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ABSTRACT

Let A be an irreducible stochastic matrix of the form

An F

A= o b

A Ag
It 15 were zero, the states corresponding to Ay would be transient in
the sense that if the steady state vector y' is partitioned conformally
in the form (yi yi) then yJ = 0. If Fy, is small, then y] will be
small, and the states are said to be nearly transient. It this paper it is
shown that small relative perturbations in Ayy, Asy, and Ass, though

potentially larger than y, induce only small relative perturbations in
T
Ya -
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ABSTRACT
Let A be an irreducible stochastic matrix of the form
An Er
A= :

( A Ag
It F, were zero, the states corresponding to A,y would be transient in
the sense that if the steady state vector yT is partitioned conformally
in the form (y! yi) then yi = 0. If Eyy is small, then y5 will be
small, and the states are said to be nearly transient. It this paper it is

shown that small relative perturbations in Ay, Agq, and Ags, though
potentially larger than y4, induce only small relative perturbations in

Yy -
1. Introduction

The concerns of the paper are best illustrated by a 2 x 2 example. Consider the

1 —¢ €
Az:( o 1—@)’

where € is small and « is of order of magnitude one (e.g., a = %) When e = 0, the

nonnegative matrix

second state of the Markov chain corresponding to A, is transient: it eventually
goes away, never to return. When € is small but positive, we shall say that the
state is nearly transient. The near transience of the state is reflected by the second
component of the steady state vector

T _ (1e/a)
1—|—€/0¢7

Y

which tends to zero with e.
Now consider the perturbed matrix

1212:(1—6—77 € )7
o l -«



2 Nearly Transient Chains

where 5 is small compared to one, but not necessarily small compared to e. If we
seek the eigenvalues of [ — Aj in the form Ay = n 4+ 6 and Ay = a 4+ € — 4, then
from the equation Ay Ay = an, we obtain the approximation

ne
a.

o

12

If we seek the eigenvector corresponding to the smallest eigenvalue n + 6 in
the form g1 = (1 ¢), then from the first component of the equation (I — Ay) =
(n+ 5)ng it follows that

c+n—Cfa=n+s,

or

526_625(1+g). (1.1)

a a
In other words, a change of order 5 in the leading element of A; makes a rel-
ative change of only O(n) in the components of the steady-state vector. This
implies that the probability of being in the nearly transient state, however small,
is insensitive to potentially much larger perturbations in the (1,1)-element of the
matrix.

The purpose of this paper is to generalize this result to stochastic matrices of

All E12
A= : 1.2
(A21 Am)’ (1.2)

that is, to a chain with a group of nearly transient states. Before proceeding,

the form

however, it will be worth while to examine the above example more closely for
things to generalize.

It is easy to see that the steady-state vector is also insensitive to small pertur-
bations in the (2,1)- and (2,2)-elements of A;. We will show that this generalizes:
under suitable restrictions on A, the small components of the steady-state vector
corresponding to the nearly transient states are insensitive to perturbations in
Aqq, A1z, and Asy. On the other hand, in the example the small component of
the steady-state vector is very sensitive to changes in € itself, and we may expect
a similar sensitivity in the general case to perturbations in Fi,.

The condition that o = O(1) is necessary. For as a becomes small, the ap-
proximations that lead to (1.1) become increasingly inaccurate and break down
entirely when o = O(¢). (This break-down agrees with what we know about the
perturbation theory for nearly completely decomposable chains, where the steady
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state vector is sensitive to such perturbations [2].) In generalizing the result, how-
ever, it is not be enough to require that Ay; = O(1), and we will formulate an
alternate condition in terms of Ass.

Finally, we note that the perturbation in the example does not leave the matrix
stochastic. At first blush, this generality may seem superfluous, since in appli-
cations to Markov chains we should expect both the matrix and its perturbation
to be stochastic. However, it turns out that certain numerical algorithms, among
them Gaussian elimination, introduce perturbations that render the matrix in
question nonstochastic.

The paper is organized as follows. In the next section, we will introduce
some preliminary transformations of the problem. In Section 3 we will establish
a general perturbation bound, and in Section 4 we will discuss its consequences.

Throughout this paper || - || stands for the FEuclidean vector norm and the
subordinate matrix norm defined by

Al = sup |l Aal]

ll=ll=

2. The Transformed Problem

To state our problem more precisely, let the matrix A of (1.2) and its submatrices
Aqp and Asjy be irreducible, and let
T T
y =y v2)

be its Perron vector partitioned conformally. Let

GH 0
G —
( G21 G22 )

be a matrix that is small compared to one (but not necessarily compared to Fi3),
and assume that

i A+ G Ery
A=A+G=
* ( Ag1 + G Agz + Gaa )

is also irreducible. Let

g = i)
be the Perron vector of A. Then our problem is to establish perturbation bounds
for 75 .
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A technical difficulty presents itself immediately. If Ej5 is small, the matrix
Aqq is near a stochastic matrix and has an eigenvalue near one. Hence I — Ay is
very nearly singular, and this near singularity prevents us from applying standard
perturbation theory directly. We will circumvent the problem by transforming the
matrix A into a form in which the offending eigenvalue is isolated.

Let 311 be the Perron eigenvalue of Ay; and let the corresponding positive left
eigenvector be ul, normalized so that ||u;]| = 1. Let

U= (u1 Uz)
be orthogonal. Then it is easily verified that UT AU has the form

0
UTA U = 611 )
H ( bar  Bas

The eigenvalues of By are the eigenvalues of Ay; other than fi1. Since Ay is
substochastic, I — Bys is nonsingular.

Now let .
Uy _ fis
() e (1)
and
Azl(ul Uz) = (531 B32)-
Then

T

B UT 0 All E12 U 0 611 0 f13
B = 0 7 Ay Aoy 0 1]~ byr Bay Iy |,

bs1 Bsy; DBss

where Bs; = Ags.

Since both y! and u] are positive, yfu; > 0. It follows that we may renor-
malize y* so that

y'U=(1p; ps).

where pi = yiU, and pi = yS. In terms of the transformed problem, our goal
is to find perturbation bounds on pi, when the quantities B;; are subject to
perturbations.

It is easy to obtain a linear equation for pl. Because yTdiag(U, I) is a null
vector of I — B it follows that p] and pi satisfy

I-B —F
(pszg)( —33222 ]_é:;?)):(oflg)



Nearly Transient Chains 5

Eliminating p; from this equation, we obtain

pg (] — B33 — B32(] — B22)_1F23): fiI‘?) (21)

It is equally easy to obtain an equation for the perturbed vector ps. Let

M1 th2 0
H — UTGU — h21 H22 0 5
h31 H32 H33

and assume that A = A + (& is stochastic. Then in the transformed system (with
tildes denoting the obvious perturbations)

o [ I— By —F
ot (e )=

It follows that

ﬁg (] - ng - ng(] - BQQ)_1F23): fE’) - hrlI‘z(] - BQQ)_1F23. (22)

3. The Perturbation Bound

In this section we will establish perturbation bounds for ps. It will be convenient to
have an abbreviated notation for the norms occurring in the bounds. Accordingly,

we set
B =Bl = [lAll,
n =[H| =Gl (3.1)
W=l - Bl (=23

The equalities in the above definitions follow from the fact that a transformation
by the orthogonal matrix U does not change the spectral norm. The same symbols
with tildes denote the norms of the perturbed quantities; e.g., 3 = HBH

We begin by collecting some standard results from the perturbation of linear
systems (see, e.g., [1, 3]).

Theorem 3.1. Let C' be nonsingular and let C = C + (), where

ICHIlQI < 1.
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Then C is nonsingular,

~ )
c! g——l————, 3.2
1= T e 2
e le~ ey
~—1 -1 c~ Q
— < = @l ,
I == e )

Moreover, if

eTC =dt and iTC =d" + 47,

& — | [ 4l
- . 3.4
Igdl 1—HC*WQHO@H+HM) 4

then

Now let C' denote the matrix in equation (2.1) for p} and let d* denote the
right-hand side. Let C' denote the matrix in the perturbed system (2.2) and d*
denote the right-hand side. To apply Theorem 3.1, we must bound ||C' — C'|| and
|4 — "]

We have

C—C= (B33—B33)+(B32—B32)(]—Bzz)_lFQ:a—l-B:az ((]—Bzz)_l—(]—Bzz)_l)Fzza-

On taking norms we get

neY2
1— 92’

|C = C|| < 5+ nhae+ 3

The third term of the bound follows from (3.3) under the assumption that 5y, < 1.
Since from (3.2) we have 73 < v2/(1 — n7v2), if we set 7 = n/(1 — 172), we have

10— C|| < (L + 2 + Bae).

Similarly, )
ld —d|| < ne.

If we now use these bounds in (3.4), we get the following theorem (remember that
T_ T
Yy = P3)-

Theorem 3.2. Let the irreducible stochastic matrix A have the form

A Ere
A=
( Agr As ) 7
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where Ay and Asq are irreducible, and let

P A B Giin 0
A=A+dG = +
( Agr Ag ) ( Ga G )

also be stochastic. In the notation of (3.1), assume that ny, < 1, and set

n = 7 and =14 ye+ fye.
L=z
If
npys < 1,
then s H
3/2 — Y2 3 €
WS e ) )

4. Discussion

The bound (3.5) gives the promised result. Provided |yi|| is of order ¢ (more
on this point later), the relative perturbation of y4 is a small multiple of 5. The
condition that nuvys < 1 is the condition on Aj; mentioned in the introduction.
It essentially says that the eigenvalues of A,; are bounded away from one. In
particular, it prevents the matrix Ay from being small —the condition used in
the 2 x 2 example in the introduction.

It is instructive to examine the asymptotic form of the bound as e and p
approach zero. In this case, p approaches one and 7 approaches n. Consequently,
(3.5) has the asymptotic form

H372 Ya H

Iy | Iy |

Thus if ¢/||y4]| is near one, the factor controlling the size of the perturbation is

SE/RE [1 + ] (4.1)

v3; i.e., the norm of (I — Azg)

The requlrement that ¢/||y; || be near one may seem awkward, but it is neces-
sary. If y) is smaller than e, perturbations due to the interaction of G and E can
obliterate it [see the right-hand side of (2.2)]. More insight into this phenomena
can be gained by replacing ||ys|| by a lower bound. Since pi (I — Bs3) = fL, it
follows that ||ps|| < ||f&ll/|I1 — Bas||. Hence another, weaker asymptotic bound is

[ ”ng[ L1+ 8) (1.2)

Iy | HflSH]
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Since 3 is of order one, we see that the bound can become large when fi3 to be
small compared with the matrix Fq,.

Finally, we return to the case where A is not stochastic. The problem here is
that we have assumed the existence of a null vector for I — A in deriving (2.2).
We will circumvent this problem by perturbing A so that T — A is singular.

First note that from Theorem 3.1 and (2.1) we have the following bound:

V3€

1= Byae’
e., the near transient states have probability of order e. Since one is a simple
eigenvector of A, for n sufficiently small there is a corresponding eigenvalue of A

A= 1—|—(yly)(g11 GO )(2)+O(772)

=1+ yi Gue +0(n?) + O(e)
(§ee [3, Theorem 1V.2.3]). Hence 11— A < |lyilln + O(n*) + O(e). Thus if

A= A= (I — X\)I, then A comes from a perturbation of A whose norm is

lys 1l <

of the form

asymptotically bounded by n(1 4 |lyf||). Moreover, I — A is exactly singular.
Consequently, the asymptotic bounds (4.1) and (4.2) continue to hold with 5
replaced by n(1+ yL])).
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