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Abstract

Optimal multilevel feedback control policies for rate based flow control in available bit rate
(ABR) service in asynchronous transfer mode (ATM) networks are obtained in the presence
of information and propagation delays, using a numerically efficient two timescale simultaneous
perturbation stochastic approximation (SPSA) algorithm. Convergence analysis of the algorithm
is presented. Numerical experiments demonstrate fast convergence even in the presence of
significant delays and large number of parametrized policy levels.
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1 Introduction

The available bit rate (ABR) service in asynchronous transfer mode (ATM) networks is used pri-
marily for data traffic. As the name suggests, bandwidth allocation for ABR service is done only
after the higher priority services such as constant bit rate (CBR) and variable bit rate (VBR) have
been allocated bandwidth. The available bandwidth is a time-varying quantity, and for proper
utilization, the network requires the ABR sources to control their own traffic flow. Two main pro-
posals discussed at the ATM forum for flow control in ABR service [32] were the rate based and the
credit based schemes. The rate based scheme [7] was recently accepted by the ATM forum primarily
because of the higher hardware complexity and costs involved in the latter scheme [31] (see [32] for
a general survey of the various proposals). Several heuristic algorithms for computation of explicit
ABR rates have since been proposed at the ATM forum [28], [17]. Most other approaches ([3], [22],
[19], [24], [25], [12], [35]) use fluid models of the network. Even though of obvious practical interest,
very little is available in terms of stochastic control approaches in the queueing framework largely
because they lead to analytical intractability when several realistic features are incorporated into
the models. For instance, in [1] the problem is formulated as a team problem in the discrete time
queueing framework but with linearized queue dynamics where the queue length is in fact allowed
to become negative. In [30], a continuous time queueing model is studied and stability conditions
for delayed feedback policies are obtained. However, performance analysis there is done only under
the assumptions of no delays and continuous observations. In this paper, we adopt a model that is
similar to [30]. We use an efficient simulation based stochastic approximation scheme for comput-
ing optimal ABR rates in the presence of delays, and with observations and information feedback
available only at periodic time instants.

The model that we consider, shown in Fig.1, is a single queue (or switch) with finite buffer (of size
B) fed with two input streams. This queue may represent a bottleneck node on the virtual circuit of
an ABR source. One of the input streams (the uncontrolled stream) is a Markov modulated Poisson
process (MMPP). The ABR source is represented by an infinite data source and the packets from
this source are extracted as a controlled Poisson process. The queue length process is observed
at instants nT, n = 0,1,..., and from which the desired ABR rate for the next time interval is
computed at the node. Delays in receiving the new rate information and in transmitting packets
are included in our model. The objective is to find an optimal control policy for the ABR source
that balances various performance measures such as throughput, mean and variance of delay and
probability of overflow. Often this problem is addressed by minimizing the distance of stationary
mean queue length from a given fixed constant Ny [34], [18], [30].

In this paper, we consider parametrized policies that have several levels of control. We de-
velop a simultaneous perturbation stochastic approximation (SPSA) [33] variant of a two timescale
stochastic approximation algorithm [6] to obtain the optimal policy with this structure (see also [15]
for application of SPSA to optimization of discrete event systems). The two timescale stochastic
approximation algorithm developed in [6] for simulation based parametric optimization had the ad-
vantage that it updates the parameter at increasing deterministic instants [2], without the need for
regeneration as in [11], [13]. This it achieves using different timescales (or step-size schedules). On
the other hand, like other finite difference schemes, it requires NV + 1 simulations for any N-vector
parameter to obtain the gradient estimate. A proposed alternative was to update the parameter in
‘cycles’, in which only one component of the parameter is updated at a time using only two parallel
simulations at any instant. This, however, slows down the convergence considerably. In [5], this



algorithm was used for the ABR problem with the uncontrolled arrival stream Poisson: As a result
of slow convergence, only three level parametrized policies were considered in the numerical exper-
iments. The simultaneous perturbation stochastic approximation (SPSA) technique developed by
Spall [33] requires only two simulations for any N-vector parameter, with all the N-components
of the parameter vector updated simultaneously. The gradient is obtained from two performance
measurements taken at randomly perturbed settings of the parameter components, most commonly
by using i.i.d. symmetric Bernoulli random variables. Our numerical experiments indicate that the
two timescale SPSA algorithm is particularly effective in obtaining optimal multilevel feedback
policies (with as many levels as one wants) for our model. In sum, our work contributes to the
ABR literature by developing a computationally efficient simulation based algorithm for ABR flow
control using a queueing model that incorporates the important practical features of information
and propagation delays. The algorithm is orders of magnitude faster than a previously proposed
algorithm. Furthermore, our numerical experiments highlight the substantial performance gains
obtained by employing the structured feedback policies proposed here over open loop policies.

The rest of the paper is organized as follows. In Section 2, we describe the model and the
two timescale SPSA scheme for obtaining the optimal structured policy, and compare it with the
original two timescale stochastic approximation scheme of [6]. The convergence of the algorithm is
shown in the Appendix. In Section 3, we use numerical experiments to illustrate the algorithm and
compare performance of multilevel closed loop optimal feedback policies with optimal open loop
performance. Finally, in Section 4, we provide concluding remarks and extensions.

2 The Optimization Problem

The model that we consider, shown in Fig.1, is a bottleneck node with two input streams, one
controlled (representing the traffic from the ABR source) and the other uncontrolled (representing
all the other traffic in the network passing through this node). The ABR stream is modelled as a
controlled Poisson process with instantaneous intensity specified by a feedback control law defined
below. The uncontrolled stream is modelled as a Markov modulated Poisson process (MMPP). Let
{X(t),t > 0} be a finite state, irreducible, aperiodic Markov process with state space S,. When

X(t) =i € Sy, the instantaneous rate of the uncontrolled stream is A, ;. Let X, 2 x (nT) represent
the state of the modulating chain of the uncontrolled MMPP at time nT. Let p(i;j), i,5 € Sy
represent the transition probabilities of {X,,}. The size of the bottleneck buffer is B and could be
large (e.g., in the simulation experiments that we illustrate in Section 3, B is taken as 5 x 10°).

Let the instantaneous queue length at time ¢ be represented by ¢(t) and let ¢, = q(nT), n > 0,
represent the queue length at times nT’, n > 0. We assume that the ABR rate is held fixed in the
time intervals [nT, (n 4+ 1)T'), n > 0, with A.(n) representing this ABR rate (in the nth interval)
and is computed using the queue length (g,,) observed at the node. The new rate is then fed back to
the source. Our model thus incorporates explicit rate feedback. This information however reaches
the ABR source with a delay Dy, whereupon the ABR source starts sending packets with the new
rate. Further, there is a propagation delay D in packets to arrive at the bottleneck node from the
source. We assume all through that the quantities T', Dy and D are constants. Let S = {0,1,.., B}
be the set of possible queue length values. Let 6 represent the N - dimensional parameter vector
to be optimized that takes values in a compact set C C RY. We shall assume in particular that
C is of the form Hij\il[)"i,mina i max), With Aj min > 0, for all ¢ = 1,.., N. Then A.(n) takes values in



some closed set D C [ min A\ min, max _\; max) (depending on 6). Let h: S — Z7 be a given
ie{1,..,N} ie{1,..,N}

bounded and nonnegative cost function (Z% is the space of nonnegative integers). Our aim is to
minimize the average cost

702 Jim -3 niar). 1)
=1

The feedback policy that governs the rate A.(n) is given in (2.2) below. In the Appendix, it is shown
that under the type of feedback policies (2.2), the limit in (2.1) exists w.p.1 and is deterministic
for each 0. Let a;, 1 = 0,1,.., N, be integers such that —1 =ap < a1 < as < .. < any_1 < ay = B.
Define the following subsets of S: S; = {a;—1 +1,..,a;},i=1,..,N. Then fori=1,..,N,

Xe(n) = N if gn € S (2.2)

In the above, § = (A1, \a, ..., A\x)T is the given parameter. Let us now briefly motivate our choice of
the form of policy (2.2). Note that if N = B, S; = {i}, we have the most general case possible (viz.,
allocating one control to each possible state). Markov decision processes (MDP) [26] represent a
general framework for dealing with such problems. However, a numerical solution using MDP based
on standard MDP solution techniques like policy iteration and value iteration [26] normally faces the
‘curse of dimensionality’ for large state spaces. Our numerical experiments in Section 3 for instance
take B = 5 x 10°. In addition MDP solution techniques also require explicit specification of the
transition probabilities of the continuous time chain at instants 7', 27", etc. In the presence of non-
zero delays Dy and Dy, these techniques become computationally prohibitive. Heuristic simulation
based alternatives to standard MDP solution methods based on reinforcement learning techniques
(also sometimes called Neuro Dynamic Programming (NDP) [4]) provide another possible solution
procedure that are not considered here.

We now briefly motivate the use of stochastic approximation, i.e., when J () (as defined in (2.1))
is not available analytically but must be estimated by simulation (see [14], [21]). A stochastic
approximation algorithm recursively updates 6 using gradient descent with decreasing step-sizes
and an appropriate estimate of V.J(#). The efficiency of the algorithm usually depends on the
quality and computational requirements of the gradient estimate.

The advantages of using the SPSA approach are best appreciated after first presenting the
original two timescale algorithm of [6]. We begin with the scalar parameter case. Let 6 > 0 be a
small fixed constant. Let C' be the closed interval in which 6 takes values. Let 7(.) represent the
projection map onto C, i.e., m(z) is the closest point in C' from z. Define sequences {a(n)} and
{b(n)} in (0,1] as follows: a(0) = b(0) = 1, a(i) =i~ L, b(i) =i~%, i > 1, for some a € (1/2,1).
Then,

a(n+1) bn+1)
a(n) " b(n)

Za(n) = Zb(n) = 00, Za Zb 2 < 00, a(n) = o(b(n)). (2.4)

Let 8(m) 2 (AM1(m), ..., An(m))T represent the mth update of the parameter 6. Define {n,,, m > 0}
as follows: ng = 1 and ny1 = min{j > np, | 30, 1 a(i) > b(m)}, m > 1. Let 6(m) represent
the mth update of 6. Consider now the process {(g;, X;)} governed by {,} with 6; = 6(m) for
Jj=nmnm+1 .., np1 —1, m > 0. Similarly consider a parallel process {(q_Jl»,X' Jl)} governed by

— 1, asn — oo, (2.3)



{0~Jl} with 0}1 =7(f(m) +9) for j = np,nm +1,.., 1 — 1, m > 0. The two timescale algorithm

of [6] then is
S e )] o

j=nm-+1

We need more notation to handle the vector parameter case § = (\1,..,An)’. Let m;()\) denote
the point closest to A € R in the interval [A; min, Aimax] C R (defined earlier) and () be defined
by 7(0) = (m1(A1), m2(A2),..,7x(An))T. The vector case would ordinarily require N + 1 parallel
simulations {(g;, X;)} and {(g}, X})}, i = 1,.., N, respectively governed by {6;}, {é;}, i=1,.,N,
where 03 =0(m), 0;- =m(0(m) + de;), i = 1,.., N, m > 0, and where e; is the unit vector with 1 in
the ith direction. Then the algorithm is as follows: For ¢ =1,.., NV,

)\i(m—i—l):wi(i ) + nfl (M)) (2.6)

j=nm-+1

An alternative (proposed and used in [6]) to using N+1 parallel simulations is to move the algorithm
in cycles during each of which only two simulations are used as follows: The first simulation
corresponds to {(gj, X )} and is governed by {;} defined as earlier, and the second simulation
is represented as {(g;, X;)} which is governed by {0 } defined by 03 = 7w(f(m) + de;) for j =
NNm+ti—1, "Nm+i—1 + L, "Nm+i — L, ¢ = 1,.., N, m > 0. The algorithm then is

N(m+1) = 7 (Ai<m>+ > MM)) (2.7

J=NNmti-1+1

Thus instead of all components being updated every n,, steps, m > 1, as in (2.6), only one
component is updated now every n,, steps and the algorithm thus moves in bigger loops or cycles
of nym, with all components updated once at the end of the bigger loop. It is clear that one needs
only two simulations in this manner but there is a tradeoff with speed of convergence. We return
to this issue after we present the SPSA version of the two timescale algorithm next.

Let for any i > 0, A(7) € R be a vector of mutually independent and mean zero random vari-
ables {A;1, ... \; N}, taking values in a compact set £ C RY and having a common distribution.
We assume that these random variables satisfy condition (A) below.

Condition (A) There exists a constant K < oo such that for any [ > 0 and i € {1,..., N},
B2 <K
Further, we assume that {A(i)} is a mutually independent sequence with A(7) independent of

a(0(),1 < 2). In what follows, we shall address the problem of minimizing the average cost J(6)
within the constraint set C. We make the following assumption about the local minima of J(#).

Assumption (B) There exists atleast one local minima of the average cost J(#) within the set
C. Further, all local minima of J(6) within C lie in C? (the interior of C).

Condition (A) is a standard condition in SPSA algorithms. Minor variants of this are for
instance available in [33], [10]. Note that distributions like Gaussian and Uniform are precluded

while using (A). An important consequence of E [A } < oo is that P (A;; =0) = 0.



We now proceed with our SPSA algorithm. Define parallel processes {(qjl», X Jl)} and {(qu, XJQ)}

such that for n, < j < Ny, {(qjl,XJl)} is governed by w(6(m) — §A(m)) 2 (m1 (A (m) —
Dm1)s ey TN(AN (M) — 6Am n))T.  Similarly, {(q?,XJQ)} is governed by w(6(m) + 6A(m)) de-

fined analogously. In the above (as mentioned earlier), 8(m) 2 (A1(m), ..., Ax(m))T is the value of
the parameter update that is governed by the following recursion equations. For i =1,.., N,

Mm+1 h(g}) — h(qg?
Ai(m+1) =m; (Ai(m) + > alh) (%ﬁ)) . (2.8)

j=nm+1

In the above, {n,,m > 0} is the same as before with {a(i),i > 0}, {b(¢),i > 0} as those defined
earlier and which satisfy (2.3)-(2.4). We now discuss the reasons for the SPSA scheme in (2.8) to
be computationally more efficient than both schemes (2.6) and (2.7). We begin with (2.7) first.
It was shown in [6] that the scheme (2.7) tracks trajectories of an o.d.e. similar to (2.9) below
but with a factor of 1/N multiplying the RHS of it. Also, the scheme (2.6) tracks trajectories of
(2.9) as is. This means that even though the qualitative behaviour of the algorithm (2.7) is the
same as that of (2.6) and also (2.8) (as shown in Appendix), the factor of 1/N on the RHS of
(2.9) essentially serves to slow down its rate of convergence. Hence Theorem 2.1 essentially serves
to indicate that we no longer need N + 1 parallel simulations for an N-vector parameter as (2.6)
would require while at the same time we do not compromise on the speed of convergence. The
gain in computational efficiency comes about because generating N — 1 ‘extra’ simulation samples
is much more computationally expensive than generating N i.i.d. Bernoulli random variables for
the process {(gj, X;)}. Thus in some sense the computational burden has been shifted from the
numerator of the finite difference gradient estimate term on the RHS of (2.6) to the denominator of
the same on the RHS of (2.8). One can also see intuitively that (2.8) updates the whole parameter
vector every n,, steps, as does (2.6), which is the reason for its fast convergence (unlike (2.7)). The
convergence analysis proceeds through a sequence of steps and is given in detail in the Appendix.
We state here our main result, the detailed proof of which is given in the Appendix.

The ordinary differential equation (o.d.e.) technique is commonly used to prove convergence
of stochastic approximation algorithms. Here, we show that the algorithm (2.8) asymptotically

converges to the stable points of the o.d.e. (2.9) below. Let Z(t) 2 (Zy1(t),.., Zn(t)) € RN, where

Zi(t), i =1,..,N, satisfy the o.d.e.

Z; (t) = #(~ViJ(Z(1))), >0, Z(0) € C, (2.9)
where for any bounded, continuous, real valued function v(.),

o mly+ M) - ()
A = i ( ' ).

For x = (z1,.,2n), let #(z) = (F1(21),..,7n(zn))T. The role played by the operator 7(.) is in

some sense to force the o.d.e. (2.9) to evolve within the constraint set C'. Then the o.d.e. (2.9)
has the set K 2 {6 € C|7(VJ(0)) = 0} as its asymptotically stable attractor with J(-) itself as
its strict Liapunov function. Also for n > 0, let K7 = {6 € C' | 30’ € K s.t. ||§ — 0'|| < n} represent
the set of points within a distance n of local optima.



Theorem 2.1 Given n > 0, 3§ > 0 such that for any 6 € (0,], the algorithm (2.8) converges
to K a.s.

Remark Note that K is the set of all critical points of (2.9), and not just the set of local
minima. However, points in K that are not local minima will be unstable equilibria, and because of
the presence of noise (randomness) in the algorithm, under fairly general conditions, the algorithm

will converge to the np-neighborhood of KO(é the set of local minima of J(.)) C K (cf. pp.127-128
of [21]). Note that we assumed the cost function to be merely bounded and continuous. If on the
other hand, we assume the cost function h(.) to be in addition convex, the average cost J(.) will
be convex as well. Moreover, if J(.) is strictly convex, it will have a unique minimum, to which our
algorithm will a.s. converge within an n-neighborhood.

3 Numerical Results

In this section, we provide numerical results to illustrate the two timescale SPSA scheme and
to illustrate how much improvement in performance is achieved by using the structured feedback
policies for ABR flow control. As mentioned earlier, flow control in ABR service requires balancing
various conflicting performance criteria such as mean and variance of delay and throughput. Often
this is addressed by minimizing the distance of stationary mean queue length from a given fixed
constant Ny [34], [18], [30], [5]. We adopt a similar approach here, i.e., h(z) = |z — Np|, where Ny
is assumed given. In the concluding section, we shall also indicate ways to obtain an optimal such
Ny. We compare the performance of optimal structured closed loop feedback policies of type (2.2)
obtained by applying the two timescale SPSA algorithm given by (2.8), with the optimal open loop
policy, defined by setting A.(n) = A* for all n, where \* is obtained by applying the two timescale
algorithm given by (2.5). Note that the optimal open loop policy has a fixed rate and thus does
not use any queue length information.

For the closed loop policies, we consider experiments with policies that have five and eleven
parameter levels. We assume throughout that both D, and Dy are integral multiples of T". The
form of the five level policies for obtaining A.(n), is as follows.

1 if gn < No — 2¢
5 if No—2e<g,<Ny—e
Ac(n) =% A5 if No—e<gp, <No+e (3.1)
Ay it No+e<gn < No+ 2e
it gp > No+ 2e.

In the above (as well as below), € is also a given fixed constant in addition to Ny. The eleven level



policies are given by

Al if gn < No — be

A5 it Ny —b5e < g, < Ny —4e
Az it No—4e < g, < Ny — 3¢
b if Ny —3e < g, < Ny— 2
A it No—2e<g, <Ny—e
Ae(n) =< A§ if No—e<gqg,<Nop+e (3.2)
5z it No+e<gqn <N+ 2¢
Ag it No+2e < gn < Ny + 3¢
Ay it No+3e < gn < No+4e
To if No+4e < gn < Ny + 5e
11 it gn > No+ be.

In the form of the policies above, we have for simplicity chosen all the regions Si,.., Sy, in the
state space defined in (2.2), in terms of Ny and € alone. In the numerical experiments, we actually
consider a generalization of the model in Fig.1, where rate feedback is done at instants nFp, n > 1,
for Fj a fixed multiple of T'. This gives us added flexibility in studying the effect of changes in Fj
in addition to those in T'. The role played by Fj is in some sense that of an additional delay. The
sequence of events is thus as follows: The ABR rate A.(.) is computed at times n1', n > 1, at the
node, using feedback policies above. These rates are fed back to the source every Fj, units of time.
The source receives this rate information with a delay Dy and upon receiving it immediately starts
sending packets with the new rate. The packets arrive at the node with a propagation delay Dy.

For the SPSA algorithm (2.8), we choose « in the definition of {b(i)} in (2.3)-(2.4) as a = 2/3.
Thus, we have a(0) = b(0) = 1, a(i) = i~ %, b(i) = i~ 2/3 and {n,,} is thus obtained. Also, the
random variables A\;;, 7 = 1,...,N; | > 1, are chosen to be ii.d. Bernoulli distributed with
Npy=+1wp. 1/2,i=1,...,N, [ > 1.

The uncontrolled process is an MMPP with the underlying Markov chain chosen for simplicity
to be an irreducible two state chain. To simplify the simulation code, we assume that the underlying
chain undergoes state transitions every T units of time. The buffer size B is 5 x 10°. We tested our
SA scheme on various combinations of the parameters Dy, Df, No, €, T, Fy, Ay, p(4;75). We also
conducted experiments with two controlled sources feeding into the same bottleneck node but with
rate (A¢(n)) information fed back with different delays (almost without any delay to the first and
with a significant delay to the second). We observed that the bandwidth is shared equally by the
two sources. This amounts to our scheme showing fairness in performance. However, we are aware
of the fact that the appropriate framework to study fairness is in tandem queues with different
ABR sources feeding packets through different sets of nodes [32].

Let 0* denote the parameter value for the corresponding optimal policy, i.e., 8* = (A}, .., A;")T
for the [-level closed loop policy and 8* = A* for the open loop policy. In the following, subscript
0* is used in the definition of various performance measures to indicate 8*-parametrized stationary
distributions of the various quantities. Thus, Varg-(g,) represents the stationary variance of {g,}
parameterized by 6*. Let By represent the segment or band (of queue length values) [Ny —e, Ny +e].
We compare performance in terms of parameters of queue length distributions and throughput rate;
@, Poands 04, Ay Piaie and J(6*). These quantities and their estimates are defined as follows:

N-1
A 1
7= Eplan) = — Zqz, o4 2 Varg. (g ~< Z%) ,



N— N—
1 A 1
Pyona = Pe* (gn € Bg) = ~ N E I{Qi € Ba}, Pigie = Py+(qn = 0) NN E I{Qi =0},
i=0 =0

1 N1 1 N=
Eg+ [\ N5 Ae(4) o Z — No|,
=0 1=0

where N is taken as 10° in our experiments. The last performance measure is the one that the
algorithm seeks to minimize, but clearly the others are closely related and are included here because
they are often taken as measures of performance in ABR service. One desires Py,,q to be high
in order to satisfy the various other performance criteria. One expects as a consequence of the
above minimization that this quantity will be maximized. The measure P4, gives the stationary
probability of the server lying idle and should be close to zero. The average ABR throughput
rate ). is often considered the most important measure of performance in ABR because it is this
measure which tells us whether the available bandwidth has been properly utilized or not.

In the simulations for the five-level policies, A1,..,A\s € [0.10,3.0] and A5 € [0.10,0.90]. For
the eleven-level policies, we have Ai,.., A9 € [0.10,3.0] and A\1; € [0.10,0.90]. Also, we take the
service time process to be i.i.d. exponential with rate 4 = 1.0 and § = 0.12 in Tables 1 to 9. In
the following, we considered two settings for the uncontrolled traffic: (a) A1 = 0.05, A\, 2 = 0.15,
p(L;1) = p(1;2) = p(2;1) = p(2;2) = 0.5, and (b) A1 = 0.2, Ay2 = 0.4, p(1;1) = p(2;1) = 0.6,
p(1;2) = p(2;2) = 0.4. In Tables 1 - 9, the two settings are summarized by the value of ), (the
mean rate of the uncontrolled MMPP) which is 0.10 and 0.28 in cases (a) and (b) respectively.

We performed a broad range of experiments for both the cases viz., D, = D; = 0 and
Dy, Dy > 0, under non-zero 1" and Fy, for both the five level and eleven level policies. We show
here experiments with five level policies in greater detail since the observations for experiments
with eleven level policies are similar to those with five level policies. Throughout, ‘O.L.” represents
the optimal open loop policy. For D, = Dy = 0, we performed various sets of experiments with
fixed Ny, e and the uncontrolled MMPP parameters (Tables 1 to 4 for five level and Table 8 for
eleven level policies) and varying T and Fj in each. Also in Tables 6 and 9 (for the five level and
eleven level policies respectively), we chose T" and Fy fixed along with Ny, e and the uncontrolled
MMPP parameters and varied D;, and Dy. In Table 5, we study the effect of varying Ny with all
other parameters fixed. For small Dy, D¢, T' and F, for five-level policies, our algorithm converges
in about 130-150 iterations while for eleven-level policies, it takes about 150-180 iterations to con-
verge. For large Dy, Dy, T and Fj, the algorithm takes about 200-250 iterations for five-level policies
and about 220-270 iterations for eleven-level policies. It is shown in [6] (Lemma 3.1, pp.513) that
{nm} grows exponentially as n,,41 ~ exp(am!/3) for some a > 0. In order to give an idea of the
amount of computation required for the algorithm, the numbers n,,, m > 0, defined before (2.5)
take the following values for some integers m: nigy &~ 4.3 x 10°, nis0 ~ 3.3 x 10, nggg ~ 1.6 x 107,
naso ~ 6.5 x 107, nzgp ~ 2.1 x 108, ngs0 ~ 6.1 x 10%. On a Sun Ultral0 UNIX workstation, it
takes about 5-10 minutes for five-level and 10-20 minutes for eleven-level policies for small Dy, Dy,
T and Fy,. For large Dy, Dy, T' and Fy, it takes about 30-50 minutes for five-level policies and 40-70
minutes for eleven-level policies. We also tried running the two timescale stochastic approximation
algorithm of [6], for five level policies with D, = Dy = 0. It did not converge even after 350
iterations (but was close to it) after almost 200 minutes. This confirms that the SPSA version of
the two timescale stochastic approximation scheme shows faster convergence than the original two
timescale scheme.



For the open loop policy, the ABR throughput rate is simply the value of the parameter selected.
The results indicate a significantly lower value for this performance measure compared with the
closed loop policy. To get a feel for the dependence of the average cost J(#) on the ABR rate, we
varied the open loop parameter over a range for the settings in Table 1. The results are shown in
Fig.2. The graph clearly shows the steep degradation in average cost when the ABR rate exceeds
the O.L. value. For comparison purposes we also plot the values of the average cost obtained from
the corresponding closed loop policies, where significantly higher ABR throughput is achieved along
with superior average cost performance. Furthermore, a closer look at Table 1 also reveals that
compared with the open loop optimal policy, the closed loop policy (for small enough Fp) leads
to a stationary queue length with a significantly smaller variance while staying much closer to the
target N, as further supported by the values of ¢ and Py,y,g. This comparison is indicative of the
results for all of the other cases considered as well.

We also considered the situation in which the uncontrolled arrival process is Poisson. In this
case, one can directly compute theoretically the various performance metrics for a given ABR rate
(for the open loop case) since it becomes an M/M/1/B queueing system now (see pp.62, [27] for
the various expressions). Ay for this case represents just the arrival rate of the uncontrolled Poisson
stream. Here, we take A\, = 0.10 and 7 = 1. Note that by PASTA, the same results will hold for
any 7' in this case (which is not so in the other cases where we have an MMPP uncontrolled stream
instead of a Poisson stream). The algorithm converged in this case to A\, = 0.74. Fig.3 gives the
values for the various performance metrics.

We now discuss the simulation results in more detail. The more important highlights are as
follows:

1. The closed loop solution utilizes almost the entire bandwidth (A + A, ~ i) even when Dy,
Dy, T and F;, are sufficiently high.

2. The performance degrades when the delays Dy, and Dy increase, but remains better than the
optimal open loop case even when D, and Dy become significantly high. For Ng = 10, e = 1,
T =1 and F, = 2 (Tables 6 and 9), performance is better than the optimal open loop case
even for Dy, + Dy = 150.

3. We considered the case of two controllers feeding arrivals into the same bottleneck node in
addition to the uncontrolled MMPP stream (Table 7). Explicit rate information was fed back
to the two sources with different delays Dy and Dyp. Further there were different delays Dy
and Dy in customers arriving to the bottleneck node from the two sources. We observed that
the stationary mean rates Ao and A for the two sources are almost the same even when the
difference in the delays is significantly large. This amounts to our scheme showing ‘fairness’
in performance. We also observed the other performance metrics in this case and found that
the performance here is not as good as that of a single source with the lower delays (in the
original setting of Fig.1) and also it is not as bad as that of a single source with the higher
delays. Thus in some sense the performance of the two sources here is getting averaged, which
is possibly the reason for getting fairness in performance. We did not present in Table 7 the
average cost measure J(6*) in order to save space.

4. In Table 5, we vary Ny and fix other parameters with D, = Dy = 0, to see the effect on
performance. As expected for small Ny, A. is low and subsequently P,y is high. But as Ny

10



increases, \. becomes high and Pjg. becomes close to zero. In the light of this observation,
we discuss in the concluding section a method of finding an optimal Nj.

Other general observations are as follows:

1. As expected, we get the best performance for lower values of T' and F}, see Tables 1 to 4 and
8 below. For the same T, lower Fj, gives better performance. Also, the difference between the
lowest and the highest rates (Af and A} for the five level case and Aj; and A] for the eleven
level case respectively) decreases as T' and Fj increase.

2. When the settings of the uncontrolled MMPP stream are changed such that the mean rate
Ay of the stream is increased, the performance degrades as is seen upon comparing values in
Table 1 with the corresponding values in Table 2 for the same sets of other input data in
both. It is intuitively clear that this will happen since for higher \,, the controller has less
control on the performance.

3. The performance improves when ¢ is increased as is seen upon comparing values in Table 1
with the corresponding ones in Table 3.

4. In Table 4, we take Ny = 20, ¢ = 2 with the rest of the parameters the same as in Table 2.
The observations with regards T and Fj are the same here as before.

4 Conclusions and Extensions

Using a continuous time queueing framework, we studied the problem of ABR rate based flow
control in the presence of information and propagation delays, by developing a numerically efficient
two timescale SPSA algorithm. The convergence of this algorithm was theoretically proven, and
numerical experiments were conducted to investigate the performance of the structured feedback
policies. The results indicate that as expected,closed loop policies lead to a significant improvement
in performance over open loop policies, for reasonable values of information and propagation delays.
We considered feedback policies with five and eleven levels. It was found that the convergence time
increases only marginally when the number of parameter levels is increased from five to eleven,
and the scheme converges orders of magnitude faster than the original two timescale stochastic
approximation scheme of [6]. We also considered experiments with two ABR sources sharing the
same bottleneck node but with the two sources experiencing significantly different propagation and
information delays. We found that the sources under stationarity share the bandwidth equally
between them. This interesting result amounts to our scheme exhibiting fairness in performance,
but further experiments on tandem queues [32] are needed to conclusively demonstrate this claim.

One natural extension of this work is to apply similar methods for selecting Ny, which in our
numerical experiments was assumed given. By incorporating Ny into the parameter vector 0, i.e.,
6 is now represented as @ = (Aq,.., Ax, No)”, an optimal Ny can be determined by optimizing 6 as
earlier. However note that if we continue with the form of the cost function that we chose earlier
viz., h(gn) = |gn — No|, then this would in fact give rise to a family of parametrized cost functions
(parametrized by Np), which would complicate matters unnecessarily. Table 5 in our numerical
experiments suggests choosing a band [a,b] (depending upon acceptable levels of performance)
within which one can expect Ny to lie. One can then select a cost function that takes value zero
on [a,b] and increases sharply outside. The two timescale SPSA algorithm (2.8) applied to suitable
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parametrized policies similar to (2.2) with the parameter = (A1, .., A\x, No)? can then give rise to
an optimal Ny within that class of policies. As a simple example, one could consider policies of the
following type:
A if g <a
Ao if a<g, < Ny
M= N i Np<ga<b (1)
Ay if gn > 0.

There is still one problem with this: The updates of Ny are continuous valued now while queue
length observations are discrete valued. In fact, updates of Ny in the two parallel simulations in
the two timescale SPSA scheme of (2.8) would be Ny(n) — §As5, and No(n) + 65, respectively,
where {A(n)}, n > 1 is now defined by A(n) = (A14,..,A5,)T are independent random vectors
and where for each i = 1,..,5, AA; ,, n > 1, are symmetric i.i.d. Bernoulli random variables as
before. However, all one needs to do is to use the integral parts of Ny — 65, and No(n) + 605,
in the policy updates in the two parallel simulations.

Finally, we mention an open problem here. The problem is to prove Theorem A.1 (see Appendix)
for the system in Fig.1 with i.i.d. general service times (we assumed exponential distribution) and
with a finite or an infinite buffer. The rest of the convergence analysis for such a system can be
shown as remarked at the end of Theorem A.1.

Appendix: Convergence Analysis

We assume here that the service time process is i.i.d. with exponential distribution. This assump-
tion is however only required in the proof of Theorem A.1 (below) which along with Corollary A.1
establishes the preliminary hypotheses for convergence of algorithm (2.8). The remark at the end
of Theorem A.1 explains the difficulty with the general service time case.

When Dy, = Dy = 0, the rate A.(n) becomes effective in the time interval [nT, (n+1)T"). Then
under the type of policies (2.2), for D, = Dy = 0, it is clear that {(¢gn,X,)}, n > 0, is a Markov
chain. When Dy, Dy are non-zero, we will assume for simplicity that D, + Dy = MT for some
integer M > 0. Simple modifications can however take care of the case when Dy + Dy # MT for
any M > 0. Now, it can be seen that when Dy 4+ Dy = MT for some M > 0, the ABR rate A.(n)
computed at time n7" at the node is in fact effective in the time interval [(n+ M)T, (n+ M +1)T).
Thus, in the interval [nT, (n+1)T"), packets from the ABR source that arrive at the node were in fact
sent from the source with rate A.(n—M) computed at time (n— M )T at the node. For such a system
it can be seen that the joint process {(gn, Xn, qn—1, Xn—1, s @G-, Xn—ar)}, n > 0, is a Markov
chain. In a related work [1], it is shown that a system as in Fig.1 with (say) Dy + Dy = MT,
is equivalent to one with Dy = 0 and D, = MT. We shall call any Markov process that is
aperiodic, irreducible and positive recurrent as ergodic. It is easy to see that since we have a
finite buffer system and because {X,} is ergodic, for Dy, = Dy = 0, the joint process {(gn, Xn)},
under policies (2.2) is ergodic. Similarly for the delayed case (when Dy + Dy = MT), the joint
process {(¢n, Xn,dn—1, Xn—1, -, Gn—n1, Xn—n)}, under policies (2.2) is ergodic as well. For ease of
exposition, we will consider the case Dy = D; = 0 in detail from now on and explain the changes
necessary for nonzero Dy, Dy as we proceed. Thus for D, = Dy = 0, for any given 6, {(gn, Xp)} is
ergodic Markov with {A.(n)} as in (2.2). Let ug(q, z) be the stationary distribution of this Markov
chain on S x S, for given 6 € C. Let vy(q) be the marginal of py(q,z) on S that corresponds to
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the stationary distribution of {g,} alone. Thus vy(q) = > ,cs, Ho(q; ). Let h: S — ZT be a given
bounded and nonnegative cost function (Z7 is the space of nonnegative integers). The average
cost J(#) in (2.1) is now well defined and can be further written as:

J(0) = h(i)ve(i) =D > h(i)ug(i, ). (A1)

€S 1€S ¢ESy

We now establish some preliminary hypotheses necessary to prove Theorem 2.1. Let py(i, z; i, 2'),
i,i' € S, z, 2’ € S, represent the transition probabilities for the Markov chain {(g,, X,,)} for given
6. Let D,, denote the number of departures from the queue in the time interval [nT, (n+ 1)T), AS
denote the number of arrivals from the controlled source in [nT, (n + 1)T') and A% be the number
of arrivals from the uncontrolled stream during the same time interval.

Theorem A.1 Under all policies of type (2.2), J(€) is continuously differentiable in 6.

Proof Let us first consider the case D, = Dy = 0. For J(6) to be continuously differentiable,
it is enough to show that pg(.,.) is continuously differentiable in 6. For ease of exposition let us
consider for the moment that 6 is a scalar. Writing in matrix notation, let for fixed 6, P(6) :=
[[po(i,x; 7,y)]] be the transition probability matrix of {(g,, X,)} and u(0) := [ue(i,x)] denote the
vector of stationary probabilities. Also let Z(6) := [I — P() — P*°(6)]~!, where I is the identity
matrix and P*°(0) = lim,, oo (P(0) + .. + P™(0))/m. Then from Theorem 2, pp.402-403 of [29],
we can write

w(@+h)=p@)I+ (PO+h)—P(0))Z(0)+ o(h)). (A.2)
Thus,
w(0) = n(0)P'(0)Z(0).

Hence p/(6) (the derivative of 1(0)) exists if P'(f) (the derivative of P(#)) does. Then we have,
W@+ h)—p'0) < |u@+h)PO+h)Z(O+h)—pwB)P(0+h)Z(6+ h)|
+|u(0)P' (6 + h)Z(0 + h) — u(0)P'(0)Z(0 + h)|
()P (6)Z(8 + h) — p(6)P'(6)Z(6).
Now, from Theorem 2, pp.402-403 of [29], we can write Z(0 + h) as
ZO+h)=Z(O)H(0,0+ h)— P<(O)H(0,0+ h)U(8,0 + h)Z(0)H (6,6 + h),
where,
H@O,0+h)=[1—(PO+h)—PO) ' =T as |h| =0

and
U,0+h)=(PO+h)—P0)ZO) —0 as |h| — 0.

In the above 0 is the matrix (of appropriate dimension) with all zero elements. It thus follows that
Z(0+ h) — Z(0) as |h] — 0. Moreover from (A.2), u(6) is continuous. Thus from above, p'(6) is
continuous in # and the claim follows. For vector 6, a similar proof as above verifies the claim.

We finally show that P’(6) exists and is continuous in 6. Let us first consider the case when
j > (below). Then, the transition probability pg(i,z1;j, z2) can be written as

po(%, 15 J,22) = Pr(gn1 = J, Xonp1 = 22 | ¢n = 1, Xy, = 21, 0)
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= Pr(Qn-f—l :J ’ dn = 'LaXn = xl’Xn-‘,-l = $2a9)Pr(Xn+1 = T2 ‘ dn = Z.aXn = -’171’9)
oo j—it+m
=Y Y Pr(Dn=m, A5 =j—i+m—1LA=1]|qn=i,Xn =1, Xn1 = 32,0)p(a1; 72)
m=0 [=0
co J—itm
=3 > Pr(Dp=m A =j—i+m—1|gn=1X, =21, Xnt1 =2, A% =1,0) x
m=0 [=0

PI'(AZ =1 | XTL = xlaXn+1 = X2,4n = Zae)p(mlamQ)

> T (exp(—uT)) (WT)™ (exp(=Ae(n)T)) (Ae(n) )T~

= Pr(AY =1| X, = 21, Xp41 =

x p(x1;2).
Now it can be seen that the derivative of py(i, z1; j, z2) w.r.t. A.(n) exists and is continuous. Similar

conclusions can be seen to hold for j < i. Now since 6 = (A1, .., A\y)?, for any m = 1,.., N,

dp@(iaxl;ja .’172) _ 3p9(i,x1;j, .’172) d)\c(n)
Do () drn

where Ac(n) = Ay, if i € Sy, m = 1,.,N. Hence d\.(n)/d)\; = 1, if j = m (corresponding to
i € Sp) and is 0 otherwise. Thus the derivative of these transition probabilities w.r.t. 6 exists and
is continuous. The proof for the delayed case Dy, Dy # 0 follows in a similar manner. O

Remark Let V), represent the work load at instant n7". For a system as in Fig.1 (but) with
general i.i.d. service times and an infinite buffer, under policies (2.2), {(Vx, X»)}, for D, = Dy =0,
can be shown to be ergodic Markov under an additional standard stability assumption (cf. [30])
which is not required for a finite buffer system. Similarly, {(V,, Xy, Vi—1, Xn—1, -, VoM, Xn—m)}
can be shown to be ergodic Markov for D, + Dy = MT. The above Markov chains are however
uncountable and Theorem 2 of [29] (which holds for a finite state system) is no longer valid. How-
ever, Corollary A.1 below can be shown quite easily for this system using sample path arguments.
Moreover, the remainder of the analysis can be shown in a similar manner as follows but under an
extra Liapunov stability hypothesis which in turn can be proven for our system under the extra
stability assumption (mentioned above). Note however, that from a practical view point, we do not
gain much by showing our results for an infinite buffer system (since we have shown experimental
results for a system with large buffer). For proving Theorem A.1 for a finite buffer system with
general i.i.d. service times, one could discretize the work load process and the result of [29] could
still be used. However, the problem remains of showing that the transition probabilities are differ-
entiable in the parameter. The problem of proving Theorem A.1 for i.i.d. general service times for
a finite or an infinite buffer system remains an open problem.

Corollary A.1 Under all policies of type (2.2), the map 6 — py(i,z1; j, x2) is continuous in 6.
Proof The above map is differentiable in 6 (see proof of Theorem A.1), and hence continuous.

O
. . A ~
We now proceed with the rest of the convergence analysis. Let F, = a(qjl-,q?, X;,XJZ, 0;,
NAJ" 1 <5< n)~ represent the o-algebra associated with information upto period nT and where
§; = 6(m) and A; = A(m), for n,, < j < nypq1. Let us consider the undelayed case (D = Dy = 0)
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first. We shall later comment on the changes necessary for the delayed case. For any sets A C S
and D C S, define sequences {M; ,(A x D)} and {Ms (A x D)} as follows. For k = 1,2,

n—1 Nm+1
Min(Ax D)= > bm)"'[ Y a()I{dj € A, X} € D} — E[I{¢} € A, X} € D} | F;_1])],

n > 1, where I{.} is the indicator or characteristic function. Then one can proceed to show as in
[6] that {M; (A x D)} and {M,,(A x D)} are zero mean, square integrable martingale sequences
with a.s. convergent quadratic variation processes. Thus, we have

Lemma A.1 For any A C S and D C Sy, {M1,(A x D)} and {M (A x D)} converge a.s.

Proof Follows from Proposition VII.2.3(c), pp.149-150 of [23]. O

Let P(S x S,) be the space of all probability measures on S x S, endowed with the Prohorov
topology [8]. Now for m > 1, define P(S x S,)-valued random variables {u.,} and {u2,} as follows:
Let AC S and D C S, be any two sets. Then,

N]ncq(A x D) = Zj:;nlrl—l (n)I{lq] €A Xj c D},
Z] m’/-:m-i-l a(y)

k = 1,2. For ease of exposition we assume in the following theorem that 6 is a scalar. The
necessary changes for vector 6 are remarked at the end of it. Recall that ug(i,x) represents the
invariant measure corresponding to the ergodic Markov process {(gn, X,,)} with parameter 6 € C
(fixed), that has transition probabilities [[pg(i,;7,y)]]. Then pr@_sa)(i,z) (vesp. proron)(3,T))
is the invariant measure of the ergodic Markov process {(¢,, X, )} that has transition probabilities
[[pW(G—JA) (2’ z; J, y)“ (resp. [[pﬂ(b‘—l—SA) (2’ x; J, y)“)

Theorem A.2 Almost surely, (ul, u2,,0(m), A(m)), m > 0 converges in P(S x S,) x P(S x
Syu) x C x E to the compact set {(ir(9—sA)s Hr(94+50),0, D) |0 € C, A € E}.

Proof Let us begin with the undelayed case (D, = Dy = 0) and consider {M;,(A x D)} first.
From Lemma A.1 and the fact that > | a(j)/b(m) — 1 as m — oo, one has

S va(f) ) € A, X} € D} - Ell{q; € A, X € D} | Fj_1]]
> 1 alj)

— 0 a.s.,

for any A C S and D C S,. Hence,
Z?m;{nlq—l—l a( )[I{q]1 € A’ le € D} - Z'L’GS ZxES pﬂ'(@(m)—&&(m))(ia Z; A’ D)I{qjl'—l = Z.a X]l—l = .’B}]
> a(d)
— 0 a.s. (A.3)

Now any limit point of {(ul,,7(0(m) — §A(m)))} must be of the form (u, 7(6 — 5A)). From (A.3),
Corollary A.1, the definition of {x! } and (2.3), it follows that p must satisfy

wAX D) =" prg_sn)(i,z; A, D)u(i, ).

i€S €Sy

Thus p = pr@-sn)- An analogous argument applies to {u2}. The claim now follows from the
fact that the continuous image of a compact set is compact. Let us now consider the delayed case
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with Dy + Dy = MT for some integer M > 1. Then {Y}'} and {Y} defined by Y}! 2 (qj, X,

A . .
qjl-_l,XJl_l, ..,qjl-_M,XJl_M) and Yj2 = (qJZ,ij,qu_l,ij_l, ..,qJQ»_M,XJz_M), j > 1, are Markov chains
such that for any j > 1, le and sz are governed by parameters m(0; — dA;) and 7(0; + ;)
respectively. Consider now for any set A in the new state space (S™ x SM), sequences {fi1 »(A)}

and {fi2,(A)} defined by

fin(4) = le_lomm)l[,nf G0 € Ay~ BV < 4} Foa))
k = 1,2, respectively. :I;te that u:;,:(LZ; can be written as
) = g*’(m“gn?i W)Y} € A} — BUI{YF € A} | Fii])] +
:gb(m)-l[j;f;auxEumk e A} Fyi] - BIYE € A} | Fy))] + .+
:ib<m>—1[;§;ao><ffum’“ € A} | Fyu] - BU{Y} € A} | Fioaga)),

k =1,2. Let us represent for any k € {1, 2} fixed, each of the M + 1 individual summations on the
RHS above by Mf(n),.., M¥; ;(n). Then it is easy to see that (M{(m), Fp,.), (M5 (m), Fpu—1),--,
(M¥, 4+1(m), Fn,,— ) are martingale sequences each of which can be shown to converge by showing
that their quadratic variation processes are a.s. convergent in a manner as earlier. Then, we also
have — ) . .

Y1 @Y} € A}y — BEI{Y}" € A} | Fj-nm1]]

Z?:;;iﬁ»l a(j)

and similar conclusions as for the undelayed case can be obtained in the same manner as before. O

Corollary A.2 We have

— 0 a.s.,

Tim g1 Np (ol
Zj"mz(lnjg] M%) 5 eo(m) — 5 0m))| — vas.
e S5 ali)h(a?)
J_nmb(m) L2 — J(m(0(m) + 6A(m)))| — Oa.s.,
as m — 0o. .
Proof Immediate from Theorem A.2, the definition of J(#) and the fact that il a(y)/b(m)
— 1, as m — oo. = O

The proof of Theorem 2.1 proceeds through a sequence of steps. We go through these in detail.
Let form > 1, ', 2 0(6(0),6(1),...,0(m),A(0),A(1),...,A(m—1)). Then A(m) is independent
of F'm, ¥m > 1. Define sequences {N}(p),p > 1}, {N?(p),p > 1}; i =1,..., N, as follows:

D D
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and

Then, we have

Lemma A.2 For every i = 1,..., N, {N!(p)} and {N?(p)} converge a.s.

Proof We prove here the convergence of {N}(p)}, i = 1,...,N. The proof of {NZ(p)}, i =
1,...,N, is similar. Note that for every i = 1,..., N, {N}!(p), F'p+1} are zero mean martingales.
Let {< N} > (p)},i=1,..., N, represent their quadratic variation processes. Then by definition,
fori=1,...,N,

<NE> () =Y EB[(NIG+1) = NJG)? | 7] + B [(NH0)?]
§=0

35t

Also,
< N} > (00) = lim < N} > (p).

v p—00

Now recall that Y~ b(j) < oo (cf. (24)), E [A;?] <K <o0,i=1,...,N; j > 1 (Condition (A))

§=0
and J(-) < oo since the cost function h(-) is bounded. Thus < N} > (c0) < 00,4 =1,...,N. Now,
by Proposition VII.2.3(c), pp.149-150 of [23], the claim follows. O

As a consequence of Lemma A.1, we have

i b(j)(J(W(H(j) —04(7))) = J(@(0() + A7)
j=0

AVY]

J(®(0(5) = 64(7))) = J(w(0()) + 6A(5)))

K
A

— | F'j|) < oo as.
g

We shall use a key result from [16] stated as Lemma A.3 below. Consider an o.d.e. in R
@ (t) = F(x(t)), (A4)

which has an asymptotically stable attracting set G. Let G¢ denote the e-neighborhood of G. For
T >0, v > 0, say that y(-) is a (7, 7)-perturbation of (A.4) if there exist 0 =Tp < T1 < Tp < ---,
such that T;,1 — T; > T, Vi, and on each interval [T}, T, 1], there exists a solution z*(-) of (A.4)
such that
sup [2'(t) - y(t)] < 7.
te[T;,Tiv1]

The following result is adapted from [16], pp.339. The proof of this can be found in the appendix
of [9].
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Lemma A.3 For given € > 0, T' > 0, there exists a ¥ such that for all v € [0,%], any (T\,7)-
perturbation of (A.4) converges to G°. O

Now let ¢(0) = 0, t(n) = zn:b(i), n > 0. Define (") 2 01(),...,0n(-NT : RT = C cRY by
i=1

(t(n)) = 6(n) 2 (A1(n),...,An(n))T, n > 0, with linear interpolation on intervals {[t(n),(n+1)]}.
Let A¢; = Ay, for t € [t(n),t(n +1)], n > 1. Consider the following o.d.e. in C: For i =1, .., N,

J(m(0(t) — 60 ;)) — J(m(0(t) + 5Atﬂ'))]> : (A.5)

0:(t) = i (E 205

where the operator E[-] represents the expectation w.r.t. the common c.d.f. of {A;;}. We then
have

Lemma A.4 For any T,v > 0, 6(t(n) + -) is a bounded (T, ~)-perturbation of (A.5) for suffi-
ciently large n.
Proof Rewrite the SPSA algorithm (2.8) as follows: For i =1,..., N,

Ni(m +1) = m(Ai(m) + b(m) B l“’ e f’m]
+n1(m) + n2(m)), (A.6)
where,
na(m) — by (LT OT) = 5A(m)2)()5 - ni(ﬂ(@(m) +5A(m)))
J(x(0(m) — 5 (m))) — J(x(O(m) + 5A(m)) | _,
- l 26 A |7 m] ),
and
Mo g1 .\ ([ hlaj)—h(g3)
(S a0) (") sn(otm) — ) — Jr(m) + 556m)
2 (m) = b(m) b(m) - 25Ami

Now both 7;(m) and n2(m) become asymptotically negligible as m — oo by Lemma A.2 and
Corollary A.2 respectively. The algorithm (A.6) can then be viewed as a discretization of the o.d.e.
(A.5) except that (as already mentioned) it has in addition asymptotically diminishing error terms
n1(m) and nz(m). Now a standard argument as in pp.191-194 of [20] proves the claim. O

Recall that VJ(0) 2 (V1J(0),...,VnJ(0))T represents the gradient of J(6), where V;J(6)
represents the ith partial derivative. Also, C? represents the interior of the set C.

Lemma A.5 For any §(m) € C°, foralli =1,..., N,

lim
610

o [J(ﬂ(@(m) —0A(m))) = J(w(0(m) + 6A(m)))
20 m i

)

| }"m] - VZ-J(G(m))‘ ~0.
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Proof Since §(m) € C°, choose § > 0 small enough such that for all i = 1,..., N, m(8(m) —
0N i) =0(m) — 0y, ; and w(0(m) + A, ;) = 0(m) + 62, ; respectively. Now an application of
Taylor series on J(6(m) 4+ 6/A(m)) around the point (m) gives

N N
J(0(m) +8A(m)) = J(0(m)) + 0 A ViJ (0(m)) + 00 Y A7 ).

J=1 Jj=1

Similarly, one obtains

N N
J(O(m) —0A(m)) = J(B(m)) — (52 Ny iV J(0(m)) + O(8 Z Afmj).

j=1 j=1

From the above two equations it follows that

J(0(m) + 6A(m)) — J(6(m) — 6/(m)) | f’m] B [Zﬁ-\il A,V J(0(m))

26/ i A
N A2
Jj=1"—m,j /
+0 <5E [7&”’7: \me
N A N A2
=ViJ(Om) + Y. V;JOm)E || + 0 (6B || )
j=1,j#i P P

The last step follows from the fact that 6(m) is measurable w.r.t. 'y, and Ay, ;, i =1,..., N, are

E | ]—"m]

A
independent of 7',,. Now, E [A—m] =0, for j # i, since for any m, {A,, 1}, k =1,..., N, are zero

m,t

mean, independent random variables satisfying Condition (A). Further, note that F [Afnk} < 00

(since {A, 1} takes values in a compact set F) and F []Am,k\_l} is uniformly bounded (by Con-
dition (A)). We thus have

5 [J(H(m) +6A(m)) — J(0(m) — 52 (m))
20D

)

| f'm] —VLI(0(m)) + 00).

The claim now follows. A O
Consider finally the o.d.e. (2.9). Recall that K = {6 € C | #(V.J(0)) = 0} is the asymptotically
stable attractor set for the o.d.e. (2.9) with J(-) itself serving as the strict Liapunov function. Also,

Kn2 {0 €C |30 €K st. [||0—0| <n}represents the set of points that are within an 7-distance
from K. Let 79 > 0 be such that K™ c C° (interior of C'). Note that this is possible by Assumption
(B). We now have

Lemma A.6 Given 0 < n < np, there exists a o > 0 such that for 6 € (0,dp), K" is an
asymptotically stable attracting set for the o.d.e. (A.5).

Proof Note that as a consequence of Assumption (B) and Lemmas A.4 and A.5, for sufficiently
small §, J(-) will serve as a strict Liapunov function for (A.5) outside the set K", forn <mng. O

We finally come to the proof of Theorem 2.1.
Proof of Theorem 2.1 Follows directly from Lemmas A.3, A.4 and A.6. O
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Lyl

Scheme Poana | oq | Pidie | J(8)
Theoretical | 5.4 | 0.09 | 30.1 | 0.16 | 6.0

Algorithm | 54 | 0.09 | 30.3 | 0.15 | 6.1

Figure 3
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Five Level Policies with D, = Dy =0

Table.1: Ny =10, e =1, A\, =0.1

T Fb )‘g )‘Zkl )‘g )‘3 X{ q Pband Oq )\c Pidle '](0*)
1 2 0.1 03 0.7 1.7 261|101 | 045 | 7.3 |0.9 0 2.0
1 5 02 05 0.8 1.3 18| 95 | 0.34 |12.8|0.90 0 2.7
1 10 {03 06 09 12 1.5]10.0| 0.26 | 21.3 | 0.89 | 0.01 3.5
1|0L.| - - - - - 5.3 | 0.08 | 32.3|0.76 | 0.15 6.4
5( 10 (03 07 09 1.1 14| 98 | 0.26 |21.6 | 0.89 | 0.02 3.6
51 25 |04 08 0.8 09 11| 82 | 0.17 |34.1|0.82| 0.07 | 4.8
5| 50 [03 04 06 09 09| 64 | 0.12 | 383 ]0.75| 0.16 | 6.0
5| O.L - - - - - 51 ] 0.09 [ 319|075 | 0.16 | 6.4
Table.2: Ny =10, e =1, A\, = 0.28
T F, AEOANL A 5 A q Pyana | oy Ac Piae J(G*)
1 2 0.1 02 05 20 25102 044 | 79 |0.72 0 2.2
1 5 0.1 02 07 1.1 161|104 | 033 |[13.2|0.72 0 2.7
1 10 {0.1 05 0.7 09 13| 99 | 0.26 | 20.5 | 0.71 | 0.01 3.5
1|O.L.| - - - - - 53 | 0.08 |33.2]0.60 | 0.13 | 6.5
5|1 10 (01 05 07 09 13| 9.2 | 0.26 | 20.5 | 0.70 | 0.02 3.6
5|1 256 (03 06 07 08 10| 7.3 | 0.16 |27.9]0.64 | 0.07 | 4.8
5|1 50 [03 06 06 07 08| 7.3 | 0.12 [39.4 059 ]| 0.14 | 5.6
5| O.L - - - - - 5.3 | 0.09 | 31.1 | 0.58 | 0.15 6.4
Table.3: Ny =10, e =2, A\, = 0.1
T Fy )‘g )‘Z )‘i"k) ; X{ q Pyand Oq Ac Piaie '](0*)
1 2 0.1 01 0.8 21 27100 0.64 | 7.7 | 0.90 0 2.2
1 5 0.1 03 08 1.6 22| 9.7 | 052 [12.70.89 0 2.7
1 10 (0.1 05 09 13 16| 9.8 | 0.43 | 19.8 | 0.88 | 0.01 3.4
1|0L.| - - - - - 53 | 0.14 | 322 |0.77 | 0.13 | 6.4
5( 10 (0.1 05 09 13 161|100 0.42 | 20.6 |0.87 | 0.01 3.5
51 25 (04 07 08 1.0 12| 9.1 | 030 |36.3|0.85|0.06 | 4.7
5| 50 (03 06 08 1.0 1.0| 9.3 | 0.24 | 39.8 | 0.82 | 0.11 5.7
5|0O.L.| - - - - - 5.2 | 0.14 | 30.0|0.76 | 0.14 | 6.4
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Table.4: Ny =20, e =2, A\, = 0.28

r Fy g )‘Z )‘i"k) )‘3 )‘T q Prand Oq Ac Piaie '](0*)
1 2 01 01 05 19 29193 | 0.63 8.0 |0.72 0 2.2
1| 5 |01 02 06 15 21199 051 | 142 |0.71| 0 2.9
1 10 (01 04 08 12 151|209 | 041 | 21.8 |0.71 0 3.6
1 0OL. | - - - - - 74 | 0.05 | 58.0 | 0.63 | 0.09 | 11.8
) 10 (01 04 07 10 151|202 | 040 | 243 |0.71 0 3.8
5 25 103 06 06 10 112|190 0.26 | 8.7 | 0.71 0 5.7
5 50 |04 04 07 12 11211 0.18 |137.2|0.69 | 0.03 8.6
5| O.L - - - - - 71 | 0.05 | 51.6 | 0.64 | 0.10 | 12.0
Table.5: T =1, F, =2, e=1, A, = 0.1
No | A5 AL A5 A5 A | @ | Poana | 9g | Ac | Piate | J(67)
2101 01 05 12 26| 15 | 055 |23 ]0.55| 0.34 1.3
3101 01 05 1.6 18| 27 | 051 [4.0]0.74|0.14 | 1.6
4 101 02 06 1.2 20| 38 | 048 |49 0.83 | 0.07 1.8
5101 03 06 19 22| 49 | 046 |58 |0.85| 0.04 | 1.9
6 /101 04 06 1.8 23| 5.7 | 046 |64 | 0.87 | 0.02 2.0
7101 02 07 16 25| 69 | 046 | 6.5 ] 0.89 | 0.01 2.0
8§ /01 03 08 15 26| 82 | 044 |69 0.89 | 0.01 2.0
9 101 03 08 13 26| 89 | 045 | 7.2 | 0.90 0 2.0
10 {01 03 07 1.7 261|101 | 045 | 7.3 0.90 0 2.0
11 ({01 03 08 14 26 |114 | 043 | 74| 0.90 0 2.1
Five Level Policies with D,, Dy > 0
Table.6: T =1, F, =2, Ng =10, e=1, A\, = 0.1
Dy Df )‘; )‘Z )‘§ )‘3 X{ q Pyana Oq Ae Pige J(Q*)
1 0 |01 03 07 1.8 22[101( 038 | 9.7 {0.89| 0 2.4
1 1 /01 04 08 13 22| 98 | 038 | 9.7 | 0.88 0 24
5 5 (02 07 09 11 15| 97 | 0.26 | 20.0 | 0.88 | 0.01 3.6
10 10 {04 07 09 10 12| 88 | 020 | 28.0| 087 | 0.03 | 4.5
20 10 104 05 06 06 10| 84 | 0.14 | 39.5 | 0.84 | 0.06 5.2
20 40 |05 08 09 11 10| 82 | 0.13 | 44.0 | 0.80 | 0.06 5.4
30 20 |04 06 08 08 09| 81 | 0.13 | 48.0|0.79 | 0.08 5.7
40 10 {05 06 08 08 09| 64 | 012 | 52.7|0.78 | 0.12 | 5.8
40 30 |05 05 06 09 09 69 | 012 | 564|078 0.12 | 5.9
50 50 |05 05 09 09 09| 71 | 0.12 | 65.2|0.78 | 0.10 6.0
50 | 10005 08 0.8 0.8 09| 6.7 | 011 | 595|077 | 0.13 | 6.1
O.L - - - - - - 5.3 | 0.08 | 32.3 | 0.76 | 0.15 6.4
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Table.7 (Two ABR Sources): T =1, F, =2, Ng =10, e =1, A\, = 0.1

Dy Dy | Dyn Dya | A5 AL A3 A5 AT | @ | BPoana | 0¢ | At | A2 | Pidie
1 10 4 10 0.1 0.1 03 06 08|86 ]| 0.26 | 18.1 | 0.44 | 0.45 | 0.02
1 30 4 10 |0.1 02 03 07 07|89 023 |294|0.44 | 0.44 | 0.02
1 50 4 20 101 0.2 03 05 0781 021 |29.1]0.42]0.43 | 0.03
1 80 4 100 1 0.1 0.1 06 05 06|87 0.18 | 359|041 |0.42 | 0.04

Eleven Level Policies with D, = D; =0
Table.8: Ny =10, e =1, A\, = 0.1
T B [ Ay [ Ao A | A8 [ A7 ] A 5 1AL A3 A | AT
1 2 01(01(01(04]07(09]09(12]12]13]|27
1 5 01101(01(]03|04(08|12(15]19|21]|24
1 10 01703040506 [09|11(12]|13]|15 |17
1 OL.| - - - - - - - - - -
5 10 01703(04(05(07(09|11(12]13|15]|1.6
5 25 0310607070709 |10(10|11(1.0] 1.2
5 50 [ 0407060406 (08|09|09|0909) 1.0
5 OL.| - | - | - | - - e
Table.8 (Contd.)

T Fb q Pband )\c Oq P’L’dle J(G)

1 2 94 045 | 091 | 7.1 0 24

1 5 10,1 | 0.35 [ 090 | 114 0 2.6

1 10 9.1 0.27 1090 | 17.6 | 0.01 | 3.3

1 OL.| 53| 008 |323]0.76| 0.15 | 6.4

5 10 9.6 0.27 1090 | 19.2 | 0.01 | 34

5 25 94 | 0.18 | 0.88|36.1 | 0.04 | 4.6

5 50 7.2 0.12 | 0.82 | 34.2 | 0.10 | 5.5

5 O.L.| 5.1 0.09 {075 319 0.16 | 6.4
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Eleven Level Policies with D, Dy > 0

Table.9: T =1, F, =2, Ng=10, e=1, A\, =0.1

24

Dy Dy [ A1 [ Mo | A5 | A5 [ AT [ A6 | A5 | AL [ A3 | A5 | AT
5 5 0110104050708 |14|15(101.1]19
10 20 10205050606 |08]07]14]11(14)|14
20 30 1030606 (10(09(08]09|10]10]|1.1]1.0
30 40 {1 02]103]06]07]07(08/09]10]09]11(1.0
40 50 102]05]05]06(06|06]09]10(1.1]09]0.9
50 100 0507071100806 ]10(08|1.0]09]0.9
oL - | = | - | -t -] -] -1-]-
Table.9 (Contd.)

Dy Df| q§ | Puana| A | 0g | Piae | J(9)

5 5 9.8 0.26 | 0.9 19.5 | 0.01 | 3.6

10 20 193] 0.20 | 0.87 | 29.2 | 0.03 4.4

20 30 | 86| 0.15 | 0.85 | 42.7 | 0.06 | 5.3

30 40 | 7.8 | 0.12 | 0.81 | 47.5 | 0.11 5.8

40 50 | 7.3 0.11 | 0.78 | 51.1 | 0.12 | 6.0

50 100 | 6.4 | 0.10 | 0.78 | 69.1 | 0.12 6.0

O.L. - 531 0.08 | 0.76 | 32.3 | 0.15 | 6.4
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