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Abstract— - - : . 3 . .
A strategy for design optimization of aonliscarly constrained problems is
presented. The strategy combines techniques used in production rule systems
with an optfmization_procedure dealing with local monotonicity and sequential
-quadratic programming techniques. The }ule syséém fs based on—oﬁsé}vatigns
obtained by appTying'the optimization procedure'to differentvclasgeg of test
problems. The observations ﬁade may be incorporated in a rule-based system in
such a way that if i1ts premise.  is true, then the action part of the rule is

concluded. This is the first step at developing such a rule-based system for

design optimization.



1. Inoroduction -

Tfaditionally the design process has been based on_tria]—dnd—error
methods, with high quality designs achieved only as experience has accumu-
lated. However, whenever it has been possib]e to Specify An exact-or even an-
apﬁroximate;¥e1ationship bét&een—thqﬂproperties of the opjeét being -designed
and the design variables, then the use of an optimization teé%niqué:has |
enabled the quick generation'of a good design. Optimization téchniques are
most appropriate when thefe exists a comparatively large number of possible
values for the design variables which would all produce a feasible solution.
The optimization task is then to find the best acceptable design among all
possible designs. Here, the general form of the problem statement to be

discussed is given:

minimize f(x)

subject to (1)
93 (x} =0 J=1L1 ..., m
g; (x) <0 J = (m+l),...,p

where f and gj are (scalar) objective and constraint functions, and X is a n-
vector of design variables. It is assumed that at least one of the functions
(objective or constraints) is nonlinear, i.e. a nonlinear programming (NLP)
problem. Solution strategies for the NLP problem have maintained a high
degree of interest on the part of both engineers and operation researchers

-[1-4]. These strategies generally utilize techniques whiéh_é}e based on local

“information. —-For example, in one class of gradient-based -techniques, the par-

“tial dérivatives of the objective and constraint” functions at the current



“point -are calculated (local information)kﬁand then the direction of wminus -the-

gradi;nt of the objective function (or the reduced gradient of the objective
function, if there is any equality constraint) is used to obtain the next
-point while satisfying ghe-constraints. The information provided by the gra-.
dfent 1s based on the linearizationrof the functions at the cufcent point -
(local information),-and may not describe the behavior of the functions
involved properly (incomplete information). Therefore, while the a]gorithﬁ
adequately solves one class of problems, it may perform poorly on others,
unless extensive “tuning” on the algorithm is done by the user. This has led
to a general feeling in the industry that only experts in design optimizaton
can apply optimization techniques.

in this paper, we present an approach to the solution of nonlinear
programming problems which goes beyond the traditional optimization tech-
niques. The approach couples optimization techniques with the observations
made from the test results of different classes of NLP problems. The opti-
imization technique used is based on a local monotonicity analysis [5,6] com-
bined with a sequential quadratic programming technique [7]. A short
description of the program, i;s major features, and use aof rule-based
techniques to enhance the program procedures are presented. Various test
problems and results are then examined to show the effectiveness and variabi-
lity of design strategies, and to identify areas where additional knowledge

and subsequent rules can be meaningfully employed.

2. Description of the Program

-AThe-optimjzétion program described here is an .extension of the one explained

in[6]. -It is based on thé“dbéerigtioq {8-10] that in desjgn optimization,



Step 1: ' - L. : - -

Find partial derivatives of the objective and constraint functions. I
there are some constraints active at this point, then the partial constrained
derivatives are evaluated [11].

Step 2: - - .
1f [ef() 1] < e, and if

(a) g'is feasible, then check KKT optimality conditions, if they are
satisfied, then g'= 5* and stop; otherwise deactivate constraint(s)
with negative Lagrange rultiplier(s) and go to step 1:
{b) g-is infeasible, then deactivate the current active set and go to

Step 1:

Otherwise, continue to Step 3.

Step 3:

In the objective function, select the variable (to be referred as the

active variable) for which the objective function has the largest absolute

partial derivative, continue to Step 4.

Step 4:
Apply first and second wmonotonicity rules to identify the active
constraint(s). If no constraint is active, go to Step 5; otherwise go to Step

6.

Step 5: -

Move along a desEent-direction—td'q new point-and_then go iq_S@ep'l,



there usually exists a large number of ineguafitxﬁ;onstraints; wany of

them satisfied as equalities at the optimum (active constraint). TRke program
utilizes an active set strategy based on local monotonicity information. Two
rules used in local monotonicity analysis [5] are repeated here for con-
venience. Referring to problem (1) we have the following rules:

(1). 1If the objective function'is monotonic with respe;t to (w.r.t.) a
partitular variable in the neighborhood of a local minimum, then
there exists at least one active constraint with opposite monotoni-
city w.r.t. that variable in that neighborhood.

(2). If the objective function is stationary w.r.t. a particular
variable in the neighborhood of a local minimum, then either all
constraints containing that variable are inactive, or there exists

at least two active constraints having opposite monotonicity w.r.t.

that variable in that neighborhood.

The rules can be viewed as a special case of the Karash-Kuhn-Tucker (KKT)
optimality conditions {5]. Since both rules identify the candidate active
constraints, a selection criterion is necessary. The selection criterion
(which is also in the form of'ru]es) utiiizes a local dominance criterion to
select the active constraint per rule in a given iteration. If the local pre-
diction of monotonicity 1is untrue, corrective action is taken, such as a line
search between the points generated by two consecutive iterations. We sum-
'marize here the basic steps of the algorithm:

. Given an -dinitial point as the current poin§13ﬁ o -



Stép 67 , = _ o

[f estimated monotonicities are preserved, qo -to Step 1. Otherwise deac-
tivate the constraints associated with offending monotonicities. If monotoni-
city estimates generate violations pertaining to the objective function, do a
one—dimeqsional search. If the violations pertain to the constraints, make a
descent move. Then return to Step 1. |

The preceding algorithm has been executed for a aumber of design and test
problems {6,10). The results suggested that further improvement in the
algorithm was possible. In particular, to improve the reliability of the
algorithm, a sequential quadratic programming (SQP) technique similar to that
suqaested by Powell [7] was introduced into the program. Transition from a
local monotonicity strategy to the sequential quadratic programming technique
occurs whenever there is no improvement in the objective function value after
a specified number of iterations. The sequential quadratic programming solves
a quadratic programming subproblem in each iteration. This subproblem is an
approximation of the lLagrangian subject to linearized constraints of (1), and
it 1s guaranteed to have a positive definite Hessian. The subproblem is

stated in the following form:

minimize Q8) = F(X)+8"9F(X)+(1/2) 8 B(X,X)6
supject to (2)
Lymy oo = _
Vg.(x)§ +g.(x) =0 i=1l,...,m -
H RS -
V9 (x)s + gj.(g)_"co i= (mtl),...,p - )



where T - - , T

ton
i

Ux
|

x|

B=v L (x, )

_ 0
Lx,A) = f(f)‘+_2

J=1 Ajgj(é_)' | ‘ : | ©

The solution of this quadratic programming subproblem estimates the

Lagrange multipliers and direction of search AJ,

&3 used 1n a subsequent one-
dimensional search. This one-dimensional minimization has two goals: to
decrease the objective function and to minimize the constraint infeasibili-

ties. The function used for one-~dimensional minimization 1s:

dla) = f(x) + ? u. lg.(x)| + g u.[min(0,q.(x))|
- j5l J J -~ j5m+l j -
where
X =X + a§i and u; > 0
Here, we select uj = llel for the first iteration and
uj = nmx[lxjil, 1/2 (uji_l + lxjil))

for subsequent iterations to guarantee convergence {7]. The program is writ--

ten in FORTRAN and implemented on an IBM-AT microcomputer. -



3, Knowledge-Based Optimization Program - K

The neced for developing optimization programs based on invormation other
than that used by the traditional nonlinear programming techniques was
discu§§ed previously in [5,10,13]. In that research the idea was to incor-
porate>availa61e global knowledge for a pérticular problem, with nonlinear:_
programming techniques. In most cases, the knowledge can be organized 1in the
form of rules describing possible constraint activity or inactivity, redun-
dancy, and dominance. In Li and Papalambros {13] it was proposed that rules
be organized in a production system that made deductions about possible active
constraints in the problem.

Here the idea is to use different local optimization strategies and
observe the effect of each strategy on the overall performance of the NLP
method using a set of test problems. The observations made here form the pre-
mise of a production rule system. If the premise is true, then the action

part of the rule is concluded:
1f premise then action

The production rule system constructed this way may not pe deterministic. In
that case, based on the degree of certainty in the premise, the strength of

the action is modified {14]. Such a rule-based system is particularly useful
in nonlinear programming methods because there is no single NLP method which
can solve all classes of nonlinear problems unless extensive “tuning” in the

various parameters is done within the program. ) -

One particular requiremeat of an intelligent optimization analysis is the

determination of a good initial strategy which can be altered in the midst of



th . 4. oyrar execution.  This in turn requires that. the selection—process exa-

mine 411 possible states as well as the history of the process.

There are various types of selection processes, each of which can change
the behavior and convergence of the optimizatign algoyj?hm. This will be
described in the_sectidn of test results. The choice of a seléction process
is dependent'on the class of the optimizatibnvproblem.

[n this research, the size of the selection space which will generate the
proper solution is unknown. Ffor this reason, we attempted to identify all
possible states, with checks to see 1f rules could be discarded or combined,
in an effort to collapse the selection space. For a large selection space
this tends to be difficult. However, as constraints are placed on the struc-
ture, the number of possible selection processes becomes reduced. It has been
noted that there reaches a point where selection rules aid in simplifyiang the
analysis process and reducing the execution time. Presently, we have examined
the applicability of a production rule scheme based on identifying classes of
solution paths. In particular, the selection of an “active variable" as an
initial strategy parameter, can be based on a variety of factors pertaining to
the partial derivative of the objective function w.r.t. that variable.

The termination method involves examining the parameters which measure the
degree of success. They include: (1) the number of objective function eva-
luations; (2) the number of constraint functions evaluations and (3) number

of gradient evaluatiorns.

o~

4. Test Problems

To make -observations with regard to the perﬁarmance of the program descfkbed

_in section-2, a set of test problems have been selected from Hock and1'



Schittkowski [12]. "Since “the test prc¢- '« .o W -~ ¢ "_reai structure, a classi-

fication number is defined. Ffollowing the practice of Hock and Schittkowski -
with a slightly different notation, we define the sequence of letters: 0CS-N.

Thc'following list gives all possible abbreviations which could replace the let-

ters 0, C, S, épd N for tﬁ? tested problems:

0 : Information about thé Objective function
0=L: Llinear objective function
0=Q: Quadratic objective function

0=P: Generalized Polynomial objective function

C - Information about the constraint functions

i1

C=L: Linear constraint functions
€=Q: Quadratic constraint functions
S : Information about the Starting point
S=F: Feasible starting point
S=1: Infeasible starting point
N : Problem number in Hock & Schittkowski [12]
As an example, consider the following NLP_prob]em: ' -

mlnlmlze_r f(ﬁ) = }ix2x3

2 2 _— -
subject to 3 +2x2 +axq 48 < 0 L



and with the start%ng point: X = (1,1,1)t T < - - = -
This problem is classified as PQF-29 since the objective fuaction is

Polynomial, the constraint is Quadratic, the starting point 1s Feasible, aad

it is problem No. 29 in (12].

We now summarize the abbreviations used in Table 1 _to describe the test

problems:

P : Test problem number

0CS-N : Classification of the test problem

NV o llumber of variables

NEQ : Number of equality constraints

NC : Total number of constraints, i.e., equalities and inequalities
NACTC : Total number of active constraints

f(x,) : Objective function value at the optimal solution

The test problems considered in this study have 2 to 15 variables with 1 to
22 constraints. In 17 of the test problems, there are as many variables as there

are active constraints at the optimum.

5. Test Results

The aumerical results of the program testing are listed in Table 2, The

-

abbreviations used in the table are described here: -

TP : Test.problem number - - ) : ‘

10



SU : suatey:r used: ] - = .. _ .

SU=LA; select the active Variéb]e for wh{zh the 6bjective function has

the Largest Absolute partial derivative.

SU=LN; select the active variable for-which the objective function has

the Largest Negative partial derivative.

SU=LP; select the active variable for which the objective function has

the Largest Positive partial derivative.

NF : Humber of objective evaluations

NG : HNumber of constraint functions evaluations

NDF :  Number of gradient evaluations of objective function
NDG : Number of gradient evaluations of constraint functioans

We have selected the most efficient strategy for a problem, to be the one

with the lowest value of the TOTAL, i.e.:
TOTAL = NF + NG + NDF(or NDG)

If one strategy had the lowest TOTAL, i1t was assigned a probability of one.
If wo strategies had ident;cgl lowest totals, then each of those strategies
was assigned a probability of one-half. Finally, if each strategy had the
same TOTAL, then each was assigned a probability of one-third.

Once this information was gathered for all the problems executed with all

the strategies, an analysis was done to detrmine what the best strategy or

-~

combination of strategies is to solve an NLP probiem of a particular class..

The following simple probability calculation was done for_gach»c]ass_of-NtP_

- problems:

11



. ©PR(LX, = L br (LX/PKOBLEM) . - o : -
PC : I

where,
1. Pr(LX) = Probability of success of strategy LX for-that class.

2. Pr(LX/PROBLEM) = Probability of success of a strategy for a
problem. . - -

3. NPC = Number of problems in the particular class of problems beiag
analyzed.

Thus, the strateqgy that had the greatest Pr(LX) was most likely the best
strateqy to solve that class of problems. The results of our efforts are
shown in Table 3. The table includes the probability of success of a strategy
for a particular class of NLP problems. The strategy with the highest proba-
bility is most likely the best strategy to solve that class of problems.
Table 4 shows the classes of problems and the best strateqgy for each class.
[n addition to indicating the best strategy for each class, Table 4
also suggests a global strategy based on the feasibility of the startiag
point, If the starting point were infeasible, the best strategy to solve the
NLP problem is LN. 0On the other hand, 1f the starting point is feasible, the
optimal strategy in LP, except for PLF class. In essence this shows perhaps
that the structure of the objéctive function and the constraints is not as
important as the feasibility of the starting point in determining the

appropriate strategy.

6. Conclusion

The main thrust of this paper is to emphasize the need and feasibility of

developing an optimization program which uses knowledge other than that tradi-

tionally used in optimizdtion_strat@giest This knowledge is based on the

12



observations which are-drawn by applying the optimizatic, &it.yer .0 sitferent -

classes of test problems. The observations may then be used to develop a
rule-based system which determines a course of action based on the results of

the applied rules.



TABLE 1: List of Test Problems

p—
<

L DLW N

o

0CS-N NV f(x,)
PPF-93 | . 6 2 135.1
PPF-100 7 2 680.6
PPF-26 3 1 0
PPI-101 7 3 1810
PPI-102] 7 3 911.9

| PPI-71 4 3 17.01
LQI-10 2 1 1.
LQI-95 6 6 0.0156
LQI-96 6 6 0.0156
LQ1-97 6 6 3.136
LQI-98 6 6 3.136
LQI-106{ 8 6 7049
PQI-15 2 3 2 306.5
PQI-16 2 5 1 0.25
PQI-17 2 5 2 1
PQI-19 2 6 2 ~6962
PQI-20 2 5 2 38.2
PQI-27 3 1 1 a
POF-29 3 1 1 -22.63
PQF-33 3 6 3 -4.586
PQE-117| 15 | 20 11 32.35
PLF-24 2 5 2 -1
PLF-36 3 7 3 ~3300
PLF-37 3 8 1 -3456
PLF-86 5 { 15 4 32.35
QLF-35 3 4 1 0.1111
QLF-44 4 | 10 4 -15
QLF-76 4 7 2 -4.68
QLF-74 4| 13 3 5126
QLF-75 4 | 13 4 5174
QQF-30 3 7 2 1
QQF-31 3 7 1 6
QQF-~43 4 3 2 -44
QQF-84 5 | 16 5 -0.528x10"
QQF-1131 10 8 6 24.31
QQF-12 2 1 1 -30
QQI-14 2 2 2 1.39
QQI-18 2 6 1 5
QQI-22 2 2 2 1
QQI-23 2 | 9 2 2

joai-65 | 37| 7 1 - 0.95
QQI-83 5 {716 5 -0.3067x10°

14




 TABLE 2: Test Re_sults

NDF or NDG

TP su NE NG
I CA | 141 141 20
Ly | 141 141 20
| 141 141 20
2 La | 1268 3118 | 144
1w | 283 684 21 -
| 142 378 13
3 LA | 220 850 55 -
| 133 253 34
| 133 258 34
4 LA | 1172 1172 104
Lk | 1172 1172 104
Lp | 1172 1172 104
; LA | 1212 1212 109
L | 1212 1212 109
Lp | 1212 1212 109
6 LA | 233 238 13
| 238 238 13
| 226 226 11
7 LA | 403 797 22
L | 403 797 22
Lp | 403 797 22
g LA | 479 479 10
e | 479 479 10
L | 479 479 10
9 LA | 479 479 10
Ly | 479 479 10
tp | 479 479 10
10 LA | 570 570 15
Lt | 570 570 15
L | 570 570 15
11 LA | 570 570 15
LN | 570 570 15
] tp | s70 570 15
12 | A {1153 ] 1153 | aa
LN | 1153 1183 . 44 -
LP | 1153 1153 44

15




14

15

10

17

19

20

21

22

23

24

25 ]

LA
LN
LP

LA
LN
LP

LA
LN
Lp

LA
LN
LP

LA
LK
Lp

LA
LN
LP

LA
L

LA
LN
LP

LA
LR
LP

LA
LN
LP

LA
LK
LP

LA
LN
LP

LA

LK

- P

85

54 .

85 _

L 19 26
. 85 790

42
87 87
87 87
87 87
“Could not find
109 120
“Could not find
91 124
45 53
9] 124
126 126
126 126
118 118
254 245
254 245
254 245
432 921
432 921
97 134
26 34
46 47
26 34
337 337
337 337
337 337
19 26
19 26
40 43
34 46
34 46
45 48
63 63
58 58
63 63
85 { -85

-85
85

14
13

14
14
14

feasible point'

22

ecasible point'

18
16
18

21
21
25

17
17
17

108
108
25

15
15
15

14
14

6.

14

16




27

28

29

30

31

32

33

34

35

36

37

38

LA
LN
LP

LA
LN
LP

LA
LN
LpP

LA
LN
LpP

LA
LN
LP

LA
LN
Lp

LA
LN
LP

LA
LN
LP

LA
LN
LP

LA
LN
LP

LA
LN
LP

LA
LN

Lp-

LA

LN

LP

34
52
34

79
74
68

180
162
193

382
382
616

317
317
491

93
66
98

187
142
170

987
399
244

73
73
73

265
265
265

83

83
149

166

-166 .

166

173

45
173

34
58
34

92
86
69

542
252
280

382
382
616

317
317
491

178
67
178

423
409
262

1957
2780
510

13
73

73

265
265
265

237
237
311

166
166
166

578
48
578

15
15

14

16
22
21

19
19
15

18

18 -

14

10
17
10

13
14
23

177
32
31

12
12
12

24
24
24

24
24
28

[Ye Vo RVo)

19
16
19

17




39

40

41

42

LA
LN
Lp

LA
LK

Lp .

LA
LN
LP

LA
LN
LP

91 _1
91
91

19
47
19

19
108
108

207
207
207

56
96
96

29
57
29

19
108

- 108

207
207
207

16.

16
16

"~ 12

20
20

12
12
12

18
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TABLE 3: Strategy Effectiveness

CLASS (NPC) STRATEGY PROBABILITY OF SUCCESS

PPF(3) LA 0.11
LN - 0.28

Lp 0.61

PPI(3) ~ LA 0.33.
- LN - 0.33

Lp 0.33

LQL(6) LA 0.33
LN 0.33

LP 0.33

PQL(6) LA 0.28
LN 0.44

LP 0.28

PQF (3) LA 0.28
L 0.11

Lp 0.61

PLF(4) LA 0.33
Ln 0.58

Lp 0.09

PGI(3) LA 0.50
LN 0.50

Lp 0.00

QUF(2) LA 0.17
LN 0.33

LP 0.50

QQF (6) LA 0.19
LN 0.36

LpP 0.45

QQI(6) LA 0.36
LN 0.45

LP 0.19

19




TABLE 4: Best Strategies

Class (NPC) Strategy
PPF(3) LP

PPI(3) : LA,LN, or LP
LQI(6) | LA, LN, or 1P
PQI(6) . LN

PQF(3) LP

PLF(4) LN

PGI(3) LA or LN

QLF (2) Lp

QQF (6) Lp

QQI(6) LN

20
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