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Chapter 1

Introduction

1.1  Spherical codes and designs

A spherical code is a finite collection X of unit vectors in R™. We denote the unit sphere in R"”
by S”~!. The study of spherical codes has been the focus of much interest with an interplay
of methods from many aspects of mathematics, physics, and computer science [33]. There are
several interesting problems on spherical codes, for instance the sphere packing problem which
asks to find out how densely a large number of identical spheres can be packed together, the kissing
number problem which seeks to find the maximum number of unit spheres that can touch a unit
sphere without overlapping and many other related topics.

The history of sphere packing problems can be traced to Kepler (1610) who conjectured that
the maximum density of a sphere packing in R is \/LTS ~ (.7405. For R?, the standard hexagonal
packing is optimal with the density \/% =~ 0.9079. In 1998, Hales proved the Kepler conjecture by
extensive computer calculation in [47]. The optimal packing is the “face-centered cubic” packing
(equivalently, the A3z or D3 root lattice). For R™, where n > 4, the problem remains unsolved and
the bounds are discussed in [53], [33], [31].

The kissing number k(n) has been known only for n = 1,2, 3,4, 8,24. Its determination
forn =1, 2 is trivial, but it is not the case for other values of n. The case n = 3 was the subject of
a discussion between Isaac Newton and David Gregory in 1694. Gregory asserted that 13 spheres
could be placed in contact with a central sphere and Newton claimed that only 12 were possible.
The answer was given 12 by K. Schiitte and B. L. van der Waerden [74] in 1953. O. Musin used
the variation of linear programming method to prove k(4) = 24 [65]. E. Bannai and N .J. A.
Sloane solved the case for n = 8 and 24 [7]. For other dimensions, k(n) remains open and the
bounds are concerned in [5], [64].

Classical results in harmonic analysis imply some nontrivial positive constraints on the
point sets of S™~ 1. We start with the group representation theory. Assume that G is a compact
group, then it has an unique normalized measure y, the Haar measure, which is invariant under G.
Let Lo(G) denote the vector space of complex-valued functions « on G satisfying

| a)Panta) < o
with the inner product

(ur, ug) = /G w1 (9)u2(@)du(g)

By the Peter-Weyl Theorem, the space Lo(G) decomposes into a countable direct sum of
mutually orthogonal subspaces V;", where V" affords an irreducible unitary representation of G.



In particular, if G is the special orthogonal group SO(n), i.e. the group of isometries of S™~1
with determinant 1. SO(n) induces an unique invariant measure on S"~!. Then, Lo(S™!)
decomposes into an infinite direct sum of orthogonal subspaces V}* which are usually denoted by
Harmy (S™~1). The elements in Harm(S™ 1) are called spherical harmonic functions. Let us
discuss harmonic qunctiOHSQas follows.

Let A = aan +e 687% be the Laplace operator. A polynomial f(x) is harmonic if A f(x) =
0. Then, Harmy(S"~!) is the space of a harmonic and homogeneous polynomials of degree k
restricted to the sphere S™ 1.

Let h} := dim Harmy(S™™1). Let {f7*(x)|1 < i < h}} be the orthonormal basis of a
Hilbert space Harmy,(S™~!). We have the following addition formula:

hi
Gr(a,y) =D filx) fily),
=1

where G7(t) only depends on inner product values ¢ and is called the zonal spherical function
associated with Harmy, (S™ 1) or the Gegenbauer polynomial. Hence,

i
Yo Gy = D > f@)fiy)

z,yeX? zyeX? i=1

hy
=3 fil@)fily)

i=1 gz yecX?

hy
=3 A =0

=1 zeX?2

In short, we have

> Gi({w,y) =0 (1.1)

z,yeX?

The above statements are classical [1], [2], [54].

Philippe Delsarte in the seventies [35] introduced the linear programming (LP) method
which is very powerful method to solve extremal problems. The LP method is based on the posi-
tivity of Gegenbauer polynomials (1.1). It was initially developed in the framework of association
schemes and then extended to the family of 2-points homogeneous spaces, including the compact
real manifolds having the property (see [36] [33, Chapter 9] [53]). Let us recall that a 2-point
homogeneous space is a metric space on which a group G acts transitively, leaving the distance
d invariant, and such that, for (z,y) € X2, there exists g € G such that (gz,gy) = (2/,y/) if
and only if d(x,y) = d(z',%'). The Hamming space H,, and the unit sphere S"~! are the core
examples of such spaces which play a major role in coding theory.

The applications of this method to the study of codes and designs are numerous: very good
upper bounds for the number of elements of a code with given minimal distance can be obtained
with this method, including a number of cases where this upper bound is tight and leads to a proof
of optimality and uniqueness of certain codes, as well as to the best known asymptotic bounds
(see [35], [63], [53], [33, Chapter 9], [59]).

We want to indicate that, geometric proof of (1.1) had been given by Schoenberg [72] in
1942, although his work was not known to researchers in the area discussed until at least the 1990s.



The degree s(X) is the number of values assumed by the inner product between distinct
vectors in X ; that is

s(X) =[I(x)], I(X)={(xs,2;);2;,x; € Xandi # j}

If s(X) = s, such sets are called spherical s-distance sets. Estimating the maximum size of
spherical s-distance sets is a classical problem in distance geometry that has been studied for
several decades.

The first major result for upper bounds was obtained by Delsarte, Goethals, and Seidel
[36]. They proved that, irrespective of the actual values of the distances, the following harmonic”

bound holds true: . )
n—+s— n—+s—
ng< o >+< o ) (12)

The key ideas of their proof are linear programming method which we introduce in (1.1). They
also showed that this bound is tight for dimensions n = 2,6,22 and s = 2 in which cases it is
related to sets of equiangular lines in dimension n + 1. In particular, if |I(x)| = 2, we call X a
spherical two-distance set. If a and b are the two inner product values between distinct elements
in a spherical two-distance set, there is an important result by Larman et al. [57] to restrict b as a
linear function of a. The explicit statement is the following.

Theorem 1.1 (Larman, Rogers, and Seidel [57]) Let S be a spherical two-distance in R™. If
|S| >2n+3and a > b, then b = kk“:ll for some integer k such that 2 < k < (14 +/2n)/2.

The condition |S| > 2n + 3 was improved to |S| > 2n + 1 by Neumaier [69]. He also gave an
example of a two-distance set with cardinality 2n + 1 that violates the integeraity condition of k.
This example is obtained from the spherical embedding of the conference graph.

Theorem 1.1 is one of the key theorem which we use to determine exact answers of maxi-
mum size of spherical two-distance sets up to dimension n < 94 except n = 46 and 78.

There is an another interesting question in spherical codes: how to find a subset on sphere
such that it globally approximates the sphere S™~! very well? There is one very reasonable answer
introduce by Delsarte, Goethal and Seidel [36] in 1977. They defined the notion of spherical t-
design as follows.

Definition 1.1 Let t be a natural number. A finite subset X of the unit sphere S*' is called
a spherical t-design if, for any polynomial f(x) = f(x1,%9,...,xy,) of degree at most t, the
following equality holds :

1 1
Iy f(z)do(x) = m;{f(w)- (1.3)

|‘S’7L71| Sn—1

An equivalent definition of spherical designs can be given in terms of harmonic polynomials. Let
Harm,(R™) be the set of homogeneous harmonic polynomials of degree ¢ on R™. Then the set X
is a spherical design [36] if

> f@)=0 Vf(z) € Harm;(R"),1 < j <t (1.4)
zeX

By the definition, we can see that the union of two spherical designs are still spherical designs.
Therefore, we are interested in the minimum cardinality of a spherical design when ¢ and n are



given. Delsarte, Goethals, and Seidel [36] proved that the cardinality of a spherical ¢-design X is

bounded below,
-1 -2 -1
\X|Z n-+e n n+e ’ |X|22 n—+e
n—1 n—1 n—1

fort = 2e and t = 2e + 1. Again, the technique to obtain this lower bounds is still the linear
programming method (1.1). The spherical ¢-design is called tight if any one of these bound is
attained. If X is a tight spherical 2s-design, it is immediately a maximum spherical s-distance
set attaining harmonic bound in (1.2). The bounds on few distance sets of spherical codes can be
generalized to other metric spaces. Barg and Musin [16] have improved the bounds on the size
few distance sets in the Hamming space, the Johnson space and uniform intersecting families of
subsets.

1.2 Semidefinite programming

A semidefinite program (SDP) is an optimization problem of the form
max{(X,C)| X =0, (X,A;)) =b;,i=1,...,m}, (1.5)

where X is an nxn variable matrix, Ay, ..., A, and C are given Hermitian matrices, (b1, ..., by,)
is a given vector and (X,Y’) = trace (Y*X) is the inner product of two matrices. Semidefinite
programming is an extension of linear programming that has found a range of applications in
combinatorial optimization, control theory, distance geometry, and coding theory. General intro-
duction to semidefinite programming is given, for instance, in [17].

Applications of semidefinite programming in coding theory and distance geometry gained
momentum after the pioneering work of Schrijver [73] that derived SDP bounds on codes in the
Hamming and Johnson spaces. Schijver’s approach was based on the so-called Terwilliger algebra
of the association scheme and formed a far-reaching generalization of the work of Delsarte [35].
Elements of the groundwork for SDP bounds in the Hamming space were laid by Dunkl [38],
although this connection was also made somewhat later [79]. We refer to [62] for a detailed
general survey of the approach via association schemes and further references.

The root of SDP method is from the work of Bochner [19] in more general space, called the
two-point homogeneous space which we mention in the beginning of this chapter. SDP bounds
for the real sphere were derived by Bachoc and Vallentin [5] in the context of the kissing number
problem. One of the main results of [5] is that for any finite set of points C C S" !

> SHayx-zy-2) =0 (1.6)
(z,y,2)eC3

The matrices S}’ play the role of the constraints A; in the general SDP problem (1.5). Explicit
definition of S}’ can be found in Chapter 2. Positivity constraints (1.6) give rise to a general SDP
bound on the cardinality of point sets obtained in [5], where it was used to improve upper bounds
on k(n) in small dimensions.

We note that constraints (1.1) arise from the unrestricted action of G on S"~!. Constraints
(1.6) are obtained by considering actions that fix three given points on the sphere. We also call this
by three-point SDP problems. Further SDP bounds can be obtained by considering zonal matrices
that arise from actions that fix any given number of points; however even for two points, actual
evaluation of the bounds requires significant computational effort [64].



1.3 Equiangular lines

A spherical two-distance set is a finite collection of unit vectors in R" such that the distances
between any two distinct vectors assume only two values. Therefore, equiangular line sets can
be regarded as special type of spherical two-distance sets. A set of lines in a metric space is
called equiangular if the angle between each pair of lines is the same. We are interested in upper
bounds on the number of equiangular lines in R™. In other words, if we have a set of unit vectors
S = {x;}M, and there is a constant ¢ > 0 such that |(z;,z;)| = cforall 1 < i # j < M, what
is the maximum cardinality of S? Denote this quantity by M (n). The problem of determining
M (n) looks elementary but a general answer has so far proved elusive. The history of this problem
started with Hanntjes [48] who found M (n) for n = 2 and 3 in 1948. The maximal number of
equiangular lines in R? is 3: we can take the lines through opposite vertices of a regular hexagon,
each at an angle 60 degrees from the other two. The maximum in R3 is 6: we can take lines
through opposite vertices of an icosahedron. Van Lint and Seidel [60] found the largest number
of equiangular lines for 4 < n < 7. The known bounds on M (n) for small dimensions was
known exactly only if 2 < n < 13;n = 15,21, 22,23 [58]. In Chapter 3, we use the semidefinite
programming method to derive some new bounds on M (n). In particular, exact values of M (n)
are obtained for 24 < n < 41 and for n = 43 where previous results gave divergent bounds:
we show that M (n) = 276 for 24 < n < 41 and M (43) = 344. These results are established
by performing computations with SDP. We also show that M /5 (n) = 276 for 23 < n < 60.
These results resolve a part of the Lemmens-Seidel conjecture and enable us to obtain the results.
For 44 < n < 136, we also obtain new upper bounds on M (n), improving upon the Gerzon
bound, although no new exact values are found in this range. We give a more complete table of the
computation results in Table 3.3. Recently (March 2014), we were informed that the upper bounds
of equiangular line sets in R'* and R'6 have been improved by 1 [45]. Therefore, M (14) = 28 or
29 and M (16) = 40 or 41.

1.4 Finite two-distance tight frames

Frames were introduced in 1952 by Duffin and Schaeffer [37]. Later, the subject was reinvigo-
rated following a publication of Daubechies, Grossman, and Meyer [34]. Since then, frames have
been used extensively in signal/image processing where they are called Gabor frames or Weyl-
Heisenberg frames [26], [39], [46], [51]. Many new applications of tight frames have arisen in
internet coding [28] [43] [42] [44], wireless communication [49], [76]. Each new application re-
quires a new class of tight frames. After the introduction of frame potentials by Benedetto and
Fickus [18], there was an explosion of new results concerning the construction of tight frames for
finite dimensional Hilbert space [29]. The importance of [18] is that it gives a geometric interpre-
tation for equal-norm finite tight frames along the lines of Coulomb’s law in Physics. This allows
us to anticipate results in frame theory by using results from classical Mechanics.

How to construct unit norm tight frames effectively and computationally? We are devoted
to new ideas of constructing tight frames for R™ that at the same time form spherical two-distance
sets.

A finite collection of vectors S = {z;,7 € I} C R"™ is called a finite frame for the Euclidean



space R" if there are constants 0 < A < B < oo such that for all z € R"

Allz|? <Y [z, 2:)|* < BlJa|*.

el

If A = B, then S is called an A-tight frame. If in addition ||z;|| = 1 for all i € I, then S is a
unit-norm tight frame or FUNTF. If at the same time S is a spherical two-distance set, we call it a
two-distance tight frame. In particular, if the two inner products in .S satisfy the condition ¢ = —b,
then it is an equiangular tight frame or ETF.

Frames have been used in signal processing and have a large number of applications in
sampling theory, wavelet theory, data transmission, and filter banks [25, 55, 56].

Motivated by the research on ETFs, we study frames that are at the same time two-distance
sets and FUNTFs. Assume that the values of the inner product between distinct vectors in S are
either a or b. We prove that the distance distribution of the frame with respect to any vector is the
same (i.e., the Gram matrix GG contains the same number of as in every row). Using this fact, we
establish a new relation between two-distance FUNTFs and strongly regular graphs (SRGs). In the
particular case of ETFs our connection enables us to recover the earlier examples in [81] as well
as obtain some new examples of ETFs. We also make a few remarks on the parameters of ETFs
and strongly regular graphs. We also notice that, Bannai [10], Cameron [24] and Neumaier [69]
discussed embedding SRGs into spherical spaces to construct two-distance sets and spherical ¢-
designs. Our approach is different from theirs and we can archive more examples of two-distance
tight frames.

1.5 Nonexistence of spherical tight designs of harmonic index 4

The notion of spherical t-designs is introduced in (1.4). Tight spherical designs usually offer
good structures and interesting configurations on spheres, but they exist vary rarely [8], [9]. If we
consider generalizations of spherical designs, we may also get some interesting subsets of spheres.
Therefore, if we consider the weaker version of spherical ¢ designs, namely (1.4) only true for
Harm, (R™), then we call them spherical designs of harmonic index t. The explicit definition is as
follows:

Definition 1.2 A spherical design of harmonic index t is a finite subset X C S™' such that

> fl@)=0 Vf(z) € Harm(R™). (1.7)

zeX

The LP bound for spherical designs of harmonic index ¢ was derived in [11]. If the bounds
are attained, then designs are called tight. In particular, [11] shows that a tight design of harmonic

index 4 gives arise to an equiangular line sets in R™ with angle arccos y/—>— and cardinality
n+4

W. We prove that such equiangular line sets do not exist by deriving new relative bounds

(Theorem 5.1) for equiangular line sets. We prove the bounds on cardinality of tight spherical de-
sign of harmonic index 4 strictly less than W and consequently there are no tight spherical
designs of harmonic index 4. The technique to derive new relative bounds is a modification of the
semidefinite programming method. Therefore, Theorem 5.1 is tighter than the classical relative
bound (3.3) in [58].

It arouses our attention that the notion of spherical designs of harmonic index 2 are equiva-
lent to tight frames. The proof is straightforward. If X is a spherical design of harmonic index 2,



then by addition formula

Y. Gi({aiay) =0.

J,’z',.l’jEX

Since G5 (t) = ";;2__11, we will have

X 2
> Wiz = X
i, ;€X

By [18], we know that this condition implies that X is a tight frame. Spherical 2-designs are
spherical designs of harmonic index 2 and harmonic index 1. Therefore, spherical 2-designs are
tight frames which also satisfy

Z <1'z'7 .73j> =0.

Ti,r;€X



1.6 Contributions of this dissertation

In Chapter 2, we discuss our contribution to spherical-two distance sets. We use the semidef-
inite programming method to compute improved estimates of the maximum size of spherical
two-distance sets. Exact answers are found for dimensions n = 23 and 40 < n < 93 (n #
46, 78) where previous results gave divergent bounds. These results are published in [13].

Chapter 3 contains our contribution for determining the maximum size of equiangular line
sets in R™. Improvements are obtained in dimensions 24 < n < 136. In particular, we show
that the maximum number of equiangular lines in R"™ is 276 for all 24 < n < 41 and is 344
for n = 43. This provides a partial resolution of the conjecture set forth by Lemmens and
Seidel (1973). These results are published in [14].

Chapter 4 is devoted to finite two-distance tight frames. We derive new structural properties
of the Gram matrix of a two-distance set that also forms a tight frame for R™. Our main
results is a new correspondence between two-distance tight frames and certain strongly reg-
ular graphs. This allows us to use spectral properties of strongly regular graphs to construct
two-distance tight frames. Several new examples are obtained using this characterization.
These results are in the paper [15].

Chapter 5 is concerned with new upper bound of the cardinality of a set of equiangular lines
with the angle arccos(1/(2k — 1)) in the Euclidean space of dimension 12k? — 12k — 1
for each integer £ > 2. As a corollary to our bound, we show the nonexistence of spherical
tight designs of harmonic index 4 on S"~! with n > 3. We also derive new relative bounds
for equiangular line sets which are tighter than classical relative bounds in [58]. The results
appear in [70].



Chapter 2

New bounds for spherical two-distance sets

A spherical two-distance set is a finite collection of unit vectors in R™ such that the distances
between any two distinct vectors assume only two values. We use the semidefinite programming
method to compute improved estimates of the maximum size of spherical two-distance sets. Exact
answers are found for dimensions n = 23 and 40 < n < 93 (n # 46, 78) where previous results
gave divergent bounds.

2.1 Introduction

This chapter is devoted to the application of the semidefinite programming method to estimates of
the size of the largest possible two-distance set on the sphere S™~!(IR). A spherical two-distance
set is a finite collection C of unit vectors in R™ such that the set of distances between any two
distinct vectors in C has cardinality two. Estimating the maximum size g(n) of such a set is a
classical problem in distance geometry that has been studied for several decades.

We begin with an overview of known results. A lower bound on g(n) is obtained as follows.
Let eq,...,ens1 be the standard basis in R™*!. The points e; + ej,t # j form a spherical two-
distance set in the plane x1 + - - - + z,41 = 2 (after scaling), and therefore

gn) >nn+1)/2, n>2. (2.1)

The first major result for upper bounds was obtained by Delsarte, Goethals, and Seidel

[36]. They proved that, irrespective of the actual values of the distances, the following “harmonic”
bound holds true:

g(n) <n(n+3)/2. (2.2)

They also showed that this bound is tight for dimensions n = 2, 6, 22 in which cases it is related
to sets of equiangular lines in dimension n + 1. Moreover, the results of [36], Bannai et al. [9],
and Nebe and Venkov [67] imply that g(n) can attain the harmonic bound only if n = (2m +
1)2 — 3, m > 1 with the exception of an infinite sequence of values of m that begins with m =
3,4,6,10,12,22,38,30,34,42,46. Therefore, unless n is of the above form, g(n) < n(n +
3)/2 — 1. These results are proved using the link between 2-distance sets and tight spherical 4-
designs established in [36].

Another advance in estimating the function g(n) was made by Musin [66]. Let C =
{z1, 22, ...} and suppose that z; - z; € {a,b},i # j, where 2 — 2a,2 — 2b are the values of
the squared distances between the points. Musin proved that

ICl <n(n+1)/2 ifa+b>0. 2.3)



)

Figure 2.1: The maximum spherical two-distance set in R?: Pentagon.

Figure 2.2: The maximum spherical two-distance set in R?: Octahedron.

He then used Delsarte’s linear programming method to prove that g(n) = n(n +1)/2if 7 <n <
39,n # 22,23.

Here we make another step for spherical two-distance sets, extending the range of dimen-
sions in which the bound (2.3) is tight. The state of the art for g(n) can be summarized as follows.

Theorem 2.1 We have g(2) = 5,¢9(3) = 6,¢9(4) = 10,¢9(5) = 16, g(6) = 27, g(22) = 275,

n(n+1)/2<g(n) <n(n+3)/2—1, n=46,78 (2.4)
gn)=n(n+1)/2, 7<n<93,n+#22,46,78, (2.5)

and 4465 < g(94) < 4492. If n > 95, then g(n) < n(n+ 3)/2 or n(n + 3)/2 — 1 as detailed in
the remarks after Eq. (2.2) above.

The part of this theorem that is established in the present paper relates to dimensions n = 23
and 40 < n < 94,n # 46,78. Our results are computational in nature and are obtained using
the semidefinite programming method. The other parts of this theorem follow from the results in
[36, 9, 66, 67]. The maximum spherical two-distance set in R? is the Pentagon shown in Fig 2.1
and R? is the Octahedron shown in Fig 2.2.

As far as actual constructions of spherical two-distance sets are concerned, rather little is
known beyond the set of midpoints of the edges of a regular simplex mentioned above. Another
way of constructing such sets is to start with a set of equiangular lines in R™ [58]. If the angle
between each pair of lines is o, then taking one point from each pair of points on S”~! defined
by the line, we obtain a two-distance set with a = «,b = —a. The largest possible number of
equiangular lines in R™ is n(n + 1)/2 (this result is due to Gerzon, see [58]). This bound is
attained for n = 3, 7, 23. For instance, for n = 3 the set of 6 lines is obtained from 6 diagonals of
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the icosahedron, which gives many ways of constructing inequivalent spherical two-distance sets
of cardinality 6. The only three instances in which the known spherical two-distance sets are of
cardinality greater than n(n + 1)/2 occur in dimensions n = 2,6 and 22.

2.2 Positive definite matrices and SDP bounds
A semidefinite program is an optimization problem of the form
max{(X,C)| X = 0, (X, A;) =bj,i=1,...,m}, (2.6)

where X is an nxn variable matrix, Ay, ..., A, and C are given Hermitian matrices, (b1, ..., by,)
is a given vector and (X,Y’) = trace (Y*X) is the inner product of two matrices. Semidefinite
programming is an extension of linear programming that has found a range of applications in
combinatorial optimization, control theory, distance geometry, and coding theory. General intro-
duction to semidefinite programming is given, for instance, in [17].

The main problem addressed by the SDP method in distance geometry is related to deriving
bounds on the cardinality of point sets in a metric space X with a given set of properties such as
a given minimum separation between distinct points in the set. The SDP method has its roots in
harmonic analysis of the isometry group of the metric space in question. It is broadly applicable
in both finite and compact infinite spaces. Examples of the former include the Hamming and
Johnson spaces, their g-analogs, other metric spaces on the set of n-strings over a finite alphabet,
as well as the finite projective space. The main example in the infinite case is given by real and
complex spheres, although the SDP method is also applicable in other compact homogeneous
spaces. Working out the details in each example is a nontrivial task that includes analysis of
irreducible modules in the space of functions f : X — C under the action of the isometry group
G of X. The zonal matrices that arise in this analysis initially have large size that can be reduced
relying on symmetries arising from the group action. This gives rise to an SDP optimization
problem that is solved by computer for a given set of dimensions (the numerical part is also not
straightforward and rather time-consuming). Foundations and analysis of particular cases have
been the subject of a considerable number of research and overview publications in the last decade;
see in particular recent surveys [4, 3] and references therein.

The origins of the SDP method and the discussed applications can be traced back to the
work of Delsarte [35] which introduced the machinery of association schemes in the analysis of
point configurations (codes) in finite spaces. Delsarte derived linear programming (LP) bounds on
the cardinality of a set of points in the space under the condition on the minimum separation of
distinct points in the set. Delsarte’s results were linked to harmonic analysis and group represen-
tations in the works of Delsarte, Goethals and Seidel [36] (for the case S™~!) and Kabatyansky
and Levenshtein [53] (for general compact symmetric spaces).

From now on we focus on the case X = S" 1. Let G,gn) (t),k =0,1,... denote the Gegen-

bauer polynomials of degree k. They are defined recursively as follows: Gén) =1, ng) (t) =t,
and
(2k +n — G (1) — (k= )G, (1)

G\ (1) = = k> 2. 2.7
Delsarte et al. [36] showed that for any finite set of points C C S™~!
S @M@y >0, k=12,.... 2.8)

(z,y)eC?
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The proof of this inequality in [36] used the addition formula for spherical harmonics. An earlier,
geometric proof of (2.8) had been given by Schoenberg [72], although his work was not known to
researchers in the area discussed until at least the 1990s.

Positivity conditions (2.8) give rise to the LP bound on the cardinality of spherical two-
distance sets.

Theorem 2.2 (Delsarte et al. [36]) Let C C S™! be a finite set and suppose that x -y € {a, b}
forany x,y € C. Then

| < max{l Yoartas: 14+mG™(a) +axG™(b) > 0,i=0,1,... ,pia; > 0,j = 1,2}.

In this theorem a1, g are the optimization variables that refer to the number of ordered pairs of
points in C with inner product a and b, respectively. For instance, a1 = |C|™'#{(z1,22) € C? :
21 - z9 = a}, This theorem is a specialization of a more general LP bound on spherical codes of
[36, 53].

Applications of semidefinite programming in coding theory and distance geometry gained
momentum after the pioneering work of Schrijver [73] that derived SDP bounds on codes in the
Hamming and Johnson spaces. Schijver’s approach was based on the so-called Terwilliger algebra
of the association scheme and formed a far-reaching generalization of the work of Delsarte [35].
Elements of the groundwork for SDP bounds in the Hamming space were laid by Dunkl [38],
although this connection was also made somewhat later [79]. We refer to [62] for a detailed
general survey of the approach via association schemes and further references.

SDP bounds for the real sphere were derived by Bachoc and Vallentin [5] in the context of
the kissing number problem. The kissing number k(n) is the maximum number of unit spheres
that can touch a unit sphere without overlapping, i.e. the maximum number of points on the sphere
such that the angular separation between any pair of them is at least 7/3. Following [5], define a
(p—k+1) x(p—Fk+ 1) matrix Y (u, v, t), k > 0 by setting

(Ykn(u’ v, t))ij = uivj((l - uz)(l o 7)2))k/2Gl(€nl)<\/(1 —tu_z)u(li — ’U2)>

where p is a positive integer, and a matrix S}’ (u, v, t) by setting

SP(u, v, t) ZYk (u,v,1)) (2.9)

where the sum is over all permutations on 3 elements. Note that (S}/(1,1,1));; = 0 for all 4, j and
all k > 1. One of the main results of [5] is that for any finite set of points C C S™~!

> S yrozy-2) =0 (2.10)
(z,y,2)eC3

The matrices S}} play the role of the constraints A; in the general SDP problem (2.6). Positivity
constraints (2.9) give rise to a general SDP bound on the cardinality of point sets obtained in [5],
where it was used to improve upper bounds on k(n) in small dimensions. In the next section we
state a specialization of this bound for the case of 2-distance sets.

As a final remark, we note that constraints (2.8) arise from the unrestricted action of GG on
57~ Constraints (5.3) are obtained by considering only actions that fix an arbitrary given point
on the sphere. Further SDP bounds can be obtained by considering zonal matrices that arise from
actions that fix any given number of points; however even for two points, actual evaluation of the
bounds requires significant computational effort [64].
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2.3 The bounds

The general SDP bound on spherical codes of [5] specializes to our case as follows.

Theorem 2.3 Let C be a spherical two-distance set with inner products a and b. Let p be a
positive integer. The cardinality |C| is bounded above by the solution of the following semidefinite
programming problem:

1+ 1/3max(z1 + z2) (2.11)
subject to
1 0 1/0 1 0 0
<0 0> T3 <1 1) (o1 +22)+ (0 1> Watoatos b 20 @1
3+ G (@)ay + G (b)zy >0, i=1,2,....p (2.13)
S(1,1,1) + Si*(a, a, 1)z +57" (b, b, 1)z + Si*(a, a, a)x3 (2.14)

+ S (a,a,b)xy + S}*(a,b,b)xs + S;'(b,b,b)xg =0, i=0,1,...

2;>0,j=1,...,6,
where S;(-,-,-) are (p — i+ 1) x (p — i + 1) matrices defined in (5.3).

In this theorem the variables x1, xo refer to the number of ordered pairs of vectors in C with
inner product a and b respectively; namely we have x; = 3a;,7 = 1,2. We note that the SDP
problem seeks to optimize the same linear form as the LP problem, but adds more constraints on
the configuration. Because of this, Theorem 2.3 usually gives tighter bounds than Theorem 2.2.
This fact is evident from the table below and is also known from the calculation of kissing numbers
in [5].

2.3.1 Calculation of the bound

Several remarks are in order. First, implementation of SDP for two-distance sets differs from
earlier computations in [5, 64] in that in our case there are no limits on the minimum separation
of the points. Next, we restrict our calculations to the case p < 5 as no improvement is observed
for larger values. Finally, by a result Larman et al. 1.1, we obtain a family of SDP bounds
parametrized by a. Since b (a) > —1,a + bg(a) < 0, we get that a € Ij, := [0, 522+ ). Moreover,
if =1 < b < a <0, then |C| cannot be large by the Rankin bounds [71], and if a + b > 0 then |C

is bounded by (2.3). We conclude as follows.

Theorem 2.4 Let SDP(a) be the solution of the SDP problem (2.11)-(2.14), where b = by,(a). Let
C be a spherical two-distance set with inner products a, b, then

n(n+1)/2, a+b>0
C| <{SDP(a), acl;
n+1, —-1<b<a<0.

For instance, for n = 23,k = 3 we obtain that [, = [0,0.2). Partitioning I} into a number of
small segments, we plot the value SDP(a) as a function of a evaluated at the nodes of the partition.
The result is shown in Fig 2.3. A part of the segment around the maximum appears in the right part
of Fig 2.3. This computation gives an indication of the answer, but in principle the value SDP(a)
could oscillate between the nodes of the partition. Ruling this out requires perturbation analysis
of the SDP problem which is not immediate.
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2.3.1.1 Dual problem
The dual problem of (2.11)-(2.14) has the following form.

p
1+min{2ai+ﬁn—i—(Fo,Sg(l,l,l))} (2.15)
1=1
subject to
511 622
(512 522) =0
p
2612+ Bz + Y (G (a) + 3(F;, SP(a,a,1))) < 1 (2.16)
=1
p
2612 + Bz + Y (G (b) + 3(Fy, ST(b,b,1))) < 1 2.17)
=1
p
Baa + > (Fy, S} (y1,y2,y3)) <0 (2.18)
=0

where (y1,v2,v3) € {(a,a,a), (a,a,b),(a,b,b),(b,b,b)}
(07} ZO, Fz EO, izl,...,p.

We need to estimate from above the maximum value of this problem over a € I}, = [a1, as].
Accounting for a continuous value set of the parameter in SDP problems is a challenging task. We
approach it by employing the sum-of-squares method. Constraints (2.16)-(2.18) impose positivity
conditions on some univariate polynomials of a for a € I;. The following sequence of steps
transforms the constraints to semidefinite conditions. Observe that a polynomial f(a) of degree at
most m satisfies f(a) > 0 for a € I, if and only if the polynomial of degree at most 2m

2
a asa
1+ as )Z

FHa)= (14 e (5

for all a € R. Next, a polynomial nonnegative on the entire real axis can be written as a sum of
squares, f(z) = >_.7?(x), where the r; are polynomials. Further, by a result of Nesterov [68], a
polynomial f(z) of degree 2m is a sum of squares if and only if there exists a positive semidefinite
matrix @ such that f = XQX!, where X = (1,z,22,...,2™). Thus, constraints (2.16)-(2.18)
can be transformed to semidefinite conditions.

As a result, we obtain an SDP problem that can be solved by computer. We solved the
resulting problem for 7 < n < 96 using the Matlab toolbox SOSTOOLS [83] in the YALMIP en-
vironment [82]. An advantage in using SOSTOOLS is that it accepts a as an SDP variable, thereby
accounting for all the values of a in the segment. Thus, we obtain the value max SDP(a), a € Ij.
However, this may impose excessive constraints on the value of the SDP problem because all the
conditions for different values of a are involved at the same time. To work around this accumula-
tion, we use a sub-partitioning of the segment Ij into smaller segments. For each of them, SOS-
TOOLS outputs the largest value of the minimum of the SDP problem over all a in the segment. It
turns out that, in many cases, the maximum of these solutions is smaller than max SDP(a), a € I,
computed directly by the package. The estimates of the answer computed from the primal problem
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n=23, k=3, a<[0,0.2] n=23, k=3, ac [0.165,0.2]
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a a

Figure 2.3: Evaluation of the SDP bound on g(23)

serve as a guidance of the needed step length of the partition. The solution of the sum-of-squares
SDP optimization problem provides a rigorous proof for the estimates obtained by discretizing
the primal problem (2.11)-(2.14). For instance, for n = 23 we partition I3 into 20 subsegments,
finding 276.5 as the maximum value of the dual SDP problem for a € I3, and similarly for other
dimensions.

2.3.1.2 Results

The results of the calculation are summarized in the table below. The part of the table for 7 < n <
40, except for the values of the SDP bound, is from [66]. The improvement provided by Theorem
2.3 over the LP bound is quite substantial even for relatively small dimensions. The LP bound is
above n(n + 1)/2 for n > 40 and is not included starting with n = 41. The cases n = 46,78
and n > 94 are not resolved by SDP, although for n = 94 we still obtain an improvement over
the harmonic bound (2.2). The value of £ shown in the table accounts for the largest value of the
SDP problem among the possible choices of k. This guarantees that the value SDP(a) is equal to
or smaller than the number in the table for all the possible values of the inner products a, b in the
point set.

Notice that for n = 46,78 the SDP bound coincides with the bound (2.2). For n = 23
the results of [66] leave two possibilities, g(n) = 276 and 277. The SDP bound resolves this for
the former, establishing the corresponding part of the claim in (4.3). As is seen from Fig 2.3, the
largest value of SDP(a) is attained for @ = 0.2 and is equal to 276. This case corresponds to 276
equiangular lines in R?3 with angle arccos 0.2, which can be constructed either using strongly
regular graphs or the Leech lattice (see [58] for details).
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Chapter 3

New bounds for equiangular lines

A set of lines in R™ is called equiangular if the angle between each pair of lines is the same.
We address the question of determining the maximum size of equiangular line sets in R", us-
ing semidefinite programming to improve the upper bounds on this quantity. Improvements are
obtained in dimensions 24 < n < 136. In particular, we show that the maximum number of
equiangular lines in R™ is 276 for all 24 < n < 41 and is 344 for n = 43. This provides a partial
resolution of the conjecture set forth by Lemmens and Seidel (1973).

3.1 Introduction

A set of lines in a metric space is called equiangular if the angle between each pair of lines is
the same. We are interested in upper bounds on the number of equiangular lines in R™. In other
words, if we have a set of unit vectors S = {x;}}, and there is a constant ¢ > 0 such that
|(zi, ;)| = cforall1 < j < M, whatis the maximum cardinality of S? Denote this quantity
by M (n). The problem of determining M (n) looks elementary but a general answer has so far
proved elusive: The maximum number of equiangular lines in R™ was known only for 16 values
of the dimension n. The history of this problem started with Hanntjes [48] who found M (n) for
n = 2 and 3 in 1948. The pictures are shown in Fig 3.1 and Fig 3.2.

Van Lint and Seidel [60] found the largest number of equiangular lines for4 < n < 7. In
1973, Lemmens and Seidel [58] used linear-algebraic methods to determine M (n) for most values
of n in the region 8 < n < 23. Gerzon (see [58]) gave the following upper on M (n).

Figure 3.1: Maximum equiangular lines in R2: 3 lines through opposite vertices of a regular
hexagon.
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Figure 3.2: Maximum equiangular lines in R3: 6 lines through opposite vertices of an icosahedron.

Theorem 3.1 (Gerzon) If there are M equiangular lines in R™, then

n(n+1)

M <
- 2

(3.1
Gerzon’s upper bound can be attained only for a very small number of values of n. Currently, such
constructions are known only for n = 2, 3,7, and 23. Neumann (see [58], Theorem 3.2) proved a
fundamental result in this area:

Theorem 3.2 (Neumann) If there are M equiangular lines in R™ with angle arccos o and M >
2n, then 1/ is an odd integer.

Note that if M attains the Gerzon bound, then (n + 2)042 = 1 [58, Thm.3.5]. Therefore, if the
cardinality of an equiangular line set attains the Gerzon bound, then n has to be 2 or 3 or an odd
square minus two and the angle between pairs of lines is arccos 1/(v/n + 2).

A set of unit vectors S = {1, z2,... } C R" is called two-distance if (x;, ;) € {a, b} for
some a, b and all ¢ # j.

If the spherical two-distance set gives rise to equiangular lines, then a = —b, so Theorem
1.1 implies that @ = 1/(2k — 1), which is the statement of the Neumann theorem. The assumption
of Theorem 1.1 is more restrictive than of Theorem 3.2, but in return we obtain an upper bound
on k. For instance, if n = 40, then k£ can be only 2 or 3, so the angle has to be arccos o, where
a = 1/3 or 1/5. The assumption of Theorem 1.1 is satisfied since there exist equiangular line sets
with M > 2n + 4 for all n > 15.

The known bounds on M (n) for small dimensions are summarized in Table 3.1 [58], [78],
[45]; in particular, M (n) was known exactly only if 2 < n < 13;n = 15,21,22,23. In the
unsettled cases the best known upper bound in M (n) is usually the Gerzon bound. Lemmens and
Seidel [58, Thm. 4.5] further showed that

My3(n) <2(n—1), n>16, (3.2)

where M, (n) be the maximum size of an equiangular line set when the value of the angle is
arccos a. They also conjectured that M 5(n) = 276 for 23 < n < 185, observing that if this
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n Mmn) | 1/« n Mn) | 1/«
2 3 2 17 48-50 5
3 6 V5 18 48-61 5
4 6 |35 19 72-76 | 5
5 10 3 20 90-96 5
6 16 3 21 126 5
7T<n<13 28 3 22 176 5
14 28-29 | 3;5 23 276 5
15 36 5 24<n<42 | >2276 | 5
16 40-41 5 43 >344 | 7
Table 3.1: Known bounds on M (n) in small dimensions
n M(n) | SDP bound n M(n) | SDP bound
3 6 6 18 48-61 61
4 6 6 19 72-76 76
5 10 10 20 90-96 96
6 16 16 21 126 126
7T<n<13 28 28 22 176 176
14 28-29 30 23 276 276
15 36 36 24 <n <41 | 276 276
16 40-41 42 42 > 276 288
17 48-50 51 43 344 344

Table 3.2: Bounds on M (n) including new results

conjecture is true, then M (n) = 276 for 24 < n < 41 and M (43) = 344. Note that generally we
have [58]:
n(l — a?)

Ma(n) < 1 — na?

(3.3)

valid for all « such that the denominator is positive. This inequality is sometimes called the
relative bound as opposed to the “absolute bound” of (3.1).

In this paper we use the semidefinite programming (SDP) method to derive some new
bounds on M (n). Our main results are summarized in Table 3.2. In particular, exact values of
M (n) are obtained for 24 < n < 41 and for n = 43 where previous results gave divergent bounds:
we show that M (n) = 276 for 24 < n < 41 and M (43) = 344. These results are established by
performing computations with SDP. We also show that M /5(n) = 276 for 23 < n < 60. These
results resolve a part of the Lemmens-Seidel conjecture and enable us to obtain the results in Table
3.2. For 44 < n < 136, we also obtain new upper bounds on M (n), improving upon the Gerzon
bound, although no new exact values are found in this range. Below in the paper we give a more
complete table of the computation results.

An interesting question relates to the asymptotic behavior of M (n) for n — oo. For a long
time the best known constructions were able to attain the growth order of M (n) = Q(n), until D.
de Caen [23] constructed a family of 2(n + 1)? equiangular lines in R" for n = 3-2%~1 ¢ € N.
Thus, currently the best asymptotic results are summarized as follows:

M
lim sup (n)

n—00 n

(3.4)

2
- < <
g = >

)

DO | =
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where the upper bound is from (3.1). The question of the correct order of growth represents a
difficult unresolved problem. Contributing to the study of the asymptotic bounds, we show that
forn = 3(2k — 1)> — 4 and o = 51, for all integer k > 2,

Ma(n) < W (3.5)

3.2 SDP bounds for equiangular lines

Many problems in operations research, combinatorial optimization, control theory, and discrete
geometry can be modelled or approximated as semidefinite programming. SDP optimization prob-
lems are usually stated in the following form:

minc!

m
subjectto  Fp + Z Fix; =0, zeR™,

i=1
where ¢ € R™ is a given vector of coefficients, F;,7 = 0,1,... are n X n symmetric matrices,
and > means that the matrix is positive semidefinite. SDP problems fall in the class of convex
optimization problems since the domain of feasible solutions is a convex subset of R". For the
case of diagonal matrices Fj, SDP turns into a linear programming (LP) problem. Properties of
SDP problems and algorithms for their solution are discussed, for instance, in [80]. Most SDP
solvers such as CSDP, Sedumi, SDPT3 use interior point methods originating with Karmarkar’s
celebrated algorithm (We used CVX toolbox in Matlab.)

Let C C S ! be a set of unit vectors in R™ such that (z,2') < aforallz,2’ € C,x # 2/ (a
spherical code). As shown by Bachoc and Vallentin [5], the problem of estimating the maximum
size of C can be stated as an SDP problem. In particular, for a = 1/2, this is the famous “kissing
number problem”, i.e., the question about the maximum number of nonoverlapping unit spheres
that can touch a given unit sphere. A particular case of the main result in [5] was used in [13] to
find new bounds on the maximum cardinality of spherical two-distance sets.

Let G,gn) (t),k =0,1,... denote the Gegenbauer polynomials of degree k defined in (2.7)
and a matrix S} (u, v, t) defined in (2.9). Using the approach of [13], we obtain the following SDP
bound on M (n).

Theorem 3.3 Let C be a equiangular lines with inner product values either a or —a. Let p be the
positive integer. The cardinality |C| is bounded above by the solution of the following semi-definite
programming problem :

1
1+ g max(xl + xg) 3.6)
subject to
10 1,01 00

(01)+§<11)(:B1+:E2)+(01)(x3+1‘4—|—x5+:n6)i0 3.7)

Sp(1,1,1) + Sg(a,a, 1)z + SE(—a, —a,1)xs + S (a,a,a)xs
+ S} (a,a,—a)xs + Sy (a, —a, —a)xs + Sp(—a, —a,—a)xe = 0 (3.8)
3+ G (@)1 + G (—a)as > 0, (3.9)

where k =0,1,--- ,pandx; >0,j=1,--- 6.
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To compute bounds on M (n), we found solutions of the SDP problem (3.6)-(3.9), restricting
ourselves to the case our calculation to the case p = 5 since we need to cut the matrix size to
be finite. In Table 3.3 we list the values of SDP bounds for all possible angles except the angle
arccos % which is not included because of (3.2) (note that the SDP bounds for other angles are
much greater than 2(n — 1)). The column labelled ‘max’ refers to the maximum of the SDP
bounds among all possible angles. The last column in the table gives the value of the angle for
which the maximum is attained.

Some comments on the tables are in order. Observe that M5 = 276 for 23 < n < 60.
Combined with the results of [58], this implies that M (n) = 276 for 23 < n < 41 and M (43) =
344. The case n = 42 remains open since we only obtain that 276 < M (42) < 288 for the angle
arccos 1/7.

Improvements of the Gerzon upper bound (3.1) are obtained for n < 136. The last 3 entries
in Table 3.3 produced no improvements, and are marked by an asterisk because of that. Similarly,
the SDP problem yielded no improvements for higher dimensions.

An interesting, unexplained observation regarding this table is that the SDP bound for
M,(n) has long stable ranges for dimensions starting with the value n = d? — 2, where d is
an odd integer and o = 1/d. For instance, one such region begins with d = 5, another ones with
d = 7. The same phenomenon can observed for d = 9 where the SDP value M, (n) < 3160 is
obtained for all values of n satisfying 79 < n < 227 and for d = 11 where the value 7140 appears
for all n, 119 < n < 347.

Note that the SDP bound gives the same value as the Gerzon bound for n = 47,79 and 119,
and that these three dimensions are of the form n = (2k — 1)? — 2, where k > 2 is a positive
integer. Bannai, Munemasa, and Venkov [9] showed that for n = 47,79 the maximum possible
size M (n) cannot attain this value while the case n = 119 is still open. The result of [9] relies
on the fact that an equiangular line set in R™ with cardinality % gives rise to a spherical two-
distance set of size (n —1)(n+2)/2in R"~!, and such sets are related to tight spherical 4-designs
whose existence can be sometimes ruled out.

Based on the earlier results and our calculations, we make the following

CONJECTURE: There exist 1128 equiangular lines in R*® with angle arccos(1/7) and 3160
equiangular lines in R® with angle arccos(1/9).

If this conjecture is true, then M (n) = 1128 for 48 < n < 75 and M (n) = 3160 for
80 <n < 116.

3.3 Tight spherical designs of harmonic index 4 and equiangular lines

The definitions of spherical designs and spherical designs of harmonic index ¢ have been defined
in (1.3) and (1.7).

The reason to define spherical design of harmonic index ¢ is that we try to find weaker
requirements of original spherical ¢ design. Namely, spherical ¢ designs require that (1.7) holds
for Harm;(R"™) where ¢ = 1,2,--- ,t, but spherical designs of harmonic index ¢ only require
1 = t. An LP bound for spherical designs of harmonic index ¢ was derived in [11]. Similarly, if
this bound is attained, then the design is called tight.

Our interest in tight spherical designs of a fixed harmonic index is motivated by a result
in [11] which shows that a tight design of index 4 gives rise to an equiangular line set in R"
with angle arccosa = +/3/(n+4). Since a = 52~ for some integer k > 2, we find that
n = 3(2k — 1)? — 4. These considerations motivate the following result.
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n | /5| /7 | 1/9 | 1/11 | 1/13 | 1/15 | max | Gerzon | angle
22 | 176 | 39 29 | 26 25 24 | 176 253 1/5
23 | 276 | 42 31 28 26 25 | 276 276 1/5
24 1276 | 46 33 | 29 27 26 | 276 300 1/5
25 1276 | 50 35 | 31 29 28 | 276 325 1/5
26 | 276 | 54 37 | 32 30 29 | 276 351 1/5
27 1276 | 58 40 | 34 31 30 | 276 378 1/5
28 | 276 | 64 42 | 36 33 31 | 276 406 1/5
29 | 276 | 69 44 | 37 34 33 | 276 435 1/5
30 | 276 | 75 47 | 39 36 34 | 276 465 1/5
311276 | 82 49 | 41 37 35 | 276 496 1/5
321276 | 90 52 | 43 39 37 | 276 528 1/5
331276 | 99 55 | 45 40 38 | 276 561 1/5
34 1276 | 108 | 57 | 46 42 39 | 276 595 1/5
351276 | 120 | 60 | 48 43 41 | 276 630 1/5
36 | 276 | 132 | 64 | 50 45 42 | 276 666 1/5
37 | 276 | 148 | 67 | 52 47 44 | 276 703 1/5
381276 | 165 | 70 | 54 48 45 | 276 741 1/5
39 1276 | 187 | 74 | 57 50 46 | 276 780 1/5
40 | 276 | 213 | 78 | 59 52 48 | 276 820 1/5
41 | 276 | 246 | 82 | 6l 53 49 | 276 861 1/5
42 1276 | 288 | 86 | 63 55 51 | 288 903 177
43 1276 | 344 | 90 | 66 57 52 | 344 946 1/7
44 1 276 | 422 | 95 | 68 59 54 | 422 990 1/7
45 1 276 | 540 | 100 | 71 60 56 | 540 1035 1/7
46 | 276 | 736 | 105 | 73 62 57 | 736 1081 177
47 1276 | 1128 | 110 | 76 64 59 | 1128 | 1128 1/7
48 | 276 | 1128 | 116 | 78 66 60 | 1128 | 1176 1/7
49 | 276 | 1128 | 122 | 81 68 62 | 1128 | 1225 1/7
50 | 276 | 1128 | 129 | &4 70 64 | 1128 | 1275 177
511|276 | 1128 | 136 | 87 72 65 | 1128 | 1326 177
52 1276 | 1128 | 143 | 90 74 67 | 1128 | 1378 1/7
53 | 276 | 1128 | 151 | 93 76 69 | 1128 | 1431 1/7
54 1276 | 1128 | 160 | 96 78 70 | 1128 | 1485 1/7
551|276 | 1128 | 169 | 100 | 81 72 | 1128 | 1540 177
56 | 276 | 1128 | 179 | 103 | 83 74 | 1128 | 1596 1/7
57 {276 | 1128 | 190 | 106 | 85 76 | 1128 | 1653 177
58 | 276 | 1128 | 201 | 110 | 87 77 | 1128 | 1711 1/7
59 | 276 | 1128 | 214 | 114 | 90 79 | 1128 | 1770 177
60 | 276 | 1128 | 228 | 118 | 92 81 | 1128 | 1830 177
61 | 279 | 1128 | 244 | 122 | 94 83 | 1128 | 1891 177
62 | 290 | 1128 | 261 | 126 | 97 85 | 1128 | 1953 177
63 | 301 | 1128 | 280 | 130 | 99 87 | 1128 | 2016 1/7
64 | 313 | 1128 | 301 | 134 | 102 | 89 | 1128 | 2080 1/7
65 | 326 | 1128 | 325 | 139 | 105 | 91 | 1128 | 2145 1/7
66 | 339 | 1128 | 352 | 144 | 107 | 92 | 1128 | 2211 177
67 | 353 | 1128 | 382 | 148 | 110 | 94 | 1128 | 2278 177
68 | 367 | 1128 | 418 | 153 | 113 | 97 | 1128 | 2346 177
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n 1/5 177 1/9 | 1/11 | 1/13 | 1/15 | max | Gerzon | angle
69 | 382 | 1128 | 460 | 159 | 115 | 99 | 1128 | 2415 177
70 | 398 | 1128 | 509 | 164 | 118 | 101 | 1128 | 2485 177
71 | 416 | 1128 | 568 | 170 | 121 | 103 | 1128 | 2556 1/7
72 | 434 | 1128 | 640 | 176 | 124 | 105 | 1128 | 2628 1/7
73 | 453 | 1128 | 730 | 182 | 127 | 107 | 1128 | 2701 1/7
74 | 473 | 1128 | 845 | 188 | 130 | 109 | 1128 | 2775 177
75 | 494 | 1128 | 1000 | 195 | 134 | 112 | 1128 | 2850 1/7
76 | 517 | 1128 | 1216 | 202 | 137 | 114 | 1216 | 2926 1/9
77 | 542 | 1128 | 1540 | 210 | 140 | 116 | 1540 | 3003 1/9
78 | 568 | 1128 | 2080 | 217 | 144 | 118 | 2080 | 3081 1/9
79 | 596 | 1128 | 3160 | 225 | 147 | 121 | 3160 | 3160 1/9
80 | 626 | 1128 | 3160 | 234 | 151 | 123 | 3160 | 3240 1/9
81 | 658 | 1128 | 3160 | 243 | 154 | 126 | 3160 | 3321 1/9
82 | 693 | 1128 | 3160 | 252 | 158 | 128 | 3160 | 3403 1/9
83 | 731 | 1128 | 3160 | 262 | 162 | 130 | 3160 | 3486 1/9
84 | 772 | 1128 | 3160 | 272 | 166 | 133 | 3160 | 3570 1/9
85 | 816 | 1128 | 3160 | 283 | 170 | 136 | 3160 | 3655 1/9
86 | 866 | 1128 | 3160 | 294 | 174 | 138 | 3160 | 3741 1/9
87 | 920 | 1128 | 3160 | 307 | 178 | 141 | 3160 | 3828 1/9
88 | 979 | 1128 | 3160 | 320 | 182 | 143 | 3160 | 3916 1/9
89 | 1046 | 1128 | 3160 | 333 | 186 | 146 | 3160 | 4005 1/9
90 | 1120 | 1128 | 3160 | 348 | 191 | 149 | 3160 | 4095 1/9
91 | 1203 | 1128 | 3160 | 364 | 196 | 152 | 3160 | 4186 1/9
92 | 1298 | 1128 | 3160 | 380 | 200 | 154 | 3160 | 4278 1/9
93 | 1406 | 1128 | 3160 | 398 | 205 | 157 | 3160 | 4371 1/9
94 | 1515 | 1128 | 3160 | 417 | 210 | 160 | 3160 | 4465 1/9
95 | 1556 | 1128 | 3160 | 438 | 215 | 163 | 3160 | 4560 1/9
96 | 1599 | 1128 | 3160 | 460 | 220 | 166 | 3160 | 4656 1/9
97 | 1644 | 1128 | 3160 | 485 | 226 | 169 | 3160 | 4753 1/9
98 | 1691 | 1128 | 3160 | 511 | 231 | 172 | 3160 | 4851 1/9
99 | 1739 | 1128 | 3160 | 540 | 237 | 176 | 3160 | 4950 1/9
100 | 1790 | 1128 | 3160 | 571 | 243 | 179 | 3160 | 5050 1/9
101 | 1842 | 1128 | 3160 | 606 | 249 | 182 | 3160 | 5151 1/9
102 | 1897 | 1128 | 3160 | 644 | 255 | 185 | 3160 | 5253 1/9
103 | 1954 | 1128 | 3160 | 686 | 262 | 189 | 3160 | 5356 1/9
104 | 2014 | 1128 | 3160 | 734 | 268 | 192 | 3160 | 5460 1/9
105 | 2077 | 1128 | 3160 | 787 | 275 | 196 | 3160 | 5565 1/9
106 | 2142 | 1128 | 3160 | 848 | 282 | 199 | 3160 | 5671 1/9
107 | 2211 | 1128 | 3160 | 917 | 289 | 203 | 3160 | 5778 1/9
108 | 2282 | 1128 | 3160 | 997 | 297 | 206 | 3160 | 5886 1/9
109 | 2358 | 1128 | 3160 | 1090 | 305 | 210 | 3160 | 5995 1/9
110 | 2437 | 1128 | 3160 | 1200 | 313 | 214 | 3160 | 6105 1/9
111 | 2521 | 1128 | 3160 | 1332 | 321 | 218 | 3160 | 6216 1/9
112 | 2609 | 1128 | 3160 | 1493 | 330 | 222 | 3160 | 6328 1/9
113 | 2702 | 1128 | 3160 | 1695 | 339 | 226 | 3160 | 6441 1/9
114 | 2800 | 1128 | 3160 | 1954 | 348 | 230 | 3160 | 6555 1/9
115 | 2904 | 1128 | 3160 | 2300 | 357 | 234 | 3160 | 6670 1/9
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n 1/5 1/7 1/9 | 1/11 | 1/13 | 1/15 | max | Gerzon | angle
116 | 3015 | 1128 | 3160 | 2784 | 367 | 238 | 3160 | 6786 1/9
117 | 3132 | 1128 | 3160 | 3510 | 378 | 242 | 3510 | 6903 1/11
118 | 3257 | 1128 | 3160 | 4720 | 388 | 247 | 4720 | 7021 1/11
119 | 3390 | 1128 | 3160 | 7140 | 399 | 251 | 7140 | 7140 | 1/11
120 | 3532 | 1128 | 3160 | 7140 | 411 | 256 | 7140 | 7260 | 1/11
121 | 3684 | 1128 | 3160 | 7140 | 423 | 260 | 7140 | 7381 1/11
122 | 3848 | 1128 | 3160 | 7140 | 436 | 265 | 7140 | 7503 1/11
123 | 4024 | 1128 | 3160 | 7140 | 449 | 270 | 7140 | 7626 1/11
124 | 4214 | 1128 | 3160 | 7140 | 462 | 275 | 7140 | 7750 | 1/11
125 | 4419 | 1128 | 3160 | 7140 | 477 | 280 | 7140 | 7875 1/11
126 | 4643 | 1128 | 3160 | 7140 | 492 | 285 | 7140 | 8001 1/11
127 | 4887 | 1128 | 3160 | 7140 | 508 | 290 | 7140 | 8128 1/11
128 | 5153 | 1128 | 3160 | 7140 | 524 | 295 | 7140 | 8256 | 1/11
129 | 5447 | 1128 | 3160 | 7140 | 541 | 301 | 7140 | 8385 1/11
130 | 5770 | 1128 | 3160 | 7140 | 560 | 306 | 7140 | 8515 1/11
131 | 6130 | 1128 | 3160 | 7140 | 579 | 312 | 7140 | 8646 | 1/11
132 | 6531 | 1130 | 3160 | 7140 | 599 | 317 | 7140 | 8778 1/11
133 | 6982 | 1158 | 3160 | 7140 | 620 | 323 | 7140 | 8911 1/11
134 | 7493 | 1187 | 3160 | 7140 | 643 | 329 | 7493 | 9045 1/5
135 | 8075 | 1218 | 3160 | 7140 | 667 | 336 | 8075 | 9180 1/5
136 | 8747 | 1249 | 3160 | 7140 | 692 | 342 | 8747 | 9316 1/5
*137 | 9528 | 1282 | 3160 | 7140 | 719 | 348 | 9528 | 9453 1/5
*138 | 10450 | 1315 | 3160 | 7140 | 747 | 355 | 10450 | 9591 1/5
*139 | 11553 | 1350 | 3160 | 7140 | 778 | 362 | 11553 | 9730 1/5

Table 3.3: Values of the SDP bound on M (n),22 < n < 139
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Theorem 3.4 Let n = 3(2k — 1)2 — 4,k > 2. The cardinality N of any equiangular line set in
R™ with inner product a = 1/(2k — 1) satisfies the inequality
1 2
15| < (n—l—)én—i—) (3.10)
Proof To prove this result we use the LP bound of [36] that has the following form: Let
T C [-1,1]. Let S = {x1,x2,...,xN} be a set of unit vectors in R" such (x;,xz;) € T U {1}.
Let f(t) = >, frG}(t) be a polynomial such that fy > 0, fr, > 0,k > 1 and that f(t) < 0 for
allt € T. Then

1
15| < [f}O)J. 3.11)
Consider the polynomial
2 2
()= —a )(t S N )

Let X C R" be an equiangular line set with inner product a. Then T" = {£a}, and f(¢) = 0 for
t € T. Computing the Gegenbauer expansion of f(t), we obtain

a*n? + 6a’n(a® — 1) + 8a* — 6a?(n +2) +3

fo=- n2+6m+ 8
fi=fo=f3=0

fu = n?—1

YT+ 2)(n+4)

We need to check that f > 0. Substituting the values of n and a, we obtain

8k(k —1)

>0 fork > 2.
k= 1) (12 — 12k +1) =0 fork =

fo=

Thus, f(t) satisfies the conditions of the LP bound, and we obtain

9] < f(1) _ (a2 —1)(n+2)(n + a®n + 4a? — 2)
~ fo a*n? + 6a*n + 8a* — 6an — 1242 + 3

In particular, putting a = 2;—71 andn = 3(2k — 1)? — 4 = 12k? — 12k — 1, we obtain

f)  (n+1)(n+2)

fo 6

This theorem gives infinitely many values of n for which the upper bound M, (n) is strictly
less than the Gerzon bound, yielding the asymptotic constant 1/6 for the growth rate of the quantity
My (n) (cf. (3.4)-(3.5)).

Remark 3.1 Observe that the relative bound (3.3) is an instance of the LP bound (3.11); see [36].
Thus, the SDP bound (3.6)-(3.9) is as strong or stronger than the bound (3.3).

Remark 3.2 Using SDP, we further show that for some dimensions the LP bound (3.10) cannot
be attained. Indeed, for k = 3,4,5 we obtain the values of the dimension n = 71,143,239,
respectively, and the SDP bound implies that

My 5(71) < 416, My 7(143) < 1506, M 59(239) < 3902,
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which is much smaller than the values 876, 3480,9640 obtained from (3.10). Extending these
calculations, we have shown that for k < 54 and n = 3(2k — 1)? — 4 < 34343 the SDP bound
improves upon the LP bound (3.10).

In conclusion, we note that the value of the maximum in the LP problem for the maximum
cardinality of equiangular line sets with a given angle can be explicitly characterized. The LP
problem has the following form:

My(n) < max{l + x; + z2,21 > 0,29 > 0} (3.12)
subject to
1+ Gi(a)x1 + GR(—a)ze >0 fork=1,2,.... (3.13)
Theorem 3.5 Leta € (0,1),
gn = 08 yG;;l(a,)\ (-14)

where k is even and such that G} (a) < 0. Then
Mq(n) < gn +1,
where the value gy, + 1 is the solution of the LP problem (3.12),(3.13).
Proof Let k be even, then G (t) is an even function, so inequalities (3.13) take the form
1+ Gp(a)(x1 +22) >0, k=2m,meN. (3.15)

These inequalities define a set of half-planes whose boundaries are parallel to the objective func-
tion. The inequalities for odd % are bounded by lines that are perpendicular to the boundaries of
the even-indexed constraints, and therefore can be disregarded. We conclude that the maximum is
attained on the line 1 + G}(a)(x1 + x2) = 0 for some even k. The inequalities with & such that
G} (a) > 0 are trivially satisfied, therefore, we consider only those values of & when G} (a) < 0.
Eq. (3.15) implies that, for all even k,

1+ T2 S —— = o .
P =) GR(a)]

This completes the proof.

To give an example of using this theorem, take n = 71 and a = % To find a bound on
M,(n), we estimate the quantity g,, in (3.14) by computing

. 1
ogrlgglloo |G,(:1)(1/5)\

for all even £ such that G,(:l) (1/5) < 0. The smallest value is obtained for k = 4, and Gyl) (1/5) =
—1/875. Thus, we obtain M /5(71) < 876. Of course, it could be possible that for greater k we
obtain a smaller value of the bound, but this is not supported by our experiments (although we do
not have a proof that k = 4 is the optimal choice).

Experiments also suggest that & = 4 may be the universal optimal choice for infinitely
many values of n and a. Indeed, we have

(n+2)(n+4)z* — 6(n+2)z% +3
n?—1 '

Gi() =
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Taking n = 3(2t — 1)2 —4and a = 1/(2t — 1), where t > 2, we obtain the expression

1
Gi(a)

(n+1)(n+2)

+1=2t(t—1)(12t> =12t + 1) = ;

which coincides with the LP bound (3.10).
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Chapter 4

Two-distance tight frames

A finite collection of unit vectors S C R" is called a spherical two-distance set if there are two
numbers a and b such that the inner products of distinct vectors from S are either a or b. When
a + b # 0, we derive new structural properties of the Gram matrix of a two-distance set that
also forms a tight frame for R™. One of the main results of this paper is a new correspondence
between two-distance tight frames and certain strongly regular graphs. This allows us to use
spectral properties of strongly regular graphs to construct two-distance tight frames. Several new
examples are obtained using this characterization.

4.1 Introduction

This chapter is devoted to new ideas of constructing spherical two-distance sets that at the same
time form tight frames for R™.

4.1.1 Two-distance sets

A finite collection of unit vectors S C R" is called a spherical two-distance set if there are two
numbers a and b such that the inner products of distinct vectors from S are either a or b. If in
addition ¢ = —b, then .S defines a set of equiangular lines through the origin in R". Equiangular
lines form a classical subject in discrete geometry following foundational papers of Van Lint,
Seidel, and Lemmens [60, 58]. The main results in this area are concerned with bounding the
maximum size g(n) of the spherical two-distance set in n dimensions. A well-known general
upper bound was obtained in the work of Delsarte et al. [36] who also constructed some examples
of two-distance sets. Recently Musin [66] found the exact values of g(n) for 7 < n < 39 except
the case n = 23. Barg and Yu [13] used the semidefinite programming method to resolve the case
for dimension 23 as well as to obtain exact answers for n < 93 except the dimensions n = 46, 78.
As far as constructions are concerned, the only known general method is rather trivial. Namely,
letey,..., e, be the standard basis in R™*!. The set

S={ei+e,1<i<j<n+1} 4.1

forms a spherical two-distance set in the plane x; + - - - + x,,+1 = 2 (after scaling), and therefore
g(n) > n(n+1)/2,n > 2. Isolated examples of two-distance sets were constructed in [36, 61].
The following theorem summarizes the state of the art for g(n) including the results of all the
papers cited above.
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Theorem 4.1 ([36, 61, 66, 13]) We have g(2) = 5,9(3) = 6,9(4) = 10,9(5) = 16,9(6) =
27, 9(22) = 275,

n(n+1)/2 <g(n) <n(n+3)/2—1, n=46,78 (4.2)
g(n)=n(n+1)/2, 7<n<93,n#22 46,78, (4.3)

and 4465 < g(94) < 4492.Ifn > 95, then n(n + 1)/2 < g(n) < n(n + 3)/2 (The upper bound
here can sometimes be improved to n(n + 3)/2 — 1; see [13] for details).

This theorem shows that for most small values of the dimension n, construction (4.1) gives an
optimally sized two-distance set.

4.1.2 Finite unit-norm tight frames (FUNTFs)

A finite collection of vectors S = {xz;,7 € I} C R™ is called a finite frame for the Euclidean space
R™ if there are constants 0 < A < B < oo such that for all x € R®

Alla|P < 3 e, 2) 2 < Bl
el
If A = B, then S is called an A-tight frame. If in addition ||z;|| = 1 for all i € I, then S is a
unit-norm tight frame or FUNTF. If at the same time S is a spherical two-distance set, we call it a
two-distance tight frame. In particular, if the two inner products in S satisfy the condition a = —b,
then it is an equiangular tight frame or ETF.

The Gram matrix G of S is defined by G; = (z;,z;),1 < 1,5 < N, where N = |S|. If §
is a FUNTF for R", then it is straightforward to show that G has one nonzero eigenvalue A = N/n
of multiplicity n and eigenvalue O of multiplicity N — n, [50]

Frames have been used in signal processing and have a large number of applications in
sampling theory, wavelet theory, data transmission, and filter banks [25, 55, 56]. The study of
ETFs was initiated by Strohmer and Heath [77] and Holmes and Paulsen [52]. In particular,
[52] shows that equiangular tight frames give error correcting codes that are robust against two
erasures. Bodmann et al. [20] show that ETFs are useful for signal reconstruction when all the
phase information is lost. Sustik et al. [78] derived necessary conditions on the existence of ETFs
as well as bounds on their maximum cardinality.

Benedetto and Fickus [18] introduced a useful parameter of the frame, called the frame
potential. For our purposes it suffices to define it as F'P(S) = Zﬁlj:l |(xs, ;)| For a two-
distance frame we obtain

N
D Wiy z)|* = N+ 2Naa® + (N(N — 1) — 2N,)b?, (4.4)
ij=1

where N, = [{(i,7),i < j : (x;)x; = a}|. Moreover, if N > 2n + 1, Theorem 1.1 implies that
b = (ka —1)/(k — 1), where k is an integer between 2 and (1/2)(1 + v/2n). This gives some
information for a lower bound on F'P(S), but fortunately, a more general and concrete result is
known from [18].

Theorem 4.2 [18, Theorem.6.2] If N > n then

FP(S) > (4.5)

N2
n
with equality if and only if S is a tight frame.
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4.1.3 Previous research on frames and strongly regular graphs

The classic connection between equiangular line sets, 2-graphs, and strongly regular graphs (Sei-
del et al. [75, 36]; see also [41]) has been recently addressed in the context of frame theory, partic-
ularly in the study of ETFs [77, 52, 81]. The starting point of these studies can be summarized as
follows. Let L be an equiangular line set with angles a, —a. Let us choose one vector on each of
the lines of L (there are 2V possible choices) and denote this set of vectors by X = {z1,...,zn}.
Let G = X7 X be the Gram matrix of X. Writing G = I + a5, we define the Seidel matrix S
of the set X as a symmetric matrix with off-diagonal entries equal to +1. The Seidel matrix can
be also thought of as an adjacency matrix of a graph on | X| vertices, where —1 denotes adjacency
and 1 denotes non-adjacency.

Next we note that it is possible to choose the vectors in L so that some fixed vector, say 1,
has the same angle a to all the other vectors in the set X. Indeed, if (x1,x;) = a, then we include

x; in X, and otherwise if (x1, z;) = —a, we include —z;. This amounts to multiplying the matrix
X by a diagonal matrix D with 41 on the diagonal so that the new matrix S’ takes the form
0o 17
"= DSD = A 4.

In the language of graphs this operation is called Seidel switching, and the result of this switching
is a graph in which vertex vy is isolated from the rest of the vertices. Generally, there are 2V
graphs that are switching equivalent, and the collection of these graphs is called a switching class.
According to (4.6), the spectrum of S’ is the same as the spectrum of S, so all the graphs in the
switching class of X are co-spectral. The switching class of a graph is also known as a two-graph.
By the above arguments, the spectrum of the two-graph is well-defined.

Now suppose that X is an ETF, then G has exactly two eigenvalues, namely N/n and 0,
so the Seidel spectrum of the corresponding two-graph is {é(—l + N/n),—1/a}. Two-graphs
with two eigenvalues are called regular, and one of the basic results about them is that each of
the matrices S’ defined in (4.6) is the Seidel adjacency matrix of a strongly regular graph! [41,
Thm. 11.6.1]. This enables one to use the known results about the existence of strongly regular
graphs to construct new examples of ETFs. This line of thought was pursued in [52] and in
particular in the recent work by Waldron [81], resulting in new examples of ETFs in R™, n < 50.
We note that some of the examples in [81] are two-distance frames, even though this paper did not
emphasize the two-distance condition.

4.1.4 Contributions of this thesis

Motivated by the research on ETFs, in this thesis we study frames that are at the same time two-
distance sets and FUNTFs. Assume that the values of the inner product between distinct vectors in
S are either a or b. We prove that the distance distribution of the frame with respect to any vector
is the same (i.e., the Gram matrix G contains the same number of as in every row). Using this fact,
we establish a new relation between two-distance FUNTFs and strongly regular graphs, different
from the connection discussed above, and find several examples of two-distance FUNTFs using
this correspondence. In the particular case of ETFs our connection enables us to recover the earlier
examples in [81] as well as obtain some new examples of ETFs. We also make a few remarks on
the parameters of ETFs and strongly regular graphs.

'In the language of frame theory S (S’) is called the (reduced) signature matrix of the frame.
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4.2 Characterization of two-distance FUNTFs

First we show that the set of points (4.1) forms a FUNTF.

Proposition 4.1 The set of all midpoints of the edges of a regular simplex in R"*1 (4.1) forms a
two-distance FUNTF for R".

Proof Suppose that S is given by (4.1), then the inner products of distinct vectors in .S are either
1 or0. Let

Ny = ‘{(Z,j) 1 < j, <61 + e9,e; + ej> = 1}‘

Observe that (i, j) is contained in this set if and only if ¢ = 1 or ¢ = 2, and we obtain N;; =
2(n — 1). By symmetry, the value N1; does not depend on the choice of the fixed vector e + €3,
so the total number of (unordered) pairs of vectors in .S with inner product 1 equals

1/n+1 1
Ny = = Nii==-(n—-1 1).
1 2( 9 > 11 2(” )n(n+)

The pairs of distinct vectors not counted in N; are orthogonal, and their count is

1)/2 1
Ny = (n(nq; )/ ) — Ny = g(n -2)(n—1n(n+1).
Now let us project the vectors of S on the plane x1 + - - - + x,,+1 = 2 and scale the result to place
them on the unit sphere around the point %(1, 1,...,1). By Theorem 1.1 the obtained vectors
have pairwise inner products that are either a = (n — 3)/(2(n — 1)) or b = —2/(n — 1). This
information suffices to compute the frame potential, and we obtain

N2
FP(S) = N + 2Nya® 4+ 2Ngb? = —
n

The frame potential meets the lower bound (4.5) with equality, which implies that S forms a
FUNTF for R™.

In the remainder of this section we prove several characterization results for two-distance
FUNTFs. Let S C R",|S| = N be a two-distance set with inner products a and b, b < a, and let
No = |{(i,7) 11 < j,xs,x; € S, (x;,x;) = a}|. We note that Theorems 1.1 and 4.2 give some
necessary conditions for the existence of a two-distance FUNTF with the parameters n, N, a, N,.
However, we did not find them to be particularly useful, so we do not list them here.

The following theorem gives the value of N, for a two-distance non-equiangular FUNTF.

Theorem 4.3 Let G be the Gram matrix of a two-distance FUNTF S C R"™ with inner products a
and b such that a + b # 0. Then every column of G contains the same number of entries a and b,
and the count of a’s is given by

N1 (N-1)p?
a2_b2 :

N, = A4.7)

Proof G is similar to a diagonal matrix of order N with n nonzero entries A\ = N/n on the
diagonal. Therefore, G? — \G =0, so G? = \G and the (GQ)ii = A since GG; = 1. We also have

(G%)y; = Zjv: 1 G?j, so the norm of every row and of every column is the same and equals v/\.
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Now let N, be the number of entries a in any fixed column. Then

N
1+a2Na+b2(N—1—Na):;.

This implies our claim.

If @ = —b, then the statement of the theorem does not hold. Indeed, consider the set
S ={x1,...,x8} of 28 vectors in R” constructed according to (4.1). By Theorem 1.1 the inner
products between distinct vectors in S are 4+-1/3, so they form a set of equiangular lines. For any
given vector x € S we have |[{y € S: (z,y) =1/3}| =12and |[{y € S : (z,y) = —1/3}| = 15.
Now consider the set S” = {—x1, 29, ..., 228} which is also a FUNTF with inner products +1/3,
but the first column of G contains 12 entries equal to —1/3, which is different from all the other
columns.

Our next result shows that the values of @ and b for a two-distance FUNTF can be found
directly, without recourse to Theorem 1.1.

Proposition 4.2 Let S| is a non-equiangular two-distance tight frame in R™ of cardinality N with
inner product values a or b. Then
N+an—n (N—-n)(1-a)

b= la—aN =1 P T N e D)+ 1)

Proof Theorem 4.3 implies that 1 = (11...1) is an eigenvector of the Gram matrix G with
eigenvalue 0 or N/n. Suppose it is the former, then G - 1 = 0, so the sum of entries in every row
is 0. This implies that 1 +aN, + (N — 1 — N, )b = 0, so from (4.7) we obtain the first of the two
options for b in the statement.

Now suppose that G - 1 = %1, so the sum of entries of G in any given row equals N/n.
Repeating the calculation performed for the first case, we obtain the second of the two possibilities
for b.

Finally, we note one more necessary condition for the existence of a two-distance tight
frame implied by Theorem 1.1.

Proposition 4.3 Let S be a two-distance non-equiangular FUNTF in R™ with N vectors, inner
products a and b and N, entries a in each row of the Gram matrix. Suppose that N > 2n + 1,
then
N(N —1)(ka — 1)? N,
2(k —1)2 C(k—1)

where k € {2,..., (1 ++/2n)/2]}.

Proof Indeed, let S be such a frame. Using the value of the frame potential found in (4.4) together
with b = (ka — 1)/(k — 1), we obtain

N(N —n)
2n

5((2k —1)a® — 2ka+ 1) = (4.8)

N
Fr(a) =Dt = Mo+ (C - N) ()L @)
1<j

which is the same as the left-hand side of (4.8). At the same time, since FP(S) = N?/n =
2Fn,(a) + N. Consequently, Fi,(a) = %n_n) which conclude the proof. These necessary
conditions on the parameters are really useful for small values of n. Indeed, if n < 12, then k can

take only the value 2, which enables us to rule out many sets of parameters.
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4.3 Two-distance FUNTFs and strongly regular graphs

Connections between equiangular line sets and ETFs on the one side and strongly regular graphs
on the other are well known and have been used in the literature to characterize the sets of param-
eters of ETFs [41, Ch. 11], [81]. In this section we extend this connection by relating two-distance
(non equiangular) FUNTFs and strongly regular graphs in a new way.

We begin with a sufficient condition for the existence of two-distance FUNTFs. Let .S be
such a frame. The Gram matrix of any two-distance set with inner products a, b can be written as
G =1+ a®y + bd,y, where @1 and P, are the corresponding indicator matrices. Letting J to be
the matrix of all ones, we can write

G=01-0I+ (a—b)P1+bJ. (4.10)
Note that J2 = NJ and ®1J = N,J, where N, is given by (4.7), and

-Neg- E[u — )1 + (a —b)®y + bJ].

n n

Therefore, squaring (4.10), we obtain a quadratic equation for @y :

N N
(a=b)20% + (a =) (2= 26— = )01+ (26(1 = b) + BN + 2(a = b)bmy — —b).J
+(1—b)(1—b— %)I:O (4.11)

Note moreover that b is a function of a as described in Theorem 1.1. Therefore, we obtain the
following claim.

Proposition 4.4 Suppose that the values of N,n, and a are fixed. Let ®1 be a symmetric 0-1
matrix with the same number of 1s in every row that satisfies equation (4.11). Then there exists a
two-distance FUNTF for R™ with N vectors whose Gram matrix is given by (4.10).

Conversely, to each two-distance FUNTF for R™ with N vectors and inner products a, b is
associated such a symmetric matrix P1.

Proof The first part follows from the fact that given a matrix @ that satisfies these condi-
tions, we can find a valid Gram matrix G and therefore, construct the configuration S.

The converse is straightforward.

This approach can be sometimes used to construct a 2-distance FUNTF. Consider the fol-
lowing example.

Example 4.1 Letn =4, N = 10,a = 1/6 and b = —2/3, then (4.11) takes the form ®3 + &, —
21 — 4J = 0. This gives the following relation for the entry (i, 7) (i # j) of ®1 :

(@3)ij + (®1)i; — 4 =0. (4.12)

From (4.7) we find that N, = 6. Without loss of generality assume that the first row of ®1 is
0111111000. Eq. (4.12) yields constraints on the rows 2 to 10 of ®; : for instance, (®%)12 =
legl(q)l)u(@l)% = 3, so we can assume that the second row of ®1 has the form 1011100110.
Proceeding in this way, we can construct the rows of ®1 by trial and error. In this example, this
approach succeeds, yielding the matrix
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Now the Gram matrix G of a two-distance FUNTF S is found from (4.10), and the vectors of S
can be found by constructing a 10 x 4 matrix F such that FFT = G.

This approach works well in small examples, but becomes computationally difficult as n
and N increase because of the exponentially increasing search complexity. This motivates us to
seek other methods of constructing the matrix ®; that satisfies (4.11). Taking inspiration from
the connection between ETFs and strongly regular graphs, e.g., [81], we use properties of the
adjacency matrix of the graph as a tool for finding ;.

A regular graph of degree k on v vertices is called strongly regular if every two adjacent ver-
tices have A common neighbors and every two non-adjacent vertices have ;1 common neighbors.
Below we use the notation srg(v, k, A, i) to denote such strongly regular graph.

Theorem 4.4 ([41, p.219], [21, p.117]) Let G be a graph on v vertices that is neither complete
nor edgeless. Then G is strongly regular with the parameters (v, k, \, p) if and only if its adja-
cency matrix A satisfies the equation

A%+ (= NA = pJ + (u— k)T = 0. (4.13)

For instance, the construction in Example 4.1 can be obtained from the adjacency matrix of
strongly regular graph srg(10, 6, 3, 4) because in this case Equation (4.13) coincides with (4.11).

Example 4.2 Consider another example for N = 25. There exists a strongly regular graph
srg(25, 8, 3, 2) whose adjacency matrix therefore satisfies the equation

A2 - A—-27—-6I=0. (4.14)

Aiming at constructing a two-distance FUNTF in R® with N = 25 vectors and inner products
a = 3/8 and b = —1/4, we note from (4.11) that its matrix ®1 should satisfy Eq. (4.14). Using
the adjacency matrix A it is easy to construct the vectors of the frame S.

Concluding, if a two-distance FUNTF and a strongly regular graph give rise to the same
matrix equation, then one of these objects exists if and only if so does the other. We obtain the
following result whose proof is immediate by comparing Equations (4.11) and (4.13).

Theorem 4.5 A non-equiangular two-distance FUNTF (N, n, a,b) of cardinality N in R™ exists
if and only if there exists a strongly regular graph with the parameters (v, k, \, ) where

v=N, k=co+c3, A=ci+co, u=cy, (4.15)
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where

_2-2%-2I ~ 2b(1 —b) + V2N +2(a — b)bN, — &b
“a= a—b 27 (a — b)2
(1-b)(1-b—1)
C3 = —

(a—b)?

The four parameters of an srg(v, k, A, ) are not independent and must obey the following
relation [41, p.119]:
E(k—1-=X) =plv—k—1).

Together with the values of k, A, i1 in (4.15) this implies the following result.

Corollary 4.1 A two-distance FUNTF with the parameters (N, n, A, p) exists only if

(c2+e3)(cs—c1+1)=ca(N—1—co—c3).

CONSTRUCTING TWO-DISTANCE FUNTFS FOR SMALL DIMENSIONS. The approach outlined
above suggests a way of constructing two-distance FUNTFs using the tables of known strongly
regular graphs (see, e.g., [21, pp.143ff.] and the online tables [22]). Below in Table 4.1 we list
examples obtained in this way for dimensions 4 < n < 10, cardinality N < 50, and inner products
satisfying b = 2a — 1.

Rows of the table labelled by * indicate that the FUNTFs in these rows have the largest
possible cardinality as two-distance sets (cf. (4.3)). In the last two rows we list putative parame-
ters of two-distance FUNTFs that would give rise to strongly regular graphs with the parameters
(50,28, 18,12). To the best of our knowledge, the existence of such graphs constitutes an open
question. At the same time, (4.3) implies that spherical two-distance sets in dimensions n = 7
and 8 have cardinality at most N = 36. This implies that graphs srg(50, 28,18, 12) do not exist,
which apparently was not known until this paper [22].

Table 4.1 includes several new examples of two-distance FUNTFs. For instance, the frame
with the parameters (N,n,a,b) = (25,9, %, —%) can be constructed from the srg(25,8,3,2),
which is a product of two copies of K5 (a complete graph on 5 vertices), etc. We also note that
Bannai [10], Cameron [24], and Neumaier [69] showed that projection of the standard basis of R"
on the nontrivial eigenspaces of the adjacency matrix of an SRG yields a 2-distance set that also
forms a spherical 2-design.

At the same time, this construction does not give two-distance tight frames that do not
form spherical 2-designs. Using a different approach outlined in this section we obtain some new
examples of two-distance tight frames.

4.4 Equiangular tight frames

In this section we examine the approach of this paper for the case of ETFs, i.e., the case when
b = —a. In this case Theorem 1.1 implies that « = 1/(2k — 1) as long as the cardinality of the
ETF satisfies N > 2n+ 1. At the same time, Theorem 5.1 does not apply in this case, so it may be
possible to obtain ETFs from strongly regular graphs, but the existence of graphs does not form a
necessary condition.

We say that S is an (/V,n,a) ETF in R™ if it has cardinality N and inner products a and
—a. We begin with a necessary condition for the existence of ETFs.
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N | n | N, a Quadratic equation srg comments
91 4] 4| 1/4 A2+ A—2J-2I=0 srg(9,4,1,2) 2-design
9| 5| 4 | 2/5 A2+ A—-2J-2I=0 srg(9,4,1,2) new
*10 | 4 6 1/6 A2+ A—4J—-21=0 srg(10,6,3,4) Lisoné&k [61]
10 | 5 3 1/3 A2+ A—-J-2I=0 srg(10,3,0,1) ETF
10 | 5 6 1/3 A2+ A—4J-2I=0 srg(10,6,3,4) ETF
10| 6 3 4/9 A2+ A—J—-2I=0 srg(10,3,0,1) new
15| 5 8 1/4 A2 —4J -4 =0 srg(15,8,4,4) Construction (4.1)
15] 6 8 3/8 A2 —4J —41 =0 srg(15,8,4,4) new
*6 | 5 | 10 | 1/5 A2 —6J —41 =0 srg(16,10,6,6) Lisonék
16 | 6 6 1/3 A2 —2J 41 =0 srg(16,6,2,2,) ETF
16| 6 | 10 | 1/3 A%2 —6J —4I=0 srg(16,10,6,6) ETF
16|71 6 | 3/7 A2 2] —41 =0 srg(16,6,2,2,) new
21 6 10 | 3/10 A2 —A—4J—-6I=0 srg(21,10,5,4) Construction (4.1)
21| 7 | 10 | 2/5 A2 —A—-4J—-6I=0 srg(21,10,5,4) new
25| 8 8 3/8 A2 —A—-2J—-6I=0 srg(25,8,3,2) 2-design
251 9 8 4/9 A2 —A—-2]J—-6I=0 srg(25,8,3,2) new
*7 1 6 | 16 | 1/4 A?2 —2A-8J -8 =0 srg(27,16,10,8) Lisonék [61]
271 7 | 16 | 5/14 | A2—-24—-8J—-8I=0 srg(27,16,10,8) new
¥8 | 7 | 12 | 1/3 A2 —2A—-4J -8 =0 srg(28,12,6,4) ETF
28 | 8 | 12 [5/12 | A2—-24—-4J—-81=0 srg(28,12,6,4) new
#36 | 8 | 14 | 5/14 | A2 —3A—4J — 101 =0 | srg(36,14,7.4) Construction (4.1)
36 | 9 | 14 | 3/7 | A2 —3A—4J —10I =0 | srg(36,14,7.4) new
36 | 10 | 10 | 2/5 A2 —2A—-2J-8I=0 srg(36,10,4,2) 2-design
*45 1 9 | 16 | 3/8 | A2 —4A—4J —12I =0 | srg(45,16,8,4) Construction (4.1)
45 [ 10 | 16 | 7/16 | A% —4A —4J —12] =0 | srg(45,16,8,4) new
50| 7 | 28 | 1/7 | A2—6A—12J —16I =0 | srg(50,28,18,12) does not exist
50| 8 | 28 | 3/8 | A2—6A—12J—16I =0 srg(50,28,18,12) does not exist

Table 4.1: Two-distance FUNTFs from graphs. The rows marked ‘new’ provide new examples of
two-distance FUNTFs and marked ’2-design’ represent constructed in [69].

Proposition 4.5 An (N, n,a = qu) ETF with N > 2n + 1 vectors exists only if
(N —n)(2k —1)> = (N —)n,k=2,3,..., | (1+V2n)/2].

Proof The quantity Fiy(a) in (4.9) (essentially, the frame potential) in this case equals N(N —
n)/2n. At the same time, since S forms an equiangular line set, we have Fy(a) = N(N —
1)/2(2k — 1)2.

Thus if an ETF in n dimensions exists, its cardinality can be found from this proposition.
We list all the possible parameters of ETFs in R, n < 60 in Table 4.2. Two instances in the table,
for n = 17 and n = 54 lead to matrix equations for ®; with no solutions, so our approach is
invalid.

In the remainder of this section we discuss one possible approach to the construction of
ETFs. Let S be an ETF of cardinality N with inner products a and —a. Assume that the distance
distribution of S with respect to any vector in it is the same, i.e., the number [{y € S : (x,y) = a}|
does not depend on z € S. Then the Gram matrix G(S) has the same number of entries equal to
a in every row. Since the eigenvalues of G are N/n and 0, we have

N
G-1=— or
n

G-1=0,
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or in other words

N
aNg —a(N —1—Ny)+1= or 0.

This gives just two possibilities for the value of N,.

With this, it becomes possible to link ETFs and strongly regular graphs. For instance, taking
(N,n,a) = (36,15, %) we find that NV, is either 15 or 21. Now (4.11) implies that the matrix ®;
is a root of the quadratic equation

A2 —6J -9 =0 or A>—12J—9I =0.

If it is the former, then recalling (4.13), we conclude that ®; is the adjacency matrix of the graph
srg(36,15,6,6). In the second case the parameters of the graph are (36,21,12,12). If either of
these graphs exists, it gives rise to an ETF (36, 15, %)

In Table 4.2 we list the parameters of strongly regular graphs that are found using the above
approach for all the possible parameters of ETFs with n < 60. The parameters of ETFs for n < 47
are cited from [27], which did not pursue the connection with strongly regular graphs.

POSSIBLE MAXIMALLY SIZED ETFS: We note that for several of the sets of parameters
that correspond to open cases in Table 4.2, their cardinality matches the best known upper bound
on the size of equiangular line set in that dimension (the semidefinite programming, or SDP, bound
of [14]). Specifically, this applies to n = 19,20, 42,45, 46. For instance, in the case of n = 42
the SDP bound gives N = 288 and a = 1/7 (it is not known whether a set of 288 equiangular
lines in R*? exists). Using our approach, we observe that such a set could be constructed from
srg(288,140,76,60) and srg(288,164,100,84). Unfortunately, neither of these two graphs is known
to exist (or not). For two of the sets of graph parameters listed in the table, the graphs are known
not to exist; however, this is not sufficient to claim the nonexistence of the corresponding ETFs.
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k|l n N a comments

215 10 1/3 srg(10,3,0,1) (Y)

srg(10,6,3,4) (Y)

216 16 1/3 s1g(16,6,2,2) (Y)

srg(16,10,6,6) (Y)

2| 7 28 1/3 srg(28,12,6,4) (Y)
srg(28,18,12,10) (Y)

3|15 36 1/5 srg(36,15,6,6) (Y)
s1g(36,21,12,12) (Y)

317 51 1/5 does not exist [78]
3119 76 1/5 srg(76,45,28,24)(0)

srg(76,35,18,14)(0)
3120 96 1/5 s1g(96,45,24,18) (0)
srg(96,57,36,30) (N)
3121 | 126 | 1/5 srg(126,60,33,24) (Y)
srg(75,48,48,39) (Y)
31221 176 | 1/5 srg(176,85,48,34) (Y)
srg(176,105,68,54) (Y)
31231 276 | 1/5 srg(276,135,78,54) (Y)
srg(276,165,108,84) (N)
4128 | 64 1/7 srg(64,28,12,12) (Y)

srg(64,36,20,20) (Y)
4 | 33 99 1/7 does not exist [78]
4 135 120 | 1/7 srg(120,56,28,24) (Y)
srg(120,68,40,36) (Y)

4137 148 | 117 srg(148,70,36,30) (0)
srg(148,84,50,44) (o)
4141 | 246 | 1/7| srg(246,140,85,72) (0)
srg(246,119,64,51) (0)
4| 42| 288 | 1/7| srg(288,140,76,60) (0)
srg(288,164,100,84) (0)
4143 | 344 | 17| srg(344,168,92,72) (Y)
srg(344,196,120,100) (o)
4 45| 540 | 1/7 | srg(540,266,148,144) (o)
srg(540,308,190,156) (N)
5145|100 | 1/9 |  srg(100,45,20,20) (Y)
srg(100,55,30,30) (Y)
4146 | 736 | 1/7| sre(736,364,204,156) (0)

srg(736,420,260,212) (o)
4 |47 | 1128 | 1/7 does not exist [67]
5151 | 136 | 1/9 | srg(136,63,30,28) (Y) New
srg(136,75,42,40)(Y)
51541 160 | 1/9 does not exist [78]

5157] 19 | 1/9 srg(190,90,45,40) (0)
srg(190,105,60,55) (0)

Table 4.2: Parameter sets of ETFs for n < 60. The label ‘0’ means that the existence of an SRG
with these parameters is an open problem. ‘Y’ means that the corresponding ETF or a graph is
known to exist and ‘N’ means that the srg does not exist. The cases of n = 17, 54 result in matrix
equations (4.11) that have no solutions, so our method does not apply.
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Chapter 5

Nonexistence of tight spherical designs of
harmonic index 4

5.1 Introduction

The purpose of this chapter is to give a new upper bound of the cardinality of a set of equiangular
lines with a certain angle (see Theorem 5.1). As a corollary to our upper bound, we show the
nonexistence of spherical tight designs on harmonic index 4 on S"~! with n > 3.

The notion of a spherical design of harmonic index t on S?~! has been defined in (1.7).
Our concern is tight harmonic index 4-designs. A harmonic index t-design X is tight if X attains
the lower bound given by Theorem 2 in [11]. Especially, for the case ¢ = 4, a harmonic index
4-design on S™ 1 is tight if and only if its cardinality is %ﬁ("w).

For the case n = 2, we can construct tight harmonic index 4-designs as two points x and
y on S! with the inner-product (z,7) = \/m Theorem 5 in [11] studied nonexistence of
tight harmonic index 4-design on higher-dimensional spheres and proved that if tight harmonic
index 4-designs on S~ ! exists, then n = 2 or n must be of the form n = 3(2k — 1)? — 4 =
12k% — 12k — 1 for some integer k& > 3. It was also proved in [11] that a subset X of S”~! with
| X| = w is a tight harmonic index 4-design if and only if I(X) C {£52—}, where I(X)
is the set of inner-product values for all distinct pairs of the vectors in X C R". Therefore, we
derive the upper bounds on the cardinality of a set of equiangular lines with the angle arccos 2137—1
in (12k? — 12k — 1)-dimensional Euclidean space.

The main theorem of this section is as follows:

Theorem 5.1 Let us fix an integer k > 2 and put ny, := 3(2k —1)?> — 4 and oy, := %%1 Then for
any finite subset X of S™ 1 with I(X) C {#*ay}, the inequality | X| < 2(k — 1)(4k3® — k — 1)
holds.

Observe that

(ng + 1) (ng +2)
6

—2(k—1)(4k* =k —1) = 2(k —1)(2k — 1)(4k* —4k — 1) > O when k > 2.

Therefore, we have W > 2(k — 1)(4k3 — k — 1), when k > 2. In particular, we have
the following corollary.

Corollary 5.1 For each n > 3, there does not exist a tight harmonic index 4-design on S n—1
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Proof We use the notation G'(u) as Gegenbauer polynomials (2.7) and S;*(u,v,t) as
Zornal functions in [5]. It should be noted that the definition of S}*(u, v, t) is different from that of
Bachoc and Vallentin [6], and Barg and Yu [13] (see Remark 3.4 [5] for more on the differences).

The following computational result is used in the proof of Theorem 5.1:

Lemma 5.1 Foreach k > 2,

(S3%)11(1,1,1) =0,
(Sg’“)l,l(ozk,ozk, 1) = (Sgk)l’l(—@k, — o, 1) = Q(k — 1)2]€2(4]€2 — 4k — l)ck.
(S5%)1,1 (s gy ) = (S5%)11 (ks —aug, —ug) = —3(k — 1)%cy,.
) =

(S3%)1.1 (o, ag, —au) = (S5%)1.1(—ag, —ag, —ay) = —3k*cy.

where we put
216ng(ng + 2)(ng + 6)

(ng — 2)(ng — 1) (ng + 3)(ng +4)3°

Note that ¢y, is a positive constant for each k > 2.

Ck ‘=

Proof To prove Lemma 5.1, we will need to give an explicit form of (S5 )11
By the formula of S}*, we can compute that

n(n+2)(n+4)(n +6)
3(n—2)(n—1)(n+1)(n+3)
— 3(nuvt + 1) (w?0? + 0?1 + t2u?) + 3(u'v? + vt + o1 + %t + th? + )
+9(n + D)u?0?t? — (n + Tuvt(u® 4+ v2 + t2) + Juvt)

(Sg)l,l(uv v, t) = ((n - 2)(U4U4 + vt + t4u4)

Especially, for any o € (—1,1),

(SH)11(1,1,1) =0
n(n+2)(n +4)(n +6)

(S3)11(a, 1) = B DI Dt 3) a2(1 — a?)?
(S, a,a) = — o i(Z)ZLQE(?)?;f_?_(?)?;LGl 3 (a—1)3a3((n — 2)a® — 6a — 3)
n(n+2)(n+4)(n +6)

(S, —a) = — @3 (a+1)3((n —2)a® + 6 — 3).

(n—=2)(n—1)(n+1)(n+3)

In particular,
(Si?)l,l(av «, 1) - (Si?
(Sg)Ll(O‘? «, Oé) = (SQ)L
(S;;L)l,l(aa a, —OL) = (Sg)l,l(_a7 —Q, _a)'

B
|

2

L

Lemma 5.1 follows.

Comment 5.1 (Computational details for the entries of Si'(u,v,t))
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We list the explicit terms in the entries of S]'(u, v, t).
1
(S§)171(’LL, v, t) = 6((}/3”)1,1(,“’ v, t) + (}/})n)lyl(u’ t, v) + (}/E’)n)lyl(t7 v, u))
0 (ifu==xlorv==l1),

TN MG @G o0) (1 - ) (1= 0?))2G5 (B (otherwise)

Nt td) g
M oD+ D(n+3) !
Ay Y0 .= dim Harm; (R"*%) = n + 6

G (u) = u

Gy Ht) = t((n+1)t? = 3)

n—2
Hence

t —uv 1

Vi) a2

(1 —w?)(1— 0223 (t = wo)((n + 1)(t — uv)? = 3(1 - u)(1 — v?))

n nn+2)(n+4)(n+6

(V') (w0, ) = (n —(2)(71 z(1)(71 —&)-(1)(71 4)- 3)
= c, (uvt — u*v?)((n + 1)t? — 2(n + Duvt + (n — 2)uv* + 3(u?® +v?) — 3))
= —c ((n - 2)utv? = 3(nuvt + Duv? + 3u0?(u? + 0?) + 3(n + Duv?t? — 3uvt(u® + v?)
— (n + Duvt® + 3uvt).

uv(t — uv)((n+ 1)(t — ww)? — 3(1 — u?)(1 — v?))

. nn+2)(n+4)(n+6
where ¢, := (n—(Q)(nZ(l)(nj—(l)(n—?%)' Therefore,

/

(S$)1,1(u,v,t) = —%((n — 2)(utvt + ottt + thut) — 3(nuvt 4 1) (uPo? 4 022 + t2u?)
+ 3(utv? + uo? + ot + 0%t 4 M 4 2t + 9(n + Duo?t? — (n 4 Tuvt(u? + v? + %) + Juut).

We apply the SDP bound for spherical codes introduced by Bachoc and Vallentin [5] to
spherical two distance sets. The explicit statement of it was given by Barg and Yu [13].
In order to state it, we define

W)= (o o)+ (3 1) ez (g 1) ot oo
Sln('r;a7ﬁ) = Sln(lv 17 1) + Sln(ava7 1)$1 + Sln(ﬁaﬁ> 1)$2 + Sln(aaaa 04)13
+S?(Oé,0&,ﬁ)l‘4 +Sln(a7ﬂaﬁ)x5 +S?(67B76)$6

for each x = (21, 72,23, 24,75, 26) € RS and a, 3 € [—1,1). We remark that W (z) is a
symmetric matrix of size 2 and S;'(z; c, ) is a symmetric matrix of infinite size indexed by
{(i’j)|i7j207172?"'7}'

Fact 5.1 ([51[13]) Let us fix a, 3 € [—1,1). Then any finite subset X of S*~! with I(X) C
{a, B} satisfies

|X] <max{1l+ (v1 +22)/3 [z = (21,...,76) € Qp 5}
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where the subset QZ g of RS is defined by
Qnpg={x=(21,...,26) € R%}isde finedbythe followingconditions.

1. x; > 0foreachi=1,...,6.

2. W(x) =0 ie W(x) is positive semidefinite.

3. 3+ G ()1 + G} (B)r2 > 0 foreachl =1,2,. ...

4. Any finite principal minor of S'(x; a, 3) is positive semidefinite for each | = 0,1,2,. ...

Thus, in order to prove Theorem 5.1, we only need to show the following proposition.
Proposition 5.1 For each k > 2,
max{l + (z1 + x2)/3 |2 € QF _, } <2(k—1)(4k° — k - 1). (5.1)

Proof Let us take a positive semidefinite symmetric matrix

(2k — 1)%(4k3 — 2k% — 2k — 1)2  —(2k — 1)(4k3 — 2k? — 2k — 1)
—(2k — 1)(4k3 — 22 — 2k — 1) 1
Since W (x) is positive semidefinite for each - € Q% _, , we have the trace of (A(k) - W (x)) is

non-negative, and then

T+ X2

(2k — 1)2(4k® — 2k* — 2k — 1)® — (16k* — 16K> — 4k* +1) 3

)+ (3 + 24 + 25 + 76) > 0.
5.2)

Furthermore, (S5%)1,1(; i, —ag) > 0 foreach x € QpF _ since (95%)1 1 is a diagonal entry

of S3*. Hence, by Lemma 5.1,

2
§k2(k — 1)2(4k? — 4k — 1) (21 + 20) — (k — 1)* (23 + 25) — K2 (24 + 26) > 0 (5.3)
Therefore, by computing the sum of (5.2) and (5.3)/(k — 1), we have
(2 — 1)(4K3 — 2% — 2% — 1)((2k — 1)(4k? — 2% — 2% — 1) — %))
]{72
>(———1 >0
_((k:—l)2 ) (x4 + x6) >
Hence 2(k — 1)(4k® — k —1) > 14 222 forany z € Q3F .

Remark 5.1 Harmonic index 4-designs are defined by using the functional space Harm,(S™~1).
Therefore, it seems to be natural to consider Harmy(S™ 1) in the SDP method. In our proof, the
functional space

m

4
H;Zl C @ H”;ll = Harmy(S™1)
m=0

(see [5] for the definition of H ;Lfll) plays an important role to show the nonexistence of tight
designs of harmonic index 4 since (S%)11 comes from H. gql. We checked that if we consider
H&Zl &) H{Zl o H;Zl &) szl instead ong’zZl, our upper bound cannot be obtained for small
k. However, we can not find any reasons of the importance of H. ;Zl.
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5.2 A new relative bound for equiangular lines

Theorem 5.1 Let n > 3. Then the following holds:

1.
(1-a)

al(n —2)a? + 6a — 3)

My(n) <2+ (n—2)
foreach o € (0, 1) with

(1—a)3(=(n—2)a*+6a+3)>(1+a)(n—2)a*+6a—3)>0.

(1+a)?
al(—(n —2)a? + 6a + 3)

My(n) <2+ (n—2)
foreach o € (0, 1) with
(1+a)3((n—2)a?+6a—3)>(1-a)(—(n-2)a*+6a+3)>0.

Example 5.1 Let us consider the cases where ny, := 3(2k — 1)? — 4 and oy, := 1/(2k — 1) for
an integer k > 2. Note that in such cases, Lemmens—Seidel’s relative bound (3.3) does not work
since 1 — ngai = —2(4k* — 4k — 1)/(2k — 1)? < 0. One can compute that

_1)\3
(1 — ag)?(—(ng — 2)af + 6ay +3) = g?éi = &f?
_ 3
(1 + o) (g, — 2)a2 + 6oy, — 3) = 9?;’; - B’; ’

and hence
(14 ap)3((ng — 2)ai + 60y, — 3) > (1 — ag)®(—(ng — 2)as + 60y, +3) > 0.
Therefore, by Theorem 5.1, we have

(1+a)
a(—(n —2)a? + 6a + 3)
=2(k —1)(4Kk*> — k — 1).

Mg, (ng) <2+ (n—2)

In order to prove Theorem 5.1, we only need to show the following proposition.

Proposition 5.2 Letn > 3 and 0 < o < 1. Then the following holds:

L.
max{l + (z1 + 22)/3 |2 € Q% _} <2+2+ (n— 2)a((n _(21)@2(2360( 3 (5.4)
if(1—a)(—(n—2)a?+6a+3)>(1+a)3((n—2)a®+6a—3)>0.
2.
max{l+ (z1 +22)/3 |z € Q) _,} <2+ (n—2) (L+0a)” (5.5)
%= a(—(n —2)a? + 6a + 3)

if (14 a)3((n —2)a? 4+ 6a —3) > (1 — a)3(—(n — 2)a? + 6a + 3) > 0.

42



Proof We need an explicit formula of (S§); ;. Foreach —1 < a < 1,

(S8)11(1,1,1) =0

ST
($S5)(on0) =~ ﬁ(g)z;fz(gaﬂ(%?nﬁi 5(0 = Do (0~ 2)a? ~ 60 3)
n(n+2)(n+4)(n+6)

(S0, —a) = — o?(a+1)3((n —2)a® + 6a — 3).

(n—2)(n—1)(n+1)(n+3)

Fix a with 0 < a < 1. We take z € € _, For simplicity we put X = (21 + 72)/3,
Y = 23+ x5 and Z = x4 + x6. Since W (x) is positive semidefinite, by taking its determinant,
we have

—X(X-1)4+Y+Z>0. (5.6)

Furthermore, we have (S%)1 1(x; o, —a) > 0 since (S%)1 1 is a diagonal entry of S%'. Hence,

(1—a?)’

(n—2) X—(1-a)}(=(n—2)a® +6a+3)Y —(1+a)?*((n—2)a*+6a—3)Z >0

5.7)
Therefore, in the cases where

(1—a)*(=(n—2)a* +6a+3) > (1+a)*((n—2)a*+6a —3) >0,

we obtain
(1-a?)? 3 2
(n—2)TX— (14 a)’((n—2)a"+6a—-3)(Y +Z2)>0.
By (5.6),
(1-a?)? 3 2
(n—2)TX—(1+a) (n—2)a*+6a—-3)X(X—-1)>0
Thus we have
(1-a)®
24 (n—2) >X+1=1+ (z1 +x2)/3.

a((n —2)a? + 6a — 3)
By the similar arguments, in the cases where

(1+a)*(n—2)a*+6a—3)> (1 —a)*(—(n—2)a*+6a+3) >0,
we have

(1+a)
al(—(n —2)a? + 6a + 3)

24+ (n—2) >X+1=1+ (z1+x2)/3.

43



5.3 Calculation details for Theorem 5.1

This section is devoted to offer the calculation details that how do we construct the matrix A(x).

Lemma 5.2 Let us put x = (1, 22, T3, T4, T5, T6) be a point in RS satisfying the three conditions
below:

1. x; > 0foreachi=1,...,6.
2. 2(k — 1)2k%(4k* — 4k — 1) (21 + 22) — 3(k — 1)*(z3 + x5) — 3k (w4 + 26) > 0.

- 1 (:El +1132)/3
> W)= ((an +x2)/3 (z1+22)/3 + (x5 + 24 + 25 + 956)) =0

Then the inequality below holds:
1+ (z1422)/3 < 2(k —1)(4k3 — k —1).

For simplicity we put hy, := 2(k — 1)2k?(4k? — 4k — 1).
Goal : (m — 1)af — (] +23)/3
Assume that A(z) := (Z g) =0, thena > 0, ¢ > 0, b2 < ac. Then,
hp(zt + x5)/3 — (k — 1)%(ah + 23) — k2 (xf + zf) 4+ axf + (2b + ¢)(z] + x5) /3 + c(af + = + z% + xF)
= azf + (2b+ ¢+ hg) (2} + 25) /3 + (¢ — (k — 1)*) (25 + 5) + (c — k?) (2] + z5).

We want to minimize 1 + a/(—2b — ¢ — hg) with0 < a,0 < ¢ < (k — 1)%, % < ac and
—2b — ¢ — hy < 0. We can put a = b?/c. Then,

AP S VI
—2%b—c—h —2¢b — 2 — chy,
_§_£ @ (62+26hk+h’2§)
4 2 4c 4e(—2b—c— hy)
5 h b hi)?
S e b (et
4 4e  2¢  4de(—=2b—c—hg)
:§+@+4C(—2b—§—hk) cthi (c+ hi)?
4 4e 16¢ 4c 4e(—2b — ¢ — hy)
_§+C+2hk+40(*2b*0*hk) (C+hk)2
4 4 16¢2 4e(—2b — ¢ — hy)
S 5 I + 2hy, 5 4e(—2b — ¢ — hy) (¢ + hy)?
4 4c 16¢2 4e(—2b— ¢ — hy)

(The equality holds if and only if b = —c — hy)

5 e+ 2hy e+ Dy
_4+ 4c + 2¢

5 3¢+ 4hy
i it

44



Therefore,

18 minimized as
2+

at

a

1+—2b—c—hk

C h’“lz) =2+ 2k (4k? — 4k — 1) = 2(k — 1)(4k® — k — 1).

a=0%/c=(k—1)%2k —1)2(4k> — 2k? — 2k — 1)?
b=—c—hp = —(k—1)%(2k — 1)(4k> — 2> — 2k — 1)
c=(k—1)>2

45



Chapter 6

Summary and future work

In Chapter 2, we extend the known table of exact answers of maximum size of spherical two-
distance sets in R” for n = 23 and 40 < n < 93. The method is the so-called three-point
SDP method. We expect that if we use the four-point SDP method, then we can achieve exact
answers for higher dimensions. The four-point SDP method has been used to get better results in
the Hamming space by D. C. Gijswijt, H. D. Mittelmann and A. Schrijver in [40]. We are also
interested in the estimation of maximum size of spherical two-distance sets in R” for n = 46 and
78, which are the only two missing cases for n < 93 but it is not clear how to approach it.

In Chapter 3, we contribute to find the maximum size of equiangular line sets in R™ for
24 < n < 41 and n = 43. It is interesting that we can determine most of the values of n, where
n < 43, but M (14) and M (16) remain open up to two possible values, i.e. M (14) = 28 or 29
and M (16) = 40 or 41. Again, we expect that four-point SDP method can help to determine
them. We observe that for the known maximum size of equiangular line sets in R" are all even
numbers. We conjecture that this is true for all » and if our conjecture holds, then M (14) = 28
and M (16) = 40.

An interesting, unexplained observation regarding Table 3.3 is that the SDP bound for
M, (n) has long stable ranges for dimensions starting with the value n = d? — 2, where d is
an odd integer and & = 1/d. For instance, M /5 = 276 for 23 < n < 60 and My /7 = 1128 for
47 < n < 131. Our new relative bounds may help to prove this phenomenon in general, but we
have not yet completed the proof.

In Chapter 4, we derive new structural properties of the Gram matrix of a two-distance
tight frames in R™ and have a new correspondence between two-distance tight frames and certain
strongly regular graphs (SRGs). However, our constructions rely on the known table of SRGs. For
instance, we want to construct an ETF with parameters (N, n,«) = (76,19,1/5) since we know
that the upper bound of equiangular line sets in R'? is 76. If this ETF can be constructed, then
we can determine M (19) = 76. However, the corresponding srg(76,35,18,14) is also an open
problem for the existence. We have ideas to approach the constructions of ETFs without using
SRGs, but that requires large-volume computation. We will attempt to use the ideas in this chapter
to work on the structures of complex two-distance tight frames and complex ETFs.

In Chapter 5, we use a variation of the SDP method to derive new relative bounds for
equiangular line sets in R™. Our motivation is coming from particular values of angles and di-
mensions. In [58], Lemmens and Seidel proved that M /3(n) = 2(n — 1) for n > 16. However,
M, /5(n) remains open for a long period of time. M, 7(n) and other angles are also open. We
expect that our new relative bounds or other variations of SDP can be used to derive a general
bound on M /5(n).
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