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0. The purpose of this paper is to briefly report on some
new advances due to W.D. Brownawell [12] on the problem of expli-
cit {(concretely computable)} solutions to the Bezout equations,
which are based on some recent developments in complex analysis

due to A. Yger and the authors [6]. [¢].

N € r N 1 = z i it}
Let Pl' ’Pm CLzl, vz, ] €lz] be polynomials with
degrees deg{Pj); 18 the Pj's have no common zeros i1l Cn,

then the well known Hilbert's Nullstellensatz shows tha{ the so

called Bezout equation

1) + ... =
(o ! p1Q1 PQO
has a solution Qg = (Q1""'Qm) with Q, = €[z].
i J
“If n =1 {i.e., only one ccmplex variable is involved), the

solution Q «can be explicitly obtained with the use of the
euclidean algorithm; even for n > 1, the existence of Q doces
not reqﬁire the full use of the Nullstellensatz, as it can be
derived (not explicitly thﬁugh) by elimination theory [13]: this
approach, also, enables one to deduce an upper bound on the
degrees of the Qj’s in terms of the Pj‘s which, however, is
guite high for all "practical purposes.”

The reason for mentioning "practical purposes” need not be
explained in detail in this volume, and we will be satisfied with
two rather well known examples. The first one arises in the study
of the problem of stabilizability of a strictly causal MIMO (mul-
tiple input-multiple output) system, in whichvcase, as it 1is

shown, éfg" in [15], one is directly lead to the study of a

=
matrix version of (0.1} (in the case of single input and output,



the scalar version (0.1) suffices). More generally, many problems
connected with the stabilization of MIMO weakly causal systems
lead to similar considerations; we refer the reader to [11] for
more details on this and related subjects. We would only like to
recall here that the matrix valued Bezout equation can be reduced
to sclving a single equation of the type (0,1) (ct. [6]).

A different applied area in which the Bezout equation (0.1}
arises quite naturally is connected with the many problems from
the (increasingly important) field of ”imaée reconstruc ion"” (i.r.
in the gequel) technigues. As this was the origin of our first
interest in the subject. let us briefly summarize how i.r. can be
linked to Bezout eguations. A naive approach to the i.g. problem
could consist in using a single sensing device (a lens which dif-
fracts the signal to determine or anything else which transforms
in an "explicit" way the image we wish to determine), which is
usually mathematically modeled as a convolutor related to a com-
pactly supported distribution (this modeling, of course, depends
on some specific physical assumptions we ask about the sensing
device, like its time-invariancy, its causality. etc.). In other
words, if f is the unknown signal (e.g., represented by a dis-

tribution), and if ¢ is the distribution describing the trans-

formed signal (the one we receive), it is (up to noise)
(0.2) g = Wt
with M some compactly supported distribution, 1.e., if f£. g
00
and M are C functions, M with compact support
(0.3) g(x) = i fx-tiu(r)art,
e



Rn being the euclidean space (0of suitable dimension) in which our
physical problem takes place.

The question, however, of recovering the unknown f from g
is easily seen to be (generally speaking) an ill-posed problenm
(see, e.g., sec. 1 of [4]), so that the i.r. problem naturally
leads to a multiple-sensor approach. From a physical roint of
view this simply means that we try to reconstruct the signal from
the action on it of several (suitably related, in a serse which is
precise and which we will explain in a while) sensors; from a
mathematical point of view, on the other hand, we can provide the
following model: we will assume the unknown signal to be repre-
sented by f € &(Rn) (¢ will denote the space of Cw functions,
with the usual topology of uniform convergence on compact subsets:
topology plays a guite relevant role in this problem!), and we
will represent our sensing devices with compactly supported dis-
tributions yl,...,um = 8’(Rn), which produce the received
signals g, = ”l*f”"'gm = pm*f. Clearly, the i.r. problem will

be well posed (and solvable) only when the map

(0.4) £ed(g, ... g )

from € to Em

has a continuous inverse (which can be explicitly
produced). The link between the i.r. problem and the Bezout equa-

tion is now given by the following well known result [17], [18].

Theorem 0.1. The map (0.4) has a continuous inverse iff the

Fourier transform ﬁj of the distributions “j {the ﬁj are
entire functions on €° of exponential type and of poulynomial

growth on Rn < Cn) satisfy the following condition: 3 A > O



e
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such that

(0.5) (ﬁl(g)!+ C e +]Am(g); 2 A(]+[§i)A exp(AlIm z21), V z & tm;

condition (0.5), in turn, is equivalent to the existence of dis-

tributions RERRTA 8%Rn) such that

0.6) * + ...+ * =

( ’ ul Vl um vm 5

(> the Dirac delta) or (equivalently) to the existence of
Q1 ’Qm = (&7 n)) such that

0.7 100, 4 ...+ @ Q= 1.

( ) 1-11 “1 um “m :

In this case the i.r. problem is solved with the construction

of the inverse of (0.4), i.e., by

) T g Ve f = # *
(0.8) (91,.,.;g Y1 vty A v g

m’

Thus, at least in the case in which the sensors have punctual
supports, the solution to the Bezout equation immediately provides
the solution to a particular i.r. problen.

Notice that condition (0.5) can be, guite often, translated
into physical conditions on the sensing devices; consider, for
example, the case n = m = 2, e.y., two sensing devices in the
plane, which were taken to be the diffraction in two circular
lenses of radiuses R and R {the details are discussed in

1 2

[8]):; in this case it can be shown that, in order for (0.5) to

hold, it is sufficient the existence of a positive constant C

such that

C
q?

where p,g(=0) describe the set of zeros of the first Bessel



function J1 {which in this problem arises as a part of the

uj's).

These motivations are probably sufficient to justify the
great interest which, in these last few years, has developed
around the construction of explicit solutions to {(0.1). Note
however, that in this paper we are concerned with a ver; simple
Bezout equation, in which only polynomials are concernel, so that,

in this case, Theorem 0.! is essentially superfluocus, as (0.5)

reduces to the condition that the Pj's have no common zeros, and

so it does not yield any more information than the Nullstellensatz.

Still, Theorem 0.1 1s worth looking at, since it cin be used
towards the goal of explicitly constructing the Q.'s. Indeed,
Theorem 0.1 {(an important breakthrough in ccmplex analysis, at the
time, due to the power of the new tool of the LQ—estimates for
the g—operator) is only an existence theorem which provides no
clues with regard to the construction of the wv.'s (or, equiva-
lently, to the construction of the Qj's), as it is based on the
purely existential technigues of L2—estimates; in Hormander's
arguments, the Q.'s are "constructed” in a guite natural way:

3
one first constructs a dm~solution to (0.7), which is then "cor-

rected" into a holomorphic one, with growth control, via the
existence of solutions to the inhomogeneous Cauchy-Riemann
equation du = f (for £ a d-closed (0,1)-form). In view of
this procedure, the work of M. Andersson and B. Berndtsson [1] on
explicit solutions to the inhomogeneous Cauchy-Riemann equations

becomes immediately of crucial interest, even though their formu-

las do not satisfy the necessary stabillity requirements, at least

e



in the most general case (we should mentiorn that a Jdifferent

approach to the representaticn formulas of [1], which avoids the
use ot the Jd-technigues, has been recently established by M.

Andersson and M. Passare [27). 2titl, these formulas work

=
Q\
-
)
-

~Q

well in the case ©f (0.1), i.e., in the case of the pol/nomial
Bezout equation (of which (0.7) is the entire holomorphic version),
and in a series of papers by B.A. Taylor, A. Yger and tie authors

[6], 8], (9], special ver

m

sions and modifications of it have been
applied towards an explicit solution of (0.1 and (0.7): in
section 1 we will briefly outline these results.

As a conseqguence of these (long) considerations, 1t has
probably bhecome clear the necessity of providing good bounds for
thie degrees of the Qj's in {G,1); this, of course. l1ls necessary
to even consider the poesibility of implementing a =ymbolic calcu-

lation which would effectively produce the {J.'s.

“a

Some algebraic approaches to this gues

r+

ion, when (0.1) is

3

replaced by the more general

0.9 P Q, + ... P =C, Ce&lzl,
( ) 11 QO B
but with =#trong hypotheses on the P,'s have heen given ir {37,

rN4j, while, on the other hand, if the P. s have no common zero
)

6

at infinity either {think of the Pj‘s as homogeneous polynomials

in Py, basic rvesuits of sliminaticn theory [191 show that the
0.'s c¢an be chosen with
J
deg(Q.,! $ n(dD-1) + 1
¥
D = max({deg(p.))

Until! the recent rezults of Brownawell, the bhest one cculd do



in the general case was to employ the classical methods of Hermann
{16], and, in particular, D.W. Masser and G. Wustholz [20] proved
that one can solve (0.1) with

n-1

deg(n,) s 2(2D) 2

which, of course, is & terrible bound, being a double exponential.
Recently, however, Brownawell exploited the explicit solu-
tions to (0.1) described before, to drastically reduce this bound,

as the following theorem [12] shows:

Theorem 0.2. Let Pi""’Pm € €[{z=] have no common zeros, and let
D = max(deg(Pi)). Ther. (0.1} can be solved with Qj's such that
i

deg(P,0,) < 3unp?,

for M = min(m,n).
The purpose of section 2 of this paper will be to outline

this result.

Acknowledgements. The authors are indebted to W.D. Brownawell for

discussing with them his paper [12].



1. In this section we describe our explicit integral formula
(formula (2.11) in [6]) which constitutes the analytic part in
Brownawell's argument; actually, this formula is just an explicit
translation of Anderssoun-Berndtsson's formulas, in the case of
polynomiales, in which case the original kernels become guite

manageable. In order to give the flavor of its construcztion, let

us briefly sketch what happens in the simple case of on: variable,

but for entire functions with growth restrictions: tak:, e.g.,
Fl,F2 < {(8'(R)) . which satisfy (0.5), and let us try to construct
GI’G2 v (8" (R)) such that
(1.1} F. G, + F.rG,. = 1

1 ’} L L

It is well known [7], that, by (0.&8), one can interpcla:e the
values of 1,/F, on {z < € : FQ(Z) = 0} with a function H, € E°

Z) = 0}y with H, € 8’.

and the values of 1/F on (=€ € : F o

)
&

1

Then the pair (Hlan) might well be a candidate for a sclution
£

via

of {1.1), and one could "reasonably'" think to express Hl,Hn

a "basis" of functions <¢f the like
¥ oF,(8)/(§-a)F, (),

where a 1is & simple zero of F,.
“

This idea, however, does meet (generally speaking) with some
difficulties, which make necessary the introduction (see [S],

section 2) of some extra conditions on (F.,F which, however,

1 2)

are always satisfied in the polynomial case. Without dwelling in

these details we simply state the following result [9]:

Theorem 1.1. Let Fl,F? satisfy (0.5) and suppose that their

Zzeros are simple and lie in the region



{z + I'Im z! = C log(2 + |Re zi)}.

Then there exists g - . such that the series
F_(z)
G,(z) = -~ ! .2 , 2 € €
1 g9r (8)r, (&) (=8
F2(5)=O i 2
F.(z)
G,(z) = 3 ! -,i~¢), ze @
a F F, (a) '~
F, (a)=0 S ()F | )
are normally convergent in &' (R), then, on €,

with

-

J

g
i
on
X
Q
23] .
[y
<
o
s8]
~

Sketch of the proof. The proof of this result is essentially

based on a suitable application of the Cauchy formula to the
function w(f) = (qFl({)FZ(K), where ¢ has to be chosen large
enough (in a sense that will become clear in the sequel). Indeed,
one needs to find a sequence of real numbers rn/“+m, and a
seguence of Jordan curves [ < T together with positive con-

n n+1’

stantes A .M > O, such that

;1(1 ~r ~oon Yn, 1ength(Fn, a
1
!

R4 Fl(()l 2 A(1+1§]) on In.
(Notice that, for polynomials, condition (1.2) can be easily

satisfied). If then Dn is the bounded open set whose boundary

is Tq, the Caucy formula gives, for =z € Dn and g = M.
i



(1.3) YUoamr | wizgy

r
n e

1 w(z)-w(l) _owW(z) J 34

a4

from which one then gets the above result.

If we now want to extend Theorem 1.1 to the case of n > 1,
(for n =1 and m > 2. no real difficulties arise, sz2e [9]), we
have to substitute, in (1.2), the Cauchy integral formula with the

so called Koppelmann formula [10]; this result states tiat. for &

~ 1
I

bounded domain D ¢ € ., with €~ boundary, there are zernels ¥
1 —_—
and P such that for any wue€ C (D), the following resresenta-

tion holds for = € D,

{_
w(z) = ————j H W(EIK(z8) - g Fulg) A K(z,4)

{(4.10)

where K and P are differential forms in § of type. respec-
tively, (n,n-1) and (1un,n), and their concrete construction is
given in [10]. Instead of describing the general case, which is
rather complicated, as well as beyond our immediate interests, we
will confine ourselves to the explicit description of the situa-
tion for the case of the polynomial Bezout equation.

Our notations will be those from complex differential
calculus, which can be found in [24]. From this point of view, a
function ¢ on Cn will be regarded as a function in the 2n

variables g],...,cr, (“""’(n’ whose complex differentials are
} 4

defined by

11



for 5%—, —g— the usual operators. If w is a (1,0)~type dif-
j 8% .
J

J

N
ferential form, i.e., w = :E:w.dt one defines

i3’
j=1

n
ow = Zi:éw. dg .
J A (J

j=1

and
1
W= w C w (1 times).
If now Pl" .,Pm are polynomials in €[z] with no conmon zeros,
it is well known that there exist &,C > 0, such that, on c¢?
, L Ly~ h
(1.5) ;Pl(z); + ..+ {Pm(z){ > £(1 + |z|) ;

the value of L, which classically [23] is known to be estimated
a priori in terms of the degrees of the Pj's is crucial to what

follows, and we will return to it later on.

We now associate to each Pj a differential form g(J> in
the variables t1,...,§n and parameters AR by
4

n
sV 5.2 = > el e,
k=1

where
(3) oz,
! od == po—— <. - — —
(1'6) gk (gl“") aq (&1 t t(“l 41)[ L A zn+ t(zrl ;n))dt‘
J k
G
Thus, the g(j) are differential forms whose coefficients are

polynomials in 2n variables which (1.6) provides in an explicit

fashion. (We remark that since the Pj are polynomials, these



integrals can be computed explicitly. We just leave them in this

form to simplify the notation.) As the P.'s have no common

o

zeros, we can define one more differential form

n
o - [SEEE D @ e
j=1
n
where, as customary, HP(&)H2 = :E:le(ﬁ)lgz We are now~s going to
j=1

write an integral formula in which a sufficiently high =2xponent N
must be chosen, in order to ensure the convergence of the inte-
grals (as in Theorem 1.1); as it will appear in a seconi, the
value of N depends explicitly on the value of the constant L
which appears in (1.5), and can thus be estimated in terms of the
degrees of the Pj',s: a relevant part of Brownawell's work con-

sisted in improving as much as possible this estimate.

m n
Let then P ‘P(z) = ZE.P' ZY-P.(z), L2 = ji:m.-z. and,
e (&)-P(z) J(C. J( ), & §J i
st le
for s = min(m,n+1), set
_ (n=1)t sl N! A .
Cx T TaoR] T (soR) T (Renemy T < T Qeeeee®td

With &ll these notations set, we can finally write the Bezout

equation (0.1);

(f)
;_s

b N gz N T p(z))5TF
) N = ugnﬁf Cipig i
mt(2mi) ¢® oo Sl (&)
(1.7)
<189 log(1+ign° " A B0 F,

with integration with respect to the variables § and L.



Even though (1.7} might not resemble (0.1) at first sight, it
takes only a moment to realize that each Qj in (0.1) can be found
in (1.7) by simply collecting the terms in which Pj appears;
this provides, henceforth, an explicit solution to (0.1) which,
from a concrete point of view, is now reduced to the computation
of a finite number of definite integrals over C". A ‘ew comments
are in order on the practicality of this approcach and on its
stability: first one realizes that the computation of the inte-
grals arising in (1.7} can be executed rather efficien:ly since
the choice of N itself assures that the integrands decay rather
quickly as functions on 1§}, and, more importantly, vie have ex-
plicit estimates on this decay, which can enable us to control the
errors; as for a more detailed consideration on the stability and
the applicability of this kind of algorithm, we refer the reader

to [4] and [5], where several concrete examples are discussed.

14



2. This last section is devoted to the brilliant result of
Brownawell who, via the formula (1.7)., and with & careful exploi-
tation of elimination techniques in the theory of transcendental
numbers (mainly hased on the work of Yu.V. Nesterenko, [22]., and
its references) succeeded in proving Theorem 0.2.

This theorem, actually, turns out to be a cerollary of the
proof of a more refined statement for which we will corcentrate in
the sequel.

Let us recall a definition from commutative algebra, [21]:

we say that Pl""’Pw e €C{z] form a regular sequence if P1 = 0
and, for i = 2,...,m, Py is not a zero divisor in &€[z}1/
(P, .,Pm), where (P,,...,Pi . ) denotes the ideal cenerated by
+ - i
P Py in €[z]. The theorem we mentioned before is:
Theorem 2.1. Let P‘,....,.P,n € €[z] form a regular sequence and
let Di = deg(Pi) > 0. If the P.'s have no common zZeros then
o
there exist Ql""’Qm in €{z] such that
n
D Lo+ . 4 = on
1Q PQO 1 ¢

and

deg(P.Q.) QunDi~...'D + 3mD
with y = min{m,n), D = max(D,).

1

3
e

The key step in the proof of Theorem 2.1 is an interesting

result on a lower bound on the maximum modulus of a regular

sequence with no common zeros, namely:

Theorem 2.2. If P _,....P_ € €[z] 1is a regular sequence with no
M m -

common zeros and deg(F.) =D, > 0, 1 = 1,...,m, then there

exists a constant € > ¢, depending only on Pl,...,Pm such that



for all ¥ € € - {0}, with |¢|

]

=
]
X
P

o

lV
N
b
t

f

(3

for um = min{m,n).

We do not wish to spend any time on the complicated proof of
Theorem 2.2 {(which, in Brownawell's paper, relies on Nesterenko's
use of the Chow form of homogeneous ideals in .[z]), for which
we refer the reader to [12]; on the other hand, we wisa to show
how the algebraic result given in Theorem 2.2 can be used to prove
Theorem 2.1 and how this theorem, In turn, can be used to obtain
the bounds of Theorem 0.2. Henceforth, throughout the seguel, we

will assume Theorem 2.2.

Proof of Theorem 2.1. In this proof, we have to explicitly refer

to the constructicns of (1.6, and (1.7). Indeed, by construction

050
degr(gﬁJ‘) $ D, -1,

so that, if we write

pe

g = 2 aij(g,f, yde oA ar .,

N

J
i,j=1
we have, for =z &€ ¢t fixed, and as |{§ ||+,
- +2(D-1)
maxia, . (§.,&,z)1 = ofpgBrEDTI
A
where, again. D = max(D,), and B = 1 - (u—l)D,-...~Dﬂ. In a
i * *
similar way, if we write
n
— o) - -
9 og(1+ligi™) /. blj(tt)f,l/\ CJ
i,3i=1

oy
o)}



we have, for [I§ll-—+w,

maxib (€. £)1 = o(lgy " ?y.

Hence, Theorem 2.2 shows that the convergence in the integrals of

(1.7) 1is guaranteed if, for each k = 0,...,m~1 (notice that the
regularity hypothesis on Pw:...,Pm implies m £ n+l, hence s =
min{m,n+l) = m), it is

N-n+ k> (m=k)B - 2(n-k) + 2k(B+D-1) + 2n.

i.e.,
(2.1) N > (m+k)B + 2kD + n - k.
The worst case of (2.1} occurs for k = m-1, i.e., the conver-

gence of the iIntegrals in (1.7) is implied by
N = (2m~-1)B + 2(m-1)D + n - m + 2.
Now, the coefficients of JQ have degree, in =z, less than or

equal to D - 1, so that. from Theorem 2.2, we immediately get

that the degree of P.Qj is bounded, for every 1, by

1

(2.2) N - n+ mD = (2m~1)(n"1)D1-...'Dﬂ + (3m~-2)D - Zm + 3
Theorem 2.1 now follows immediately: indeed, if pu = m this is’
obvious, while if 7 = n, m = n + 1, so that (2m-1){(n-1} =
2un - n - 1 which concludes the proof. =

We now sketch how Theorem 0.2 is actually a consequence of

the proof of Theorem 2.2 and, more precisely, of (2.2).

Proof of Theorem 0.2. The idea of the proof [12] is, reasonably

enough, only algebraic, as it essentially tends to show that,

starting with the Pj's, one can {(if the theorem does not hold

17



immediately) produce a regular sequence (Ql""’Qm)' with no

common zeros, where each Qj is a C-linear combination of the

Pj's; {2.2) then gives the thesis. To be more precise, let
i=1,...,r = min{n,n+1): the induction hypothesis is that either
Theorem 0.2 holds true, or else there are polynomials Ql""'Qi

which are linear combinations {(cover &) of P ..,Pm and which

17

form a regular sequence. For 1 = 1, just take Q1 tc be any
non-zero P.. Suppose we have now constructed such a seguence
o

Q1"“’Qj for 1 < vp. If the Qj's have no common zZeros, the

induction step follows from (2.2) in an obvious way. I{ the

Qj's, on the other hand, have common zeros, it is a coisequence

of Lemma 1 of [20] the existence of Q , again a linear combi-

i+l

nation of P ..,Pm, such that Ql""’Q is still regular.

17" i+1

The conclusion is now a simple matter of applying (2.2). -

We now wish to conclude with a remark on the concrete possi-
bilities that formula (2.2) has to be applied, in view also of.
Theorem 0.2. Indeed, at least in the case of polynomial Bezout
eguations, our methods have an important "opponent” in the alge-
braic method which is due essentially to B. Buchberger (1965), and
which relies on the so called Grobner bases. It would take us too
far afield to describe this method (for which we can refer the
reader to the excellent survey given by Buchberger himself in
{131), but a couple of words may help to understand the different
nature of this elegant method. Let F be a finite set of polyno-

ey

mials in the so called "simplification problem modulce the .

ideal generated by Fn, i.e., the problem of finding unique repre-

sentatives in the residue classes modulo the ideal generated by

18



F, was first posed explicitly in [161, and the main objective in
the method of Grobner bases is exactly to solve this problem. The
basic idea of the method is to transform F, 1in an explicif way .
which is simple enough to be taught to a computer (and experiments
in this area have been going on in the last twenty years, with
rather good results), into a standard form, called "Grobner basis
for F." Once the Grobner basis G for F 1is constructed, one
can easily solve a large number of problems concerning the ideal
generated by F {or, which 1s the same, by G). In particular,

one 1is able to provide an explicit construction for the Qj's in

(0.1): & detalled description of the algorithm is given (under
the name of "method G.13") in [13}, *o which we refer the reader
once more. Thus our method (which, however, holds alsc for the

entire holomorphic case) and Buchberger's one, provide two radi-
cally different approaches to the same problem; it would be there-
fore of ¢great interest to be able to comparatively discuss the
complexity built into each of these methods; as pointed out in
[13], much is now known about the complexity of the algorithm
centered on Grobner bhases: in particular, the degrees of the
polynomials in G can be (almost always, in the sense of proba-
nility) bounded by Dl + ... F Dm—n+1 where Dl""’Dm are the
degrees of the polynomials in F; therefore, one is now lead to
the study of a new eqguation (0.1), in which the degrees of the Pj
may be significantly increased: on the other hand, this bound may
not be sufficient for some euceptional cases. In fact, since the

method of Grobner bases is capable of deciding the harder problem

of when is P in the ideal generated by Pl""’Pm {even when



they have common zeros) one expects a double exponential bound to
appear. The other annoying fact is that the polynomials that
cause difficulties are often of integral coefficients! (After
all, they have only measure zero!). As far as our method is con-
cerned, a thorough complexity analysis has not yet been attempted,
even though some computer implementation of these technigues is
discussed in [4]; now, in view of Brownawell's result, we know
that, for each Qj’ we have to determine a number of coefficients
which is of the order of magnitude in Dnz, which seers to be
rather high: still, some symmetries in the kernels which appear
in (1.7) seem to suggest that the actual number of computations

may be drastically reduced.

20



(1]

(2]

(8]

(9]

[10]

f11]

[14]

.n

REFERENCES

M. Andersson and B. Berndtsson, Henkin-Ramirez formulas with
weight factors, Ann. Inst. Fourier 32 (1982), 91-110.

M. Andersson and M. Passare, A shortand to weighted represem-
tation formulas for holomorphic functions, preprint, 1986.

E. Ballico and D.C. Struppa, Minimal degree of solutions for
the Bezout equation, preprint, 1986.

C.A. Berenstein, P.S. Krishnapasad and B.A. Taylor, Deconvolu-
tion methods for multi-sensors, DTIC # ADA 152351.

C.A. Berenstein and E.V. Patrick, Deconvolution fcr the case

of multiple characteristic functions of cubes in ?n,

preprint, 1986.

C.A. Berenstein and D.C. Struppa, On explicit solttions to
the Bezout equation, Syst. & Control Letters 4 (1984), 33-39.

C.A. Berenstein and B.A. Taylor, A nwe look at interpolation
theory for entire functions of one variable, Adv. in Math. 33
{1979), 129-143.

C.A. Berenstein, B.A. Taylor and A. Yger, Sur guelgques
formules explicites de deconvolution, J. Optics 14 (1983),

75-82.

C.A. Berenstein and A. Yger, Le probléme de la deconvolution,
J. Funct. Anal. 54 (1983), 113-160.

B. Berndtsson, A formula for interpolation and division in
, Math. Ann. 263 (1983), 395-418,

N.K. Bose, Trends in multidimensional systems theory, in
Multidimensional Systems Theory, ed. by N.R. Bose, Dordrecht-
Boston-Lancaster, 1985.

W.D. Brownawell, Bounds for the degrees in the Nullstellen-
satz, preprint, 1986.

B. Buchberger, An algorithmic method in polynomial ideal
theory in Multidimensional Systems Theory, ed. by N.K. Bose
Dordrecht-Boston-Lancaster, 1985.

G. Gentili and D.C. Struppa, Minimal degree solutions of
polynomial operations, Kybernetika (to appear).

o
pa



[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

J.P. Guiver and N.K. Bose, Causal and weakly causal 2d-
filters with applications in stabilization in Multidimension-

al Systems Theory, ed. by N.K. Bose Dordrecht-Boston~
Lancaster, 1985,

G. Hermann, Die Frage der endlich vielen Schritte in der
Theorie der Polynomideale, Math. Ann. 95 (1926), 736-788.

L. Hormander, Generators for some rings of analytic func-
tions, Bull. A.M.S. 73 (1973), 943-949.

J.J. Kelleher and B.A. Taylor, Finitely generated ideals in
rings of analytic functions, Math. Ann. 193 (1971), 225-237.
D. Lazard, Algébre lineaire sur k[xl,...,xn] et élimination,
Bull. Soc. Math. France 105 (1977), 165-190.

D.W. Masser and G. Wﬁstholz, Fields of large transcendence

degree generated by values of elliptic functions, Inv. Math.
72 (1983), 407-464.

H. Matsumura, Commutative Algebra, New York, 1970.

Yu.V. Nesterenko, On algebraic independence of algebraic
powers, Mat. Sbornik 123 (1984), 435-459 (Engl. transl. Math.
USSR Sbornik 51 (1985), 429-454).

A. Seidenberg, Constructions in algebra, Trans. A.M.S. 197
(1974), 2173-313.

R.0. Wells, Jr., Differential Analysis on Complex Manifolds,
New York, 1979,

22



