
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Detection and Prevention of MAC Layer Misbehavior for Ad
Hoc Networks

by Alvaro A. Cardenas, Svetlana Radosavac, John S. Baras

SEIL TR 2004-4
(ISR TR 2004-30)

Alvaro A. C árdenas, Svetlana Radosavac and John S. Baras
Electrical and Computer Engineering Department

and the Institute for Systems Research
University of Maryland College Park

acardena,,svetlana,baras@isr.umd.edu
Revised

November 19, 2004

Abstract

Selfish behavior at the MAC layer can have devastating side effects on
the performance of wireless networks, similar to the effects of DoS attacks.
In this paper we focus on the prevention and detection of the manipulation
of the backoff mechanism by selfish nodes in 802.11. We first propose an
algorithm to ensure honest backoffs when at least one, either the receiver or
the sender is honest. Then we discuss detection algorithms to deal with the
problem of colluding selfish nodes. Although we have focused on the MAC
layer of 802.11, our approach is general and can serve as a guideline for the
design of any probabilistic distributed MAC protocol.

1 Introduction

The communication protocols of different layers of an ad hoc network such as
the medium access control (MAC) protocol, the routing protocol and the transport
protocol, were designed under the assumption that all nodes would obey the given
specifications. However when these protocols are implemented in an untrusted
environment, nodes can deviate from the protocol specification in order to obtain
a given goal, at the expense of honest participants. A selfish user can disobey the
rules to access the wireless channel in order to obtain a higher throughput than the
other nodes. A selfish user can also change the congestion avoidance parameters of
TCP in order to obtain unfair advantage over the rest of the nodes in the network.
In limited power devices, certain nodes might refuse to forward packets in behalf
of other sources in order to save battery power. In all these cases, the misbehaving
nodes will degrade the performance of the network from the point of view of the
honest participants. To fully address these problems, a layered security mechanism
should be deployed in order to enforce cooperation or to penalize misbehaving
nodes. In this paper we focus on the prevention and detection of unfairness and
collision of packets, caused by selfish users at the MAC layer in ad hoc networks.

The MAC layer in a communication network manages a multiaccess link (e.g. a
wireless link) so that frames can be sent by each node without constant interference
from other nodes. A fairly used MAC protocol for wireless networks is the IEEE

802.11 MAC protocol, which uses a distributed contention resolution mechanism
for sharing the wireless channel. Its design tries to ensure a relatively fair access
to the medium for all participants of the protocol. In order to avoid collisions,
the nodes follow a binary exponential backoff scheme that favors the last winner
amongst the contending nodes. One problem with the 802.11’s MAC protocol is
that even when all contending nodes are well behaved, this mechanism can lead to
short time unfairness under the capture effect: nodes that are heavily loaded tend
to capture the channel by continuously transmitting data making lightly loaded
neighbors to backoff continuously. Very similar effects are obtained when one of
the contending nodes is selfish.

MAC layer misbehavior is possible in network access cards that run the MAC
protocol in software rather than hardware or firmware, allowing a selfish user or
attacker to easily change MAC layer parameters. Even network interface cards im-
plementing most MAC layer functions in hardware and firmware usually provide
an expanded set of functionalities which can be exploited to circumvent the lim-
itations imposed by the firmware [2]. In the worst case scenario a vendor might
create NIC cards violating the MAC protocol to create an improved performance
of its products.

A selfish node in the MAC layer will try to maximize its own throughput and
therefore will keep the channel busy. As a side effect of this behavior, regular
nodes cannot use the channel for transmission, which leads to a denial of service
(DoS) attack [9]. A selfish user can implement a whole range of strategies to
maximize its access to the medium. The most likely strategy that a selfish user will
employ is to use different schemes for manipulating the rules of the MAC layer.
In 802.11, the attacker can manipulate the size of the Network Allocation Vector
(NAV) and assign large idle time periods to its neighbors, it can decrease the size
of Interframe Spaces (both SIFS and DIFS), it can select small backoff values, it
can deauthenticate neighboring nodes etc. A successful detection scheme should
take into account all possible cheating options in the MAC layer and detect both:
users that employ only one scheme and users that employ a combination of several
schemes (e.g. first choosing small backoff values, then assigning large NAV values
to its neighbors etc).

One of the most challenging detection tasks is that of detecting backoff manip-
ulation [13, 2]. Due to the randomness introduced in the choice of the backoff, it is
difficult to detect when a node has chosen small backoff values by chance or not. In
this work we focus on prevention and detection of the manipulation of the backoff
mechanism of 802.11’s MAC protocol, although our approach can be extended to
any probabilistic distributed MAC protocol.

The organization of this paper is the following. The next section summarizes
related work. Section 3 presents an introduction to the MAC protocol 802.11 DCF.

In section 4 we present an algorithm that prevents cheating in the backoff stage
of 802.11 DCF for non-colluding nodes. In Section 5 we present algorithms for
detecting misbehavior of colluding nodes. In the last section we discuss future
research directions and conclude the paper.

2 Related Work

Selfish misbehavior at the MAC layer has been addressed mostly from a game
theoretic perspective considering all nodes are selfish. The goal in a game theoretic
setting is to design distributed protocols that guarantee for each node, the existence,
uniqueness and convergence to a Nash equilibrium with an acceptable throughput.
As we have previously pointed out, if users try to maximize their throughput, every
node will attempt to transmit continuously in such way that users will deny access
to any other node and the network would collapse. This network collapse due to
aggressive selfish behavior is a Nash equilibrium. In order to obtain a different
Nash equilibrium, each node needs to be assigned a cost for each time it accesses
the channel. For example in [12, 1], they consider the case of selfish users in Aloha
that attempt to maximize their throughput and minimize the cost for accessing the
channel (e.g. energy consumption). Another game theoretic scheme for CSMA/CA
schemes is presented in [6]. It shows how a Nash equilibrium is achieved among
selfish users when the cost for accessing the channel repeatedly is being jammed
by another node. A node jams anonymously any other node that achieves higher
throughput than the average of everyone else (assuming nodes always have data to
transmit, the throughput of every node should be fair). They assume all nodes are
within wireless range in order to avoid the hidden terminal problem, so this scheme
is mostly intended for wireless LANs.

Since game theoretic protocols assume all nodes are selfish (the worst case
scenario), the throughput achieved in these protocols is substantially less than in
protocols where the honest majority cooperates. Under the assumption of an honest
majority, detection of misbehaving nodes becomes the primary goal in dealing with
misbehavior.

Several possible schemes of node misbehavior in 802.11 for achieving a higher
throughput are presented in [13]. The detection of such misbehavior is achieved
through a system called DOMINO. However, their detection scheme for backoff
manipulation is a suboptimal detection technique for every strategy of the greedy
user. In section 5 we propose new detection schemes for the backoff manipulation
that we believe will improve the performance of systems such as DOMINO.

Kyasanur and Vaidya [11] propose a modification to 802.11 for facilitating the
detection of misbehaving nodes. In their scheme, the receiver (a trusted host -e.g.

base station-) assigns the backoff value to be used by the sender, so the former
can detect any misbehavior of the latter and penalize it by increasing the backoff
values for the next transmission. The protocol consists of Detection, Penalty and
Diagnosis Schemes. The sender is considered to be deviating from the protocol
if the observed number of idle slots,Bact, is smaller than a specified fractionα
of the assigned backoffBexp. For a detected node, a penalty for the next assigned
backoff is selected given a measure of the deviationD = max(αBexp−Bact,0). If
the sender deviates repeatedly, i.e. if the sum of misbehavior in a sliding window
is bigger than some threshold, then the sender is labeled as misbehaving and the
receiver takes drastic measures, e.g. drop all packets by the sender.

The problem of applying this protocol for ad hoc networks is that the receiver
might not be trusted. In section 4 we extend the idea of [11] by presenting an
algorithm that ensures a honest backoff selection among the sender and a receiver
as long as one of the participants does not misbehave.

All the schemes presented above as well as the ones we propose, require the
proper use of MAC layer authentication schemes, providing uniquely verifiable
identities in order to prevent impersonation and Sybil attacks [8].

We also assume that there is a reputation management system similar to CON-
FIDANT [5, 4], where nodes can monitor and distribute reputation values about
other nodes behavior at the MAC layer (CONFIDANT however focuses in reputa-
tion at the routing layer). The design of a robust MAC layer reputation system and
response is essential and one of our main topics of future work.

3 IEEE 802.11 DCF

The distributed coordinating function (DCF) of 802.11 specifies the use of CSMA/CA
to reduce packet collisions in the network. A node with a packet to transmit picks
a random backoff valueb chosen uniformly from the set{0,1, . . . ,CW−1} (CW
is the contention window size), and transmits after waiting forb idle slots. Nodes
exchange request to send (RTS) and clear to send (CTS) packets to reserve the
channel before transmission. Both the RTS and the CTS contain the proposed
duration of data transmission: the duration field indicates the amount of time (in
microseconds) after the end of the present frame that the channel will be utilized
to complete the successful transmission of the data or management frame. Other
hosts which overhear either the RTS or the CTS are required to adjust their net-
work allocation vector (NAV), which indicates for how long should the node defer
transmissions on the channel, including the SIFS interval and the acknowledgment
frame following the transmitted data frame. If a transmission is unsuccessful (by
the lack of CTS or the ACK for the data sent), theCW value is doubled. If the

DATA

DATA

DIFS

SIFS SIFS SIFS

DIFS

SIFS SIFS SIFS

DIFS

ACK ACK

NAV(RTS)

CTS

RTS

NAV(RTS)A

B

C

RTS

CTS

Figure 1: Nodes A and C contend for accessing node B. The first time A reserves
the channel, and in the second time C accesses the channel.

transmission is successful the host resets itsCW to a minimum valueCWmin.
Fig. 1 shows an example of contending nodes using the protocol.
Typical parameter values for the MAC protocol depend on the physical layer

that 802.11 uses. For example table 1 shows the parameters used when the physical
layer is using direct sequence spread spectrum (DSSS).

DIFS 50µs
SIFS 10µs

SlotTime 20µs
ACK 112bits+PHYheader=203µs
RTS 160bits+PHYheader=207µs
CTS 112bits+PHYheader=203µs

DATA MAC header (30b)+DATA(0-2312b)+FCS(4b)
Timeouts 300-350µs

CWmin 32 time slots
CWmax 1024 time slots

Table 1: Parameters for DSSS

4 ERA-802.11: Ensuring Randomness for 802.11

As we have discussed before [11] requires the receiver to be trusted. This assump-
tion is well suited for infrastructure-based wireless networks, where the base sta-
tion can be trusted. However, in the case of ad hoc networks the receiver can misbe-
have by selectively assigning the backoff values to different senders. Depending on
the concrete situation, a receiver may benefit by assigning small backoff values to
a particular sender (when data from that particular sender needs to be received) or
by assigning large backoff values to different neighbors (when it wants to degrade
overall performance of neighbors and improve its own throughput). Furthermore,
existence of multiple sender-receiver pairs in the interference range of each other

B

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
����� �����

�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

C

A

D

Figure 2: Node C transmits to A and node B wants to transmit to D. After hearing
the backoff assigned by A to C, node D assigns a backoff to node B such that it
collides with C.

creates additional security issues. More specifically, a malicious receiverD in Fig.
2 can overhear the backoff value assigned to nodeA by nodeC and unilaterally
select a backoff for nodeB in order to create a collision withC.

In this section we propose an extension to the 802.11 CSMA/CA protocol that
ensures a uniformly distributed random backoff, when at least one of the parties is
honest. The basic idea follows the protocol for flipping coins over the telephone
by Blum [3]. The goal is that the sender and the receiver agree through a public
discussion on a random value. The main property of the protocol is that an honest
party will always be sure that the agreed value is truly random. For an honest
sender this means that he can expect a fair treatment in order to access the channel.
On the other hand an honest receiver can monitor the behavior of the sender and
report a misbehaving node to the reputation management system.

To detect sender deviation from the agreed backoff, the detection algorithm
given in [11] can be used.

It is also mentioned in [11] how to handle the detection during packet retrans-
missions, i.e. when the sender collides and has to choose by itself another backoff
value from the set{0,1, . . . ,(CWmin+1)2i−1−1} (wherei is the number of retrans-
missions). Recall thatCW keeps increasing until it reachesCWmax. Another way
to deal with packet retransmissions is to change our protocol such that instead of
agreeing on a given backoff, the sender and the receiver would agree on a seed for
a pseudorandom generator. In this way a receiver would know the future backoffs,
even in the case of retransmissions. Another advantage for the sender and the re-
ceiver to agree on a seed value is that they do not need to execute our protocol for
every reservation of the channel.

The protocol we propose can be embedded in 802.11 and used every time a
new reservation of the channel takes place. The messages are appended (denoted
by a double bar||) to the normal message exchange of 802.11:

S R

n←{0,1}knonce
RTS||n

−−−−−−−−−−−−−−−→ r ←{0, . . . ,CWmin−1}
CTS||σ

←−−−−−−−−−−−−−−− σ = Commit(r||n)

r ′←{0, . . . ,CWmin−1}
DATA||r ′

−−−−−−−−−−−−−−−→ σ′ = Open
ACK||σ′

←−−−−−−−−−−−−−−−
Commit(r||n) ?= σ
bi = r i⊕ r ′i bi = r i⊕ r ′i
for i ∈ {1, . . . ,m} for i ∈ {1, . . . ,m}

We now explain the protocol step by step.

1. In the first step the senderSselects a nonce: a numbern selected uniformly
from the set{0,1, . . . ,2knonce}, denoted asn← {0,1}knonce. knonce is a secu-
rity parameter indicating the level of difficulty of guessingn. For example
knonce= can be 64. This step is optional and is done in order to prevent an
offline attack on the commitment scheme.

2. In the second step the receiverR selects a random backoffr from the set
{0,1, . . . ,CWmin− 1} and commits to it. In binary notationr is a random
bit string of lengthm (r = r1r2 · · · rm), wherem= log2CWmin (note that the
contention window sizeCW is always a power of two). The commitment
schemeCommit is such that the following two properties are satisfied (at
least before the time-out for channel reservation:300µs−350µs):

Binding: After sendingCommit(r||n), the receiver cannot open the com-
mitment to a different valuẽr 6= r (except with negligible probability).
This protects against a dishonestR that might try to change the com-
mitted value depending on ther ′ received byS.

Hiding: GivenCommit(r||n), Scannot extract any information aboutr that
will enable it to distinguishr from any other bit string of lengthm
(except with negligible probability). This protects against a dishonest
S that will try to tailor r ′ based on its guess ofr.

3. After receiving the Commitmentσ, Sselects a random valuer ′ = r ′1r ′2 · · · r ′m
from {0,1, . . . ,CWmin−1}.

4. Finally R opens its commitment toS. Opening a commitment is an opera-
tion that reveals the committed valuer and some additional information toS.
This enables the other party to verify that the revealed and committed values
are the same. If the value opened by theR is correct, both sender and re-
ceiver compute the backoffb = b1b2 · · ·bm as the xor of the bits:bi = r i⊕ r ′i .
Otherwise, the sender can report misbehavior of the node to the reputation
management system.

Several commitment schemes are known under very different computational as-
sumptions. Very efficient commitment schemes in terms of computation and com-
munication, can be implemented under the random oracle model. In this setting
it is a standard practice to assume that hash functionsH such as SHA-1 or MD5
are random oracles. Under this assumption it is easy to confirm that the following
commitment scheme satisfies the binding (by assumingH is collision resistant) and
hiding properties (by assumingH is a random oracle):

Commit(r||n)
i ←{0,1}k

Output = H(i||r||n)

Open

Output = (i, r)

wherek is a security parameter (e.g.k = 64, since it is not considered feasible to
search for264 messages given the current state of art). To open the commitment,R
has to send bothr andi so thatScan check validity of the commitment.

We now consider 802.11 with Direct Sequence Spread Spectrum (DSSS) phys-
ical layer. In DSSS mode the minimum contention window size is 32 time slots,
thereforem= log2CWmin = 5, that is,r ′ andr are only 5 bits long which is an in-
significant quantity to be appended to aDATAframe. The acknowledgement frame
is appendedk+m= 69bits.

If we use SHA-1 to implement the hash function of the commitment then we
obtain a message digest of 160 bits. TheCTSframe is doubled in size if the full
message digest is used. If doubling the size of aCTS frame is a concern, the
output of SHA-1 can always be truncated (for example to 80 bits). The security
reduction of the message digest has to be evaluated under the birthday paradox: if
the message digest hash bits, then it would take only about2h/2 messages (out of
2k+m+knonce), chosen at random, before one would find two (inputs) with the same
value (message digest). Considering the normal timeout between frames to be
300µs, we can safely assume240 computations cannot be done in this time. Finally
the nonce parameter should discourage offline attacks, e.g.knonce= 64.

M

���
���
���
���

���
���
���
���

���
���
���
���

BA C

D

RTS

CTS

���
���
���
���

Figure 3: Nodes M and D collude and interfere in the communication path of nodes
B and C

Note that in the case the sender and receiver agree on a seed for a pseudoran-
dom number generator the parametersk andknonce can be avoided if the seed is
long enough.

5 Detection System

The algorithm presented in Section 4 is not resistant to colluding nodes. When
sender and receiver collude by selecting their backoff a priori, they can deny ac-
cess to the network to neighboring nodes. For example, consider Fig. 3 and assume
C is within wireless range of nodesD andM (it is a reasonable assumption that in
wireless networks there will always be nodes that are neighbors of both colluding
nodes:D andM). Without loss of generality, assumeC monitors the access times
of nodeM. Note thatC can compute the exact backoff value of its neighboring
nodes by listening to the exchanged valuesn,σ, r ′,σ′ (betweenM andD) and then
computing the backoffbi = r i ⊕ r ′i . If the sender deviates from this backoff then
nodeC can detect a misbehaving sender in the same way a honestD would detect a
misbehavior ofM. However, if nodesD andM collude, they can select their num-
bers a priori. For example they can collude to present a valid message agreement
on the backoff zero to nodeC by selecting the following values:

M D

n←{0,1}knonce
RTS||n

−−−−−−−−−−−−−−−→
CTS||σ

←−−−−−−−−−−−−−−− σ = Commit(00000||n)
DATA||00000

−−−−−−−−−−−−−−−→ σ′ = Open(σ)
ACK||σ′

←−−−−−−−−−−−−−−−
b = 00000 b = 00000

residual backoff time elapsed backoff time

RTS RTS

CTS

DATADATA DATARTS

CTS

DIFS

SIFS SIFS SIFS

DIFS

SIFS SIFS SIFS

DIFS

SIFS SIFS

DIFS

DIFS DIFS

DIFS
free

free

NAV(RTS) NAV(RTS)

NAV(RTS)NAV(RTS)

CTS_TO CTS_TO

RTS

NAV(RTS)

NAV(RTS)

ACK ACK
D

B

C

A

M

RTS

CTS

Figure 4: Nodes M and D collude and select a very small backoff, thereby denying
access to node A by causing CTS timeouts.

In Fig. 4 we show how the sequence of small backoffs0,1,2, . . . from node
M causes theCTStimer of nodeA to time out. NodeA will therefore repeatedly
backoff exponentially, decreasing its chances for accessing the network. This set-
ting was simulated in the network simulator Opnet such that the colluding nodes
transmit with no backoff in a time period. Fig. 5 shows how nodeA is denied
network access while colluding nodes communicate.

Having motivated the need to detect colluding MAC layer misbehavior in ad
hoc networks, we now focus on a misbehavior detection mechanism. More specif-
ically, we are interested in designing algorithms for detection of random backoff
violations. Although our emphasis is on ad hoc networks, the same algorithms
can be applied for monitoring greedy behavior at WLAN access points using the
original 802.11 protocol (802.11 without modifications introduced in the previous
section).

5.1 Test for backoff manipulation

We now consider detection strategies in the presence of an intelligent misbehaving
node, i.e. a node that is aware of the existence of monitoring neighboring nodes
and will adapt its behavior in order to avoid detection. In general, we assume that
the colluding nodes are:

1. knowledgeable: they know everything a monitoring node knows about the
detection scheme.

2. intelligent: they can make inferences about the situation in the same way as
the monitoring nodes can.

Figure 5: Simulation of traffic sent by node M (top figure) versus traffic sent by
node B (top figure). When D and M collude A is denied access to the network.

The goal of this class of nodes is to avoid the probability of misbehavior detection
(PD) while maximizing their own throughput.

However, it is difficult to come up with a universal strategy that the misbe-
having nodes will use for achieving this goal. A naive intrusion detection system
(IDS) may assume that the misbehaving nodes will select all their backoff values
to be very small. Therefore a model the IDS can assume for the attack is that the
misbehaving nodes select their backoff uniformly from the set{0,1, . . . ,CWmin/4}.
Given this model the IDS would raise an alarm when any of the monitored nodes
do not backoff an amount larger thanCWmin/4, afterK observations (whereK is
chosen given an acceptable false alarm rate). However, an intelligent misbehav-
ing node will easily defeat our detection mechanism by selecting a backoff of zero
K−1 times and selecting a value aboveCWmin/4 as theKth backoff.

As we mentioned before, another way we can use this protocol is to commit to
a seed for a pseudorandom number generator.

5.1.1 Tests for change in the mean

The first intuitive assumption to make about the strategy of the colluding nodes
is that it will let one of them access the channel in a way that the mean access
should decrease from the minimal mean backoffBmin := (CWmin− 1)/2, i.e. on
average the selfish node will attempt to access the channel more frequently than
any other contending node. In order to also penalize nodes that do not double
their contention window every time they collide, we could test for a decrease from

a nominal backoffBnom (whereBnom≥ Bmin) representing our long term average
backoff. Note that each monitoring node has to estimateBnomonline. The selection
of testing either a decrease inBmin or Bnomwill depend on the risk assessment of the
threat provided by the misbehaving nodes. Without loss of generality and in order
to be conservative with our detection mechanism we select to test for deviations
from Bmin.

Let Xi denote theith backoff time for a given monitored node. After measuring
n backoff times for nodeM, we end up with the sequenceX1, · · · ,Xn. We assume
the IDS makes a decision aftern observations. Using this sequence of data, in
DOMINO [13] a detection mechanism is proposed for testing a deviation from the
reference backoff. The algorithm first computes an averageXac = ∑n

i=1Xi/n, of the
observations taken over a given unit of time (e.g. 10s). After that, the averaged
value is compared to the reference backoff :

Xac < γBmin

the parameterγ (0< γ < 1) controls the rate for false alarms. An optional parameter
Cheatcountwill only flag a false alarm after the statisticXac has exceededγBmin, K
times (i.e. ifCheatcount= K). A forgetting factor is considered for the cheat count,
so if a node behaves normally for a given observation period, it is partially forgiven:
Cheatcount= Cheatcount−1 (As long asCheatcount remains greater than zero).
The authors tested the detection scheme against a misbehaving node whose strat-
egy was to select backoff values uniformly from the set{0,1, . . . ,bCWmin×δc},
whereδ (0≤ δ ≤ 1) represents the amount of misbehavior (δ = 0 meaning that
the station transmits without backoff andδ = 1 meaning no misbehavior). The
results show that when the misbehaving node increases its throughput three times
more the normal value, then the detection mechanism will always catch him while
maintaining a false alarm rate below 0.1.

In an earlier version of this paper [7] we gave an adversarial strategy such
that the misbehaving node does not follow the normal backoff window and is not
detected by DOMINO. However the problem is that our previous strategy does
not increase the throughput from the misbehaving node significantly. However, a
misbehaving node in 802.11 (or a pair of colluding nodes in ERA-802.11) can still
avoid detection and achieve access to the channel more than half of the contending
trials by selecting the following backoff scheme: Select a zero backoff for the first
(K−1)n times (this exploits the fact that an alarm is never raised until the mean
statistic has exceededγBmin, K times). After that the optimal strategy to avoid the
detection mechanism is to alternate between acting normally(K−1)n times (e.g.
select the backoffγBmin during that period) and acting selfishly (select a backoff of
zero for the next(K−1)n times).

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Run Number

P
FA

DOMINO
Wilcoxon
 Mean of Both Statistics

Figure 6: Several runs of DOMINO and Wilcoxon tests for an honest node in
saturation condition give a mean false alarm rate of 0.06 for both tests

This strategy will ensure that an alarm is never raised for the misbehaving
nodes, while still providing access to the channel more than half of the times re-
gardless of the number of contending nodes. Although this problem can be al-
leviated by instructing the monitoring node to start collecting statistics for every
node at a random time (so the adversary cannot determine the start of each moni-
toring period), we believe the detection strategy is still heuristic. There are several
nonparametric tests with provably optimal performance guarantees and analyti-
cal expressions for the probabilities of false alarms and probability of detection.
Several nonparametric tests measure how “shifted” in theX axis is the alternative
distribution (the attack strategy) from the normal distribution (which is assumed
to be symmetric at zero). If we define the independent and identically distributed
(i.i.d.) random process:Y1, ...,Yn by: Yi = Bmin−Xi we can use a Sign Test (a test
for the median) or a Wilcoxon Test (a test for when the alternate distribution is not
symmetric at zero) [10].

To compare the resilience of the detection statistics against the strategy of a
misbehaving node shifting between one period of zero backoffs and another period
behaving normally (selecting a backoff ofγBmin in order to appear normal) we
simulated a scenario with only one transmitter under saturation condition, and a
receiver. We first simulated an honest user in order to obtain the false alarm rate.
For DOMINO we selected the same parameters as in [13]:γ = 0.9 andK = 3.
We then tuned the threshold of the Wilcoxon test in order to obtain the same false
alarm rate as DOMINO (Fig. 6).

On the second part of the simulation we implemented a misbehaving node
shifting between one observation period acting normal and one observation pe-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Fraction of overlap

P
D

DOMINO
Wilcoxon

Figure 7: Probability of Detection versus the percentage of timing difference be-
tween the misbehaving node timing and the detection strategy

riod transmitting with zero backoffs. In Fig. 7 we plot the detection probability
for the two tests versus the overlap between the timing of the monitoring node and
the misbehaving node. For example a zero timing difference means the misbehav-
ing node and the monitoring node start at the same time each period. In this case
the selfish node would obtain the whole channel throughput during the zero back-
off period while avoiding detection by DOMINO. However when the misbehaving
node misses by twenty percent the timing interval, DOMINO is able to detect it,
because the cheat count will increase in both periods, reaching the valueK. A tim-
ing difference of one hundred percent means that the misbehaving node will again
start his misbehavior at the beginning of a monitoring period for the monitoring
node.

Although this scenario shows how standard nonparametric statistics are more
resilient to intelligent strategies, in practice we believe that the fact that the adver-
sary does not know the timing periods of DOMINO will be enough to deter him
from misbehaving. On the other hand, another important question is the number
of false alarms generated. One of the major problems with intrusion detection sys-
tems is the large number of false alarms, and with our selected parameters, six
percent of false alarms might be too large a number to use in practice.

In the following section we take the first steps towards analyzing the false alarm
rate produced by detection systems such as DOMINO.

6 Detection algorithm analysis

For each node’s identity, the observation of the detection algorithm is a sequence
of the node’s backoffsX1,X2, . . . ,Xn.

For detection, DOMINO has two parameters:K ∈ N and γ ∈ (0,1). These
parameters can be tuned for the desired level of system performance, i.e. the trade-
off between the probability of detection and the probability of false alarms. The
detection algorithm is as follows:

cheatcount = 0

if 1
n ∑n

i=1Xi ≤ γB

then cheatcount = cheatcount + 1

if cheatcount> K

then node misbehaving

elseif cheatcount> 0

then cheatcount = cheatcount -1

In order to provide an analytical model for the performance of the algorithm,
we model the detection mechanism by two parameters

1. p := Pr
[

1
n ∑n

i=1Xi ≤ γB
]

2. A Markov chain with transition probabilitiesp and 1− p, where the ab-
sorbing state represents the case when the algorithm declares a misbehaving
node. Note that we assumen is fixed, sop does not depend on how many
backoffs we observed. This makes the detection mechanism to false alarms
as we explain later in our analysis. A Markov chain withK = 2 is shown in
Figure 8.

Assumptions:

We first consider the normal operation, where the monitored node is honest. With
an honest node we assume eachXi is uniformly distributed in the set{0,1, . . . ,CW−
1}, thereforeE[Xi] = CW−1

2 andVar(Xi) = CW2−1
12 . Furthermore letB = E[Xi] =

CW−1
2 .

Note that assumingCW is the minimum contention window size, our analysis
will give us a lower bound on the probability of false alarms.

11 20 31−p p
p p

1−p1−p

Figure 8: Markov Chain with four states, for K=2

6.1 Calculation of p

From the definition ofp:

p = Pr

[
n

∑
i=1

Xi ≤ nγB

]

=
bnγBc
∑
k=0

Pr

[
n

∑
i=1

Xi = k

]

=
bnγBc
∑
k=0

∑
{(x1,...,xn):∑n

i=1 xi=k}

1
CWn

where the last equality follows from the fact that theX′i s are independent and
identically distributed with probability mass functionp(xi) = 1/CWn for all xi ∈
{0,1, . . .CW−1}.

Finding the number of ways thatn integers can sum up tok is

(
n+k−1

k

)

and∑L
k=0

(
n+k−1

k

)
=

(
n+L

L

)
. However we have a constraint in our prob-

lem, and it is the fact thatXi can only take values up toCW−1, which will be in
general smaller thank, and thus we cannot apply the above combinatorial formula.
Furthermore a direct computation of all the waysxi bounded integers sum up tok
is very expensive. As an example letCW = 32= 25 and letn = 10. Therefore a
direct summation for findingp would need at least250 iterations.

Fortunately an efficient alternative way exists for computingp. Let

Y :=
n

∑
i=1

Xi

Then we know that the moment generating function ofY can be computed as fol-

lows:

MY(s) = MX(s)n

=
1

CWn

(
1+es+ · · ·+e(CW−1)

)n

=
1

CWn ∑
{ k1,k2, . . . ,kCW

k1 + · · ·+kCW = n
}

(
n

k1; · · · ;kCW

)
1k1 · · ·es(CW−1)kCW(1)

where

(
n

k1;k2; · · · ;kCW

)
is the multinomial coefficient n!

k1!k2!···kCW! .

By comparing terms with the transform ofMY(s) we observe thatPr[Y = k] is
the coefficient of the termeksin Equation 1.

As n grows larger, there is an approximate way of computingp. This approx-
imation comes from the fact that asn increases, by the Central Limit Theorem,Y
converges to a Gaussian random variable. Thus

p = Pr[Y ≤ bnγBc]≈Φ(z)

where

z=
bnγBc−nCW−1

2√
(CW−1)(CW+1)n/12

andΦ(z) is the error function:

Φ(z) =
1√
2π

∫ z

−∞
e−x2/2dx

In Figure 9 we show the exact and approximate calculation ofp as a function
of n, for the parametersγ = 0.9 andCW = 32. This shows that the approximation
is very accurate even for small values ofn. This suggest that in order to get some
uniform results, we should monitor the backoff processX1, . . . ,Xi until i is equal to
some specifiedn (e.g. 20), instead of monitoring for a fixed time (e.g. 10 seconds).
The reasoning is because if we monitor for a fixed time, then a node accessing
the channel only once during the monitoring time (n = 1) will have much higher
chances of raising a false alarm than a node that accesses the channel several times
in that period (e.g.n = 30).

6.2 False Alarm Rate

In order to compute the false alarm rate we need to find the expected time to ab-
sorption to Markov chains similar to the one shown in Figure 8. Letµi be the ex-
pected number of transitions until absorption, given that the process starts at state

Figure 9: Exact (red) and approximate (orange) values forp as a function ofn for
γ = 0.9 andCW = 32.

i. Then, the expected times to absorptionµ0,µ1, . . . ,µK+1 are the unique solution to
the equations

µK+1 = 0

µi = 1+
K+1

∑
j=0

pi j µj for i ∈ {0,1. . . ,K}

wherepi j is the transition probability from statei to statej. For anyK, the equa-
tions can be represented in matrix form:




−p p 0 0 · · · 0
1− p −1 p 0 · · · 0

0 1− p −1 p 0 0
0 0 1− p −1 p 0

...
0 0 · · · 0 1− p −1







µ0

µ1

µ2
...

µK




=




−1
−1
−1
...
−1




10 20 30 40 50 60
n

2000

4000

6000

8000

10000

Time slots for False Alarm

Figure 10: Expected time slots for a false alarm as a function ofn for γ = 0.9 and
CW = 32.

So for example forK = 3




−p p 0 0
1− p −1 p 0

0 1− p −1 p
0 0 1− p −1







µ0

µ1

µ2

µ3


 =




−1
−1
−1
−1




and the solution we are interested is

E[time to false alarm] = µ0 =
1− p+2p2 +2p3

p4

In Figure 10 we show the expected number of time slots (where each time slot
is given byn observations) for raising a false alarm.

The specificn in our observation period depends on the network usage, traffic
characteristics and number of users contending for the channel. In future work we
will provide a detailed analysis of the expected number of false alarms given these
network characteristics and implementation validation for the results.

7 Conclusions and Future Work

Misbehavior at the MAC layer by changing the backoff mechanism can lead to
performance degradation and even denial of service attacks in ad hoc networks.
In this paper we have presented ERA-802.11 in order to help in the detection of
non-colluding selfish nodes. However, even when neighboring nodes know the
backoff time agreed by a sender, the network topology, hidden nodes, the expo-
nential backoff due to the capture effect, and network traffic characteristics can
severely degrade the correct detection of a misbehaving node. We plan to inves-
tigate in future work how the detection accuracy of the monitoring nodes perform
with respect to the number of hidden nodes in their neighborhood and to different
types of network traffic.

For colluding nodes, the problem of detecting backoff manipulation at the
MAC layer becomes very difficult. Besides the same detection difficulties that
we have for a non-colluding node, we are now required to take several samples of
the backoff time in order to come up with an accurate decision. In future work
we will focus on a more rigorous treatment of the detection problem and show un-
der the consideration of parameters such as network topology, mobility and traffic
characteristics, the difficulty or feasibility of the problem.

Finally, we assumed in this paper that there was a reputation algorithm receiv-
ing our detection results.There is still the open question of how to react when we
detect a misbehaving node. How bad is the performance degradation for the rest of
the network? What is the best punishment strategy? It is our view that the reputa-
tion mechanism should have a layered security mechanism in order to provide an
educated decision on how to react to MAC layer misbehavior.

Acknowledgements

We would like to thank Prof. Jonathan Katz for helpful discussions on Coin Flip-
ping over 802.11.

This material is based upon work supported by the U.S. Army Research Office
under Award No. DAAD19-01-1-0494 to the University of Maryland College Park.

References

[1] E. Altman, R. E. Azouzi, and T. Jimenes, “Slotted aloha as a stochastic game
with partial information,” inProceedings of WiOpt, 2002.

[2] J. Bellardo and S. Savage, “802.11 denial-of-service attacks: Real vulnera-
bilities and practical solutions,” inProceedings of the USENIX Security Sym-
posium, Washington D.C., August 2003.

[3] M. Blum, “Coin flipping by telephone: a protocol for solving impossible
problems,” inProceedings of the 24th IEEE Spring Computer Conference,
COMPCON, 1982, pp. 133–137.

[4] S. Buchegger and J. Y. Le Boudec, “Nodes bearing grudges: Towards routing
security, fairness, and robustness in mobile ad hoc networks,” inProceedings
of Tenth Euromicro PDP (Parallel, Distributed and Network-based Process-
ing), Gran Canaria, January 2002, pp. 403 – 410.

[5] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the confidant
protocol,” inProceedings of the 3rd ACM international symposium on Mobile
ad hoc networking & computing, 2002, pp. 226–236.

[6] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux, “On cheating in csma/ca
ad hoc networks,” EPFL, Tech. Rep., February 2004.

[7] A. Cardenas, S. Radosavac, and J. Baras, “Detection and Prevention of MAC
layer misbehavior in ad hoc networks,” inProceedings of the 2nd ACM work-
shop on security of ad hoc and sensor networks, 2004.

[8] J. R. Douceur, “The Sybil attack,” inProceedings of the 1st International
Peer To Peer Systems Workshop (IPTPS 2002), March 2002.

[9] V. Gupta, S. Krishnamurthy, and M. Faloutsos, “Denial of service attacks at
the mac layer in wireless ad hoc networks,” inProc IEEE MILCOM, October
7-10, 2002.

[10] J. Hájek, Z.Šidák, and P. Sen,Theory of rank tests. Academic Press, New
York, 1999.

[11] P. Kyasanur and N. Vaidya, “Detection and handling of mac layer misbehav-
ior in wireless networks,” inProceedings of the International Conference on
Dependable Systems and Networks, June 2003.

[12] A. B. MacKenzie and S. B. Wicker, “Stability of multipacket slotted aloha
with selfish users and perfect information,” inProceedings of the IEEE IN-
FOCOM, 2003.

[13] M. Raya, J.-P. Hubaux, and I. Aad, “Domino: A system to detect greedy
behavior in ieee 802.11 hotspots,” inProceedings of the Second International

Conference on Mobile Systems, Applications and Services (MobiSys2004),
Boston, Massachussets, June 2004.

