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On the Perturbation of Markov Chainswith Nearly Transient StatesG. W. StewartABSTRACTLet A be an irreducible stochastic matrix of the formA =  A11 E12A21 A22 ! :If E12 were zero, the states corresponding to A22 would be transient inthe sense that if the steady state vector yT is partitioned conformallyin the form (yT1 yT2 ) then yT2 = 0. If E12 is small, then yT2 will besmall, and the states are said to be nearly transient. It this paper it isshown that small relative perturbations in A11, A21, and A22, thoughpotentially larger than yT2 , induce only small relative perturbations inyT2 .1. IntroductionThe concerns of the paper are best illustrated by a 2 � 2 example. Consider thenonnegative matrix A2 =  1 � � �� 1� � ! ;where � is small and � is of order of magnitude one (e.g., � = 12). When � = 0, thesecond state of the Markov chain corresponding to A2 is transient: it eventuallygoes away, never to return. When � is small but positive, we shall say that thestate is nearly transient . The near transience of the state is re
ected by the secondcomponent of the steady state vectoryT = (1 �=�)1 + �=� ;which tends to zero with �.Now consider the perturbed matrix~A2 =  1 � �� � �� 1 � � ! ;1



2 Nearly Transient Chainswhere � is small compared to one, but not necessarily small compared to �. If weseek the eigenvalues of I � ~A2 in the form �1 = � + � and �2 = � + � � �, thenfrom the equation �1�2 = ��, we obtain the approximation� �= ���� :If we seek the eigenvector corresponding to the smallest eigenvalue � + � inthe form ~yT = (1 �), then from the �rst component of the equation ~yT(I � ~A2) =(� + �)~yT it follows that �+ � � �� = � + �;or � = � � �� �= ���1 + ���: (1:1)In other words, a change of order � in the leading element of A2 makes a rel-ative change of only O(�) in the components of the steady-state vector. Thisimplies that the probability of being in the nearly transient state, however small,is insensitive to potentially much larger perturbations in the (1,1)-element of thematrix.The purpose of this paper is to generalize this result to stochastic matrices ofthe form A =  A11 E12A21 A22 ! ; (1:2)that is, to a chain with a group of nearly transient states. Before proceeding,however, it will be worth while to examine the above example more closely forthings to generalize.It is easy to see that the steady-state vector is also insensitive to small pertur-bations in the (2; 1)- and (2; 2)-elements of A2. We will show that this generalizes:under suitable restrictions on A, the small components of the steady-state vectorcorresponding to the nearly transient states are insensitive to perturbations inA11, A12, and A22. On the other hand, in the example the small component ofthe steady-state vector is very sensitive to changes in � itself, and we may expecta similar sensitivity in the general case to perturbations in E12.The condition that � = O(1) is necessary. For as � becomes small, the ap-proximations that lead to (1.1) become increasingly inaccurate and break downentirely when � = O(�). (This break-down agrees with what we know about theperturbation theory for nearly completely decomposable chains, where the steady



Nearly Transient Chains 3state vector is sensitive to such perturbations [2].) In generalizing the result, how-ever, it is not be enough to require that A21 = O(1), and we will formulate analternate condition in terms of A22.Finally, we note that the perturbation in the example does not leave the matrixstochastic. At �rst blush, this generality may seem super
uous, since in appli-cations to Markov chains we should expect both the matrix and its perturbationto be stochastic. However, it turns out that certain numerical algorithms, amongthem Gaussian elimination, introduce perturbations that render the matrix inquestion nonstochastic.The paper is organized as follows. In the next section, we will introducesome preliminary transformations of the problem. In Section 3 we will establisha general perturbation bound, and in Section 4 we will discuss its consequences.Throughout this paper k � k stands for the Euclidean vector norm and thesubordinate matrix norm de�ned bykAk = supkxk=1kAxk:2. The Transformed ProblemTo state our problem more precisely, let the matrix A of (1.2) and its submatricesA11 and A22 be irreducible, and lety = (yT1 yT2 )be its Perron vector partitioned conformally. LetG =  G11 0G21 G22 !be a matrix that is small compared to one (but not necessarily compared to E12),and assume that ~A � A+G =  A11 +G11 E12A21 +G21 A22 +G22 !is also irreducible. Let ~y = (~yT1 ~yT2 )be the Perron vector of ~A. Then our problem is to establish perturbation boundsfor ~yT2 .



4 Nearly Transient ChainsA technical di�culty presents itself immediately. If E12 is small, the matrixA11 is near a stochastic matrix and has an eigenvalue near one. Hence I �A11 isvery nearly singular, and this near singularity prevents us from applying standardperturbation theory directly. We will circumvent the problem by transforming thematrix A into a form in which the o�ending eigenvalue is isolated.Let �11 be the Perron eigenvalue of A11 and let the corresponding positive lefteigenvector be uT1 , normalized so that ku1k = 1. LetU = (u1 U2)be orthogonal. Then it is easily veri�ed that UTA11U has the formUTA11U =  �11 0b21 B22 ! :The eigenvalues of B22 are the eigenvalues of A11 other than �11. Since A11 issubstochastic, I �B22 is nonsingular.Now let  uT1UT2 !E12 =  f13F23 !and A21(u1 U2) = (b31 B32):Then B �  UT 00 I ! A11 E12A21 A22 ! U 00 I ! = 0B@ �11 0 fT13b21 B22 F23b31 B32 B33 1CA ;where B33 = A22.Since both yT1 and uT1 are positive, yT1 u1 > 0. It follows that we may renor-malize yT so that yTU = (1 pT2 pT3 );where pT2 = yT1 U2 and pT3 = yT2 . In terms of the transformed problem, our goalis to �nd perturbation bounds on pT3 , when the quantities Bij are subject toperturbations.It is easy to obtain a linear equation for pT3 . Because yTdiag(U; I) is a nullvector of I �B it follows that pT2 and pT3 satisfy(pT2 pT3 ) I �B22 �F23�B32 I �B33 ! = (0 fT13):



Nearly Transient Chains 5Eliminating pT2 from this equation, we obtainpT3 �I �B33 �B32(I �B22)�1F23�= fT13: (2:1)It is equally easy to obtain an equation for the perturbed vector ~p3. LetH = UTGU = 0B@ �11 hT12 0h21 H22 0h31 H32 H33 1CA ;and assume that ~A = A+G is stochastic. Then in the transformed system (withtildes denoting the obvious perturbations)(~pT2 ~pT3 ) I � ~B22 �F23� ~B32 I � ~B33 ! = (hT12 fT13):It follows that~pT3 �I � ~B33 � ~B32(I � ~B22)�1F23�= fT13 � hT12(I � ~B22)�1F23: (2:2)3. The Perturbation BoundIn this section we will establish perturbation bounds for ~p3. It will be convenient tohave an abbreviated notation for the norms occurring in the bounds. Accordingly,we set � � kBk = kAk;� � kHk = kGk;
i � k(I �Bii)k; (i = 2; 3): (3:1)The equalities in the above de�nitions follow from the fact that a transformationby the orthogonal matrix U does not change the spectral norm. The same symbolswith tildes denote the norms of the perturbed quantities; e.g., ~� = k ~Bk.We begin by collecting some standard results from the perturbation of linearsystems (see, e.g., [1, 3]).Theorem 3.1. Let C be nonsingular and let ~C = C +Q, wherekC�1kkQk < 1:



6 Nearly Transient ChainsThen ~C is nonsingular, k ~C�1k � kC�1k1� kC�1kkQk; (3:2)and k ~C�1 �C�1k � kC�1kkQk1� kC�1kkQk; (3:3)Moreover, if xTC = dT and ~xT ~C = dT + qT;then k~x� xkkxk = kC�1k1� kC�1kkQk  kQk+ kqkkxk! : (3:4)Now let C denote the matrix in equation (2.1) for pT3 and let dT denote theright-hand side. Let ~C denote the matrix in the perturbed system (2.2) and ~dTdenote the right-hand side. To apply Theorem 3.1, we must bound k ~C �Ck andk ~dT � dTk.We have~C�C = (B33� ~B33)+(B32� ~B32)(I� ~B22)�1F23+B32�(I�B22)�1�(I� ~B22)�1�F23:On taking norms we getk ~C � Ck � � + �~
2�+ � ��
21� 
2� ;The third term of the bound follows from (3.3) under the assumption that �
2 < 1.Since from (3.2) we have ~
2 � 
2=(1 � �
2), if we set �� = �=(1� �
2), we havek ~C �Ck � ��(1 + 
2�+ �
2�):Similarly, k ~d� dk � ���:If we now use these bounds in (3.4), we get the following theorem (remember thatyT2 = pT3 ).Theorem 3.2. Let the irreducible stochastic matrix A have the formA =  A11 E12A21 A22 ! ;



Nearly Transient Chains 7where A11 and A22 are irreducible, and let~A = A+G �  A11 E12A21 A22 !+  G11 0G21 G22 !also be stochastic. In the notation of (3.1), assume that �
2 < 1, and set�� = �1� �
2 and � = 1 + 
2�+ �
2�:If ���
3 < 1;then k~yT2 � yT2 kkyT2 k � ��
31� ���
3 "�+ �kyT2 k# : (3:5)4. DiscussionThe bound (3.5) gives the promised result. Provided kyT2 k is of order � (moreon this point later), the relative perturbation of yT2 is a small multiple of �. Thecondition that ���
3 < 1 is the condition on A22 mentioned in the introduction.It essentially says that the eigenvalues of A22 are bounded away from one. Inparticular, it prevents the matrix A21 from being small| the condition used inthe 2� 2 example in the introduction.It is instructive to examine the asymptotic form of the bound as � and �approach zero. In this case, � approaches one and �� approaches �. Consequently,(3.5) has the asymptotic formk~yT2 � yT2 kkyT2 k <� �
3 "1 + �kyT2 k# : (4:1)Thus if �=kyT2 k is near one, the factor controlling the size of the perturbation is
3; i.e., the norm of (I �A22)�1.The requirement that �=kyT2 k be near one may seem awkward, but it is neces-sary. If yT2 is smaller than �, perturbations due to the interaction of G and E canobliterate it [see the right-hand side of (2.2)]. More insight into this phenomenacan be gained by replacing kyT2 k by a lower bound. Since pT3 (I � B33) = fT13, itfollows that kp3k � kfT13k=kI �B33k. Hence another, weaker asymptotic bound isk~yT2 � yT2 kkyT2 k <� �
3 "1 + (1 + �) �kfT13k# : (4:2)



8 Nearly Transient ChainsSince � is of order one, we see that the bound can become large when f13 to besmall compared with the matrix E12.Finally, we return to the case where ~A is not stochastic. The problem here isthat we have assumed the existence of a null vector for I � ~A in deriving (2.2).We will circumvent this problem by perturbing ~A so that I � ~A is singular.First note that from Theorem 3.1 and (2.1) we have the following bound:kyT2 k � 
3�1� �
2� ;i.e., the near transient states have probability of order �. Since one is a simpleeigenvector of A, for � su�ciently small there is a corresponding eigenvalue of ~Aof the form �= 1 + (yT1 yT2 )0@ G11 0G21 G22 1A0@ ee 1A+O(�2)= 1 + yT1 G11e+O(�2) +O(�)(see [3, Theorem IV.2.3]). Hence k1 � �k � ky1k� + O(�2) + O(�). Thus if~~A = ~A = (1 � �)I, then ~~A comes from a perturbation of A whose norm isasymptotically bounded by �(1 + kyT1 k). Moreover, I � ~~A is exactly singular.Consequently, the asymptotic bounds (4.1) and (4.2) continue to hold with �replaced by �(1 + kyT1 k).AcknowledgementI would like the referee for many useful comments and particularly for the deriva-tion of (1.1).References[1] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns HopkinsUniversity Press, Baltimore, Maryland, 2nd edition, 1989.[2] G. W. Stewart. Perturbation theory for nearly uncoupled Markov chains. InW. J. Stewart, editor, Numerical Methods for Markov Chains, pages 105{120,North Holland, Amsterdam, 1990.[3] G. W. Stewart and G.-J. Sun. Matrix Perturbation Theory. Academic Press,Boston, 1990.


