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Human and robots have complementary strengths in performing assembly op-

erations. Humans are very good at perception tasks in unstructured environments.

They are able to recognize and locate a part from a box of miscellaneous parts.

They are also very good at complex manipulation in tight spaces. The sensory char-

acteristics of the humans, motor abilities, knowledge and skills give the humans the

ability to react to unexpected situations and resolve problems quickly. In contrast,

robots are very good at pick and place operations and highly repeatable in place-

ment tasks. Robots can perform tasks at high speeds and still maintain precision

in their operations. Robots can also operate for long periods of times. Robots are

also very good at applying high forces and torques. Typically, robots are used in

mass production. Small batch and custom production operations predominantly use

manual labor.

The high labor cost is making it difficult for small and medium manufacturers

to remain cost competitive in high wage markets. These manufactures are mainly



involved in small batch and custom production. They need to find a way to reduce

the labor cost in assembly operations. Purely robotic cells will not be able to provide

them the necessary flexibility. Creating hybrid cells where humans and robots can

collaborate in close physical proximities is a potential solution. The underlying idea

behind such cells is to decompose assembly operations into tasks such that humans

and robots can collaborate by performing sub-tasks that are suitable for them.

Realizing hybrid cells that enable effective human and robot collaboration is

challenging. This dissertation addresses the following three computational issues

involved in developing and utilizing hybrid assembly cells:

� We should be able to automatically generate plans to operate hybrid assembly

cells to ensure efficient cell operation. This requires generating feasible assem-

bly sequences and instructions for robots and human operators, respectively.

Automated planning poses the following two challenges. First, generating op-

eration plans for complex assemblies is challenging. The complexity can come

due to the combinatorial explosion caused by the size of the assembly or the

complex paths needed to perform the assembly. Second, generating feasible

plans requires accounting for robot and human motion constraints. The first

objective of the dissertation is to develop the underlying computational foun-

dations for automatically generating plans for the operation of hybrid cells. It

addresses both assembly complexity and motion constraints issues.

� The collaboration between humans and robots in the assembly cell will only

be practical if human safety can be ensured during the assembly tasks that



require collaboration between humans and robots. The second objective of

the dissertation is to evaluate different options for real-time monitoring of the

state of human operator with respect to the robot and develop strategies for

taking appropriate measures to ensure human safety when the planned move

by the robot may compromise the safety of the human operator. In order

to be competitive in the market, the developed solution will have to include

considerations about cost without significantly compromising quality.

� In the envisioned hybrid cell, we will be relying on human operators to bring

the part into the cell. If the human operator makes an error in selecting the

part or fails to place it correctly, the robot will be unable to correctly perform

the task assigned to it. If the error goes undetected, it can lead to a defective

product and inefficiencies in the cell operation. The reason for human error

can be either confusion due to poor quality instructions or human operator

not paying adequate attention to the instructions. In order to ensure smooth

and error-free operation of the cell, we will need to monitor the state of the

assembly operations in the cell. The third objective of the dissertation is to

identify and track parts in the cell and automatically generate instructions

for taking corrective actions if a human operator deviates from the selected

plan. Potential corrective actions may involve re-planning if it is possible to

continue assembly from the current state. Corrective actions may also involve

issuing warning and generating instructions to undo the current task.
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Chapter 1

Introduction

1.1 Background

Historically, industrial robots have been primarily used in mass production lines for

repetitive tasks like painting and welding. However, recent advances in perception,

planning, and learning have enabled their use in small batch manufacturing, in-

volving highly non-repetitive tasks. Representative examples include kitting [8, 9],

bin-picking [10, 11, 12, 13, 14], assembly [15], and cleaning [16, 17].

Assembly operations are an integral part of the overall manufacturing oper-

ation. After parts are produced, they need to be assembled together to impart

the desired functionality to products. Assembly operations vary significantly based

on the size and complexity of the products. Representative examples of assembly

operations include [18, 19]:

� Pick and place

� Joining using threaded fasteners

� Joining using rivets

� Welding, soldering, and brazing

� Adhesive bonding
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� Snap fits

Figure 1.1: Human Assembly Cell [1]

Human workers offer the following benefits:

� V ersatility: Humans are able to do a wide variety of assembly operations and

able to work with many different types of tools.

� Dexterity: Humans are able to perform assembly tasks that require complex

coordinated motions in very tight spaces.

� Ability to perform in − process inspection: Humans are able to perform

in-process inspection to reduce process error.

� Ability to handle contingencies and recover from errors : Humans are good

at recovering from errors introduced in previous steps and handling unexpected
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situations.

Human workers have the following limitations:

� Consistency: Humans are unable to maintain consistency over long periods

of time because of physical and mental fatigue.

� Labor cost: Developed countries have high wages and manufactures often find

it difficult to compete with countries with low wages. So labor costs are a

major contributing factor to cost competitiveness.

� Size and weight limitations: There are natural limitations on the size and

weight of parts that can be manipulated by human workers.

� Speed: There are natural limitations on the speed of assembly operations that

can be achieved by human workers.

In mass production lines, robots are often utilized to overcome limitations of

human workers. They have become popular for several different assembly operations.

Representative examples include:

� Pick and place

� Welding (arc, spot, etc.)

� Bolt and fastening

� polishing

� Materials handling
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Figure 1.2: Robotic Assembly Cell [2]

However, currently robots have the following limitations:

� High capital cost: Current generation robots cost significant amount of money.

So it is not possible to use robots unless utilization is extremely high.

� Long programming time: Currently it takes a long time to program robots

for performing complex tasks. So robots cannot be used in many small and

medium manufacturing operations.

� Limited dexterity: Current generation robots have limited dexterity. To use

robotics based assembly, products need to be designed to ensure that assembly

operations do not require high level of dexterity.

Current generation industrial robots impose safety risks to humans, so physical

separation has to be maintained between humans and robots. This is typically

accomplished by putting the robot in a cage. In order for the robot to be operational,

4



the cage door has to be locked and elaborate safety protocol has be followed to ensure

that no human operator is present in the cage. This makes it very difficult to design

assembly cells where humans and robots can collaborate effectively.

Figure 1.3: Robotic Assembly Cell showing safety barriers around the welding robot
[3]

1.2 Motivation

The National Association of Manufacturers (NAM) defines small manufacturers as

companies with 500 or fewer employees and medium-sized manufacturers as com-

panies with 2,500 or fewer employees. The NAM estimates that the US has close

to 300,000 small and medium manufacturers (SMM), representing a very important

segment of the manufacturing sector. As we move towards shorter product life cy-

cles and customized products, the future of manufacturing in the US will depend
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upon the ability of SMM to remain cost competitive. However, SMM in the US

have largely stayed away from using industrial robots.

The high labor cost is making it difficult for SMM to remain cost competitive

in high wage markets. They need to find a way to reduce the labor cost. Clearly,

setting up purely robotic cells is not an option for them.

Recently several advances have been made in industrial robots that make them

safer for humans [20, 21, 22] and hence presenting an opportunity for creating hybrid

cells where humans and robots can collaborate in close physical proximities. The

underlying idea behind such cells is to decompose assembly operations into tasks

such that humans and robots can collaborate by performing tasks that are suitable

for them.

Humans are very good at perception tasks in unstructured environments. They

are able to recognize and locate a part from a box of miscellaneous parts. They are

also very good at complex manipulation in tight spaces. Humans also excel at

visual inspection tasks. The sensory characteristics of the humans, motor abilities,

knowledge and skills give the humans the ability to react to unexpected situations

and solve problems with, in some cases, minimal information.

In contrast, robots are very good at pick and place operations and being highly

repeatable in placement tasks. Robots can perform tasks at high speeds and still

maintain precision in their operations. Robots can also operate for long periods of

time and preserve the properties mentioned above. Robots are also very good at

applying high forces and torques.

Realizing hybrid cells that enable effective human-robot collaboration (HRC)
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is challenging due to the following reasons:

� Humans and robots will be working in close proximity of each other in hybrid

cells. Humans might forget about the move planned by the robot. So they

might accidentally come in the way of the robot. Robots will need to make

sure that they avoid collision with humans by taking an appropriate collision

avoidance strategy.

� Usually it takes a long time to program robots. In order for hybrid cells to

be utilized in small and medium manufacturing operations, we will need to

develop planning approaches that can automatically program robots.

� Humans are flexible but also prone to making errors and doing operations in

a different manner. If robots do not react to human errors appropriately, then

the system can be highly inefficient and it may take a long time to recover

from errors. Robots should be able to re-plan in response to an unpredictable

human behavior and modify their motion according to the new plan. They

should be able to communicate with the human as well to point out the error.

This dissertation will attempt to develop computational foundations for ad-

dressing the above described challenges.
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1.3 Representative Model of One-Human One-Robot Hybrid Assem-

bly Cell

We will use a representative model of one-human one-robot to explain the research

issues being investigated in this dissertation. We assume that the human and robot

will collaborate to assemble a product. The cell will operate in the following manner.

� The cell planner will generate a plan that will provide instructions for the

human and the robot in the cell.

� Instructions for the human operator will be displayed on a screen in the as-

sembly cell.

� The human will be responsible for retrieving parts from bins and bringing

them within the robot workspace.

� The robot will pick up parts from its workspace and assemble them into the

product.

� If needed, the human will perform the dexterous fine manipulation to secure

the part in place in the product.

� The human and robot operations will be asynchronous.

� The cell will be able to track the locations of parts, the human, and the robot

at all time.

� If the human operator makes a mistake in following an assembly instruction,

re-planning will be performed to recover from that mistake. As a part of the
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re-planning process, appropriate warnings and error messages will be displayed

in the cell.

� If the human come too close to the robot to cause a collision, the robot will

perform a collision avoidance strategy.

Figure 1.4: Hybrid Assembly Cell

1.4 Research Objectives

This dissertation address the following three computational issues involved in de-

veloping and utilizing hybrid assembly cells:

� Automated planning for hybrid assembly cell operation: We should be able

to automatically generate plans to operate hybrid assembly cells to ensure
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efficient cell operation. This requires generating feasible assembly sequences

and instructions for robots and human operators, respectively. Automated

planning poses the following two challenges. First, generating precedence con-

straints for complex assemblies is challenging. The complexity can come due to

the combinatorial explosion caused by the size of the assembly or the complex

paths needed to perform the assembly. Second, generating feasible plans re-

quires accounting for robot and human motion constraints. The first objective

of this dissertation is to develop the underlying computational foundations for

automatically generating plans for the operation of hybrid cells. It will address

both assembly complexity and motion constraints issues.

� Monitoring the state of the human operator in the assembly cell to ensure

safe operation: A critical issue that is hampering the entry of humans into

traditional robotic environments is safety. The cooperation between humans

and robots in the assembly cell will only be practical if human safety can be

ensured during the assembly tasks that require collaboration between humans

and robots. The second objective of this dissertation is to evaluate different

options for real-time monitoring of the state of human operator with respect

to the robot and develop strategies for taking appropriate measures to ensure

human safety when the planned move by the robot may compromise the safety

of the human operator. In order to be competitive in the market, the developed

solution will have to include considerations about cost without significantly

compromising quality. Hence cost considerations will play a major role in the
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selection of technology option for human monitoring.

� Monitoring the state of the assembly cell and contingency planning: In

the envisioned hybrid cell, we will be relying on human operators to bring the

part into the cell. If the human operator makes an error in selecting the part

or placing it correctly, the robot will be unable to correctly perform the task

assigned to it. If the error goes undetected, it can lead to a defective product

and inefficiencies in the cell operation. The reason for human error can be

either confusion due to poor quality instructions or human operator not paying

adequate attention to the instructions. In order to ensure smooth and error-

free operation of the cell, we will need to monitor the state of the assembly

operations in the cell. The third objective of this dissertation is to develop

algorithms to identify and track parts in the cell and automatically generate

instructions for taking corrective actions if a human operator deviates from

the selected plan. Potential corrective actions may involve re-planning if it is

possible to continue assembly from the current state. Corrective actions may

also involve issuing warning and generating instructions to undo the current

task.
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Chapter 2

Literature Review

This chapter1 presents literature related to the work described in this dissertation.

The topic of this dissertation is at the intersection of Manufacturing, Robotics, and

Perception.

In Section 2.1, we present different approaches for automatically generating

assembly sequences for assemblies with non-deformable parts. Assembly sequence

planning is a vast area of research where extensive work has been done during the

past three decades. Our literature survey presents several key approaches in the

assembly sequence planning field and describes methods that are closely related to

the techniques presented in this dissertation.

Section 2.2 deals with different approaches for safety when humans and robots

interact and work together sharing the same work space. We survey existing litera-

ture that characterizes safe HRC in two broad areas: Pre-collision and Post-collision.

The Pre-collision problem deals with devising control strategies that allow the robot

to prevent an imminent collision with a human operating in its proximity, and the

Post-collision problem aims to reduce the impact/injury after an unexpected colli-

sion has occurred between the robot and the human. As our approach falls into the

former category, we discuss methods related to pre-collision strategy.

In Section 2.3 we survey relevant human tracking technologies. One of the main

1 Work in this chapter is derived from the published work in [23, 24, 25, 26, 27, 28, 29].
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requirements for an efficient and safe HRC in assembly operations is the ability to

localize the human operator. This section describes the main features of the relevant

human tracking systems.

In Section 2.4 we draw inspiration from intelligent tutoring systems to develop

a robust contingency handling approach for hybrid assembly cells. In this section, we

survey literature at the intersection of 3D-part recognition and knowledge based sys-

tems to generate reactive behavior to deal with situations when humans consciously

or unconsciously modify the the assembly plan.

2.1 Assembly Sequence Planning

Research in automated assembly sequencing has rapidly increased over the past few

decades [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. The problem of finding a valid

assembly sequence for general cases that allow complex combination of motions was

shown to be impractical, primarily owing to the issue of combinatorial explosion

([40, 41, 42]). This led to an increase in the number of assumptions made in order

to address restricted cases of the assembly sequence planning. Examples include

monotonic assembly sequences (each assembly operation leads to the part being in

the location in the assembly) and two-handed assembly sequences (each assembly

operation merges exactly two assembly parts or components).

Assembly sequence generation is considered one of the most important prob-

lems in Assembly Planning. Algorithms to solve the assembly sequence follow a

combinatorial approach if the the operation precedence constraints are known in
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Figure 2.1: Taxonomy of Assembly Sequence Planning approaches.

advance. If the precedence constraints are unknown, then the assembly sequence is

generated by algorithms that follow a geometric approach to figure out the feasibil-

ity of the assembly operation. Figure 2.1 shows the taxonomy of different assembly

sequence planning approaches in the form of a tree containing three hierarchical

levels. The solid lines denote direct inheritances of different techniques from parent

classes.

AND/OR Graph, Liaison Graph or Partial Assembly Trees are some of the

algorithms that can be used as an assembly sequence representation if the knowledge

of the precedence constraints/relationship is known. In this case, the goal is to

find the optimal assembly sequence using as established techniques such as Petri

Nets, Graph search, Genetic Algorithms, Ant Colony Optimization or Simulated

Annealing among others.

The major issue with the combinatorial approaches is that the precedence
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constraints are determined by the user who may not completely capture all con-

straints accurately. If the knowledge of the precedence constraints is not present

then simply following a combinatorial approach is not feasible. Algorithms such as

blocking graphs, randomize path planning or Space Contact states among others

must therefore be used in such circumstances. These algorithms follow a geometric

approach in order to assess the feasibility of the assembly operation.

The assembly process starts from an initial configuration in which all the parts

are in a completely disassembled state and finishes with a goal configuration that

corresponds to the final assembly. An assembly sequence plan specifies the order

in which each part and/or subassembly must be inserted into an incrementally ex-

panding subassembly that eventually leads to the final assembly. The components

to be assembled may be quite different from each other in terms of component

geometry, precedence, accessibility, and other types of constraints. The assembly

sequence planning for a 3D assembly, with large number of parts and complex assem-

bly relationships between its individual parts is a large-scale combinatorial problem

([43, 44]). While the associated constraints play an important role in limiting the

number of sequences ([40]) there are numerous combinations of feasible assembly

sequences that are valid ([31]). Among valid sequences are ones that optimize the

assembly process with respect to one or more criteria ([45, 46, 47, 48]).

One of the early approaches of representing the assembly components based

on the liaisons diagram was proposed by [49] and consists of a series of yes-no

questions for each disassembling operation were answered the user. The geometric

feasible assembly sequences were reasoned out based on the set of answers given
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by the user. Bourjault proposed the concept of assembly precedence relations and

applied these assembly precedence relations to express the precedence constraints

among parts or liaisons in an assembly. The approach was focused on geometric

feasible assembly sequence. This sequence represents an operation order by which

components are assembled without geometric intersections.

In [30] De Fazio &Withney proposed an augmented version of the liaison graph

which captures dimensional constraints between one or more degrees of freedom

between the parts. The liaison-sequence analysis method allowed showing one or

more favorable assembly sequences. The main difference relies in the number of

questions needed to be answered in order to allow algorithmic generation of assembly

sequences. On the other hand, the simplified generation of assembly sequence had

similar limitation to [49].

To simplify the querying process, Homem de Mello and Sanderson [31] pro-

posed the cut-set analysis method with three simplification rules. They developed a

complete algorithm that generates all the possible assembly sequence for a specific

product. In order to achieve this goal the algorithm used a relational model where all

the connections between parts are explicitly described. The problem of generating

an assembly sequence was transformed into a problem of generating a disassembly

sequence. Inversing the problem is feasible under the geometrical assumption that

a part can be placed in the same way as it is taken away from the assembly.

It was also assumed that two parts are connected or joined each time, and

that while the parts are joined with more than one part forming a subassembly

the contacts between the parts in that subassembly are established in the relational
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model. The relational representation allows the model to represent different types

of contacts between parts such as planar surface, cylindrical shaft, cylindrical hole,

polyhedral shaft, polyhedral hole, etc. At the same time, it allows it to also have a

detailed description of the types of attachments such as glue attachment, pressure

fit, clip, screw, etc.

The algorithm returns the AND/OR graph representation of assembly se-

quences. The algorithm is complete and correct based on the assumption that

it is always possible to decide correctly whether two subassemblies can be joined

based on geometrical and physical criteria. Most of these geometrical and physical

criteria were introduced by the human expert.

Wilson and Latombe [50] determined that assembly sequence planning ap-

proaches either had either too large a quantity of easy questions (as yesno queries)

or a few number of very complex questions (as what queries) that caused problems

in the assembly planning process. Wilson proposed an improved cut-set analysis

approach. When the disassembly feasibility for a cut-set does not exist, the system

allows the user to indicate the interference parts by referring to the CAD data. Wil-

son found that it was not very complicated to answer the questions and the quantity

of queries can be reduced further.

Assembly precedence relations inferring methods can be classified into two

types, direct and indirect. The yesno query-based method and the simple cut-set

method are indirect approaches. These approaches start the reasoning process with

the liaisons diagram instead of the assembly structure. The user needs to answer

quite a number of questions to tell what the assembly looks like given that the
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liaisons diagram is too simple to represent the assembly structure.

Wilsons method was supported by the CAD data and is classified as a di-

rect/indirect mixed approach. Direct approaches start with the assembly design

itself. Approaches based on the contact and interference vectors are also considered

direct methods. Direct approaches need more computational efforts compared with

the fully explored indirect approaches.

Wilson introduced the notion of a Non-Directional Blocking Graph as a re-

sult of the analysis of the blocking relations (interferences) among the parts in the

assembly. This representation described the combinatorial set of parts and its char-

acteristics where geometrical constraints among parts change. Moreover, complexity

measurements were presented in order to evaluate the complexity of the product and

therefore the quality of the solution. Those characteristics and the idea that the

blocking relations are computed and fixed based on subdivision of translations into

finite cells makes this approach very difficult to implement because of its sensitive to

floating point approximations. The complexity grows exponentially with the space

dimensions of allowed motions.

To be more efficient, Dong et al. [51] designed a knowledge-based Assembly

Sequence Planning approach in which the assembly is represented as a Connection-

Semantics-Based Assembly Tree and a knowledge-based assembly sequence planning

system was developed. Dong method was based on the analysis of contact and inter-

ference vectors defined in the orthogonal directions. The vector representation allows

a very straight forward computation of the geometric feasible assembly sequence.

However, it is only valid for orthogonal assemblies in which all the components must

18



be assembled along with the orthogonal directions.

Niu et al. [52] proposed an advanced direct approach that directly starts with

the mating relation graph derived from the component CAD model. However, the

approach is also limited to the orthogonal directions. The need of a more pow-

erful direct assembly sequence planning (ASP) approach was also discussed, where

the discovery process of the correct and complete assembly precedence constraints is

proposed to be more efficient and without the limitations mentioned above. Inspired

by this consideration, a hierarchical direct ASP approach was proposed. The ASP

reasoning process was based on a comprehensive assembly model, in which the as-

sembly draft, the liaisons diagram, the assembly tree structure, the part parameters,

and the liaison parameters are all included [37, 38].

The differentiating factor in these approaches became the CAD information

and how this information was used. Approaches that exploit geometric information

to perform randomized path planning became more popular. In contrast, approaches

that used the spatial representations of all the parts in order to determine blocking

relations between them, as we detailed previously, became less practical for large

and complex assemblies.

In this context, Wilson [50] used the C-Space representation of any part as

the set of all possible values of the degrees of freedom. Using the similar rationale

the obstacles (C-obstacles) were represented as a subset of the C-space. Wilson

developed an interference diagram to determine collision free path (C-free= C-Space

C-obstacles) for an assembly by using this representation. A similar representation

was used and later extended in [7] by La Valle. La Valle built a roadmap based on
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local planners and then applied graph search on this roadmap to find the solution

path.

Local methods are based on the definition of a potential function where the

maximum of the function is in the surface of the obstacles and the minimum is

located at the goal position. This generates a difficulty of defining a potential

function with a single minimum. It is therefore easy for these methods to get stuck

in local minima. To avoid these minima, the potential function can guide the steering

angle instead of the position of the mobile part, and creates a potential that depends

on the position and orientation of the mobile component.

In [53] a rapid-growing random tree-based based motion planning technique

RRT is used in order to sole the disassembly sequence planning. The RRT approach

tries to find a collision-free trajectory for an object that goes from an initial config-

uration to a goal configuration. This work assumed that the environment is static

and that the only part moving is the selected part to be disassembled. The problem

is reduced to compute a collision-free path among the obstacle objects. The perfor-

mance of the algorithm relies in the required resolution for a good enough voxel or

octree-based spatial partition subdivision. Complex shapes in part assemblies that

belong to crowded assemblies would require a high resolution. On the other hand,

the use of high resolution affects the algorithms performance because of memory

overload in the case of voxels or computation time in the case of octrees.

This section presents several key approaches in the field and describes methods

that are closely related to the techniques presented in this dissertation. Survey

papers such as [54, 55, 56, 57, 58] present a more comprehensive coverage of the
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field.

2.1.1 Assembly-by-disassembly and Graph Theory based Approaches

Woo et al. [59] used the “onion peeling” approach and introduced connection graphs

for disassembly analysis. Later, this approach was used by [60] to derive optimal

disassembly sequences. Chen et al. [61] used the onion peeling approach for paral-

lel disassembly of components. Most existing methods are based on graph theory

and involve additional information such as contact analysis, fastener matrix, disas-

sembly precedence matrix, etc. [54, 55, 57]; standard graph search algorithms can

be applied to graph representations of assembly structures in order to determine

feasible or optimal assembly sequences [62]. Wilson [50] introduced non-directional

blocking graph, a compact data structure to represent a combinatorial set of part

intersections for an assembly, which implicitly contains the geometric constraints

[63]. Romney [64] extended this approach into their Stanford Assembly Analysis

Tool (STAAT). Romney’s work mainly focused on developing geometric assembly

planning models rather than on optimization aspects. Khosla and Roy developed an

assembly sequence method from a 3D CAD model and exact geometry representa-

tion based face adjacency graph. This method used data related to the instances of

parts and subassemblies to generate assembly sequences [60] IS THIS THE RIGHT

REFERENCE. Large number of parts in this representation may lead to very ex-

pensive geometric tests with the costs of nearest neighbor function and the collision

checking procedure representing the major bottle necks in performance ([65]). A

21



method to reduce spatial representation and computational time to perform assem-

bly simulation was introduced by [66].

2.1.2 Artificial Intelligence based Approaches

De Mello and Sanderson formulated the assembly sequence problem as a discrete

search and optimization problem. They proposed AND/OR graphs to represent

precedence relations between parts [30, 31]. Following this approach, a variety

of methods were proposed using knowledge based systems [67], genetic algorithms

where each possible assembly sequence is represented in the initial populations [68,

69, 70, 71], memetic algorithms [72], neural networks with self-organized maps and

optimal nets [73, 74], fuzzy sets [75, 76], data mining [77], Bayesian networks [78],

and simulated annealing [79, 80].

2.1.3 Motion Planning based Approaches

Motion planning based approaches were developed for simulating assembly opera-

tions [81, 82, 83]; the goal was to perform assembly operation planning that includes

tool uasge planning, and task planning. Motion planning based on randomized

methods have became popular in robot path planning applications. Algorithms

such as probabilistic roadmaps (PRM) ([84]) and RRT ([7]) have been used to solve

high degrees of freedom (DOF) motion planning problems. However, current motion

planners may not work well on part disassembly due to highly constrained environ-

ments that require the generation of a finer motion of the parts. [85] described
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the disassembly planning problem as a repeated occurrence of “narrow” passages in

the Configuration space that makes it impractical to use PRM for these problems.

However, [86] performed assembly sequence analysis based on RRT by using collision

models. They also showed the complexity of the domain ([87]) and the possibility

of improvements to the representation. In the similar direction, [88, 89] proposed

some strategies to improve the performance of motion planning methods to solve

the assembly sequencing problem.

2.1.4 Subassembly Detection Based Approaches

[90] formulated one of the first approaches to detect subassemblies based on a math-

ematical model of the product. The model was a function of the product’s interfer-

ence, contact, and connection matrices. [91] described a procedure to automatically

derive the feasible assembly sequence and detect the subassemblies for automobile

body assembly. The procedure is based on the definition of a connection matrix

and a contracted matrix. These two matrices represent the precedence constraint

knowledge among components and sub-assemblies. [92] constructed a hierarchi-

cal assembly system and used a matrix operation to generate assembly sequences.

Later, [93] extended this assembly modeling to generate feasible assembly sequences

automatically. However, in all these cases, a complete description of the assembly

was needed.
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2.2 Human-Robot Collaboration

When the collaboration between robots and humans is performed in close proximity,

a pre-collision analysis is required for contingency handling. Contingency handling

strategies have been mainly researched w.r.t. mitigating safety risks for human

operators during collaboration with robots. They can be broadly divided into two

categories: pre-collision [94, 95, 96, 97, 98, 99, 100, 101] and post-collision [102, 103,

104]. The former problem deals with devising controllers that allow the robot to

prevent imminent collisions with a human. However, the latter aims to reduce the

impact/injury after an unexpected human-robot collision has occurred. Our focus is

on the first category. The underlying principle of most pre-collision methods consists

of tracking the physical separation between the robot and the human and enabling

the robot to take preventive actions whenever the separation is below a specified

threshold.

We have identified two families of pre-collision approaches that significantly

differ from each other in their underlying philosophies and, consequently, in their

implementation techniques. The first line of research direction treats the problem

in a two dimensional Euclidean space by working with the projections of the human

and the robot onto a 2D range-image plane [100, 95, 96, 105]. The second approach

analyzes the problem directly in a three dimensional Euclidean space by using ex-

plicit 3D models for the human and the robot [94, 106]. We briefly describe these

approaches in this section.
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2.2.1 Interaction analysis in 2D Euclidean space

Schiavi et al. [100] presented an approach to generate safe robot motion goals based

on human presence/position detection in the work cell. The intersection between

the robot and the human was determined based on analysis in a 2D plane. The

human was not explicitly modeled. Instead, it was treated as a general moving

obstacle and a corresponding depth image was generated by using a stereo camera

based range sensing system. The robot’s 3D-occupancy2 w.r.t. the global reference

frame was computed from its 3D CAD model and kinematics. Next, the occupancy

data was projected onto the camera image plane, giving rise to the depth image of

the robot. Now, an intersection between the two projections was used as a necessary

condition for a collision between the robot and the obstacle. That is, the robot and

the obstacle are physically separated in 3D, if their respective projections on the

image plane don’t intersect. However, if the projections intersect with each other,

then there is a possibility that the robot and the obstacle are in collision or may

collide with each other in the near future. A sufficient condition was used to evaluate

this possibility: There exists at least one pixel in the overlapping region of the image

plane at which the depth to the robot is greater than or equal to that of the obstacle

(within a small margin of safety). The authors presented a test result, in which a

physical robot, commanded to move from one point to another, used the proposed

method to safely navigate around a human hand and reach the target configuration.

In this work, a single depth sensor is used to monitor the environment, which

leads to lack of information in the blind zones of the sensor. Moreover, when parts

2 collection of all points in the work cell that are occupied by the robot
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of the obstacle are occluded by the robot, the obstacle depth information at the

corresponding pixel locations is not available, which could lead to a system failure.

In order to address the problem of occlusions, Flacco and De Luca [95] extended the

approach in [100] to multiple depth sensors. The collision detection performance

was maximized by solving an optimal sensor placement problem that was formu-

lated by using a probabilistic framework. In particular, they decomposed the work

cell into discrete cells and derived expressions for probabilities of each cell falling in

occlusions and unobserved regions as a function of pose parameters of the sensors.

Now, a cost function, to be minimized for optimal sensor placement, was defined as

a weighted sum of the derived probabilities. The authors used numerical simulations

to compute optimal sensor placements for the cases of one, two, and three sensors.

However, their work was limited to a theoretical treatment and computer simula-

tions. No physical experiments were used to evaluate the efficacy of their approach.

Later, Flacco et al. [96] presented a slightly different approach, in which the dis-

tances between the robot and the obstacles were computed directly from depth data

obtained from a Kinect based range sensor, instead of projecting the depth data into

a robot-oriented space. These computed distances were then used in a potential field

based technique that allowed the robot to avoid collisions with humans and other

moving obstacles. The authors reported results from physical experiments in which

a 7 DOF KUKA Light-Weight-Robot IV safely avoided collisions with a human in

the work cell.
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2.2.2 Interaction analysis in 3D Euclidean space

Balan and Bone [94] addressed the human-robot collision problem by using sphere-

based geometric models for the human and robot. Their algorithm selected search

directions that balanced between the two objectives of robot approaching the target

configuration and maximizing its distance to the human throughout its motion. The

robot’s motion was predicted by using a transfer function model of its time response

at the joint level. The human’s motion was predicted at the sphere level by using

a weighted mean of past velocities. As a test scenario, the authors developed a

simulation of a human walking towards a moving Puma robot arm. The authors

used captured human motion data to create a realistic animation. They used Monte

Carlo simulations, consisting of 1000 random human walking paths passing through

the robot workspace, to validate their approach. However, no real robot experiments

were conducted.

Najmaei and Kermani [99, 106] also addressed the human-robot collision prob-

lem by incorporating explicit 3D modeling of the human into their approach to safe

HRC. For this purpose, they developed floor mat, a sensing system comprising a grid

of nodes that got activated under human body weight. The human localization was

derived based on which clusters of nodes were activated as a function of time. This

information, along with the average human body dimensions, was used to obtain a

human model, which was then represented as a moving obstacle in the human-robot

interaction framework.
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2.2.3 Observations

In all the above approaches to safe HRC that used range or camera based systems

to detect humans, the human-robot separation was analyzed in a 2D Euclidean

space by using the depth information extracted from the camera images. However,

our approach performs the analysis in a 3D Euclidean space, similar to [94, 106], by

working with an explicit 3D human model generated from Kinect measurements and

a forward 3D simulation of the robot’s motion in a physics-based virtual environ-

ment. Whereas the 2D based approaches discussed above were proposed to overcome

the speed limitations of 3D space analysis based techniques [100], we show that our

approach, which belongs to the latter category, still achieves satisfactory real time

performance. Also, we develop a multiple Kinect based framework in order to take

care of occlusions as opposed to using a single sensor as done in previous work

[100, 96].

2.3 Human Tracking Technologies

Motion tracking systems can track a moving object. A human motion tracking

system needs to be self-contained, complete, accurate, fast, robust to occlusions,

and wireless. Human motion capture systems are based on sensor technologies [107].

These technologies can be classified as mechanical, magnetic, optical and inertial.

The advantages and disadvantages of the motion capture systems are related to the

sensor’s physical properties. In this context the human tracking technologies can be

classified as magnetic, mechanical, inertial and optical motion capture systems.
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Figure 2.2: (a) Magnetic Motion capture systems. (b)Hand Motion capture system
using Liberty to learn piano playing skills from human experts [4]

Magnetic motion capture systems uses sensors that measure the direction of

the magnetic field vector belonging to the local sensor. Liberty [108] andMotionStar

[109] are the most representative systems using magnetic sensors. Liberty uses 16

sensors with a resolution of 0.046cm for translation and 0.035 degree for rotation

with an update rate of 240Hz. Meanwhile MotionStar contains 18 sensors with

a resolution of 0.0762 for translation and 0.1 degree for rotation with an update

rate of 120Hz. Magnetic sensor-based motion capture systems compute absolute

position and orientation in real-time related to the magnetic source. These systems

are very sensitive to the presence of noise, for example noises that are generated by

ferromagnetic materials or electrical devices that are present in the environment.

Mechanical motion capture systems are composed of wearable articulated rigid

links known as exoskeletons. In these systems, human motion is tracked and trans-

lated through the interconnected electromechanical transducers residing in the links

located over different limbs and parts of the humans body. Human motion gener-

ates variations in the electrical signals that are then translated to relative motion

between links. Gypsy − 7 [110] 2.3 and SARCOS Sensuit [111] are the state-of-

29



the-art systems in this category. GYPSY-7 contains 15 joint sensors with an update

rate of 120Hz while SARCOS Sensuit contains 35 joint sensors with an update rate

of 100Hz. The advantages of this type of motion capture are: low latency, non-

magnetic interference and high accuracy in the measurements. However, the use

of exoskeletons for human operators can represent a drawback in limiting human

mobility and exhausting human limbs for long term operations.

Figure 2.3: AnimazooGypsy−7 Mechanical motion capture system based on wear-
able exoskeleton

Inertial motion capture systems use inertial measurements units IMU which

are composed of gyroscopes and accelerometers [112]. The IMUs are attached to the

body of the human operator. Linear and angular acceleration are used to compute

variations in the operators position and orientation [113, 114, 115]. The advances

in micro-electro-mechanical systems technology have dramatically increased the use

of these types of sensors in the field of motion tracking. The main advantages of

these systems are the low latency, high update rate and their portability. However,

inertial motion capture systems propagate the errors in time that result in large

accumulation of errors over long tracking periods. This plus the limitation of the
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IMU to return relative rotational measurements are the two main disadvantages of

this type of technology.

Optical motion capture systems are based on a set of cameras. The cameras

detect some descriptors/ markers and the 3D registration is made by triangulation

when two or more cameras can see the same feature 2.4. The nature of a descriptor

can be passive or active. A passive descriptor is made of a material that reflects the

light emitted by LED rings attached around the camera. V iconMX [116] motion

capture system uses passive descriptors and can track a maximum number of 150

descriptor with a resolution of 0.1mm for translation and 0.15 for rotation. An active

descriptor uses LEDs to emit light that is detected and tracked by the cameras.

Impulse [117] is a system that uses up to 120 active descriptors with an update rate

of 140Hz.

Figure 2.4: V iconMX Optical motion capture system with passive descriptors

Descriptorless optical motion capture systems are becoming a popular human

tracking technology because they do not require the human operator to wear any

kind of device (active or passive). Microsoft Kinect [118] and iP I Soft [119] are

two examples of descriptorless motion capture systems. Recently, several researchers
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Technology based Advantages Disadvantages
Magnetic Occlusion free Sensitive to magnetic dis-

tortion
Absolute position and orientation area boundaries propor-

tional to the magnetic
field

Mechanical Real-time operation Relative attitude
Very low Latency Human factors

Inertial Real-time operation Relative attitude
Occlusion free Accumulation of error

Optical High precision Sensitive to occlusion
(Passive Descriptors) Small and weightless descriptors Calibration
Optical High precision Sensitive to occlusion
(Active Descriptors) descriptors correspondence Calibration
Optical descriptors free human body Sensitive to light
(Descriptorless) standard devices Pseudo-real-time

Sensitive to occlusion

Table 2.1: Motion Capture Technologies

have used Microsoft Kinect sensors [118] for human tracking [120, 121, 122, 123, 124].

Table 2.1 summarizes some of the advantages and disadvantages of the various

motion capture technologies referenced in this chapter.

2.4 Reactive re-planning for assembly operation performed by hu-

mans and robots

Primary means by which information can be delivered to human operators include

speech, text, graphics [125, 126, 127, 128], virtual 3D environments [129, 130], and

augmented reality [131, 132, 133]. Examples of augmented reality systems include a

tracked head worn display that augments a human operator’s view with text, labels,

arrows, and animations [132] and laser pointer mounted on a robot highlighting

where a cable must be inserted [131]. Human operators usually deliver task-specific
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information to the robot either by directly teleoperating the robot or by using a

graphical user interface [134].

2.4.1 Support Human Operation in the Assembly Cell

Recent advances in information visualization and human-computer interaction have

given rise to different approaches to automated generation of instructions that aid

humans in assembly, maintenance, and repair. Heiser et al. [125] derived principles

for generating assembly instructions based on insights into how humans perceive

the assembly process. They compare the instructions generated by their system

with factory-provided and hand-designed instructions to show that instruction gen-

eration informed by cognitive design principles reduces assembly time significantly.

The instructions generated by their automated system were limited to 2D images.

Also, the authors restricted their approach to furniture assembly.

Dalal et al. [126] developed a knowledge-based system that generates tempo-

ral multimedia presentations. The content included speech, text, and graphics. The

authors used a multi-stage negotiation mechanism to coordinate temporal media.

They tested their multimedia generation tool by using it to update patient informa-

tion to caregivers in hospitals. Zimmerman et al. [127] developed web-based delivery

of instructions for inherently-3D construction tasks. The authors used quantitative

and qualitative studies to examine factors like user interface, delivery technology

and their influence on user interaction level and success in performing inherently
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3D operations. They tested the instructions generated by their approach by using

them to build paper-based origami models. Kim et al. [128] used recent advances in

information visualization to evaluate the effectiveness of visualization techniques for

schematic diagrams in maintenance tasks. They focused on diagram highlighting,

distortion, and navigation while preserving context between related diagrams.

Several research efforts have indicated that instruction presentation systems

can benefit from augmented reality techniques. Kalkofen et al. [133] integrated

exploded view diagrams into augmented reality. The authors developed algorithms

to compose visualization images from exploded/non-exploded real world data and

virtual objects. They presented methods to restore missing hidden information in

cases where there is a deficiency of information after relocating real world imagery.

The authors showed how to use their approach to automatically compute task de-

pendent layout and animation of the explosion diagrams.

Henderson and Feiner [132] developed an augmented reality system for a me-

chanic performing maintenance and repair tasks in a field setting. Their prototype

supported military mechanics conducting maintenance tasks inside an armored ve-

hicle turret. The system consisted of a tracked head worn display to augment a

mechanic’s view with text, labels, arrows, and animations. The tasks performed

by a mechanic included installation and disassembly of fasteners, lights, and cables

within the cramped turret. The authors carried out a qualitative survey to show

that the system enabled easier task handling. Dionne et al. [129] developed a model
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of automatic instruction delivery to guide humans in virtual 3D environments. The

authors proposed a multi-level scheme to address issues like what kind of instruc-

tions must be presented to the user in each state and how to generate the final order

of instructions.

Brough et al. [130] developed Virtual Training Studio (VTS), a virtual environ-

ment based system that allows (i) training supervisors to create instructions and (ii)

trainees to learn assembly operations in a virtual environment. Their system mainly

focused on cognitive aspects on the training. A survey of virtual environments-based

assembly training applications can be found in [135].

2.4.2 Assembly Part Recognition

The increasing availability of low-cost, 3D sensors such as laser scanners, time-of-

flight cameras, stereo cameras, and depth cameras has stimulated research in the

intelligent processing of 3D data. Detecting the presence of a part and estimating

its pose is related to 3D object recognition, which is a vast area of research in the

computer vision community [136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,

147, 148, 149, 150].

In the past decade, researchers were focused on designing robust and dis-

criminative 3D features to find reliable correspondences between 3D points sets

[139, 140, 142, 143, 144, 151]. Very few approaches that are available for the detec-

tion of an object based on feature correspondences [152, 153, 138] when scenes are
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characterized by clutters and occlusions. In addition, the so called retrieval methods

cannot deal with the presence of multiple instances of a given model. This is the

particular case of bag-of-3D features methods [147, 148, 149, 150]. Tangelnder et

al. present a detailed survey [154].

Feature free approach have also been developed based on the information avail-

able from depth cameras. The use of depth cameras is not new but became very

popular after the introduction of the low cost Kinect technology. Kinects provide

good quality depth sensors with real-time measurements. The Kinect camera uses

a structured light technique [155] to generate real-time depth maps containing dis-

crete range measurements of the physical scene. This data can be re-projected as a

set of discrete 3D points (or point cloud).

Approaches based on local shape descriptors are expected to perform better

[152, 153] in environments with many objects that have different shapes. However,

these approaches do not work in the presence of symmetries and objects with similar

shapes.

2.5 Summary

Various approaches of path planning and motion planning for robotic applications

are now well-established. In particular, some of the techniques are quite optimized

for less-crowded scenes. However, the slow speed and low performance in crowded

scenes limit the applications in assembly sequence generation. In this dissertation

we leverage the existing motion planning methods to generate assembly precedence
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constraints. These precedence constraints are utilized to generate plans for oper-

ating hybrid assembly cells. Significant extensions are needed to handle assemblies

that consist of a large number of parts and require complex motions to perform as-

semblies. We also need to be able to account for constraints of robots and humans

in generating instructions.

Kinect sensors present an interesting option for developing a low cost human

tracking technology. However, a single Kinect sensor is not adequate to accomplish

this. We need to develop new algorithms for fusing data coming from multiple

Kinect sensors. We also need to determine how to place multiple Kinect sensors

to cover a given workspace. Later, tracking information can be used for ensure the

safety of the human operator by integrating this information with the Assembly cell.

Methods to track the state of the assembly cell by tracking the state of the

robot, parts, and the human operator have to be developed. This information then

can be used to determine if the operation in the assembly cell is following the plan

or not. If a deviation from the plan is detected, then we need to automatically

generate contingency plans to deal with the deviation. We will need to develop

new algorithms for developing contingency plans and generating instructions for

executing these plans.
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Chapter 3

Improving Assembly Precedence Constraint Generation by Utilizing

Motion Planning and Part Interaction Clusters

In this chapter3 , we present a technique that combines motion planning and part

interaction clusters to improve generation of assembly precedence constraints. In

particular, this technique automatically finds, and clusters, parts that can mutually

affect each other’s accessibility, and hence may impose assembly constraints. This

enables generation of accurate precedence constraints without needing to examine

all possible assembly sequences. Given an assembly model, our technique generates

potential disassembly layers: Spatial clustering is used to generate part sets. Next,

motion planning based on RRT with multiple trees is used to evaluate the inter-

action between these part sets. Specifically, motion planning is used to determine

which part sets can be removed from the assembly. These sets are added to the first

disassembly layer and removed from the assembly. Part sets that can be removed

from the simplified assembly are then added to the second layer. If the process

gets stuck, parts in the parent set are regrouped, and the process continues until all

disassembly layers are found. The resulting structure reveals precedence relation-

ships among part sets, which can be used to generate feasible assembly sequences

for each part set and the whole assembly. We present theoretical results related to

3 The work in this chapter is derived from the published work in [23] and [24].
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the algorithms developed in this chapter. Computational results from tests on a

variety of assemblies are presented to illustrate our approach.

3.1 Introduction

Assembling a complex product requires careful planning ([30, 34, 35, 50, 54, 81, 82,

55, 58]). Shapes and sizes of parts in the assembly impose restrictions on the order

in which assembly operations can be performed. In order to generate a detailed

assembly plan, we need to first understand precedence constraints among assem-

bly operations and be able to generate feasible sequences that are consistent with

precedence constraints.

Intuitively, assembly precedence can be determined by analyzing accessibility

([34, 156, 35, 50, 157]). Notions of semi-infinite accessibility and infinitesimal-motion

are well understood. Unfortunately, requirement of semi-infinite accessibility leads

to elimination of feasible operations. On the other hand, feasibility of infinitesimal-

motion alone does not guarantee that the assembly operation will be feasible. So

these notions are not very useful in assembly sequence determination. However, rep-

resenting accessibility in finite space is computationally challenging. So we instead

would like to rely on motion planning to ensure that a proposed assembly operation

is feasible.

The goal of assembly sequence planning is to generate a sequence of operations

to construct a product from its individual parts. The complexity of this problem is

proportional to the number of parts in the assembly ([50, 43]). However, a product
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may be composed of a hierarchical structure, in which parts that mutually affect each

other’s accessibility belong to a common cluster that form a part set; in turn multiple

part sets may mutually affect each other’s accessibility constraints in the next level of

assembly. Parts in such sets can be separately assembled before the final assembly of

the product. Hence, the main goal of sequencing the individual parts can be divided

into several subgoals that will reduce the number of assembly operations involved

in each subgoal. However, the information about the interaction between part sets

is not known beforehand. Therefore, we introduce a methodology to automatically

detect the part interaction clusters in a product so that the assembly sequencing

problem can be applied to part sets at multiple levels of hierarchy.

We start by grouping individual parts into spatial clusters based on the prox-

imity between parts. Each cluster identified in this way is treated as an individual

part set. Now, we consider the whole assembly and use motion planning to deter-

mine which part sets can be removed from the assembly. These sets are added to

the first part set removal layer and removed from the assembly. We again determine

which part sets can be removed from the simplified assembly. These are then added

to the second layer and removed from the assembly. If the process gets stuck, parts

in the parent set are regrouped, and the process is continued until all parts have

been removed from the assembly. This information is used to impose precedence

constraints among the part sets. Finally, we generate feasible assembly sequences

using the precedence constraints for each part set and the whole assembly.

Recent advances in rapidly-exploring random trees (RRT) based motion plan-

ning ([7]) enable efficient generation of motion plans in highly crowded scenes. How-
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ever, parts in their final positions in the assembly have very limited amount of fea-

sible motions. Hence, we need to ensure that moves being tried by the RRT-based

motion planner are able to correctly assess motion feasibility. This requires us to

create multiple trees to ensure that if a feasible path exists, then we can find it with

a very high probability.

Implementing a system based on the above ideas requires tuning a large num-

ber of parameters to ensure reasonable system performance on moderately complex

assemblies. This chapter describes our approach for combining RRT-based motion

planning and part interaction cluster detection for generating improved precedence

constraints, which in turn can be used to generate feasible assembly sequences.

The input to the system is a 3D assembly comprising a set of parts that are

described by their geometric models and relative positions. Our approach takes into

account product characteristics such as component geometry, inter relationships

between components, component material, and tolerances. We assume that the

product is made of rigid parts and restrict ourselves to finding a feasible sequence

of collision-free motions for each part (part set). We define each part (part set)

as a free-flying object. Therefore, we do not consider grasping of the objects, the

forces involved, or the stability of the part (part set) during motion. However, the

approach can be easily extended to handle constraints imposed by tools and human

hand during the assembly operation. Additionally, we consider non-linearity in the

assembly operations: an assembly operation may involve more than two part sets at

the same step. We assume only monotone assembly sequences: when an operation

has assembled a part into a part set, that part may no longer be moved relative
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to that part set. Although restrictive in application, these assumptions are very

common in assembly sequencing and can be applied to a majority of products.

The approach of assembly-by-disassembly relies on constructing a disassem-

bly sequence and then reversing the entire sequence to obtain a feasible assembly

sequence. In general, the steps involved in the sequences are not necessarily sym-

metric, for instance, when considering flexible parts which may undergo deformation

during assembly. However, under our assumptions, these two operations are indeed

symmetrical.

As mentioned earlier, the main challenges encountered in assembly sequence

planning include sequence generation, combinatorial explosion, non-linearity, and

interaction between part sets. The main contributions of this chapter that address

these problems include the following:

1. A spatial clustering based method to automatically detect the part interaction

clusters in a product.

2. A technique that uses a variation of RRT-based motion planning in order to

assess motion feasibility.

3. An algorithm to generate improved assembly precedence constraints by com-

bining the part interaction cluster detection and the motion planning methods

into an assembly-by-disassembly approach.
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3.2 Assembly Precedence Constraints Framework

On the one hand, assembly sequence planning is a large-scale combinatorial prob-

lem; however, on the other hand, the assembly precedence relationships between

parts make it a highly constrained problem. The number of potential assembly se-

quences is given by n!, where n is the number of parts in the assembly. This leads

to a combinatorial explosion in the number of sequences. In addition, the linearity

assumption of placing one part at a time may not be valid in complex assemblies

where some parts cannot be singly added/removed (i.e., in isolation with respect

to others) and the numbers of parts to be added/removed simultaneously is not

always the same. These kind of non-linearities in assembly sequences increases the

size of the solution space to (2n−2)!
(n−1)!

. However, absolute constraints such as geometri-

cal, precedence, and accessibility severely reduce the number of potential assembly

sequences. Nevertheless, determining these constraints for an assembly problem

dramatically increases the problem complexity. Assembly sequence planning was

shown to be NP-complete ([40, 42]). As a result, most of the past and present work

in this area focus on restricted variants of the problem.

In our framework, we combine motion planning and part interaction clusters

in order to derive precedence relationships that can be used to generate assembly

sequences for complex assemblies. We consider a mechanical product as a hierar-

chical structure of part sets. Usually, parts in each set can be separately assembled

before the final assembly of the product. Hence, the original goal of sequencing the

individual parts can be divided into several smaller subgoals that will reduce the
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Figure 3.1: (a) Polygonal triangulation applied to a simplified chassis assembly
used in the experiments. (b) Origins of absolute and relative reference frames ex-
tracted from the 3D assembly model.

Figure 3.2: Example of an error in the input CAD model of a complex chassis
assembly caused due to intersection between two of its parts

number of assembly operations involved in each subgoal. This, thereby, reduces the

combinatorial explosion of the number of sequences that span the solution space.

Since the structure of interaction between the part sets is not known beforehand, we

introduce a methodology to automatically extract this information so that the as-

sembly sequencing problem can be applied to part sets at multiple levels of hierarchy.
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3.2.1 Problem Formulation

The input to the system is a 3D assembly model of a mechanical product, which is a

geometrical representation of a set of individual parts (that constitute the product)

in their assembled configuration. The output of the system is a set of precedence

constraints that can be used to generate a feasible assembly sequence in which

components are assembled to give rise to the desired product.

The CAD models used in this work were obtained from the META team at

Vanderbilt University. These models, originally created in SolidWorks, were con-

verted into a stereolithography (.STL) format and used as inputs to the system.

Given the assembly model in .STL format, the system automatically extracts the

total number of individual parts n and all the implicit geometrical information based

on polygonal triangulation. An example of the polygonal triangulation generation

of a simplified chassis assembly is shown in Fig. 3.1(a). The assembly model must

satisfy some consistency requirements in order to have a feasible 3D workspace. For

this purpose, all the assembly parts must respect their shape and volume as a rigid

body in every pose; no intersections of part models in the assembled configuration

are allowed. An example of error in the CAD model of a complex chassis assembly,

which is caused due to intersection between two of its parts is shown in Fig. 3.2.

These issues were resolved by manually adjusting the dimensions and positions of

the part causing the intersection before using the assembled model as input to the

system. For example, in Fig. 3.2, the CAD model of the spacer part (shown in red)

was modified by changing its length and position in the assembly by trial-and-error
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until the part intersection was resolved. In addition, the position and orientation of

each part in relative and absolute reference frames are automatically queried (refer

to Fig. 3.1(b)) and used to compute the transformation between the two frames.

All the input data analysis, except resolving part intersection errors, was carried

out automatically.

Next, we formalize the problem by laying out the assumptions underlying the

framework, some definitions, and the problem statement as follows:

Assumption 1. All parts are rigid, all connections between parts are rigid, and

once a connection or liaison is made, it remains in this way.

Assumption 2. Screws and nuts are included as members of the assembly; there-

fore, they belong to the assembly as parts. Any fastening method other than screw/nut

must be removed from the 3D assembly model before our approach can be applied.

Assumption 3. The geometric disassembly and assembly precedence constraints are

only based on the information present in the assembly model.

Assumption 4. The disassembly sequence is completely reversible to turn it into

an assembly sequence.

We make the assumption 2 as we address only assemblies that use screws

and nuts for fastening. Therefore, some modifications have to be made to our

framework presented in the chapter before it can be applied to assemblies that use

other fastening methods. For example, if glue is used for fastening two parts, then

this must be specified the input data. Then, this additional information can be used

in the precedence constraints analysis accordingly.

46



Definition 1. Posture: The posture of a part ω is defined as qω = (pω, θω), where

pω ∈ �3 is the position (xω, yω, zω) in the Euclidian space and θω ∈ �3 is the

orientation (αω, βω, γω) in the Euclidian space.

Definition 2. Assembly: We define the assembly as a set of parts Ω = {ω1, ω2,

. . ., ωn | ∀ ωi : qωi ∈ �6, cωi ∈ �3}, where qωi and cωi represent the posture and

the center of mass of the part ωi, respectively. The set Ω includes all the parts in

the input assembly.

Definition 3. Obstacles: We define a set of obstacles O = {o1, o2, . . . , on | ∀ oi

: qoi ∈ �6}, where qoi represents the posture of an obstacle oi. When we select

a part to evaluate its motion feasibility, all the remaining parts of the assembly are

considered as potential obstacles. Therefore, initially, the set O includes all the parts

in the input assembly.

Definition 4. Part set: A part set is defined as a set of parts and/or part subsets.

A part set is considered to be a parent Cp for a set of child sets {Cc
i : i = 1, . . . , k};

in turn, each child set is a parent for subsequent child sets, recursively, until each

child is a single part. Accordingly, it is clear that the root part set Cr refers to the

whole assembly Ω.

Definition 5. Disassembly structure: The disassembly structure for a given n-part

assembly Ω is defined as a set of hierarchical layers H = {h1, h2, . . . , h|H|}, where hi

represents the ith disassembly layer and |H| is the number of layers. Every layer is

composed of its part sets hi = {C1, C2, . . . , C|hi|}, where every Ci is defined according

to Definition 4 and 2 ≤∑|H|
i=1 |hi| = n.
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Definition 6. Disassembly part set precedence ≺: Let Cc
i , C

c
j ∈ Cp. If Cc

j can be

removed only after removing Cc
i , then we say Cc

i ≺ Cc
j .

Definition 7. Disassembly part set equivalence ∼: Let Cc
i , C

c
j ∈ Cp. If Cc

i can be

removed before Cc
j and Cc

j can be removed before Cc
i , then we say Cc

i ∼ Cc
j .

Definition 8. Disassembly layer precedence ≺≺: Let hi, hj ∈ H such that i < j

(i.e., layer hi is generated before layer hj), then we say hi ≺≺ hj. Moreover, if

Ci ∈ hi and Cj ∈ hj then Ci ≺≺ Cj.

Definition 9. Disassembly layer equivalence ≈: Let h ∈ H. If Ci, Cj ∈ h, then we

say Ci ≈ Cj.

Definition 10. Assembly precedence �: Let Cc
i , C

c
j ∈ Cp. If Cc

j can be assembled

only after assembling Cc
i , then we say Cc

i � Cc
j .

Definition 11. Assembly equivalence �: Let Cc
i , C

c
j ∈ Cp. If Cc

j can be assembled

either before or after assembling Cc
i , then we say Cc

i � Cc
j .

Problem Statement: Given a 3D assembly model of a n-part mechanical assembly

Ω (Definition 2), find a disassembly structure H = {h1, h2, . . . , h|H|} (Definition

5) along with a set precedence relationships P that can be used to generate feasible

assembly sequences.

Next, we describe our overall approach to find a solution to the above problem.
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3.2.2 Overview of Approach

Initially, with the assumption that the largest part of the assembly is the driving part

that guides the assembly process, we extract this part from the given CAD model

and keep it aside. If there are multiple largest parts, then heuristic information

(e.g., which of these parts has maximum surface contact with the ground) is used

to pick one of them. When there is lack of such information, one of them is picked

randomly.

Next, we group the remaining n− 1 parts into k (= 2) part sets using spatial

k − means clustering. Under this new arrangement, the assembly is composed of

k + 1 part sets−the largest part, part set 1, part set 2, . . ., part set k −in the first

step. Now, we verify the assembleability of this new assembly. We are defining

assembleability as the feasibility to assemble a part into a partially completed as-

sembly. For this purpose, we use motion planning to determine which part sets can

be removed from the assembly (explained in Section 3.3). These part sets are added

to the first disassembly layer and removed from the assembly. We again determine

which part sets can be removed from the simplified assembly. These part sets are

then added to the second layer and removed from the assembly. If the process gets

stuck before all part sets have been removed, we go to the first step, in which parts

are rearranged into a different grouping by increasing the number of clusters by one.

This results in k + 1 new clusters. The cycle is continued until all part sets have

been removed from the assembly and all part set removal layers are found. The

techniques and algorithms used to extract part interaction clusters are described in
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detail, using an illustrative example, in Section 3.4.

Note that until now, the disassembly layers have been generated for the whole

assembly while considering the identified clusters as individual part sets. Therefore,

the above procedure is applied recursively to generate disassembly layers for each

cluster identified in the previous step. The information extracted during the above

procedure is used to impose precedence constraints among the part sets. Finally, we

generate feasible assembly sequences using the precedence constraints for each part

set and the whole assembly. Some theoretical results related to the properties of the

proposed algorithms are presented in Section 3.5. Computational results from tests

on a variety of assemblies are reported in Section 3.6.

Based on the complexity of the assembly, we cannot reject some part sets that

do not pass the assembleability test. This occurs when at least two parts must

be moved into their final assembly locations simultaneously. Therefore, whenever

there is a failure, we recheck the assembleability for the largest assembly part and

a single set obtained by merging the part sets. If the assembly structure passes the

test then a temporary assembly location is needed to generate a feasible assembly

sequence. This process give us the information about the existence of nonlinearity

in the assembly. An example of this assembly scenario is explained in Section 3.6.5.

Next, we describe the principal techniques used to implement the above ap-

proach − motion planning, generation of disassembly layers, and spatial partitioning

based part interaction cluster extraction.
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Figure 3.3: (a) A screw which is in 100 % contact with an external surface. (b)
Performance of rapidly exploring random trees as a function of percent contact.

3.3 Motion planning to assess feasibility of part set Disassembly

The capability of sampling-based motion planners to perform assembly analysis of

complex product models can be mainly attributed to their computational efficiency.

For example, the Manhattan-like RRT based planner presented in [89] can handle

models with hundreds of degrees of freedom. Therefore, as mentioned earlier, we

rely on motion planning to evaluate the feasibility of an assembly operation. In par-

ticular, we developed a multiple RRT based motion planning algorithm to compute

a collision-free escape path to move a part set from its assembled configuration to a

given location that lies outside of the assembly.

Considering that the parts are moved and disassembled one by one, an as-

sembly admits a disassembly sequence if an escape path for disassembling each

part ωi ∈ Ω can be found. Given the initial assembled state configuration

{qωi
initial : i = 1, 2, . . . , n}, the problem consists of computing a collision free escape

path, from qωi

initial to a disassembled configuration qωi

goal for all ωi ∈ Ω.
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Figure 3.4: Number of trees used to resolve problem of false negatives with percent-
age contact (Maximum number of trees = 100). Performance of DMRT compared
with other RRT variants ([5, 6, 7])

Rapidly-exploring random trees (RRT) based motion planning provides fea-

sible solutions for part navigation in crowded scenes, a problem representative of

searching non-convex, high-dimensional spaces. A RRT is constructed incrementally

by randomly sampling valid configuration states and quickly computing the nearest

neighbor to states that already belongs to the tree. This process quickly reduces the

expected distance of a randomly-chosen point to the tree. However, RRT cannot

be directly applied to complex assemblies that are composed of large number of

parts, which often lead to scenes with high obstacle densities. The large number

of obstacles generates a highly constrained environment with very narrow passages,

resulting in the RRT’s failure to generate a valid state. This, thereby, increases the

false negatives dramatically.

In order to assess assembly feasibility, we used the RRT with multiple random

52



trees based motion planning approach described in our earlier work ([23]). The

approach performs a robust analysis of part motion feasibility. It uses multiple

RRTs that dynamically modify the environment description in order to generate a

valid escape path. It dynamically modifies the number of trees for each assembly part

based on the environment constraints associated with the part. A highly constrained

environment may require a large number of trees to find the escape path for an

assembly part. Multiple RRTs provide greater robustness across narrow passages

and crowded environments.

We use a screw which is in 100 % contact with an external surface, as shown in

Fig. 3.3(a), in order to illustrate the impact of percent contact on the performance

of RRT. Figure 3.3(b) shows the number of failures out of 1000 attempts made

by the algorithm in order to fully remove the screw out of its initial location as a

function of percent contact of the part. The graph shows that the traditional RRT

finds it increasingly difficult to find a successful path to remove the screw with an

increase in the percent contact. The same example shown in Fig. 3.3(a) is used to

compare the performance of the multiple RRT algorithm used for assessing motion

feasibility in this chapter with that of other RRT variants as shown in Fig. 3.4.

Note that our approach uses the least number of trees to find a solution for all cases

of percent contact.

[158] proposed a multiple RRT algorithm, in which the number of trees is kept

fixed. However, in our approach, the number of trees is changed on-the-fly; that

is, a new tree is added only if it is required by merging the information about the

“old” tree with the “new” tree instantaneously, thereby, increasing the probability
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of finding a valid state in the next step by using the knowledge of the previous trees.

3.4 Generation of Part Interaction Clusters

3.4.1 Basic Idea Behind Identification of Disassembly Layers

The motion planning technique uses the geometric information extracted from the

assembly model to find an escape path that allows a part to be completely separated

from the assembly. This enables the system to determine which part movements are

forbidden, which movements are feasible, and thereby, determine which part(s) can

be removed at each stage of disassembly. Using Definition 5, we consider a hierarchi-

cal disassembly structure H = {h1, h2, . . . , h|H|}, such that hi ≺≺ hi+1, ∀ i 	= |H|.

Therefore, each layer hi represents a precedence constraint for the layer hi+1 for

disassembly.

For simplicity, we first describe the generation of disassembly layers without

grouping part into clusters and by applying motion planning only to individual parts.

Specifically, the system considers each part and uses the motion planning algorithm

to check if it is physically blocked by another part before it can be fully removed

out of the assembly. Parts that can be removed in this manner during the first

attempt fill the first layer h1. This process is repeated to fill the second layer h2 and

so on, until all the parts are disassembled. As a result, the process is bounded by a

maximum of n2 iterations. The resulting hierarchically layered structure comprising

part groups that can be removed at each layer gives rise to disassembly precedence
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Algorithm 1 Assembly sequencing using DMRT based motion planning.
Input: Ω, O
Output:

Assembleability ∈ {TRUE, FALSE},
AssemblySequence

Procedure DMRT (�)→ (DisassemblyLayer,�)

O ← �;
while (| � |	= 0) do

τ.init(qωinit);
O← RemovePart(O,ω);
while (EscapePathFound == FALSE) do

qωrand ← RandomStage();
for each TREE do

qωnear ← NearestNeighbor(qωrand, τ);
u← SelectInput(qωrand, q

ω
near);

CheckCollision();
if (Collision == FALSE) then

qωnew ← Newstate(qnear, u,Δt);
τ.AddV ertex(qωnew);
τ.AddEdge(qωnear , q

ω
new, u);

else
ReinitializeNewTree;

end if
end for

end while
if (EscapePathFound == TRUE) then

DisassemblyLayer← AddPart(DisassemblyLayer, ω);
O ← AddPart(O,ω);
�← RemovePart(�, ω);
|Paths|++;

end if
end while
�← Ω; i = 1; |Paths| = 0;
while (| � |	= 0) do

(hi,�)← DMRT (�);
H← AddLayer(H, hi);

end while
if (| Ω | == | Paths |) then

AssemblySequence← ReverseSequence(H);
Return (TRUE,AssemblySequence)

else
Return Assembleability = FALSE

end if
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Figure 3.5: (a) 23-part assembly. (b) Exploded view. (c) Generation of disassembly
layers for 23-part assembly.

relations. Generation of such disassembly layers for a chassis assembly of 23 parts

is shown in Fig. 3.5.

The disassembly layers generated by the above process can be reversed and

turned into a linear assembly sequence as shown in Algorithm 1. However, the

above process does not fully represent the precedence relations between parts across

different layers. For instance, H provides precedence relation between layers hi ≺≺

hj for disassembly. Therefore, if ωi ∈ hi and ωj ∈ hj , then ωi ≺≺ ωj. That is ωi

can be removed before ωj. However, this doesn’t necessarily imply whether or not

ωj can be removed before ωi. Consequently, we do not know for sure if ωi � ωj for

assembly. Also, the precedence relations between the parts in the same layer are
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Figure 3.6: Definition of the centers of mass L = {cω1 , cω2 , . . . , cωn} based on the
3D assembly model. L = {(0, 26.85, -232.28), (0.22, 107.425, -360.295), . . . , (0,
55.35, -323.785)}.

not evaluated by this method.

In the next subsection, we show how the assembly structure identified by our

new approach reveals a more detailed precedence relationships by reorganizing the

parts in different layers into different part sets.

3.4.2 Spatial Partitioning based Part Interaction Cluster Formation

We developed a spatial partitioning algorithm based on k −means clustering tech-

nique in order to generate part interaction clusters. K-means clustering (MacQueen,

1967) is a method commonly used to automatically partition a data set into k groups.

It proceeds by selecting k initial cluster centers and then iteratively refining them

as follows: (a) Each instance cωi is assigned to its closest cluster. (b) Each cluster

center Cj is updated to be the mean of its constituent instances. The algorithm
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converges when there is no further change in assignment of instances to clusters or

alternatively, when there is no change in the location of the cluster centers. The

pseudocode for spatial clustering is given in Algorithm 2.

Algorithm 2 K-Means based spatial partitioning.
Input:

Ω = {ω1, ω2, . . . , ωn}
LΩ = {cω1 , cω2 , . . . , cωn} (Centers of mass for parts to be clustered)
K (number of clusters)

Output:
C = {p1, p2, . . . , pK} (Set of partitions) LC = {cp1 , cp2 , . . . , cpK}; (cluster centroids)
m : Ω→ C ; (cluster membership)

Procedure SpacePartitioning(Ω, LΩ,K)→ (C,LC ,m)

LC ← InitialV alue( Random selection of K values from LΩ);
for ωj ∈ Ω do

m(ωj) = argmink∈{1,2,...,K}Distance(cωj , cpk);
end for
while ( there is change in m) do

for j ∈ {1, . . . , k} do
Recompute cpj as the centroid of {ω | m(ω) = pj};

end for
for ωj ∈ Ω do

m(ωj) = argmink∈{1,2,...,K} DISTANCE(cωj , cpk);
end for

end while
Return C, m

We illustrate the part interaction cluster extraction technique using the exam-

ple shown in Fig. 3.6. We initialize the number of clusters K = 2 and initialize the

cluster centers using instances chosen at random from the assembly set Ω. The data

set is composed of 3D positions that represent the center of mass cωi of each part ωi.

We use the Euclidean distance metric to compute closeness of a data point to clus-

ter centers. The cluster centers of the product affect the assembly feasibility in the

sense that the resulting parts in one cluster may or may not be physically separated

from parts in other clusters. Therefore, whenever a part partitioning corresponding

to a set of cluster centers is not assembleable, then K is incremented by 1 and new
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Figure 3.7: First cycle of partitioning for the chassis assembly. Two valid part
sets A and B are obtained with k = 2.

Figure 3.8: Second cycle of partitioning for the chassis assembly. B is partitioned
into two valid part sets C and D.
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cluster centers are identified. This process is repeated until cluster centers that lead

to a successful partitioning are found.

Every time an assembly set is repartitioned into a set of K clusters, we must

test whether the new organization of the parts is feasible to assemble or not. For

this purpose, we treat these clusters as individual part sets by merging all elements

that belong to one cluster into one part set. Therefore, the reorganized assembly

structure is composed of the set Ωreorg = {ωrest, C1, C2, . . . , CK}, where ωrest is either

the largest part in the first iteration or the merged part set composed of all the

assembly elements excluded from the current partitioning analysis. The pseudocode

used to implement assembleability testing is shown in Algorithm 3. We introduce

a parameter cmin, which represents the minimum number of elements contained in

a valid cluster. That is, whenever |Ci| ≤ cmin, Ci is not partitioned further. In all

our experiments cmin = 61.

The first cycle of partitioning (K = 2) is shown in Fig. 3.7. In this case,

the reorganized assembly Ωreorg is composed of three part sets: Part set A, part

set B, and ωrest, which is equal to the largest part of the assembly ωlargest detected

at the beginning of the algorithm. Symbolically, Ωreorg = {ωlargest, A, B}. The

motion planning module finds that the resulting assembly structure is assembleable.

Therefore, the algorithm proceeds to the second cycle of partitioning. Note that

|A| = 4 (< cmin). Therefore, A doesn’t undergo further partitioning. However,

note that |B| = 18 (> cmin). Therefore, B is further partitioned into C and D

1 A low value of cmin (= 6) for the cluster results in obtaining manageable part clusters at the
leaf node of the assembly tree structure whenever possible. Similar results will be obtained if
this value is changed to 5 or 7.

60



as shown in Fig. 3.8. The new assembly is composed of three part sets C, D,

and ωrest, where ωrest is a merged part set composed of ωlargest and A. Therefore,

Ωreorg = {ωlargest, A, (B → C + D)} The updated assembly structure is verified to

be assembleable. In the third cycle, C doesn’t undergo partitioning (|C| = 6) and

D is partitioned into E and F (|D| = 12) (Fig. 3.9). Similarly, F is partitioned into

G and H (Fig. 3.10). However, the motion planning module finds that the resulting

partitioning is not feasible for assembly. We continue repartitioning of a invalid

cluster only when at least one of its subclusters contains cmin elements. Since |G| < 6

and |H| < 6, the algorithm halts resulting in F as a single part set. Therefore, We

obtain the final assembly structure Ωreorg = {ωlargest, A, (B → (C+(D→ E+F )))}.

The pseudocode to implement the spatial partitioning and motion planning based

automated generation of assembly precedence constraints is given in Algorithm 4.

Algorithm 3 Assembleability testing.
Input:

ωassembly
rest (Part excluded from partitioning analysis.

Initially it is the largest part).
K (number of clusters)

Output:
Assembleability ∈ {TRUE, FALSE},
AssemblySequence

Procedure VerifyAssembly: (Ω, ωassembly
rest ,K)→ (Assembleability, AssemblySequence)

Assembleability = FALSE;
while (k ≤ Ω ∨ AssemblySequence == FALSE) do

(C,LC ,m)← SpacePartitioning(Ω, LΩ,K);
for k ∈ {1, 2, . . .K} do

(Ω̂)←MergeElements(C,m,Ω);
end for
(Assembleability, AssemblySequence)← DMRT (Ω̂);

end while
Return (Assembleability, AssemblySequence);

As mentioned earlier, a linear assembly sequence is one in which each operation

places a single part into the assembly. Although not all products can be assembled

61



Figure 3.9: Third cycle of partitioning for the chassis assembly. D is partitioned
into two valid part sets E and F .

Figure 3.10: Fourth cycle of partitioning for the chassis assembly. F is partitioned
into two part sets G and H. However, this partitioning fails the assembleability test
making the part sets invalid.
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Algorithm 4 Spatial partitioning and motion planning based automated generation
of assembly precedence constraints.
Input: Ω
Output:Assembleability ∈ {TRUE, FALSE}; PartSet; TotalPartSetSequence

ωlargest ← IdentifyLargestPart;
Ω← RemovePart(ωlargest);

ωassembly
rest = ωlargest;

LΩ ← PartCenterOfMass(Ω);
cmin = 6;
Cluster = {C1, C2, ...Cu∀u ∈ ℵ+}(List of all clusters in the assembly);
ClusterSet = {C1 : C1 = Ω}
NumberOfNewClusters = 1;
i = 0;
while (NumberOfNewClusters > 0) do

NumberOfPreviousClusters = NumberOfNewClusters;
i++; k = 1;
ωassembly
rest = ωlargest + ClusterSetElements(C1, ]dots, Ci−1)

repeat
k ++;
Assembleability← V erifyAssembly(Ci, ω

assembly
rest , k);

until (Assembleability == FALSE)
if (Assembleability == TRUE) then

for Cj ∈ {1, . . . ,K} do
if |Cj | ≤ cmin then

Ω̂← Cj ;

PartSetSequencej ← DMRT (Ω̂);
else

ClusterSet← AddCluster(Cj);
end if

end for
else

(Ω̂)←MergeElementsInCluster(C,m,Ω);

(Assembleability, AssemblySequence)← V erifyAssembly(C, ωassembly
rest , k);

if (Assembleability == TRUE) then
AssembleSametime(Ci ∈ C);
ClusterSet← AddCluster(C)

end if
end if
NumberOfNewClusters = |ClusterSet| −NumberOfPreviousClusters;

end while
if (

∑|ClusterSet|
i=1 (Ci) = |Ω|) then

Return TotalClusterSequence← TotalAssembly(ClusterSequencej);
else

Return Assembleability = FALSE;
end if
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linearly, such sequences are used in manufacturing owing to their simplicity. Here,

we showed that our approach can be used to achieve more complex organizational

levels in which assembly of part sets can be assigned to different stations and later,

these part sets can be put together to form the final assembly.

3.5 Properties Of Proposed Algorithms

In this section, we present some theoretical results related to the techniques and the

associated algorithms developed in this chapter. The notations and definitions used

in the lemmas and theorems were described in Section 3.2.1.

Lemma 1. Transitive precedence: If Ci ≺ Cj and Cj ≺ Ck, then Ci ≺ Ck.

Proof.

Let Ci, Cj, Ck ∈ H.

From Definition 6, we have Cj ≺ Ck

⇒ Ck can be removed only after removing Cj . (3.1)

However, Ci ≺ Cj

⇒ Cj can be removed only after removing Ci. (3.2)

Therefore, from (3.1) and (3.2), we have Ci ≺ Ck.

For example, in the 23-part assembly (Fig. 3.5), Part-23 ≺ Part-4 and Part-4

≺ Part-5. Therefore, according to Lemma 1, Part-23 ≺ Part-5. Also, from visual
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inspection of the exploded view of the part assembly (Fig. 3.5(b)), it can be verified

that Part-23 must be removed before removing Part-5, which is consistent with the

above lemma.

Lemma 2. Let Ci, Cj ∈ H. Now, if Ci ≈ Cj then Ci ∼ Cj.

Proof. Ci ≈ Cj ⇒ Ci, Cj ∈ h for some h ∈ H . That is, the part sets belong to the

same layer. Therefore, from Definition 5 and Definition 6, we have Ci ∼ Cj.

Remark 1. Note that the converse may or may not be true.

For example, in the 23-part assembly (Fig. 3.5), Part-16 ≈ Part-17 (the two

parts belong to the same layer). Therefore, Part-16 ∼ Part-17 (Part-16 can be

removed before Part-17 and vice-versa). Note that for Part-6 ∼ Part-4 the converse,

Part-6 ≈ Part-4, is not true.

Lemma 3. Let Ci ∈ hi and Cj ∈ hj for some hi, hj ∈ H, where i 	= j. Now, if

Ci ≺ Cj then Ci ≺≺ Cj.

Proof. Suppose ¬(Ci ≺≺ Cj). This implies Cj ≺≺ Ci or Ci ≈ Cj .

If Cj ≺≺ Ci, from Definition 8 hj ≺≺ hi. This implies ¬(Ci ≺ Cj), which is a

contradiction.

If Ci ≈ Cj , then from lemma 2, we have Ci ∼ Cj , which is also a contradiction.

Therefore, we have the result.

Remark 2. Note that the converse may or may not be true. In particular, the

converse is true if, additionally, there is no Ck, k 	= i such that Ck ≺ Cj.
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For example (Fig. 3.5), Part-4 ≺ Part-5. From Lemma 3, Part-4 ≺≺ Part-5.

Note that the converse of Part-4 ≺ Part-5 is true as Part-3 ≺ Part-5 is not true.

Now, Part-4 ≺≺ Part-6. However, the converse of Part-4 ≺≺ Part-6, Part-4 ≺

Part-6, is not true.

Theorem 1. For any two adjacent layers hi and hi+1, a layer precedence relationship

hi ≺≺ hi+1 is established if and only if, for every part set Ci+1 ∈ hi+1, ∃ at least one

part set Ci ∈ hi such that Ci ≺ Ci+1.

Proof. First, we prove the “if” part: Let � ⊆ hi such that |�| ≥ 1 and Ci ≺

Ci+1, ∀ Ci ∈ �. Using lemma 3, we have Ci ≺≺ Ci+1, ∀ Ci ∈ �. This implies

hi ≺≺ hi+1. Hence, the “if part” is proved.

Next, we prove the “only if” part:

Given hi ≺≺ hi+1 (3.3)

Suppose the result is untrue. That is, for some part set Ci+1 ∈ hi+1, ¬(Ci ≺ Ci+1)

for every Ci ∈ hi.

⇒ Ci ∼ Ci+1, ∀Ci ∈ hi (3.4)

or Ci+1 ≺ Ci, ∀Ci ∈ hi (3.5)

(3.4) ⇒ Ci+1 ∈ hi. However, this is a contradiction, since hi ∩ hi+1 = 0.
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(3.5) ⇒ Ci+1 ≺≺ Ci (From lemma 3). Equivalently, hi+1 ≺≺ hi, which is also

a contradiction. Hence, we have the result.

From Fig. 3.5(c), h2 ≺≺ h3, where h2 = {Part-2, Part-11, Part-14, Part-20}

and h3 = {Part-21, Part-22}. Note that Part-2 ≺ Part-21 and Part-2 ≺ Part-22.

That is, for every Part-i ∈ h3, there exists at least one Part-j ∈ h2 such that Part-j

≺ Part-i. This is consistent with Theorem 1. Note that Part-21 and Part-22 have

no individual precedence relationships with the remaining parts in h2 even though

they fall in different layers.

From theorem 1, we can state the following corollary.

Corollary: For any two layers hi and hj, a layer precedence relationship hi ≺≺ hj

is established if and only if, for every part set Cj ∈ hj, ∃ at least one part set Ci ∈ hi

such that Ci ≺ Cj .

From Fig. 3.5(c), h1 ≺≺ h3, where h1 = { Part-8, Part-9, Part-10, Part-12,

Part-13, Part-15, Part-16, Part-17, Part-18}. Note that Part-12 ≺ Part-21 and

Part-13 ≺ Part-22, which is consistent with the above corollary.

Theorem 2. Given the n-part assembly Ω, the part interaction clusters extracted by

Algorithm 4 admit a tree structure T with Ω as its root part set and a monotonically

decreasing bound on its branching factor. Further, the branching converges in a

finite number of partition levels that is bounded by n− 2.

Proof. Let Ω = {ω1, ω2, . . . , ωn}.

Applying Algorithm 4, we get Ω = Cr = {C1, C2, . . . , Ck, ωlargest}, where each
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Ci is a child part set of the parent part set Cr according to the Definition 4 and

ωlargest is the largest part. Algorithm 4 is applied recursively on each child part

set until each part set is a single part. By considering each part set as a node and

connecting each child part set to its parent by an edge, the resulting part sets can

be represented by a tree structure T , where Ω is the root node.

Let Cp = {Cc
1, C

c
2, . . . , C

c
r} for some node Cp ∈ T . Note that the branching

factor at Cp = r. The corresponding bound on the branching factor is |Cp|. This

implies 2 ≤ r ≤ |Cp|. Similarly, the bound on branching factor at each Cc
i ∈ Cp =

|Cc
i |. However, |Cc

i | < |Cp|, which implies a monotonically decreasing bound on

the branching factor of the tree. Note that the maximum bound on the branching

factor is n− 1, which occurs at the first partition level.

Consider a path from the root node to the leaf node. We note that the max-

imum number of partition levels is obtained by choosing a k = 2 partition at each

level i, with |n− 1− i| number of part sets in one partition and a single part in the

other partition. This results in the following branching structure:

C1 = {C2, ω : |C2| = n− 2, ω ∈ C1 − C2}

C2 = {C3, ω : |C3| = n− 3, ω ∈ C2 − C3}
...

C i = {C i+1, ω : |C i+1| = n− i− 1, ω ∈ C i − C i+1}
...

Cn−2 = {Cn−1, ω : |Cn−1| = 1, ω ∈ Cn−2 − Cn−1} (3.6)
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From (3.6), |Cn−1| = 1. This implies that the branching terminates since the min-

imum number of parts in a part set for it to be partitioned is two. Therefore,

Algorithm 4 partitions Ω into part sets in a finite number of partition levels, which

is bounded by n− 2.

The tree structures obtained for the 23-part chassis assembly, the 73-part

chassis assembly, the crank shaft assembly, and the radial engine assembly are shown

in Figs. 3.13, 3.16, 3.19, and 3.22, respectively. In all these examples, the branching

converges in a finite number of partition levels.

Theorem 3. The number of possible assembly sequences ASn of an n-part assem-

bly based on part interaction cluster structure extracted by Algorithm 4 is

n−1∑
i=1

SAi·

SAn−i, where SAi is the number of possible assembly sequences for the parent part

set with i child part sets.

Proof. Let Algorithm 4 partition the parts into two part sets C1 and C2. Let |C1| = u

and |C2| = v such that u+v = n, for some u and v ∈ ℵ+. Accordingly, let us assume

assembling u parts and v parts separately, and then combining the u-part and v-

part sets to form the n-part assembly. In this particular case, the total number of

possible assembly sequences of an n-part assembly is SAu ·SAv. In the general case,

SAn is the sum of all such cases:

ASn = SA1 · SAn−1 + SA2 · SAn−2 + ...+ SAn−1 · SA1

=

n−1∑
i=1

SAi · SAn−i
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3.6 Computational Results

We report the results from application of our technique to four different assemblies:

(a) Chassis assembly (b) Crankshaft assembly (c) Radial crankshaft assembly, and

(d) The five part puzzle.

3.6.1 Simple Chassis Assembly

In the previous section, we used the 23-part chassis assembly (Fig. 3.6(a)) in or-

der to illustrate our approach of combining part interaction cluster extraction and

motion planning to generate assembly sequences. Figure 3.11(a) shows the part

sets identified by the system and Fig. 3.11(b) shows the corresponding assembly

structure representing the precedence relations between different part sets and in-

dividual parts within each part set. Note that the algorithm identifies four part

sets, in which F precedes E (F ≺ E) and the rest of the part sets do not have

any additional precedence constraints. This means that A, C, and F can be fit

into the assembly (part 1) in any order, but E must be assembled after F . Also,

note that the individual parts in each set can be assembled in parallel at different

locations without any precedence between parts across different part sets. How-

ever, note that individual parts admit precedence relations with each other within

each part set. The disassembly layers generated by the approach used in our earlier

work ([23]) can be reversed and turned into a linear assembly sequence. However,
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they do not fully represent the precedence relations between parts across different

layers. In contrast, the algorithm developed in this chapter combines part cluster

detection and disassembly layer extraction to generate precedence constraints for

assembly. This distinction is illustrated in Fig. 3.12. For instance, part 16 belongs

to the first disassembly layer and part 7 belongs to the seventh disassembly layer

(Fig. 3.12(a)). This implies that part 7 can be assembled before part 16. How-

ever, it is not clear if the converse is true. The assembly structure identified by the

new approach (Fig. 3.12(b)) clarifies this precedence relation: Part 7 and part 16

have no precedence constraint with respect to each other. That is, the set of parts

({2, 3, 4, 5, 6, 12, 13, 21, 22, 23}) that has to be removed before part 7 can be removed

does not include part 16. The new assembly structure reveals these precedence re-

lationships by reorganizing the parts in individual layers into interaction clusters,

while maintaining the same hierarchy of layers found in Fig. 3.12(a). Figures 3.13(a)

and (b) show the directed acyclic graph representation of the assembly structures

obtained by the two techniques, respectively.

3.6.2 Complex Chassis Assembly

Now, we report results on a more complex assembly comprising 74 parts, which is

obtained by augmenting the previous assembly with 51 new parts. Two views of this

74-part chassis assembly are shown in Fig. 3.14. The disassembly layer generation

and the directed acyclic graph representation of the assembly structure are shown

in Figures 3.15 and 3.16, respectively.
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Figure 3.11: (a) Part interaction clusters detected by the algorithm for the 23-
part chassis assembly. (b) The corresponding assembly structure representing the
precedence relations between different part sets and individual parts within each part
set.

Figure 3.12: Precedence relations between layers in the hierarchical exploration
structure for the chassis assembly: (a) Simple disassembly generation. (b) Disas-
sembly generation coupled with cluster detection.
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Figure 3.13: Directed acyclic graph representation of the assembly structure for the
chassis assembly: (a) Simple disassembly generation. (b) Disassembly generation
coupled with cluster detection.

Figure 3.14: The 73 part chassis assembly: (a) View 1. (b) View 2.
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Figure 3.15: Disassembly layer generation for the 73-part chassis assembly by
combining motion planning and part interaction cluster detection methods.

Figure 3.16: Directed acyclic graph representation of the assembly structure for
the 73-part chassis assembly.
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Figure 3.17: Crank shaft assembly

Figure 3.18: The disassembly generation
of one part interaction cluster identified by
the algorithm for the crank shaft assembly.

3.6.3 Crankshaft Assembly

The crankshaft assembly, shown in Fig. 3.17, consists of 41 assembly parts: One

crank shaft, 4 shafts, 4 lower shafts, 4 inner bearings, 4 bearings, 8 pins, 12 rings, and

4 piston heads. The disassembly generation of a past-set identified by the algorithm

is shown in Fig. 3.18. Figure 3.19 shows the directed acyclic graph representation

of the assembly structure extracted by the algorithm. From this figure, it is clear

that the algorithm correctly identifies a feasible nested configuration of part set.

3.6.4 Radial Crankshaft Assembly

The radial crankshaft assembly, shown in Fig. 3.20, consists of 50 assembly parts:

One master shaft, one radial bearing, 4 shafts, 4 bolts, 5 inner bearings, 5 bearings,

10 pins, 15 rings, and 5 piston heads. The disassembly generation of a part set

identified by the algorithm is shown in Fig. 3.21. Figure 3.22 shows the directed
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Figure 3.19: Directed acyclic graph representation of the precedence relations be-
tween assembly parts and part sets for the crank shaft assembly.
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Figure 3.20: Radial engine assembly

Figure 3.21: The disassembly generation
of one part set identified by the algorithm
for a Radial engine assembly.

acyclic graph representation of the assembly structure extracted by the algorithm.

From this figure, it is clear that the algorithm correctly identifies a feasible nested

configuration of part set.

3.6.5 The Five Parts Puzzle

The five-part puzzle (Fig. 3.23) is used to illustrate the ability of the algorithm to

deal with the issue of nonlinearity. In particular, this assembly example is represen-

tative of a scenario in which some parts cannot be assembled one by one in a linear

order; rather, they must be simultaneously moved to their final assembly locations.

The algorithm implementation can be explained in the following steps:

1. Find part sets to test feasibility with Cmin = 1. No feasible partition is found

with k = 1, 2, 3 and 4.

2. Test feasibility with the largest part + a single part containing the four re-

maining parts. The assembly structure passes the test. The result of this
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Figure 3.22: Directed acyclic graph representation of the precedence relations be-
tween assembly parts and part sets for a Radial engine assembly.

step is that the set of four parts must be assembled before placing in the final

position.

3. Recursively partition the four-part set and test feasibility. This results in two

part sets A and B.

The resulting assembly sequence is given below:

1. Assemble the two parts in part set A.

2. Assemble the two parts in part set B.

3. Assemble the previous two part sets into one single part set.

4. Assemble the resulting part set into its final position inside the largest part.
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Figure 3.23: The five-part puzzle used to illustrate how the algorithm deals with
nonlinearity: Initially, the four parts form two part sets. Next, they combine to form
a single part set, which is finally assembled into the largest part.

3.7 Summary

We presented a framework that combined motion planning techniques and part

interaction cluster extraction to guide the generation of feasible assembly sequences

for complex mechanical assemblies. We showed that our approach can be used to

handle complex assemblies in which assembly of part sets can be assigned to different

stations and later, these part sets can be put together to form the final assembly.

We also showed how our approach addresses the issue of nonlinearity in assemblies.

We have also demonstrated the minimization of the complexity in the as-

sembly sequence generation by developing approximations and heuristics without

significantly sacrificing the accuracy of the solutions. Combining motion planning

techniques with unsupervised part interaction clustering reduces the number of can-

didate assembly sequences in the overall combinatorial problem.

As we showed in the previous sections, the complexity of assembly or disas-

sembly sequencing is measured in terms of the number of parts. We demonstrated

that our algorithm can generate in the worst case scenario, the same number of

combinations (where not all combination of parts into subassemblies is allowed) as
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the traditional sequence approach where the number of potential sequences is given

by the number of permutations of parts.

Since assembly sequence planning is a NP-hard problem, it is not possible to

come up with a complexity-reduction-factor between previous sequential approaches

and our approach. Instead, to describe the reduction in the computational cost for

our approach we can explore some simple examples. For instance, for a 5 parts

assembly the number of potential sequences is 120. Many of these sequences are

not valid but still the algorithm has to explore these potential candidates in order

to verify the feasibility of the sequence. For the same 5 parts assembly and as-

suming three parts cluster boundary, the present framework reduced the number of

permutations or potential sequences to 10.

Although the number of potential sequences is large for the sequential ap-

proaches, this does not mean that once the algorithm finds a feasible sequence it

still keeps exploring the solution space. In many of the cases the goal is to find

a feasible assembly sequence. The problem in general is: when can we find this

feasible assembly sequence? This could be at the beginning of the exploration and

therefore, considerably reducing the computation cost or could be at the end, hence

representing a full exhaustive search. Since the precedence constraints are being

discovered gradually, there is no way to predict the number of permutations before

the first feasible assembly sequence is found. Our algorithm showed some variations

in the number of permutations due to the unsupervised number of clusters but these

variations are not as large as the previous approaches.

We have described a practical approach to generating assembly sequences from
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a geometric model of the target assembly. This approach has been implemented and

tested in the present framework. The system generated the assembly precedence

constraints directly from 3D assembly models as it uses only information about

geometric and physical constraints. In situations where part assembly involves a

single translation and a single rotation, methods without using path planning are

computationally more efficient than our approach. However, our approach performs

better when applied to more complex assemblies that involve multiple translations

and rotations. Our approach explores many different feasible assembly directions.

Our approach checks for feasibility in a given assembly state. So it can handle situ-

ations where different directions become feasible based on the state of the assembly.

For example, if the left direction is blocked in a given assembly state, and the right

direction is checked for feasibility and selected (if appropriate).

Our approach presented in the chapter considered each part as a free-flying

object. However, in a realistic scenario, as tools and human hand operations will

be used during assembly, some of the precedence constraints generated by our ap-

proach may become infeasible. In order to address this issue, our approach must

be augmented by incorporating motion planning for human-hand and tool models

into the formulation. This will result in the generation of modified precedence con-

straints that cater to the spatial constraints imposed by the tools and the hands.

Our technique was proposed for mechanical assemblies that are composed of finite

numbers of non deformable parts. Hence, assemblies that contain flexible parts,

where the flexible property of a part is exploited to fit it into the assembly, were out

of the current scope of our current approach. In addition, an analysis beyond pure
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geometric reasoning is required for assemblies that contain parts requiring force for

placement.
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Chapter 4

Toward Safe Human Robot Collaboration by using Multiple Kinects

based Real-time Human Tracking

In this Chapter1, we present a multiple Kinects based exteroceptive sensing frame-

work to achieve safe human-robot collaboration during assembly tasks. Our ap-

proach is mainly based on a real-time replication of the human and robot movements

inside a physics-based simulation of the work cell. This enables the evaluation of

the human-robot separation in a 3D Euclidean space, which can be used to gen-

erate safe motion goals for the robot. For this purpose, we develop an N -Kinect

system to build an explicit model of the human and a roll-out strategy, in which

we forward-simulate the robot’s trajectory into the near future. Now, we use a

pre-collision strategy that allows a human to operate in close proximity with the

robot, while pausing the robot’s motion whenever an imminent collision between the

human model and any part of the robot is detected. Whereas most previous range

based methods analyzed the physical separation based on depth data pertaining to

2D projections of robot and human, our approach evaluates the separation in a 3D

space based on an explicit human model and a forward physical simulation of the

robot. Real-time behavior (≈ 30 Hz) observed during experiments with a 5 DOF

articulated robot and a human safely collaborating to perform an assembly task

1 The work in this chapter is partially derived from the published work [25] and [26].
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validate our approach.

4.1 Introduction

Robots excel at performing tasks−welding, component soldering, bolting, packaging−

requiring speed, repeatability, and high payload capabilities. However, humans are

better at manipulation of a wide range of parts without using special fixtures; they

also have a natural ability to handle unexpected situations on the shop floor. There-

fore, collaborative frameworks in which humans and robots share the workspace and

closely work together to perform manufacturing tasks can lead to increased levels

of productivity.

Safety is one of the primary challenges encountered while trying to introduce

robots into anthropic environments [102, 159, 160]. Traditionally, safety in work

cells is ensured by caging a robot with either a physical [161] or virtual [162] barrier

and sequencing the roles of the robot and the human; that is, the robot is rendered

inoperative whenever a human enters the robot’s work cell to perform his/her task.

However, this segregation paradigm leaves no scope to realize the proposed benefits

of human-robot collaboration (HRC).

Strategies to achieve safe HRC can be broadly divided into two categories: Pre-

collision [94, 95, 96, 97, 98, 99, 100] and post-collision [102, 103, 163]. The former

problem deals with devising controllers that allow the robot to prevent imminent

collisions with a human. However, the latter aims to reduce the impact/injury

after an unexpected human-robot collision has occurred. One example is a human-
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Figure 4.1: Overall system overview: (a) Work cell used to evaluate human-robot
collaboration. (b) 5 DOF robot used for the experiments. (C) Physical simulation
used to evaluate the interference between the human and the robot in real-time.
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friendly robot designed by Shin et al. [163]. In this chapter, we limit the scope

of our literature review to pre-collision strategies as the methods presented in this

chapter belong to this category.

The underlying principle of most pre-collision methods consists of calculating

the physical separation between the robot and the human, tracking the changes in

the separation, and enabling the robot to take preventive actions whenever the sep-

aration is below a specified threshold. Separation monitoring in shared workspaces

has been identified as one of the important aspects for which performance metrics

are appearing in the recent literature [164]. Successful deployment of human robot

collaboration systems involves a proper integration between low-loop control loops

and high-level planners [165]. In this context, separation monitoring also provides

the perceptual feedback required to implement expressive temporal planners [166],

which integrate sharable resource management into plan generation. This feedback

can also be used in conjunction with assembly planners [82, 25] and instruction vi-

sualization tools [130, 135, 27] to modify assembly plans and assembly instructions

appropriately.

Note that the separation of interest is not a simple Euclidean distance between

two points, since a collision can occur between any part of the human and any part

of the robot during a collaborative task. Moreover, certain parts of the human

(robot) have more probability of collision with the robot (human) than certain

others. For example, consider a human and a desktop-robot manipulator working

in close proximity w.r.t. each other. In this HRC scenario, the human’s hands

are exposed to the arms of the robot with a higher frequency than that of his/her
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trunk; the human’s legs never come into contact with the robot as they always

operate below the surface of the assembly table.

All these issues raise important questions of how to model the robot-human

separation, how to design sensing methods to accurately measure the model vari-

ables, and how to incorporate the resulting data into robot control for ensuring

safety in the work cell. Previous approaches that address these challenges mainly

differ from one another depending on (a) how the human’s motion is accounted for;

that is, whether the human is tracked by using an explicit 3D human model or

he/she is treated as equivalent to other obstacles in the work cell, (b) if a human

model is used, then what sensing method is used to build the model, and (c) what

control algorithm is used to prevent collisions between the human and the robot

during the course of their collaborations.

Recent advances in computer game interfaces have enabled their use as tools

for interaction with robots. For example, Smith and Christensen [167] presented

a method to use wiimote controller to track human input based on human motion

models. Similarly, Kinect is another low-cost sensing device that is recently being

used for HRC applications [96].

In this chapter, we present a multiple Kinects based exteroceptive sensing

framework to achieve safe human-robot collaboration during assembly tasks. An

overview of the overall system is shown in Fig. 4.1. A preliminary implementation

of the system was presented in [26]. Our approach consists of a real-time replica-

tion of the human and robot movements inside a physics-based simulation of the

work cell. This enables the evaluation of the interactions between them in a three
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dimensional Euclidean space, which can be used to generate safe motion goals for

the robot. First, we develop an N -Kinect based framework that builds an explicit

model of the human in near real-time. In particular, the sensing system consists of

multiple Microsoft Kinects mounted at various points on the periphery of the work

cell. Usage of multiple Kinects accounts for problems caused by occlusion. Each

Kinect monitors the human and outputs a 20-joint human model. Data acquired

from all the Kinects are fused in a filtering scheme to obtain a refined estimate of

the human’s motion. Second, the generated human model is augmented by approx-

imating pairs of neighboring joints with dynamic bounding spheres that move as a

function of the movements performed by the human in real-time. Third, we imple-

ment a roll-out strategy in a physics-based engine, where we forward-simulate the

robot’s trajectory into the near future, creating a temporal set of robot’s postures

for the next few seconds; now, we check whether any of these postures collides with

one of the bounding spheres of the human model. Fourth, we use a pre-collision

strategy that allows a human to operate in close proximity with the robot, while

pausing the robot’s motion whenever an imminent collision between the human and

any part of the robot is detected. Whereas most previous range based methods

analyzed the physical separation based on depth data pertaining to 2D projections

of robot and human, our approach is one of the first successful attempts to evalu-

ate human-robot interference in a three dimensional Euclidean space based on an

explicit human model and a forward physical simulation of the robot. Real-time

behavior (≈ 30 Hz) observed during experiments with a 5 DOF articulated robot

and a human safely interacting to perform a shared assembly task validate the ef-
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fectiveness of our approach.

4.1.1 Kinect Sensor

Human motion estimation is an active field of research with a diversity of approaches.

Multi-camera systems are among the most traditional methods for 3D tracking. One

of the typical approaches for motion reconstruction of freely moving humans employs

shape-from-silhouette for estimating shape from multiple structures. Another family

of motion extraction methods relies on efficient descriptor-based tracking. These

descriptors can be visual or body attached sensors such as magnetic, mechanical or

passive markers.

Recently with the introduction of Microsoft Kinect sensor, a lot of attention

has been focused on depth sensors/cameras. Kinect sensor captures motion in real

time (approximately 30 fps) and releases 2.5D data of resolution 640 x 480 accompa-

nied with registered RGB data. One of the major advantages of the Kinect sensor

is its ability to infer human motion by extracting human silhouettes in skeletal

structures. Several researchers have used Kinect-based tracking for human activity

recognition applications. However, most researchers use single sensor solutions due

to problems encountered with sensor interference with each other. Multiple Kinect

sensor interference can result in erroneous or missing depth estimates. As a conse-

quence, self-occluded body parts or conditions where parts of the body are occluded

by other objects cannot be handled.

The human motion tracking framework presented in this work is designed for
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a hybrid assembly cell where one human operator interacts with one robot in a 3D

environment to perform an assembly operation. In this design, the human operator

has complete freedom of his/her motion. Human operator activity is captured by

the Kinect sensors that reproduce the operator’s location and movements virtually

in the form of a simplified animated skeleton for the system that also controls the

robot. The human motion tracking framework presented in this work uses multiple

Kinect sensors to cover a large work space and overcome the problem of occlusion

and self-occlusion and produce reliable skeletons and 3D reconstructions.

4.1.2 Comparative effectiveness of Kinect-based systems with exist-

ing systems

Modern motion capture systems have taken a variety of approaches to solving the

problem of accurately tracking human motion. Generally, these systems track mo-

tion using two different mechanisms, optical and non-optical capturing. Each track-

ing mechanism has advantages and disadvantages when applied to different specified

problem domains. Bellow we present a comparison between the different motion cap-

ture technologies and their application in the specific domain of tracking a human

operator in a very diverse and crowded environment, the assembly cell.

The following list below represents the comparative effectiveness of Kinect-

based motion tracking systems with other types of systems.

� Mechanical

– Description: Human operator wears a human-shaped set of straight
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metal pieces (like a very basic skeleton) that is hooked onto the human’s

back; as the human operator moves, this exoskeleton is forced to move

as well and sensors in each joint perceives the rotations.

– Advantages: No interference from light or magnetic fields that can be

present in the assembly cell.

– Disadvantages:

1. Technology has no awareness of ground, so there can be no jumping;

moreover, feet data tends to slide.

2. The equipment or exoskeleton must be calibrated often.

3. Unless there is some other type of sensor in place, it does not know

which way the human’s body is pointing.

4. Absolute positions in the assembly cell are not known but can be

calculated from the rotations.

5. In an environment where the human performance is critical the ad-

ditional exoskeleton limits the motion of the human.

– Precision and Frequency: 0.36 degrees - 120Hz.

– Cost: Low cost US� 10000.

� Optical

– Description:

� Human operator wears reflective descriptors that are followed by sev-

eral cameras and the information is triangulated between them.
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� Markers are either reflective, such as a system manufactured by VI-

CON or Motion Analysis, or infra-red emitting.

– Advantages:

1. Human operator has the freedom to move in the assembly cell due

to no cables connecting the body to the equipment.

2. Very clean, and detailed data at higher rates are available.

3. Rotations of body parts must be solved for and are not absolute.

4. Human operator must wear a suit with descriptors and balls (20-30

for body), which may be uncomfortable.

5. Information has to be post-processed or ẗrackedb̈efore viewing so

human operator cannot see his/her image and so cannot have the

instant feedback to identify potential.

– Disadvantages:

1. It is prone to light interference.

2. Reflective descriptors can be blocked by the robot or other structures,

causing loss of data, or occlusion.

– Precision and Frequency: Passive descriptors 0.1mm-240Hz. Active

descriptors 0.07mm- 30-480Hz.

– Cost: Higher cost than magnetic US� 50,000 to 250,000.

� Magnetic

– Description: Human operator wears an array of magnetic receivers which
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track location with respect to a static magnetic transmitter. One of the

first uses of this technology was by the military that used such systems

to track head movements of pilots. Often this type of motion capture

system is layered with animation from other input devices.

– Advantages:

1. Positions are absolute, rotations are measured absolutely; Orienta-

tion in space can be determined, which is very useful.

2. Can be real-time, which allows immediate broadcast as well as the

opportunity for performers to puppeteer themselves with instanta-

neous feedback (more spontaneity in the performance).

– Disadvantages:

1. Magnetic distortion occurs as distance to the origin increases.

2. Data can be noisy and it is not as good as optical,

3. Prone to interference from magnetic fields. Cement floors usually

contain metal, so stages must be built.

4. Human operator wears cables connecting them to a computer, which

limits their freedom in the assembly cell.

– Precision and Frequency: 0.76mm-240Hz.

– Cost: Relatively cheaper than optical price under US�40,000 for a typical

system.

� Kinect
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– Description: Descriptorless motion capture systems use advanced com-

puter vision technology to identify and track subjects without the need

for any special suits or descriptors. Without the aid of descriptors to

provide hints to the image processing software, advanced algorithms are

required, especially when the goal is to track motion in real-time.

– Advantages:

1. There are many clear advantages to descriptorless motion capture.

Because no special suits, descriptors or equipment are required, hu-

man operators can simply step into the assembly cell to begin track-

ing.

2. Because there is no special setup required, it is easier to track the

motion of the human operator in the assembly cell in whose condition

makes the application of special suits difficult.

3. Provides a cost effective solution.

– Disadvantages: Implementing accurate tracking algorithms that perform

well enough for real-time use, without the aid of descriptors to provide

hints to the software is difficult.

– Precision and Frequency: 3mm-30Hz

– Cost: Under US�2000

Part of what makes human motion capture in the assembly cell such a big

challenge is the speed at which everything must occur; for example, within 1/30th
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of a second, the length of one frame of video, motion must be sampled, data must

be applied to a digital scene representing various body parts of a character, and a

scene must be rendered into a virtual environment. Depending on the system used,

interference of the signals can impede accurate collection of data.

Even though, Kinect sensor (depth camera) offers the lower values in precision

and frequency compared with mechanical, magnetic and descriptor-based motion

systems, the characteristics of comfort, easy deployment, and low cost make this

technology very suitable for our application.

Comfort: In a realistic scenario, human operators have to work 8 hours a day

and 40 hours a week in a regular shift in a factory. Most of the work that they

perform is physical work and requires their full mobility. This implies an inability

to wear heavy suits that can limit the human operator motion.

Easy deployment: Optical motion capture systems require an exhaustive cal-

ibration not only of the hardware but also of the human. In addition, the operator

has to wear the descriptors in order to be tracked. Therefore, all the operators that

have interaction with the robot have to wear the descriptors (passive or active) or

switch suits every single time that they enter the assembly cell. The same applies

to magnetic and mechanical motion tracking wearing devices. Moreover, descriptors

can be “confused” with other material in the assembly cell with similar color and

intensity. A Kinect motion capture system has minimum illumination requirements.

In order to track the human operator in the assembly cell, Kinect motion capture

system does not require the human to wear any special suit or additional device.

Low cost: The very accessible price of the Kinect sensor and the possibilities to
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integrate and refine its output data makes the Kinect-based human motion capture

a very suitable solution.

4.2 Real-time Human Motion Tracking

Tracking of the human inside the work cell is achieved by generating a skeleton-like

model of the human and by estimating the 3D positions of its joints in order to

determine the human’s movements. For this purpose, we use an N -Kinect based

exteroceptive sensing system, which consists of multiple Kinects mounted at various

points on the periphery of the work cell. Each Kinect monitors the human and

outputs a 20-joint human model (Fig. 4.2) in its local reference frame. Positional

data from all the Kinects are fused in a filtering scheme in order to obtain a refined

human model in the global frame of reference.

Instead of processing the entire depth map, our sensing system works with a 20

DOF human model. This limited number of joints used to describe the human pose

ensure the real-time operation of the framework, the scalability, and the latency free

sensor fusion by reducing the number of variables to be processed and by reducing

the amount of data to be transferred. Unlike previous gesture-based human tracking

systems, usage of the Kinect doesn’t require the human to wear any sensing-related

devices. The specifications of the Kinect are shown in Table 4.1.
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Figure 4.2: The Microsoft Kinect directly outputs a 20-joint model of a human
observed in a 3D scene
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Parameter Specifications
Output 20-joint human skeleton model;

3D position coordinates for
each joint given in meters

Operating range 0.8 to 3.5 m
Horizontal field of view 57o

Vertical field of view 43o

Spatial resolution 0.003 m
Depth resolution 0.01 m

Kinect SDK Version V1.6

Table 4.1: Kinect specifications used in the sensing design

4.2.1 Exteroceptive Sensing Configuration

Design of the sensing configuration, given the work volume shared by the robot and

the human, is mainly influenced by factors like shape of the workspace, number of

sensors, placement of sensors, and presence of dead zones. We carry out a systematic

experimental analysis of these factors in order to characterize the performance of the

sensing system. In general, our objective is to achieve a coverage of the workspace

by maximizing the number of fully tracked joints, while minimizing the number of

sensors used.
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4.2.1.1 Workspace Analysis

Figure 4.3: 1 Kinect sensor:

Our framework considers a N -Kinect based sensing system, where N is the number

of Kinects required to fully cover the work volume. The shape of the work volume

considered in the experiments is cylindrical by nature. Therefore, there is no need for

a Kinect to be placed directly above the robot. However, there is a need for multiple

Kinects to be placed radially surrounding the periphery of the work cell. The exact

placement of each Kinect in the radial direction and the angular separation between

two neighboring Kiencts is guided by the operating range and the horizontal field of

view of the Kinect (Table 4.1) and the dimensions of the work cell (4.72 m × 3.2 m

× 2.7 m). The height and the pitch2 (= -20o) of each Kinect are selected such that

a human with hands in a upright position is within the vertical field of view of the

Kinect.

2 Angle between the sensor axis and the horizontal plane
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Figure 4.4: 2 Kinect sensors:

Figure 4.5: 3 Kinect sensors:
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(a) Human motion tracking with one Kinect Sen-
sor

(b) Human motion tracking with two Kinect Sen-
sors

(c) Human motion tracking with three Kinect
Sensors

(d) Human motion tracking with four Kinect
Sensors

Figure 4.7: Sensors placement an area of converge. Area in blue represent the
recommended tracking area based on Kinect technical specification (for each sensor:
0.8m x 3.5 m x 2.1m). Area in red represent the additional area in sensor range

Figure 4.6: 4 Kinect sensors:
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Figure 4.8: Coverage (horizontal projection) obtained by using four Kinect sensors.
The blue-color regions are fully covered. Red- and white-colored regions represent the
dead regions of the work cell.

4.2.1.2 Number of Kinects

Intuitively, coverage increases with an increase in the number of Kinects. However,

the signals from multiple Kinects tend to interfere with each other. In particu-

lar, the infrared-ray pattern generated by the Kinect is not modulated in a way

that the Kinect can recognize its own pattern; thereby, one Kinect could cast a

ray that another Kinect defines as its own and hence incorrectly estimates the dis-

tance. Therefore, the number of Kinects must be chosen such that the coverage is

maximized, while the interference between two neighboring Kinects is minimized.

We studied these effects by conducting the following experiment: We placed

one Kinect at an appropriate distance to the center of the work cell and logged the

values of metrics like workspace coverage3, assembly cell coverage4, implicit rotation,

and the number of fully tracked human joints. Next, we incrementally added a new

3 Ratio of area covered by the Kinect and total area of the workspace
4 Ratio of workspace coverage and the total area of the work cell
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Number of Kinects 1 2 3 4 5 6
Assembly cell coverage (≈ %) 20 35 55 85 88 90
Workspace coverage (≈ %) 25 50 75 100 100 100
Implicit rotation (degrees) 90 270 360 360 360 360

Number of fully tracked joints 4 8 20 20 20 20

Table 4.2: Coverage as a function of number of Kinects

Kinect at some angular separation to the previous Kinect (but at the same distance

to the work cell center as that of the previous one) and recorded the readings again.

A typical sensor arrangement with multiple Kinects mounted on the periphery of

the work cell is shown in Fig. 4.8. The yaw5 (= 50o) of each Kinect is fixed at an

angle such that the Kinect axis makes a small offset with the nearest diagonal of the

work cell. This reduces the overlap with the Kinect facing diametrically opposite to

it, thereby, increasing the net coverage due to the two Kinects.

Table 4.2 shows how the values of the metrics mentioned above varied as a

function of the angle between two neighboring Kinects and the number of Kinects

used up to the current step. From these experiments, we find that four Kinects

mounted on the corners of the work cell are sufficient to cover the workspace. Note

that there is no additional benefit in using more than four Kinects for the given

work cell.

4.2.1.3 Dead zones

Dead zones correspond to regions which have either poor or no coverage. With

respect to each Kinect (Fig. 4.8), the blue-colored region is fully covered and the

red-colored region is poorly covered. Accordingly, from Fig. 4.8, the red- and

5 Angle between the Kinect axis and the side wall
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white-colored regions are the dead zones of the work cell. These sensing failures

are handled by choosing the number of Kinects and their postures such that the

workspace shared by the robot and the human is a proper subset of the union of the

volumes covered by all the Kinects. From Fig. 4.8, note that the workspace marked

as the dotted rectangle completely falls within the net coverage of all the Kinects.

4.2.2 Human Model Estimation

Each joint position of the human model generated by a Kinect pij (where i and j are

the Kinect and joint indices, respectvely) is estimated by using a separate discrete

Kalman filter. This results in a set of twenty local filters corresponding to twenty

joints for each Kinect. Next, the resulting estimates of each joint j from all Kinects

are used as inputs to a particle filter. This results in a set of twenty particle filters

used to obtain improved estimates of all twenty joints.

The Kinect software cannot handle data from multiple Kinects. Therefore, in-

dividual models obtained from different Kinects are integrated via a communication

architecture based on User Datagram Protocol (UDP). A client computer reads the

positional data of the human model from each Kinect and transforms it into global

coordinates. Next, the joint-position estimates from all 20×4 local filters are sent

to the server, in which the particle filters are implemented.
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Figure 4.9: Fusion architecture in which local tracks are generated at local Kinect
sensor sites and then communicated to the central fusion unit.

4.2.2.1 Local filter

We derive an approximate model of human motion as follows. Let pj = (xj , yj, zj),

ṗj = (ẋj , ẏj, żj), and p̈j = (ẍj , ÿj, z̈j) represent the position, velocity, and acceleration

of each joint j. Writing the Taylor series expansion for position and velocity along

the x−axis, we have

xj(k + 1) = xj(k) + ΔT ẋj(k) +
ΔT 2

2!
ẍj(k) + · · ·

ẋj(k + 1) = ẋj(k) + ΔT ẍj(k) +
ΔT 2

2!

...
xj(k) + · · · (4.1)

where k is a discrete time index and ΔT is the sampling time.

Similarly, we write the series expansions for position and velocity along the
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other two orthogonal axes. Now, by neglecting the higher order terms, we obtain

an approximate linear state model for each joint j as below:

xj(k + 1) = xj(k) + ΔT ẋj(k) + w1(k)

ẋj(k + 1) = ẋj(k) + w2(k)

yj(k + 1) = yj(k) + ΔT ẏj(k) + w3(k)

ẏj(k + 1) = ẏj(k) + w4(k)

zj(k + 1) = zj(k) + ΔT żj(k) + w5(k)

żj(k + 1) = żj(k) + w6(k) (4.2)

where wi(k) is the noise in each state.

From (4.2), we obtain an approximate linear state model for each joint j as

below:

Xj(k + 1) = FXj(k) +W (k) (4.3)

where
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Xj(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xj(k)

ẋj(k)

yj(k)

ẏj(k)

zj(k)

żj(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ΔT 0 0 0 0

0 1 0 0 0 0

0 0 1 ΔT 0 0

0 0 0 1 0 0

0 0 0 0 1 ΔT

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

W (k) =

[
w1(k) w2(k) w3(k) w4(k) w5(k) w6(k)

]T
is the system distur-

bance with a covariance matrix Q(k). If we assume wi(k) = 0 for all k, then the

acceleration and higher order derivatives are zero. This implies that the joint is

moving at a constant velocity, which is not reflective of the actual motion of the

human. Accordingly, we expect that the filter may not work well. Therefore, we

address the question whether we can make it to work sufficiently well by assuming

that each wi(k) is a zero-mean white random process and choosing the values of

Q(k) appropriately. In particular, we model the process covariance terms using the

formulation from [168]:

Q(k) = E[W (k)W (k)T ]

= q

∫ tk+1

tk

F (tk+1, τ)F
T (tk+1, τ)dτ

≈
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qΔT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + ΔT 2 ΔT 0 0 0 0

ΔT 1 0 0 0 0

0 0 1 + ΔT 2 ΔT 0 0

0 0 ΔT 1 0 0

0 0 0 0 1 + ΔT 2 ΔT

0 0 0 0 ΔT 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

where q is the strength of the noise.

Note that we obtain only the joint position measurements from each Kinect. Con-

sequently, let

Yj(k + 1) =

[
xmj (k + 1) ymj (k + 1) zmj (k + 1)

]T
represent the position measure-

ment6 for joint j. Now, the measurement model for each joint j is given by:

Yj(k + 1) = HXj(k + 1) + V (k + 1) (4.5)

where

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and V (k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

vx(k + 1)

vy(k + 1)

vz(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

V (k + 1) is the measurement noise with a covariance matrix R(k + 1).

6 the Kinect index is omitted for brevity.
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We make the following assumptions with respect to the various noise related

variables: (a) Each wi(k), (i = 1, 2, . . . , 6) is a zero-mean white random process. (b)

vx(k+1), vy(k+1), and vz(k+1) are independent, zero-mean, and Gaussian noises

with variances of σ2
x = σ2

y = σ2
z = 0.06 m2. (c) W (k) and V (l) are uncorrelated for

all k ≥ 0 and l ≥ 0 [169]. (d) W (k) and V (k) are uncorrelated with the initial state

X(0) as their respective sources are different.

Let X−
j (k) represent the state prediction for kth time step, X ′

j(k) represent the

corrected state estimate after the measurement is made available, and Kj(k) repre-

sent the Kalman gain. Let P−
j (k) and Pj(k) represent the predicted and estimated

error covariances in the state, respectively. Now, we implement the distributed

discrete Kalman filter to estimate the state for each joint j by using Algorithm 5.

Algorithm 5 Kalman filter implementation for joint j
1: k = 0;

2: X ′
j(0) = E[Xj(0)] =

[
xm
j (0) 0 ymj (0) 0 zmj (0 0)

]T
;

3: Pj(0) = P0;
4: k ← k + 1;
5: X−

j (k) = FX ′
j(k − 1);

6: P−
j (k) = FPj(k − 1)FT +Q;

7: Kj(k) = P−
j (k)H

T (HP−
j (k)H

T +R)( − 1);

8: X ′
j(k) = X−

j (k) +Kj(k)(Yj(k)−HX−
j (k));

9: Pj(k) = (I−Kj(k)H)P−
j (k);

10: Go to Step 4;

4.2.2.2 Data fusion

As mentioned earlier, the position estimates of each joint j obtained from all the

four Kinects are used as inputs to a particle filter [170]. The same state model

derived in (4.3) is used here. For each joint j, the median of the state estimates
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{X ′
1j(k), X

′
2j(k), X

′
3j(k), X

′
4j(k)}, represented by XM

j (k), is used as the input to the

jth particle filter at time step k. We assume that the measurement noise in each

state ψi follows a Gaussian distribution with zero mean and variance σ2
ψ. We can

write the measurement model as below:

Yj(k + 1) = Xj(k + 1) + V (k + 1) (4.6)

Now, we implement a particle filter for joint j using the pseudocode in Algorithm

6.

Algorithm 6 Particle filter implementation for joint j
1: k = 0;
2: XM

j (0) = Median[X ′
1j(0), X

′
2j(0), X

′
3j(0), X

′
4j(0)];

3: Yj(0) = X ′
j(0) = Xj(0) = XM

j (0);
4: Initialize N particles {φij(0) : i = 1, 2, . . . , N} from a Gaussian distribution N (X ′

j(0),Q);
5: k ← k + 1;
6: Yj(k) = Median[X ′

1j(k), X
′
2j(k), X

′
3j(k), X

′
4j(k)];

7: ωj(k) = 0;
8: for i = 1 : N do
9: φi(k) = Fφi(k − 1) +GW (k − 1);
10: Yij(k) = φi(k) + V (k);
11: ωij(k) =

1
(2π)3|Σ|1/2 exp

(− 1
2 (Yij(k)− Yj(k))

TΣ−1(Yij(k)− Yj(k))
)
;

12: ωj(k)← ωj(k) + ωij(k);
13: end for
14: Generate a CDF Ω from the set of p.m.f.s assigned to the particles {ωij(k)

ωj(k)
: i = 1, 2, . . .N};

15: Resample the N particles {φij(k) : i = 1, 2, . . . , N} from Ω;

16: X ′
j(k) = ( 1

N )
∑N

i=1 φij(k);
17: Go to Step 5;

4.2.2.3 Estimation performance

The tracking performance of the filter is tested by conducting the following exper-

iment: A human moves his wrist from one known point to another known point in

the work cell and the measurements from all Kinects are collected and processed
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using the filtering scheme built around Algorithm 5 and Algorithm 6. The tracking

performance along x, y, and z axes are shown in Figures 4.10, 4.11, and 4.12, re-

spectively. Each plot includes the ground truth values of initial and final positions,

local measurements of the wrist-joint from one of the Kinects, the corresponding

local Kalman filter output, the median of all the four Kalman filter outputs, and

the particle filter output that provides the final estimate of the wrist-joint motion.

Note from Fig. 4.10 and 4.12 that the scales used to plot the x and z graphs are dif-

ferent. Therefore, the margins between the measured and estimated values appear

to be different in these graphs; but they are indeed similar to each other in reality.

A 3D plot of this tracking data is shown in Fig. 4.13. Note that the particle filter

acts upon the median output and provides a more refined estimation of the joint

motion.

We test the estimation accuracy of the overall sensing system in the following

way: A human is made to stand at different randomly selected known positions in

the work cell. By assuming different postures at each position, ground truth data

for a total of 15 postures are collected for the neck, shoulder, elbow, and wrist joints.

Now, we compare this ground truth data to corresponding estimates provided by

the sensing system. For illustration purpose, we use six out of these postures that

are shown in Fig. 4.14. The discrepancy between the ground truth and estimated

values are shown via projections of the joint positions on the XY plane (Fig. 4.15)

and Y Z plane (Fig. 4.16). In these figures, for each posture, a red-colored ∗ and a

green-colored ∗ represent the ground truth and the estimated values for the neck-

joint, respectively. Figure 4.17 shows the discrepancy values for each joint averaged
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Figure 4.10: Filter tracking performance along the x coordinate axis

over all the 15 postures. Note that the estimated values match with the ground

truth within a margin of ≈ 4−5 cm.

4.3 Pre-collision Strategy to achieve Safe HRC

The problem of ensuring safety based on separation monitoring is related to the

traditional robot collision avoidance problem. However, the properties of physical

interaction scenarios in shared work cells significantly differ from classical settings.

For example, safety cannot be guaranteed always, if the robot responds to a detected

imminent collision by using movements along alternative paths. This is mainly due

to the inherently random nature of human motion, which is difficult to predict, and
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Figure 4.11: Filter tracking performance along the y coordinate axis

the dynamic nature of the robot implementing such a collision avoidance strategy.

In addition, these methods may increase the computational overhead as the system

must try to find collision-free paths in real-time. Velocity-scaling based methods

[171] address these issues by operating the robot in a tri-modal state. In particular,

the robot operates in a clear (normal functioning) state when the human is far away

from it. When the separation between them is less than a specified threshold, the

robot transitions into a slow state, in which it continues to move in the same path,

but at a reduced speed. When the separation is less than a second threshold (whose

value is smaller than that of the first one), the robot enters a pause state, in which

it comes to a safe, controlled stop.

Our approach to ensuring safety while a human and robot collaborate in close
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Figure 4.12: Filter tracking performance along the z coordinate axis

proximity with each other consists of pausing the robot’s motion whenever an immi-

nent collision between them is detected by the system. This is similar to a simpler

bi-modal control strategy, in which the robot directly transitions from clear to pause

when the estimated separation is below a threshold distance. This stop-go approach

to safety is in line with the recommendations put forward by the ISO standard 10218

[172, 173].

In order to track the physical separation, the 20-joint human model generated

by the exteroceptive sensing system (described in the previous section) is augmented

by approximating all pairs of neighboring joints by dynamic bounding spheres that

move in a 3D space as a function of the movements performed by the human in

real-time. Now, we use a roll-out strategy, in which we pre-compute the robot’s
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Figure 4.13: Filter tracking performance in 3D
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Figure 4.14: Postures used to test the estimation accuracy of the overall system
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Figure 4.15: Discrepancy between projections of ground truth and estimated values
on the XY plane
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Figure 4.16: Discrepancy between projections of ground truth and estimated values
on the Y Z plane

Neck Shoulder Elbow Wrist
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Δ 
= 

sq
rt

(Δ
x2  +

 Δ
y2  +

 Δ
z2 ) 

 (
cm

)

 

 

Figure 4.17: Discrepancy between ground truth and estimated values for each joint
averaged over 15 locations.
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Figure 4.18: Illustration of pre-collision strategy: (a) Human is far away from the
robot. As the distance between the spheres is significant, robot performs its intended
task. (b) An imminent collision is detected by the system; therefore, the robot is
paused and a visual alarm is raised (bounding spheres change color). (c, d) Human
returns to a safety zone; therefore, the robot resumes its motion.
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trajectory into the near future in order to create a temporal set of robot’s postures

for the next few seconds and check whether anyone of the postures in this set collides

with one of the bounding spheres of the human model. This pre-collision strategy

is implemented in a virtual simulation engine that is developed based on Tundra

software.

First, a simulated robot, with a configuration and dimensions that are iden-

tical to the physical robot, is instantiated within the virtual environment. The

simulated robot replicates the motion of the physical robot in real-time by using the

same motor commands that drive the physical robot. The robot’s motion plan is

assumed to be known beforehand. Therefore. at time t = 0, we generate a set of 10

robot’s postures by using this information, a sampling time of 0.3 sec, and a roll-out

parameter of 3 sec. This set is updated at control-sampling frequency, according to

a FIFO method, by removing the robot’s current posture from the set and adding

its future posture after 3 sec to the set.

Second, a simulated human model, with degrees of freedom identical to the one

given by the Kinect, is built and instantiated within the same virtual environment.

The simulated human model replicates the motion of the refined human model

generated by the exteroceptive system by accessing the instantaneous positions of

all the 20 joints. Since the joints below the hip do not interfere with the robot

during any part of the interaction, they are not considered in the computation of

the bounding spheres for the human model.

Figure 4.18 illustrates the pre-collision strategy based on the movement of the

bounding spheres. From Fig. 4.18(a), the human is in front of the robot when it has
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just started lifting a part at t = 0 sec. As there is no intersection between its current

set of roll-out postures and the human model, the robot continues its intended task

of lifting the part from the table surface. However, at t = 3 sec (Fig. 4.18(b)), note

that the human’s hand reaches a state in which a collision is imminent. The roll-out

strategy enables the system to detect this condition and pause the robot’s motion

immediately. It also raises a visual alarm (the sphere changes color from white to

red as seen in the figure), which is displayed on a monitor and an audio alarm to

alert the human. After t = 5 sec (Fig. 4.18(c) and 4.18(d)), the robot automatically

resumes its task as the human’s hand is retrieved into a safety zone.

4.4 Results

We report results from an experimental scenario, in which a real robot and a human

perform a shared assembly task. The physical robot used for the experiments is

Lab-Volt 5150 5 DOF manipulator. The task consists of assembling the parts of a

simplified chassis assembly consisting of the following parts: Main chassis, a center

roll bar, a rear brace, two radio boxes, and four screws. An assembly planning

system developed in our earlier work [24] takes a 3D CAD model of the assembly

and automatically generates an assembly sequence that drives the task sequence of

the robot.

We assign the roles of the human and the robot as follows: Whereas the

human picks each part to be assembled and places it in front of the robot, the robot

attempts to pick a part available in front of it and proceeds to place it in its intended
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Figure 4.19: (a) CAD model of the simple chassis assembly used in the experi-
ments. (b) Assembly sequence generated by the assembly planner.

location in the assembly. The robot motion is kept asynchronous with respect to

that of the human on purpose. That is, the robot doesn’t wait to reach the part

until the human finishes placing it in front of the robot. This thereby sets up an

interaction scenario for possible collisions between the human and robot. Figure

4.20 shows how the robot and human collaborate to assemble one of the parts onto

the main chassis. From Fig. 4.20(c), note that the robot pauses its motion when

human intervenes to place the part in front of it and resumes its motion when the

human turns away Fig. 4.20(f). Similar real-time behavior is observed as the robot

and the human collaborate to assemble the remaining parts.
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Figure 4.20: Robot and human collaborate to assemble the third part (radio box)
onto the chassis
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4.5 Summary

We presented a separation monitoring framework that allows a robot and human to

safely collaborate on shared tasks in assembly cells. The main contributions of this

chapter can be summarized as:

1. Design of an N−Kinect framework to generate a 3D model of human’s move-

ments in real-time.

2. Experimental procedure for placement of multiple Kinects in the work cell.

3. Technique to rapidly evaluate human-robot interference in 3D Euclidean space

by using a physics-based simulation engine.

4. Pre-collision strategy to achieve safe HRC

In order to verify the accuracy of the framework, an error analysis was per-

formed. The error analysis showed a maximum variation of +/-2 cm of each esti-

mated joint with respect to the ground-truth. The pre-collision strategy uses these

data to trigger the ”stop” order to the robot if it detects the possibility of human-

robot collision. The achieved level of accuracy was reasonable and offered several

other advantages. Because no special suits, descriptors or equipment were required,

human operators simply stepped into the assembly cell to begin the work. This

means that the framework captured more realistic motion data in less time, and for

a much lower total cost. It also made the interaction with the robot much more

practical by reducing the use of additional hardware for the interaction. Because

there is no special setup required, the Kinect framework shows flexibility to track
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the motion of human operators with different heights or workers whose condition

makes the application of special suits difficult.

In the current work, the pre-collision strategy consisted of bringing the robot to

a complete stop whenever the system detected an intersection between the bounding

spheres of the robot and the human. However, the human model based prediction

of the human movement can be easily extended to derive better motion goals for

the robot, which cater for safety as well as productivity. For example, a tri-modal

control strategy, in which the robot transitions into an intermediate slow-speed state

before coming to a complete stop can be easily implemented by incorporating the

velocity estimates of the human model into the robot control algorithm. For this

purpose, the current Taylor series based model can be extended to more practical

dynamic models without the constant velocity assumption. Using real data obtained

from extensive experiments, we demonstrated that our collaborative framework is

robust and accurate. However, a more exhaustive evaluation of the accuracy of

the tracking system can be made by comparing it with other tracking and motion

capture systems.
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Chapter 5

A Framework for Hybrid Cells that Support Safe and Efficient

Human-Robot Collaboration in Assembly Operations

In this Chapter1, we present a framework to build hybrid cells that support safe and

efficient human-robot collaboration during assembly operations. Our approach con-

siders a representative one-robot one-human model in which a human and a robot

asynchronously work toward assembling a product. Whereas the human retrieves

parts from a bin and brings them into the robot workspace, the robot picks up parts

from its workspace and assembles them into the product. Using this collaboration

model, we explicate the design details of the overall framework comprising three

modules−plan generation, system state monitoring, and contingency handling. We

provide details of the virtual cell and the physical cell used to implement our frame-

work. Finally, we report results from human-robot collaboration experiments to

illustrate our approach.

5.1 Introduction

Assembly operations are an integral part of the overall industrial manufacturing

process. After parts are manufactured, they must be assembled together to impart

the desired functionality to products. Pick-and-place, fastening, riveting, welding,

1 The work in this chapter is partially derived from the published work [26, 27, 29] and [28].
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Figure 5.1: 3D printed replica of a jet engine

soldering, brazing, adhesive bonding, and snap fitting constitute representative ex-

amples of industrial assembly tasks [18].

Humans and robots share complementary strengths in performing assembly

tasks (Fig. 5.4). Humans offer the capabilities of versatility, dexterity, performing

in-process inspection, handling contingencies, and recovering from errors. However,

they have limitations w.r.t. factors of consistency, labor cost, payload size/weight,

and operational speed. In contrast, robots can perform tasks at high speeds, while

maintaining precision and repeatability, operate for long periods of times, and can

handle high payloads. However, currently robots have the limitations of high capital

cost, long programming times, and limited dexterity. Owing to these reasons, small

batch and custom production operations predominantly use manual assembly. How-

ever, in mass production lines, robots are often utilized to overcome the limitations

of human workers.

In contrast, robots are very good at pick and place operations and highly

repeatable in placement tasks. Robots can perform tasks at high speeds and still

maintain precision in their operations. Robots can also operate for long periods of
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Figure 5.2: Simplified 3D printed replica of a jet engine from Fig. 5.1
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Figure 5.3: Simplified 3D printed jet engine replica: (a) Front Shroud Safety (b)
Main Fan (c) Shroud (d) Front Shaft (e) First Compressor (f) Second Compressor
(g) Rear Shaft (h) Shell (i) Rear Bearing (j) Exhaust Turbine (k) Cover.
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Figure 5.4: Hybrid assembly cell: Human assisting the robot in resolving a pose
estimation problem during an assembly task. Human pick a part and place the part
in a known pose and location. Robot recognize the location and pick up the part and
perform the task
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times. Robots are also very good at applying high forces and torques. They have

become popular for several different assembly operations.

Purely robotic cells are not the solution as they do not provide the needed flex-

ibility. These reasons, along with short production cycles and customized product

demands, set SMMs as primary candidates to benefit from hybrid cells that sup-

port human-robot collaborations. However, currently shop floors install robots in

cages. During robot operation, the cage door is locked and elaborate safety protocol

is followed in order to ensure that no human is present in the cage. This makes

it very difficult to design assembly cells where humans and robots can collaborate

effectively.

In this chapter, we present a framework for hybrid cells that enable safe and

efficient human-robot collaboration (HRC) during industrial assembly tasks. Advent

of safer industrial robots [20, 21, 22] and exteroceptive safety systems [26, 25] in the

recent years are creating a potential for hybrid cells where humans and robots can

work side-by-side, without being separated from each other by physical cages. The

main idea behind hybrid cells is to decompose assembly operations into tasks such

that humans and robots can collaborate by performing tasks that are suitable for

them. In fact, task decomposition between the human and robot (who does what?)

has been identified as one of the four major problems in the field of human robot

collaboration [174].

We consider a representative one-robot one-human model in which a human

and a robot asynchronously work toward assembling a product. The model exploits

complimentary strengths of either agents: Whereas the robot performs a pick-and-
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place task and subsequently assembles each picked-up part to form the product, the

human assists the robot in critical situations by performing dexterous fine manip-

ulation tasks required during part-placing. Moreover, a system state monitoring

allow the Hybrid Assembly cell to have a ”knowledge” about the development of

the assembly tasks, and provide additional information to the human operator if

needed.

Whereas robots can repetitiously perform routine pick-and-place operations

without any fatigue, humans excel at their perception and prediction capabilities in

unstructured environments. Their sensory and mental-rehearsal capabilities enable

humans to respond to unexpected situations, quite often with very little information.

We exploit these complementary strengths of either agents in order to design a

deficit-compensation model that overcomes the primary perception and decision-

making problems associated with a sequence of assembly tasks. An overview of the

hybrid cell is shown in Fig. 5.4.

We explicate the design details of our overall framework comprising three mod-

ules: plan generation, system state monitoring, and contingency handling. In order

to prove our approach and because grasping techniques are out of this dissertation

scope, we used a simplified 3D printed jet engine as a mechical assembly (Fig. 5.2

and Fig. 5.3).
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5.2 System Overview

Our approach to hybrid cells considers a representative one-human one-robot model,

in which a human and a robot will collaborate to assemble a product. In particular,

the cell will operate in the following manner:

1. The cell planner will generate a plan that will provide instructions for the

human and the robot in the cell.

2. Instructions for the human operator will be displayed on a screen in the as-

sembly cell.

3. The human will be responsible for retrieving parts from bins or random loca-

tions and bringing them within the robot workspace.

4. The robot will pick up parts from its workspace and assemble them into the

product.

5. If needed, the human will perform the dexterous fine manipulation to secure

the part in place in the product.

6. The human and robot operations will be asynchronous.

7. The cell will be able to track the human, the locations of parts, and the robot

at all time.

8. If the human operator makes a mistake in following an assembly instruction,

re-planning will be performed to recover from that mistake. As a part of the
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re-planning process, appropriate warnings and error messages will be displayed

in the cell.

9. If the human comes too close to the robot to cause a collision, the robot will

perform a collision avoidance strategy.

The overall framework used to achieve the above list of hybrid cell operations consists

of the following three modules:

Plan generation. In Section 5.3, we present methods for automatically gen-

erating plans for the operation of hybrid cells. This will address both assembly

complexity and issues related to motion constraints.

System state monitoring. In order to ensure smooth and error-free opera-

tion of the cell, we will need to monitor the state of the assembly operations in the

cell. Accordingly, we present methods for real-time tracking of the human operator,

the parts, and the robot in Section 5.4.

Contingency handling. We consider three types of contingency handling

− collision avoidance between robot and human, replanning, and warning genera-

tion. A critical issue that is hampering the entry of humans into traditional robotic

environments is safety. The cooperation between humans and robots in the assem-

bly cell will only be practical if human safety can be ensured during the assembly

tasks that require collaboration between humans and robots. Accordingly, in Sec-

tion 5.5.1, we describe how the state information wr.t. the human and the robot

obtained in the previous module is used to take appropriate measures to ensure

human safety when the planned move by the robot may compromise the safety of
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Figure 5.5: (a) Assembly CAD parts from a simplified Jet engine. (b)A simple jet
engine assembly. (c) Feasible assembly sequence generated by the algorithm.

the human. In the envisioned hybrid cell, we will be relying on human operators

to bring the part into the cell. If the human operator makes an error in selecting

the part or placing it correctly, the robot will be unable to correctly perform the

task assigned to it. If the error goes undetected, it can lead to a defective product

and inefficiencies in the cell operation. The reason for human error can be either

confusion due to poor quality instructions or human operator not paying adequate

attention to the instructions. Accordingly, in Section 5.5.2, we describe how the

part tracking information obtained in the previous module is used to automatically

generate instructions for taking corrective actions if a human operator deviates from

the selected plan. Potential corrective actions may involve re-planning if it is possi-

ble to continue assembly from the current state. Corrective actions may also involve

issuing warning and generating instructions to undo the current task.
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5.3 Plan Generation

5.3.1 Assembly Sequence Generation

Careful planning is required to assemble complex products ([30, 34, 35, 50, 54, 81,

82, 55, 58, 50, 43]). Variations in part shapes and part sizes restrict the number

of sequences in which assembly operations can be performed. Therefore, we must

find precedence constraints among assembly operations and use them to guide the

generation of feasible assembly sequences. In order to address this problem, we

utilize a method developed and described in Chapter 3 that automatically detects

part interaction clusters that reveal the hierarchical structure in a product. This

thereby allows the assembly sequencing problem to be applied to part sets at multiple

levels of hierarchy.

The assembly model used to illustrate the concepts developed in this chaper

is a simple chassis assembly as shown in Fig. 5.5(a)-(b). The result of applying the

above method on this assembly model is a feasible assembly sequence as shown in

Fig. 5.5(c).

5.3.2 Instruction Generation

The human worker inside the hybrid cell follows a list of instructions to perform

assembly operations. However, poor instructions lead to the human committing

mistakes related to the assembly. We address this issue by utilizing an instruction

generation system developed in our previous work [27] that creates effective and

easy-to-follow assembly instructions for humans.
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Figure 5.6: Generation of instructions for chassis assembly (1-6)
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Figure 5.7: Generation of instructions for chassis assembly (7-12)

137



Figure 5.8: Generation of instructions for chassis assembly (13-18)
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Figure 5.9: Generation of instructions for chassis assembly (19-22)

Figure 5.10: (a) Human operator viewing an Assembly Instruction. (b) Human
Implementing the Viewed Instruction.
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A linearly ordered assembly sequence (result of the previous section) is given

as input to the system. The output is a set of multimodal instructions (text, graph-

ical annotations, and 3D animations). Instructions are displayed on a big monitor

located at a suitable distance from the human. Text instructions are composed using

simple verbs such as Pick, Place, Position, Attach, etc. Examples of grammatical

constructs for the text instructions include:

1. Pick PART?

2. Place PART? on LOCATION?

3. Position PART? so that FEATURE-A? aligns with FEATURE-B?

As mentioned in Section 5.3.1, we compute a feasible assembly sequence di-

rectly from the given 3D CAD model of the chassis assembly. Therefore, the follow-

ing assembly sequence is input to the instruction generation system:

1. Pick up FRONT SHROUD SAFETY

2. Place FRONT SHROUD SAFETY on ASSEMBLY TABLE

3. Pick up MAIN FAN

4. Place MAIN FAN on ASSEMBLY TABLE

5. Pick up SHROUD

6. Place SHROUD on ASSEMBLY TABLE

7. Pick up FRONT SHAFT
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8. Place FRONT SHAFT on ASSEMBLY TABLE

9. Pick up FIRST COMPRESSOR

10. Place FIRST COMPRESSOR on ASSEMBLY TABLE

11. Pick up SECOND COMPRESSOR

12. Place SECOND COMPRESSOR on ASSEMBLY TABLE

13. Pick up REAR SHAFT

14. Place REAR SHAFT on ASSEMBLY TABLE

15. Pick up SHELL

16. Place SHELL on ASSEMBLY TABLE

17. Pick up REAR BEARING

18. Place REAR BEARING on ASSEMBLY TABLE

19. Pick up EXHAUST TURBINE

20. Place EXHAUST TURBINE on ASSEMBLY TABLE

21. Pick up COVER

22. Place COVER on ASSEMBLY TABLE

Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 show the instructions used

by the system for some of the assembly steps.
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5.4 System State Monitoring

5.4.1 Human Tracking

The human tracking system used here is based on ourN -Kinect based sensing frame-

work presented in Chapter 4. The system is capable of building an explicit model

of the human in near real-time. As it was mentioned previously, it is designed for a

hybrid assembly cell where one human interacts with one robot in a 3D environment

to perform assembly operations. In this design, the human has complete freedom of

his/her motion. Human activity is captured by the Kinect sensors that reproduce

the human’s location and movements virtually in the form of a simplified animated

skeleton.

5.4.2 Part Tracking

The assembly cell state monitoring uses a discrete state-to-state part monitoring sys-

tem that was designed to be robust and decrease any possible robot motion errors.

A failure in correctly recognizing the part and estimating its pose can lead to signif-

icant errors in the system. To ensure that such errors do not occur, the monitoring

system is designed based on 3D mesh matching with two control points−the first

control point detects the part selected by the human and the second control point

detects the part’s spatial transformation when it is placed in the robot’s workspace.

The detection of the selected part in the first control point helps the system to

track the changes introduced by the human in real-time and trigger the assembly

re-planning and the robot motion re-planning based on the new sequence. Moreover,
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the detection of the posture of the assembly part related to the robot in the second

control point sends a feedback to the robot with the ”pick and place” or ”wait” flag.

The 3D mesh matching algorithm uses a real-time 3D part registration and

a 3D mesh interactive refinement [175]. In order to register the assembly part in

3D format, multiple acquisitions of the surface are necessary given that a single

acquisition is not sufficient to describe the object. These views are obtained by the

Kinect sensors and represented as dense point clouds. The point clouds are refined

in real-time by a dense projective data association and a point-plane iterative closes

point ICP all embedded in KinectFusion [176, 177, 178, 179]. KinecFusion is used to

acquire refined point-clouds from both control points and for every single assembly

part.

In order to perform a 3D mesh-to-mesh matching, an interactive refinement

revises the transformations composed of scale, rotation, and translation. Such trans-

formations are needed to minimize the distance between the refined point cloud in

a time ti and the refined point cloud at the origin t0 also called mesh model. Point

correspondences were extracted from both meshes using a variation of Procrustes

Analysis [180, 181, 182] and then compared with an iterative closest point algorithm

[183].

5.4.2.1 3D Mesh Matching Algorithm

3D vision measurements produce 3D coordinates of the relevant object or scene with

respect to a local coordinate system. 3D Point cloud registration transform multiple
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data sets into the same coordinate system to overlap and align the components of

the point clouds. There is no an standard method for the registration problem and

the performance of the algorithms are often related to preliminary assumptions.

Consider a point cloud representation of a rigid object with n points x1, ..., xn

in R
3 that is subject to an orthogonal rotationR ∈ R

3x3 and a translation t ∈ R
3 then

the problem is fitting the points x1, ..., xn into a given point cloud representation

of the same object or scene with m points y1, ..., ym under choice of an unknown

rotation R, an unknown translation t, and an unknown scale factor s.

We can represent several configurations of the same object in a common space

by minimizing the goodness of fit criterion. We do this with the aid of 3 high-level

transformations:

Translation: move the centroids of each configuration to a common origin.

Isotropic scaling: shrink or stretch each configuration isotropically to make

them as similar as possible.

Rotation/Reflection: turn or flip the configurations in order to align the point

clouds.

Given x1, ..., xn in R
3 and y1, ..., yn in R

3 and assuming that there are no

translation and scale transformations then, the rotation R can be computed by

solving:

min
R
‖RX − Y ‖2F subject to RTR = I3, det(R) = 1

Therefore, the solution of the orthogonal procrustes problem is given by using
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Figure 5.11: Rigid body transformations (Rotation and Translation).

SV D of XY T . Where X = (x1 − x̄, ..., xn − x̄) and Y = (y1 − ȳ, ..., yn − ȳ) with

the variables x̄ and ȳ representing the mean value vectors of xi and yi. If XY T is

nonsingular the solution is unique.

Theorem 4. Let X ∈ R
nxn and Y ∈ R

mxn be known matrices with Rank(X) = n

and Rank(Y ) = n. Then the solution R̂ of the orthogonal procrustes problem

min
R
‖RX − Y ‖2F subject to RTR = In, det(R) = 1

is R̂ = V Im,nU
T where U and V are the orthogonal matrices given by the singular

value decomposition UΣV T = XY T

Proof. Since

‖RX − Y ‖2F = tr((RX − Y )T (RX − Y ))

tr((RX−Y )T (RX−Y )) = tr((RX)T (RX))+tr((Y )T (Y ))−tr((RX−Y )TY )−tr(Y T (RX))
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= ‖X‖2F + ‖Y ‖2F − 2tr(Y TRX)

‖RX − Y ‖2F = ‖X‖2F + ‖Y ‖2F − 2tr(Y TRX)

then, the orthogonal procrustes problem is equivalent to

max tr(Y TRX), subject to RTR = In

where tr(Y TRX) = tr(XY TR).

Let UΣV T =XY T be a singular value decomposition. Then, we define the consensus

matrix Z ∈ R
mxn where Z = V TRU and we obtain

tr(XY TR) = tr(ΣV TRU)

where V TRU are embedded in Z therefore,

= tr(ΣZ)

=
n∑
i=1

σizi,i

Because V TRU has orthonormal columns, the upper bound of max tr(Y TRX) is

given by having V TRU = Im,n (identity consensus matrix zi,i = 1). Therefore, the

solution of the orthogonal procrustes problem is R = V Im,nU
T

Procrustes Analysis removes the effects of level, range and interpretation from

each individual point cloud by applying 3 transformations: translation to common

mean, isotropic scaling (stretch or shrink) and rotation/reflection.
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Then, the set of transformations of the rigid object can be represented by

sxiR+jtT = yi where j = 1 is 1xn unit vector. The optimization problem of finding

R, t, and s that minimized the fitting error is often called Extended Orthogonal

Procrustes Analysis.

We cast our matching/registration problem as a Weighted Extended Orthog-

onal Procrustes Analysis (WEOPA).

min
sRt
‖sXR + jtT − Y ‖2F subject to RTR = I3, det(R) = 1

where ‖.‖F is the Frobenious matrix norm. By using matrix-trace we have the

following formulation:

min
sRt

tr(sXR + jtT − Y )T (sXR + jtT − Y ) subject to RTR = I3, det(R) = 1

By introducing the Lagrangian function, we have

E = tr((sXR + jtT − Y )T (sXR + jtT − Y )) + tr(L(RTR− I3))

E = tr(Y TY ) + s2tr(RTXTXR) + jT jtT t− 2str(Y TXR)

−2tr(Y T jtT ) + 2str(RTXT jtT ) + tr(L(RTR− I3))
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Finding the derivatives respect to the transformations:

∂E

∂R
= 2s2XTXR− 2sXTY + 2sXT jtT +R(L+ LT )

∂E

∂t
= 2jT jt− 2Y T j + 2sRTXT j

∂E

∂s
= 2str(RTXTXR)− 2tr(Y TXR) + 2tr(RTXT jtT )

Assume that the point clouds are dominated by noise. Then by constructing a

diagonal matrix W, we can give these point clouds a low weight as (sXR+jtT−Y )W .

W then can also be decomposed in two weights Wn and W3.

‖sXR + jtT − Y ‖2F = tr(sXR + jtT − Y )TWn(sXR + jtT − Y )W3,

subject to RTR = I3, det(R) = 1

A direct solution can be computed if W3 = I, otherwise there is not direct solution

to the two view problem. An Iterative optimization algorithm is given in Algorithm

7 [184] to compute a solution to the above equation. Moreover, a WEOPA can have

several minima, which leads to the problem of deciding if a computed solution is the

“best” one. Hence a solution, computed by some iterative method, is not necessarily

a global optimum.
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Algorithm 7 Weighted Extended Orthogonal Procrustes Analysis Algorithm.
Input:

X = {x1, x2, . . . , xn} (point cloud reference)
Y = {y1, y2, . . . , ym}

Output:
R =∈ R

3x3 (Rotation)
t ∈ R

3; (translation)
s =∈ R; (scale)

Procedure WEOPA Fitting(X,Y )→ (R, t, s)

Compute initial transformation values R0, T0, s0;
k = 0, Δ = 10−9, Δk = Δ+ 1;
while Δk > Δ do

if (JT J +H) is positive definite then
Compute a Newton search direction;

else
Compute a Gauss-Newton search direction;

end if
Update R, t and s
k = k + 1
Update Δ

end while
Return R, t, s

Where the Gauss-Newton search direction is given by

sGN = −J+(sXR + jtT − Y )

the search direction corresponding to Newton method is

sN = −(JTJ +H)−1(JT (sXR + jtT − Y ))

and the Δ update is given by

Δk+1 =
‖JT (sXR + jtT − Y )‖2
‖J‖2‖(sXR + jtT − Y )‖2

The algorithm depends of a good R0, t0, s0 initialization, therefore the al-

149



gorithm is not stable. In order to solve the stability problem, a heuristic method

was designed [184]. We called the heuristic Iterative-WEOPA. The heuristic uses a

random initialization of R0, t0, s0, combined with the WEOPA fitting algorithm, to

compute and store additional minimums. When no new minimum is found, after 150

random R0, t0, s0 initialization have been used, the algorithm is terminated. Later

the total number of minimums are used in order to draw conclusions. Moreover,

Algorithm 8 Weighted Extended Orthogonal Procrustes Analysis Algorithm.
Procedure I-WEOPA HEURISTIC Search of minima (X,Y )→ (R, t, s)

Compute initial transformation values R, T , s;
k = 0;
while k < number of iterations do

R0 = Random orthogonal matrix with RTR = I and det(R) = 1;
t0 = Random translation vector;
s0 = Random scale unit;
R̂, t̂, ŝ := Computed minimum with R0, t0, s0 as initial values for the WEOPA Fitting
algorithm.
if R̂, t̂, ŝ is a new minimum then

Store R̂, t̂, ŝ;
k = 0;

end if
k = k + 1

end while
Return R, t, s

experimentation showed that in most of the cases the algorithm found the minimum

in less than 35 initialization parameters.

5.4.2.2 Results

We have created a 3D printed jet engine replica. The jet engine is composed by

eleven assembly parts but we have selected five representative parts(Fig. 5.12) that

afford different recognition complexities to illustrate various challenges encountered

during an assembly task.
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Figure 5.12: 3D printed jet engine replica with representative assembly parts af-
fording different recognition complexities: (a) Rear Bearing (b) Exhaust Turbine (c)
Third Compressor (d) Second Compressor (e) First Compressor.

The scenario shown in Fig. 5.14 represents a case where the human operator

is tasked with picking Part 1 through 5 in sequence. The parts are out of the robot

workspace. A non-prerecorded initial configuration represents a complex task for the

robot because of the difficulty of detecting random part poses. Therefore, human

pick the parts one at the time following the assembly plan Fig. 5.14.

Because of this, and in order to track the changes in the scene, the first step is

to perform segmentation on the point cloud in order to retrieve all assembly parts.

In this case we performed a plane segmentation to find any table in the scene, and
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Figure 5.13: The state-state discrete monitoring system has two control points: (a)
Initial location: Parts are located out of the robot workspace in a random configu-
ration. Human pic the parts one by one. (b) Intermediate location: Human place
the parts at the robot workspace in an specific configuration. (c) Robot successfully
picking up the part from the assembly table and perform the task.

consider only clusters sitting on it. Later, we removed all clusters that are too small

or too big in order to reduce the number of cluster and therefore the noise in the

scene.

After human places the part, the part is now ready to be picked by the robot.

Uncertainties related to pose estimation are reduced to a small variations in the

final location. That is, any attempt by the robot to pick up the part results in a

successful grasping (Fig. 5.13(c)).
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(a) Scene scanned

(b) Assemply parts detected and segmented from the background

Figure 5.14: Parts are in a predefined initial location but their poses are random.
Human solve the pose estimation problem in an intuitive manner.
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(a) Exhaust Turbine vs Cluster 1
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(b) Part Fitting error

Figure 5.15: 1-N part alignment and registration for part recognition. Exhaust
Turbine is compared against Cluster 1 extracted from the scene.

154



(a) Exhaust Turbine vs Cluster 2
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(b) Part Fitting error

Figure 5.16: 1-N part alignment and registration for part recognition. Exhaust
Turbine is compared against Cluster2 extracted from the scene.
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(a) Exhaust Turbine vs Cluster 3
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(b) Part Fitting error

Figure 5.17: 1-N part alignment and registration for part recognition. Exhaust
Turbine is compared against Cluster 3 extracted from the scene.
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(a) Exhaust Turbine vs Cluster 4

0 50 100 150
0

1

2

3

4

5

6
Mean Square Error

(b) Part Fitting error

Figure 5.18: 1-N part alignment and registration for part recognition. Exhaust
Turbine is compared against Cluster 4 extracted from the scene.
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(a) Exhaust Turbine vs Cluster 5
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(b) Part Fitting error

Figure 5.19: 1-N part alignment and registration for part recognition. Exhaust
Turbine is compared against Cluster 5 extracted from the scene. Cluster 5 is recog-
nized as a Exhaust Turbine

Regardless the control point, the algorithm use the point cloud generated from
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the 3D CAD model as a target and compare this target against the N point clouds

or clusters extracted from the scanned scene. This approach allow the system to

evaluate the alignment error for each assembly part detected under the assumption

that the minimum error belongs to the matching cluster. (Fig. 5.15, 5.16, 5.17, 5.18

and 5.19)

Figure 5.20: Error analysis: Exhaust Turbine is selected as a target Assemply part
and then compared against all the extracted clusters.

Once this 1 to N analysis is over as shown in Fig. 5.20 the system identify

the cluster that represents the best matching cluster and therefore the cluster now

is recognized. In Fig. 5.20 the target point cloud is Exhaust Turbine and after the

analysis the best matching cluster is Cluster 5. Therefore Cluster 5 now is identify

as an Exhaust Turbine .

Experimentation showed that our Iterative−WEOPA algorithm successfully

detected the corresponding point cloud matching between point clouds obtained

from scanning and point clouds generated from 3D CAD models. Clusters identifi-

cation and scene labeling provide to the system an accurate tracking mechanism to
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detect changes in the scene and report such a changes.

The matching results in the first control point (Initial location) are illustrated

in Fig. 5.21, Fig. 5.22 and Fig. 5.23.

(a) First Compressor: CAD model

(b) Point Cloud

(c) Alignment and detection

Figure 5.21: 3D CAD models for each assembly part are provided to the system.
These CAD models are used to generate a point cloud targets. Then, several point
clouds are extracted (clustering) from the 3D scence descriving a single part extrac-
tion. Fig. (a) shows the CAD model. Fig. (b) shows the conversion from CAD to
point clouds using ray-tracing algorithm. Fig. (c) shows the assembly part detection
as a correspondence of the reference point cloud and the state-point cloud.
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(a) Second Compressor: CAD model

(b) Point Cloud

(c) Alignment and detection

Figure 5.22: 3D CAD models for each assembly part are provided to the system.
These CAD models are used to generate a point cloud targets. Then, several point
clouds are extracted (clustering) from the 3D scence descriving a single part extrac-
tion. Fig. (a) shows the CAD model. Fig. (b) shows the conversion from CAD to
point clouds using ray-tracing algorithm. Fig. (c) shows the assembly part detection
as a correspondence of the reference point cloud and the state-point cloud.
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(a) Third Compressor: CAD model

(b) Point Cloud

(c) Alignment and detection

Figure 5.23: 3D CAD models for each assembly part are provided to the system.
These CAD models are used to generate a point cloud targets. Then, several point
clouds are extracted (clustering) from the 3D scence descriving a single part extrac-
tion. Fig. (a) shows the CAD model. Fig. (b) shows the conversion from CAD to
point clouds using ray-tracing algorithm. Fig. (c) shows the assembly part detection
as a correspondence of the reference point cloud and the state-point cloud.

Moreover, we compared the results with the classical ICP algorithm. The

proposed algorithm, perform better in both scenarios and for every part (Fig. 5.24,
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5.25 and 5.26). In some cases ICP showed a degenerative behavior. In order to

evaluate and compare performance of our approach, a residual error was computed

at each step. The residual was computed as the mean square distance between the

points of the current mesh and the model mesh and their closest point.
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(a) Rear Bearing
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(b) First Compressor

Figure 5.24: Residual errors at each step of the algorithm for each assembly part.
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(a) Second Compressor
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(b) Third Compressor

Figure 5.25: Residual errors at each step of the algorithm for each assembly part.
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(a) Exhaust Turbine

Figure 5.26: Residual errors at each step of the algorithm for each assembly part.

In order to define the number of steps required for the algorithm to converge,

we analyzed 3D rotations, translations and scale changes in each step ( Fig. 5.27,

5.28, 5.29, 5.30 and 5.31). After 100 steps very small changes were observed in terms

of rotation, translation and scale. Therefore, we set 150 as a fix number of cycles for

this specific experiment. More iterations do not have any impact in the numerical

solutions but it start having an impact in the processing time.
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(a) Rotations
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(b) Translations
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(c) Scale convergence

Figure 5.27: Transformations for Rear Bearing. Fig. (a) show rotations in (roll,
pitch and yaw). Fig. (b) show translations in x, y and z. Fig. (c) shows scale
transformations.
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(a) Rotations
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(b) Translations
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Figure 5.28: Transformations for First Compressor. Fig. (a) show rotations in
(roll, pitch and yaw). Fig. (b) show translations in x, y and z. Fig. (c) shows
scale transformations.
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(a) Rotations
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(b) Translations
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Figure 5.29: Transformations for Second Compressor. Fig. (a) show rotations in
(roll, pitch and yaw). Fig. (b) show translations in x, y and z. Fig. (c) shows
scale transformations.
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(a) Rotations
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(b) Translations
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Figure 5.30: Transformations for Third Compressor. Fig. (a) show rotations in
(roll, pitch and yaw). Fig. (b) show translations in x, y and z. Fig. (c) shows
scale transformations.
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(b) Translations
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Figure 5.31: Transformations for Exhaust Turbine. Fig. (a) show rotations in
(roll, pitch and yaw). Fig. (b) show translations in x, y and z. Fig. (c) shows
scale transformations.
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3D point clouds are defined as a rigid body. Therefore, rotation, translation

and scaling transformation do not deform the point clouds. This allows the algo-

rithm to use scaling as a compensatory transformation between a noisy point cloud

and the point cloud generated by the CAD model. In addition, scaling transforma-

tion evaluated at step one is used also as a termination flag. This is valid under the

assumption that if scaling transformation is above an specific threshold (Fig. 5.32)

then, there is a high probability that the scanned part is actually different than the

CAD model used for the query.

(a) Second Compressor
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(b) Large Compressor

Figure 5.32: Scale convergence analysis. (a) Scanned part with no scale variations.
(b) Scanned part is larger than the CAD model

Finally, we observed some convergence irregularities in some particular cases.

This random behavior was observed in ICP algorithm as well as in Iterative −

WEOPA algorithm and it is due to the complexity of the 3D model that it’s repre-

sented by the number of points, faces and face orientations. A random behavior in

the algorithm runs the risk of ending the process in a local minima. It was included

a roll-back stability analysis in order to detect these special cases.
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5.4.2.3 Algorithm Characterization

In previous section we analyzed the performance of the Iterative−WEOPA algo-

rithm. We also experimentally demonstrate the error non-convergence to zero when

a part is matched against a completely different part.

A complex problem in computer vision is detecting and identifying a part in

a subset of parts that are similar. In order to test the robustness of our model, we

analyzed more exhaustively five parts that are geometrically similar.

(a) Centroid 1-1 (b) Centroid 1-2 (c) Centroid 1-3

(d) Matching 1-1 (e) Matching 1-2 (f) Matching 1-3

Figure 5.33: First Compressor generated from a 3D CAD model is compared agaist
Cluster 2 (First Compressor) Cluster 3 (Second Compressor) and Cluster 4 (Third
Compressor).
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(a) MSE
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(b) Zoomed Image

Figure 5.34: First Compressor identified in a subset of similar parts. Where Clus-
ter 1 (Rear Bearing), Cluster 2 (First Compressor) Cluster 3 (Second Compressor)
and Cluster 4 (Third Compressor) and Cluster 5 (Exhaust Turbine)
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Due to the intrinsic noise and resolution of the sensor the generated point cloud

has many irregularities that eventually can affect the precision of the algorithm. Fig.

5.34, Fig. 5.36 and Fig. 5.38 show the mean square error on point correspondence

between five parts, where three of them have a lot of similarities between each other.

Despite these irregularities, the algorithm was able to identify the correct part in

all the experiments (Fig. 5.33, Fig. 5.35 and Fig. 5.37).

(a) Centroid 2-1 (b) Centroid 2-2 (c) Centroid 2-3

(d) Matching 2-1 (e) Matching 2-2 (f) Matching 2-3

Figure 5.35: Second Compressor generated from a 3D CAD model is compared
agaist Cluster 2 (First Compressor) Cluster 3 (Second Compressor) and Cluster 4
(Third Compressor).
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(a) MSE
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(b) Zoomed Image

Figure 5.36: Second Compressor identified in a subset of similar parts. Where
Cluster 1 (Rear Bearing), Cluster 2 (First Compressor) Cluster 3 (Second Com-
pressor) and Cluster 4 (Third Compressor) and Cluster 5 (Exhaust Turbine)
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Any mean square error on point correspondence bellow 0.09 can be considered

as a true positive. Fig. 5.34, Fig. 5.36 and Fig. 5.38 show that the MSE of the

three considered most similar parts are bellow the threshold. In order to reduce the

uncertainty, our algorithm uses a local comparison between parts that belong to an

specific assembly. This step helps to sort the error and find the minimum of the

MSE on point correspondence and, therefore, identify the part.

(a) Centroid 3-1 (b) Centroid 3-2 (c) Centroid 3-3

(d) Matching 3-1 (e) Matching 3-2 (f) Matching 3-3

Figure 5.37: Third Compressor generated from a 3D CAD model is compared
agaist Cluster 2 (First Compressor) Cluster 3 (Second Compressor) and Cluster 4
(Third Compressor).
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(b) Zoomed Image

Figure 5.38: Third Compressor identified in a subset of similar parts. Where Clus-
ter 1 (Rear Bearing), Cluster 2 (First Compressor) Cluster 3 (Second Compressor)
and Cluster 4 (Third Compressor) and Cluster 5 (Exhaust Turbine)
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(a) Matching 5-5 (b) Matching 5-4

Figure 5.39: Exhaust Turbine identified in a subset of similar parts. Exhaust
Turbine generated from a 3D CAD model is compared agaist Cluster 5 (Exhaust
Turbine) and Cluster 1 (Rear Bearing)

Similar behavior was observed between Exhaust Turbine and Rear Bearing

parts (Fig. 5.39, Fig. 5.40, Fig. 5.41 and Fig. 5.42). Features or geometries

presented in the Rear Bearing part were reproduced in the point cloud after scanning

but most of the features from the Exhaust Turbine where lost due to the size of the

geometries and the resolution of the sensor.

Finally, the empirical assumption was that by extracting a more dense point

cloud or by increasing the number of steps in the algorithm the part recognition

algorithm was going to improve its performance. Experimental results showed that

there was no visible improvement in the point correspondence error. However, while

almost non-improvement was observe in the matching process, the processing time

increased exponentially. (Fig. 5.43)
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Figure 5.40: Exhaust Turbine comparison against assembly parts with similar ge-
ometry

5.4.3 Robot Tracking

We assume that the robot will be able to execute motion commands given to it so

that the assembly cell will know the state of the robot.

5.5 Contingency Handling

5.5.1 Collision Avoidance Between Robot and Human

Ensuring safety in the hybrid cell via appropriate control of the robot motion is

related to traditional robot collision avoidance. However, interaction scenarios in

shared work cells differ from classical settings significantly. For instance, we cannot

ensure safety always, if the robot reacts to a sensed imminent collision by moving
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(a) Matching 4-4 (b) Matching 4-5

Figure 5.41: Rear Bearing identified in a subset of similar parts. Rear Bearing
generated from a 3D CAD model is compared agaist Cluster 1 (Rear Bearing) and
Cluster 5 (Exhaust Turbine)
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Figure 5.42: Rear Bearing comparison against assembly parts with similar geom-
etry
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Figure 5.43: Performance characterization. Region close to the intersection be-
tween Processing Time and MSE, and bellow the threshold represents the “sweet
spot”
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along alternative paths. This is primarily due to the randomness of human motion,

which is difficult to estimate in advance, and the dynamics of the robot implementing

such a collision avoidance strategy. Also, these methods increase the computational

burden as collision-free paths must be computed in real-time. Velocity-scaling [171]

can be used to overcome these issues by operating the robot in a tri-modal state:

the robot is in a clear (normal operation) state when the human is far away from

it. When the distance between them is below a user specified threshold, the robot

changes into a slow (same path, but reduced speed) state. When the distance is

below a second threshold (whose value is lesser than that of the first threshold), the

robot changes to a pause (stop) state.

Our approach to ensuring safety in the hybrid cell is based on the pre-collision

strategy developed in [25]: robot’s pauses to move whenever an imminent collision

between the human and the robot is detected. This is a simpler bi-modal strategy, in

which the robot directly changes from clear to pause when the estimated distance is

below a threshold. This stop-go safety approach conforms to the recommendations

of the ISO standard 10218 [172, 173].

In order to monitor the human-robot separation, the human model generated

by the tracking system (described in the previous section) is augmented by fitting

all pairs of neighboring joints with spheres that move as a function of the human’s

movements in real-time. A roll-out strategy is used, in which the robot’s trajectory

into the near future is pre-computed to create a temporal set of robot’s postures for

the next few seconds. Now, we verify if any of the postures in this set collides with

one of the spheres of the augmented human model. The method is implemented in
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Table 5.1: Exploration structure for Jet Engine assembly

Level Assembly parts
10 Cover.
9 Exhaust Turbine.
8 Rear Bearing.
7 Shell.
6 Rear Shaft.
5 Second Compressor.
4 Front Shaft - First Com-

pressor.
3 Shroud.
2 Main Fan.
1 Front Shroud Safety.

a virtual simulation engine developed based on Tundra software.

5.5.2 Replanning and Warning Generation

In this module, we focus on ensuring that the assembly process is progressing as

per plan. If a deviation from the plan is detected, the system will automatically

generate plans to handle the contingency. We present a proposal for the design of

a contingency handling architecture for hybrid assembly cell that has the ability

to inexpensively re-plan its sequence in real-time. This design permits a human

operator to introduce adjustments or improvements into the assembly sequence in

real-time with little delays to the assembly cell output. In order to illustrate our

approach, we consider a five part assembly is shown in (Fig. 5.5(a)) along with its

preliminary assembly plan and the configuration of the assembly cell (Fig. 1.4(b)).

From the disassembly layers (Table 5.1) generated from the CAD model of

the jet engine assembly, we can extract the following assembly sequence: (1) Front
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Figure 5.44: Assembly cell configuration (Human operator picks and places parts
and robot assembles the parts.

Shroud Safety, (2) Main Fan, (3) Shroud, (4) Front Shaft, (5) First Compressor,

(6)Second Compressor, (7) Rear Shaft, (8) Shell, (9) Rear Bearing, (10) Exhaust

Turbine and (11) Cover. This assembly sequence also defines the plans for the

human and the motion planning for the robot.

The following list represents some key elements for the assembly cell state

monitoring and contingency planning system.

HRC requires that robots recognize the activity of human operator to maintain

synchronization during assembly sequence execution: A reactive property

is required to recognize the assembly part during operation, synchronize the

assembly task, and later modify the assembly sequence based on the evaluation
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of the changes (i.e. human picks up the assembly part, the system recognizes

the part and shares the information with the robot to synchronize the assembly

operations).

Detecting error in position and orientation of assembly components: An effec-

tive collaboration between humans and robots to perform assembly operations

requires that if the human does not not present the part at the right position

(e.g., outside of the workspace of the robot) or orientation then these errors

need to be detected to prevent further errors in the process.

Real-time re-planning: Human operator can introduce modification in the original

assembly plan. The assembly plan has to adapt to the changes. This property

guaranties the efficient collaboration between human operators and robots.

Some of the changes made by the humans will be helpful while others might

be simply an error. We will perform real-time re-planning to accommodate

deviations from the original plan of they appear to be feasible.

Initially we can describe a scene where the human operator follows the system

generated assembly plan with no-errors or requested adjustments. Figure 5.45 shows

the complete process of the assembly operation.

An initial assembly plan is generated before the operations begin in the hy-

brid assembly cell. The plan generates the sequence for the human pick and place

operations and the motion plan for the robot assembly operations. A full integra-

tion among the assembly plan, human tracking system, and the robot significantly

reduces the probability of error introduced by the robot in the cell. We will ignore
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Figure 5.45: Assembly operations: (a) Human picks up the part. (b) In order to
allow synchronization, the system recognizes the part. (c) Human moves the part to
the intermediate location. (d) Human places the part in the intermediate location.

those errors in this work. This configuration leaves the human operator as the only

agent with the capacity to introduce errors in the assembly cell. We define devia-

tions in the assembly cell as a modification to the predefined plan. Based on our

preliminary work, these modifications can be classified into three main categories:

i Deviations that leads to process errors

ii Deviations that leads to improvements in the assembly speed or output quality

iii Deviation that leads to adjustment in the assembly sequence

Next, we describe the above described deviations in more details.
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Figure 5.46: (a) Human picks a part (Compressor); appropriate text annotations
are generated as a feedback to the human. (b) Part selected is different from the
assembly sequence; after a real-time evaluation, the system doesn’t accept the modi-
fication in the assembly plan. (c) Human return the part to location 1. (d) Human
picks a part (Exhaust Turbine), after real-time evaluation the part is accepted. (e)
Human places the part into the robot’s workspace. (f) The robot motion planning is
executed for the Exhaust Turbine. If the assembly plan is modified (replanning), the
robot uses the altered motion plan to pick the part and place it in its target position
in the assembly.
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Figure 5.47: (a) Human picks the Front Shaft part. (b-c) Human places the part
in a wrong location. The system detects an inconsistency in the part location and
shows a warning message. (d) Human places the part in the correct location. (e-f)
Robot picks the Front Shaft part and places it in its target position in the assembly.
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5.5.2.1 Deviations that lead to process errors

Deviations that lead to process errors are modifications introduced by the human

operator that cannot generate a feasible assembly plan. These errors can generate

an error in the assembly cell in a way that will require costly recovery.

In order to prevent this type of errors, the system has to detect the presence

of this modification by the registration of the assembly parts. Once the system has

the information about the selected assembly part, it evaluates the error in real-time

by propagating the modification in the assembly plan and giving a multi-modal

feedback (e.g., text, visual and audible annotations).

We have hand coded several examples to illustrate the deviation described

above. Following the assembly plan in our example and after placing the Rear-

Bearing, the next part to be assembled is ‘Exhaust Turbine’.

Rather than following the assembly sequence, the human operator can decide

to use a different sequence. For example, the human picks the ‘Compressor’ part

instead of ‘Exhaust Turbine’ as shown in Fig. 5.46(a). In order to find a feasible

plan, the new assembly sequence with ‘Compressor’ as a second step is evaluated

in real-time. Using the exploration matrix the system determines that there is no

possibility to find a feasible assembly sequence following this step. Therefore, the

system raises an alarm and generates appropriate feedback using text annotations.

This forces the human operator to rely on the predefined assembly sequence.
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5.5.2.2 Deviations that leads to improvement

Every single modification to the master assembly plan is detected and evaluated in

real-time. The initial assembly plan is one of the many feasible plans that can be

found. A modification in the assembly plan that generates another valid feasible

plan classifies as an improvement. These modifications are accepted and give the

ability and authority to the human operators to use their experience in order to

produce better plans. This process helps the system to evolve and adapt quickly

using the contributions made by the human agent. Following the assembly sequence,

the next part to be assembled is ‘Front Shaft’.

The human operator decides based on his/her previous experience that placing

the ‘First Compressor’ next will improve the performance of the assembly process.

The part ‘First Compressor’ is selected and the step is evaluated in real-time. The

system discovers that the changes made in the predefined assembly sequence can also

generate a feasible assembly sequence. Therefore the step is accepted and human is

prompted to continue with the assembly operation. The updated assembly sequence

becomes:

Feasible assembly sequence : (1) Front Shroud Safety, (2) Main Fan, (3)

Shroud, (4) First Compressor, (5) Front Shaft, (6) Second Compressor, (7) Rear

Shaft, (8) Shell, (9) Rear Bearing, (10) Exhaust Turbine and (11) Cover.

The most important feature of the framework is that the hybrid assembly cell

not only accepts the modification in the assembly sequence, but also adapts its

configuration in order to complete the assembly process.
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Using the new assembly sequence the system recomputed the robot motion

planning in real-time to perform the assembly tasks. Hence, the robot knows the

new pose of the expected part.

5.5.2.3 Deviations that leads to adjustment

Adjustments in the assembly process may occur when the assembly cell can easily

recover from the error introduced by the human by requesting additional interaction

in order to fix it. Assuming that the human operator is following the predefined

assembly sequence, the next assembly part to be assembled is ‘Front Shaft’ (Fig.

5.47(a)). The system recognizes the assembly part and validates the step. Therefore

the part can be moved and placed in the intermediate location.

Another common mistake in assembly part placement is the wrong pose (ro-

tational and translational transformation that diverges from the required pose) as

shown in Fig. 5.47(b−c). Two strategies can be found to solve this issue: a) robot

recognizes the new pose and recomputes its motion plan in order to complete the

assembly of the part or b) human is informed by the system about the mistake and

is prompted to correct it. This work follows the latter strategy.

The system verifies the poses of the assembly parts in the intermediate location

in real-time and forces the human operator to place the part in the right location

in order to resume the assembly process. Once the assembly part is located in the

right position and orientation (Fig. 5.47(d)), the assembly process resumes (Fig.

5.47(e)−5.47(f)).
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5.6 Summary

This chapter introduces a novel approach for an automated monitoring of the entire

assembly cell that supports safe and efficient human-robot collaboration during as-

sembly operations. The real-time human tracking, human-robot collision detection,

and part state monitoring allow the detection of deviations from plans instanta-

neously and trigger the re-planning to handle these contingencies in order to min-

imize disruptions on the assembly cell operations. While the assembly operations

are performed by human and robot, the system send constantly feedback to the

human operator about the performed tasks. This constant feedback in the form

of 3D animations, text and audio help to reduce the training time and eliminating

the possibility of assembly errors. Moreover, the discrete part monitoring allow the

Assembly cell detect and identify the assembly part in at least one of the control

points.
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Chapter 6

Conclusions

This chapter presents the intellectual contributions and anticipated benefits from

the work reported in this dissertation.

6.1 Intellectual Contributions

The research work described in previous chapters broadly aims toward building

development of algorithms to support realization of hybrid assembly cells. The

main expected contributions from the reported dissertation are the following:

6.1.1 Automated planning for hybrid assembly cell operation

This dissertation introduces a new motion planning and part interaction clusters-

based assembly sequence planning approach to improve the generation of feasible

assembly sequences for non-deformable parts. This new planning approach uses ge-

ometric and kinematic constraints in generate assembly plans. The generation of

multiple clusters and the improved motion planning technique helps the algorithm

manage assemblies consisting of a large and diverse number of parts as well as ad-

dress the complexity of the assembly due to complex motions needed to perform the

assembly operations. The framework generates feasible assembly sequences directly

from 3D assembly models. The algorithm guarantees the generation of at least one
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feasible assembly plan if a valid assembly sequence exists.

6.1.2 Monitoring the state of the human operator in the assembly

cell to ensure safe operation

This dissertation demonstrates an automated approach for human-robot real-time

monitoring in assembly an assembly cell. The sensor integration and the real-time

extended world enable the development of an HRC system that can be utilized

to prevent collisions between humans and robots when they work together in an

assembly cell. The system gives the robot estimated human state. This can be be

used to prevent collision between human and robot. The contributions of the HRC

framework are the following:

� An N-Kinect human tracking framework that generates a 3D model of human’s

movements in real-time.

� Full assembly cell workspace monitoring and tracking coverage by fusing the

information from multiple sensors,

� A roll-out pre-collision strategy that allows the system to compute future

positions of the robot to evaluate possible human collision.

� A low cost human motion tracking system with sufficient accuracy (approxi-

mately 2 cm) to enable hybrid assembly cells.

� A design that does not require the assembly cell human operator to wear any

special suit or additional device.
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6.1.3 Monitoring the state of the assembly cell and contingency plan-

ning

This dissertation introduces a novel design approach of a framework for hybrid cells

that support safe and efficient human-robot collaboration during assembly opera-

tions. The dissertation presents concrete physical experiments to show how safety

can be ensured in the cell, how error-free operation can be achieved in the cell, and

how the robot can re-plan in response to unpredictable human behaviors and modify

its motion according to new plans. Our framework can be extended to hybrid cells

that support collaboration among multiple humans and robots. A simple chassis

assembly was used in the experiments. Our approach can be easily extended to

more complex assemblies.

Additionally, this dissertation presents a design framework to automatically

generate multimodal instructions for complex assembly operations performed by hu-

mans. The generated instructions are easy-to-follow, which thereby reduces learning

time and eliminates the possibility of assembly errors. The system’s ability to auto-

matically translate assembly plans into instructions enables a significant reduction

in the time taken to generate instructions and update them in response to design

changes. In the current design of animations, parts move by themselves from initial

to final postures. As the animation generation is grounded in motion planning, this

issue can be addressed by incorporating human models, with increasingly complex

degrees of freedom, into the framework. This results in more realistic animations

that utilize a human model to show how to lift and move the parts/tools during
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assembly.

6.2 Anticipated Benefits

This dissertation addresses the key issues of automated planning, human state mon-

itoring for safety, and contingency planning to enable hybrid assembly cell opera-

tions. As discussed in chapters 1 and 2 small and medium size manufacturing

(SMM) companies need low cost and flexible automation technologies to allow them

to be cost competitive and responsive to frequent product changes and low volume

production.

Low-cost hybrid assembly cells that allow production schedule compression

and assembly cell production flexibility in small and medium size manufacturing

operations will contribute to the global competitiveness of manufacturing companies

in high-wage countries. Short-volume production and batch production are expected

to benefit from the work reported in this dissertation.

6.3 Future Work

This dissertation focused on one-human one-robot cells. Many real-world complex

assemblies will require collaboration among multiple people and robots. This will

require the planning process to generate plans that will include tasks that can be

performed concurrently. This will require an analysis of task independence and de-

pendencies. The presence of multiple agents in the cells will also pose new challenges

for system state monitoring and ensuring safety.
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Tasks investigated in this dissertation did not require physical collaboration

between humans and robots. Some tasks may require physical collaboration between

humans and robots. In such cases, the plan will need to account for force and motion

interactions between humans and robots. This will require modeling the capabilities

of hybrid agents using them in planning.

In this dissertation, we developed an assembly planning algorithm that does

not account for the human safety during the generation of the assembly sequence.

The planning algorithm can be extended to explicitly consider safety considerations.
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Appendix A

Test-bed Overview

In order to validate the formulations and methodologies reported in this dissertation,

a test-bed system comprising a robotic arm, multiple sensors, tracking system and

a 3D virtual reality system were developed for this work. This appendix presents

the system’s architecture, the robot setup, the sensors’ setup and the overall com-

munications system architecture.

Figure A.1: Virtual environment architecture

An open source game engine is used as a 3D platform to translate the real

environment into a very structured virtual environment. Additional systems were

developed to obtain full functionality (fig. A.1).
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A.1 Robotic System

The system was tested with the Lab-Volt Model 5150 robotic manipulator and with

a KUKA collaborative robot. The Lab-Volt Model 5150 is a typical laboratory

scale robot with a payload of 1kg that performs assembly operations. The KUKA

collaborative robotic manipulator is a robot designed to work in close proximity to

humans in a collaborative environments.

The Lab-Volt Robot is designed with a tool-tip and five step-motor actuators

that allow it five degrees of freedom. The Robot can use its joints simultaneously

to perform a pre-programmed move sequence.

A.2 Robot motion Planning

In order to compute the sequences of motion of the robotic arm, the systems use a

STL based scene representation of the original setup to find a collision-free-path and

set of motion configurations from the initial configuration to the final configuration

A.2, A.4.

Figure A.2: Experimental Setup
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The framework represents the assembly parts via STL format to generated the

assembly sequence (fig. A.2)

Figure A.3: STL representation of the assembly parts

Figure A.4: STL based experimental Setup

A.3 Safety in Human Robot Collaboration in Assembly Operations

A complete 3D representation of the hybrid assembly cell environment permits the

system to predict any possible collision between humans and robots (fig. A.6). The

position of the robot during the assembly sequence is known by the system given

that the robot motion plan is pre-computed before the real-time HRC start. The

motion plan controls the action of the robot while the tracking system monitors

and computes the position of the human in real-time. Visual and auditory feedback
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about the relative position of the robot and the human operator is provided to

the operator by the system during the assembly sequence. This feedback allows

the operator ongoing situational awareness of the assembly cell environment (fig.

A.5). Additionally, the system is designed to automatically stop the robot when an

imminent collision is predicted. After such stops the system will not permit robot

motion to resume until it detects that the human operator is located in a safe place.

Figure A.5: Safety architecture for Human Robot Collaboration in Assembly Ap-
plications

Figure A.6: 3D virtual representation of the assembly cell
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A.4 Communication architecture

The system’s data processing takes place in four separate computers each connected

as a client with the Kinects sensors. These computers send UDP packages with

a frequency of 30Hz to a server that processes all the data. The communication

architecture is shown in fig. A.7. All the on-line fusion processing is executed on

the server. It was necessary to separate the sensing acquisition and processing onto

multiple PCs in order to guaranty real-time execution and overcome the Kinect

SDK’s limitation with processing more than one skeleton per computer.

Figure A.7: Communication architecture used to integrate the human model data
from multiple kinect sensors.

203



Bibliography

[1] Nortel, “Assembly of telecommunication equipments,” in Available:

http://www.nortel-us.com/category/news-releases/, 2010.

[2] P. Test, “Welding process,” in Available: http://www.primetest.com/robotic-

systems.html, 2009.

[3] Esson, “New robotic standards to improve safety and productivity,” in

ANSI/RIA R15.06-2012 standard references ISO 10218-1, 2013.

[4] K. Mitobe, T. Kaiga, T. Yukawa, and Y. N, “Development of a motion capture

system for a hand using a magnetic three dimensional position sensor,” in

ACM SIGGRAPH 2006, 2006.

[5] S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”

in Technical Report TR 98–11, Computer Science Dept., Iowa State Univer-

sity, 1998.

[6] J. Kuffner and S. LaValle, “Rrt-connect: An ecient approach to single-query

path planning,” in IEEE International Conference on Robotics and Automa-

tion, 2000, pp. 995–1001.

[7] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress and

prospects,” in Algorithmic and Computational Robotics: New Directions, 2012,

pp. 293–308.

204



[8] S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and S. K. Gupta, “An

industrial robotic knowledge representation for kit building applications,” in

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Oct 2012, pp. 1365–1370.

[9] A. G. Banerjee, A. Barnes, K. N. Kaipa, J. Liu, S. Shriyam, N. Shah, and

S. K. Gupta, “An ontology to enable optimized task partitioning in human-

robot collaboration for warehouse kitting operations,” in Proc. SPIE, Next-

Generation Robotics II; and Machine Intelligence and Bio-inspired Computa-

tion: Theory and Applications IX, 94940H, 2015.

[10] K. N. Kaipa, S. S. Thevendria-Karthic, S. Shriyam, A. M. Kabir, J. D. Langs-

feld, and S. K. Gupta, “Resolving automated perception system failures in

bin-picking tasks using assistance from remote human operators.” in Proc.

of IEEE International Conference on Automation Science and Engineering,

August 2015.

[11] K. N. Kaipa, S. Shriyam, N. B. Kumbla, and S. K. Gupta, “Automated plan

generation for robotic singulation from mixed bins,” in IROS Workshop on

Task Planning for Intelligent Robots in Service and Manufacturing, 2015.

[12] K. N. Kaipa, N. B. Kumbla, and S. K. Gupta, “Characterizing performance

of sensorless fine positioning moves in the presence of grasping position uncer-

tainty,” in IROS Workshop on Task Planning for Intelligent Robots in Service

and Manufacturing, 2015.

205



[13] K. N. Kaipa, A. S. Kankanhalli-Nagendra, and S. K. Gupta, “Toward estimat-

ing task execution confidence for robotic bin-picking applications,” in AAAI

Fall Symposium: Self-Confidence in Autonomous Systems, 2015.

[14] K. N. Kaipa, S. Shriyam, N. B. Kumbla, and G. S. K., “Resolving occlusions

through simple extraction motions in robotic bin-picking,” in ASMEs 11th

Manufacturing Science and Engineering Conference, June 2016.

[15] V. Shivashankar, K. N. Kaipa, D. S. Nau, and S. K. Gupta, “Towards integrat-

ing hierarchical goal networks and motion planners to support planning for

human robot collaboration in assembly cells,” in 2014 AAAI Fall Symposium

Series, 2014.

[16] J. D. Langsfeld, A. M. Kabir, K. N. Kaipa, and S. K. Gupta, “Online learn-

ing of part deformation models in robotic cleaning of compliant objects,” in

ASMEs 11th Manufacturing Science and Engineering Conference, June 2016.

[17] A. M. Kabir, J. D. Langsfeld, C. Zhuang, K. N. Kaipa, and S. K. Gupta, “Au-

tomated learning of operation parameters for robotic cleaning by mechanical

scrubbing,” in ASMEs 11th Manufacturing Science and Engineering Confer-

ence, June 2016.

[18] S. Lee, B. Choi, and R. Suare, “Frontiers of assembly and manufacturing:

Selected papers from isam-09,” in Springer, 2009.

[19] L. Curry and R. Feldman, “Manufacturing systems modeling and analysis,”

in Springer-Verlag, 2009.

206



[20] Baxter. (2010) Rethink robotics. [Online]. Available:

http://www.rethinkrobotics.com/products/baxter/

[21] Kuka. (2010) Kuka lbr iv. [Online]. Available:

http://www.kukalabs.com/en/medical robotics/lightweight robotics/

[22] ABB. (2013) Abb friendly robot for industrial dual arm frida. [Online].

Available: http://www.new.abb.com/products/robotics/yumi

[23] C. Morato, K. Kaipa, and S. K. Gupta, “Assembly sequence planning by using

multiple random trees based motion planning,” in ASME 2012 International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference. American Society of Mechanical Engineers, 2012,

pp. 1461–1471.

[24] C. Morato, K. N. Kaipa, and S. K. Gupta, “Improving assembly precedence

constraint generation by utilizing motion planning and part interaction

clusters,” Comput. Aided Des., vol. 45, no. 11, pp. 1349–1364, Nov. 2013.

[Online]. Available: http://dx.doi.org/10.1016/j.cad.2013.06.005

[25] C. Morato, K. Kaipa, B. Zhao, and S. K. Gupta, “Safe human robot interaction

by using exteroceptive sensing based human modeling,” in ASME Computers

and Information in Engineering Conference, Portland, OR, August, 2013.

[26] C. Morato, K. N. Kaipa, B. Zhao, and S. K. Gupta, “Toward safe human

robot collaboration by using multiple kinects based real-time human tracking,”

207



Journal of Computing and Information Science in Engineering, vol. 14, no. 1,

p. 011006, 2014.

[27] K. Kaipa, C. Morato, B. Zhao, and S. K. Gupta, “Instruction generation

for assembly operations performed by humans,” in ASME 2012 International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference. American Society of Mechanical Engineers, 2012,

pp. 1121–1130.

[28] K. N. Kaipa, C. Morato, J. Liu, and S. K. Gupta, “Human-robot collaboration

for bin-picking tasks to support low-volume assemblies,” in Human-Robot Col-

laboration for Industrial Manufacturing Workshop, held at Robotics: Science

and Systems Conference (RSS 2014), 2014.

[29] C. Morato, K. Kaipa, J. Liu, and S. Gupta, “A framework for hybrid cells that

support safe and efficient human-robot collaboration in assembly operations,”

in ASME Computers and Information Engineering Conference, 2014.

[30] T. De Fazio and D. Whitney, “Simplified generation of all mechanical assembly

sequences,” in IEEE Transactions on Robotics and Automation, no. 3, 1987,

pp. 640–658.

[31] L. Homem De Mello and A. Sanderson, “A correct and complete algorithm

for the generation of mechanical assembly sequences,” in IEEE Transactions

on Robotics and Automation, no. 7, 1991, pp. 228–240.

208



[32] R. Hoffman, “A common sense approach to assembly sequence planning,” in

Computer Aided Mechanical Assembly Planning. Boston, MA, USA: Kluwer

Academic, 1991, pp. 289–314.

[33] S. Krishnan and A. Sanderson, “Path planning algorithms for assembly se-

quence planning,” in International Symposium on Intelligent Robotics, 1991,

pp. 428–439.

[34] S. Lee and Y. Shin, “Assembly planning based on geometric reasoning,” in

Proceedings of Computers and Graphics, vol. 14, no. 2, 1990, pp. 237–250.

[35] R. H. Wilson, “On geometric assembly planning,” Ph.D. dissertation, stanford

university, 1992.

[36] W. Zhang, T. Freiheit, and H. Yang, “Dynamic scheduling in fexible assembly

system based on timed petri nets model,” in Robot. Comput.-Integr. Manuf.,

vol. 21, no. 6, 2005, pp. 550–558.

[37] Q. Su, “Applying case based reasoning in assembly sequence planning,” In-

ternational Journal of Production Research, vol. 45, no. 1, pp. 29–47, 2007.

[38] ——, “A hierarchical approach on assembly sequence planning and optimal

sequences analyzing,” Robot Comput-Integration Manufacturing, vol. 1, no. 25,

pp. 224–234, 2009.

[39] W. Chen, Y. Hsu, L. Hsieh, and P. Tai, “A systematic optimization approach

for assembly sequence planning using taguchi method, doe, and bpnn,” Experts

Systems with Applications, vol. 1, no. 37, pp. 716–726, 2010.

209



[40] L. Kavraki, J. Latombe, and R. Wilson, “On the complexity of assembly

partitioning,” in Information Processing Letters, no. 48, 1993, pp. 229–235.

[41] L. Kavraki and M. Kolountzakis, “Partitioning a planar assembly into two

connected parts is np-complete,” in Information Processing Letters, vol. 3,

no. 55, 1995, pp. 159–165.

[42] R. Wilson, L. Kavraki, J. Latombe, and T. Lozano-Perez, “Two-handed as-

sembly sequencing,” International Journal of Robotics Research, vol. 4, no. 14,

pp. 335–350, 1996.

[43] M. Goldwasser, J. Latombe, and R. Motwani, “Complexity measures for as-

sembly sequences,” in IEEE International Conference on Robotics and Au-

tomation, 1996, pp. 1851–1857.

[44] D. Baldwin, T. Abell, T. De Fazio, and D. Whitney, “An integrated computer

aid for generating and evaluating assembly sequences for mechanical prod-

ucts,” in IEEE Transactions on Robotics and Automation, no. 7, 2012, pp.

78–94.

[45] A. Lambert, “Optimal disassembly of complex products,” International Jour-

nal of Production Research, vol. 9, no. 35, pp. 2509–2523, 1997.

[46] ——, “Linear programming in disassembly/clustering sequence generation,”

in Computers and Industrial Engineering, no. 36, 1999, pp. 723–738.

[47] ——, “Determining optimum disassembly sequences in electronic equipment,”

Computers and Industrial Engineering, no. 43, pp. 553–575, 2002.

210



[48] ——, “Exact methods in optimum disassembly sequence search for problems

subject to sequence dependent costs,” Omega - Reverse production systems,

vol. 34, no. 6, pp. 538–549, 2006.

[49] A. Bourjault, “Contribution a une approche methodologique de lassemblage

automatise: Elaboration automatique des sequences operatoires,” in PhD the-

sis, Universite de Franche-Compte, 1984.

[50] R. H. Wilson and J.-C. Latombe, “Geometric reasoning

about mechanical assembly,” Artificial Intelligence, vol. 71,

no. 2, pp. 371 – 396, 1994. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0004370294900485

[51] J. Dong and G. Arndt, “A review of current research on disassembly sequence

generation and computer aided design for disassembly,” in Mechanical Engi-

neering Part B Eng Manuf 217, 2003.

[52] X. Niu, H. Ding, and X. Y, “A hierarchical approach to generating precedence

graph for assembly planning,” in International Journal of Machine Tools and

Manufacturing, 2003.

[53] I. Aguinaga, D. Borro, and L. Matey, “Parallel rrt-based path planning for se-

lective disassembly planning,” International Journal of Advanced Manufacture

Technology, no. 36, pp. 1221–1233, 2008.

211



[54] S. K. Gupta, W. C. Regli, D. Das, and D. S. Nau, “Automated manufactura-

bility analysis: A survey,” Research in Engineering Design, vol. 9, no. 3, pp.

168–190, 1997. [Online]. Available: http://dx.doi.org/10.1007/BF01596601

[55] X. Zha, S. Lim, and S. Fok, “Integrated intelligent design and assembly

planning: A survey,” The International Journal of Advanced Manufacturing

Technology, vol. 14, no. 9, pp. 664–685, 1998. [Online]. Available:

http://dx.doi.org/10.1007/BF01192287

[56] B. OShea, S. Grewal, and H. Kaebernick, “State of the art literature survey

on disassembly planning,” in Concurrent Engineering: Research and Applica-

tions, 1998, pp. 345–380.

[57] A. Lambert, “Disassembly sequencing: A survey,” International Journal Pro-

duction Research, vol. 16, no. 41, pp. 3721–3759, 2003.

[58] P. Jimenez, “Survey on assembly sequencing: A combinatorial and geometrical

perspective,” Journal of Intelligent Manufacturing, no. 23, 2011.

[59] T. C. Woo and D. Dutta, “Automatic disassembly and total ordering in three

dimensions,” Journal of Manufacturing Science and Engineering, vol. 113,

no. 2, pp. 207–213, 1991.

[60] H. Srinivasan and R. Gadh, “A geometric algorithm for single selective dis-

assembly using the wave propagation abstraction,” omputer Aided Design,

vol. 8, no. 30, pp. 603–613, 1998.

212



[61] S. Chen, J. Oliver, S. Chou, and C. L, “Parallel disassembly by onion peeling,”

in Journal of Mechanical Design, 1997.

[62] A. Selva, R. Castro, and V. Frias, “Design of disassembly sequences using

search strategies. application of ida in state diagrams,” International Journal

of Production Research, no. 49, pp. 3395–3403, 2010.

[63] R. Chen, K. Lu, and S. Yu, “A hybrid genetic algorithm approach on multi-

objective of assembly planning problem,” in Engineering Applications of Ar-

tificial Intelligence, vol. 5, no. 15, 2002, pp. 447–457.

[64] B. Romney, C. Godard, M. Goldwasser, and G. Ramkumar, “An efficient

system for geometric assembly sequence generation and evaluation,” in ASME

International Computers in Engineering Conference, 1995, pp. 699–712.

[65] S. Chen, “Assembly planning–a genetic approach,” in ASME Proceedings of

Design Engineering Technical Conferences,DAC-5798, 1999.

[66] P. Iacob R, Mitrouchev and L. J, “Assembly simulation incorporating compo-

nent mobility modeling based on functional surfaces,” International Journal

Interactive Design Manufacturing, pp. 119–132, 2012.

[67] X. Yuan, “An interactive approach of assembly planning,” in IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A: Systems and Humans,

2002.

213



[68] S. Chen and Y. Liu, “A multi-level genetic assembly planner,” in ASME Pro-

ceedings of Design Engineering Technical Conferences, Baltimore, MD, DAC-

14246. Marcel Dekker Press, 2000.

[69] P. De Lit, P. Latinne, B. Rekiek, and A. Delchambre, “Assembly planning with

an ordering genetic algorithm,” International Journal of Production Research,

vol. 39, no. 16, pp. 3623–3640, 2001.

[70] Q. Guan, J. Liu, and Y. Zhong, “A concurrent hierarchical evolution approach

to assembly process planning,” International Journal of Production Research,

vol. 40, no. 14, pp. 3357–3374, 2002.

[71] W. Hui, X. Dong, and D. Guanghong, “A genetic algorithm for

product disassembly sequence planning,” Neurocomputing, vol. 71, no.

1315, pp. 2720 – 2726, 2008, artificial Neural Networks (ICANN 2006)

/ Engineering of Intelligent Systems (ICEIS 2006). [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S092523120800235X

[72] H. Tseng, W. Wang, and H. Shih, “Using memetic algorithms with guided

local search to solve assembly sequence planning,” in Expert Systems with

Applications, 2007.
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