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ABSTRACT

This article proposes a reliability model for the emergency service vehicle location
problem. Emergency services planners must solve the strategic problem of where to locate
emergency services stations and the tactical problem of the number of vehicles to place in each
station. We view the problem as one of optimizing the reliability of a system, where system
failure is interpreted as the inability of a vehicle to respond to a demand call within an
acceptable amount of time. Our model handles the stochastic problem aspects in a more explicit
way than previous models in the literature. Based on a reliability bound on the probability of
system failure, we derive a 0-1 integer programming (IP) optimization model. To solve it, we
propose valid inequalities as a preprocessing technique to augment the IP and solve the 1P using
a branch-and-bound procedure. Our computational results show that the preprocessing techniques
are highly effective. We feel that the reliability model should have applications beyond this
context and hope that it will lead to ideas for similar optimization models for designing other

systems.






1. Introduction

Emergency services, such as emergency medical service (EMS) and fire rescue, are a
majdr concern of most regional and urban planners. Emergency services planners must solve the
strategic problem of where to locate emergency services stations and the tactical problem of the
number of vehicles to place in each station. Significant research attention has been directed
toward these problems; see, for example, Toregas et al. (1971), Church and ReVelle (1974),
Chapman and White (1974), Daskin (1983), and ReVelle and Hogan (1989). Furthermore, many
models have been applied in practice and have led to practical successes; see, for example, Plane
and Hendrick (1977), Schilling et al. (1979), and Eaton et al. (1985). In this paper we present
an optimization model for determining the location of stations and the number of vehicles to
place at each station. Our model handles the stochastic problem aspects in a more explicit way
than previous models. In fact, the perspective we view the problem is one of optimizing the
reliability of a system, where system failure is interpreted as the inability of a vehicle to respond
to a demand call within an acceptable amount of time. This reliability model is robust in the
sense that the reliability constraints are established independent of the vehicle dispatching rules.
We fecl that the reliability perspective should have applications beyond this context and hope that
it will lead to ideas for similar optimization models in the context of designing rcliable systems.
A 0-1 integer programming optimization problem is derived from the reliability model. To solve
it, we propose valid inequalities as a preprocessing technique to augment the IP and solve the
IP using a branch-and-bound procedure. Our computational results show that the preprocessing
techniques are highly effective.

Nearly all previous work in this area has involved the variants or extensions of the sct



covering model by Toregas et al. (1971). The basic inputs to these models are:

1) A setof demand points: each demand point represents a geographic area to which service
must be provided.

2.) A set of potential vehicle locations: associated with each location is the set of demand
points that can be "covered” from that location. In this context a demand point is covered
by the vehicle location if it is within a specified distance, and hence response time, of
the location.

One of the early models was the set covering location model (SCLM), proposed in 1971

by Toregas et al. (1971). The objective function is to minimize the number of facility stations
(and/or vehicles) required; and the constraints, one for each demand point, stipulate that each
demand point be covered by at least one chosen station that is within the specified response time

of the demand point. It was typically formulated as follows,

Min Ze; X

s.t.
Ticcovp X; = 1 for all i€,
X; € {0,1} for all jE€J,

where
1 if facility station j is chosen,
X; =
0 otherwise;

J = the set of eligible facility stations;
I = the set of demand points; -

COV() = the set of stations that are within the specified response time of demand
point i.
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It had been contended by some that the constraints in SCLM were too conservative in that
it might not be necessary to require coverage'of all demand points, especially considering the
common existence of peripheral demand points with diminutive demand. To circumvent this
alleged flaw, Church and ReVelle (1974) pioneered another line of modeling, the maximum

covering location model (MCLM), in which the objective function maximizes the sum of covered

demands, and in which the constraints limit the total number of stations to a fixed value while
allowing some demand points not to be covered. Variants and applications of the model followed
since then.

MCLM has been employed extensively in analyzing locations for emergency service
facilities. MCLM has been successfully applied in practice by Schilling et al. (1979) and Eaton
et al. (1985). These successes have established SCLM together with its variants and extensions
as a widely accepted framework for the emergency facility location. The long list of variants and
extensions of the covering models is described by Daskin et al. (1988).

With both SCLM and MCLM, the issue of system congestion remains open. That is,
when eligible vehicles are all out for services elsewhere, an arriving demand call must be put
on hold until a vehicle becomes available. As a result of this, both types of covering models,
deterministic in nature, tend to oversimplify and thus overestimate the performance by a given
number of stations and their vehicles. In light of this weakness, Chapman and White (1974)
derived a stochastic version of the set covering model, while Daskin (1983) explored a stochastic

version of the maximum covering model, which he named as the maximum _expected covering

location model (MECLM). Both models were built on the assumption that the probabilities that

vehicles or stations were busy could be determined in advance.
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As a variant of MECLM, ReVelle and Hogan (1989) proposed another stochastic model,

the Maximum Availability Location Model (MALM), in which each constraint guarantees that
the probability that demand point i receives service within an acceptable time be no less than a
required value. Assuming independence among eligible vehicles and estimating the average busy
fraction of the service vehicles, they defined the following constraints:
1-Tecovg ¥ = «a, for all demand points i, )
where 1; denotes the busy fraction of a vehicle at site j, X; equals 1 if there is a facility at site
j and O if otherwise, and « is the required probability. After simple algebra and taking
logarithms, these constraints become linear and lead to a 0-1 integer linear program. MALM
bears strong similarities to our model. However, we do not start with estimates of the r; but
rather directly model the source of randomness, namely the service calls originating from each
demand point. We then show how a constraint similar to (1) can be derived based on bounding
arguments. Specifically, the left hand side of our version of (1) is an upper bound on the
probability that demand point i will not receive an immediate response when a call arises. In
effect, our constraints guarantee that each demand point will receive at least the required level
of service. By deriving these constraints from more fundamental information we allow for the
1;’s to be derived from natural problem data which is especially important for proposed sites.
Furthermore, this approach opens up the possibility for the derivation and use of tighter upper
bounds on the required probabilities.
This paper is organized as follows. Section 2 describes how the reliability concepts may
be used to model the location problem. Section 3 constructs the reliability constraints using a

product form bound which then leads to an integer linear program. Section 4 gives the
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preprocessing methods we use to strengthen the integer program. Section 5 presents our

computational results.

2. A Reliability Model for the Emergency Services Location Problem

Our model starts with a set of demand points to which service must be delivered by the
emergency vehicles and a set of location candidates to be used as the vehicle stations. For an
illustration of the location problem, see Figure 1. It is assumed that the location candidates have
been predetermined due to some previous studies. (From now on, we use the terms "location”
and "station" interchangeably in referring to a site where vehicles are located.) In addition, we
assume that each potential location has an associated coveragé area. Consider, for example, the
EMS Act of 1973, which stipulated that 95% of service requests be met within 30 minutes for
rural areas and 10 minutes for urban areas. If a restricted travel distance or response time is
specified, a station is associated with some demand points it can feasibly service of "cover"
within the restriction. The area which is within the restricted traveling distance from a station
is called the coverage area of the station and vehicles located at a station are called the feasible
vehicles to its associated demand points. We assume that one vehicle trip serves only one
demand call, as is the case for most emergency services. In a general service trip, a vchicle
travels to a demand point, provides the on-scene services, possibly followed by a tour to a
nearby hospital in case of medical services, and returns to its home station.

We now present our reliability model. While presenting this model we will assume that
locations and vehicles have already been chosen and address the issue of how reliable is a

particular solution. In the next section we address how to embed this model into an optimization
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model. Unlike previous models., we model directly the inherent source of randomness, that is,
the service requests. Specifically, we assume service requests are randomly generated from the
demand points according to a certain probability distribution. When a demand call occurs it is

assigned to a feasible vehicle, if one is available. The vehicle assigned to the

B Potential Vehicle Location

o Demand Point
Coverage Extent Of A Location

.......

Figure 1.

A Geographical INlustration Of The Location Problem

service call remains busy and cannot service other calls for the (random) length of time necded

to service the call. After the call is completed the vehicle once again is available at its home
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station. Any operating system will employ specific rules for assigning a feasible vehicle to each
new call. Our analysis is independent of the particular rules employed. We note that we do not
explicitly model what is done and how the system performs when no feasible vehicles are

available to service a call.

Station ©®© Activated Demand Point
e Inactivated Demand Point

------------ Vehicle Feasibility To Demand Points
e Vehicle Assignment To Activated Demand Points

Figure 2.B.
Figure 2.

An Ilusti:-"ion For A Three-Station Coverage

Our model is built upon the requirement that each individual demand point achicve a
desired level of scrvice. In order to assess the level of service a demand point attains, an
individual reliability system will be defined for each demand point. A global reliability

system could have been defined for the entire geographical area, as is done in some of the
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stochastic models in the literature. However, a solution satisfying only a global system
performance criterion may balance a lower service level in one area with a higher service level
in another. By defining an individual system for each demand point we give the decision maker
more control and eliminate certain solutions that could easily be judged unfair.

The performance criterion we use to assess an individual system is based on the primary
concern of the system planner: if there is a possibility that a demand call may not receive an
immediate response, then what is the probability of this event occurring? In other words, what
is the fraction of demand calls arising at a particular demand point that cannot be immediately

assigned to a feasible vehicle? The formal definition of system operation is:

Definition 1. An individual reliability system at a demand point i is said to operate with respect
to a particular demand call if, when the demand call occurs, there is a feasible vehicle available

to service it.

If we denote as F; the event that a demand call arises from a demand point i, and if we
let E; be the event that a feasible vehicle is available for its service, then the conditional event
(E;|F) characterizes the system operation. The conditional probability Pr[E,;|F,] is hence the
probability that the system operates. We call this probability the reliability of the demand point
i, denoted as r;. If when a demand call occurs there are no feasible vehicles available for its
service, the system does ‘not perform its required function, and, thus, we say that the system

fails. We call the probability that the system fails as the failure probability of the demand point,

denoted as q;.
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The system performance standard we wish to enforce is that the failure probability be
within an upper limit. Indeed, imposing an upper limit for the failure probability is equivalent
to guaranteeing a lower limit for the reliability. For example, the failure being less than or equal
to 0.05 would insure that 95% of the calls have at least one feasible vehicle available for
immediate response to their service requests. From now on, we intend to dwell on the upper
limit. Due to the difficulty of computing the exact failure probability, we wish to develop an
upper bound for it, and impose an upper limit on the upper bound. This upper limit will in turn
be valid for the failure probability itself.

To develop the upper bound, we first derive a necessary condition for the failure of an
individual system. We will base our discussion on an individual system as illustrated in Figure
2.A where the demand point i is covered by three stations A, B, and C. Suppose that 2 vehicles
are housed at station A, 3 vehicles at station B, and 2 vehicles at station C. If a call which
occurred from demand point i found no feasible vehicles, then the 7 feasible vehicles must have
been servicing other demand calls arising from the combined coverage area of the three stations.
Specifically, there must be feasible assignments from seven uncompleted service calls arising in
the combined coverage areas to vehicles located at the three stations. More generally, if COV(i)
is a set of stations feasible to demand point i and K is the number of vehicles housed at station
j, then a demand call arising at demand point i could not be serviced if the Z;ec covg K vehicles
were assigned to the uncompleted calls arising in the combined coverage area of the locations
in COV(i). As Figure 2.B illustrates, we can view the possible assignments in terms of a
bipartite graph. One node set consists of the demand points in Ujecovg PT(j), where PT() is the

demand points covered by station j, and the other consists of the stations in COV(i). An arc is
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drawn between demand point k and station j if k€ PT(j). Our bound on the probability that no

vehicles are available for demand point i will be based on a necessary condition that such a
demand point to vehicle assignment exists. The required necessary condition is actually
equivalent to a necessary and sufficient condition due to Hall (1935), for the existence of a
feasible solution to a certain transportation problem:
We are given a bipartite graph (N,,N,,A) and associated supplies s, for each
KEN; and demands d; for each jEN, For any SEN, define
SUP(S) =L, ¢ jeajes & Then, there exists a feasible solution to the associated
transportation problem if and only if for all SEN,, SUP(S) = L, d,.
Before giving our necessary condition we define,
AS) = the number of demand calls that arose in U;cs PT(j) and that are still active at
a point in time, say, t.

The necessary condition is,

Proposition 1: If there is no vehicle available to service a call arising from demand point i at
time t, then A(S) = L K for all SSCOV(i).
proof: The proposition follows from Hall’s Theorem and the fact that the assignment illustrated

in Figure 2.B must exist. | |

In order to make use of this condition we require information on the duration of calls so
that we can associate probabilities with A(j) values. The simplest model would be one in which

vehicle service trips require a constant time duration, say, T. Thus, A(j) would simply be the
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number of demand calls that arose in PT(j) during time interval (t-T,t] as is illustrated in Figure

3.

2 & o o
t-T t
t The time when a demand call Jjust arises
at the demand point i

T A time interval of fixed length

® Demand calls that arcose between t and t-T

Figure 3.

An NMustration Of The Time Frame

Our ultimate objective is to derive an upper bound on the probability that a call does not
receive immediate service and to embed this upper bound into an integer program. Such a simple
bound can be obtained even when service times are not constant when we set T equal to an
upper bound on service time. We contend that since there are stringent requirements to complete
service calls quickly, such an upper bound can usually be derived in practice. We can now state
our bound. Following the discussion above, the bound is stated in terms of the number of calls
that have occurred in the previous interval of size T rather than in terms of active calls. We
define,

D) = the number of calls that arose in U;¢s PT(j) during the time interval (t-T,t],
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INT(G) = the random event: Ngccovg D(S) = Lies K.

Proposition 2 gives our bound.

Proposition 2: If T is an upper bound on the duration of all service trips, then q; < Pr[INT(1)].
Proof: If T is an upper bound on the duration of a service trip, then D(j) < A(j). The result now

follows from Proposition 1. ||

Here, we emphasize that this bound holds irrespective of any specific vehicle assignment
policy. In the next section, we will provide an integer optimization model which is constructed

using a product form upper bound for Pr{INT(i)].

3. The Integer Program With Reliability Constraints

Having defined an appropriate reliability system, we now wish to use it to determine the
ultimate emergency service locations and the number of vehicles for each chosen location. In
particular, we will define an optimization problem which includes constraints that address the
requirement of q; < 1-8, which is equivalent to r; = 3, for each demand point i€1. That is to
say, we intend that each r; has to achieve the same specified level §, as each demand point is
equally important. In particular, we wish to derive a computationally efficient upper bound for
Pr[INT(@)] in order to achieve a model that we can expect to solve in a rcasonable amount of
computing time. The upper bound we will establish is in a product form:

PROD(@) = Ieccove Pri DG) = K; 1.
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The essential chain of implication we will have is:

Pr[system fails] = q; < Pr[INT(@i)] < PROD(). ?)

For our model, we feel that Poisson distribution, in particular, is the most reasonable to
use for the distribution of demand calls. This is based on the common supposition that the
interarrival times between consecutive service calls arising at a demand point are independent
memoryless random variables. As a result of the independence among demand points, the
demand calls arising from a coverage area is also Poisson with arrival rate equal to the sum of
the arrival rates of the respective demand points in the coverage area.

In establishing the last inequality of (2), we find that the new better than used (NBU)

property in probability theory (see, for example, Barlow and Proschan 1975) plays a significant
role. Informally, the NBU property says that when a stochastic system has already survived s
time units, the probability that it will survive t additional time units is no larger than the
probability that it will survive t time units if it has not survived any. The following definition

is given.

Definition 2. A nonnegative random variable X has the new better than used (NBU) property
if
Pr{X>s+t|X>s] < Pr[X>t] for s>0, t>0. 3)
It has been well known in the literature that the equality of (3) holds if and only if X is

the exponential random variable in continuous case, or the gecometric random variable in discrete
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case. When the equality holds, it is what has been called the memoryless property.

Traditionally, the NBU property has been particularly identified for the continuous
distributions. In the case of discrete distribution, however, the discrete NBU property can be
stated as follows. When a stochastic system has already survived i arrivals (e.g. shocks or years
of aging), the probability that it will survive j additional arrivals is no larger than the probability
that it will survive j arrivals if it has not survived any. Namely, Pr{X>i+j|X=i] < Pr[X=j]

for nonnegative integers i and j. In the Appendix we establish:

Proposition 3. A Poisson random variable N(t) for a fixed t > 0 satisfies the discrete NBU

property.

Although this result has been implicit in the literature, we prove it in the Appendix since
it does not seem to have been explicitly stated elsewhere. The importance of this result for our

model results from the following Theorem.

Theorem 4. Ifthe demand calls are generated according to a NBU distribution, then Pr[INT(i)]
< PROD() for a demand point i.

Proof: See Ball and Shanthikumar (1992). ||

Corollary 5. If calls arise from each demand point according to a Poisson distribution, then
Pr{INT(i)] < PROD() for a demand point i.

Proof: The result follows from Proposition 3 and Theorem 4. ||
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Almost all earlier models in the literature simply assumed that neighboring stations
function independently. In spite of the fact that interactions among neighboring stations always
exist, they hardly offered justification for the assumption. With the independence assumption,
they dealt directly with product forms of probabilities based on the randomness of stations, and
used the estimates of these station-level probabilities as it is difficult to compute them exactly.
While our PROD(i) amounts to the effect that the PT(j)’s for j € COV(i) do not overlap, that is,
the demand calls arising from within every PT(j) are independent, we do not assume the
independence in arriving at PROD(i). Although both approaches lead to the use of product
forms, Theorem 4 and Corollary 5 yield justifications for the use of PROD(i) and in addition
provides a way of computing it from basic problem data.

Based on the reliability analysis given in the above, we now provide an integer
programming formulation, denoted as Rel-P, as a way to solve the emergency service vehicle
location problem. Rel-P uses the decision variables defined as follows.

1 if k vehicles are stationed at location j,
Xp =

0 otherwise,  for j€J and k=1,2,..., M,
where M; is the maximum number of vehicles that can be located at j. For each demand point
1, we wish that the restriction PROD(i) < 1-8 holds. To enforce this restriction we require that

e covg HlskﬁMj [P(DG) = k)]xﬁ( < 18 foralli€l, “)

J

Tlokam; X = 1 for all jE€J. )

J

Constraints (4) describe that an upper limit, 1-8, is imposed on the failure probability of
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each demand point by placing the limit on the upper bound of its failure probability. (5),

sometimes called the special order constraints, states that each location j either is not chosen or

is decided to house exactly one number, k, of vehicles.
By taking the logarithm function on both sides and changing the signs, constraint (4) can

be transformed into a linear constraint as follow:

Yiccovp Tisiem 2 Xi = b forall i€l (6)
where

;= - log[P(D() = K],

b, = -log (1-B),

and both a; and b; are positive numbers. The complete IP formulation is:

(Rel-P) Min  Tie; Ticrang WiXic

J

s.t.

5), (6)
X € {0,1} for all j,k,

where the costs Wy, indicate the cost of housing k vehicles at station j, which would include both
the "fixed" costs of opening a new station (or renovating an existing station) and the variable

costs associated with the number of vehicles.

4. IP Preprocessing Techniques

We propose to solve the model given in the previous section using an "off the shelf”,
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linear programming (LP) based branch-and-bound code. It is well known that the performance
of such branch and bound algorithms depends critically on the quality of the bounds produced
by the LP relaxation. In this section we present a set of preprocessing techniques for improving
the quality of the bounds. Our motivation for this ap;iroach comes from the highly successful
application of similar techniques by Crowder, Johnson and Padberg (1983).

In general, when one drops the integer restrictions from an integer programming (IP)
formulation, the polyhedron that results strictly contains the convex hull of all the integer points.
If one could write down a linear description of the convex hull of integer points, then a solution
to the associated LP would solve the IP. The objective of preprocessing techniques is to "shrink"
the LP feasible region so that it is closer to the convex hull of integer points. By doing this the
LP bound is improved and there is a greater possibility that the LP will produce an integer
solution. Valid inequalities are typically generated dynamically by solving a separation problem;
see Nemhauser and Wolsey (1988). That is, an LP would be solved and a valid inequality would
be identified and added to the LP. The LP would be resolved and the process would iterate
several times in this manner. Our approach is to selectively define a small number of valid
inequalities that can be added to the original formulation. While this approach limits the potential
impact of the use of valid inequalities, it does not require developing an algorithm to solve the
separation problem, which is in general a difficult problem. Thus, it is probably most accurately
to view our approach as a process of formulation strengthening. This preprocessing approach,
however, has its theorctical basis. Somé recent developments in integer programming indicated
that the successes of the general polyhedral approaches to solving integer programming problems

depend critically on the strong valid inequalities that are found and addced to the problems. This



18

somehow suggests that strong valid inequalities need not be generated dynamically as done in
the general cutting plane algorithms. As will be shown by our computational experience, the
valid inequalities added to Rel-P provide decisive efficiencies for the branch-and-bound
procedure, even though they are generated at the beginning step, rather than during the course,
of the algorithms. As the efficiency of LP optimizers have constantly improved, solving a large
LP as a result of adding many valid inequalities simultaneously is hardly the computational
bottleneck.

We employ two classes of preprocessing techhiques. The first is coefficient round-down.
This method involves changing the coefficients of existing constraints. The second class involves
defining valid inequalities which are new inequalities that are added to the problem. In general,
a method which alters an existing inequality or produces a new one can be shown to be correct

if it can be shown that the resultant inequality must be satisfied by all integer solutions.

4.1. Cocfficient Round-Down

Often, the fact that variables take on either 0 or 1 values renders the possibility of
rounding down the coefficients in the constraints.

For the following constraint:

T Eoa, X, = by, where X, €{0,1}, and all 3; > 0,

if any a; > b, then replacing a, by b; in the constraint will not affect the set of integer feasible
solution, whereas in general some non-integer solution may be eliminated. For instance, 2X; +
3X, + 7X; + 9X, = 6 can be rounded down to 2X, + 3X, + 6X; + 6X, = 6. Any feasible

integer point satisfying one constraint must also satisfy the other constraint.
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4.2. Valid Inequalities

Formulation-induced valid inequalities usually are capable of augmenting the IP in the
sense of trimming off unnecessary portion of the underlying LP polytope. We now propose

classes of valid inequalities which are identified from each individual constraint (6).

4.2.1. Cover Inequality
In order to satisfy a constraint
e Y; 2 b : (7
where Y; = O or 1, and b, a; > 0, there must be at least one Y; that receives the value 1.
Furthermore, if there exists a subset J* such that E,¢). a; < b then it is clear that at least one Y;
with jEJ-J* must be 1. In other words, the following is a valid inequality.
Tewr Yj 21 (8)

In fact, this idea is a simple reinterpretation of the corresponding idea of the well known

cover inequality for the knapsack problem. For more valid inequalities along this line, see, for
instance, Padberg (1979) and Nemhauser and Wolscy (1988).

The constraint Xiecovpri<k<rs 4 X = b; from our model has the same form as (7),
however, the additional constraint T, _; »; X; < 1 allows us to derive an inequality stronger than

(8). One way of doing that is illustrated in Proposition 6.

Proposition 6. Let a" = Max {a’: b; > Ziccovg Max, {3, : a; < a’}}. Then

i aear X = 1 )

is a valid inequality.
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proof: a" is defined so that if the largest a; less than or equal to a" is chosen for each j then
the sum obtained is less than b;. Thus, since only one X, can be set to one for each j, some

other X; must be set to one. This is exactly what the valid inequality implies. ||

To illustrate the difference between (8) and (9) consider the following constraint:
22X, + 5X,; + 6X;3 + 8X,, + 3X,, + 4X,, + TXy + 10X, = 13
If J’ is defined as {(j,k): a; < 4}, then (6) yields a cover inequality (8):
X+ X3 +X,+X3+xy21;
whereas Proposition 6 with a"= 6 produces a stronger cover inequality (9):
Xy + Xy +Xyy21.
Note that (9) is a special cover inequality stronger than (8).

In our computational testings, we used (9) as the cover inequalities added to the test problems.

4.2.2. Clip Incquality
Note that in both real problems and in randomly generated problems it is not unusual to
encounter demand points i with |COV(i)| =2. With such a 2-station reliability constraint, it is

thus possible to derive a special class of valid inequalities.

Proposition 7. Let i’ be such that COV(@i’) = {j,,j,} and suppose b, > a’; = Max,{a; ,}.
Then,
Lies ij,x > 1

is a valid inequality where §’= {k : a,,+a’; = b;}.
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Proof: Ifa’; < b; then it is clear that at least one X;,, must be one. Furthermore, the X,, that

is one must have an a;,, value at least large enough to achieve that b, value when combined with

a,jl' I l

We call this type of valid inequality: L5 X, = 1, a clip inequality. In fact, together
with a constraint of (5): Ijci<n X < 1 for j=j, , a clip inequality can be represented as L, ¢
Xy« = 1. This in turn implies that in Rel-P a constraint of (5) for j=j, is indeed satisfied at
equality and thus can be replaced by Iy, < Xz = 1 for- =35

As an example, let us consider the 2-station constraint:

22X, + 5X;, + 6X,5 + 8Xy, + 3Xy, + 4X,, + 7X,; + 10X, = 13,

'ﬁxe fact that the respective largest coefficients of the X;,’s and X,,’s are less than the right hand
side gives rise to two clip inequalities: X3 + Xy, = 1 and X;, + X,; + X,, = 1, as Proposition

7 affirms.

4.2.3. Constraint Substitution

We developed one final technique that replaces constraints (6) for a given i with a
completely new set of constraints. As such, this technique makes the methods described in
Scctions 4.2.1 and 4.2.2 unnecessary. This technique, however, is only practical for (5) and (6)
when |COV()| is small. Thus, in general, an approach that uses this technique for some
demand points and the previous techniques for others is appropriate. The method employs
concepts from blocking polyhedra.

The replacement incqualities are identified by what we define as "cutsets” for a reliability
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constraint (6). The cutsets are conceptually similar to the cutsets defined in reliability literature
in that if all elements of a cutset are removed or "fail" to contribute, then it is impossible to
satisfy the constraint. Our cutsets will always be defined to be minimal with respect to set

inclusion.

Definition 4. Given i, a set H of a;’s is called a cutset relative to constraint (6) if it is a

minimal set satisfying X;ccovgp Max,{a,: 3, €H} < b,

To illustrate the cutset as defined, consider the following example.
Example 1. Consider the following instance of constraint (6) and its associated special ordered
constraints (5).

2X, + 3X, + 5X, + 7X, + 3Y, + 4Y, + 8Y, + 9Y, + Z, + 5Z, + 7Z, + 10Z, > 18

X, + X, + X, + X, < 1
Y, + Y, + Y, + Y, < 1
7, + 27, +Z, + 7, < 1

Let H = the coefficient sct associated with X3, X,, Y,, Z;, and Z,
= {5,7,9,7,10}.

Then, H is a cutset, since I; Max,{a,: 3, #H} =3 + 8 + 5 = 16 < 18.

Giveni,aj€COV() and a cutset H we define cp(H,j) = Max{k: a, & H}. It follows that
a cutset H is completely determined by {cp(H,j):j € COV(i)}. We call the cp(H,j) cutting points.
Clearly, any a, which is greater than or equal to b; is always in every cutset, namely, is never
considered as a cutting point. We adopt the convention that if a cutset H is such that for some

j’€COV(), Min{k: a;, €H}=1, then cp(H,j’) = 0. Suppose that all the cutsets of (6) are
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enumerated for a given i. Then (6) can be replaced by the set of valid inequalities formed by the

cutting points. These ideas are summarized by Proposition 8. For detailed analyses, see Ball and

Lin (1992).

Proposition 8. For any i, the set of feasible integer solutions to (5) and (6) is the same as the
set of feasible solutions to (5) and
LiccovoXur>pay Xx = 1 for all cutsets H derived from (6). (10)

Proof: See Ball and Lin (1992). ||

Note that Proposition 8 holds for a general reliability constraint (6), regardless of the
JCOV(i)]. Ball and Lin (1992) also show that when |COV(i)| =2 the set of inequalities given
in Proposition 8 actually define the convex hull of integer solutions to (5) and (6). Consequently,
for this case we call the inequalities Convex Inequalities. When [COV(i)| =3, they are called

Blocking Inequalities due to their use of concepts of blocking polyhedra.

5. Computational Results

This section presents the computational results based on our IP model Rel-P. The purpose
of this computational study is twofold: (1) to verify the effectiveness of the various preprocessing
techniques proposed for solving the Rel-P, and (2) to explore the sensitivity of the model to
changes in key data characteristics. ‘The results show that the preprocessing techniques
dramatically reduce the computation time required by branch and bound solution algorithms. The

overall impact is that our model is very practical for problems whose constraint matrices are
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relatively "sparse” in terms of nonzero coefficients. Sparsity here means that each demand point
is covered by a relatively small number of location candidates. Our sensitivity studies show that
the planner can produce a variety of different desired solution outcomes by appropriate altering
parameters. We also give experience with the application of our model to a frequently used test
problem found in the literature.

Our computational study used two branch-and-bound codes: the MILP88 (Eastern
Software Products, Inc. 1988) on an 8 MHZ Intel-286 DOS machine with no math co-processor
and the MPSX/MIP/370 on an IBM 3081 VM/SP/CMS mainframe. The formulation
. strengthening techniques proposed earlier were applied to preprocess the problems. As a result,
the branch-and-bound codes are able to solve the augmented IPs very efficiently. When
incorporated with all the proposed valid inequalities, the problems which were put to the MPSX
code were all solved in less than 5 CPU minutes (with most of them solved in less than 3 CPU
minutes) while those which were run on the MILP88 code in the 8 MHZ IBM/PC were solved
within 10 minutes. Throughout our computations, we used the MILP88 to solve problems 1, 2,
3, and 5 due to their smaller sizes. For larger problems, we used MPSX.

We report on the solution of 9 test problems. Eight of them are random problems whose
sizes are commensurate with models in the literature. In a 100.0x100.0 geographical region all
the demand points and potential locations were randomly generated according to a uniform
distribution. The coverage area of each location candidate is assumed to be a circle. To avoid
overly simplistic problems we require that each demand point be covered by at least two
potential locations. Besides the eight random problems, our study includes a 55-node problem

(each node being a demand point as wcll as a location candidate), which had been used for
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testing in several articles. See Daskin (1983) and Hogan and ReVelle (1984), for example.

For all the 9 problems, the maximum number of vehicles planned at each station is set
to four; the unreliability level for each demand point is fixed for the same problem; and the
"fixed" cost associated with a location (e.g., renovation or expansion cost for an existing station)
is assumed to be the product of a constant and a vehicle’s cost. Also, the problem parameters
are experimentally selected so that the IP is feasible and difficult to solve. As noted earlier, each
demand point generates calls independently according to a Poisson process. The Poisson arrival
rate \; for demand point i for i€ was selected. Thus, D(j) for jE€J also forms a Poisson process
with arrival rate equal to Lieprg);, Where PT(j) represents all the demand points covered by
station j for jJEJ.

In describing the data of a test problem, besides the problem size and the basic problem
parameters, we also provide information regarding the "distribution” of the demand points in
terms of the number of their covering location candidates. Given a Rel-P problem, it is
important to know, for example, how many demand points are covered by 4 location candidates,
3 location candidates, and so on. This distribution is significantly related to the difficulty in
solving the Rel-P. When a demand point is covered by, say, 4 candidate locations, we call it a
4-location demand point. In general, the more demand points which are covered by high number

of locations, the more difficult it is to solve the Rel-P.

S.1.  Preprocessing and Branch-And-Bound Computations
In verifying the effectivencss of the various preprocessing techniques proposed for solving

the Rel-P, we used problems 1 - 7 as the test problems. We asscss the branch-and-bound
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efficiencies based on the number of branches or nodes created during the branch-and-bound
procedure and their CPU time on the respective machines. For each problem tested in this
section, seven IP instances were input into the same branch-and-bound procedure: (1) plain IP,
noted as P; (2) IP with the coefficient round-down, noted as R; (3) IP with Cover Inequalities
generated and added to R, denoted as RV; (4) IP with Clip Inequalities generated and added to
R, indicated as RL; (5) IP with both the Cover and Clip Inequalities added to R, i.e., RVL; (6)
IP as a result of generating Cover, Clip, and the Convex Inequalities on R, marked as RVLXj
and (7) IP obtained by including Cover, Clip, Convex, and the Blocking Inequalities onto R,
represented as RVLXB.

The outcomes, reporting the additional efficiency gained as a result of adding the various
valid inequalities in solving the problem optimally, were summarized in Table 1 - 7. In each
table, "v(IP)" is the optimal objective value of the Rel-P, and the "C/W" represents the ratio
between the "fixed" cost associated with a location and the cost of one vehicle unit. For each
problem, we made two runs with each run being with a different C/W ratio in the objective
function. The intention is to see to what degree the effectiveness of the various valid inequalities
is affected by the C/W ratio. The first two columns, respectively, give the number of branches
or nodes created and the amount of time used, during the course of the branch-and-bound
procedure. The "v(LP)" column indicates the optimal objective values of the LP relaxations
augmented by the various valid inequalities. Defining the "duélity gap" as the quantity v(IP)-
v(LP), we calculated the percentage reduction of the duality gap, noted as %RDG, by a
pr'eproéessing step 1 as follows: %RDG; = 100% *[v(LP)-v(LPy)V[v(IP)-v(LPy)], where LP, is

the LP relaxation of the plain IP formulation. As such, the "%RDG" column shows the
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percentage reduction of the duality gap resultant from adding the various inequalities.

Clearly, throughout the seven problems tested, the solution efficiency keeps improving
as the variety of valid inequalities are added progressively. For problems 2, 3, and 4, where the
2-location demand points are the significant majority among all the demand points, the Convex
Inequalities generated on the 2-location reliability constraints outstandingly enhance the branch-
and-bound efficiency in terms of the number of branches, the solution time, and the LP
relaxation. On the other hand, the remaining test problems, wﬁere the number of 2-location
demand points is not significant, relate the remarkable effectiveness of the other type of
inequalities, i.e., the Blocking Inequalities. Indeed, problem 7 needed the Blocking Inequalities
to obtain the optimal solution. And, problems 1, 5, and 6 showed the significant efficiency
gained by the Blocking Inequalities. Occasionally, the number of nodes created by the branch-
and-bound exceeded the allocated memory and the branch-and-bound terminated with a "FULL"
indication, as can be seen in Table 4, 6, and 7.

As a result of the seven problems tested here, it is evident that our preprocessing
techniques are very effective for problems whose constraint matrix is not too "dense". As a
matter of fact, our 9 test problems all have a constraint matrix with a "density" as high as 16%
or more, which are not "sparse” at all. Typically, according to the literature, for instance,
Crowder, Johnson, and Padberg (1983), a constraint matrix is considered "sparse" if the total
number of nonzero coefficients divided by the product of the number of rows and the number

of columns is less than 5%.



# of demand points = 40, # of locations=15
£=0.97, A=0.025, coverage radius=20.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

. 17
: 16

PROBLEM 1
Demand=40 Location=15 %2-Loc-Demand=42.5%
C/W =1/3 v(IP) = 139.0
Branch Minute v(LP) %RDG
I p 62 45 116.3
R 54 31 118.8 11.31
RV 31 29 119.9 15.82
RL 6 0.8 135.1 82.87
RVL 3 1 137.3 92.69
RVLX 3 2.2 137.3 92.69
RVLXB 1 1.8 139.0 100.00
C/W =10/l  v(P) = 172.0
Branch Minute v(LP) %RDG
P —— — 125.2 —
R 296 271.5 131.1 12.61
RV 69 44 .5 135.3 21.58
RL 12 4.5 166.2 87.61
RVL 4 5.2 166.9 89.10
RVLX 4 8.1 166.9 89.10
RVLXB 1 1.7 172.0 100.00
Table 1.

Problem 1: Effectiveness of the Various Valid Inequalities
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PROBLEM 2
Demand=60 Location=15 %2-Loc-Demand=55.00%
C/W =1/3 v(IP) = 138.0

Branch Minute v(LP) %RDG
P 143 184 110.9 ----
R 72 62 114.1 11.69
RV 18 37 . 117.8 25.52
RL 9 1 134.3 86.23
RVL 7 3.5 134.4 86.58
RVLX 1 2.6 138.0 100.00
RVLXB 1 0.85 138.0 100.00

C/W = 10/1 v(IP) = 162.0

Branch Minute v(LP) %RDG
P ——— -—— 119.4 -—--
R 65 18.3 126.0 15.44
RV 15 5 134.7 35.83
RL 8 4.5 160.9 97.44
RVL 6 1.4 161.0 97.53
RVLX 1 1.2 162.0 100.00
RVLXB 1 0.85 162.0 100.00

Table 2.

Problem 2: Effectiveness of the Various Valid Inequalitics

# of demand points=60, # of locations=15
B=0.97, X=0.018, coverage radius=20.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

: 33
2 24
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PROBLEM 3

Demand=57 Location=15 %2-Loc-Demand=54.39%

Problem 3: Effectiveness of the Various Valid Inequalities

# of demand points=57, # of locations=15
B=0.98, N\=0.015, coverage radius=20.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

: 31
: 20

C/W =1/3 v(IP) = 132.0
Branch Minute v(LP) %RDG
P 295 272 106.3 -—--
R 87 104 113.2 26.93
RV 30 82 118.6 47.97
RL 14 12 126.7 79.45
RVL 5 4 129.2 89.12
RVLX 1 5.6 132.0 100.00
RVLXB 1 1.9 132.0 100.00
C/W = 10/1 v(IP) = 160.0
Branch Minute v(LP) %RDG
P o o 114.5 ---
R 314 103.7 126.5 26.37
RV 43 34.9 134.1 43.08
RL 10 10.5 158.5 96.70
RVL 2 1.5 159.4 98.68
RVLX 1 2.3 160.0 100.00
RVLXB 1 1.9 160.0 100.00
Table 3.
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[ PROBLEM 4
Demand=183 Location=40 %2-Loc-Demand=51.37%
C/W = 1/3 v(IP) = 337.0

Nodes Minute v(LP) %RDG
P FULL —— 262.7 ———-
R FULL —— 274.3 15.63
RV FULL -— 283.1 27.51
RL FULL 2.05 322.0 79.87
RVL 358 1.01 328.8 88.94
RVLX 1 0.06 337.0 100.00
RVLXB 1 0.05 337.0 100.00

C/W = 10/1 v(IP) = 414.

Nodes Minute v(LP) %RDG
P FULL ———- 2829 | -
R FULL -— 304.5 16.48
RV FULL e 318.1 26.85
RL 265 0.32 410.8 97.56
RVL 6 0.05 412.3 08.70
RVLX 1 0.05 414.0 100.00
RVLXB 1 0.05 414.0 100.00

Table 4.

Problem 4: Effectiveness of the Various Valid Incqualities

# of demand points=183, # of locations=40
B8=0.962, A=0.019, coverage radius=15.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

: 94
: 68
: 16
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PROBLEM 5
Demand=30 Location=15 %2-Loc-Demand=23.33%
C/W =1/3 v(IP) = 96.0

Branch Minute v(LP) %RDG
P - -—-- 73.9 -—--
R 157 85.7 78.4 20.36
RV 125 103.6 78.4 20.36
RL 188 89.3 82.9 40.72
RVL 98 50.2 84.7 48.87
RVLX 19 12.2 86.7 57.92
RVLXB 4 8.7 93.8 90.04

C/W = 10/1 v(IP) = 119.0

Branch Minute v(LP) %RDG
P ———— ———- 79.55 ———-
R 98 47.7 91.04 29.13
RV 78 60.6 91.04 29.13
RL 143 19.5 99.47 50.49
RVL 27 9.3 100.05 51.96
RVLX 13 6.6 100.05 51.96
RVLXB 4 9.4 118.25 98.09

Table 5.

Problem §: Effectiveness of the Yarious Valid Inequalities

# of demand points=30, # of locations=135
B=0.97, N\=0.025, coverage radius=20.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

ENER R

32



PROBLEM 6
Demand=119 Location=30 %2-Loc-Demand=10.92%
C/W = 1/3 v(IP) = 185.0

Nodes Minute v(LP) %RDG
P FULL ———- 142.7 | -----
R FULL S— 158.0 36.17
RV FULL ———- 158.0 36.17
RL FULL -—-- 163.9 50.12
RVL FULL e 165.2 53.19
RVLX 1932 2.45 166.1 55.32
RVLXB 26 0.13 173.8 73.52

C/W = 10/1 v(IP) = 226.0

Nodes Minute v(LP) %RDG
P FULL -——- 153.7 -—--
R FULL ———e 182.5 39.83
RV FULL ———- 182.5 39.83
RL FULL -——- 195.7 58.09
RVL FULL -—-- 196.2 58.78
RVLX 2019 2.30 196.2 58.78
RVLXB 10 0.08 217.5 88.24

Table 6.

Problem 6: Effectiveness of the Various Valid Inequalities

# of demand points=119, # of locations=30
B£=0.962, A=0.016, coverage radius=15.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

113
: 66
: 31
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PROBLEM 7
Demand=201 Location=44 %2-Loc-Demand=12.43%
C/W = 1/3 Best v(IP) Found = 332.0

Nodes Minute v(LP) %RDG
P FULL | - 2545 | @ -
R FULL | ----- 268.1 17.55
RV FULL | - 272.7 23.48
RL FULL e 290.1 45.93
RVL FULL | - 291.0 47.09
RVLX FULL | - 294.9 52.13
RVLXB FULL | -~ 314.3 77.16

C/W = 10/1 v(IP) = 403.0

Nodes Minute v(LP) %RDG
P FULL - 274.1 o
R FULL - 298.1 18.62
RV FULL e 309.4 27.39
RL FULL - 342.5 53.06
RVL FULL - 342.7 53.22
RVLX FULL - 343.6 53.92
RVLXB 375 1.19 382.3 83.94

Table 7.

Problem 7: Effectiveness of the Various Valid Inequalities

# of demand points=201, # of locations=44
B8=0.962, A=0.020, coverage radius=12.7

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points
# of 5-or-more-location demand points

125
1122
: 38
1 16
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5.2. Solution Sensitivity Of The Reliability Model

In this section we report on three studies concerning the sensitivity of our reliability
model to changes in data characteristics. We used problems 8 and 9 for our sensitivity studies.
In each study, sensitivity results were summarized in tables and illustrated by figures, including
the number of locations and the number of vehicles chosen.

Unfortunately, problem 8, the 55-node problem, poses a stiff challenge to the valid
inequalities we have proposed in that most of the nodes are so close to one another that there
is a heavy coverage overlapping among th.e locations. As a result, 43 out of the 55 demand
points have more than 4 location candidates to choose from; indeed, 27 demand points are
associated with 10 or more location candidates. Thus, the constraint matrix is highly "dense”
in the nonzero coefficients, and our preprocessing techniques are not expected to be effective
for this problem. In fact, after we generated the valid inequalities for only those 7-or-less-
location reliability constraints, the augmented formulation had become very close to our
machine’s memory limit, and little efficiency was gained. We thus used a two-stage strategy to
tackle this problem. For Stage 1, we included additional 0-1 location variables and did not
require that the X, be integer. Stage 1 is intended to reduce the set of location candidates that
can be used in stage 2. We note that all the preprocessing techniques remain valid for both
stages. Our computational experience with the stage 1 problem indicated that its LP relaxation
has a highly degenerate solution, where only 13 out of 55 Y;’s (i.e., location variables) reccived
positive value. As a result of using these 13 locations, we obtained from stage 2 a solution
(feasible to Rel-P) that ultimately choose 11 out of the 13 candidate locations and determined

the appropriate number of vehicles to house at each of the 11 chosen stations. By comparing the
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final solution value with the value of the stage 1 solution, which gives an overall lower bound
we found that the final (approximate) solution was within 14% of the optimal solution to Rel-P.

This two-stage strategy is the approach we used to conduct the sensitivity study on problem 8.

5.2.1. Location/Vehicle Sensitivity To C/W Ratio

In this part of the sensitivity study we intend to examine how the C/W ratio affects the
locations/vehicles chosen by our reliability model. Everything else being fixed, two C/W ratios,
1/3 and 20/1, were assumed. The results are shown in Table 8 with Figure 4 and Figure 5 for
problem 8; and Table 9 with Figure 6 and Figure 7 for problem 9. As indicated in the results,
when the "fixed" cost of a station is much higher than the cost of a vehicle unit, our model
responds with choosing fewer locations but more vehicles, though not significantly. Since the
coverage radius of the locations is predetermined, and since the distances between locations and
demand points are neglected in our objective function, we are little surprised that the C/W ratio

had insignificant effect on the locations and vehicles chosen.



# of demand points=55, # of locations=55
B=0.99, A=0.01,

# of 2-location demand points

# of 3-location demand points

# of 4-location decmand points

# of 5-to-9-location demand points

# of 10-or-more-location demand points

coverage radius=10.0

-

“ PROBLEM 8
Demand=55 Location=55
(Demand Point = Location Candidate)
T C/wﬁ 1**************
10.0 1/3 0.990 000040000000020
10.0 20/1 0.990 000040000000020
TC/WB dk ok ok ok ok sk dk ok ok Kk ok ok Kk Kk %k
10.0 1/3 0.990 00000333000010°2
10.0 20/1 0.990 000003440000002
TC/wﬁ %k A ok ok ok ok ok Kk ok ok ok kA ok kK
10.0 1/3 0.990 000004000000000
10.0 20/1 0.990 000004000000000O0
T CWwW 8 ¥ Ok ok ok k% ox x X% §§ (Locs. Vehs.)
10.0 1/3 0.990 0200300004 (11 31)
10.0 20/1 0.990 0200300004 (10 32)
Table 8.
Problem 8: Location/Vehicle Sensitivity to C/\WV Ratio
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Figure 4.

Problem 8: T=10.0 C/W=1/3 £$=0.990
Result: 11 Locations 31 Vehicles
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Figure S.

Problem 8: T=10.0 C/W=20/1 §=0.990
Result: 10 Locations 32 Vehicles
(In Comparison With Figure 4.)
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q PROBLEM 9
Demand=183 Location=47

TC/WB 1 % %k ok ok ok ok ok ok ok % ok ok ok %

15.0 1/3 0.962 002444443442000

15.0 20/1 0.962 003144443404000

TC/WB % ok K vk ok ok ok Kk ok ok Kk Kk Kk %k Xk

15.0 1/3 0.962 2010144001 4310

15.0 20/1 0.962 2040404004143 10

TC/Wﬁ B ok vk ok sk ok ok %k ok ok Kk Kk ok ok Kk

15.0 1/3 0.962 1 4 423441444300

15.0 20/1 0.962 4 34443044044300

T CW 8 * 47 (Locs. Vehs.)

15.0 1/3 0.962 00 (33 99)

15.0 20/1 0.962 0 4 (30 103)
Table 9.

Problem 9: Location/Vehicle Sensitivity to C/W Ratio

# of demand points=183, # of locations=47
8=0.962, A=0.019, coverage radius=15.0

# of 2-location demand points
# of 3-location demand points
# of 4-location demand points

: 53
: 75
: 38

# of 5-or-more-location demand points : 17
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Figure 6.

Problem 9: T=15.0 C/W=1/3 $=0.962
Result: 33 Locations 99 Vehicles
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Figure 7.

Problem 9;: T=15.0 C/W=20/1 3=0.962
Result: 30 Locations 103 Vehicles
(In Comparison With Figure 6.)

5.2.2. Location/Vehicle Sensitivity To Reliability Level
The locations/vehicles chosen also varied with different reliability levels as everything
else was fixed. The sensitivity results for problem 8 are shown in Table 10 with Figures 8 - 10,

and the results for problem 9 in Table 11 with Figure 11 and Figure 12. As anticipated, the
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model is sensitive to the reliability level. The total locations and/or vehicles chosen decreased

with the reliability level, as expected.

PROBLEM 8
Demand=55 Location=55
(Demand Point = Location Candidate)
T C/W B 1**************
10.0 1/3 0.990 000040000000020
100 1/3 0.975 000000000000020
10,0 1/3 0.950 040000000000020
10.0 1/3 0.900 000030000000020
T C/W B %k ok ok sk dk dk ok ok ok Kk sk Kk Kk Xk Xk
10.0 1/3 0.990 000003330000102
10.0 1/3 0.975 030003000000004
10.0 1/3 0.950 000003000000204
10.0 1/3 0.900 000002000000203
T C/W B K sk ok ok sk sk ok ok ok ok Kk Kk ok ok ok
10.L0 1/3 0.990 000004000000000
10.0 1/3 0.975 000003000000000
10.0 1/3 0.950 000003000000000O0
10,0 1/3 0.900 000003000000000O0
T CW g ¥ Ok ok ox ok ox ok ok Xx 5§ (Locs. Vehs.)
10.L0 1/3 0.990 02003000014 (11 31)
10,0 1/3 0.975 0400200003 (8 24)
10,0 1/3 0.950 0000200003 (8 23)
10.0 1/3 0.900 0000200002 (8 19)
Table 10.

Problem 8: Location/Vehicle Sensitivity to Reliability Level
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Figure 8.

Problem 8: T=10.0 C/W=1/3 ($=0.975
Result: 8 Locations 24 Vehicles
(In Comparison With Figure 4.)
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Figure 9.

Problem 8: T=10.0 C/W=1/3 $3=0.950
Result: 8 Locations 23 Vehicles
(In Comparison With Figure 4.)
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Figure 10.

Problem 8: T=10.0 C/W=1/3 $=0.900
Result: 8 Locations 19 Vehicles
(In Comparison With Figure 4.)
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“ PROBLEM 9
l Demand=183 Location=47
TC/W B 1**************
15,0 1/3 0.962 002444443442000
15.0 1/3 0.950 002044420444004
15.0 1/3 0.925 044441434040040
TC/WB **.*************
15.0 1/3 0.962 201014400124310
15.0 173 0.950 200300400304302
15.0 1/3 0.925 100404400024204
TC/WB k ok Kk ok ok Kk ok Kk Kk Kk Kk ok ok K Kk
15.0 1/73 0.962 134423441444300
15.0 1/3 0.950 043324443003400
15.0 1/3 0.925 001412440300000
T C/W g * 47 (Locs. Vehs.)
15.0 1/3 0.962 00 (33 99)
15.0 1/3 0.950 03 (27 90)
15.0 1/3 0.925 00 (25 80)
Table 11.
Problem 9: Location/Vehicle Sensitivity to Reliability Level
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Figure 11.

Problem 9: T=15.0 C/W=1/3 ($=0.950
Result: 27 Locations 90 Vehicles
(In Comparison With Figure 6.)
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Figure 12.

Problem 9: T=15.0 C/W=1/3 (=0.925
Result: 25 Locations 80 Vehicles
(In Comparison With Figure 6.)
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5.2.3. Location/Vehicle Sensitivity To Location Coverage

result of different coverage extents. When the location coverage radius decreased from 10 to 5,
the results were shown in Table 12 and illustrated by Figure 13. Obviously, more locations and

vehicles must be used when vehicles were allowed to travel up to only a half of the original

Here, we used problem 8 to briefly demonstrate the locations and vehicles chosen as a

limit.
PROBLEM 8
Demand=55 Location=55
(Demand Point = Location Candidate)

TC/WB 1**************
10.0  1/3 0.990 000040000000020
5.0 1/73 0.990 2440020044034133
TC/WB dkok ok ok ok ok ok ok ok ok Kk Kk K Kk K
10.0 1/73 0.990 000003330000102
5.0 1/3 0.990 340040404433340
TC/WB d ok ok ok o ok sk sk ok ok sk Kk ok Xk
10,0 1/3 0.990 000004000000000
5.0 1/3 0.990 4 00303343304434
T CW B8 ¥ ok ok ok ok ox ok X% X 5§ (Locs. Vehs.)
10.0 1/3 0.990 02003000014 (11 31)
5.0 1/73 0.990 0413333333 (40 133)

Table 12,

Problem 8: Location/Vehicle Sensitivity to Coverage
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Figure 13.

Problem 8: T=5.0 C/W=1/3 $=0.990
Result; 40 Locations 133 Vehicles
(In Comparison With Figure 4.)
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APPENDIX

To establish Proposition 3, we describe two of the properties: increasing failure rate

(IFR) and increasing failure rate average (IFRA), that identify important classes of probability

distributions. As given in the literature, their definitions are provided as follow. Note that these

definitions can be applied to both continuous and discrete distributions.

Definition Al. A nonnegative random variable X or its distribution function F(x) is said

to have the increasing failure rate (IFR) property if -log[1-F(x)] is a convex function in x = 0.

Definition A2. A distribution F(x) has the increasing failure rate average (IFRA) property

if -(1/x)log[1-F(x)] is increasing in x = 0.

It has been shown that, particularly in the context of general continuous distributions, IFR
implies IFRA and IFRA implies NBU. It is easy to see that the IFRA property is equivalent to
that [1-F(x)]"* is decreasing for x=0. As a result, for renewal processes, Barlow and Proschan

(1975) provided Proposition Al.

Proposition Al. Let N(t) denote the number of renewals during [0,t] in a renewal process.
Then for fixed t>0, N(t) satisfies the discrete IFRA property: PY*[N(t) >k] is decreasing in
k=1,2,....

Proof: Sec Barlow and Proschan (1975), page 177. ||
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The proof of Proposition A2 is developed similarly to the proof for continuous

distributions, which can be found from, for example, Gertsbakh (1989), page 60.

Proposition A2. Discrete IFRA implies discrete NBU.
Proof: Discrete IFRA states that (1/k) -logP[N(t) =k] is decreasing in k=1,2,.... Let g, =
1/G+j) - logP[N(t) =i+j], g, = 1/i-logP[N(t)=i], g; = 1/j+logP[N(t)=j], for i,j=1. IFRA
implies that g, < min(g,,g;). Hence, we have
logP[N(t) =i+j] = g,(i+)) < min(g,,g5)-(+j) < g, + g4
= logP[N(t)=i] + logP[N(t) >j] = log{P[N(t) =i] - P[N(t) >j]}.
Therefore, P[N(t)=i+j] < P[N()=i]-P[N(t)=j], which 1is equivalent to that

PIN(t)=i+j|N(t)=i] < P[N(t)=j], and thus the discrete NBU property. ||

Proposition 3. A Poisson random variable N(t) for a fixed t > 0 satisfies the discretc NBU
property.
Proof: A Poisson process is a renewal process. By Propositions Al and A2, Proposition 3 is

proved. ||
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