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Abstract: Let A € g£(n, €) and let p be a positive integer. The Hessenberg variety of degree
p for A is the subvariety Hess (p, A) of the complete flag manifold consisting of those flags
S; C ... C Sp—; in €™ which satisfy the condition AS; C S;4p, for all i. We show that if A
has distinct eigenvalues, then Hess (p, A) is smooth and connected. The odd Betti numbers of
Hess (p, A) vanish, while the even Betti numbers are given by a natural generalization of the

Eulerian numbers.



I. Introduction

In this paper, we describe some of the basic topological properties of the Hessenberg
varieties of a matrix. These are certain subsets of the flag manifold which are closely related
to Hessenberg form for a matrix, and especially to the use of Hessenberg form in the efficient

implementation of the QR-algorithm for matrix eigenvalue problems.
A. Mathematical Problem

Let n be a positive integer, and let K = (ky,...,k4) be a d-tuple of positive integers
satisfying 0 < k; < ... < kg < kgy; = n. Let F denote either the field of real numbers or
the field of complex numbers. Let Flag (K, F) denote the (partial) flag manifold consisting
of d-tuples (Sy,...,S4), where S; is a k;-dimensional subspace of F* and S; C ... C Sy. If
K =K, =(1,2,...,n — 1), then Flag (Ko, F™) is referred to as a complete flag manifold and
is denoted by Flag (F™).

Let A € gf(n, F), a linear operator on F", and let p be a nonnegative integer. We say

that (Si,...,54) is a degree p Hessenberg flag for A if and only if
A(S;) C Sitp, t1=1,..,d —p,

and we denote by Hess (p, K, A) the subset of Flag (K, F™) consisting of all such flags. We
refer to Hess (p, K, A) as the Hessenberg variety of degree p for A. Note that

Hess (0, K, A) C Hess (1, K,A) C--- C Hess (d, K, A) = Flag (K, F")

and if A € GL(n, F), Hess (0, K, A) consists of those flags which are fixed by A - i.e., for which
A(S;) = S; for all 1. the notion of Hessenberg flags was introduced for the case K = Kg,p =1
by Ammar and Martin [1] in connection with a geometric approach to the QR-algorithm. (See

also Ammar [2].) This connection is briefly described below.

Most of this paper is concerned with the case where K = K and where A has distinct
eigenvalues all of which are in F. Thus, it should be regarded essentially as a study of
the Hessenberg varieties of the complete complex flag manifold Flag (€"), under generic
assumptions on A. In particular, we focus our attention on the three issues of smoothness,
connectedness and homology. Under the aforementioned assumptions, we show that for p > 1,
Hess (p, Ko, A) is a smooth connected subvariety of Flag (F™) of dimension p(2n — p — 1)/2

over F.



In the case of a complex matrix with distinct eigenvalues, we characterize the Betti num-
bers of Hess (p, Ko, A) in terms of a combinatorial property of the elements of 3_(n), the sym-

metric group of permutations on n letters. For o € }_(n), we define the p-th Eulerian dimen-

sion of ¢ to be
E,(0) 2 card {(i,5) | 1<, <n, 1<i—3<p, o(i) < o(5))

In the special case where p = 1, E; (o) simply counts the number of “falls” in the permutation
o, a fall being a value of ¢ for which ¢(¢) > (¢ + 1). In the special case p=n — 1, E,_;(0)
coincides with the length function on the Weyl group " (n) [3]. We show that the odd Betti
numbers of Hess (p, Ko, A) vanish, while the 2k-th Betti number is equal to

Ay(n,k+1) 2 card {o € Z(n) | Ep(0) = k}, k=0,.,p(2n—p—-1)/2

In the special case where p = 1, these Betti numbers coincide with the well-known Eulerian
numbers, while in the special case where p = n — 1, these numbers are also well-known, and
are sometimes referred to as the Mahonian numbers [4]. We refer to the numbers {A4,(n,k)}

as generalized Eulerian numbers of degree p. Several generalizations of the Eulerian numbers

have been considered in the combinatorics literature. (See e.g. [5](6][7][8][9].) However, we
have not been able to locate any references to the particular generalization {A,(n,k)} which

arises in our study of the Hessenberg varieties.

If Ais nonsingular and has distinct eigenvalues, the variety of fixed flags, Hess (0, Ko, A), is
uninteresting topologically, consisting of a finite set of points. Thus, it is somewhat surprising
that, for such a matrix, Hess (p, Ko, A),p > 1, has such a rich topological structure.

B. Relationship to Hessenberg Matrices and the QR-Algorithm

In the remainder of this section, we briefly describe the relationship of the Hessenberg
varieties and Hessenberg matrices, with particular application to the QR-algorithm. Annxn

matrix B is said to be in (upper) Hessenberg-form if b;; = O whenever 1 — 5 > 1. Let

G2 GL(n,F), and let U 2 U(F™) be the subgroup of G consisting of those elements which
are upper-triangular. Let 7 : G — G /U = Flag (F™) be the natural projection; we will write
< g>form(g),g €G. If T € G, then < T >= (Sy,...,Sn—1) where S; is the subspace spanned
by the first ¢ columns of T'.



Let A € gé(n,F). Let T € G, and let B be the matrix for A relative to the ordered
basis given by the columns of T'. Since AT = T' B, it follows that B is a Hessenberg matrix if
and only if < T >& Hess (1, Ko, A). Thus, the degree one Hessenberg flags for A correspond
to those ordered bases relative to which A has a Hessenberg representation. More generally,
the flags in Hess (p, Ko, A) correspond to generalized Hessenberg representations for which
B satisfies the condition that B;; = 0 whenever ¢ — 5 > p, while the flags in Hess (p, K, A)

correspond to block generalized Hessenberg representations.

The QR-algorithm is the most commonly used method for finding the eigenvalues and
invariant subspaces of a matrix. Ammar and Martin [1] and Shub and Vasquez [10] have
described how the QR-algorithm may be interpreted as a linear-induced dynamical system
on Flag (F™). The QR-algorithm applied to a given A € GL(n, F) generates a sequence of
matrices {A;}i>0, all similar to A, obtained by successively performing QR-factorizations. Ao
is a representation of A relative to a chosen initial basis P-i.e., Ao = P~1AP.Aq is factored
into the product QoRo of an orthogonal (if F = R) or unitary (if F = C€) matrix Qo and
an upper-triangular matrix Ry with positive diagonal entries. Then one defines A; = RoQo.

Inductively, if Q;R; is the QR-factorization of A;, then A;; is defined to be R;Q;.

The corresponding dynamical system on Flag (F™) is obtained as follows: Setting P; 2

Qo - Q;, it follows easily that
(1) Aiy1 = (PP,) ' A(PP)
() A(PP;) = (PPiy1)Rity.

The first equation shows that the sequence {A;};>1 is completely determined by the sequence
{PP;}i>0. Thus, the QR-algorithm can be viewed as generating a sequence of orthogonal (or
unitary) matrices. However, it is demonstrated in [1] and [10] that the convergence properties
of the algorithm can be characterized by the behaviour of the sequence {< PP; >}i>¢ in Flag
(F™). (Note that < PP; > determines PP; up to right multiplication by an element of UNO(n)
if F=RorUNU(n)if F= €. UNO(n) consists of the 2™ matrices {diag(+1,...,%1)},
while U NU(n) is the maximal torus {diag (e*’!,---,e*’*)}.)

Let A denote the diffeomorphism of G/U = Flag (F") induced by A - i.e., A(< T >) 2
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< AT >. It follows from (2) that

<PP,->:T<PP,,>

Since A < P >=< AP >=< PPyRy >=< PP, >, we obtain

i+1

<PP,>=A" <P>.

This shows that the QR-algorithm starting at the initial representation Ap = P~!AP for A

corresponds to the linear-induced dynamical system A : G/U — G/U initialized at the flag

< P>.

For a differentiable dynamical system on a compact manifold, there is a close relationship
between the properties of the dynamical system and the topology (particularly the homology)
of the underlying manifold [11]. Thus, Shub and Vasquez [10] are able to relate the behavior
of the QR-algorithm to topological properties (e.g., the Bruhat decomposition) of Flag (F").
However, in actual practice the QR-algorithm is rarely applied directly to a given matrix A.
Instead, A is first reduced to Hessenberg form using a finite sequence of elementary orthogonal
(unitary) transformations (Householder transformations) [12]. In other words, P is chosen
such that Ag = P~ !AP is in Hessenberg form. Thus < P > belongs to the subvariety Hess
(1, Ko, A). This initial reduction greatly improves the efficiency of the QR-algorithm since
a QR-step for a Hessenberg matrix requires O(n?) arithmetic operations as compared with
O(n3) operations for a full matrix. Moreover, if one starts with Ay in Hessenberg form, all

the matrices A; produced by the algorithm are in Hessenberg form as well.

If < T >€ Hess (1, Ko, A), then AT = TB with B a Hessenberg matrix. Since A <
T >=< AT > and A(AT) = (AT)B, it follows that Hess (1, Ko, A) is an invariant subset
for the dynamical system A : G/U — G/U. Thus, the efficient implementation of the QR-
algorithm by initial reduction of A to Hessenberg form corresponds to the restriction of the
dynamical system A : G/U — G/U to the invariant subset Hess (1, Ko, A). Consequently, the
properties of the QR-algorithm as applied to Hessenberg matrices would be expected to reflect
the topological properties of the subvariety Hess (1, Ko, A). This is the primary motivation
for our investigation of the topology of Hess (1,Ko,A) and of its natural generalizations

{Hess(p, Ko, A)}.



II1. Preliminaries on the Flag Manifold

Let n be a positive integer, and let K = (ki,...,k4) be a d-tuple of positive integers
satisfying 0 < k; < ... < kg < dg4+1 = n. Let F denote either the field of real numbers or
the field of complex numbers. Let Flag (K, F™) denote the (partial) flag manifold consisting
of d-tupes (Sy,...,Sq) where S; is a k;-dimensional subspace of F™ and S; C ... C Sy. Flag
(K, F™) can be given the structure of a smooth manifold as follows: Let {e1,...,en} be the
standard basis vectors for F™ and let W; = sp{ey,...,e;} (where “sp” denotes span). Let
GL(n, F) be the general linear group of F™ and let P(K, F™) denote the parabolic subgroup
consisting of those matrices in GL(n, F) which are upper-triangular as matrices of blocks
when the rows and columns are partitioned according to the partition (ki,ks — k1,-+-, kg —
kq_1,n—kg) of n. The group GL(n, F) acts transitively on Flag (k, F*) by (g,S1,---,54)) —
(g(S1)y---,9(Sa)), and the stabilizer of the flag (Wy,,---,Wk,) is the subgroup P(K, F™).
Consequently, Flag (K, F™) can be identified with the homogeneous space GL(n, F)/P(K, F™).

We observe that if K = Ko = (1,2,...,n — 1), then the complete flag manifold Flag (F") 2
Flag (Ko, F™) can be identified with GL(n, F)/U(F™), where U(F™) denotes the subgroup of

GL(n, F) consisting of upper-triangular matrices.

We now describe in more detail the analytic structure of the complete flag manifold Flag
(F™) = GL(n, F)/U(F™). Let 3_(n) denote the symmetric group of nxn permutation matrices
and let L*(F") denote the strict lower-triangular subgroup consisting of lower-triangular
matrices with ones along the main diagonal. It is easy to see that the sets ch(o) = {< 0 X >|
X € LT (F™)},0 € Y (n) (where < - > denotes the left cosets modulo U(F™) for an element
in GL(n, F)) give rise to a system of analytic charts for Flag (F™), of dimension n(n — 1)/2
over F. In fact, under the identification Flag (F") = GL(n, F)/U(F") each flag (S1,..., Sn—1)
has a representative 6X,0 € Y_(n) and X € L*(F"). Moreover, for a fixed 0 € } (n), X is

unique.

Next we recall the Bruhat decomposition of the flag manifold Flag (K, F"). We choose,
and fix, a basis {e1,...,e5n} for F™. The Bruhat decomposition of Flag (K, F™) will be con-
structed relative to the choice of this basis. For any £-dimensional linear subspace S of F™, the

signature of S is defined as the set sig(S) = {f1,..., B¢}, where f; < -+- < B¢ are the “jump
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points” of S, i.e.,

S Nsp{er, -+ ep,-1}1# S Nsp{er,..., e}, 1=1,..24

It is easily seen that Sy C Sz C F™ implies sig(S;) C sig(Sz2). In particular, for any flag

S = (S1,:++,84) € Flag (K, F™), there is an increasing sequence of signatures

sig(S) = (sig(S1),+ -, sig(Sa))

with
(i) Sig(sl) C oo Csig(sd) C {1’...,n}
(") card Sig(Sj) = kJ for j =1,--- ,d_

Any such sequence s = (s1,--+,84) of subsets s; C {1,...,n} satisfying i) and ii) is called a
flag symbol. Let S(K,n) denote the set of all such flag symbols corresponding to K. Then
S(K,n) has

( : )= () (R25) (2%
ki ks —kyy--oyka—ka—y,n—kys ) \ k1 ko — k1 ki— ka1

elements, where
n n!
ar,-y00) T aleag]

For any flag symbol s = (s1,+++,84) € S(K,n), the Bruhat cell of the flag manifold is

is the multinomial coefficient.

defined as the set
B, = {S € Flag(K,F") | sig(S) = s}

It is an easy exercise to prove that B, is in fact an F-analytic submanifold of Flag (K,F™)
and it is diffeomorphic to an affine space F™, where g is the dimension of B,.
In the particular case in which K = Ko = (1,2,:++,n — 1), there is a natural bijection
between $(Ko,n) and the symmetric group ) (n) given by:
8 = (81,"'78n—1) — 0 = (a(l),---,a(n)),
where {o(3)} = 8i — 81, i=1,--+m,
50 éq& and s, 2 {1,---,n}.
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Thus, the Bruhat cells of Flag (F") are parametrized by Y (n). In fact, under the identification
Flag (F™) = GL(n, F)/U(F™) a Bruhat cell B,,0 € }_(n), is given by

B, ={< X >€ GL(n,F)/U(F") | X = uo, some u € U(F™)}.

To see this, let us consider an element of the form uo, with w € U(F™) and 0 € ) (n). By
performing column operations, first on the first column, next on the first two columns and so
forth, we can transform it into an nxXn matrix that has ones in the positions prescribed by ¢ and
zeros on the right and below each such one. This operation corresponds to right multiplication
of uo by an element in U(F™). Thus, in the left coset < uo > there is a representative of
the form described above. From this, one readily sees that the flag corresponding to such a
coset has signature o. Also one sees that the dimension of B, is given by the length of the

permutation ¢, namely by
(o) = card {(+,7) |1 <i<j<n& o) >0(5)}

We remark that the Bruhat decomposition can be carried out in the broader context of
the so-called generalized flag manifolds G/B, where G is a reductive Lie group and B a Borel
subgroup (see e.g. [3]). In fact, J. Tits [13] has shown that the Bruhat decomposition is a
formal consequence of the axioms for a BN-pair structure on a group. This decomposition
is an immediate consequence of the (Bruhat) decomposition of G into the disjoint union of

double cosets BwB, where w is an element in the Weyl group W of G.

II1. Hessenberg Flags

Let F denote the field of real or complex numbers, and let A € g(n,F) be a linear
operator. Given a d-tuple K = (ky,---,kq) of positive integers satisfying the condition 0 <
ky <+-+ < kg <kg+1 =n, we form the product

d
M =[] G(k:, F™)
i=1
of the Grassmannians G(k;, F™) of k;-dimensional subspaces of F", and we define for p =
01,..,d-1
M(p,K,A) = {(S1,+++,Sa) € M | AS; C Si4p,i = 1,---,d}
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where we set conventionally Sy = F™if £ > d+ 1. Also, with the above convention understood,
it is natural to set

M(d,K,A) = M.
We observe immediately that if A = I, the identity operator, then
M(1,K,I) = Flag (K, F™).
Also, for a fixed “signature” K, we have inclusions:

M(0,K,A) C M(1,K,A)C ---C M(d - 1,K,A) C M(d, K, A) = M.

(IT1.1) Definition. Given A € gf(n,F),K = (ki1,--+,kq) and p € {0,1,---,d — 1} as above,

we define the Hessenberg flags of degree p as the elements of
Hess (p, K, A) = M(p, K, A) N M(1, K, I).

In other words, a Hessenberg flag (of degree p) is a flag Sy C --- C Sg such that AS; C Si4,.

Again we observe that we have inclusions:

Hess (0,K,A) C Hess (1,K,A) C -+ C Hess(d - 1,K,A) C Hess (d, K, A)
where Hess (d, K, A) = Flag (K, F™).
Remark. It is immediate to see that for A € g€(n, F) and A € F we have

Hess (p, K, A) = Hess (p, K, A — M), p=0,---,d—1.

Thus, we can assume A to be nonsingular, i.e. A € GL(n,F). In particular we observe that

for A€ GL(n,F), Hess (0, K, A) consists of those flags that are fixed by A.

For p=1,---,d — 1, the subset M(p, K,I) of M can be identified with a product of flag

manifolds as follows: For 1 = 1,--.,p define
K(2) = (kiskitps-s ki+f(i)p)

where r(1) 2 max{r | r a positive integer with ¢+ rp < d}. Then

r
M(p,K,I) = [] Flag (K(),F™), p=1,---,d—1

=1



under the mapping

(Sl, T an) — ((Sl) Sl+p’ ey S1+r(1)p), (527 S2+pa Tt 52+r(2)p)a

sty (Sp, Sp+p’ ) Sp+r(P)P))'

Let now A€ GL(n,F)and 1 < p < d—1. We define 2 map /i,, : M(p,K,I) - M(p, K, A)
by setting
-AAp((Sla"' ,Sd)) = (Sls°'"S;HASP+1,'"’AS2p,A232p+1s'°'

,A253p7""Ar(l)sr(l)pu}-l,"' ,A'(I)Sd).

Clearly A,, is well-defined and it admits an inverse (Ap)—l : M(p,K,A) - M(p,K,I) given

by (4,)" ! = (X‘\l)p. Therefore we have that
M(p,K,A) ~ M(p,K,I), p=1,---,d- 1L

The above isomorphism enables us to identify M(p, K, A) with an algebraic subset of M
isomorphic to a product of flag manifolds, for p = 1,---,d — 1. Thus, since Hess (0, K, A)
consists of the flags fixed by A, we have the following:
(I11.2) Proposition: For A € GL(n,F) and p = 0,---,d — 1, the set Hess (p, K, A) is a
projective algebraic variety.

From now on we will focus our attention on more particular cases, as stated in the following

assumptions:
(A1) The flags we consider are the complete flags, that is K = Ko = (1,2,++-,n — 1).

(A2) The operator A is assumed diagonalizable and with spectrum in F; so we choose once

and for all a basis of F™ on which A is diagonal.

In view of assumption (A1), we will simplify the notation by writing Hess (p, Ko, A) = Hess
(p,A). It is clear that in the case F = IR, assumption (A2) is not generic, so that most of
the following results are of greater interest in the case F' = €. On the other hand we remark
that if Q € GL(n, F), the analytic isomorphism ¥ ((S1,...,Sn—1)) = (Q71S1,++-, Q" Sp-1),
carries Hess (p, A) one-to-one and onto Hess (p, Q" 1AQ) so that there is no further loss of

generality in fixing a basis and assuming A to be diagonal.
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We now proceed to a description of local algebraic equations for Hess (p, A). First of
all we realize the flag manifold Flag (F™) as the homogeneous space GL(n, F)/U(F"), as
described in section II. By its very definition, Hess (p, A) is contained in Flag (F"). Hence, if
< h>=<0X >, witho € } (n) and X € L*(F)), we have that < h > is a Hessenberg flag
(of degree p), if and only if AcX = oXR, i.e.

(3) (67 A0)X = XR

where R is an n X n matrix in the Hessenberg form

Ti1 vee Tin
R: TP+11
o, .
. R .
L]
| 0 ver 0 Tpnp oo Tha

From (3) we deduce algebraic conditions on the entries of X. If A = diag(A1,++-, ), we have

’\a(l) 0 0 7
’\a(2)$21 Aa(z) .
(67'A0)X = ' ) . .
. * 0
_Aa(n):l:nl oo cee e z\a(n)znn_l ’\a(n) J

so that from (3) we easily deduce that

{‘r,-j=0 if5>1
Tie = Aa(i)’ = 1,.ee,m.

Hence we may rewrite the matrix equation (3) explicitly as:

Aoty 0 ee eee e eee 0
(1 0 ... ... ... 0]| ra A ]
Z21 * . ‘ : . . ) .
. o . . . . . pt11 . . .
.o o ) : . E
[ Zn1 ove eer eor Tpne1 1 . . ) o . 0
. O "o Tran—p Tan—1 Ag(n)
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i Aa(l) 0 “e o e soe 0 i
Ao(2)T21  Ao(2) N
(4) ol S S S
* o ' . 0
_’\a(n)znl )‘a(n)mnn—l ’\a(n) i

We shall regard (4) as n systems of n linear equations as follows:
X - (8" column of R) = (8" column of (¢! A0)X)

for f = 1,---,n. We observe that fixing the f** column of (¢c7*A40)X, say ¥(0,---,0, As(p),
)\,(3+1)zg+13,---,)\,(n)mnp), we automatically have for the solution vector - i.e., the Btk
column of R - that its first B entries are (0,::+,0,A,(3)). By using Cramer’s rule, we can
obtain explicit expressions for the remaining r;;’s, whereas the solutions corresponding to the
zeros in the left bottom corner of R give us the desired algebraic equations. Thus we will

obtain equations of the type:

fo:ﬁzO’ Ot—,3>p

where f.g is a polynomial in the z;;’s, 1 < j <1< n.

More precisely, since det X = 1, Cramer’s rule applied to the Bt* system gives

-1 0 . 0o | 0 1 0 07
z21 1, | : |
: L Y ’ E A
. | o8) |
’ S U |
fop =det | - o |
ZTal o a—1 | A¢7(c>4)z°tﬂ ! 0
[ R I T
| . | Ta+2 a+l o *
| : | : o ]
[ Zp1 cer e eee Zna—l | Ag(n)Ing | Zpat1 eee eer Tnn-1 1l

which we rewrite as fop = detf45. We now compute this determinant by performing column

operations. We subtract from the a** column of 84 one of the first (o — 1) columns suitably

i1



multiplied by a constant, in order to put 8,4 in upper-triangular form. Its determinant will

then be the value of the at? entry of the transformed column. Explicitly we have:

(I11.3) Proposition. For o — 8 > p we have:

fozﬂ = (Aa(a) - A,3))$D=ﬁ+

+ Z Z (—l)t(ka(’yt) - ’\U(ﬁ))ma%zﬁl’m """ T8+

t=1 a>'11>'-~>'y¢>ﬂ

Proof: We have already described the k t* step of the chosen algorithm, so we prove the

result by induction. To simplify the formulas we put

{A(%ﬁ) = Ao(v) = Ao (B)

X(as'ﬁa oo "7t’ﬂ) =Zay;Tyyyz "o Ty 17 T B

and we rewrite the statement:

a—0F~-1
fozﬁ =A(a)ﬂ)xaﬂ+ Z Z (_l)tA(7ta,B)X(a,'711"','7t7ﬂ)
t=1

= a>q> D> >0

The first step (k = 0) consists of subtracting from the a** column of 644 its B** column,

multiplied by A,(g), so that the transformed column, say vo, is

vo = (0,:+,0,(As(p+1) — Ao (8))Za+18,,(Ao(n) = Ac(8))Znp)

=t (Oa tee aOaA(ﬂ + 1) ,B)xﬂ+1,ﬂa' M ,A(n, ﬂ)xnﬂ)-

Suppose inductively that after k transformations (k < o — ) the obtained column vi_;

has entries (vk—1)w given by

k—1
Alw,B)zup+ 2. ) (=1)* A (e, B) X (ayv1, v ey 1) w2 B+E
(vk-1)w = t=1 f+k>71>7>p

0 ifw<pB+k
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We now subtract from vg—y the (8 + k)** column of 8,5 multiplied by (vk—1)g+s. Hence for
w > B+ k41 we have:

k—1
(vk)w = A(ws ﬂ) + Z Z (—l)tA(7taﬂ)X(wa'71a Vi ﬂ)

t=1 f+k>y1> > >P

—A(B+k,B)X(w, A+ K, B)

k—1
-3 3 (—1)*A (72, B) X (w, B+ Ky 715+ -+ 5 74, B)

t=1 B+k>~1>>v>p

k
=A(w,ﬂ)a:wp+z Z (_l)tA(7tsﬂ)X(w"71,"','Ytaﬂ)

t=1 f4+k+1>--->4:>f

and (vi), = 0 for w < B+ k+ 1. This proves the induction argument. So after (a — 3)

transformations we get vo_g_; with

a—pf-1

(va—ﬂ—l)w = A(W,ﬂ)mwﬂ + Z E (—l)tA(’Yt,ﬂ)X(wa Y1y "Yt,ﬂ)

=1 a>v>->7>f

for w > a. Setting w = « gives the asserted result.
QED

We recall that for each chart ch(o),0 € Y (n), of Flag (F™), the corresponding local
equations defining Hess (p, A) have indices (e, 8) equal to the indices of the zeros of a matrix
in Hessenberg form (of degree p), i.e., a« ~ 8 > p.
(II1.4) Theorem: If A € GL(n, F) has distinct eigenvalues, all of which are in F, then Hess
(p, A) is a smooth submanifold of Flag (F™) of dimension p(2n — p — 1)/2 (as a real manifold
if F = R and as a complex manifold if F = C).

Proof: We shall use the Jacobian criterion to show that Hess (p, A) is smooth. Fix a chart

ch(o) of Flag (F™) and consider the Jacobian

afozﬂ)

a—fB>p, 1<j<i1<n.
o0z;;

(J(ap).0)) = (
We order the row indices (o, ) and the column indices (i, 7) as follows:

(a,8) < (7,6) & eithera—f<y—bora—f=9-5& <.
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Next we look at the square submatrix of (J(a‘ﬁ)(i,j)) obtained by choosing its last (n—p~
1)(n — p)/2 columns, namely those with indices (7, 7) that satisfy i — j > p. We claim that:
) Jiapyuw) =0if@—f<p—v
ii) For r = p+1,---,n — 1, the square matrix (J(r)(a,6)(.5) £ (J(ap)(ii)) amB=i—i=r
is diagonal with diagonal entries A(r + L,1),A(r +2,2), 5 A(n,n —r1).
If i) and ii) hold, then the chosen square submatrix of (J(a,ﬂ)(i,j)) is lower-triangular as
a matrix of blocks, when the rows and columns are partitioned according to the partition
(n—p—ln—p—2,-+-,1) of (n—p—1){n-p)/2. In particular, since its diagonal blocks are

themselves diagonal, its determinant is equal to

[ A= TI Qo= de@)#0

p+1<asn p+icaln
a-f>p a-B>p

independently of the point in ch(g). Thus the mapping defined by {fag}ag o0 ch(o) is a
submersion and its fiber {f23({0})}ap is an embedded submanifold of ch(c). Moreover the

codimension of Hess (p, 4) Nch(0) = {f, 1({0})}ap in ch(o) hence in Flag (F™), is equal to
the rank of the mapping. In other words the dimension (over F) of Hess (p, A) is equal to the

number of nonzero subdiagonal entries of a matrix in Hessenberg form (of degree p), namely
(n—1)+-+(n—p) =p(2n—p—1)/2

Let us now prove i) and ii). We have

a—f-1
fcxﬂ :A(a,ﬂ)zaﬂ+ Z Z (—1)tA(’Yt,ﬂ)X(a,’71,"',’Yt,ﬂ)

t=1 a>'11>"')'7t’ﬁ
so that each factor z,5 appearing in
(5) X(aiFYl""’ﬁ):ma’nm"llﬁz """ TreBs a>’71>"'>7t>ﬂ

is such that v — 6 < a—f. Therefore if (u, V) is a pair of indices with a — 8 < p — v, we have
8fap — 0, proving i). Suppose now that (p,v) is such that « ~ 8 = p—v. If v < 3, none of

8z,

the factors in (5) is equal to Z,u and if v > 8 then g > a and again none of the factors in (5)

14



OfaB

e

is equal to z,,. Thus, if 4 — v = a — f then = 0, unless (@, ) = (u,v), in which case

gi:i = A(a, 8). This proves ii).

QED

Example. Let n =5 and p = 2. For a fixed o € ) (5) we have

fa1 = A(4,1)zq1 — {A(3,1)z43zs1 + A(2,1) 242221 } + A(2,1) 243732221

fs2 = A(5,2)zs2 — {A(4,2) 254242 + A(3,2) 253232} + A(3,2)z54243T32

fs1 = A(5,1)zs1 — {A(4, 1)T54z41 + A(3,1)z53231 + A(2,1) 52221}
+ {A(3,1) 254743231 + A(2,1)T54%42Z21 + A(2,1) 253732221}

— A(2,1)z54243%32 %21

The 3 x 3, full rank, submatrix of the Jacobian is then

A(4,1) 0 | o

0 A(5,2) I 0
—A(4,1)z5¢ —A(2,1)z2 { A(5,1)

(4,1) (5,2) (5,1)

IV. Connectedness

In this section we prove the connectedness of Hess (p,A),p > 1, in the case in which A
has distinct eigenvalues, all of which are in F. In fact we can prove a somewhat stronger
connectedness result which implies the previous one. In order to accomplish this, we need to
consider the Riccati flow induced by a linear operator B € GL(n, F) on Flag (F"*) namely the
flow

¢B (t’ (Sla "ty S'n.—l)) = (eBt(Sl)a °ce aeBt(Sn—-l))a teRR

whose features have been investigated in [1][10][14][15]. In particular we will use the fact that
if B has eigenvalues with distinct real parts, then the set of the flags fixed by B is the positive

limit set for the differential equation associated with the flow ¢p5.
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(IV.1) Lemma: Let A € GL(n, F) have distinct eigenvalues all of which are in F, and let &,
and h, be two flags fixed by A. Then h; and hj can be joined by a path in Hess (1, A).

Proof: There exist two permutation matrices 0,7 € Y,(n) such that h; =< o > and
hy =< 7 >, where < - > denotes as usual the coset modulo U(F™). Let now Y° denote

the Vandermonde matrix
1 A A2 .ot

1 An AL e ARl

where A, -, A, are the eigenvalues of A. Clearly, < Y? >€ Hess (1, A) and the nonsingular

matrix
M1 A cee AT
Yc? (u') = |¥ uA”("') T u)‘a(n)
[ 1 An . ,\3—1 ]

is such that < Y2(u) >€ Hess (1,A), for v € (0,1]. If we denote by ex the kt* standard

column vector, and we put & =* (ay,---, @), the linear system
Y°.a= €o(n)

has a solution e, since Y° € GL(n, F). Moreover, by Cramer’s rule

1 A eee ATTEO07
R S S s Sl I
n = gory0 " % o(n) oty | #O
(1 An s AP0
Thus, the matrix
[ I al/'u.“
In—l I :
B(u) = |
————— |
| 0---0 | an/u




belongs to U(F™) for v € (0,1}, and we have
< Y2 (u)B(u) >=< Y2 (u) > Hess (1, A), v € (0,1].

On the other hand,

T 1 A e ATTE07
Y (u)B(u) = | vdo(n) -+ udyy 1
L1 A, An=2 0]

for uw € (0,1], and so we see that

1\ A2 0
=10 0 0 1
(1 A, An=2 o]

Thus if we set
() = { <Y2(u) > ?fu € (0,1]
<Yl!> ifu=0
we have that v*(u),u € [0,1], is a continuous path in Hess (1, 4) with 41(0) =< Y! > and
7*(1) =< Y° >. Repeating this algorithm n times yields n paths 4*(u) in Hess (1, 4),7 =
1,---,n, joining < Y}~ ! > to < Y} >, where

- -

1 Ay .- APTTR

|
|
P | es(n—it+1) --- €o(n)
|
|

(1 A, .- An i

(Rows o(n — ¢t + 1),---,0(n) have zero entries at column indices 1,:--,n —1.) Since Y = o,
we obtain a continuous path in Hess (1, A) joining by =< ¢ > to < Y°® >. Similarly we can

join hg =< 7 > to < Y% >, and the proof is complete. QED
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(IV.2) Theorem. Let A € GL(n, F) have distinct eigenvalues, all of which are in F, and
let B € GL(n, F) have eigenvalues with distinct real parts. Assume that A and B commute.
Then any subset of Flag (F™) which contains Hess (1, A) and is positively invariant under the
Riccati flow ¢p induced by B is connected. In particular Hess (p, A),p > 1, is connected.

Proof: Let N be a subset of Flag (F") containing Hess (1, A) and positively invariant under
the Riccati flow ¢p induced by B. Since the positive limit set of ¢ consists of those flags that
are fixed by B, i.e., Hess (0, B), we can join any point in N to at least one point in Hess (0, B)
by a continuous path in N. On the other hand, Hess (0, B) = Hess (0, A) and by (IV.1) any
two points in Hess (0, A) can be joined by a continuous path in Hess (1, A) C N. Therefore

N is connected.

Finally, since A and B commute, we have that for all ¢ € IR, AePt = eP*A. Thus, if
(S1,°+*,Sn—1) € Hess (p, A),p > 1, then

A(eP?S;) = €BY(AS;) C ePSi4p, i=1,--,n—p.

Thus Hess (p, A),p > 1, is ¢p-invariant and the proof is complete. QED

Remark: We now give a second proof of the connectedness of Hess (p, A),p > 1, which does
not depend on the properties of the Riccati flow. By virtue of (IV.1), all we have to show is
that each point h € Hess (V A) can be joined by a path in Hess (p, A) to a flag fixed by A.

Let b € ch(o) [\ Hess (p, A),0 € }_(n), and let (z;;)1<;5<i<n be the o-coordinates of h in
Flag (F™). They satisfy

A, B)zap+ Y. 3 (DA B)Zar, e Typ =0

-1
t=1 a>7>>7>P
for  — 8 > p. Put now

yij(u) = vz, 1<5<1<n, u € [0,1],
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so that (i;(0))1<;<i<n are the o-coordinates of the fixed flag < o >. On the other hand,

a—pf-1
Ao, B)yap(u) + Z Yo (DA A)Yan () Y8 (%)

t=1 a>y1>->7>8

w*PA(a, B)Tap + Z > (-1)t

t=1 a>vy;>->7>0

A7 ﬂ)u(a—11)+-~+('n—ﬁ)%n .....

=u*"P{A(a, B)zap + Z Z (=1)*A (e, B) Ty -+ - )

t=1 a>y1>>7>f
= 0.

Thus, (yi;(%))1<j<i<n are the o-coordinates of a point in Hess (p, A) for all u € [0,1]. This
shows that we can join a point h € ch(o) () Hess (p, A) to < o > with a continuous path in
Hess (p, A).

V. Betti numbers

In this section we compute the Betti numbers of Hess (p, A) with A € GL(n, €), an
operator with distinct eigenvalues. They turn out to be generalized Eulerian numbers, in a

sense that will be clearly explained at the end of this section.

The strategy is to decompose Hess (p, A) into a disjoint union of subvarieties, namely
those obtained by intersecting the Bruhat cells of Flag (F ")-relative to a basis in which A is
diagonal - with Hess (p, A). These subvarieties are diffeomorphic to affine spaces C?, where ¢
is in fact a quantity attached to the element o € 3" (n) that indexes the corresponding Bruhat
cell. (Precisely, ¢ is the pt* “Eulerian dimension” of ¢.) The obtained decomposition is not
cellular, but we are able to derive the Betti numbers of Hess (p, A) by means of a theorem of
A.H. Durfee that gives the Betti numbers for a smooth complex projective variety that can be

written as a disjoint union of smooth contractible quasiprojective subvarieties [16].

(V.1) Proposition Let A € GL(n, C) have distinct eigenvalues and let B, be a Bruhat cell
of Flag (C") relative to a basis in which A is diagonal. Then B, [ Hess (p, A) is a subvariety

of Hess (p, A) which is analytically isomorphic to a C-affine space of complex dimension
E,(0) = card{(s,5) | 1<4,5<n, 1<i—-7<p, o(?) <o(s)}
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Proof: First of all we observe that B, C ch(0) and, more precisely, B, is the slice of ch(o)

obtained by setting equal to zero all the o-coordinates X;; for which o(z) > o(5). Let us now

consider the restrictions {fap}o,_p>p of the mappings {fop}a-pg>p to By. We claim that
fap vanishes identically « o(a) > o(8).

Suppose o(a) > o(B). Then 245 = 0 on B,. Moreover, suppose that one of the monomials
X(a,¥15: 57, 8), (@ > 41 > -++ > 4: > B) appearing in fup is not zero at some point in B,.
Then necessarily o(a) < o(7;) < --- < o(v¢) < o(8), a contradiction.

Conversely, assume that fag vanishes identically and suppose that z,p # 0 at some point
b € B,, i.e. suppose that the (a,3)** coordinate of b has value bns # 0. Then necessarily

o(a) < o(B). Hence the point ¢ whose o-coordinates are all zero except the (o, )** which is

bap belongs to B,. But fap(c) = bapA(a, 8) # 0, a contradiction. Therefore zag is identically
zero on B,, which implies o(a) > o(8).

Next we claim that the equations
fap =0, a—B>p, o(a) <a(B)

determine all the variables z44 for which @ — 8 > p and o(e) < o(8) as polynomial functions

of the variables z;; for which ¢ — 7 < p and o(?) < o(y).

Let (e, B) be a pair of indices such that  — 8 = p+1 and o(a) < o(8). Equation fag =0
implies that

(6) Taf = A(;,lﬁ) tz: Z (1) A(ve: B)zan, - -+ - T

a—f-1

1 o>y >>y>p

All the factors z.,5 appearing in the right hand side of (6) are such that y~6 <a—f=p+1,
and vanish identically if o(v) > o(6). Therefore z,g is a polynomial function of the variables
z;; for which ¢ — 7 < p and o(¢) < o(y).

Suppose inductively that for ¢ > p+ 1, all the variables z,g for which ¢ > a—f > p and
o(c) < o(B) are polynomial functions of the variables z;; for which i — j < p and o(¢) < o(7).

Let (a, B) be a pair of indices such that a — 8 = ¢+ 1 and o(a) < ¢(B). Again faﬂ = 0 implies
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(6). All the factors z.,5 appearing in the right hand side of (6) are such that y—6 < a—f = ¢+1
and vanish identically if o(y) > o(§). Since y—§6 < g, we have by induction hypothesis that, in
all the cases in which o(v) < 0(8), 25 is a polynomial function of the variables z;; for which

t—J <pando(t) < g(j). Therefore the same holds for z,5 and our claim is proved.

Finally, since the variables z;; for which ¢ — 5 < p and o(?) < o(j) are subject to no other
constraints, we conclude that B, [} Hess (p, A) is analytically isomorphic to a C-afline space

of dimension
Ey(0) = card {(4,7) | 1<4,5<n, 1<i—5<p, o(i) <o(s)}.

QED

Remark. The Bruhat cells are quasiprojective subvarieties of Flag (€™). Hence, their inter-

sections with Hess (p, A) are still quasiprojective.

We now show with an example that the decomposition of Hess (p, A) into the disjoint
union of the subsets B, (| Hess (p, A) is not cellular, in that the boundary of a subset of

dimension k is not always contained in the union of the subsets of dimension < (k — 1).

Let p = 1,n = 4 and 0 = (4,2,3,1) € }_(4). We have E;(0) = 2, so that dim(B, N
Hess (1,A)) = 2. Since 3 = 0(3) > 0(2) = 2, B, is the slice of ch(o) obtained by setting
z3z = 0. The equations defining ch(o) () Hess (1, A) are

fa1 =A(3,1)z3; — A(2,1)z32221 =0
fa2 = A(4,2)z42 — A(3,2)245232 = 0

fa = A4, 1)z41 — {A(3,1) 243731 + A(2, 1) 242221 } + A(2, 1) 243232221 = O
and so the equations defining B, [] Hess (1, A) are
f31 = A(3,1)z3, = 0, faz = A(4,2)z42 =0
fa = A(4,1)zq; — {A(8,1)z43231 + A(2,1)24222:} =0

Thus we see that on B, [| Hess (1, A),z31 = 241 = %42 = 0. Therefore

-0 O

B, ﬂ Hess (l,A) = {< >,T21,243 € C}

-0 OO0
O - O O

1
Z21
0
0

O O ~O
QOO O
O O =~ 0
-~ O OO0
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0 0 T43 1
z 1 0 O

{< (2)1 0 1 0 >,%21,T43 € C}
1 0 0 O

Consider now the sequence {fn}nen of points in B, [} Hess (1, A) where

00 n 1 00n 1771 0 0 O
0100 0o100[(f01 o o
fn=<lo0010/><|oo0o10]lo01a 1|

1000 1000/loo0 0 -n
00 1 0
01 0 0
=<lo o 1/n 1|~
10 0 0

Clearly,

0010

. _ 101 0 O0f __ A

’}er;ofn—< 00 0 1 >=< (4,2,1,8) >=< 7 >,
1000

and dim (B, () Hess (1,A)) = E1(7) = 2. Therefore, in the closure of a subset of dimension

2, there is a point that belongs to another subset of dimension 2.

We are now in a position to prove our main result. We will use the following recent

theorem of A.H. Durfee [16].

Theorem: Let X be a smooth complex projective variety. Suppose that X is a finite disjoint

union X, |J--+|J Xm, where the X; are smooth contractible quasiprojective subvarieties. Then
be(X) = card {X; |2 dim X; = k}.

where bi(X) denotes the k** Betti number of X.

(V.2) Definition: For n > pand k=1,--+,(p(2n — p — 1)/2) 4+ 1 we define the generalized

Eulerian numbers of degree p by

A,(n,k) = card {c €X(n) | E,(0) =k -1}

The reason for this terminology will be briefly discussed after the following theorem.
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(V.3) Theorem: Let A € GL(n,C) have distinct eigenvalues. Then

box( Hess (p, A)) = Ap(n,k +1)
bok+1( Hess (p, A)) =0

Le., the even Betti numbers of Hess (p, A) are generalized Eulerian numbers of degree p, and
the odd Betti numbers vanish.
Proof: Readily follows from (V.1) and Durfee’s theorem.
QED
For p=1and o € }_(n), E1(0) simply counts the number of “falls” in the permutation o,
a fall being a value of ¢ for which (1) > o(¢+1). Thus A, (n, k) is the number of permutations
in )°(n) with (k — 1) falls. Equivalently, by reading the permutations backwards, A; (n, k) is
the number of permutations in ) (n) with (k — 1) “rises”, a rise being a value of ¢ for which

o(?) < o(¢+1). These numbers are the well-known Eulerian numbers, which occur in a variety

of combinatorial problems. Their exact value is given by

nk:kZ:: (n+1)(k i

For the elementary properties of the Eulerian numbers, the reader is referred to L. Comtet
[17] or J. Riordan [18].

Several generalizations of the Eulerian numbers have been considered in the literature;
examples can be found in [5], [6], [7], [8], [9]. Our generalization, perhaps new, includes another
class of interesting numbers, namely those corresponding to the case p = n — 1. In this latter
case, the “Eulerian dimension” E,,_1(0) of a permutation o € }_(n) coincides with its length

£(o), that is
En_i1(oc)=£(c) = card {(+,5) |1 <i<j<n&aot) >a(s)}

Thus, Ap—1(n,k) counts the number of permutations in ) (n) with length (k — 1). The
numbers A,,_;(n, k) are also well-known, and sometimes referred as the Mahonian numbers.
In addition to being the even Betti numbers of the complete flag manifold, they are best known

as the coefficients in the expansion of the polynomial

1+2)(14+z+2%)----- (1+z+---+2"1).



Again we refer to L. Contet [17] or J. Riordan [18] for their elementary properties.
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