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High dimensionality is a common problem in statistical inference, and is be-

coming more prevalent in modern data analysis settings. While often data of interest

may have a large – often unmanageable – dimension, modifications to various well-

known techniques can be made to improve performance and aid interpretation. We

typically assume that although predictors lie in a high-dimensional ambient space,

they have a lower-dimensional structure that can be exploited through either prior

knowledge or estimation.

In performing regression, the structure in the predictors can be taken into ac-

count implicitly through regularization. In the case where the underlying structure in

the predictors is known, using knowledge of this structure can yield improvements in

prediction. We approach this problem through regularization using a known projec-

tion based on knowledge of the structure of the Grassmannian. Using this projection,

we can obtain improvements over many classical and recent techniques in both re-

gression and classification problems with only minor modification to a typical least

squares problem.



The structure of the predictors can also be taken into account explicitly

through methods of dimension reduction. We often wish to have a lower-dimensional

representation of our data in order to build potentially more interpretable models or

to explore possible connections between predictors. In many problems, we are faced

with data that does not have a similar distribution between estimating the model

parameters and performing prediction. This results in problems when estimating a

lower-dimensional structure of the predictors, as it may change. We pose methods for

estimating a linear dimension reduction that will take into account these discrepan-

cies between data distributions, while also incorporating as much of the information

as possible in the data into construction of the predictor structure. These methods

are built on regularized maximum likelihood and yield improvements in many cases

of regression and classification, including those cases in which predictor dimension

changes between training and testing.
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1

Introduction

1.1 Motivation

1.1.1 High-Dimensional Inference

We concern ourselves with the problem of statistical inference where we as-

sume to have predictors x1, . . . ,xn ∈ Rp, each independent and distributed as some

random variable X. Corresponding to each predictor we assume to also have re-

sponses y1, . . . , yn ∈ Y distributed as some random variable Y . Depending on the

problem, Y will be taken to be either R or some set {1, . . . , C} for C a fixed, finite

constant.

A wealth of problems in statistics and data analysis succumb to problems

related to the “curse of dimensionality” [5]. In statistics, one view of this issue of

dimensionality is that if p is large and we wish to estimate the regression function

m(x) = E[Y |X = x]

given our data – where E[·] denotes expectation – we run into problems of stability

for small samples. Moreover, as the number of samples increases to infinity, the

estimate for the function m will converge slowly to the true m [6].

Another issue seen with high-dimensional data is in the interpretation of

1



given data through visualization. In [7], we see that if the predictors occupy a

p-dimensional hypersphere and are distributed uniformly, the majority of points

would be situated near the hypersurface at the “edge” of the hypersphere. How-

ever, constructing a two-dimensional projection of these p-dimensional observations

would result in a circular cross-section with a high density of points in the center.

This could potentially lead to misleading interpretations, and alternative projec-

tions may be desired. We will seek methods to ameliorate these effects that a high

dimensionality causes in data analysis problems.

1.1.2 Lower-Dimensional Structure

Often in high-dimensional data analysis problems, we assume a structured

dependency among the predictors. A way to formalize this structure is to assume

high-dimensional data points lie on a manifold of dimension d where d ≤ p [8].

Manifolds can be either unspecified and estimated from the data, or specified by

construction of the predictors.

Formally, we define a manifold as a metric space X with the property that if

x ∈ X then there is some neighborhood U of x and some integer d ≥ 0 so that a

homeomorphism exists between U and Rd. Here, the term homeomorphism denotes a

bijection between two metric spaces that is continuous and has a continuous inverse.

Often, a manifold is assumed to have a local chart φ : Bd0,r → (Bpx0,R ∩ X )

where Bd0,r is the d-dimensional Euclidean epsilon ball about 0 with radius r, we

take r, R > 0 as “small,” and φ is continuously differentiable and bijective. With
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this definition of a chart, we can define the manifold X at a specific point x0 as

Xx,0 = {φ(u) ∈ Bpx0,R ⊂ R
p : u ∈ Bd0,r ⊂ Rd}.

This definition of a manifold is typically helpful for performing statistics on unknown

manifolds [9].

One manifold that can be obtained through a special construction of the pre-

dictors is the Grassmannian G(r, s). The space G(r, s) is thought of as the space

of all s-dimensional subspaces of Rr. As an example, if we have a full rank matrix

A ∈ Rr×s, then span(A) is an element of G(r, s). Formally, we take the Grassman-

nian as the quotient space

G(r, s) = R(r, s)/ ∼

where R(r, s) is the space of all r × s matrices of rank s, and, for U,V ∈ Rr×s,

U ∼ V if there exists a nonsingular L ∈ Rs×s such that V = U L [2].

We will outline two useful constructions on the Grassmannian: the geodesic

flow, and the exponential map. For two points Q and R on G(r, s), we have Q,R ∈

Rr×s and their orthogonal complements as Q⊥,R⊥ ∈ Rr×(r−s). Then we write the

geodesic flow as δ : [0, 1]→ G(r, s) with

δ(t; Q,R) = Q U1 Γ(t)−Q⊥U2 Σ(t) (1.1)

where U1,U2,Γ,Σ are given by the generalized singular value decomposition

3



QT R = U1 Γ VT , (Q⊥)T R = −U2 Σ VT . (1.2)

We define Γ(t) and Σ(t) as diagonal matrices with cos(tθi) and sin(tθi) on the

diagonal for i = 1, . . . , s and Γ and Σ are Γ(1) and Σ(1), respectively.

The exponential map and inverse exponential map are functions

exp(·;µ) : Rs(r−s) → G(r, s), exp−1(·;µ) : G(r, s)→ Rs(r−s),

defined at a point µ on the Grassmannian where Rs(r−s) is the tangent space to

G(r, s) at the point µ. These functions are useful for mapping between the Grass-

mannian and the tangent space about a point on the Grassmannian. Both the expo-

nential map and the inverse exponential map can be computed using the geodesic

flow above in a computationally efficient manner [10].

1.1.3 Dimension Reduction

The manifold assumption can simplify matters on the theoretical level, but

there are still two issues. First, finding an embedding is not necessarily a trivial

task. Second, once an embedding is found, using these lower-dimensional points to

build models that can be accurately interpreted in the higher-dimensional ambient

space is not always possible with these projection methods; that is, if points are

explicitly embedded into X , some information that may be useful in the regression

may be lost.

We focus here on the first issue, while the second issue will be discussed in

4



more detail in Chapters 2 and 3. A common remedy to problems in which predictors

have a high dimension and are assumed to have some lower-dimensional – typically

unknown – structure is to seek a transformation of these predictors into some lower-

dimensional space. Since often the predictors will have a structured dependency, the

hope is that we will be able to obtain a reduction of the data that does not discard

information that we want, or discards as little of this information as possible. We

assume to have independent observations x1, . . . ,xn ∈ Rp distributed as the random

variable X and define the data matrix

X =


xT

1

...

xT
n

 .

In some cases we will be interested in mean-centered data, though we do not wish

to assume data has zero mean in general.

Principal component analysis (PCA, [11]) is a classical dimension reduction

tool in which we seek a linear dimension reduction parameter η ∈ Rp×d, such that

η projects the predictors into directions of maximum variation.

η̂ = arg max
η

tr{ηT Σx η}, such that ηT η = Id

where Σx = XT X is proportional to the covariance matrix of the data X, Id is the

d-dimensional identity matrix, and tr{·} denotes matrix trace. Proceeding with the

optimization above by incorporating the constraint through Lagrange multipliers,
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the solution η̂ has the property that

Σx η̂ = λη̂

where λ > 0 is a constant. In order to project into the directions of maximum varia-

tion of X, we take η̂ as the d eigenvectors corresponding to the largest d eigenvalues

of Σx.

It will be helpful to consider PCA as a maximum likelihood estimator with

respect to some likelihood function. Assume x1 . . . ,xn ∼ X are independent and

X has a corresponding parameterized density function f(X;β) for some unknown

parameter β; then the likelihood function of the data X is defined as

L(β;X) =
n∏
i=1

f(xi;β)

where interest will lie in estimating the parameter β. To use this approach for PCA,

we first pose an error model for a single observation X as

X = µx +η ν + ε, ε ∼ N(0,∆)

where ε is a vector of random errors, ν are unknown coefficients – here equal to

ηT (X−µx) – and ∆ > 0 is a covariance matrix. Setting ∆ = σ2 Ip, we see that the

log-likelihood function for η is

L(η;X) = −np
2

log(2π)− np

2
log(σ2)− 1

2σ2
[X̃T (Ip−η ηT )X̃].

6



where X̃ is the mean-centered version of X. Suppressing constant terms and those

not involving η, we see that

η̂ = arg max
η

L(η), such that ηT η = Id

is equivalent to

η̂ = arg max
η

tr{η Σ̃x η}, such that ηT η = Id

where Σ̃x is the mean-centered covariance matrix. The estimate η̂ here coincides

with the PCA estimate above.

We are typically interested in the subspace span(η), with η simply a specific

basis for this subspace. In this case, η can be thought of as an element of the

Grassmannian G(p, d). This fact is often used to construct various optimization

problems for dimension reduction [12].

An early example of PCA applied to a regression problem is given in [13] in

which the physical properties of pit props – lengths of lumber used to buttress walls

in a mine – are estimated with numerous predictors that are highly correlated. PCA

is used to investigate the effect a new set of uncorrelated predictors has on the

regression.

PCA is a useful method for obtaining the dimension reduction η, though as

seen above it can be seen to make a number of assumptions when posing it as

a maximum likelihood estimate, namely that of isotropic errors. A large body of

work exists to develop methods to perform dimension reduction in slightly more
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sophisticated ways by learning an approximation to the manifold that the data of

interest supposedly lie on. Many popular techniques (e.g., LLE [14], ISOMAP [15])

work by localizing the data in an attempt to take advantage of the local Euclidean

structure of the manifold.

1.1.4 Inference in Computer Vision

Consider the problem of pattern recognition in which the space of data consists

of images. A näıve approach would require modeling the images by treating the

grayscale level of each pixel as a separate predictor. In other words, if we scale the

values to lie in the unit interval, for one observation x we have x ∈ [0, 1]p where

p is the number of pixels in the image. Making accurate predictions will require

the image to have a suitably dense resolution, but this quickly becomes a problem

as it results in a large number of pixels yielding an unmanageably large number

of predictors. More accuracy could be obtained using color images, but this would

introduce still more dimensions.

The manifold assumption arises naturally in computer vision. Purely data-

dependent methods such as estimating a face subspace using PCA on the difference

between each data point and a test image yields promising results [16], though

these dimension reduction techniques are mainly concerned with linear embeddings

as in PCA above. Incorporating prior knowledge of an image’s structure can be

done as well. For example, in a “cartoon” image – that is, an black and white

image with only smoothly varying borders between black and white portions – for
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a sufficiently localized patch the image can be parameterized with the distance of a

straight edge from the center of the patch and the angle the straight edge makes with

the horizontal axis [17]. More complicated manifolds, such as those that accurately

describe images with rich texture, can be modeled with different parameterizations.

A common problem in computer vision concerns using a dataset of images

to estimate a high-dimensional regression function. The ISOMAP face dataset [15]

consists of 698 images of size 64 × 64 of a synthetic face at various pose angles

and illuminations meaning the näıve approach would result in a set of predictors in

R4096, obtained by concatenating the rows of each image into a large vector.

The above results in a problem in which the dimension of the predictors be-

comes unwieldy. Though this can be a serious issue, many problems will have pre-

dictors that are highly dependent upon one another allowing for the possibility of

ameliorating the effects this high dimensionality causes by making adjustments to

the model. Unless an image contains only white noise, each pixel will depend on

every other pixel in the image in some way, with some of these dependencies much

stronger than others. In Fig. 1.1, each pixel in (a) is independent of every other

pixel, and the lack of structure is evident. In (b) the pixels are only independent

row-wise. Though the image still looks random, the structure is more apparent than

that of (a). Finally, in (c) there is no independence betwen pixels and it seems

much smoother than (a) and (b). Most natural images will have an overall apparent

structure somewhere between (b) and (c) [18, 19]. This encourages the notion of

reducing the complexity of our problem by assuming that pixels in an image have

some structured dependency that can be approximately modeled and restricting our

9



(a) (b) (c)

Fig. 1.1: Various 300×300 (p = 90000) images: (a) every pixel independent, (b) pixels
independent row-wise, (c) for i = 1, . . . , 90000, pixel i generated as [sin(2πi/90000)+
1]/2.

attention to carrying out analyses that respect this structure.

1.1.4.1 Structure Through Preprocessing

If we are given r landmark points in R2 contained in a matrix A ∈ Rr×2,

affine transformations of shape can be obtained by right-multiplication of A by a

2×2 full rank matrix, say B. Since B is full rank, span(A) will be invariant to right

multiplication by B and thus invariant to affine transformations. After normalization

through a singular value decomposition so that AT A = I2, each set of landmark

points will lie on G(r, 2) – that is, the space of all 2-dimensional linear subspaces of

Rr [20, 21].

The FG-NET database is a typical source for benchmarking tasks such as age

estimation. The database consists of 1002 images of individuals’ faces, as well as

landmark points for each individual. Additionally, attributes such as an individual’s

age or gender are given for each observation. See Fig. 1.2 for examples.

For this dataset, 68 predefined landmark points are given for each image in R2

10



resulting in each predictor x ∈ R68×2. Normalizing the predictors to remove all affine

transformations by performing a singular value decomposition on each observation

is a useful preprocessing step resulting in x ∈ G(68, 2). Predictors were concatenated

column-wise to obtain vectors x1, . . . ,x1002 ∈ R136.

Age estimation is a popular problem in computer vision that has seen numerous

solutions that assume the predictors lie on a manifold. In [22], the low-dimensional

representations for images labeled with an individual’s age were used as predictors

in a regression on the age of individuals in unlabeled images. Predictors were first

embedded onto a lower-dimensional manifold and regression was performed on these

transformed data points. An issue with this method is that it is difficult to know if

any relevant information has been discarded.

Dynamic modeling for video analysis is another popular framework for infer-

ence in computer vision. As with the landmark points above, a similar preprocessing

can be done when observations are video sequences. We assume to have, for each

observation, a video sequence x ∈ Rr×c×T where r is the number of rows in one

frame, c the number of columns, and T the number of frames.

Here, an apperance model can be obtained by taking each observation (in this

case a video sequence) and concatenating each frame of image vectors into a large

matrix A ∈ Rrc×T . We take the singular value decomposition of A to obtain an

appearance matrix in Rrc×s where s is a parameter to be chosen [23]. This approach

is useful as it can greatly reduce the dimensionality of a video sequence, thus similarly

reducing the computational cost.

Finally, domain adaptation [24] is a common problem in many computer vision

11
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Fig. 1.2: Sample images from FG-NET originals (top) and landmark points (bot-
tom). Images taken from [3].

problems. In it, we assume the predictors used for training – that is, for estimating

model parameters – have a different distribution than the predictors used for test-

ing – that is, for reporting prediction error using the model parameters obtained.

Many approaches have been proposed to overcome these issues and are presented in

Chapter 2.

1.2 Main Contributions

The main contributions of the dissertation are in the problems of regression

on manifolds and in domain adaptation. For regression on manifolds, we propose

a method similar to the exterior derivative estimator outlined in Chapter 2 that

12



deals with predictors lying on the Grassmannian. In this case, since the underlying

structure of the predictors is known, the least squares objective can be modified with

a projection that exploits this structure. This method is computationally efficient

and can yield improvements in many computer vision problems.

For domain adaptation, we propose three related techniques. The first tech-

nique uses the information contained in both the training and testing data to ob-

tain a dimension reduction of the predictors. This method can be extended to both

include information about the response variable as well as be extended to cases in

which the predictors lie on the Grassmannian. The second technique proposes a more

well-defined method for incorporating information about the response through in-

vestigating an inverse regression approach; this method can also be extended to

Grassmannian data through using additional transformations. Finally, the third

technique seeks to extend the above via Monte Carlo methods in an attempt to

incorporate both information about the conditional distribution of the response

given the predictors as well as more complicated regularization functions.

1.3 Organization

This dissertation is organized as follows. Chapter 2 reviews some background

on the problems considered. The first section outlines techniques for performing re-

gression on high-dimensional predictors that have a low-dimensional, yet unknown

structure. The second section presents various methods to handle data that may

have a discrepancy between training and testing phases. Chapter 3 proposes a regu-
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larized least squares method to handle high-dimensional predictors that come from

a known underlying structure, and this method is applied to various regression and

classification problems in computer vision. Chapter 4 talks about a dimension re-

duction method that can both incorporate information about the response as well

as improve prediction in situations in which we have an inhomogeneity between

the distributions of training and testing data. Chapter 5 proposes a dimension re-

duction method similar to that of Chapter 4 through posing a penalized maximum

likelihood problem on the distribution of the predictors with the goal of still incor-

porating response information. Chapter 6 extends the dimension reduction method

of Chapter 5 using sequential Monte Carlo while including the conditional model of

the response given the predictors as well as the marginal distribution of the predic-

tors. Finally, Chapter 7 summarizes the results obtained and indicates avenues for

future research.
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2

Background

2.1 Regression on Manifolds

As seen in the previous chapter, a common thread runs through high-dimen-

sional inference problems: while the predictors have a large dimensionality, they

also have an inherent structure that could cause problems when making predic-

tions. This issue due to the structure of the predictors is often called collinearity or

near-collinearity and is well-known in many areas of statistics. In this chapter, we

investigate various techniques used to overcome the collinearities found in regression

problems.

We assume predictors x1, . . . ,xn are independent and distributed in X ⊂ Rp

and that the collinearity arises from the fact that X is a manifold. The response

variables y1, . . . , yn ∈ R are assumed to satisfy for each i = 1, . . . , n

yi = m(xi) + σ(xi) · εi

with εi independent and identically distributed (i.i.d.) where E(εi) = 0 and Var(εi) =

1. Interest often lies in finding the regression function m at a point x0 defined as

m(x0) = E[Y |X = x0]
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where we take (Y,X) to be the random variables associated with the joint distribu-

tion of the response and predictors, respectively.

If we assume dim(X ) = d, exploiting the structure of X can aid matters if

we take d � p, for example improving nonparametric convergence rates [25]. This

manifold assumption can simplify matters on the theoretical level, but we still are

tasked with finding an embedding into X as well as taking into account the manifold

structure when performing analyses on the lower-dimensional data. However, if we

are interested in predicting values in the high-dimensional space, operating on the

low-dimensional representation and attempting to extrapolate this to the ambient

space can result in difficulties. We seek a method that does not require knowledge

of X explicitly, and thus will not rely upon an embedding.

2.1.1 Penalized Least Squares

We seek to estimate the regression function m in high-dimensional settings.

Models that handle the presence of collinearities are helpful, but other properties

are desired: interpretability, often achieved by obtaining a sparse model; the ability

to handle the case in which p � n; automatic variable selection, which also helps

to obtain a sparse model; and the explicit consideration of the underlying manifold

structure.

Ordinary least squares (OLS) works by assuming a linear dependence of X on

Y . In other words, solutions of the form m(x0) = β0 + xT0 β1 are sought to minimize

a the residual sum of squares

16



β̂O = arg min
β
||y−Xβ ||2

where y = [y1, . . . , yn]T and

X =


1 xT

1

...
...

1 xT
n

 .

Here we note that X is slightly different than that defined in Chapter 1 as we wish

to include an intercept in our model. We let β = (β0,β1) ∈ R×Rp and see that the

solution can be obtained by solving the normal equation

XT X β̂O = XT y .

The presence of collinearities in the predictors X causes issues with the rank of the

matrix XT X, indicating the need for more sophisticated methods. One such method

to mitigate this effect is to add a regularization parameter to ensure that XT X is

nonsingular. This can be incorporated into the minimization above by adding an `2

penalty on the parameters β and solving

β̂R = arg min
β
||y−Xβ ||22 + λ||β1 ||22

for λ > 0 a chosen parameter. We see now that
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β̂R = (XT X+λQ)−1XT y

where Q = diag[0, Ip], and the singularity issues are no longer present. This method

– known as ridge regression [26] – can also handle the case in which p � n due to

the regularization performed on the parameter vector β.

A straightforward extension of ridge regression is the least absolute shrinkage

and selection operator (LASSO) which employs an `1 penalty as opposed to an `2

penalty on the parameters, i.e.,

β̂L = arg min
β
||y−Xβ ||22 + λ||β1 ||1

where || · ||1 =
∑p

j=1 |βj|. Though there is no closed form solution in general, if X is

an orthogonal matrix and the x values are centered, then it can be shown that

β̂1L = sgn(β̂1O)(|β̂1O| − λ̃)+

where β̂1O is the OLS solution, (·)+ denotes the positive part of its input and λ̃ is

determined by the constraint involving λ||β1 ||1. Thus for large enough λ the LASSO

solution has the benefit that certain elements of β̂1L will be exactly zero resulting

both in a sparse model and automatic variable selection. A further extension of both

ridge regression and the LASSO is the elastic net (EN) [27] which combines both

an `1 and an `2 penalty into the regularization resulting in the optimization seeking
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β̂EN = arg min
β
||y−Xβ ||22 + λ[α||β1 ||1 + (1− α)||β1 ||22].

The elastic net enjoys the benefits of both ridge regression and the LASSO: like

ridge regression it is able to adequately account for collinearities in the predictors

and can handle the case of p� n; like the LASSO it is able to give a sparse model

and can perform automatic variable selection.

A slight drawback to the above methods is that, under the assumption that

predictors xi lie on the manifold X , none of the methods explicitly consider this un-

derlying structure. Removing the effect of collinearities on the predictors via princi-

pal components regression (PCR) [28] attempts to exploit this underlying structure.

Principal components regression works by finding the d largest principal compo-

nents of the covariance matrix for X and performing regression on the transformed

variables. The benefit of PCR can be largely problem-dependent as the handling of

collinearities and the problem of p� n will depend on how many principal compo-

nents are included in the final regression. By design PCR gives a sparse model – in

fact, the model obtained is as “sparse” as the practitioner desires as it will only con-

tain d predictors. However, each new predictor is a linear combination of all of the

original predictors, which does not indicate sparsity in the ambient space. Principal

components regression explicitly considers the manifold structure in the predictors

by only keeping projections of the variables that have the highest variation, though

this only applies to the case in which X is globally linear.
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2.1.2 Local Regression

Formally, the “curse of dimensionality” in nonparametric statistics described

in Chapter 1 concerns the fact that using nonparametric regression to estimate the

function m breaks down as the dimension of X grows large. It can be shown [6] that

if the true regression function m has smoothness of order ρ then no nonparametric

estimator of m will have a faster convergence rate for the root mean integrated

square error (RMISE) than n−ρ/(2ρ+p). Typically ρ ≤ 2 in practice; estimates of the

regression function m(x) for ρ > 2 will achieve better rates of convergence, but

we will still be left with poor convergence rates for large p, as well as problems of

overfitting.

Here we outline a few nonparametric estimates of the regression function m.

For each (yi,xi), the ordinary least squares solution described in Section 2.1.1 can

be derived through minimizing the sum of squared errors of the model

yi = β0 + xT
i β1 +εi

for εi a random error term. To obtain a better fit to the data and incorporate

nonlinearities and local structure into the model, we consider a local regression

about the point x0. In this case

yi = β0(x0) + xT
i β1(x0) + εi, for xi ∈ Uh(x0) (2.1)

for U a local neighborhood about x0 and h its size, and the parameters β depend on
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the location of x0. One solution to the problem of estimating the regression function

m is given by the Nadaraya-Watson estimator [29]

m̂h(x0) =

∑n
i=1Kh(xi−x0) · yi∑n
i=1Kh(xi−x0)

where Kh is a weighting kernel Kh(u) = h−pK(u /h). Note, however, that the

Nadaraya-Watson estimator fits a local intercept, ignoring the linear term xT
i β1(x0)

in (2.1). Often restrictions are placed on K, such as requiring it to be continuous, ra-

dially symmetric, and integrate to one. For high-dimensional data, a popular kernel

to use is the radial Gaussian kernel where

K(u) = exp

[
−1

2
||u ||2

]
.

This kernel can be generalized by considering a bandwidth matrix H as opposed to

the same bandwidth h for each component, which does not necessarily have radial

symmetry.

The random term in the denominator of the Nadaraya-Watson estimator is

not always desirable, and the Gasser-Müller estimator [30] attempts to overcome

this issue. The estimator is given by

m̂h(x0) = yi

n∑
i=1

∫ si+1

si

Kh(u−x0) du

where si = (xi + xi+1)/2, x0 = −∞ and xn+1 = +∞.

The local linear estimator [31] attempts to solve the local regression problem
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with the benefit of being able to be posed as a least squares problem. If we form the

weight matrix and augmented data matrix as

Wx0 = diag[Kh(x1−x0), . . . , Kh(xn−x0)], Xx0 =


1 (x1−x0)T

...
...

1 (xn−x0)T

 ,

the local linear regression estimator solves

β̂(x0) = arg min
β

= ||W1/2
x0 (y−Xx0 β)||2, (2.2)

yielding estimates

m̂h(x0) = β̂0,
∂̂mh

∂ xj

(x0) = β̂j, j = 1, . . . , p.

The main problem in local linear regression is choice of the optimal bandwidth

h, typically using the mean integrated square error (MISE) as a criterion. To obtain

the MISE, we note that there exist functions J1 and J2 such that [31]

E(m̂h(x0)−m(x0)|x1, . . . ,xn) = h2J1(x0)(1 + oP (1)),

var(m̂h(x0)−m(x0)|x1, . . . ,xn) = n−1h−pJ2(x0)(1 + oP (1)),

where oP (·) denotes order in probability pointwise. Now
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MISE(h) =

∫ {
[h2J1(u)(1 + oP (1))]2 + n−1h−pJ2(u)(1 + oP (1))

}
du

yielding an optimal convergence rate of n−4/(4+p). Since we assume p is large for

high-dimensional problems, this rate will lead to poor convergence.

The main result of [25] concerns the behavior of both the bias and variance

of m̂h(x0) when we consider X to be a manifold of dimension d. Under certain

assumptions – mostly on the kernel K and the manifold X – it can be shown that

if x0 is an interior point of X , there exist some J1(x0) and J2(x0) such that

E(m̂h(x0)−m(x0)|x1, . . . ,xn) = h2J1(x0)(1 + oP (1)),

var(m̂h(x0)−m(x0)|x1, . . . ,xn) = n−1h−dJ2(x0)(1 + oP (1)).

The usefulness of this result is twofold: a faster optimal rate of n−4/(4+d) can be

obtained for the conditional MISE of m̂(x0) by choosing h = κn−1/(4+d) for some

κ > 0 where now d� p is the dimension of the manifold X ; additionally, this method

does not require points to be embedded into a lower-dimensional manifold which can

often be too restrictive in practice. Unfortunately, this method still leaves the task

of estimating κ as well as the dimension d from the data which can be nontrivial.

Another drawback of this method is the introduction of problems in the rank of the

local covariance matrix which is used to find the optimal parameters β̂. The solution

to (2.2) is
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m̂(x0) = eT
1 (XT

x0 Wx0Xx0)−1XT
x0 Wx0 y

where e1 is the first column of the matrix Ip+1. This solution depends on the inverse

of the local covariance matrix XT
x0 Wx0Xx0. It is often the case that this covariance

is ill-conditioned due to the structure of the underlying manifold X .

2.1.3 The Exterior Derivative Estimator

The exterior derivative estimator (EDE, [9]) seeks

β̂EDE = arg min
β
||y−Xβ ||22 + λ||Πβ1 ||22

for Π a projection matrix. The projection matrix Π is included to consider the

manifold structure X by penalizing the coefficients β for not falling onto the di-

rections of the manifold. Since this will only take into consideration manifolds that

are globally linear, a modification to the minimization above is done by weighting

each observation as in Section 2.1.2 [this is known as the nonparametric exterior

derivative estimator (NEDE)]. The projection is done by penalizing the coefficient

vector in directions perpendicular to the tangent space formed by the data points

x1, . . . ,xn. In other words, let

H1/2 =
√
nhd

 1 0

0 h · Ip

 ,
and
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Ĉn :=

 ĉ11
n ĉ12

n

ĉ21
n Ĉ

22

n

 = hp ·H−1/2XT
x0 Wx0Xx0 H−1/2,

which acts as a matrix that captures the local covariance structure of the predic-

tors. As is done in principal component analysis (PCA), we perform an eigenvalue

decomposition of Ĉ
22

n

Ĉ
22

n = [R̂ N̂] · Λ̂ · [R̂ N̂]T

where R̂ ∈ Rp×d, N̂ ∈ Rp×(p−d) and Λ ∈ Rp×p is a diagonal matrix with nonincreasing

entries on the diagonal. Given this decomposition we construct the projection matrix

and regularization matrix as

Π̂x,0 := N̂N̂
T
, P̂n := diag(0, Π̂x,0).

With this, we see

β̂EDE = (XT X+λP̂n)−1XT y

is the EDE solution.

A drawback of the above solution is that it performs poorly in the event that

p� n since the eigenvectors and eigenvalues of Ĉn are not guaranteed to converge to

their true values [9]. We can overcome these problems by regularizing the covariance

and cross-covariance matrices by introducing a thresholding operator
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Tt(M) = {mij · 1(|mij| ≥ t)}

where M = {mij} is a matrix. If the true covariance matrix is adequately sparse then

this hard-thresholding of each element of the estimated covariance matrix (between

Xx0 and Xx0) and cross-covariance matrix (between Xx0 and y) will give consistent

estimates to the true covariance and cross-covariance matrix and can be used in

solving the weighted least squares problem [32, 9].

Due to the need for fitting a different model at every test data point, high

computational costs are a serious drawback to this method of regression. In this

respect, this approach is similar in spirit to computer vision algorithms that re-

quire dimension reduction on images as training points using some form of image

differencing [33].

2.1.4 Extension to Classification Problems

All of the previously outlined estimators were concerned with the case in which

the response variable was continuous. A method for converting these estimators

into ones that can take into account categorical response variables uses regularized

logistic regression. For a binary response (yi ∈ {+1,−1}), the logit link function is

used and the linear dependence on the parameters and predictors is through this

function, i.e.,

log
P(yi = +1|xi)

P(yi = −1|xi)
= β0 + xT

i β1 .
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Instead of minimizing a regularized `2 loss function on the error in the model, the

concern now is to maximize a penalized likelihood function, which amounts to solving

β̂ = arg max
β

{
L(β)− λ||P̂n β ||2

}

where

L(β) =
1

n

n∑
i=1

1(yi = +1) log p(xi) + 1(yi = −1) log(1− p(xi)).

This can be accomplished by an application of the Newton-Raphson algorithm to

give an iteratively reweighted least squares problem [34]. We have a quadratic ap-

proximation to the log-likelihood function

L(β) = − 1

2n

n∑
i=1

wi(zi−β0 − xT
i β1)2 + C(β̃)

where β̃ are the current estimated parameters,

zi = β̃0 + xT
i β̃1 +

yi − p̃(xi)

p̃(xi)(1− p̃(xi))

is the working response and

wi = p̃(xi)(1− p̃(xi))

where p̃(xi) is evaluated at the current parameters β̃ (see [35] and [36] for detailed
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derivations). The goal is to find

β̂ = arg max
β

{
`(β)− λ||P̂n β ||2

}
,

which can be solved using various methods (iteratively reweighted least squares [37],

coordinate descent [38]).

2.1.5 An Illustrative Example

The technique of weighted, regularized least squares can be applied to an

array of problems in pattern recognition, especially in the field of computer vision.

A simple example was given in [9] in which horizontal pose angles of images were

estimated using various views of an artificial face from the ISOMAP face dataset

[15]. In an example in [39], models using ordinary differential equations are used

for system identification, and the predictors used are similarly highly correlated.

We compare various methods applied to the FG-NET database [3] described in

Chapter 1.

Each image is converted to normalized grayscale taking values between 0 and

1. On each image, we use the Viola-Jones face detection algorithm [40] to discard

much of the noise and unwanted information contained in the background. Finally,

we rescale each image to a size of 25×25 pixels. It is argued in [41] that this last step

is justified due to the assumption that the predictors lie on a lower-dimensional man-

ifold, and thus a uniform resizing of the images will not lead to a loss of information

in the predictors.
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The final data we analyze consist of 1002 vectors of size 625, each labeled

with ages ranging from 0 to 69. In order to investigate the utility of some of these

techniques in a classification setting, we consider the indicator of whether or not an

individual’s age was less than 21 as a response variable. We adapt each of the meth-

ods of regression to perform logistic regression on these binary response variables as

described in Section 2.1.4. The three alternative methods are the elastic net (EN),

principal components regression (PCR), and regression on points embedded using

locality preserving projections (LPP) [42]. The last two methods were suggested in

[22], though it was mentioned that PCR will most likely not perform well due to

the fact that it does not perform an embedding that is able to discriminate classes

well. All forms of regression are performed on either the predictors or the embedded

predictors; including the square of the predictors as well has been shown to aid in

prediction [22], but this is not considered in this analysis.

A few issues need to be taken care of when implementing the described meth-

ods. The dependence of the regularization on the dimension d of the underlying

manifold is a major problem which we must solve using methods of estimating data

dimension given a finite number of samples. Many such techniques are available in

the machine learning literature [43]. A popular technique uses maximum likelihood

[44]. Other methods, such as those using nearest neighbor or principal component

analysis, can be used. Whatever method is used, we consider the dimension fixed

once it is estimated at a point. Note, however, that the local regression approach has

the added benefit that the dimension of the manifold is free to differ point-to-point,

giving flexibility over methods that require a strict embedding of the points into a

29



lower-dimensional space.

A difficult problem in applications is the selection of tuning parameters. Many

of the models we consider have multiple tuning parameters to estimate which can

lead to possible over- or under-fitting if they are not chosen properly. We take

d̂ = 17 and λ̂ = 0.1 for the EDE. We do not perform local regression, thus avoiding

the issue of choosing a kernel and bandwidth. For EN, we take α to be 1 and

λ as 10−5, resulting in a mild LASSO penalty. For LPP, a sufficiently large d̂ of

300 yields positive results, while for PCA we take d̂ as 17 for comparison to the

other methods. As is shown in Fig. 2.1, the EDE performs well compared with the

alternative methods that were considered on the full data.

2.2 Prediction Using Inhomogeneous Data

In many statistical problems, we typically assume homogeneity of distributions

between training and testing. In other words, parameter selection and error reporting

are typically done by assuming we have a certain amount of training data x1, . . . ,xn

to estimate model parameters with additional data x∗1, . . . ,x
∗
m to use for testing.

For example, we could use x∗i for selecting optimal parameters by finding those

parameters that minimize some cross validation criterion; we could similarly use

these test data to report how well a method can predict response values for unseen

data. In all cases previously considered we have assumed that both data xi and

x∗j are distributed similarly, namely as the random variable X. Often in practical

situations the disbtributions between the training and testing phases will not be
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Fig. 2.1: ROC curve for exterior derivative estimator (EDE) and regression after
dimension reduction via locality preserving projections (LPP) and after principal
component analysis (PCA).
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homogeneous, which can can result in poor predictive performance and present

difficulties in determining optimal tuning parameters through cross-validation.

We formalize this problem by operating under the assumption that the joint

distribution between the response variable (Y ) and covariates (X) changes from

training to testing. In domain adaptation [24], we assume that while the covariate

distribution might change between two domains, the underlying mechanism to gen-

erate the response variables from the covariates does not change. In other words,

the conditional distribution of the response given the covariates remains the same

across all domains, while the marginal distribution of the covariates may change.

These assumptions are also present in covariate shift problems [45]. Transfer learn-

ing, another approach to this problem, deals with the problem of the conditional

distribution of the response given the covariates changing between domains while

the covariate distribution stays the same [46].

We assume to have independent data x1, . . . ,xn with xi ∼ X ∈ X ⊂ Rp with

corresponding response variables y1, . . . , yn ∈ Y for training a model (called the

“source” data) and z1, . . . , zm with zj ∼ Z ∈ Z ⊂ Rq with corresponding response

variables ξ1, . . . , ξm for testing (called the “target data”). Our main assumption

is that we have unknown response variables ξ1, . . . , ξm from the same model that

generated the known response variables (i.e., [Y |X] ∼ [Ξ|Z], though X � Z in

general). Our goal is to learn a parameterized conditional model optimal under

(Ξ,Z) while only knowing a small number of observations from Ξ (or knowing none

in the unsupervised case). Our data will typically consist of X = [x1, . . . ,xn]T ∈

Rn×p, y = [y1, . . . , yn]T ∈ Rn, and Z = [z1, . . . , zm]T ∈ Rm×q. On occasion we will
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be blessed with some labeled examples from the target data, though all methods

will be outlined for the unsupervised case, with the semisupervised case being a

straightforward extension.

Common solutions to problems dealing with discrepancies between training

and testing data have been sought in a variety of fields. Survey statistics is possi-

bly one of the oldest fields to attempt to answer questions regarding the effect a

difference in distribution has on the utility of models and the inferences they can

make. The most prevalent solution to this problem in survey statistics is to seek a

weighting of each of the observed data points in order to accurately extrapolate the

information present in the given data to unseen data points. See [47] for a thorough

introduction. Sample selection bias [48] – an approach from econometrics – describes

the bias inherent in using nonrandomly selected data points to form models as a

specification error, i.e., an error arising from the inconsistency between the initial

model assumptions and the true nature of the sample.

2.2.1 Instance-Weighting Methods

Instance-weighting methods seek a set of weights to apply to the source data

that will transform the distribution of the labeled source data into that of the un-

labeled (or partially labeled) target data. This way, transporting a model from the

labeled data in a different domain will yield hopefully better results. Shimodaira [45]

proposed a method for correcting this discrepancy with a view toward improving

predictive performance by weighting each element in the source data by an impor-
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tance weight based on both the source and target density functions.

In covariate shift (CS, [45]), we assume the source data X ∼ f and target

data Z ∼ g for some density functions f and g. If we operate under the previous

assumption of equivalent conditional distributions, we fix a parameterization for the

conditional distribution and define the Kullback-Leibler loss for the source data as

Lx(β) = −
∫

(Y,X )

f(x) q(y|x) log p(y|x,β) dy dx

and for the target data as

Lz(β) = −
∫

(Ξ,Z)

g(z) q(ξ| z) log p(ξ| z,β) dξ d z .

We assume for the time being that (Y,X) and (Ξ,Z) have the same support

so that the loss functions Lx and Lz differ only through the marginal distributions

f and g. Let

L(n)
w (β;X,y) = −

n∑
i=1

w(xi) log p(yi|xi,β)

so that, for w(x) ≡ 1, L
(n)
w /n → Lx as n → ∞. Since we desire the loss for the

target data Z, we take w to be the importance weights w(x) = g(x)/f(x). In this

case, L
(n)
w /n→ Lz as n→∞, which is what is needed.

This method is not always optimal. First, it typically will only yield improve-

ments under a misspecification of the model [i.e., in the case where p(y|x,β) differs

from the “true” model], though for high-dimensional data even standard methods for
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misspecified models perform similarly to the importance-weighted method [49]. Ad-

ditionally, density estimation is a nontrivial problem in high dimensions, which is of-

ten the case in problems of interest. Density estimates can still be made by, for exam-

ple, using radial kernels, though accurate estimates of the density are still difficult in

this case. Even for one-dimensional problems, CS requires that supp(Z) ⊆ supp(X ),

a restriction that can hinder the types of problems we wish to consider.

Kernel mean matching (KMM, [50]) seeks to generalize CS by incorporating

the weights w into an objective function and optimizing over the data to find optimal

weights instead of taking them as “known.” CS is further generalized by defining a

kernel function Φ : X → F and assuming still that X = Z. An expectation operator

µ is defined as

µ(F ) = EF [Φ(x)]

where F is the cdf corresponding to the density f . The KMM procedure seeks to

solve

minimize
w

||µ(G)− EF [w(x)Φ(x)]||

subject to w(x) ≥ 0 and EF [w(x)] = 1.

To find w ∈ Rn, we will define an empirical version of the above objective

function and incorporate constraints wi ∈ [0,W ] and |n−
∑n

i=1wi| ≤ nε, analogous

to the two constraints above. This empirical objective will be written as
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J(w) =
1

2
wT K w−kT w

where

Kij = k(xi,xj), ki =
n

m

m∑
j=1

k(xi, zj)

for an appropriate kernel function k(·, ·). The constrained minimization of J above

using the empirical constraints can be solved by any quadratic programming opti-

mization (e.g., interior point methods [51]). In [50], k is taken to be the Gaussian

kernel

k(u,v) = exp{−σ||u−v ||2}

for a fixed σ.

Choice of ε will be governed by the following result. Huang, et. al [50] showed

that if w(x) ∈ [0,W ] for all x ∈ X , given x1, . . . ,xn i.i.d. from F , as a direct

consequence of the central limit theorem we have

1

n

n∑
i=1

w(xi)
D→ N(µw, σ

2
w)

where µw =
∫
X w(x) dF (x) and σw ≤ W/(2

√
n). This indicates that we should take

ε = O(W/
√
n) for some fixed constant W .

KMM is able to overcome some of the drawbacks of CS. Since weights are

estimated directly, density functions no longer need to be defined explicitly (or
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estimated), reducing potential errors, especially in multivariate problems. Moreover,

the kernel approach allows for capturing possible nonlinearities that might improve

predictive performance. Unfortunately, we still have the restriction that the source

and target must have the same support, and in fact still need supp(Z) ⊆ supp(X ) as

in CS. Additionally, since a kernel approach is used, weights are only defined for the

training input points so that if we desire weights for points that were not available

initially (e.g., for cross validation), we will need to rerun the optimization.

We see the Kullback-Leibler importance estimation procedure (KLIEP, [49])

as an attempt to improve on KMM by specifying a model for the weight function

w(x) so that weights can be obtained for points not available at training, instead

estimating them using the given data. We wish to model

ĝ(x) = ŵ(x) · f(x), ŵ(x) =
b∑
`=1

α`φ`(x)

where {α`} are unknown parameters to be estimated and φ` ≥ 0 are fixed, non-

negative basis functions. The weight function ŵ will be chosen to minimize the

Kullback-Leibler divergence between g and ĝ, that is,

DKL[g(x)||ĝ(x)] =

∫
X
g(x) log

g(x)

f(x)
dx−

∫
X
g(x) log ŵ(x) dx .

Since the second term is the only one with the parameters of interest, we form

the loss function as
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J(α) = − 1

m

m∑
j=1

log
b∑
`=1

α`φ`(zj)

where b is chosen from the data. Unfortunately J is concave so we require constraints

to successfully optimize over α. First, we desire ŵ(x) ≥ 0, which we specify as

α` ≥ 0 for ` = 1, . . . , b.

Additionally, since ĝ(x) = ŵ(x)f(x) should be a proper density function, we have

1 =

∫
X
ŵ(x) f(x) dx ≈ 1

n

n∑
i=1

b∑
`=1

α`φ`(xi).

In practice, we will define basis functions using the target data. Here,

ŵ(x) =
m∑
j=1

α`k(x, zj)

where k(·, ·) is the Gaussian kernel as before, taking b as m, that is, the number of

basis functions is equal to the number of target data points.

The estimation of α will be done through gradient ascent of the negative of J

above. We will define

Kij = k(zi, zj), kj =
1

n

n∑
i=1

k(xi, zj)

as in KMM, except this time with the target data instead of the source data. In this

case, the parameter update uses gradient ascent with K and constraint satisfaction
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using k to ensure the α are properly normalized. It can be shown that, when the

Gaussian kernel is used at the test input points to estimate the weight function,

KLIEP converges to the optimal solution at a rate slightly slower than Op(n
−1/2),

assuming n = m.

KLIEP improves over CS and KMM in obtaining a general weight function

that can be applied to points that are not available at training time. The method

can be computationally intensive at times, especially when a large number of target

samples are available. In this case, subsampling or clustering can be done to reduce

computational cost in the estimation of the basis functions. KLIEP has similar issues

to CS and KMM in that we still require X = Z, and further require F and G to be

mutually absolutely continuous.

2.2.2 Dimension Reduction Methods

Much of the importance weighting methods have similar drawbacks, namely

that they have issues handling cases in which source and target data not only come

from different distributions, but perhaps even have differing underlying structures,

indicating that X 6= Z or supp(Z) is not contained in supp(X ). In this case, trans-

formations of the source or target data (or typically both) are desired to obtain a

representation that is hopefully invariant to domain changes. Moreover, dimension

reduction methods can potentially be used to further interpretation of results. Many

dimension reduction methods require knowledge of the structure of the Grassman-

nian G(p, d), defined in Chapter 1.

39



The intermediate subspace approach (IS, [52]) seeks a latent feature represen-

tation by obtaining intermediate feature spaces that help to quantify the shift from

the source to the target space. In IS, the latent variables are obtained by sampling

points along a geodesic on the Grassmannian G between the d-dimensional sub-

space spanned by the source dataset and the d-dimensional subspace spanned by

the target dataset. It can be written as follows: Using principal component analysis,

estimate d-dimensional (d < p = q) representations of data X and Z as X̃ = Xηx and

Z̃ = Zηz for ηx,ηz ∈ G(p, d), and, using the geodesic along G(p, d) between ηx and

ηz, obtain intermediate transformations η1, . . . ,ηK to use in finding representations

X̃→ X̂1 → · · · → X̂K+1 and Z̃→ ẐK → · · · → Ẑ0

where X̂K+1 = Xηz and Ẑ0 = Zηx. The newly acquired latent feature representation

for the source data X is then just the concatenation of each of these matrices, which

can be expressed as

X* = [X̃ · · · X̂K+1]

with a similar representation being acquired for data Z∗. Partial least squares [53],

hereafter called PLS, is performed to obtain a low-dimensional model operating on

these expanded datasets. Some drawbacks to the IS method are its reliance on a large

number of tuning parameters and the high dimensionality that must be overcome

when many subspaces are desired.

Geodesic flow kernel (GFK, [54]) seeks improvements over the IS method. GFK
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attempts to remove the need for sampling along the geodesic between the source and

target subspaces and uses a kernel approach to mitigate the extreme dimensionality

of IS when a large number of subspaces are used. As before, we have ηx,ηz ∈ Rp×d

as bases for the source and target subspaces, respectively, and write their orthogonal

complements as η⊥x ,η
⊥
z ∈ Rp×(p−d). We recall the geodesic flow δ : [0, 1] → G(p, d)

from Chapter 1 as

δ(t;ηx,ηz) = ηx U1 Γ(t)− η⊥x U2 Σ(t)

where U1,U2,Γ,Σ are given by the generalized singular value decomposition

ηT
x ηz = U1 Γ VT , (η⊥x )T ηz = −U2 Σ VT .

Our goal is to use all t ∈ (0, 1) to obtain representations δ(t)T x for x in the source

domain. Computationally this is infeasible, so we proceed through a kernel approach

where

< Φ(u),Φ(v) >=

∫ 1

0

(δ(t)T u)T (δ(t)T v) dt = uT G v

with G ∈ Rp×p positive semidefinite and defined through matrices obtained using

the previous generalized singular value decomposition. This kernel is used to perform

prediction through using kernel nearest neighbor. Potential drawbacks to both IS

and GFK are that the geodesic path between two subspaces may not be the most

informative, especially when further labeling information is available. Moreover, all
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of the issues with kernel methods that were outlined previously hold for GFK as

well.

2.2.3 Empirical Comparison

We test the outlined methods against one another (as well as a baseline

method) using synthetic datasets. The baseline method used is simply a least squares

classifier using PCA found through both the given source and target data with no

adaptation. Both unsupervised and semisupervised problems will be considered. All

methods were outlined for the unsupervised case. In the semisupervised case, the

data used for estimating the model is augmented with the given labeled target data;

for all methods this is also included as the “target” data used to estimate the weights

or transformation.

For CS, we learn density functions using a radial kernel density estimation

procedure with a Gaussian kernel, i.e.,

f̂n(x) =
1

n

n∑
i=1

1

|H |
K
[
H-1(xi−x)

]
,

where K is a Gaussian kernel and H is a diagonal bandwidth matrix, with each

diagonal element chosen according to the rule of thumb ĥj = n−1/(p+4)σ̂j with σ̂j

the estimated standard deviation for column j of X [55]. A similar density estimate

is obtained for g. We choose a Gaussian kernel over a more efficient kernel (e.g.,

Epanechnikov) due to its infinite support.

For KMM, we take ε = 1 − n−1/2 and W = 1000 as in [50], but set σ = 10−4
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as it yielded better results in practice than the authors’ suggestion of σ = 10−1. For

KLIEP, we take ε = 10−3 and σ = 10−1. For IS, we set the number of intermediate

subspaces to 8. These tuning parameters were found to give the best results. Other

types of cross-validation can be performed for all methods, though for many of

them this results in a large computational expense. To easily incorporate weights –

and to reduce computational complexity – a one-vs-all least squares classifier [56]

is estimated for all methods except GFK, which uses kernel nearest neighbor. For

the baseline and instance-weighting methods, PCA is first performed to reduce the

effect of the high dimensionality. For the case where p 6= q, features from the higher-

dimensional space are transformed into the lower-dimensional space using PCA for

all methods.

For the simulation studies, we generate 200 observations in R6 for the source

data and 300 observations in R4 for the target data in three classes. We generate

the source data as multivariate normal with zero mean and covariance matrix with

Σij = 0.5|i−j| for i, j = 1, . . . , 6.

The target data is generated as a mixture of two normals, one with a mean vector

of ones and covariance matrix

Σij = 0.5|i−j| for i, j = 1, . . . , 4,

the other with a mean vector of negative ones and covariance matrix
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Σij = 0.52|i−j| for i, j = 1, . . . , 4,

each with equal weight.

We generate both η and γ with random normal entries in R6×2 and R4×2,

respectively, and take their orthogonalizations. The labels are generated as

y = ηT
1 x−ηT

2 x +ε

where ε ∼ N(0, .52). The response values y are then discretized into three categories

by thresholding them at their one-third and two-thirds quantiles. Similar labels are

generated for the target data using γ.

Each study is run ten times, and the average recognition rate is recorded for all

methods under consideration, along with the standard error. For the unsupervised

case, we use half of the source data and half of the target data to build the model,

while testing the model on the remaining half of both the source and target data. For

the semisupervised studies, we build the model again on half of the source data, this

time selecting three observations per class from the target data to use in parameter

estimation. We then test this model on the remaining half of the source data and all

300 of the target data points. Recognition rates are given in Table 2.1 with standard

errors given in parentheses.

Looking at the results on the target data, IS appears to perform best unsu-

pervised settings when the dimension of the source and target data are the same,

though it seems it is not significantly different from many of the competing methods.
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Table 2.1: Recognition rates from simulation studies. Standard errors are given in
parentheses. Maximum recognition rates given in bold.

Study Method p = q/Source p = q/Target p 6= q/Source p 6= q/Target
Baseline 54.73 (0.95) 36.16 (2.36) 54.30 (0.89) 36.23 (2.64)
CS 54.14 (0.96) 36.59 (2.38) 54.14 (0.90) 35.92 (2.60)

No labeled KMM 54.60 (0.98) 36.57 (2.33) 54.34 (0.90) 36.38 (2.66)
target data KLIEP 54.68 (0.96) 36.25 (2.35) 54.30 (0.89) 36.22 (2.65)

IS 54.16 (1.03) 37.23 (2.29) 53.70 (0.99) 36.36 (2.32)
GFK 49.43 (1.14) 34.95 (1.74) 52.63 (0.95) 34.77 (1.67)
Baseline 54.06 (0.98) 41.36 (2.46) 54.80 (0.94) 33.89 (2.42)

3 observations CS 51.35 (1.10) 46.52 (2.40) 52.18 (1.08) 39.16 (2.34)
per class KMM 52.09 (1.14) 44.44 (2.42) 53.89 (0.97) 35.21 (2.44)

from target KLIEP 53.92 (0.99) 41.44 (2.45) 54.67 (0.93) 33.97 (2.42)
data IS 52.98 (1.07) 40.29 (2.36) 54.34 (1.02) 40.07 (2.40)

GFK 51.17 (1.19) 35.83 (1.75) 52.57 (1.08) 35.37 (1.70)

In the semisupervised case, IS and CS seem to perform competitively over the al-

ternatives. When the dimension between the source and target differ, CS and KMM

– both instance-weighting methods – perform best in the unsupervised case while

CS and IS perform best in the semisupervised case. While no method appears to be

a clear winner in this simulation, if some labeled information is available from the

target space, potential improvements over a baseline method are possible.

2.2.4 Discussion

Many methods are available to estimate model parameters given a regression

function with high-dimensional, highly-correlated inputs. The EDE performs well

in a classification task on a dataset that included images as predictors. All of the

approaches consider examples in which the underlying structure of the predictors is

assumed to exist but is not known explicitly. We will see a method for incorporating

known structure in the following chapter.

When the distribution of features is heterogeneous across training and testing,
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modifications can be made to aid in prediction. We have two different paradigms:

instance weighting methods, in which each observation is assigned a weight to even

out distributional differences; and dimension reduction methods, in which feature

spaces are sought that minimize the discrepancy between training and testing sets.

IS performs well when source and target dimensions are the same, while instance

weighting methods tend to benefit from knowing some response values from the

target. In any case, using some method to account for a domain shift can be a first

step to improving predictive performance in pattern recognition tasks.

46



3

Regression on the Grassmannian

3.1 Introduction

The exterior derivative estimator outlined in the previous chapter was able

to perform well when dealing with high-dimensional data that took on a low-

dimensional structure, though the underlying structure was not assumed to be

known a priori. In the following chapter, we outline a method that considers a

specific manifold structure that arises often in computer vision problems and test

its performance against various alternatives.

3.2 Methodology

As in Chapter 2, we assume our goal is to estimate a regression function m

given predictors lying on a manifold. In all examples, we will focus on problems in the

computer vision literature. In this problem setting, we see the manifold assumption

can be crucial, as visual information has a rich underlying structure. As seen in

Chapter 1, depending on the problem, this structure can either be taken as known

or unknown. Cases in which we do have this prior information include analysis using

landmark points or dynamic models in classification tasks using video data, with

the structure coming from a preprocessing of the data.
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Algorithm 1 Calculation of the projection matrix in the regularization for the EDE
[9]. When used in conjunction with an `2 penalty, this matrix will penalize regression
coefficients for not lying parallel to the tangent space formed by x1, . . . ,xn.

1: Estimate: d with d̂ using maximum likelihood [44]

2: Ĉ←
∑n

i=1(xi−x̄)(xi−x̄)T/n

3: Ĉ ← [R̂ N̂] · Λ̂ · [R̂ N̂]T eigenvalue decomposition of Ĉ with R̂ ∈ Rp×d̂, N̂ ∈
Rp×(p−d̂), Λ̂ a diagonal matrix

4: Π̂← N̂N̂
T

5: P̂← diag(0, Π̂)

3.2.1 EDE with Prior Structure

As described in Chapter 2, the EDE is a useful approach to estimating a

regression function when the predictors are thought to lie on a manifold, though

in the previous chapter the structure was assumed unknown so that the manifold

had to be estimated. The exterior derivative was estimated by locally penalizing

the regression coefficients for not falling onto the d largest principal components

(cf. PCR in which predictors are projected directly onto these components). We

summarize the estimation of the projection matrix P̂ for a globally linear manifold

in Algorithm 1.

As the EDE method given in [9] is largely concerned with the case where

predictors lie on an unknown manifold, we modify the approach to take advantage of

a priori information regarding the structure of the predictors, such as in the examples

of Chapter 1. We extend the EDE method to cases in which prior knowledge is

available, with only the regularization needing modification. In constructing the

EDE, the projection orthogonal to the tangent space is estimated with the data due

to our not knowing the structure in the predictors, whereas here we seek a direct
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projection of the coefficient vectors. To find this projection, we first look at the

structure of G(r, s). Recall G(r, s) as the set of all s-dimensional subspaces of Rr,

i.e., the quotient space

G(r, s) = R(r, s)/ ∼

where R(r, s) is the space of all r × s matrices of rank s, and, for U,V ∈ Rr×s,

U ∼ V if there exists a nonsingular L ∈ Rs×s such that V = U L [2]. The tangent

structure of G(r, s) is slightly different from that of a manifold formed by data

points x1, . . . ,xn due to this quotient space representation. Rather than tangent

spaces to points on G(r, s), we seek tangent spaces to equivalence classes of points,

which for G(r, s) can be identified with semi-orthogonal matrices U ∈ Rr×s. The

tangent space to the equivalence class of a point is known as the vertical space, and

its orthogonal complement is called the horizontal space [57]. For two orthogonal

matrices U,V ∈ Rr×s representing points in G(r, s), projection of a matrix U into

the horizontal space at a point V can be done with the operator

πv (U) =
(
Ir−V VT

)
U

where Ir is the r×r identity matrix. In this case, if the predictors x1, . . . ,xn ∈ G(r, s),

we think of the regression coefficients βM1 as lying in Rr×s to allow for a projection of

βM1 into the horizontal space using πv. In order to perform the regression, we reshape

predictors x and coefficients β by concatenating column-wise so that x,β ∈ Rrs.

The estimate of the projection matrix P̂ for the regularization in this case is given
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Algorithm 2 Calculation of the projection matrix for EDE with Grassmann prior.
This regularization assumes the data x1, . . . ,xn lie on a Grassmannian G(r, s) and
will penalize a projection of the regression coefficients into the horizontal space of
G(r, s).

1: Compute: orthogonalization x̄∗ of x̄ ∈ Rr×s using singular value decomposition

2: Π̂
M
← (Ir−x̄∗x̄

T
∗ )

3: Π̂← diag(Π̂
M
, . . . , Π̂

M
), a block-diagonal matrix such that Π̂ ∈ Rrs×rs

4: P̂← diag(0, Π̂)

in Algorithm 2.

3.2.1.1 Bayesian Interpretation

For the EDE with Grassmannian data, estimates for β can be found by com-

puting

arg min
β

||y−Xβ ||22 + λ · ||(In−x̄∗x̄
T
∗ )βM ||2F (3.1)

where as before x̄∗ is the orthogonalized sample mean of the predictors, βM ∈ Rr×s

is the “matrix” version of β1, and || · ||2F is the squared Frobenius norm defined as

||U ||2F = tr(U UT ).

This penalization term can be interpreted as placing a “Procrustean” prior on the

parameters βM. In other words, the estimate for βM obtained by optimizing (3.1)

above can be obtained as the Bayes posterior mode under the prior

f(βM;λ) = c · exp{−λ · g
(
x̄∗,β

M
)
}
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where g (U,V) = tr
(
VT V−UT V VT U

)
and c is a normalizing constant. This is

called a “Procrustean” prior due to the fact that g above is similar to the Procrustes

distance metric gP (U,V) = tr
(
Is−UT V VT U

)
given in [2]; in fact, it will hold

locally that (βM)T (βM) ≈ Is since βM should lie on the tangent space to the manifold

on which x1, . . . ,xn reside [i.e., G(r, s)], and any point xi on this manifold satisfies

xTi xi = Is.

3.2.2 The Fréchet Mean

The Fréchet sample mean is a useful concept for defining the concept of the

sample mean on a manifold [58]. For an i.i.d. sample x1, . . . ,xn on a metric space

(M, δ), we define the Fréchet sample mean set as the set of all minimizers in M of

the function

Q(p) =
1

n

n∑
i=1

δ2(xi,p).

If there exists only one minimizer to this function, we call this the Fréchet mean.

The general procedure for computing a mean of a set of values on a Riemannian

manifold is to use an iterative procedure: each point is projected into the tangent

space about a candidate mean value, the sample mean in this tangent space is

computed, and then this sample mean is projected back some distance along the

geodesic between it and the previous candidate mean value. This procedure [59] is

outlined in Algorithm 3. It uses the notions of geodesic flow and exponential maps

defined in Chapter 1.
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Algorithm 3 Iterative computation of the Fréchet mean (also called Karcher mean)
of a set of points [59].

given x1, . . . ,xn ∈ Rr×s as elements of G(r, s)
initialize µ0 = x1, η = .5, τ ∈ (0, 1), j = 0, and t = 1
while t > τ do

for i = 1, . . . , n do
νi ← exp−1(xi;µj)

end for
ν̄ ←

∑
i νi /n

µj+1 ← exp(η · ν̄;µj)
t← ||µj −µj+1 ||
j ← j + 1

end while
return x̄1 = µj

3.2.3 Parameter Selection

3.2.3.1 Regularization

In generalized cross-validation [60], the regularization parameter λ is chosen

as the minimum of the objective

V (λ) =
1

n
||(In−A(λ)) y ||2

/[
1

n
tr(In−A(λ))

]2

and

A(λ) = X(XT X+λ · Ip)−1XT .

An efficient algorithm for selecting λ is based on the singular value decomposition

of X as X = U D VT . The quantity V (λ) can then be rewritten as
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V (λ) = n
n∑
i=1

(
λ

νi + λ

)2

z2
i

/[
n− p+

n∑
i=1

λ

νi + λ

]2

where (z1, . . . , zn)T = UT y and νi for i = 1, . . . , n are the eigenvalues of XXT .

This allows for ease of computation of the objective to facilitate a global search for

the optimal λ. In experiments we restrict our search within the set {10−3c : c =

1, 2, . . . , 106}.

In our case, P is idempotent and, by virtue of its construction, will be for

all practical purposes invertible. We apply the same parameter selection as above,

except we write

Ã(λ) = X(XT X+λ ·P)−1XT

= X(XT X+λ ·P2)−1XT = X̃(X̃T X̃+ λ · Ip)−1 X̃T

where X̃ = XP-1. This will allow for a more efficient parameter selection. For multi-

class classification problems, we choose regularization parameters for each of C labels

using yk = 1(y = k) for k = 1, . . . , C.

3.2.3.2 Localization

In the case of predictors on a Grassmannian, performing local regression at the

point x0 will require the computation of weights. Using the definition of the kernel

density estimate from [2] as a baseline, we will use weights
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w(xi,x0) = exp{−tr[B-1(Is−xT
i x0 xT

0 xi)]}

with B an s × s bandwidth matrix. In [2], the bias and variance for the estimated

density at x0 are O(B) and O([n|B |(r−s)/2]−1), respectively. To achieve a tradeoff

between this bias and variance, we pick B to be diagonal and on the order of

α = n−1/[s(r−s)/2+2]. In experiments, the optimal bandwidth will be chosen among

the set {10−δα : δ = 0, . . . , 5} to minimize the generalized cross-validation criterion

[61]

V (B) =
n||(In−H) y ||2

[n− tr(H)]2
.

where H is the matrix such that (ŷ1, . . . , ŷn)T = H y. We take only a small number

of values in the candidate set because of the computational overhead in computing

H for each potential bandwidth.

3.3 Case Studies

We use two datasets to assess the performance of the proposed method: the

FG-NET dataset [3], and the video sequence dataset used in [23], both described

in Chapter 1. The FG-NET database consists of images of 82 separate individuals’

faces, with a total of 1002 images in the database, 571 of which correspond to

males and 431 females. The video sequence dataset consists of videos of 16 subjects’

faces taken at two different times (the “gallery” and the “probe” sequences). For
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convenience, we truncate each video at 20 frames, with individuals having either 4,

8, or 16 different 20-frame videos.

3.3.1 Localization on G(r, s)

Due to the inherent structure in our predictors the method for obtaining

weights for local regression is modified to take into account points lying on a Grass-

mannian. In [2], the Procrustes distance metric gP (U,V) = tr(Is−UT V VT U) is

given for U,V ∈ G(r, s). We use this distance metric as an argument to a Gaussian

kernel to weight observations when localizing regression. Typically a modified ver-

sion of this distance – g∗P (U,V) = [gP (U,V)+gP (V,U)]/2 – is used due to the fact

that gP is not symmetric in its arguments. We use this distance metric in a nearest

neighbor classifier for comparison. Choice of the Gaussian kernel was made due to

ease of its computation.

3.3.2 Related Methods

If the manifold structure is known a priori as in the case of G(r, s), we can

perform regression using classical least squares by first projecting all observations to

the tangent space about a point on the manifold (e.g., x̄∗). Since the tangent space

to a point on G(r, s) has the structure of Euclidean space, no assumptions on the

structure of the predictors are violated and the well-known least squares solution

for β can be computed as [62]
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β̂ = [X(µ)T X(µ)]−1X(µ)T y

where X(µ) are the observations X transformed via inverse exponential map to lie

on the tangent space at the point µ. The algorithm for computing this inverse expo-

nential map is given in [59] and depends on a single parameter t. In our experiments,

µ is taken to either be the orthogonalized sample mean or the local Fréchet mean,

depending on whether global linearity is assumed, and t is taken to be one.

Procrustes nearest-neighbor was also considered as another method that takes

the explicit, known manifold structure into account. This method finds the observa-

tion in the training dataset that minimizes the Procrustes distance [g∗P (U,V) given

above] between it and the given test point. The label of the point in the training set

is then used as the estimated label for the given test point.

3.3.3 Linearity Assumption on FG-NET

The Grassmannian G(r, s) is a nonlinear manifold; however, a useful property

of manifolds is that locally they behave like Euclidean space. For the example of age

estimation, the Grassmannian structure comes from predictors as landmark points

on a face. Thus it can be assumed that they do not have a high variability: an

individual’s eyes will typically appear above the nose and mouth and not be spaced

arbitrarily far apart or close together.

To test the linearity assumption, 1000 pairs of points were chosen with re-

placement at random from the dataset and the quantity xTi xj was computed. The
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Table 3.1: Comparison between means and standard deviations of xTi xj for FG-
NET dataset for i, j randomly chosen from {1, . . . , n} (left) and randomly generated
observations (right). Note for xi ∈ G(r, s) we have xTi xi = Is.

FG-NET dataset Random uniform data
.9987 (.0012) -.0010 (.0321) .0009 (.0037) .0001 (.0035)
.0031 (.0320) .9661 (.0396) -.0000 (.0035) .0009 (.0033)

Table 3.2: Method for generating a single uniform random variate Yi on G(r, s) [2].

• Generate rs random standard normal variates u1, . . . , urs ∼ N(0, 1);

• Form random variates into matrix U = [u1 . . . us] where u1 = [u1, . . . , ur]
T ;

• Compute matrix Z = U(UT U)−1 UT ;

• Form Yi = [z1 . . . zs] where zi are the columns of Z.

means and standard deviations of each element of this matrix are given in Table 3.1.

For comparison, the same was done with data generated uniformly at random on

G(r, s), with the method for obtaining these random observations Yi outlined in

Table 3.2. This linearity assumption is used to increase computational efficiency,

though localization can potentially yield better results.

Since observations corresponding to normalized landmark points are contained

within a small (read: approximately Euclidean) subset of the Grassmannian, a sim-

pler computation of an approximation to the Fréchet mean can be done as given

in Algorithm 4. Instead of using an iterative procedure that relies on projecting

and reprojecting sample points (using the inverse exponential and exponential map,

respectively), the sample mean of the data can be taken and then orthogonalized

to ensure it lies on the Grassmannian. This greatly improves computation time and

additionally requires fewer tuning parameters than computation of the Fréchet mean
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Algorithm 4 Computation of the orthogonalized sample mean.

given x1, . . . ,xn ∈ G(r, s) ⊂ Rr×s
compute x̄←

∑
i xi /n

let vk be such that x̄vk = λkuk and x̄∗uk = λkvk with λ1 ≥ . . . ≥ λr
return x̄2 = [u1 . . . us]

using Algorithm 3.

An empirical comparison between these two methods was performed using the

FG-NET database [3], the results given in Table 3.3. A random selection of 30, 100,

and 1000 observations were chosen from the FG-NET database, and Algorithm 3

was performed using 2, 4, 6, and 8 iterations. Meanwhile, the sample mean was also

computed using Algorithm 4. The Frobenius norm between the two computed means

was calculated, along with the computation times of both algorithms. It is interesting

to note that, as the number of iterations increases, Algorithm 3 approaches the

value obtained by simply orthogonalizing the sample mean, and as these iterations

increased, the gap between computation times widened. On 1000 points using 8

iterations, it takes over three seconds to compute the mean using Algorithm 3,

compared with .002 seconds using the alternative method. Fig. 3.1 shows a graphical

comparison between the landmark points of the sample mean of the entire dataset

computed using Algorithm 3 with 10 iterations and the proposed, simpler method,

showing these methods obtain similar configurations.

3.3.4 Experimental Setup

The alternative methods used for comparison for age estimation where the

structure of the predictors is unknown were ordinary least squares (OLS), ridge re-

58



Frechet Mean
Proposed Mean

Comparison of Frechet Mean and Proposed Mean

Fig. 3.1: Comparison of mean face obtained via Algorithm 3 (Fréchet mean with 10
iterations) and the proposed mean.
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Table 3.3: Comparison between Algorithm 3 and the orthogonalized sample mean.
For n = 30, 100, 1000 samples with replacement from the dataset, both Algorithm 3
and the proposed mean were computed, and the Frobenius norm between estimated
means as well as MSE between computation times are reported.

2 iterations 4 iterations 6 iterations 8 iterations

Error between Algorithm 3 and proposed

n = 30 Error .012 (.006) .011 (.005) .009 (.004) .008 (.004)
n = 100 Error .012 (.006) .010 (.005) .009 (.005) .007 (.004)
n = 1000 Error .012 (.006) .011 (.005) .008 (.004) .007 (.003)

Computation times

n = 30
Algorithm 3 .035 (.000) .070 (.001) .105 (.001) .139 (.002)
Proposed .000 (.000) .000 (.000) .000 (.000) .000 (.000)

n = 100
Algorithm 3 .096 (.009) .187 (.002) .278 (.002) .369 (.002)
Proposed .000 (.000) .000 (.000) .000 (.000) .000 (.000)

n = 1000
Algorithm 3 .837 (.009) 1.67 (.011) 2.49 (.003) 3.32 (.010)
Proposed .003 (.001) .003 (.001) .003 (.001) .002 (.001)

gression (RR), principal components regression (PCR) [28] and partial least squares

(PLS); these methods were compared to the exterior derivative estimator (EDE).

In the case where landmark points are used as predictors, regression performed on

points projected to the tangent space about the estimated mean (REM) as described

in Section 3.3.2 is also used for comparison, and the exterior derivative estimator

with prior (EDEwP) method is used as a proposed method. Regression on points

embedded using locality preserving projections [42] has been used on this problem,

but in this case was shown not to yield competitive results. All forms of regression

were performed on either the predictors or the embedded predictors. For age estima-

tion, improvements in prediction can be gained by additionally including the square

of each predictor in the model [22], but this was not considered in this analysis.
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3.3.5 Age Estimation

For age estimation on the FG-NET dataset, feature extraction was used to

obtain predictors whose structure is not explicitly known in advance. To obtain fea-

tures, each image was converted to normalized grayscale taking values between 0 and

1, and the Viola-Jones face detection algorithm [40] was used to discard much of the

noise and unwanted information contained in the background. Finally, a histogram

of oriented gradients (HOG, [63]) feature extraction method with 9 bins on 8 × 8

patches was used to generate predictors x1, . . . ,x1002 ∈ R576. By construction HOG

features have unit norm, but we standardize the data obtained so that the predictors

lie on an “unknown” manifold. See Chapter 1 for details. Here each observation is

labeled with ages y ranging from 0 to 69. In various experiments, performing regres-

sion on
√
y yielded more accurate predictions; using this as a response variable has

the added benefit that predictions of an individual’s age will always be nonnegative.

A popular objective in the age estimation literature for assessing algorithm

performance is to use a hold-one-person-out cross-validation and report the mean

absolute error (MAE). In other words, 82 separate trials are performed where for

each trial, the test dataset consists of all images of one specific individual while

the training dataset is composed of the remaining 81 individuals. This method of

assessment, hereafter referred to as Framework 3, gives a good indication as to how

well methods are performing, but as an objective for both parameter tuning and

performance assessment it can be prone to overfitting. This cross-validation frame-

work is closer in spirit to a jackknife cross-validation, and obtaining a randomized
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split between training and testing data may give a better idea of how the methods

are performing relative to one another, as well as deter overfitting. We propose two

alternative frameworks: Framework 1 chooses 5 test points at random for testing and

uses the remaining observations for training the model; Framework 2, to be more

consistent with hold-one-person-out cross-validation, does the same as Framework 1

but instead of training on the remaining individuals, each observation correspond-

ing to a person in the testing set is removed from the training set and models are

then built on this modified dataset. In both age estimation studies, a local model is

learned for comparison using the hold-one-out cross-validation with the bandwidth

selection described in Section 3.2.3.

We use both Framework 1 and Framework 2 100 times and report the average

and standard error of the MAE for each method in Tables 3.4 and 3.5. In the case in

which the structure of the predictors is unknown, ridge regression outperforms the

alternatives, with the EDE a close second. Using the landmark data gives an overall

improvement in performance for all methods. In this case, the EDEwP outperforms

all alternatives with ridge regression a close second and the EDE not far behind.

In both cases, the local regression yields only slightly better results than assuming

global linearity.

3.3.6 Classification on FG-NET

For age and gender classification, global linearity is assumed. The improve-

ments in performance found in age estimation due to the localization were not
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Table 3.4: Age estimation results for various testing frameworks performed on HOG
data in which the structure is unknown. Minimum mean absolute errors (MAEs)
are given in bold.

Framework 1 Framework 2 Framework 3 Local
Model MAE(SE) MAE(SE) MAE MAE
OLS 10.75 (0.45) 11.28 (0.47) 10.84 10.80
RR 7.59 (0.31) 7.89 (0.32) 8.22 7.93
PCR 7.90 (0.31) 8.07 (0.32) 8.38 8.66
PLS 8.46 (0.34) 8.76 (0.35) 8.88 9.04
EDE 7.68 (0.31) 7.97 (0.32) 8.29 8.12

Table 3.5: Age estimation results for various testing frameworks performed on land-
mark data in which the structure is known. Minimum mean absolute errors (MAEs)
are given in bold.

Framework 1 Framework 2 Framework 3 Local
Model MAE(SE) MAE(SE) MAE MAE
OLS 6.37 (0.31) 7.00 (0.34) 6.46 6.45
RR 6.06 (0.31) 6.50 (0.33) 6.11 6.10
PCR 7.33 (0.35) 7.54 (0.35) 6.87 6.95
PLS 6.20 (0.31) 6.57 (0.33) 6.15 6.12
REM 10.73 (0.48) 10.96 (0.49) 9.65 8.74
EDE 6.07 (0.31) 6.51 (0.33) 6.12 6.13
EDEwP 6.03 (0.31) 6.46 (0.32) 6.11 6.09

enough to warrant the computational burden. The methods used for comparison in

this case are those that were used in age estimation, as well as a Procrustes near-

est neighbor classifier (PRO) as described in Section 3.3.2. For the methods PCR,

PLS, and EDE, an estimate of the dimension of the predictors is obtained using the

maximum likelihood method [44].

Two classification experiments were performed on the FG-NET dataset: age

group classification and gender classification. For age group classification, the ob-

servations are placed into three separate categories corresponding to age 0− 8, age
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Table 3.6: Gender classification results for different testing frameworks performed
on landmark data in which the structure is known. Maximum recognition rates are
given in bold.

Framework 1 Framework 2 Framework 3
Model Rec. Rate (SE) Rec. Rate (SE) Rec. Rate
OLS 75.60 (2.06) 65.00 (2.08) 63.87
RR 75.20 (1.84) 67.60 (2.05) 64.57
PCR 61.60 (1.83) 58.60 (1.89) 57.78
PRO 60.80 (2.22) 60.80 (2.22) 56.99
PLS 75.60 (1.79) 66.00 (1.92) 63.17
REM 60.80 (2.36) 56.40 (2.40) 54.19
EDE 75.20 (1.84) 67.80 (2.03) 64.67
EDEwP 74.80 (1.83) 67.80 (2.01) 64.57

9 − 18, and age 19 and up. The testing framework is the same as in age estima-

tion, but instead of reporting the mean absolute errors, the proportions of correctly

classified values will be given along with the corresponding standard errors (where

applicable). For ease of illustration, these classification experiments were performed

only on the landmark data.

In Tables 3.6 and 3.7 we see that although the proposed method does not

perform universally best in gender classification, it is still comparable to the best

methods and performs best in the second framework along with the EDE. In the

third framework, it performs second best, along with ridge regression. For age group

classification, results for the proposed method are more promising with it performing

best in all frameworks.

3.3.7 Video-Based Face Recognition

We obtain feature vectors for the video-based face recognition dataset by first

resizing images to 9 × 8 matrices of grayscale values between 0 and 1. If we were
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Table 3.7: Age group classification results for various testing frameworks performed
on landmark data in which the structure is known. Maximum recognition rates are
given in bold.

Framework 1 Framework 2 Framework 3
Model Rec. Rate(SE) Rec. Rate(SE) Rec. Rate
OLS 67.60 (2.18) 65.60 (2.20) 65.47
RR 71.40 (2.13) 70.80 (2.15) 68.76
PCR 65.20 (2.04) 65.00 (1.96) 63.47
PRO 34.20 (2.26) 34.20 (2.26) 31.44
PLS 70.00 (2.28) 68.20 (2.38) 67.96
REM 41.60 (2.02) 42.40 (2.06) 41.72
EDE 71.40 (2.13) 70.80 (2.15) 68.56
EDEwP 72.00 (2.13) 71.80 (2.11) 68.96

to concatenate the rows of each frame, and then concatenate all 20 frames, we

would obtain features in R1440. Using the method described in Section 1.1.4.1 of

Chapter 1, we are able to reduce our dimensionality to R144 while incorporating the

Grassmannian structure into the predictors.

Because multiple observations are taken of the same subject, two methods are

used to sidestep the issue of nonindependence of observations. First, an experimental

setup is used in which the training data consists of an observation selected at random

for each of the individuals from the gallery data, and 16 observations are chosen

from the probe data at random for testing. This is done using the probe data for

training and the gallery data for testing as well, and each test is replicated 100

times with the proportion of correctly classified values given along with the standard

errors. The second experimental setup uses the Fréchet mean of the observations for

each individual from the gallery as points in the training data, again tested on 16

observations chosen at random from the probe set; this is repeated using the probe

as training data. Finally, the third framework corresponds to simply using the entire
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gallery as training data to test on the probe (and vice versa) and is presented for

comparison purposes.

As described in [9], cases in which p� n present difficulty when estimating the

EDE. For this dataset, we take n = 16 and p = 144, so to remedy this, covariance

thresholding is performed where all elements of the covariance matrix that are less

than the 0.75 quantile of the absolute value of the elements are set to zero. Both

the regular EDE and the thresholded EDE (EDET) are reported.

Table 3.8 gives results on this dataset. When using the gallery as training data,

in the first framework both ridge regression and partial least squares perform best,

with the proposed method close behind. The proposed method performs best in

the other two frameworks. When using the probe as training data, the best methods

perform much better than using the gallery as training data. Ridge regression, partial

least squares, and the EDEwP seem to be the only worthwhile methods in the first

two frameworks, with the EDEwP performing best. When using the whole probe as

training data, ridge regression, partial least squares, and the EDE all perform best,

with the proposed method fewer than three percentage points away. It is interesting

to note that the thresholding of the covariance matrix actually yields much worse

results in classification results for this problem, possibly due to its discarding of a

lot of information.
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Table 3.8: Video-based face recognition results for various testing frameworks per-
formed on appearance data in which the structure is known. Maximum recognition
rates are given in bold.

Framework 1 Framework 2 Framework 3
Model Rec. Rate (SE) Rec. Rate (SE) Rec. Rate

Training: Gallery; Testing: Probe
OLS 3.69 (0.58) 4.12 (0.58) 6.45
RR 9.56 (0.74) 9.19 (0.73) 12.10
PCR 5.00 (0.47) 6.06 (0.58) 12.90
PRO 6.25 (0.00) 6.25 (0.00) 6.45
PLS 9.56 (0.74) 9.19 (0.73) 12.10
REM 5.62 (0.51) 6.25 (0.60) 9.68
EDE 6.25 (0.53) 6.62 (0.58) 10.48
EDET 6.12 (0.55) 6.38 (0.62) 10.48
EDEwP 9.50 (0.70) 9.88 (0.80) 15.32

Training: Probe; Testing: Gallery
OLS 11.12 (0.61) 11.12 (0.71) 7.50
RR 31.06 (0.93) 29.31 (0.87) 19.17
PCR 5.00 (0.42) 4.19 (0.52) 13.33
PRO 6.25 (0.00) 6.25 (0.00) 6.67
PLS 31.06 (0.93) 29.31 (0.87) 19.17
REM 6.75 (0.54) 2.56 (0.38) 4.17
EDE 6.31 (0.59) 8.06 (0.62) 19.17
EDET 6.25 (0.49) 6.25 (0.51) 6.67
EDEwP 33.06 (0.98) 33.81 (0.92) 16.67

3.4 Alternative Regularization

Any point V in the tangent space at a point U of G(r, s) should satisfy UT V =

0; this indicates an alternative regularization, namely incorporating a penalty x̄T∗ β
M

so that βM will lie closer to the tangent space. Results on hold-one-person-out age

estimation for various values of the regularization parameter are shown in Fig. 3.2.

We take EDEwP2 as the previously defined regularization, with EDEwP1 being

the alternative penalizing ||x̄T∗ βM ||2. We see that EDEwP1 is not different – and

actually performs a little worse – than an OLS fit. While both RR and EDEwP2
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Fig. 3.2: Comparing different regularization terms.

perform well for a good choice of λ, the methods are a little more unstable. We see

that ridge regression is in fact a fairly good choice for problems of this type so long

as λ can be estimated well.

3.5 Discussion

By adopting an approach to incorporate structure into estimation regression

parameters, both when the underlying manifold is known in advance or when the

manifold is unknown, we obtain improvements in both regression and classification.
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Posing the problem as an optimization and incorporating prior knowledge into the

objective function results in improvements in performance and coefficient estimates

that have an attractive interpretation in terms of the manifold structure of the

predictors. While in some cases the data are assumed to have a globally linear

structure, localization can be used to obtain better results on data that exhibit

nonlinearity. We show that, although in some cases using knowledge of the prior

structure does not result in large improvements, its interpretability and utility make

it an indispensable tool in performing regression on manifolds.
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4

Combined Direction Estimation

4.1 Introduction

As seen in the previous chapter, dimension reduction methods are a viable

solution to improving predictions in the case of heterogeneous data, at least when

the dimension of the predictors does not change between training and testing. A

major drawback to the dimension reduction methods outlined previously is that the

information about the response variable does not enter into the construction of the

mapping until the end of the estimation. GFK, for example, does not use the values

of the response at all except to perform nearest neighbor once we obtain the kernel.

In this chapter, we propose the method of combined direction estimation (or CDE),

which is closely related to the IS method in that it attempts to combine information

from the source and the target in constructing a dimension-reducing transforma-

tion, though CDE may be extended to consider the conditional distribution of the

response given the predictors.

4.2 Problem Setup

We assume as in Chapter 2 that we have independent predictors x1, . . . ,xn

distributed as X ∈ X ⊂ Rp for training a model and z1, . . . , zm as Z ∈ Z ⊂ Rq for

testing the same model. We assume we have known response variables y1, . . . , yn ∈ R
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that are generated from some parametric process, i.e.,

E(Y |X = xi;β) = m(xi;β)

with β ∈ Rp. We use the covariate shift assumption outlined previously, namely

that we have unknown response variables ξ1, . . . , ξm from the the same conditional

model as Y and X, i.e., [Y |X;β] ∼ [Ξ|Z;β], though [X] � [Z]. Our goal is to

learn a model optimal under [Ξ,Z] while either not knowing or knowing only a small

number of realizations from [Ξ]. Here we use [X] to denote the marginal distribution

of random variable X, [Y |X] to denote conditional distribution, and [Y,X] to denote

joint distribution.

4.3 Methodology

We propose an approach related to the maximum likelihood approach for PCA

outlined in Chapter 1 that attempts to make a connection with the intermediate

subspace method described in Chapter 2. We first pose the error model for a single

observation X as

X = µx +η ν + ε, ε ∼ N(0,∆) (4.1)

where ε is a vector of random errors, ∆ > 0, η ∈ Rp×d is a linear dimension reduction

with ηT η = Id, and ν are corresponding unknown coefficients with E[ν] = 0

[64]. We pose a similar model for Z, assuming p = q and X = Z, and using the
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same transformation η, as we wish to keep the conditional distributions of the

response given the predictors the same across training and testing. Our goal will

be like that of sufficient dimension reduction literature [12], with the modification

that instead of being interested in the conditional distributions of the response

given the covariates, we focus on the marginal distributions of the features. For

example, in the homogeneous case (that is, we only have data from X), a useful

dimension reduction mapping η ∈ Rp×d would be one that attempts to constrain

Fx

(
(Ip−η ηT ) · (x−µx)

)
to be close to Fx(x−µx) where Fx is a fixed cdf. If we

assume

Fx(u) ∼ N(0, σ2
x Ip),

we can estimate η through minimizing the Kullback-Leibler divergence between

these distributions over η, resulting in the well-known principal component direc-

tions. We take a similar approach, but introduce the target distribution (here called

G) as well [65]. In other words, we assume X = Z and seek an η constraining

Gz(u−µz) to be close to Fη,x(u−µx) and simultaneously constraining Fx(u−µx)

to be close to Gη,z(u−µz) where

Fη,x(u) = Fx

(
(Ip−η ηT ) · u

)
, Gη,z(u) = Gz

(
(Ip−η ηT ) · u

)
, u ∈ X .

Intuitively, we attempt to pose a dimension reduction η so that points from x get
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mapped into points that “look like” points from z for the first constraint, with a

similar intuition for the second constraint. We will rarely require one distribution

to be mapped completely to the other, which is an implicit goal in the sampling

of the geodesic in IS. Instead, we will seek to minimize the average between both

KL-divergences, that is, to find

arg min
η

J(η) subject to ηT η = Id

where

J(η) =
1

2
[DKL(Fx||Gη,z) +DKL(Gz||Fη,x)],

with the Kullback-Leibler divergence

DKL(Fx||Gz) =

∫
X
f(u) log

f(u)

g(u)
du

provided F and G admit density functions f and g, respectively.

4.3.1 Error Structure

Our first assumption will be that of normal, isotropic errors. We set

X = µx +η νx + ε, ε ∼ N(0, σ2
x Ip),

Z = µz +η νz + ε, ε ∼ N(0, σ2
z Ip)
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where σ2
x and σ2

z are chosen parameters. In this case we note

J(η) =
1

2
[DKL(Fx||Gη,z) +DKL(Gz||Fη,x)]

∝ −1

2

[∫
X

1

σ2
z

(u−µz)T η ηT (u−µz)du

+

∫
Z

1

σ2
x

(u−µx)T η ηT (u−µx)du

]
≈ −1

2
tr

{
1

σ2
z

Σx η ηT +
1

σ2
x

Σz η ηT

+

(
1

σ2
x

+
1

σ2
z

)
(µx−µz)(µx−µz)T η ηT

}

where (µx,Σx) and (µz,Σz) are the mean vectors and covariance matrices corre-

sponding to data X and Z, respectively. As our goal is to estimate

arg min
η

J(η) subject to ηT η = Id,

we see that the solution in this case becomes the eigenvectors corresponding to the

largest d eigenvalues of the matrix

A =
1

σ2
z

Σx +
1

σ2
x

Σz +

(
1

σ2
x

+
1

σ2
z

)
(µx−µz)(µx−µz)T . (4.2)

The third term is a rank one matrix and will only affect the first eigenvector of A; for

ease of exposition we will ignore it for now, as it can be dropped by mean-centering

both X and Z.

To make a connection with incremental subspace learning, we choose to rescale

our objective so that the solution for η will correspond to eigenvectors of the matrix
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(1 − α) Σx +αΣz where α = σ2
z/(σ

2
x + σ2

z), or the proportion of variance from the

“target” predictors. Our estimate for σ2
x and σ2

z will come from the average of the

standard deviations of each column of X and Z, respectively.

We propose a distributional relaxation in the form of a nonparametric estima-

tor for the distribution of the errors from source and target. For ease of computation,

we will mainly focus on the nonparametric estimate

f̂n(x0) =
1

n

n∑
i=1

KH x[(Ip−η ηT )(xi−x0)]

where KH x is the radial Gaussian kernel described previously. We consider a sim-

plified scenario in which Hx is a multiple of the identity, namely Hx = σx Ip (similar

for Hz). In this case we have

J(η) =
1

2
[DKL(Fx||Gη,z) +DKL(Gz||Fη,x)]

∝ −1

2

[∫
X

log
m∑
j=1

exp

{
− 1

σ2
z

(u− zj)
T (Ip−η ηT )(u− zj)

}
du

+

∫
Z

log
n∑
i=1

exp

{
− 1

σ2
x

(u−xi)
T (Ip−η ηT )(u−xi)

}
du

]

which implies
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J(η) ≈ −1

2

[
n∑
i=1

log
m∑
j=1

exp

{
− 1

σ2
z

(xi− zj)
T (Ip−η ηT )(xi− zj)

}

+
m∑
j=1

log
n∑
i=1

exp

{
− 1

σ2
x

(zj−xi)
T (Ip−η ηT )(zj−xi)

}]
. (4.3)

The gradient for the above objective turns out to be

Jη = −

[
1

σ2
z

n∑
i=1

m∑
j=1

wzij(η) · (xi− zj)(xi− zj)
T η

1

σ2
x

m∑
j=1

n∑
i=1

wxij(η) · (zj−xi)(zj−xi)
T η

]

where

wzij(η) =
exp{−(xi− zj)

T (Ip−η ηT )(xi− zj)/σ
2
z}∑n

k=1 exp{−(xi− zk)T (Ip−η ηT )(xi− zk)/σ2
z}
.

We take two approaches to speed up this method. First, in the kernel density

estimation, we cluster the data into representative subsets so that we are not working

with double sums over all data from source and target. For instance, in the first term

of J(η) in (4.3), instead of summing over all j we only sum over centroids from z,

with a similar approach being done for data from x in the second term. For the

source data we may take within-class means, but since we do not wish to constrain

ourselves to the setting of assuming response variables from the target, we forgo

this for now and instead use standard clustering techniques (cf. [49]). Our second
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simplification is in the estimation of η. We use a previous (or initial) estimate of η

in calculating weights wij(η) so the unknown η does not appear in these weights.

In this case we have a similar solution to the case in which we assumed the errors

were normal, except now taking η as the largest d eigenvectors of

A =
1

σ2
z

n∑
i=1

m∑
j=1

wzij · (xi− zj)(xi− zj)
T +

1

σ2
x

m∑
j=1

n∑
i=1

wxij · (zj−xi)(zj−xi)
T ,

an analogue to the covariance matrices in the isotropic error case. If we were to use

one cluster our solution would be identical to this isotropic normal error case.

4.3.2 Incorporating Conditional Model

One issue with a number of dimension reduction approaches is that η has

no information about the source response in its construction. The incremental sub-

space method attempts to mitigate this problem by concatenating all intermediate

representations and performing PLS to “average out” the effects of the changes in

the conditional distributions that the application of this transformation has caused.

We approach this problem directly through maximum likelihood by using J(η) as a

regularization term so that we seek

arg min
(β,η)

EY,XL(Y,ηT X;β) + µ0 · J(η)

for ηT η = Id where L(·, ·;β) is an appropriate loss function with parameter β to
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be estimated and µ0 > 0 a chosen regularization parameter. This regularization is

similar in spirit to the elastic net [27] in its regularization of a convex combination

of objectives, though in this case the regularization seeks a useful transformation as

opposed to useful properties for the model parameter β.

For regression problems we assume

y = Xη β + ed, ed ∼ N(0, σ2
e In)

with the squared error loss, that is, for m(X;β) = β0 + XT β1 and

L(Y,X;β) =
1

2σ2
e

(Y − β0 −XT β1)2.

To simplify analysis, we assume both X and Z have zero mean so that β0 will not

need to be estimated. Our analogue to incremental subspace learning will require the

choice of tuning parameters µ0 and α, and then will estimate η by minimizing the

sample objective with respect to η while taking β to be the least squares solution

with Xη and Y. In this case, we note the gradient with respect to η becomes

Lη =
1

σ2
e

(
XT Xη β βT −XT yβT

)
+ µ0 · Jη (4.4)

where Jη is the gradient of J with respect to η and

β = (ηT XT Xη)−1(ηT XT y).

The estimator η̂ is obtained by setting (4.4) above to zero and solving for η. This
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method of incorporating information from the conditional model is similar to an

extension of the reduced rank regression problem described in [66]. The following

theorem pertains to the asymptotics of the estimator η̂.

Theorem. Under some modeling and regularity assumptions given in Section 4.8,

for µ0 = o(n), if η̂ is the solution to setting (4.4) equal to zero, then

√
n[vec(η̂T )− vec(ηT )]

D→ Npd(0,V[η])

where “vec” denotes vectorization and V(η) is a covariance matrix depending on

the unknown parameter η.

See Section 4.8 for details.

For classification problems, we can instead use the negative log-likelihood as

our loss function so that, for example in a C-class classification problem (i.e., Y ∈

{1, . . . , C}), we minimize over (β,η) the function L(β,η) where

L(β,η) = −

(∑
y

yT
y Xη βy

)
+

(∑
i

log[1 +
∑
y

exp{xT
i η βy}]

)
+ µ0 · J(η)

with element i of yy as 1{yi = y}. The gradient of L with respect to η becomes

Lη = −

(∑
y

XT yy β
T
y

)
+

(∑
i

∑
y

exp{xT
i η βy}

1 +
∑

y exp{xT
i η βy}

· xi β
T
y

)
+ µ0 · Jη.
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which can similarly be solved through alternating minimization.

Unfortunately this technique is computationally expensive for high-dimen-

sional problems. We instead apply the techniques for regression to a least squares

classification model. In other words, for a C-class problem, we fit C linear models

to the response Yk = 1{Y = k} for Y ∈ {1, . . . , C} and k = 1, . . . , C. Refer to

Table 4.3 in Section 4.5 for justification.

4.4 Prior Structure

In the case of predictors with prior structure our normal error model no longer

holds on the data as given. We will now propose two approaches, similar to those

outlined, but for structured data.

Our structure will come from observations X ∈ G(r, s) identified with points

in Rr×s satisfying XT X = Is. For the first method, we use a directional model,

assuming data coming from a matrix Langevin distribution [2]

f(X;µ, kx) = a(kx) · etr{kx · µxT X}

where kx is a fixed parameter, etr{·} denotes exp[tr{·}], and the location parameter

µx ∈ Rr×s is a basis for a point in G(r, s).

In this case we take η ∈ Rr×d with ηT η = Id. In other words, we are interested

in predictors still spanning s-dimensional subspaces, but this time subspaces of Rd

as opposed to Rr. The parameter µx can be estimated for large n and r >> s as

r · x̄. We now see that J in this case becomes

80



J(η) ≈ −
[
tr(kz µ

zT η ηT x̄) + tr(kxµ
xT η ηT z̄)

]
,

but unfortunately we no longer have the guarantee that xi
T η ηT xi = Is. That is,

our reduced predictors do not necessarily span Rs. We add a constraint for each

observation so that this will hold. In this case, the optimal solution for η becomes

the eigenvectors corresponding to the largest d eigenvalues of

A =
(
kzx̄µzT +kxz̄µ

xT
)
− λ

(
n∑
i=1

xi x
T
i +

m∑
j=1

zj z
T
j

)

where λ > 0 is a regularization parameter. We will fix kx = kz = 1.

We also consider the case in which data is modeled with an appropriate kernel.

The density estimate for X will be

f̃n(x0) =
1

n

n∑
i=1

K̃H x(ηT xi,η
T x0)

where

K̃H x(u,v) = ω(Hx) · exp{−tr[H-1
x (Is−gP (u,v))]}

with Hx an s× s bandwidth matrix and ω(Hx) a normalizing factor [2]. We let

gP (u,v) =
1

2
(uT v vT u + vT u uT v)

as in Chapter 3 because it yields a symmetric kernel. In this case we have
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J(η) =
n∑
i=1

log
m∑
j=1

exp{− 1

σz
tr[Is−g(ηT xi,η

T zj)]}

+
m∑
j=1

log
n∑
i=1

exp{− 1

σx
tr[Is−g(ηT zj,η

T xi)]}

Using a similar simplification as in the case of the nonparametric model for

the normal random errors, we estimate the solution for η as the eigenvectors corre-

sponding to the largest d eigenvalues of the matrix

A =
1

σz

n∑
i=1

m∑
j=1

wxij(xi x
T
i η ηT zj z

T
j + zj z

T
j η ηT xi x

T
i )

+
1

σx

m∑
j=1

n∑
i=1

wzij(zj z
T
j η ηT xi x

T
i + xi x

T
i η ηT zj z

T
j ).

To estimate σx we recall from Chapter 3 that the bias and the variance satisfy

b[f̃n(x0)] = O[tr(Hx)], var[f̃n(x0)] = O([n|Hx |(r−s)/2]−1).

We again seek a diagonal bandwidth matrix H
(n)
x = σx Is that achieves a trade-

off in bias and variance that will yield a minimum mean square error for f̃n(x0),

yielding σ̂x = (s2n)−2/(4+s(r−s)). Most examples considered will have s = 2, meaning

σ̂x = (4n)−1/r. This is similar to the rule of thumb for typical density estimation

considering the dimension of G(r, s) is s(r − s).
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4.5 Simulation Studies

4.5.1 Alternative Methods

We compare various alternative methods to those proposed. A näıve approach

is used by simply taking the estimate for η to be the d-column principal component

estimate from X and Z. This baseline method (based on principal components re-

gression) will be labeled PCR. A similarly näıve covariate shift model (denoted CS)

is considered using the same kernel and bandwidth estimator as is used for our non-

parametric error model. Kernel mean matching (KMM) as described in Chapter 2

is also used with ε = 1− n−1/2 and W = 1000 as in [50], but with σ = 10−4.

As mentioned in Section 4.3.2, in [52] the incorporation of knowledge about the

distribution of Y |X is done through obtaining a number of intermediate transforma-

tions ηk and concatenating the representations for Xηk into a “full” representation.

This full representation is used as input into a PLS with response y and a subspace

of this full representation is estimated. In our implementation, we take the dimen-

sion of this PLS subspace to be the same as our estimate for d, and denote this

method as IS for incremental subspaces.

We have four proposed approaches for combined direction estimation: normal

isotropic error without and with the conditional model (CDE1 and CDE2) and

nonparametric extensions of this (CDE3 and CDE4). We use the prior structure

models in problems that call for it, and denote these methods as CDEP1 through

CDEP4.

For all problems involving classification, either PLS or ridge regression are
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used in a one-vs-all classifier [56]. For problems involving predictors lying on G(r, s),

we use the method described in Section 4.4. Regression in this case was regularized

using a ridge penalty, as it has been shown that this yields similar results to more

theoretically-driven penalties [67].

Finally, to give an idea of the relative gains in predictive power each model

has, we report results using a null model: mean(y) for regression and mode(y) for

classification, denoted as “NULL”. The means and standard errors of either the

mean absolute errors (for regression) or the recognition rates (for classification) are

reported.

4.5.2 Implementation

We conduct a simulation similar to those studies used in [68]. We generate X

and Z the same as in Chapter 2 with p = q, but take

η1 = 1/
√
p, η2 = (−1)j/

√
p, j = 1, . . . , p

where 1 is the vector with all components equal to one and the exponent in η2 is

taken elementwise. To incorporate a simulation study with prior structure, we also

perform a similar simulation to those above for 20-dimensional variates, reshaping

and orthogonalizing them so that they lie in G(10, 2). For these studies with prior

structure, we take

Y = 1T ηT
1 X−1T ηT

2 X +ε,
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Table 4.1: Regression simulation. The averages and standard errors of mean absolute
errors (MAE) are calculated after 100 replications, with minima given in bold.

Method
Unstructured Data Structured Data

Source Target Source Target
MAE (SE) MAE (SE) MAE (SE) MAE (SE)

NULL 2.928 (0.016) 6.122 (0.007) 1.741 (0.009) 8.451 (0.054)
PCR 1.211 (0.008) 1.559 (0.007) 0.914 (0.005) 1.504 (0.011)
CS 1.214 (0.008) 1.572 (0.007) 0.918 (0.005) 1.512 (0.011)
KMM 1.211 (0.008) 1.559 (0.007) 0.921 (0.005) 1.551 (0.014)
IS 1.265 (0.010) 1.641 (0.012) 1.327 (0.016) 4.380 (0.099)
CDE1 1.251 (0.010) 1.563 (0.008) 0.915 (0.005) 1.505 (0.011)
CDE2 1.043 (0.009) 1.339 (0.008) 0.818 (0.007) 1.406 (0.013)
CDE3 1.280 (0.018) 1.586 (0.014) 0.917 (0.005) 1.478 (0.013)
CDE4 1.205 (0.012) 1.525 (0.013) 0.872 (0.005) 1.428 (0.011)
CDEP1 — — 1.125 (0.014) 2.746 (0.083)
CDEP2 — — 0.814 (0.007) 1.356 (0.018)
CDEP3 — — 0.962 (0.008) 1.623 (0.021)
CDEP4 — — 0.807 (0.007) 1.423 (0.022)

with similarly defined η1 and η2 for X ∈ R10×2. These are used in both regression

and classification settings, where for classification we discretize Y at its one-third

and two-thirds quantiles.

For each study, we generate n = 200 observations for X and m = 300 ob-

servations for Z and replicate this 100 times. We train the model on half of the X

and Z data and test on the remaining half. The results from each study are given

in Tables 4.1 and 4.2. Looking at the results on the target data, in the case of re-

gression, CDE2 and CDEP2 perform best given unstructured and structured data,

respectively. In the case of classification, CDE2 and CDE4 seem to perform best

on the target data, indicating that perhaps incorporating prior structure into the

model may not have much benefit.

Multinomial logistic models in the case of classification are especially com-
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Table 4.2: Classification simulation. The averages and standard errors of the mis-
classification rates (MR) in percentage points are calculated after 100 replications,
with minima given in bold.

Method
Unstructured Data Structured Data
Source Target Source Target

MR (SE) MR (SE) MR (SE) MR (SE)
NULL 69.98 (0.17) 63.08 (1.37) 70.26 (0.19) 67.51 (1.77)
PCR 31.72 (0.34) 12.03 (0.10) 39.58 (0.40) 17.85 (0.26)
CS 31.74 (0.36) 12.17 (0.09) 39.87 (0.36) 18.55 (0.28)
KMM 31.71 (0.34) 12.03 (0.10) 43.23 (0.46) 18.48 (0.33)
IS 32.27 (0.50) 11.68 (0.10) 39.23 (0.41) 19.26 (0.27)
CDE1 32.19 (0.34) 11.96 (0.10) 39.25 (0.40) 17.83 (0.26)
CDE2 30.14 (0.36) 11.17 (0.10) 36.81 (0.50) 17.07 (0.27)
CDE3 32.61 (0.37) 11.61 (0.10) 39.41 (0.44) 18.03 (0.27)
CDE4 30.14 (0.36) 11.17 (0.10) 36.71 (0.50) 17.11 (0.27)
CDEP1 — — 58.30 (0.55) 40.25 (1.50)
CDEP2 — — 40.25 (0.45) 22.82 (0.99)
CDEP3 — — 44.14 (0.49) 20.21 (0.51)
CDEP4 — — 38.70 (0.43) 17.73 (0.40)

Table 4.3: Means of recognition rates and computation times from multinomial logit
and least squares classifier models.

Logit Least Squares
Rec. Runtime Rec. Runtime
Rate (seconds) Rate (seconds)

d = 3 85.57 12.13 78.40 0.05
d = 6 73.18 22.29 65.52 0.11
d = 9 62.87 32.66 59.28 0.16
d = 12 53.39 41.91 53.99 0.23
d = 15 47.20 51.15 52.19 0.29
d = 18 41.81 60.28 50.05 0.35
d = 21 37.25 72.66 48.66 0.42
d = 24 35.99 82.32 48.61 0.50
d = 27 34.14 94.60 48.18 0.59

putationally intensive; see Table 4.3. The above simulation study for predictors

without structure was run for various values of the ambient dimension, with the

average of the recognition rates and computation times reported. As seen in the

table, while multinomial logit models perform well for lower-dimensional predictors,
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in most cases the computational complexity outweighs the added benefit of better

predictions, with least squares performing better for higher dimensions regardless.

This will be used as justification for the least squares classifier in Section 4.6.

4.6 Case Studies

In addition to the previous simulation studies, we consider various case studies.

The alternative methods used will be the same as those from the simulation studies.

In all tests, we perform ten replications in which half of the observations from the

source (as well as target) are chosen randomly without replacement as training data

and test on the remaining data.

4.6.1 Diabetes Data

We consider the diabetes dataset from [69]. The data consists of 442 records

of six serum measurements along with the attributes of age, sex, blood pressure,

and BMI, with interest being in predicting the response, a quantitative measure of

an individual’s disease progression one year after baseline. Dealing with such data,

interest often lies in finding a useful explanatory model given a large number of

features to consider. We expand the set of predictors by considering all second-order

terms of the continuous predictors (i.e., we remove sex from consideration in all

models).

It may be the case that we only have access to data from a certain demographic

on which to train a model. We consider two examples of source data: individuals less
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Table 4.4: Means and standard errors of mean absolute errors on the diabetes data.
The estimated dimension was taken to be 5. Minimum mean absolute errors are in
bold.

Method
Source: Age Less Than 50 Source: Males

Source Target Source Target
MAE (SE) MAE (SE) MAE (SE) MAE (SE)

NULL 135.04 (0.97) 167.96 (0.78) 138.31 (1.63) 166.82 (0.60)
PCR 63.28 (5.76) 72.31 (7.74) 62.12 (5.03) 70.46 (6.50)
CS 58.26 (2.46) 64.24 (3.76) 59.45 (3.39) 67.06 (4.83)
KMM 65.26 (5.70) 72.71 (7.73) 62.44 (4.96) 72.65 (6.47)
IS 60.62 (5.82) 69.50 (8.01) 69.53 (8.22) 79.35 (9.32)
CDE1 65.70 (6.45) 76.41 (7.88) 74.25 (6.59) 87.36 (9.22)
CDE2 53.26 (1.54) 61.57 (2.48) 52.33 (2.34) 59.91 (2.38)
CDE3 71.47 (5.77) 85.80 (8.47) 71.21 (7.95) 84.02 (10.55)
CDE4 69.23 (6.51) 82.32 (9.39) 79.55 (9.12) 91.88 (12.15)

than 50 years of age; and individuals who are male. In the first case, we note that

the source data of individuals under the age of 50 has 227 observations, while the

source data in the second case has 235 observations. In the second case, we include

age as a predictor, resulting in 54 variables (as opposed to 44 for the first case).

As it may be beneficial for interpretation to have a lower-dimensional explanatory

model, we fix the estimated data dimension at 5. For both tests we randomly split

the data in half and run the analysis ten times.

Results are given in Table 4.4. We see that the CS and CDE2 methods perform

best when the source data is individuals less than 50 years of age, while CDE2 per-

forms best when the source data is males. IS performs competitively in the first case,

but with high variability, which may be undesirable. Often, however, practitioners

will be interested in variable selection. In this case, it may be possible for the CDE

method to be extended to yield sparse estimates. See Section 4.7 for details.
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Table 4.5: Means and standard errors for recognition rates in object recognition.
The estimated dimension was taken to be 30. Maximum recognition rates are given
in bold. Source data for all experiments is taken to be webcam data.

Method
Target: Amazon Target: DSLR Target: Webcam

Source Target Source Target Source Target
NULL 4.30 (0.22) 3.29 (0.30) 4.40 (0.24) 3.35 (0.06) 4.20 (0.28) 5.13 (0.29)
PCR 34.10 (0.46) 27.63 (0.72) 33.44 (0.56) 12.71 (0.18) 33.07 (0.94) 38.77 (0.76)
CS 19.47 (0.56) 15.50 (0.86) 20.25 (1.09) 7.18 (0.26) 31.51 (0.94) 31.96 (0.67)
KMM 30.65 (0.78) 26.47 (0.70) 27.46 (1.05) 12.00 (0.31) 33.49 (0.95) 37.04 (0.73)
IS 32.69 (0.19) 26.43 (0.50) 33.74 (0.97) 12.28 (0.18) 32.81 (0.92) 40.43 (0.83)
CDE1 33.89 (0.50) 27.87 (0.82) 32.91 (0.65) 12.59 (0.26) 33.07 (0.96) 38.62 (0.76)
CDE2 39.92 (0.59) 33.57 (1.03) 42.36 (0.66) 13.47 (0.23) 39.42 (0.90) 51.53 (0.79)
CDE3 33.32 (0.63) 26.75 (0.70) 33.17 (0.54) 12.77 (0.19) 32.79 (0.99) 38.79 (0.70)
CDE4 39.70 (0.63) 33.57 (0.95) 42.14 (0.64) 13.43 (0.26) 39.45 (0.91) 51.76 (0.83)

4.6.2 Object Recognition

A typical example of a domain shift in a computer vision problem can be found

in data from [4]. This dataset contains 4110 observations, with each observation

an image of one of 31 different objects. Each image was taken either from the

website amazon.com, taken with a higher-quality DSLR camera, or taken with a

lower-quality webcam. We used the HOG feature extraction method described in

Chapter 3 with 8 bins on 8 × 8 patches to extract feature vectors of length 512.

We standardize the predictors so that each column has zero mean and standard

deviation one.

Experiments were done by taking the webcam data as source and all remaining

domains as target data. We provide the recognition rates on both source and target

data in Table 4.5. We see both CDE2 and CDE4 performing best out of all methods,

with CDE4 doing well when there is no difference between the distributions of

the source and target data. In all cases these two methods perform much better

than the alternatives, indicating that incorporating information from the conditional

distribution in all stages of dimension reduction is beneficial to prediction.
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Table 4.6: Means and standard errors for recognition rates on face recognition across
aging with landmark points as features. The value of d was taken to be 10. Maximum
recognition rates are in bold.

Method
Source Target

Rec. Rate (SE) Rec. Rate (SE)
NULL 1.39 (0.17) 0.52 (0.11)
PCR 5.79 (0.88) 3.85 (0.65)
CS 3.52 (0.32) 3.56 (0.53)
KMM 5.79 (0.88) 3.85 (0.65)
IS 8.75 (0.45) 5.41 (0.51)
CDEP1 4.44 (0.41) 3.41 (0.40)
CDEP2 12.55 (1.79) 9.11 (1.44)
CDEP3 3.98 (0.27) 3.26 (0.48)
CDEP4 12.73 (1.82) 9.11 (1.39)

4.6.3 Face Recognition Across Aging

Face recognition across aging is an example of a problem that requires adap-

tation to a continuous domain shift. We pose the problem on the FG-NET database

described in Chapter 1. Each observation was taken to be the normalized landmark

points, meaning predictors came from the Grassmannian G(68, 2). The source do-

main was taken to be those individuals who were 18 years of age and under, and

the target as those individuals who were greater than 18 years of age. We report the

recognition rates from replicating the studies 10 times.

We see in Table 4.6 that CDEP4 performs best while CDEP2 performs com-

petitively. Though no method performs well on either source or target data due to

the limited information given from landmark points, all alternative methods per-

form significantly worse than the proposed. Improvements can possibly be made by

expanding the predictor vector to include more refined face information.
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Table 4.7: Means and standard errors of mean absolute errors on age estimation
with a geometric domain shift. The value for d was taken to be 30. Minimum mean
absolute errors are in bold.

Method
Source: Centered Source: Rotated

Source Target Source Target
MAE (SE) MAE (SE) MAE (SE) MAE (SE)

NULL 9.72 (0.09) 9.61 (0.08) 9.70 (0.06) 9.92 (0.09)
PCR 6.33 (0.09) 61.14 (3.12) 6.41 (0.05) 6.49 (0.06)
CS 6.82 (0.11) 27.53 (2.82) 7.62 (3.89) 8.71 (0.20)
KMM 6.40 (0.09) 58.47 (3.70) 6.82 (0.08) 6.71 (0.07)
IS 6.31 (0.09) 60.57 (3.83) 6.42 (0.05) 6.47 (0.06)
CDEP1 8.76 (0.11) 8.43 (0.09) 8.64 (0.09) 8.67 (0.09)
CDEP2 8.41 (0.14) 8.39 (0.13) 8.48 (0.12) 8.57 (0.09)
CDEP3 8.76 (0.11) 8.43 (0.09) 8.64 (0.09) 8.67 (0.09)
CDEP4 8.44 (0.17) 8.48 (0.14) 8.46 (0.14) 8.59 (0.15)

4.6.4 Age Estimation

Finally, to illustrate the effect a geometric change will have on each of the

methods, we turn again to age estimation on the FG-NET dataset. Regression is

performed on
√
y where y is the individual’s age as in Chapter 3 and [67]. We use

the mean absolute error (MAE) for the predicted ages to measure the performance

of each method.

In the tests, we randomly split the data in two, and for half of the data, for

each point we rotate the landmarks by a random angle sampled uniformly between

0 and π/16 radians. Table 4.7 shows results for both using centered predictors as

source data and using rotated predictors as source data. In the case in which cen-

tered predictors are used as source, most methods fail spectacularly, with the only

reasonable estimates being those from the null model and the proposed methods.

This illustrates an issue with many of the existing domain adaptation approaches:

the methods perform quite poorly when the support of the source data does not
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contain that of the target data. Here CDEP1 through CDEP4 all perform similarly,

though much better than the alternatives.

When we reverse the scenario we see much better performance in the alter-

native methods, with the IS method performing very well on the target data. For

this example, the proposed methods see similar performances in both cases, and are

thus more stable with respect to the distribution of the target data points.

4.7 Extension: Sparse Estimates

A benefit to formulating our dimension reduction in terms of an objective

function to be minimized is that sparsity penalties can be incorporated. For example,

in cases such as the diabetes data, practitioners are often interested in both variable

selection as well as dimension reduction. The current CDE method does not work

well for variable selection as its output takes linear combinations of every variable

under consideration. However, we can simply add an `1 penalty to the parameters

to encourage many of the coefficients to be zero.

As in sparse principal component analysis [70], we note that the jth principal

component of the data X can be obtained by solving

arg min
ηj

||X−Xηj η
T
j ||2 + λ||ηj ||2

where the last term corresponds to the constraint ηT η = Id. We can reformulate

this as a LASSO-type problem by noting that, if η0
j is some initial estimate for ηj,

then ηT
j η0

j ≈ 1. In this case we can write the optimization as
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Table 4.8: Elements of η greater than .01 in absolute value after sparse CDE.

• First Direction: η3,η25

• Second Direction: η2,η3,η5,η23,η32,η42

• Third Direction: η20,η22

• Fourth Direction: η2,η8

• Fifth Direction: η7,η42

arg min
ηj

||Xη0
j −Xηj ||2 + λ||ηj ||2 (4.5)

which can easily have an `1 penalty incorporated directly via an elastic net [27]. The

optimization in (4.5) can be solved through an iterative procedure. As a example

fit, we consider the diabetes example with source data as individuals younger than

50 years of age and take d = 5. We set η0 as the top d eigenvectors of (4.2) and take

a first approximation by running the elastic net above for one iteration. Table 4.8

shows the elements obtained from this approximation that are greater than .01 in

absolute value. The target MAE for this sparse estimate was 50.7741 compared with

51.4834 for PCR and 51.4782 for CDE.

4.8 Choice of Regularization Parameter Rates

We assume the data (y,X) ∈ Rn × Rn×p satisfy

y = Xβ0 + ep, y = Xη β + ed (4.6)
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where ep, ed are vectors of random errors with E(ep) = 0 and var(ep) = σ2
p In with

σ2
p <∞ (similar for ed with σ2

d) and cov(ep, ed) = 0. The assumption of uncorrelated

errors is made to simplify analysis and will not necessarily be true in practice. By

rearranging the above two equations, we see that

Nβ−Xβ0 = epd

where N is the matrix of coefficients ν from the error model (4.1), E(epd) = 0 and

var(epd) = (σ2
p + σ2

d) In. The estimate for ηT that minimizes the sum of squared

errors in this case for a fixed β and β0 is given by

ηT = (β βT )−1 β βT
0 .

Unfortunately, this solution assumes both XT X and β βT are nonsingular. This

second assumption is invalid for d > 1 since β βT will only have rank one. Typically,

due to collinearities in the high-dimensional X, the first assumption will also not be

valid as XT X will not be full rank. To overcome these issues, in estimating ηT we

consider minimizing

η̂T = arg min
ηT

||y−Xη β ||2 + µ1 · ||Xη ||2 + µ2 · ||η β ||2 + µ1µ2 · ||η ||2 (4.7)

with µ1, µ2 > 0 to obtain the “least squares solution.” Proceeding with straightfor-

ward calculus yields
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η̂T = (β βT +µ1 Id)−1 β β̂0

T

given β where

β̂0 = (XT X+µ2 Ip)−1XT y .

Solving (4.7) for β gives the estimate

β̂ = (ηT XT Xη +µ2 Id)−1 ηT XT y

which we will use as a plug-in estimate for β to estimate η̂T . If we let µ1 = o(1) and

fix µ2 > 0, then η̂T → (β βT +µ2 Id)−1 β βT
0 as n→∞.

We now wish to optimize over the objective function in (4.7) while incorporat-

ing the penalty µ0·J(η) as in (4.4). Setting the gradient equal to zero and simplifying

gives

η̂T∗ + µ0 · (β̂β̂
T

+ µ1 Id)−1J̇T (η*)(XT X+µ2 Ip)−1 = η̂T

where we seek the solution η̂T∗ . If X and Z have finite second moments, J̇ will

converge to a constant as n,m→∞. Thus, letting µ0 = o(n) will ensure the second

term goes to zero as n→∞. The following theorem holds.

Theorem. Under the model (4.6) and assuming µ0, µ2 = o(n), µ1 = o(1), and X,Z

have finite second moments, the solution
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η̂T = arg min
ηT

||y−Xη β ||2 + µ0 · J(η)

+ µ1 · ||Xη ||2 + µ2 · ||η β ||2 + µ1µ2 · ||η ||2 (4.8)

is consistent and

√
n[vec(η̂)− vec(η)]

D→ Npd(0,V[η])

as n→∞.

Proof. For µ0 = o(n), as n→∞ we have

η̂T = (β̂β̂
T

+ µ1 Id)−1β̂β̂0

T
,

which, if we let µ1 = o(1) and µ2 = o(n), converges in probability to ηT =

(β βT )−1 β βT
0 . Let β̂ = (β̂

T
, β̂0

T
)T and β = (βT ,βT

0 )T be vectors in Rd+p. Then

√
n(β̂ − β)

D→ N(0,B)

where

B =

 B11 B12

B21 B22

 ,
B11 = σ2

d(η
T XT Xη +µ2 Id)−1 ηT XT Xη(ηT XT Xη +µ2 Id)−1,
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B22 = σ2
p(XT X+µ2 Ip)−1XT X(XT X+µ2 Ip)−1, B12 = BT

21 = 0d×p.

If we let Gη(β) ∈ Rpd×(d+p) be the gradient of the mapping

ηT (β) = (β βT +µ1 Id)−1 β βT
0

with respect to β, then applying the delta method to vec[ηT (β̂)] about β yields

√
n[vec(η̂T )− vec(ηT )]

D→ N(0,V(η))

where V(η) = Gη ·B ·GT
η .

4.9 Discussion

We have shown the benefits of posing the intermediate subspace approach

to domain adaptation as an optimization problem. Our approach admits a general

objective function to be used, and has the ability to give a more intuitive idea of

what the intermediate spaces mean in terms of the data. Obtaining an intermediate

space in this fashion results in improvements in both classification and regression.

Furthermore, this approach is superior to alternative approaches when faced with

a regression problem in which the source and target may differ by some geometric

transformation. This method can be easily extended to semisupervised problems,

and though it was not considered, it can handle p� n problems as well.

We have also shown that solving a regularized optimization can yield parame-

ter estimates with attractive statistical properties. Incremental learning to account
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for shifts in domain is a useful, easily extensible practice, and attempting to solve

the problem via regularization results in many improvements.
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5

Regularized Likelihood Directions

5.1 Introduction

The dimension reduction methods discussed so far have suffered from a few

drawbacks, chief among them the fact that they cannot naturally handle cases in

which predictors arise from spaces of differing dimension, nor do they easily incor-

porate information pertaining to the response variable into the dimension reduction

transformation. CDE attempts to overcome this second drawback by penalizing the

likelihood function with a term involving a dimension reduction parameter, though

this technique still essentially operates only on the conditional model Y |X. In the

following chapter we seek a method to regularize a likelihood function of the joint

distribution (Y,X) that will also be able to handle cases in which predictors differ

in dimension from training to testing.

5.2 Background

5.2.1 Problem Setup

As in Chapters 2 and 4, we assume access to independent predictors x1, . . . ,xn

where each xi ∈ X ⊂ Rp is distributed as the random variable X and has a cor-

responding label from Y which is either continuous (yi ∈ R) or discrete (yi ∈
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{1, . . . , C}). The method will be described for discrete yi but can be extended to

continuous yi via thresholding. Additionally, we have a small amount of independent

predictors z1, . . . , zm with zj ∈ Z ⊂ Rq distributed as Z with corresponding labels

from Ξ.

We make a distributional assumption [64] on the conditional distributions

[X |Y = y] and [Z |Ξ = y] in the form of

[X |Y = y] ∼ N(µx
y,Σ

x
y),

[Z |Ξ = y] ∼ N(µz
y,Σ

z
y)

for y = 1, . . . , C. In other words, we assume that within-class the features are

distributed normally with differing means and covariances.1

Previously, as well as in typical domain adaptation literature, data from [X]

was called “source” or “training” data, while data from [Z] was called “target”

or “testing” data. As we assume knowledge of some data from [Z] at the training

phase of our procedure, we use the former terminology. Our goal is again to estimate

a model optimal under [Ξ,Z] while only knowing a small number of observations

from this distribution, in this case by estimating a dimension reduction subspace

by investigating the behavior of [X |Y ] defined above. Specifically, we will estimate

parameters η ∈ Rp×d and γ ∈ Rq×d where we assume d is fixed in advance and

that p 6= q in general. Typically we assume p � n; even for p < n, data are often

assumed to be manifold-valued, so it is usually the case that cov(X) (here called

1N.B. [X |Y ] and [Z |Ξ] will not be similarly distributed under the covariate shift assumptions.
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Original images Reduced images

Fig. 5.1: Sample images from amazon.com (top), webcam (middle), and a DSLR
camera (bottom). Reduced images are scaled to 100× 100 from 10× 10 for visual-
ization. Images taken from [4].

Σx) is singular.

5.2.2 Sufficient Dimension Reduction

A number of domain adaptation methods seek optimal linear transformations

to reduce the dimension of the data, though “optimality” is often largely problem-

dependent. Methods minimizing reconstruction error objectives [e.g., principal com-

ponent analysis (PCA)] are popular, though often we desire a transformation that

takes into account additional information, such as labels of the response in a clas-

sification problem. In the statistics literature, sliced inverse regression (SIR) [71]

attempts to incorporate this information through the within-class first moments.

Estimates for η are obtained as the top d eigenvectors of (Σx)−1 M MT where M is

the Rp×C matrix of within-class means.

Sufficient dimension reduction [12] – in which a transformation η is esti-
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mated so that [Y |ηT X] ∼ [Y |X] – is closely related to the method of SIR above.

Likelihood-acquired directions (LAD, [64]), a type of sufficient dimension reduction

method, are estimated by maximizing

L(η;X,y) =
1

2
log |ηT Σx η | − 1

2

C∑
y=1

ny
n

log |ηT Σx
y η | (5.1)

over all η such that ηT η = Id, where L(η) is proportional to a likelihood function,

ny is the number of observations in X with label y, and | · | denotes the determinant.

This optimization is done through conjugate gradient descent on G(p, d). Details

are given in [57]. In all experiments we use the sgmin implementation provided by

Lippert and Edelman [72], which requires a closed-form first derivative and numerical

second derivative.

5.3 Methodology

5.3.1 Regularized LAD

We propose a modified approach to LAD [73]. In order to obtain a useful

model, we seek η and γ such that [Y,ηT X] ∼ [Ξ,γT Z]. The objective function in

(5.1) corresponds to the joint distribution for the reduced data from the source (i.e.,

[ηT X]). Moreover, noting that [Y |ηT X] ∼ [Y |X] due to the sufficient dimension

reduction approach, we see

[Y,ηT X] ∼ [Y |ηT X][ηT X] ∼ [Y |X][ηT X]
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and

[Ξ,γT Z] ∼ [Ξ|γT Z][γT Z] ∼ [Ξ|Z][γT Z].

Recalling our assumption that [Y |X] ∼ [Ξ|Z], our goal now simply becomes to

enforce [ηT X] ∼ [γT Z]. Applying our assumption of within-class normality, this

means we require

ηT µx
y = γT µz

y, η
T Σx

y η = γT Σz
y γ

for y = 1, . . . , C. Since we will often not have adequate data from Z, we forgo

constraining the second moments. In cases where a large amount of target data is

available a second constraint might be useful, though in practice we have found it re-

sults in poor performance. To constrain the first moments, we define a regularization

term as

Γλ(η,γ) =
λ

2

C∑
y=1

[
1{my ≥ 1}||ηT µx

y−γT µz
y ||2
]

for a fixed λ > 0. Here my is the number of observations from Z with response

variable equal to y. We incorporate this regularization into the penalized likelihood

L∗(η,γ;λ) = L(η;X,y) + L(γ;Z, ξ) + Γλ(η,γ)

and note that the gradient of the above likelihood with respect to η is proportional

to
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L∗η(η,γ;λ) = Σx η(ηT Σx η)−1 −
C∑
y=1

ny
n

Σx
y η(ηT Σx

y η)−1

+λ
C∑
y=1

[
1{my ≥ 1}(µx

y µ
xT
y η−µx

y µ
zT
y γ)

]

and with respect to γ is

L∗γ(η,γ;λ) = Σz γ(γT Σz γ)−1 −
C∑
y=1

my

m
Σz

y γ(γT Σz
y γ)−1

+λ
C∑
y=1

[
1{my ≥ 1}(µz

y µ
zT
y γ−µz

y µ
xT
y η)

]
.

The benefit to this approach is that most computation will come from inverting the

matrices ηT Σx
y η and γT Σz

y γ. This means that, given adequate labeled data, we

mitigate singularity issues when inverting this d×d matrix as opposed to, e.g., SIR,

which requires an inverse of a p × p matrix. If d is relatively small and we have

labeled data from the target space, we can estimate inverses in the above approach

with minimal regularization of these matrices.

A potential drawback to the proposed approach is the estimation of two pa-

rameters (η and γ) as opposed to simply estimating one paramter η seen in many

other approaches (cf. [65] for the p = q case), though formulating the problem in this

fashion will allow us to naturally handle cases in which p 6= q. For the case in which

p = q, the same η is used for both training and testing data. We also seek param-
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eters η and γ so that [ηT X] ∼ [γT Z], [Y |ηT X] ∼ [Y |X], and [Ξ|γT Z] ∼ [Ξ|Z].

It is not explored in this chapter, but incorporating the conditional models directly

into the objective could improve results.

For cases with nonlinearity, we localize the above method for a given obser-

vation z0 and bandwidth h by replacing µx and Σx with the weighted mean and

covariance matrix µx,h and Σx,h where each observation is weighted by a kernel

K(ηT xi,γ
T z0) for i = 1, . . . , n. We use the initial estimates for η and γ to calcu-

late µx,h and Σx,h and perform a similar weighting in calculating the statistics from

[Ξ,Z].

5.3.2 Grassmannian Data

Often cases arise in which data have an assumed prior structure, such as lying

on the Grassmannian G(r, s), as has been seen in the previous chapters. An un-

fortunate consequence of this modification to the feature points is that the above

dimension reduction approaches are not immediately applicable. While the predic-

tors in this case can be concatenated into vectors and treated as Euclidean data, the

reduced data will no longer have any relationship with the original manifold G(r, 2).

Moreover, notions of the mean and the covariance of a set of points on a manifold

are not as straightforward as their Euclidean counterparts.

We solve this problem by applying the inverse exponential map as described

in Chapter 1, that is,
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exp−1(·;µ) : G(r, 2)→ R2(r−2)

defined on the Grassmannian that allows mapping between G(r, 2) at a specified

point µ ∈ G(r, 2) and the corresponding tangent space. Since the tangent space

about a given point on G(r, s) is simply Rs(r−s), we can now apply the above dimen-

sion reduction methods to the transformed data lying in this Euclidean space. In all

experiments, we compute these mappings using numerical methods given in [10].

We are now left with the choice of µ. Typically this parameter is chosen to

be an analogue to the mean of the given points, though since our observations

x1, . . . ,xn are no longer Euclidean straightforward addition does not apply. Instead,

as in Chapter 3 the “Fréchet mean” is defined as the point µ̂ that satisfies (provided

it exists)

µ̂ = arg min
µ

1

n

n∑
i=1

δ2(xi,µ)

where δ2 is a distance function defined on G(r, 2). Since in most examples considered

our data lie in a concentrated subset of the Grassmannian, we compute the sample

mean and perform orthogonalization (e.g., through using singular value decompo-

sition or the Gram-Schmidt procedure [67]) as it greatly reduced computation. See

Chapter 3 for more detailed results.
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Fig. 5.2: Simulation study results with SIR (dashed line), LAD (dotted line), IS
(dash-dot line), and RLD (solid line). Study j corresponds to α = 5/j2. For IS, 8
subspaces are used. For RLD, λ = 1 was used. For all methods, d = 2.

5.4 Simulation Studies

In all simulations, we test the proposed method (called RLD for “regularized

likelihood directions,” solid line) against various alternatives described above: SIR

(dashed line), LAD (dotted line), and IS (dash-dot line). The latter method is mod-

ified to handle cases in which the ambient dimensions of each domain differ; we use
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Fig. 5.3: Simulation study results with localization with SIR (dashed line), LAD
(dotted line), IS (dash-dot line), and RLD (solid line). Top plot varies h = 10(j−2)/2

for j = 1, . . . , 10, λ = 100, and α = 5. Middle plot varies λ = 10j−5 for j = 1, . . . , 10,
h = 10−.5, and α = 5. Bottom plot varies the studies for h = 1 and λ = 100. All
results are on unseen target data.

PCA to reduce the dimension of the higher-dimensional domain to be equal to that

of the lower-dimensional domain. We assume a small number of labeled instances

are in the target dataset, so we use the semisupervised extension of this method

described in [52]. In all experiments, we use 8 intermediate subspaces. Due to the
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singularity of Σx, we modify the SIR method to only take the top d eigenvectors of

the matrix M MT . In experiments, ignoring the inverse covariance matrix in SIR

yields better results than any attempts at regularization or pseudoinversion. For

LAD and RLD, the initial value for both η and γ is taken to be this SIR estimate.

For SIR, LAD, and RLD we use multinomial logistic regression to obtain class la-

bels for both the source and target domains. For IS, we use the PLS method with d

latent directions in a one-vs-all classifier as oultined in [52] to estimate class labels

in source and target.

For the simulation studies, we generate 200 observations in R6 for the source

data and 300 observations in R4 for the target data to be tested (called the “unseen

target data”) in three classes. For the target data to be used in estimating η and γ,

we generate three observations per class distributed the same as the unseen target

data, called the “seen target data.” We generate X and Z as in Chapter 2 and

generate both η and γ with random normal entries in R6×2 and R4×2, respectively,

and take their orthogonalizations. The labels are generated as

y = ηT x /α− α · (ηT x)2 + ε

where ε ∼ N(0, .52) and α is a chosen parameter that governs the weight placed on

the linear term in the model. The response values y are then discretized into three

categories by thresholding them at their one-third and two-thirds quantiles. Similar

labels are generated for the target data using γ.

Each study is run ten times, and the average misclassification rate is recorded
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for all methods under consideration. Results are given in Fig. 5.2. For study j, we

take α = 5/j2 so as the study number increases, less weight is given to the quadratic

term in the model. For the target data, the RLD method has clear advantages when

the underlying model generating the labels is linear, though it seems to lose some

of its predictive power for models that exhibit some nonlinearity. LAD and RLD

yielded similar results when applied to the source data.

In an attempt to improve performance for the models with higher weight on

the quadratic term, we perform localization using a radial Gaussian kernel with

bandwidth h = 1 for each method. Fig. 5.3 shows the results of the localized dimen-

sion reduction on just the unseen target data. The top plot shows that low values

for the bandwidth yield better results for RLD, while the competing methods do

not show any measured improvements as the bandwidth increases. As we vary λ in

the middle plot, we do not see much improvement in performance for RLD. Due to

this we do not vary λ much in the applications to real data. In the bottom plot, we

see that RLD outperforms the alternatives in every study, and for all methods we

see some improvement for the more quadratic models.

5.5 Case Studies

In addition to the methods used for comparison in the simulation studies,

we also compare with two alternative domain adaptation algorithms on real-world

data. We use metric learning (MLR, [4]) with one-nearest-neighbor classification and

γ = 100 as given in the sample code provided by the authors. In order to compare
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Table 5.1: Object recognition results, source: HOG features, target: HOG features
(top), raw image data (bottom). For RLD, λ = .2. For IS, we use 8 subspaces. For
MLR, γ = 100. For all methods, d = 10. All results are on unseen target data. Here
A:W denotes amazon.com source and webcam as target, A:D denotes amazon.com

source and DSLR target, etc.

Same Dimension
A:W A:D W:A W:D D:A D:W

SIR 10.22 (1.93) 13.23 (2.23) 8.99 (1.23) 12.65 (3.17) 8.04 (2.67) 12.83 (4.28)
LAD 11.80 (2.48) 11.06 (2.63) 8.24 (1.38) 14.10 (4.57) 6.87 (2.05) 13.12 (3.26)

IS 15.12 (1.52) 14.51 (2.16) 11.34 (0.97) 27.17 (1.38) 12.48 (0.60) 21.97 (1.81)
GFK 10.85 (1.14) 10.80 (1.52) 11.45 (0.45) 35.88 (1.80) 12.21 (1.14) 36.85 (2.06)
MLR 9.74 (2.38) 8.08 (1.78) 8.58 (0.99) 20.62 (3.14) 9.28 (1.90) 27.01 (3.04)
RLD 15.89 (2.19) 19.70 (2.41) 11.88 (1.64) 26.19 (2.54) 10.73 (1.36) 24.47 (2.77)

Different Dimension
SIR 4.54 (1.66) 4.00 (0.93) 3.89 (1.12) 3.23 (2.48) 3.87 (1.06) 3.31 (1.91)
LAD 3.79 (1.36) 3.87 (1.68) 3.72 (1.24) 3.94 (2.03) 4.46 (0.65) 4.19 (1.48)

IS 2.87 (1.32) 2.76 (1.53) 2.74 (0.83) 2.14 (1.07) 3.04 (0.64) 2.61 (1.61)
GFK 3.58 (1.35) 2.80 (0.97) 3.18 (1.06) 3.31 (1.14) 2.67 (0.84) 3.98 (1.17)
MLR 3.30 (1.19) 3.04 (1.08) 3.22 (1.19) 2.88 (1.37) 3.54 (0.76) 2.78 (1.67)
RLD 16.70 (1.78) 17.31 (4.12) 11.59 (2.65) 18.38 (2.04) 11.38 (2.32) 13.91 (1.50)

with the dimension reduction methods given, we use a rank-d approximation to the

kernel estimated by this method. We also use GFK with one-nearest-neighbor and

d dimensions as given in the sample code provided by the authors. For the case

in which the source and target domain have differing dimensions, we modify the

methods as we did for IS in the simulation studies.

5.5.1 Euclidean Data

We focus on the object recognition dataset from [4] and Chapter 4. In it, three

domains are given: data collected from amazon.com, data collected from a high-

resolution DSLR camera, and data collected from a low-resolution web-cam. Images

from [4] are also converted to grayscale and downsampled to 10 × 10 images. See

Fig. 5.1 for example images.
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5.5.1.1 Object Recognition

We conduct two different experiments, each consisting of six separate studies

corresponding to each combination of souce and target, e.g., the first study uses the

amazon.com data as source and the webcam data as target (A:W), the second study

uses the amazon.com data as source and the DSLR data as target (A:D), etc. In all

studies, we randomly sample 20 observations per class from the source data with

replacement and 3 observations per class from the target data with replacement,

using these observations for estimating η and γ (the “source” and “seen target”

data, respectively). We then test on the target data that was not used in estimating

these parameters. This is done ten times, and we record the average and standard

deviation of the classification rate.

In the first experiment, we use the HOG features of Chapter 4 for both the

source and target data (denoted “same dimension”). The results from this experi-

ment are given at the top of Table 5.1. We do not use localization, as the improve-

ments are only slight in the simulation studies with a large increase in computation.

When testing on the unseen target data, RLD outperforms the other methods in the

first three studies and is competitive for DSLR camera as source and amazon.com as

target. GFK performs much better than the alternatives when there is not a large

discrepancy between source and target (i.e., cases D:W and W:D).

In the second experiment, the HOG features from the first experiment are used

for the source data, whereas for the target data each image is read as grayscale values

between zero and one and resized to 10×10 pixels, then concatenated into a vector in
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R100 (denoted “different dimension”). Results are given at the bottom of Table 5.1.

For this experiment, on the unseen target data we see large drops in performance for

all methods except RLD, which drops only slightly and now outperforms all compet-

ing methods in all studies. For this experiment, the likelihood-acquired directions

(LAD) method seems to perform next best, though all alternative methods show

performances on par with random guessing.

5.5.2 Grassmannian Data

For data with a known structure, we focus on the landmark points given in

FG-NET.

5.5.2.1 Age Estimation

For age estimation, we generate three different target domains: the first rotates

each image by an angle sampled uniformly at random from zero to π/4; for the second

and third target datasets, we remove 17 and 34 landmark points at random from this

rotated dataset. The square-root of the age variable is used as a response variable as

it results in positive estimates for age and has been shown to work better in practice

[67]. The estimated dimension for study i is b(q/2− 2)/ic where q = 136, 102, 68

and i ranges from one to five.

The approach to estimating η and γ for RLD in the case of continuous response

is the same as for discrete response, but follows the binning method common in the

inverse regression literature [71]. For experiments, we categorize the continuous age
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Table 5.2: Age estimation results, source: full landmark points, target: full landmark
points (top), three-fourths landmark points (middle), one-half landmark points (bot-
tom). For RLD, λ = 4. For IS, we use 8 subspaces. For MLR, γ = 100. All results
are on unseen target data.

i = 1 i = 2 i = 3 i = 4 i = 5

r = 68

SIR 9.51 (2.00) 10.32 (2.27) 8.78 (1.91) 9.40 (2.66) 9.01 (2.28)
LAD 10.12 (1.86) 9.52 (1.63) 8.23 (1.25) 8.27 (1.05) 8.09 (1.03)

IS 6.94 (0.09) 6.76 (0.24) 6.31 (0.09) 6.30 (0.09) 6.60 (0.21)
GFK 7.09 (0.48) 6.60 (0.29) 6.41 (0.35) 6.28 (0.25) 6.24 (0.23)
MLR 19.41 (4.87) 19.37 (7.17) 21.62 (7.11) 16.76 (3.91) 19.19 (4.39)
RLD 7.85 (0.37) 7.72 (0.50) 7.61 (0.40) 7.46 (0.41) 7.83 (0.59)

r = 51

SIR 10.57 (1.70) 9.02 (2.05) 8.87 (1.51) 8.21 (0.59) 10.21 (3.07)
LAD 10.19 (1.45) 9.16 (2.00) 8.73 (1.04) 8.23 (0.48) 8.33 (1.33)

IS 9.91 (0.87) 9.49 (0.52) 9.66 (1.18) 8.74 (0.72) 9.15 (0.79)
GFK 12.38 (1.43) 14.00 (2.18) 13.85 (2.32) 13.77 (1.93) 12.34 (1.07)
MLR 14.37 (2.52) 15.91 (5.72) 15.40 (2.91) 16.12 (4.34) 15.84 (4.78)
RLD 8.30 (0.82) 7.59 (0.26) 7.84 (0.53) 7.62 (0.39) 7.66 (0.31)

r = 34

SIR 9.92 (1.32) 10.80 (1.67) 9.60 (1.79) 10.16 (2.10) 9.66 (2.49)
LAD 10.26 (1.32) 10.76 (1.59) 9.49 (1.61) 9.28 (1.86) 9.02 (1.98)

IS 10.16 (0.53) 9.85 (0.77) 9.51 (0.81) 9.74 (0.71) 10.06 (0.57)
GFK 13.04 (0.72) 13.30 (0.95) 12.66 (0.90) 12.62 (0.96) 12.24 (0.97)
MLR 16.10 (3.73) 15.90 (4.88) 14.68 (3.19) 17.13 (5.49) 15.70 (3.28)
RLD 10.66 (1.63) 9.32 (1.13) 8.71 (0.45) 8.12 (0.48) 8.10 (0.53)

variable into two categories. Increasing the number of categories does not seem

to make a large difference in prediction, though it does increase computation. For

source data, 250 observations are randomly sampled from each category, and for seen

target data 3 observations are sampled. Table 5.2 shows mean absolute errors for

each of the different target domains. Each study is run on various estimates for the

reduced dimension in the tangent space. As in the object recognition experiments,

each of these studies is run ten times and averaged, here reporting the average and

standard deviation of the mean absolute errors.

We see that both the IS and GFK method perform well in the case in which

the source and target domains are of the same dimension, though RLD is somewhat

competitive. When the dimension of the target domain differs from that of the

source, RLD outperforms all methods, with the exception of one case in which
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Table 5.3: Face recognition results, source: full landmark points, target: full land-
mark points (top), three-fourths landmark points (middle), one-half landmark points
(bottom). For RLD, λ = 4. For IS, we use 8 subspaces. For MLR, γ = 100. All results
are on unseen target data.

i = 1 i = 2 i = 3 i = 4 i = 5

r = 68

SIR 4.65 (1.20) 6.00 (1.30) 6.14 (2.04) 6.66 (1.63) 6.77 (1.54)
LAD 4.99 (1.01) 5.82 (1.87) 6.70 (1.70) 6.15 (2.46) 6.47 (1.37)

IS 14.35 (3.02) 23.54 (3.47) 28.11 (2.50) 29.06 (2.38) 29.93 (3.64)
GFK 4.30 (1.07) 4.04 (0.93) 4.96 (0.97) 4.05 (1.50) 5.50 (1.28)
MLR 5.42 (2.07) 9.36 (1.66) 12.12 (3.06) 13.34 (1.32) 15.38 (2.43)
RLD 9.51 (1.84) 12.43 (1.93) 13.01 (2.90) 13.36 (2.52) 14.06 (3.74)

r = 51

SIR 4.68 (0.69) 5.90 (1.04) 6.05 (1.29) 6.89 (1.54) 7.66 (1.25)
LAD 4.90 (1.53) 5.77 (1.25) 5.96 (1.33) 6.72 (1.02) 7.57 (1.64)

IS 3.22 (0.83) 3.01 (1.23) 3.90 (1.32) 7.10 (1.63) 7.52 (2.54)
GFK 1.85 (0.95) 1.55 (0.86) 1.50 (0.79) 1.25 (0.72) 1.24 (0.79)
MLR 1.55 (0.95) 2.58 (0.97) 4.89 (1.26) 6.05 (1.80) 8.42 (1.54)
RLD 8.93 (1.86) 11.58 (2.07) 11.29 (3.17) 12.14 (2.20) 13.50 (1.47)

r = 34

SIR 3.91 (1.11) 4.38 (1.19) 6.39 (1.35) 6.79 (1.19) 6.20 (1.63)
LAD 3.30 (0.95) 4.60 (0.99) 5.96 (1.23) 5.33 (1.19) 6.11 (1.21)

IS 2.31 (0.70) 2.58 (1.41) 3.86 (1.72) 4.38 (1.21) 4.86 (1.81)
GFK 1.55 (0.73) 1.16 (0.61) 1.46 (0.71) 1.76 (1.47) 1.29 (0.67)
MLR 1.59 (0.84) 1.98 (0.76) 3.86 (1.38) 3.60 (1.70) 5.53 (1.34)
RLD 5.71 (1.62) 8.38 (1.31) 12.14 (0.81) 12.20 (1.46) 12.74 (2.40)

the estimated dimension is small. Note that RLD seems to be fairly stable in its

predictive performance regardless of the dimensions involved, so that while a small

price is paid in the case of similar dimensions, improvements can be made when

there is less information in the target space.

5.5.2.2 Face Recognition Across Aging

For face recognition across aging, we split the observations into two domains:

individuals younger than 19 and individuals 19 and older. The goal is to perform

recognition on the individuals using under-19 data as source while testing on the

19-and-over data. We remove all individuals who do not have at least one observa-

tion from each of these domains, resulting in 724 total observations comprising 60

individuals to classify. We do not rotate images first as the difference in age groups

is meant to be a large enough domain shift in this case. For the second and third
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target datasets we again remove 17 and 34 landmark points at random. Because of

the small number of observations within-class, we randomly sample 3 observations

per class from the source domain and 1 observation per class from the target to

train the model, while testing on all remaining target data, with recognition rates

and corresponding standard deviations given in Table 5.3.

As in the case of age estimation, IS performs well in the same-dimension case

with RLD being only slightly competitive, GFK performing much worse. For cases in

which the dimensions differ, we see RLD outperforms all competing methods handily.

Due to the small sample sizes within-class, we run into issues with estimation and

identifiability of the within-class statistics. Shrinkage methods (e.g., [32]) do not

seem to yield any improvements in the results, though these methods might help

matters when including additional regularization terms.

5.6 Extension: Incorporating Transformations

A benefit to obtaining a single dimension reduction parameter is that we are

afforded with the possibility of exploratory analysis using graphical methods. For

example, in the simulation study above we have a quadratic term in the true model.

Many methods, such as GFK or MLR, have no way of discovering this information,

nor any way to incorporate it into a final model, and it is similarly unclear how to

extend IS to take this model into account.

We run a single instance of the simulation for a continuous y and α = 5. We

simulate 200 observations from the source distribution and 30 from the target to
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be used in obtaining the dimension reduction parameters. We plot the directions

obtained versus the response in Fig. 5.4. We see clear nonlinearity in the directions

obtained through RLD, though unfortunately the nonlinearity is not necessarily ex-

hibited in the same directions. We can use this information to improve our model fit,

and see in fact that the MAE for the 300 unseen target points using the linear terms

is 12.306 while including all quadratic terms drops it to 8.809. This approach could

possibly be used to improve prediction as well as interpretability in cases where data

inhomogeneity occurs. This discrepancy between the directions in which structure is

exhibited could indicate that alternative penalty terms could be incorporated into

the likelihood for η, potentially involving the conditional model [Y |X].

5.7 Discussion

We have shown that, by adding a regularization term to the likelihood func-

tion of likelihood-acquired directions we are able to yield improvements over simply

using the directions themselves in cases in which the distribution of the predic-

tors changes from training to testing. Additionally, these directions produce a lin-

ear transformation that both reduces dimension and can adequately discriminate

between categories in a variety of classification tasks. RLD outperforms SIR and

LAD, two related dimension reduction methods, and it outperforms IS, MLR, and

GFK – all methods that similarly try to take into account the discrepancy between

training and testing distributions – when the dimensions of the training and testing

data differ. RLD can extend to cases where predictors have a prior structure, and
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Fig. 5.4: Plots of the source and target data directions found through RLD.

localization is straightforward and can improve performance when the underlying

model is nonlinear.
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6

Monte Carlo Acquired Directions - Preliminary Results

6.1 Introduction

We have seen that both CDE and RLD can yield gains in predictive perfor-

mance when data are inhomogeneous between training and testing; CDE is able to

incorporate information from the response in constructing a dimension reduction,

though in this case it is done through a penalized maximum likelihood framework

on the response given the reduced predictor. RLD takes the tack from sufficient

dimension reduction literature and maximizes the likelihood of the response and the

predictors over the transformation directly while trying to handle inhomogeneous

data through regularization. This regularization attempts to keep within-class first

moments of the source and target distribution close, though ideally we would like

to have both first and second moments close to one another. Most penalty terms

for this latter constraint are not ideal: they yield gradients in which the desired

transformation appears in a third-order term, often resulting in poor convergence.

We propose a different approach to incorporate both distributional constraints as

well as include information from the conditional model in construction dimension

reductions.
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6.2 Methodology

Our approach will be as in Chapter 5 in which we assume a normal model

for [X |Y ] and [Z |Ξ] and assume independent predictors x1, . . . ,xn and z1, . . . , zm

with corresponding response values. Previously, we used penalized maximum like-

lihood to estimate dimension reduction parameters η and γ that would be good

“sufficient” dimension reductions while constraining the distributions of [ηT X |Y ]

and [γT Z |Ξ] to be close. In our previous method we used only the first moments

of these distributions in the constraint as higher moment constraints complicated

the gradient and did not yield useful results in practice. In the current approach,

we will use sequential Monte Carlo sampling [74] to avoid computing a gradient

of a quartic function of the parameter while still attempting to incorporate second

moment constraints. We will also incorporate the conditional model [Y |X,η,β] in

the construction of the dimension reduction parameters. In RLD, the full likelihood

can be written as

π(η,γ) ∼ [Y |ηT x,β] · [Ξ|γT z,β] · [ηT x] · [γT z] · [η,γ] (6.1)

where [η,γ] is the term to constrain the within-class means of x and z to be similar.

We note that, though (6.1) depends on a parameter β, we will take this value to

be fixed given {η,γ}. The current approach will be to proceed similar to RLD, but

with an eye on the covariance structure of each domain; in other words, we will

modify the term [η,γ] to incorporate second moment constraints. As our data is

assumed to be normal within-class, constraining {ηT µx
y,η

T Σx
y η} to be equivalent
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to {γT µz
y,γ

T Σz
y γ} will be all that we require.

6.3 Choice of Prior

A sequential Monte Carlo algorithm will require prior distributions for η, and

γ. One desirable property of such distributions will be that they are easy to sam-

ple from, as we will deem it necessary to draw a large number of variates from

these distributions. As η and γ will lie on the Grassmannian G we require a bit

more machinery for their prior distributions. A popular distribution for η is the

“Procrustean” prior (see [2] and Chapter 3)

π0,η ∼ etr{−[Id−ηT η̂x(η̂x)T η]/σ2
η} (6.2)

where η̂x is an initial estimate of η using (y,X). Here σ2
η is a chosen parameter. An

unfortunate property of this distribution is that, in order to obtain variates from it,

we require the use of a rejection sampler; that is, to simulate a variate from (6.2),

we first generate a random uniform variate U on G(p, d) (see Chapter 3, Table 3.2),

then generate a random uniform variate u ∼ U(0, 1), accepting U if u < π0,η(U)

and rejecting U otherwise. This has the potential to be computationally intensive;

if σ2
η is small enough we may generate a large number of proposals for U before

accepting. For this reason, we consider the wrapped normal distribution [21]. We

recall (1.1) and (1.2) from Chapter 1; let the geodesic between ηj and ηk be written

as
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δ(t;ηj,ηk) = ηj U1 Γ(t)− η⊥j U2 Σ(t)

where U1,U2,Γ,Σ are given by the generalized singular value decomposition

ηT
j ηk = U1 Γ VT , (η⊥j )T ηk = −U2 Σ VT . (6.3)

Moreover, we recall from Chapter 1 that we have the maps about the point η0

exp(·,η0) : Rd(p−d) → G(p, d), exp−1(·,η0) : G(p, d)→ Rd(p−d).

For a point R ∈ G(p, d), we can take

exp(R;η0) = δ(1;η0,R),

which, using (6.3), shows that

exp(R;η0) = η0 U1 Γ−η⊥0 U2 Σ = U V(VT V)−1

as

R = [η0 η⊥0 ]

 U1 Γ VT

−U2 Σ VT

 .
Now, we take
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U ∼ Npd(vec[η0], σ2
η I)

and for a block-diagonal matrix

Q = blockdiag[(VT V)−1 VT ]

we can reform Q U column-wise into η̃ ∈ Rp×d with η̃T η̃ = Id. We now have two

benefits to the above formulation: first, we are able to generate U as multivariate

normal and map it directly into G(p, d) about an initial point η0; second, as it will

be required in our later Metropolis-Hastings algorithm, we have an approximation

to the density function of a random variate η̃, that is,

vec(η̃) ∼ Npd(vec[η0], σ2
η QT Q) (6.4)

where vec(η̃) is the column-wise concatenation of η̃ into a vector in Rpd. We stress

that this is only an approximation, as Q will be a function of η̃.

6.4 Sequential Monte Carlo

In sequential Monte Carlo (SMC), at stage s we let

πs ∝ π1−αs
0 παs ,

π0 ≡ π0,η · π0,γ,
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Table 6.1: Summary of sequential Monte Carlo algorithm

• Initialize π0 above for η and γ.

• Initially sample i = 1, . . . , N particles η0
i and γ0

i from π0 and set initial weights
wi ≡ 1/N .

• At stage s:

– Set wsi = ws−1
i (ηs−1

i ,γs−1
i )/π0(ηs−1

i ,γs−1
i ))αs−αs−1 and normalize.

– If effective sample size [here (
∑

iwi)
2/
∑

iw
2
i ] is less than N/2, resample

particles with replacement where element i is selected with probabiliy wsi ,
then reset weights to 1/N .

– Generate proposals vec(η̃s−1
i ) ∼ Npd(vec[ηs−1

i ], σ2
η QT Q) accepted with

probability

ρi = min

{
1,
πs(η̃

s−1
i ,γs−1

i )

πs(η
s−1
i ,γs−1

i )

}
,

i.e., on acceptance, set ηsi = η̃s−1
i , otherwise set ηsi = ηs−1

i .

– Similar to η̃s−1
i , generate proposals γ̃s−1

i from π0,γ using γs−1
i .

0 = α0 ≤ α1 ≤ . . . ≤ αS = 1,

using (6.4) for π0,η and π0,γ. The sampling strategy is given in Table 6.1.

6.4.1 Inhomogeneous Data Term

As we assume that our data is inhomogeneous, we add a term πη,γ to the

posterior as an effective “prior” incorporating this inhomogeneity; this is much like

the [η,γ] term described earlier (e.g., the first moment constraint of Chapter 5).

Since the parameters η and γ will be acquired through log determinants of the

covariance matrices Σx and Σz, as well as the within-class covariance matrices, we

will consider the constraints
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C1 : log πη,γ =
1

σ2
η,γ

[
(n+m) · ||ηT µx−γT µz ||2

+
∑
y

(ny +my) · ||ηT µx
y−γT µz

y ||2
]
,

C2 : log πη,γ =
1

σ2
η,γ

[
(n+m) · (log |ηT Σx η | − log |γT Σz γ |)2

+
∑
y

(ny +my) · (log |ηT Σx
y η | − log |γT Σz

y γ |)2

]

where C1 will be the same as the within-class mean constraint proposed in Chapter 5.

The second constraint is considered as we wish for within-class second moments of

the reduced data to be equivalent, though our objective depends on these moments

through the log | · | function.

6.4.2 Posterior

For this method, we require a density proportional to the posterior π(η,γ).

Combining all of the above, we see the log of the posterior distribution will be
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log π(η,γ) ∼ −1

2

{
1

σ2
ex

||y−Xη β̃||2 +
1

σ2
ez

|| ξ−Zγ β̃||2

−

[
log |ηT Σx η | −

∑
y

ny
n

log |ηT Σx
y η |

]

−

[
log |γT Σz γ | −

∑
y

my

m
log |γT Σz

y γ |

]

+ log πη,γ

}
(6.5)

where this posterior depends on both samples (y,X) and (ξ,Z), and β̃ is estimated

from the current values of η and γ.

6.5 Preliminary Results

6.5.1 Simulation

For the simulation studies we proceed similarly to that Chapter 5. We generate

1000 observations in R6 for the source data and 1000 observations in R4 for the target

data to be tested. For the target data to be used in estimating η and γ, we generate

30 observations per class distributed. We generate X and Z, η and γ, as well as

the model for Y as in Chapter 5. All simulations are run 100 times and results are

averaged over these runs.

We run a simulation to illustrate the effect of the constraint, with results

given in Fig. 6.1. Here we see an interesting result: while increasing the constraint

parameter yields better results when we include the penalty term on the within-
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Fig. 6.1: Simulation results using various constraints.

class first or second moments, not including this penalty term at all seems to work

best. This can be understood by the fact that we are effectively constraining our

dimension reduction parameters in the initial terms

1

σ2
ex

||y−Xη β ||2 +
1

σ2
ez

|| ξ−Zγ β ||2

through β in equation (6.5).

We run a simulation using the values α = 10−10, 1, 10 to illustrate how various
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Table 6.2: Average mean absolute errors and standard errors from various simulation
studies. “Truth” is taken to be a linear model estimated from the true values of η
and γ.

Method
α = 10−10 α = 1 α = 10
Target Target Target

MAE (SE) MAE (SE) MAE (SE)
“Truth” 22.44 (1.57) 2.22 (0.13) 0.48 (0.01)
PCR 22.52 (1.56) 2.62 (0.12) 12.13 (0.60)
KMM 25.40 (1.49) 2.82 (0.12) 11.90 (0.60)
KLIEP 22.55 (1.56) 2.61 (0.12) 12.12 (0.60)
IS 20.12 (1.27) 2.42 (0.10) 10.94 (0.48)
GFK 19.53 (1.15) 2.47 (0.08) 11.35 (0.43)
RLD 22.56 (1.56) 2.61 (0.12) 9.57 (0.42)
SMC 20.20 (1.28) 2.23 (0.11) 5.46 (0.25)

alternative methods perform when models are highly nonlinear as well as highly

linear. Results on the target data are given in Table 6.2. The estimates for “truth”

use the values of η and γ that were used to generate the data. The quotes are to

indicate that the model itself is still misspecified as a linear model, though the true

values of the dimension reduction parameters are used. We see that SMC performs

well in all cases, though it does not beat GFK or IS in the case of a more nonlinear

model. Interestingly, when the model is close to linear, SMC vastly outperforms

RLD, a similar method. This may be due to the fact previously stated, that SMC

is effectively a version of RLD that uses the conditional model to relate the param-

eters η and γ. Though it was not investigated, RLD may benefit from including a

conditional term in its objective.
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Table 6.3: Average mean absolute errors and standard errors for age estimation.
The estimated dimension was taken to be 10. Minimum mean absolute errors are in
bold.

Method
Source Target

MAE (SE) MAE (SE)
PCR 16.132 (0.098) 45.833 (8.686)
KMM 15.637 (0.212) 95.293 (26.548)
KLIEP 16.147 (0.098) 42.448 (8.546)
IS 7.448 (0.123) 28.008 (4.581)
GFK 4.754 (0.078) 13.359 (0.383)
RLD 16.179 (0.099) 30.387 (4.999)
SMC 8.137 (0.093) 11.919 (0.293)

6.5.2 Real Data

In addition to the simulation studies above we consider a real data example.

We turn again to the FG-NET dataset, this time using landmark data points as

source data and using the raw face data (rescaled to 10 × 10 grayscale images) as

target. This is a potentially useful real-world application as it will often be difficult

and time-consuming to obtain landmark points from an image on-the-fly given an

unseen data point. In order for the dimension reduction methods to be used, we

transformed the landmark data using the inverse exponential map as in Chapter 5

while leaving the raw face data untouched. Average mean absolute errors and their

standard errors are given in Table 6.3. We see again that IS and GFK perform well,

though only on the source data, with SMC not far behind. For the target data,

SMC comes out ahead, with GFK performing competitively. As in the case of the

simulation studies, RLD performs worse than SMC – significantly so – indicating

again the possibility of improvement to RLD by incorporating the conditional error

term.
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6.6 Discussion

The SMC method can perform well on dimension reduction problems, though

it seems that in many cases considered GFK performs competitively. While GFK

has the added benefit of a small number of tuning parameters, the construction of

the SMC estimates above have been somewhat primitive. We can extend the SMC

method to incorporate multiple sources or multiple targets by considering a mixed

model framework (see [75]) where the domain from which features come can be

included as a random term in the model. Moreover, SMC can be extended to yield

point estimates for η and γ through the posterior mode as opposed to the posterior

mean. This can provide a framework from which to get a visual representation

of the data, and can benefit practitioners desiring a more interpretable approach.

Additionally, we can more easily influence the form of η and γ; if sparse estimates

are desired we can incorporate sparse priors, e.g., spike-and-slab priors [76]. This

could lead to more useful and interpretable estimates as opposed to the potentially

difficult-to-interpret kernel nearest-neighbor approach.
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7

Discussion

7.1 Summary

Methods to handle prediction with high-dimensional inputs are invaluable to

practitioners in modern data analysis. Many problems concerning high-dimensional

data will be amenable to techniques to either incorporate a lower-dimensional struc-

ture implicitly – e.g., through penalized least squares – or explicitly - e.g., through

linear dimension reduction. In regression problems, Tikhonov-style regularization

can be used to construct estimators that take into account a lower-dimensional

structure in the predictors, whether this structure is known a prior or not. For spe-

cific manifolds, such as the Grassmannian, a simple ridge regression can be used to

significantly improve results.

Additionally, problems in which data arise from an inhomogeneous process

crop up in many practical settings. The bulk of approaches concern either the esti-

mation of weights to apply to the data that yield similarly distributed observations,

or methods of dimension reduction to map data into spaces where observations

are distributed similarly. Combined direction estimation seeks a linear dimension

reduction related to incremental subspace estimation that can easily incorporate

information from the conditional distribution of the response given the predictors.

Moreover, “local” covariance structure can be estimated through assuming a non-
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parametric error structure. This method can also easily be extended to the case of

data lying on the Grassmannian.

In CDE, the use of the conditional information was through the specification

of a model for the response given the predictors, and the dimension reduction pa-

rameters were obtained through a type of penalized least squares. In regularized

likelihood directions, we attempt to incorporate this information directly into the

predictors by assuming they are distributed as a mixture of normal distributions. In

this case, we can specify a likelihood while incorporating a constraint for the within-

class first moments to help take inhomogeneous data into account, in an attempt to

incorporate a prior assumption on the conditional distribution of the response given

the predictors.

Finally, Monte Carlo methods can be used to gain improvements in various

settings, with sequential Monte Carlo methods being similar in spririt to many of

the previous incremental subspace approaches. The Monte Carlo acquired directions

framework uses all of the information about the conditional and marginal distribu-

tions while evolving the parameter estimates to ones that have useful properties.

7.2 Future Work

Many approaches we propose can be extended to yield potential improvements.

While it was not considered in detail, sparse estimates can be obtained in CDE

through alternating minimization, which could potentially yield more interpretable

estimates. These sparse estimates could also provide improvements in prediction
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when the true model is sparse. In the sequential Monte Carlo framework, we can

extend the approach to problems with multiple data sources through considering a

generalized linear model in which data sources are incorporated through a random

error term [75]. Moreover, allowing the choice of priors (e.g., ones that are sparse)

could be used to help achieve better or more interpretable results.

The current implementation of many of the approaches can be somewhat com-

putationally intensive, with almost all approaches requiring a gradient descent-style

method to obtain parameter estimates. More efficient implementations of these ap-

proaches could have the potential to greatly increase their utility. The methods

could be adapted to “on-line” methods by introducing fidelity measures for new

data points, classifying them as being from source, target, or uninformative [77].

Finally, nonlinearity has entered each of the proposed methods through local

estimation. While this local approach improves performance, it greatly increases

computation and moreover has the potential to be less interpretable. Investigating

kernel approaches [78] or semiparametric techniques [68] to overcome some of this

nonlinearity could prove worthwhile.

Problems with high-dimensional predictors abound in modern data analysis.

Cases in which predictors correspond to visual information can yield improved per-

formance through many techniques, such as through regularization while estimating

a regression function to take into account underlying predictor structure, or through

regularization of an objective function involving a dimension reduction parameter

to improve prediction in the case of inhomogeneous distributions of data between

training and testing. We see that incorporating penalties into various objectives can
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yield estimates with desired properties in regression, classification, and dimension

reduction, and consider these approaches vital to high-dimensional inference.
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