

  500 40 .2 .3 -.023 -.072 -.015 .033 .030 .078 .135 

 SE 500 20 .2 .3 .027 .025 .026 .030 .026 .031 .021 

  500 40 .2 .3 .018 .023 .018 .028 .027 .021 .014 

 RMSE 500 20 .2 .3 .044 .026 .041 .048 .075 .074 .150 

  500 40 .2 .3 .029 .076 .023 .043 .041 .080 .135 

JM-DD1 Bias 500 20 .2 .3 .172 .173 .181 -.005 .016 .018 .190 

  500 40 .2 .3 .157 .146 .160 -.050 -.147 -.009 .161 

 SE 500 20 .2 .3 .024 .023 .021 .033 .030 .034 .021 

  500 40 .2 .3 .019 .019 .017 .034 .034 .025 .017 

 RMSE 500 20 .2 .3 .174 .174 .182 .034 .034 .038 .191 

  500 40 .2 .3 .158 .148 .161 .061 .151 .027 .162 
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Table C14. Bias, SE, and RMSE of 𝜎𝛽
2 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 .072 .085 .073 .095 .117 .109 .157 

  500 40 .2 .3 .032 .017 .033 .031 .034 .042 .061 

 SE 500 20 .2 .3 .006 .006 .006 .014 .010 .018 .006 

  500 40 .2 .3 .005 .004 .006 .007 .006 .007 .005 

 RMSE 500 20 .2 .3 .072 .086 .073 .096 .117 .110 .157 

  500 40 .2 .3 .032 .017 .034 .032 .035 .042 .061 

JM-DD1 Bias 500 20 .2 .3 .179 .177 .185 .087 .105 .097 .190 

  500 40 .2 .3 .081 .079 .083 .024 .023 .032 .085 

 SE 500 20 .2 .3 .008 .008 .007 .017 .011 .017 .006 

  500 40 .2 .3 .006 .004 .005 .009 .004 .010 .003 

 RMSE 500 20 .2 .3 .179 .177 .185 .089 .105 .099 .190 

  500 40 .2 .3 .081 .079 .083 .026 .023 .034 .085 
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Table C15. Bias, SE, and RMSE of 𝜎𝜃
2 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 .004 -.002 .004 .015 .011 .017 .004 

  500 40 .2 .3 .000 -.003 .001 -.001 .000 .001 .000 

 SE 500 20 .2 .3 .066 .066 .067 .068 .066 .068 .067 

  500 40 .2 .3 .044 .044 .044 .044 .044 .044 .045 

 RMSE 500 20 .2 .3 .067 .066 .067 .070 .067 .070 .067 

  500 40 .2 .3 .044 .045 .044 .044 .044 .044 .045 

JM-DD1 Bias 500 20 .2 .3 .012 .012 .012 .019 .024 .019 .011 

  500 40 .2 .3 .023 .023 .022 .010 -.013 .014 .023 

 SE 500 20 .2 .3 .052 .052 .053 .053 .053 .053 .053 

  500 40 .2 .3 .048 .047 .047 .041 .040 .041 .048 

 RMSE 500 20 .2 .3 .054 .053 .054 .056 .058 .056 .054 

  500 40 .2 .3 .053 .053 .052 .042 .042 .044 .053 
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Table C16. Bias, SE, and RMSE of 𝜌𝜃𝜏 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 .010 .010 .009 .097 .105 .095 .128 

  500 40 .2 .3 -.003 -.003 -.002 .069 .070 .068 .109 

 SE 500 20 .2 .3 .028 .028 .028 .037 .036 .036 .026 

  500 40 .2 .3 .020 .020 .020 .020 .021 .020 .020 

 RMSE 500 20 .2 .3 .030 .030 .030 .103 .111 .101 .131 

  500 40 .2 .3 .021 .020 .021 .072 .073 .071 .111 

JM-DD1 Bias 500 20 .2 .3 .135 .135 .135 .004 .003 .002 .138 

  500 40 .2 .3 .151 .151 .151 -.008 -.011 -.008 .155 

 SE 500 20 .2 .3 .026 .026 .026 .030 .029 .029 .024 

  500 40 .2 .3 .019 .019 .019 .020 .020 .020 .019 

 RMSE 500 20 .2 .3 .138 .138 .138 .030 .029 .029 .140 

  500 40 .2 .3 .152 .152 .152 .021 .023 .022 .156 
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Table C17. Bias, SE, and RMSE of 𝜎𝜏
2 in simulation study 3. 

Data Generating Model Fit Indices J I 𝜌𝜃𝜏 𝜌𝑏𝜆 JM-RD1 JM-RD2 JM-R JM-DD1 JM-DD2 JM-D HM 

JM-RD1 Bias 500 20 .2 .3 .002 .002 .003 .011 .012 .010 .015 

  500 40 .2 .3 .003 .003 .003 .010 .010 .010 .016 

 SE 500 20 .2 .3 .005 .005 .005 .007 .006 .006 .006 

  500 40 .2 .3 .003 .003 .003 .004 .004 .004 .004 

 RMSE 500 20 .2 .3 .006 .006 .006 .013 .013 .012 .016 

  500 40 .2 .3 .004 .004 .004 .011 .011 .011 .017 

JM-DD1 Bias 500 20 .2 .3 .023 .023 .023 .004 .003 .003 .023 

  500 40 .2 .3 .025 .025 .025 .001 .001 .001 .026 

 SE 500 20 .2 .3 .005 .005 .005 .007 .007 .007 .006 

  500 40 .2 .3 .004 .004 .004 .004 .004 .004 .004 

 RMSE 500 20 .2 .3 .023 .023 .023 .008 .007 .007 .024 

  500 40 .2 .3 .026 .026 .026 .004 .004 .004 .027 
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