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1. Introduction .
Integrated tactile sensors appear to be essential for dextrous control of multifingered

robotic hands. Such sensors would feature (1) compliant contact surfaces, (2) high resolution
surface stress transduction, (3) local signal conditioning, and (4) local computation to recover
contact surface stress. The last-mentioned item pertains to the basic inverse problem of
tactile perception and the real time solution of this inverse problem is our primary concern.
We think that good solutions to this problem ( i.e. algorithms + implementations ) will be
needed for realizing dextrous hand control via tactile servoing. In this paper we describe a
processor chip designed to solve the mathematical inversion problem utilizing neural network
principles. An energy function for the network is derived and we show that the equilibrium
states are just regularized solutions to the inversion problem. Simulations indicate that this
chip can function in the presence of large amounts of electrical noise. In addition the effect of
processing induced variability in sensor response can also be minimized using the maximum
entropy estimate method described below.

The tactile sensor design we refer to is the one reported in [1]. This particular design is
based on piezo-resistive transduction via an array of diffuse resistors in silicon. Surface load on
a compliant layer is transformed into resistance changes proportional to triaxial strains. Initial
testing of the sensor has yielded repeatable, linear characteristics. The signal conditioning
chip which acts as an interface between the sensor array and subsequent processor chips has
also been fabricated. .

The outline of this paper is as follows. In the next section we describe a model for the
compliant contact layer. The algorithm for deconvolution and the network implementation
proposed are described in section 3. A detailed analysis of the stability and convergence
properties of the network is presented in section 4. The neural network chip described in
this paper has been simulated at the system level. The simulation results for this network
based on a particular linear elastic model (described in section 2) of the compliant contact
layer. We consider in the simulations some of the errors introduced by process variability in
VLSI implementation. We include a comparision to Fourier deconvolution in the presence of
noise. The simulations carried out using SIMNON a general purpose nonlinear simulation
package developed at Lund Institute of Technology, Sweden ( kindly provided us by Professor
Astrom), are described in section 5.
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2. The Elastic Model

We model the compliant contact layer as a homogeneous, isotropic, linear elastic half-
space. The standard stimulus used is a cylindrical indenter viewed as a ]in‘e load. The
relationship between surface stress and strains at a fixed depth ( see fig 1 ) is given by a
convolution operator. A model of this type is considered by Hol]erbach.and Fearir?g in their
paper [2] and a careful study of related inverse problems is. to be fou'nd in the thesis of Yang
[3]. Assuming a plane strain condition in the layer and Poisson’s ratxo' of 0.5 ( as for yubper-
like materials ), the integral operator relating the surface stress to strain at a depth x is given
by

e:(y) = /_: t(z,y — yo) fu(v0)dvo. (2.1)

Where,
3 z(z'- (y - w)?
T 27E (22 + (y — w0)?)?

and E is the elastic modulus of the compliant material.

The tactile sensor measures a spatial sampling of the strain ¢, (y) at intervals of A(=
Yi+1 — ¥i). The basic inverse problem ( planar version ) of tz.xctile perception is to recover the
surface stress f,(y) or a sampled version of it from the strain data. The problem is 111.-posed
in the sense of Hadamard since the convolution operator has only a dgnsely (?eﬁned inverse
operator. The discrete ( or sampled ) inverse problem is one of solving a linear equation
associated to the discrete convolution. We write this as

t{z,v — yo) (2.2)

Tf = (2.3)

where the matrix T of weights is determined by the convolution kernel in an obvious manner.
Inverse problems of this type have been studied extensively in many areas of applied mathe-
matics using regularization techniques. The specifics of the tactile sensing context have been
treated in Yang [3]. In the present paper we give a solution to the discrete inversion problem
using a highly interconnected network of simple analog processors (i.e. a neural network )
3. A Neural Network

Inspired by the previous work of Tank and Hopfield [4], on neural networks for solving
certain optimization problems, we propose a design as in Figure 2 for solving the deconvolution
problem of tactile perception. A complete description of this network is presented in Marrian
and Peckerar [5]. The input currents (I;) are the measured strains. The essential difference
between our design and that of Tank-Hopfield is in the use of exponential amplifiers in the
signal plane and the introduction of the convolution kernel as the interconnection matrix.
We show in section 4 that under suitable hypotheses, the network relaxes to a solution of eqn
2.3. .

As in the Tank Hopfield net [5], the network can be considered as consisting of a signal
plane and a constraint plane. The output of the signal plane represents the current ‘guess’ at
the surface stress. The constraint plane ‘evaluates’ the output of the signal plane to determine
the degree to which the guess violates eqn. 2.3. The outputs of the constraint plane readjust
the signal plane outputs so long as equation 2.3 is violated. The use of exponential amplifiers
in signal plane results in the introduction of a term proportional to the negative of the
information theoretic (or Shannon) entropy into the energy function for the network. Thus
equilibrium states of the network correspond to entropy maxima as well. In situations where
noise levels are sufficient to severely corrupt the validity of a solution, the network settles to

the solution which maximizes Shannon entropy. Hence we shall refer to this network as a
mazimum entropy deconvolution network.



4. Convergence and Equilibria

The maximum entropy deconvolution network is a special case of the general non-linear
RLC networks considered by Brayton and Moser (8], Millar [9], and Cherry [10]. In this
section we examine the conditions subject to which all solutions to the governing differential
equations for the network approach equilibrium solutijons as t — co. We also define a function
P(u*) and show it to be a strict Liapunov function for the network.

We first restate and prove two theorems. The first of these theorems is known as Tellegen’s
theorem [11], but is presented as in (8] s0 as to have a geometrical interpretation. The second
theorem is stated by Brayton and Moser in [8].

For the network shown in figure 2, a complete set of variables (see [8]) can be defined
as u* = (uy,uz,...,un) where u; is the voltage across the capacitor in the ith signal plane
node. The set of variables uj,...,uy is complete in the sense that the u; can be chosen
independently without violation of Kirchoff’s laws and that they determine in each branch
of the network at least one of the two variables, branch current or branch voltage. »

We consider a network composed of branches and nodes with the restriction that a branch
connects exactly two nodes. Arbritrarily assigning a direction to the branch currents, we
define 1, as the current flowing from the initial node to the end node of the uth branch in the
network. The branch voltage v, is defined as the voltage rise measured from the end node to
the initial node of the uth branch in the network.

In such a directed network with b branches and m nodes, the set of branch currents
i = (i1,...,1s) and the set of branch voltages v = (vi,...,;) are vectors in a b-dimensional
Euclidean vector space £ with the inner product defined by (z,y) = Ef‘zl z,yu. Let I be
the set of all vectors in &? such that if ¢+ € I then the constraint of Kirchoff’s current law
is satisfied for each node in the network, i.e. 3 ,.4 1, = 0. Similarly, let V be the set of all
vectors in £° such that if v € V then Kirchoff’s voltage law is satisfied, i.e X1, vy = 0. ]
and V are clearly subspaces of £° since they are defined via linear relationships (Kirchoff’s
Laws). The following theorem shows that J and V are orthogonal subspaces of £°.

Theorem 1(Tellegen's Theoremn)

Ifi€el andv eV then
(i,v) = 0. (4.4)
Proof:

Let (V3,...,V,.) be the set of node voltages such that v is the vector of voltage differences
between the end nodes and the initial nodes of each branch. let 1; be the current from node
k to node I. Then if the branch connecting node k to node ! is labeled as the uth branch,

Vuly = (Vi = V)iu = (Vi - Vi)in (4.5)
Due to the symmetry in k and [, '

b
. 1
Z v,,z,, = -2-' ZZ(Vg - Vl)l.k[
p=1 ]
1
2

but,

and



Since the branch currents in the network must satisfy Kirchoff’s current law we know 3, 4, 1, =

0. Therefore ,
> Vuin =0 (4.8)
u=1

Theorem 2

Let T denote a one dimensional curve in I x V with coordinates denoted by 1 and v. Then,

/ Z v,di, = / Z t,dv, =0 (4.9)
Proof: Since (diy,...,dis) € I,
b

(v,d?) Z udi, =0 (By Tellegen’s theorem). (4.10)

Integrating the above sum along I' we get,

b
/ > v,di, = 0. (4.11)
r“:l

Integrating by parts we see that,

/ }:z dv, = 0. (4.12)

vz)

By Tellegen’s theorem we know (v,1) = 0, therefore,

b
/ > 1.dv, =0 (4.13)
r i

Having stated the above two theorems and having defined the complete set of variables

u+ = (uj,...,un) for the network, we proceed with the definition of a mixed potential
function.

From theorem 2 we know that [ S°0_, v,di, = 0. We choose I from a fixed initial point to

a variable end point in £° such that along T' the characteristic relationships of the constituent
elements of the network are satisfied. We can write equation (4.11) in the following form:

/Zv,dz,-&-/ E vdi, =0 (4.14)

u=N+1

The first integral is over all capacitive branches and the second is over all other branches.
Integrating the first integral by parts we get,

N -
P+ [ S i,dv, =0, (4.15)
ro



where ,

p=N+1

b N
pP=- [/r S vudiy+ 34,
p=1

} . (4.16)

Therefore from (4.15) we also have,

N
pP= ~/ > i,dv,. (4.17)
r,zl

Let N
=) 1,dv,. (4.18)
£=1

We now establish the conditions for ¢ to be integrable i.e the conditions for the line integral

(4.17) defining P to be independent of the path of integration I . . o
For (4.17) to be independent of T, it is necessary that ¢ be a perfect differential. That is,

we can write £ as,

{ = do, (4.19)
where 0 = o(v;,...,vn) and,
d do
do = ——o—dvl + -+ ——duy. (4.20)
Jv; Juy
But since £ = do we have, .
do = ¢ydvy + -+ - + induy. (4.21)
Comparing (4.20) and (4.21) we get,
do
, = ~— =1,...,N. 4.22
i ov, p=1 ( )

Therefore Py 52 py
i, o 2,

= = p2=1,...,N. 4.23

Ov, Ov,0v, dv, e (4.23)

From the above equation (4.23) we see that in order for (4.17) to be independent of T, the
following must hold: 5
al'k ij .
_— I — ,kzl,... N. -2
Ov; Oy J ’ (4.24)

If (4.24) holds then P is a function of the eridpoints of T alone.

Assuming that the line integral (4.17) is independent of path we can write the following
equations for the current in the capacitive branches:

aprP

1‘,=-'—5; p=1,...,N. (4.20)

However, we know from the the dynamical law of capacitors that,

dv,

ip= th— p=1,...,N. (4.26)
Therefore, )
dv, 0P (v S
C,—ET = — 30, p=1,...,.N (4.27)



where v = (vy,...,vn). We now write the system of differential equations defining the
dynamical behavior of the network in the following vector form,

dP(z)

—er= Jz

(4.28)

where z = v, C = diag(C},...,Cn), and f’l;%ﬂ is the gradient of P(z). The following theorem
relates P(z) to the equilibrium states of the network.

Theorem 3

Let dz BBG(:L)

dt oz
where U is a normed vector space and B is a positive definite, diagonal, n X n matrix. Then
£ G(z(t)) <0forallz € U and £ G(z(t)) = 0if and only if z is an equilibrium of the gradient
system (4.29). Proof:

zelU G:U—-R (4.29)

Taking the time derivative of G along trajectories,

dG(z) 0G(z) d_:c)
dt _(8.?)’dta()
o0G(z G(z
= | oz =B oz )
8G(z) |}
-5 oz

Since B is positive definite, this completes the proof.

Corollary: If Z is an isolated minimum of G(z) then F is an asymptotically stable equilibrium
of the gradient system (4.29).

As the matrix C is positive definite, it is obvious that the function P(z) which we shall
call the mixed potential function, decreases along solutions to (4.28) except at equilibrium
points. Therefore the equilibrium states of the network correspond to stationary points of
P(z) and the local minima of P(z) are the stable equilibria. If in addition to this P(z) - o©
as |z — oo then it can be shown that all solutions to (4.28) approach one of the set of
equilibrium solutions as t — oo.

P(z) is just the negative of the ‘co-content’ (as defined by Milar) of all the capacitive
elements in the network. In [9] Milar shows that the total co-content, which is the sum of
the cocontents of all constituent elements of the network, is an invariant of motion. That is,
the total co-content is a conserved quantity. The analogy to energy of a particle in motion is
evident. For a moving particle the total energy, taken as the sum of the kinetic and potential
energy, is an invariant of motion and equilibria represent local minima of potential energy.
Therefore P(z) can be regarded as a type of potential energy function for the network.
(Energy Function for Deconvolution Network)

We now discuss the application of the potential function defined in (4.17) to the maximum
entropy deconvolution network. In the following we assume that for the network in figure 2,
any dynarmics associated with the constraint plane can be neglected. This assumption is valid
if the response of the amplifiers in the signal plane is sufficiently slower than of those of the
constraint plane. It is intuitively obvious that a ‘potential’ function should depend only upon
the current state of the network and the fixed ‘zero’ reference potential chosen (i.e. it should
depend only upon the endpoints of T'). To establish the path independence of the integral in
(4.17) we turn to the ‘mixed-partials’ condition of (4.24).

6



The current through the capacitor connected to the nth signal plane node is given by,

. du, U, 1

=C— == === tnf(Te-v-1L)—af> v, —-1). (4.30

i, dt R R ; k f( k k) (; ) )

Here Ty = (ti;,tk2,...,tin)T and a is the gain of the normalization amplifier in the constraint
plane. Since u, = g~!(v,) we can write,
du g v) 1

= 2= e Ti-v—1)—al) v, —1). 4.31

i Cdt B 7 zk: kn f (T k) (; ) (4.31)

The potential function P is thus a function of v = (v1,...,vn)T ie. we can use v as an

alternate set of independent variables and
P(v) = —/1“ Zz’ndvn. (4.32)

From (4.31) we see that,

ot e
T = =S S (T v L) = a(S v — 1 4.33)
e = iy (v oS ) <
= =) tinli;—a k,jyn=1,...,N (4.34)
X
and,
8i, 3
- —_ . . _I — _ . .3—
do, av,,( 2t (T v = 1) 2 v 1)> (4.35)
= =2 ljtin—a (4.36)
x
di, .
= i k,],n=1,...,N. (437)
J

Thus the conditions of (4.24) are satisfied.
We can now write the dynamical equations of the network in the following form:

du __,0P((u))

dt = ¢ Ov(u) (4:38)
where v = (v;...,uy) and v, = 97 (un). Since v; = g{u:), we have:

dv_ _ _ 8P(v)

& = ~GCT (4.39)

where G = diag(g'(v,),... 19'(un)). Because g(u) = exp(u), we know that G is always positive
definite.

Applying theorem 3 to (4.39), it is clear that the network will relax to one of the local

minima of P(v). In order to understand the nature of the stable equilibrium states of the
network we must evaluate the integral expression for P.

P(v) = A; (g_‘%ﬁ + % + Ek:tknf(Tk ‘v~ 1) + a(gvk —1)) dv,, (4.40)



Choosing 0 as the starting point of the path I', we can write (4.40) as,
-1
97 (vn) " dvn tin f (T v—I)dvn+ oS vi—1)dv,. (4.41
[ gt [ G [ S St (Tev=1) Zfen )
If we let F(z:) be such that dF(z;)/dz: = f(z), (zx = (Ti - v — Ii)) then,
-1
vn g (vn) Un 9
= —dv, — + FlTy - v—-1)+ a vy — 1)°. 4.42
P =¥ [ g+ DR+ D v =) + (D - ) (4.42)

For the deconvolution network shown in figure 2 the signal plane amplifiers are characterized
by g(u) = exp(u). Therefore

un g1
/ g (vn) dv, = vy log v, = vy (4.43)
0 R

From figure 2 we also see that the constraint plane amplifiers characteristics are given by:

f(z) = sz (4.44)

where s is a constant defining the feedback gain. We can thus define the function F(Ty-v—I)
by, \
F(Tk-v——Ik) Z—‘S(Tk °‘U—Ig) (4.45)
From (4.42) and (4.43),

P(v) = 712-2'; vn log v, + ;s(Tk cv—I) 4+ a(zk: v — 1)% (4.46)

Equation (4.46) gives us an explicit form for the energy function for the maximum entropy
deconvolution network which has been derived using nothing more than Kirchoff’s laws. We
observe from (4.46) that the network of figure 2 will settle to a state which minimizes the
sum of the error in the estimate, the negative of the Shannon entropy and the deviation
from a normalized solution. By varying the resistor R we can vary the weight given to the
regularizing (entropy) term relative to the minimization of the square of the error. The
constant a is used to adjust the weight given to the normalization which is necessary since
there is no reason to believe that the solution should be normalized.

5. Simulation Results

The complexity of interconnections and feedback loops within the maximum entropy de-
convolution neural network suggests the use of computer simulations for performance eval-
uation and optimization of design parameters.We have carried out extensive simulations to
evaluate the performance of the network in such terms as convergence time, proximity of
the solution to the true solution, noise immunity, etc. In addition we have considered the
problems associated with the realities of fabrication of such a neural net as a stand-alone
processor. These issues are discussed below.

From equation 2.2 the discrete convolution kernel is given by

__3 z(z? — (yi — y5)*
Y B T - ) (5.47)

Thus the strain measured by a sensor at y, (depth z) is given by the discrete convolution :

i(yn) = {: To; fo(y;) (5.48)

i=~K



Where f,(y;) is the vertical stress applied at the surface (tangential stress components are not
considered here) and 2K+1 is the number of sample measurements (number of §ensors). It
is assumed that the sensors are uniformly distributed beneath the surface at spatial intervals
A. The surface stress is designed to represent stress due to indentation of the surface with a
cylindrical object (Conway et.al. [7]) i.e.,

AU FAGRE A ey (5.49)

elsewhere

Where p is the normal force per unit length and a is the half-width of contact (strip contact
is assumed for the one-dimensional setting).

The deconvolution network itself is modeled under the assumption that the system dy-
namics are contained entirely within the signal plane (i.e the response of the constraint plane
amplifiers is instantaneous). Additional assumptions that are made in'these simu].ations is
that it is possible to realize a true exponential amplifier and that the desired constraint plane
amplifier characteristics are physically attainable.

Shown in fig.3(a) is the time evolution of three of the outputs (031,020 and oj¢) of the
maximum entropy network and the corresponding ideal solutions (fvgl_, fv2e and fuys) t-o the
deconvolution problem. Fig.3(b) shows the resulting reconstruction (discrete) o.f the c%esngned
surface stress (continuous). Both speed and accuracy of the network are evident in t.he.se
simulations. Perhaps the most striking (and useful) aspect of the proposed r‘xetwork, is its
performance in the presence of noise. Shown in fig.4(b) is the reconstruction of s.urface
stress using 41 sample strain measurements with white noise (o = 0.1) added. Flg..4(c)
shows reconstruction of the same designed surface stress under identical conditions using a
discrete Fourier transform method which, in the absence of noise, produces an almost perfect
reconstruction (Yang(3]). . A

Issues related to processing realities are critical in any attempt to implement a neural
network-based circuit. To reduce the effect of processing-induced variations we consider an
approach to the resistive network design problem using amorphous silicon as the resistor
material [6]. This approach yields high resistance values and can be scaled very accurately
in a discrete manner. All resistive connectors have a given value and are formed by opening
fixed-sized contact between two conductor layers. The total conductance linking a pair of
nodes, then, is proportional to the number of contact openings between those nodes. A small
range of conductances is desirable because fewer resistor contacts means less used area (i.e.,
greater chip density) and less signal coupling. Since the network behavior is determined by
the ratio of the conductances, rather than their absolute values, the process variation that
causes the variation of the individual resistance can be neglected, so long as they are large
enough. This approach, however, introduces new sources of error, namely, quantization and
truncation errors. The eflect of quantizing the interconnection values on output accuracy is
therefore a topic that must be studied.

Simulations were performed to study the effect of quantization of the T matrix. Initial
results of these simulations (using a 9-level quantization of the T} conductances) indicate
errors introduced into the solution are no greater than 5% relative to the unquantized case.
Studies of the Hopfield associative memory with as much as 20% random error introduced
into the T;;’s indicate robustness with respect to such processing induced variations. Future
investigations will involve the extension of such robustness to the deconvolution network.

6. Discussion

We have proposed a solution to the basic inverse problem of tactile perception. The
novelty of the solution lies in the implementation. Shannon entropy has in the past been suc-
cessfully used as a regularizing principle in optical image reconstruction problems. However,
regularizing principles of this nature have in most cases manifested as algorithms requiring
fairly powerful digital computers for real-time implementation. Work is currently underway

Q



at the microelectronics processing facility of the Naval Research Laboratory in Washington
to implement the algorithm we propose on a VLSI chip.

The energy function for the network was derived using only the fundamental arguments of
Kirchofl’s laws and thus can be used for any general RC network satisfying the two hypotheses.
The hypotheses are: (1) the mixed partials condition of equation 4.24 is satisfied, and (2) the
matrix multiplying the gradient of P on the left in equation 4.39 is positive definite.

Preliminary simulation results are very promising. The average convergence time for
the network is about 5 ms which is adequate for most real time applications. Although
the reconstructions obtained are not perfect, the flexibility of VLSI implementation, rapid
convergence and noise immunity are properties that may ,in practice, far outweigh absolute
accuracy of the solution.

7. Conclusions

We have developed a software model of a neural net processor which has demonstrated

the following:

e An ability to deconvolve the applied stress profile from strain measurements,

e An ability to perform this deconvolution in the presence of relatively large amounts of
noise.

The simulated convergence time of the net is less than 5ms. for all cases studied. The
net will make estimates of the true solution based on maximum entropy when noise levels do
not permit Fourier deconvolutions to take place. The noise can be either electronic noise or
‘fixed pattern’ noise introduced by process variability.

We have also mathematically demonstrated the stability and convergence properties of the
network and shown that the equilibria do indeed correspond to solutions of the deconvolution
problem.
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